Economic Calculations for the ASHRAE Handbook

Jeff S. Haberl
Dept. of Mechanical Engineering
Texas A\&M University
College Station, TX 77843-3123

ECONOMIC ANALYSIS TECHNIQUES

Definitions of terms:

C_{e}	$=$ cost of energy to operate the system for one period	ITC	= investment tax credit for energy efficiency improvements, if applicable
$C_{s, \text { assess }}$	= initial assessed system value	j	= general inflation rate per period
$C_{s, \text { salv }}$	$=$ system salvage value at the end of its useful life in constant dollars		= general energy rate per period $=$ end if period(s) in which
$C_{s, \text { init }}$ C_{y}	$\begin{aligned} & =\text { initial system cost } \\ & =\text { annualized system cost in constant } \\ & \text { dollars } \end{aligned}$	M	replacement(s), repair(s), depreciation, or interest is calculated = periodic maintenance cost
$\begin{aligned} & D_{k, s l} \text { or } \\ & D_{k, S D} \end{aligned}$	$=$ amount of depreciation at the end of period k depending on the type of depreciation schedule used, where $D_{k, s l}$ is the straight line depreciation method and $D_{k, S D}$ represents the sum-of-digits depreciation method in constant dollars	P P_{k}	$=$ number of period(s) under consideration $=$ a sum of money at the present time, i.e., its present value $=$ outstanding principle of the loan for
F	= future value of a sum of money		
	$=$ discount rate $=$ market mortgage rate (real rate + general inflation rate)	R_{k}	$=$ net replacement(s), repair cost(s), or disposals at the end of period k in constant dollars
$\begin{aligned} & i_{m} P_{k} \\ & i^{\prime} \end{aligned}$	$=$ interest charge at the end of period k $=\left(i_{d}-j\right) /(1+j)=$ effective discount rate adjusted for energy inflation j, sometimes called the real discount rate	$T_{\text {inc }}$	$=$ (state tax rate + federal tax rate) (state tax rate X federal tax rate) where tax rates are based on the last dollar earned, i. e., the marginal rates
$i^{\prime \prime}$	$=\left(i_{d}-j_{e}\right) /\left(1+j_{e}\right)=$ effective discount rate adjusted for energy inflation j_{e} $=$ annual insurance costs	$\begin{aligned} & T_{\text {prop }} \\ & T_{\text {salv }} \end{aligned}$	$=$ property tax rate $=$ tax rate applicable to salvage value of the system

For any proposed capital investment, the capital and interest costs, salvage costs, replacement costs, energy costs, taxes, maintenance costs, insurance costs, interest deductions,
depreciation allowances, and other factors must be weighed against the value of the services provided by the system.

Single Payment

A common method for analyzing the impact of a future payment is to reduce it to its present value or present worth. The primary underlying principle is that all monies (those paid now and in the future) should be evaluated according to their present purchasing power. This approach is known as discounting.

The future value F of a present sum of money P over n periods with compound interest rate i is:

$$
\begin{equation*}
F=P(1+i)^{n} \tag{1}
\end{equation*}
$$

The present value or present worth P or a future sum of money F is given by:

$$
\begin{equation*}
P=F /(1+i)^{n}=F \times \operatorname{PWF}(i, n) \tag{2}
\end{equation*}
$$

where $\operatorname{PWF}(i, n)$ the worth factor, is defined by:

$$
\begin{equation*}
\operatorname{PWF}(i, n)=1 /(1+i)^{n} \tag{3}
\end{equation*}
$$

Example 2: Calculate the future value of a system presently valued at $\$ 10,000$, in 10 years, at 10% interest.

$$
F=P(1+i)^{n}=\$ 10,000 \times(1+0.10)^{10}=\$ 10,000 \times 2.593742=\$ 25,937.42
$$

Example 3: Using the present worth factor
$\operatorname{PWF}(i=0.10, n=10)$, calculate the present value of a future sum of money valued at $\$ 10,000$.

$$
P=F \times \operatorname{PWF}(i, n)=10,000 \times 1 /(1+0.1)^{10}=\$ 3,855.43
$$

Accounting for Varying Inflation Rates

Inflation, which accounts for the rise in costs of a commodity over time, is a separate issue from the time value of money - the basis for discounting. Inflation must often be accounted for in
an economic evaluation. Further complexities are added when one considers that different economic goods inflate at different rates. One way to account for this is to use effective interest rates that account for varying rates of inflation.

The effective interest rate i^{\prime}, sometimes called the real rate, accounts for the general inflation rate j and the discount rate i_{d}, and can be expressed as follows (Kreith and Kreider 1978, Kreider and Kreith 1982):

$$
\begin{equation*}
i^{\prime}=\frac{1+i_{d}}{1+j}-1=\frac{\left(i_{d}-j\right)}{(1+j)} \tag{4}
\end{equation*}
$$

Such an expression can be adapted to account for energy inflation by considering the general discount rate i_{d} and the energy inflation rate j_{e}, thus:

$$
\begin{equation*}
i^{\prime \prime}=\frac{1+i_{d}}{1+j_{e}}-1=\frac{\left(i_{d}-j_{e}\right)}{\left(1+j_{e}\right)} \tag{5}
\end{equation*}
$$

The discount equations(1) through (3) can be revised to consider the effects of varying inflation rates. The future value F, using constant currency of an invested sum P with a discount rate i_{d} under inflation j during n periods now becomes:

$$
\begin{equation*}
F=P\left[1+i_{d} / 1+j\right]^{n}=P\left(1+i^{\prime}\right)^{n} \tag{6}
\end{equation*}
$$

The present worth P, in constant dollars, of a future sum of money F with discount rate i_{d} under inflation rate j during n periods is then expressed as:

$$
\begin{equation*}
P=F /\left[\left(1+i_{d}\right) /(1+j)\right]^{n} \tag{7}
\end{equation*}
$$

In constant currency, the present worth P of a sum of money F can be expressed with an effective interest rate i^{\prime} which is adjusted for inflation by:

$$
\begin{equation*}
P=F /\left(1+i^{\prime}\right)^{n}=F \times \operatorname{PWF}\left(i^{\prime}, n\right) \tag{8}
\end{equation*}
$$

where the effective present worth factor is given by:

$$
\begin{equation*}
\operatorname{PWF}\left(i^{\prime}, n\right)=1 /\left(1+i^{\prime}\right)^{n} \tag{9}
\end{equation*}
$$

Example 4: Calculate the effective interest rate taking into consideration a discount rate i_{d} of 10% and a general inflation rate j of 5%.

$$
i^{\prime}=\left(i_{d}-j\right)=(1+j)=(0.1-0.05) /(1+0.05)=0.04762=4.62 \%
$$

Example 5: Using the effective interest rate in Example 4, calculate the future value of \$10,000 10 years from now.

$$
F=P\left(1+i^{\prime}\right)^{n}=\$ 10,000(1+0.04762)^{10}=\$ 15,923.47 \text { (constant dollars) }
$$

Recovering Capital as a Series of Payments

Another important economic concept is the recovery or acquisition of capital as a series of uniform payments - the capital recovery factor. The capital recovery factor is commonly used to describe periodic uniform mortgage or loan payments. It is the ratio of the periodic payment to the total sum being repaid. The discounted sum S of such an annual series of payments $P_{a n n}$ invested over n periods with interest rate i is given by:

$$
\begin{equation*}
S=P_{a n n}\left[1-(1+i)^{-n}\right] / i \tag{10}
\end{equation*}
$$

This series of uniform annual payments $P_{a n n}$ over n periods is equivalent to the present value sum S divided by the capital recovery factor, with interest rate i expressed as:

$$
\begin{equation*}
P_{a n n}=S i /\left[1-(1+i)^{-n}\right] \tag{11}
\end{equation*}
$$

This multiplier is the capital recovery $\operatorname{CRF}(i, n)$, which can be expressed as:

$$
\begin{equation*}
\operatorname{CRF}(i, n)=i /\left[1-(1+i)^{-n}\right]=i(1+i)^{n} /\left[(1+i)^{n}-1\right] \tag{12}
\end{equation*}
$$

Example 6: Calculate the discounted sum of ten periodic payments of $\$ 1,000$ with a discount rate of 10%.

$$
S=P_{a n n} S=P_{a n n}\left[1-(1+i)^{-n}\right] / i=1000\left[1-(1+0.10)^{-10}\right] / 0.10=\$ 6144.57
$$

Example 7: Calculate the capital recovery factor for Example 6.

$$
\operatorname{CRF}(i, n)=i /\left[1-(1+i)^{-n}\right]=0.10 / 1-(1+0.10)^{-10}=0.162745
$$

Annualized Costs

The economic analysis methods presented to this point have included only single cash flows or a simple series of payments that were adjusted for inflation. A detailed cash flow analysis of a mechanical system should consider all positive and negative cash flow through the life of the system, including single payments, series of payments, and increasing or decreasing payments, and
must also consider varying inflation rates. Such analysis should take into account taxes, tax credits, mortgage payments, and all other costs associated with a particular system. One convenient way of accomplishing this is to use annualized system costs as presented by Kreith and Kreider $(1978,1982)$ and Kreider (1979).

Total annualized mechanical system costs depend on initial investments, salvage values, replacement costs, energy costs, property taxes, property tax deductions, interest tax deductions, maintenance costs, replacement costs, and insurance costs. Such a representation lends itself to optimization of system costs and can be applied to residential and commercial systems.

Annualized mechanical system owning, operating, and maintenance costs (for a profitmaking firm) can be expressed in constant currency as:

$$
\begin{align*}
C_{y}= & - \text { capital and interest }+ \text { salvage value }- \text { replacements (or disposals) }- \text { operating energy } \\
& \text { - property tax - maintenance }- \text { insurance }+ \text { interest tax deduction }+ \text { depreciation (for } \\
& \text { commercial systems) } \tag{13}
\end{align*}
$$

where

$$
\begin{array}{ll}
\left(\mathrm{CRF}_{s, \text { init }}-\operatorname{ITC}\right) \operatorname{CRF}\left(i^{\prime}, n\right) & =\text { capital and interest } \\
C_{s, s a l v} \operatorname{PWF}\left(i^{\prime}, n\right) \operatorname{CRF}\left(i^{\prime}, n\right)\left(1-T_{\text {salv }}\right) & =\text { salvage value } \\
\sum_{k=1}^{n}\left[R_{k} \operatorname{PWF}\left(i^{\prime}, k\right)\right] \operatorname{CRF}\left(i^{\prime}, n\right)\left(1-T_{\text {inc }}\right) & =\text { replacements or disposals } \\
C_{e}\left[\operatorname{CRF}\left(i^{\prime}, n\right) / \operatorname{CRF}\left(i^{\prime \prime}, n\right)\right]\left(1-T_{\text {inc }}\right) & =\text { operating energy } \\
C_{s, a s s e s s} T_{p r o p}\left(1-T_{\text {inc }}\right) & =\text { property tax } \\
M\left(1-T_{\text {inc }}\right) & =\text { maintenance } \\
I\left(1-T_{\text {inc }}\right) & =\text { insurance } \\
T_{\text {inc }} \sum_{k=1}^{n}\left[i_{m} P_{k-1} \operatorname{PWF}\left(i_{d}, k\right)\right] \operatorname{CRF}\left(i^{\prime}, n\right) & =\text { interest tax deduction } \\
T_{\text {inc }} \sum_{k=1}^{n}\left[D_{k} \operatorname{PWF}\left(i_{d}, k\right)\right] \operatorname{CRF}\left(i^{\prime}, n\right) & =\text { depreciation (for commercial systems) }
\end{array}
$$

The outstanding principle P_{k} during year k at market mortgage rate i_{m} is given by:

$$
\begin{equation*}
P_{k}=\left(C_{s, i n i t}-\mathrm{ITC}\right)\left[\left(1+i_{m}\right)^{k-1}+\frac{\left(1+i_{m}\right)^{k-1}-1}{\left(1+i_{m}\right)^{-n}-1}\right] \tag{14}
\end{equation*}
$$

Note: P_{k} is in current dollars and must, therefore, be discounted by the discount rate i_{d} not i^{\prime}.
Likewise, the summation term for interest deduction can be expressed as:

$$
\begin{equation*}
\sum_{k=1}^{n}\left[i_{m} P_{k} /\left(1+i_{d}\right)^{k}\right]=\left[\frac{\operatorname{CRF}\left(i_{m}, n\right)}{\operatorname{CRF}\left(i_{d}, n\right)}+\frac{1}{\left(1+i_{m}\right)} \frac{i_{m}-\operatorname{CRF}\left(i_{m}, n\right)}{\operatorname{CRF}\left(i_{d}-i_{m}\right) /\left(1+i_{m}\right), n}\right] \times\left(C_{s, \text { sint }}-\mathrm{ITC}\right) \tag{15}
\end{equation*}
$$

and if $i_{d}=i_{m}$,

$$
\begin{equation*}
\sum_{k=1}^{n}\left[i_{m} P_{k} /\left(1+i_{d}\right)^{k}\right]=\left[1+\frac{n}{\left(1+i_{m}\right)}\left[i_{m}-\operatorname{CRF}\left(i_{m}, n\right)\right]\right]\left(C_{s, \text { init }}-\mathrm{ITC}\right) \tag{16}
\end{equation*}
$$

Depreciation terms commonly used include depreciation calculated by the straight line depreciation method, which is:

$$
\begin{equation*}
D_{k, S L}=\left(C_{s, \text { init }}-C_{s, s a l v}\right) / n \tag{17}
\end{equation*}
$$

and the sum-of-digits depreciation method:

$$
\begin{equation*}
D_{k, S D}=\left(C_{s, \text { init }}-C_{s, s a l v}\right)[2(n-k+1)] / n(n+1) \tag{18}
\end{equation*}
$$

Riggs (1977) and Grant et al. (1982) present further information on advanced depreciation methods. Certified accountants may also be consulted for information regarding accelerated methods allowed by the IRS.

Example 8: Calculate the annualized system costs using constant dollars for a $\$ 10,000$ system considering the following factors: a 5 -year life, a salvage value of $\$ 1,000$ at the end of the 5 years, ignore investment tax credits, a $\$ 500$ replacement in year 3, a discount rate i_{d} of 10%, a general inflation rate j of 5%, a fuel inflation rate j_{e} of 8%, a market mortgage rate i_{m} of 10%, an annual operating cost for energy of $\$ 500$, a $\$ 100$ annual maintenance cost, a $\$ 50$ annual insurance cost, straight line depreciation, an income tax rate of 50%, a property tax rate of 1% of assessed value, an assessed system value equal to 40% of the initial system value, and a salvage tax rate of 50\%.

Effective interest rate \boldsymbol{i}^{\prime}

$$
i^{\prime}=\left(i_{d}-j\right) /(1+j)=(0.10-0.05) /(1+0.05)=0.047619
$$

Effective interest rate $\boldsymbol{i}^{\prime \prime}$

$$
i^{\prime \prime}=\left(i_{d}-j_{e}\right) /\left(1+j_{e}\right)=(0.10-0.08) /(1+0.08)=0.018519
$$

Capital recovery factor $\operatorname{CRF}\left(i^{\prime}, n\right)$

$$
\operatorname{CRF}\left(i^{\prime}, n\right)=i^{\prime} /\left[1-\left(1+i^{\prime}\right)^{-n}\right]=0.047619 /\left[1-(1.047619)^{-5}\right]=0.229457
$$

Capital recovery factor $\operatorname{CRF}\left(i^{\prime \prime}, n\right)$

$$
\operatorname{CRF}\left(i^{\prime \prime}, n\right)=i^{\prime \prime} /\left[1-\left(1+i^{\prime \prime}\right)^{-n}\right]=0.018519 /\left[1-(0.018519)^{-5}\right]=0.211247
$$

Capital recovery factor $\operatorname{CRF}\left(i_{p,}, n\right)$

$$
\operatorname{CRF}\left(i_{m}, n\right)=i_{m} /\left[1-\left(1+i_{m}\right)^{-n}\right]=0.10 /\left[1-(1.10)^{-5}\right]=0.263797
$$

Present worth factor $\operatorname{PWF}\left(i_{d}\right.$, years 1 to 5)

$$
\begin{aligned}
& \operatorname{PWF}\left(i_{d}, 1\right)=1 /(1.10)^{1}=0.909091 \\
& \operatorname{PWF}\left(i_{d}, 2\right)=1 /(1.10)^{2}=0.826446 \\
& \operatorname{PWF}\left(i_{d}, 3\right)=1 /(1.10)^{3}=0.751315 \\
& \operatorname{PWF}\left(i_{d}, 4\right)=1 /(1.10)^{4}=0.683013 \\
& \operatorname{PWF}\left(i_{d}, 5\right)=1 /(1.10)^{5}=0.620921
\end{aligned}
$$

Present worth factor $\operatorname{PWF}\left(i^{\prime}\right.$, years 1 to 5$)$

$$
\begin{aligned}
& \operatorname{PWF}\left(i^{\prime}, 1\right)=1 /(1.047619)^{1}=0.954545 \\
& \operatorname{PWF}\left(i^{\prime}, 2\right)=1 /(1.047619)^{2}=0.911157 \\
& \operatorname{PWF}\left(i^{\prime}, 3\right)=1 /(1.047619)^{3}=0.869741 \\
& \operatorname{PWF}\left(i^{\prime}, 4\right)=1 /(1.047619)^{4}=0.830207 \\
& \operatorname{PWF}\left(i^{\prime}, 5\right)=1 /(1.047619)^{5}=0.792471
\end{aligned}
$$

Capital and interest

$$
\left(C_{s, \text { init }}-\operatorname{ITC}\right) \operatorname{CRF}\left(i^{\prime}, n\right)=(\$ 10,000-\$ 0) 0.0229457=\$ 2,294.57
$$

Salvage value

$$
C_{s, s a l v} \operatorname{PWF}\left(i^{\prime}, n\right) \operatorname{CRF}\left(i^{\prime}, n\right)\left(1-T_{\text {salv }}\right)=\$ 1,000 \times 0.792471 \times 0.229457 \times 0.5=\$ 90.92
$$

Replacements or disposals

$$
\sum_{k=1}^{n}\left[R_{k} \operatorname{PWF}\left(i^{\prime}, k\right)\right] \operatorname{CRF}\left(i^{\prime}, n\right)\left(1-T_{i n c}\right)=\$ 500 \times 0.869741 \times 0.229457 \times 0.5=\$ 49.89
$$

Operating energy

$$
C_{e}\left[\operatorname{CRF}\left(i^{\prime}, n\right) / \operatorname{CRF}\left(i^{\prime \prime}, n\right)\right]\left(1-T_{\text {inc }}\right)=500[0.229457 / 0.211247] 0.5=\$ 271.55
$$

Property tax

$$
C_{\text {sassess }} T_{\text {prop }}\left(1-T_{\text {inc }}\right)=\$ 10,000 \times 0.40 \times 0.01 \times 0.05=\$ 20.00
$$

Maintenance

$$
M\left(1-T_{\text {inc }}\right)=100(1-.5)=\$ 50
$$

Insurance

$$
I\left(1-T_{\text {inc }}\right)=50(1-.5)=\$ 25
$$

Interest tax deduction

$$
T_{i n c} \sum_{k=1}^{n}\left[i_{m} P_{k-1} \operatorname{PWF}\left(i_{d}, k\right)\right] \operatorname{CRF}\left(i^{\prime}, n\right)=\ldots
$$

Table 5 Interest Deduction Summary

Year	Payment Amount $($ Current \$)	Interest Payment (Current \$)	Principal Payment (Current \$)	Outstanding Principal $($ Current \$)	PWF $\left(\boldsymbol{i}_{\boldsymbol{d}} \boldsymbol{k}\right)$	Discounted Interest (discounted \$)	
0	--	-	--	$\$ 10,000$	--	--	--
1	2637.97	1000.00	1637.97	8362.02	0.909091	909.09	2398.17
2	2637.97	836.20	1801.77	6560.26	0.826446	691.07	2180.14
3	2637.97	656.03	1981.95	4578.31	0.751315	492.89	1981.95
4	2637.97	457.83	2180.14	2398.17	0.683013	312.70	1801.77
5	2637.97	$\underline{239.82}$	$\underline{2398.17}$	0	0.620921	$\underline{148.91}$	$\underline{1637.97}$
Total	--	3189.88	$10,000.00$	--	-	2554.66	10.000 .00

Annual payment amounts, interest payments, principal payments, outstanding principal payments, present worth factor $\operatorname{PWF}\left(i_{d d} k\right)$, discounted interest, and discounted payment are shown in table 5. Annual payments are the product of the initial system costs $C_{s, i n i t}$ and the capital recovery factor $\operatorname{CRF}\left(i_{m}, 5\right)$.

Note: Equation (15) can be used to calculate the total discounted interest deduction directly.

Next, apply the capital recovery factor $\operatorname{CRF}\left(i^{\prime}, 5\right)$ and tax rate $T_{i n c}$ to the total of the discounted interest sum.

$$
\$ 2554.66 \operatorname{CRF}\left(i^{\prime}, 5\right) T_{i n c}=\$ 2554.66 \times 0.229457 \times 0.05=\$ 293.09
$$

Depreciation

$$
T_{i n c} \sum_{k=1}^{n}\left[D_{k} \operatorname{PWF}\left(i_{d}, k\right)\right] \operatorname{CRF}\left(i^{\prime}, n\right) \ldots
$$

Use the straight line depreciation method to calculate depreciation.

$$
D_{k, S L}=\left(C_{s, \text { init }}-C_{s, s a l v}\right) / n=(\$ 10,000-\$ 1,000) / 5=\$ 1800.00
$$

Next, discount the depreciation.

Year	$\boldsymbol{D}_{\boldsymbol{k}, \boldsymbol{S L}}$	$\mathbf{P W F}\left(\boldsymbol{i}_{\boldsymbol{d}} \boldsymbol{k} \boldsymbol{k}\right.$	Discounted Depreciation
1	$\$ 1800.00$	0.909091	$\$ 1636.36$
2	$\$ 1800.00$	0.826446	$\$ 1487.60$
3	$\$ 1800.00$	0.751315	$\$ 1353.37$
4	$\$ 1800.00$	0.683013	$\$ 1229.42$
5	$\$ 1800.00$	0.620921	$\$ 1117.66$
Total	--	--	$\$ 6823.42$

Finally, the capital recovery factor and tax are applied.

$$
\$ 6823.42 \operatorname{CRF}\left(i^{\prime}, n\right) T_{i n c}=\$ 6823.42 \times 0.229457 \times 0.05=\$ 782.84
$$

Summary of terms:

Capital and interest	$-\$ 2294.57$
Salvage value	$+\$ 90.92$
Replacements or disposal	$-\$ 49.89$
Operating costs	$-\$ 271.55$
Property tax	$-\$ 20.00$
Maintenance	$-\$ 50.00$
Insurance	$-\$ 25.00$
Interest deduction	$+\$ 293.09$
Depreciation deduction	+782.84
Total annualized cost	$-\$ 1544.00$

REFERENCES

Akalin, M.T. 1978. Equipment life and maintenance cost survey. ASHRAE Transactions 84(2):94-106.

Dohrmann, D.R., and T. Alereza. 1986. Analysis of survey data on HVAC maintenance costs. ASHRAE Transactions 92(2A):550-565.

Easton Consultants. 1986. Survey of residential heat pump service life and maintenance issues. Available from American Gas Association, Arlington, VA (Catalog No. S-77126).

Grant, E., W. Ireson, and R. Leavenworth. 1982. Principles of engineering economy. John Wiley and Sons, New York.

Kreider, J. and F. Kreith. 1982. Solar heating and cooling. Hemisphere Publishing Corporation, Washington, D.C.

Kreider, J. 1979. Medium and high temperature solar processes. Academic Press, New York.
Kreider, J. and F. Kreith. 1978. Principles of solar engineering. Hemisphere Publishing Corporation, Washington, D.C.

Lovvorn, N.C. and C.C. and Hiller. 1985. A study of heat pump service life. ASHRAE Transactions 91(2B):573-88.

Riggs, J.L. 1977. Engineering economics. McGraw-Hill, New York.
U.S. Department of Commerce, Bureau of Economic Analysis. Survey of current business. U.S. Government Printing Office, Washington, D.C.

BIBLIOGRAPHY

ASTM. 1985. Definition of terms relating to building economics. ASTM Standard E933-85. ASTM, Philadelphia.

Kurtz, M. 1984. Handbook of engineering economics: A guide for engineers, technicians, scientists and managers. McGraw-Hill, New York.

Quirin, D.G. 1967. The capital expenditure decision. Richard D. Win, Inc., Homewood, IL.

Van Horne, J.C. 1980. Financial management and policy. Prentice Hall, Englewood Cliffs, NJ.

Example that has a disposal cost in year 10.
Calculate the annualized system cost using constant dollars for a $\$ 10,000$ system considering the following factors: a 10 ye a disposal cost of $\$ 1,000$ at the end of the 10 years, a $\$ 500$ investment tax credit for energy efficiency, no replacements, a discount rate id of 15%, a general inflation
rate of 5%, a fuel inflation rate je of 10%, a market mortgage im of 8%, an annual operating cost for energy of $\$ 400$, a $\$ 150$ annual maintenance cost, a $\$ 35$ insurance cost, straight line depreciation, an income tax of 35%, a property tax of 2% of assessed value, an assessed system value of equal to 60% of the system value, an a salvage tax rate of 35% (if positive salvage

Retrofit example...part one...
Calculate the annualized system cost using constant dollars for an existing system considering the following factors: a 10 a replacement cost of $\$ 1,000$ at the end of the 5 years, no investment tax credits, a $\$ 1,000$ replacement in year 5 , a discount rate id of 15%, a general inflation
rate of 5%, a fuel inflation rate $j e$ of 10%, a market mortgage im of 8%, an annual operating cost for energy of $\$ 1,800$, a $\$ 30$ annual maintenance cost, a $\$ 35$ insurance cost, straight line depreciation, an income tax of 35%, a property tax of 2% of assessed value, an assessed system value of equal to 60% of the system value, an a salvage tax rate of 35% (if positive salvage

Retrofit example...part two...
Calculate the annualized system cost using constant dollars for an new \$5,000 system considering the following: a 10 year no replacements, no
investment tax credits
a discount rate id of 15%, a general inflation
rate of 5%, a fuel inflation rate je of 10%, a market mortgage im of 8%, an annual operating cost for energy of $\$ 1,200$ a $\$ 1$ annual maintenance cost, a $\$ 35$ insurance cost, straight line depreciation, an income tax of 35%, a property tax of 2% of assessed value, an assessed system value of equal to 60% of the system value, an a salvage tax rate of 35% (if positive salvage

INSTALLATION GUIDE:

The floppy disk that accompanies the "Economic Calculations for the ASHRAE Handbook..." contains several Lotus 123 spreadsheet templates that are an electronic version of the last 4 pages of this document. To use this software you will need to have an MSDOS compatible computer with Lotus 123 Version 2 x or some other spreadsheet that can convert Lotus 123 Version 2x files such as Excel, or Quatro Pro. The remainder of this document assumes that the reader is familiar with MSDOS and Lotus 123 commands.

To install the 123 templates in your MSDOS computer select the appropriate directory into which you want to copy the templates (let's assume that this is called c:\TEMP. Check to make sure that you do not have any.WK1 Lotus templates (or anything else) named ASHRAE01.WK1 through ASHRAE04.WK1. Place the floppy disk in the A: drive, then type:

CD C:\TEMP
COPY a:*.WK1 *.* ...this copies everything named *.WK1
into the C:\TEMP directory

Next, you will need to start Lotus 123. Depending upon whether or not you have declared the directory containing the 123.EXE file to be on your path, you may need to change directories to the $\mathrm{C}: \backslash$ LOTUS directory. Then start Lotus with:

LOTUS followed by 123
or simply
123
Once Lotus 123 is running the ASHRAE01.WK1 template can then be retrieved with the following command:
/FILE RETRIEVE C:\TEMP\ASHRAE01.WK1

This assumes that ASHRAE01.WK1 is indeed in C:\TEMP.
The template should come alive in column 1, row 1 and display the text 'ASHRAE HANDBOOK EX\#1. The other ASHRAE templates have a similar title only contain EX\#2, EX\#3, and EX\#4 respectively.

Cells C3 ... C21 are the only cells that need to be changed by the user. All other cells are displaying the results of calculations and should not require any adjustments. You
are free to look a the equations by simply moving around the spreadsheet to view the formulas.

The cells E1 ... K15 display the Table 5 contained in the write-up.
The final answer can be found in cells J27 ... M39.
This economic analysis is only valid for 1 to 10 years. For an economic analysis of greater than 10 years, cells E1 ... K15 will need to be expanded. It is suggested that you simply move the cells immediately below this to another location on the spreadsheet, move the totalizing row, copy down the last row of the block until the proper number of years appears, adjust the "year" column, and recalculate.

After any new value has been entered you will need to hit the F9 or RECALCULATE function key. It is advised that after each new value is entered a print is made of the spreadsheet to serve as a handy reference to what has been done.

Unfortunately, this spreadsheet only fits nicely into a landscape mode of printing. To make this adjustment one needs to reset the 123 printer setup command. For example using an HP Laserjet III this would be as follows:
/ PRINT PRINTER OPTIONS SETUP $1027 \& 1105.45 \mathrm{C} \backslash 027 \mathrm{Cs} 0 \mathrm{p} 16.67 \mathrm{H}$
Other printers have different set up commands.
If you have any questions about the use of these templates feel free to contact the author.

