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ABSTRACT 

In this study, the community multiscale air quality (CMAQ), with modifications to track 

precursor-specific SOA, was applied to model SOA and organic tracer formation from aromatic 

compounds, isoprene, monoterpenes, and sesquiterpenes. The model predicted aromatic and 

monoterpene SOA showed strong correlations with the measured daily corresponding organic 

tracers, which indicates that the tracer-method is a good approach to evaluate model predictions in 

precursor-specific SOA. However, the tracer-to-SOA ratios (𝑓𝑆𝑂𝐴) derived from the modeling 

results show large variation based on different SOA components considered, and the 𝑓𝑆𝑂𝐴 values 

showed significant difference from those determined in chamber experiments due to the difference 

between chamber conditions and ambient atmosphere. The 𝑓𝑆𝑂𝐴 in the ambient air can be assessed 

by the modified CMAQ model with abilities to simulate organic tracers and SOA simultaneously. 

The modeled aromatic SOA tracer, 2,3-dihydroxy-4-oxopentanoic acid (DHOPA), agree 

well with the field measurements (MFB = 0.15; R = 0.8), and approximately two-thirds of it is 

from the oxidation of toluene. The modeled 𝑓𝑆𝑂𝐴 shows a strong dependence on the OA loading 

when only semivolatile aromatic SOA components are included, while this dependence becomes 

weaker when non-volatile oligomers and dicarbonyl SOA products are considered. To predict total 

aromatic SOA, a constant 𝑓𝑆𝑂𝐴 of 0.002 is determined, and the common-used chamber-determined 

𝑓𝑆𝑂𝐴 value of 0.004 could lead to an underestimation of SOA by a factor of 2. 

The isoprene-SOA scheme in the CMAQ model is expanded to simulate the unique 

isoprene tracers 2-methyltetrols (2-MT) and 2-methylglyceric acid (2-MG) by treating them as 

semivolatile species and including a non-heterogeneous formation pathway. The modeled 𝑓𝑆𝑂𝐴 of 

sum of 2-MT and 2-MG in the total isoprene-SOA varies gently, between 0.01-0.02 in polluted 
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regions, suggesting that the chamber-determined 𝑓𝑆𝑂𝐴 of 0.063 may lead to large underestimations 

of overall isoprene SOA. 

The monoterpene (MT) and sesquiterpene (SQT) SOA was simulated by the CMAQ model 

with five explicit and one lumped MT species and SQT, and the contribution from each oxidation 

pathway was tracked in the MT SOA formation. Three MT tracers (pinic acid, PA; pinonic acid, 

PNA; and 3-methyl-1,2,3-butanetricarboxylic acid, MBTCA) and one SQT tracer (β-

caryophyllinic acid, BCARYA) were modeled to assess the 𝑓𝑆𝑂𝐴 values to estimate MT and SQT 

SOA. The 𝑓𝑆𝑂𝐴 shows significant OA dependence, suggesting that using a constant 𝑓𝑆𝑂𝐴 could lead 

to large errors in estimating terpene SOA. Instead, power-law equations directly link the tracer 

concentrations to the corresponding SOA concentrations were proposed and lead to good SOA 

estimations. 
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1 INTRODUCTION 

 

 Organic aerosols (OA) are generated from direct emissions (i.e., primary organic aerosol, 

or POA) and gas-to-particle partitioning of the semi-volatile oxidation products from parent 

volatile organic compounds (VOCs). Secondary organic aerosol (SOA) contributions to total OA 

loading vary from 20% to 80%, with significant spatial and seasonal variation 1-4. Chemical 

transport models (CTMs) have been widely used to quantitatively study the regional and global 

impacts of carbonaceous aerosols 5-8. Correctly predicting SOA in these models is challenging, 

especially in polluted urban areas, as many precursors contribute to SOA formation, and the ability 

of each precursor to form SOA is different. Major precursors of SOA include aromatic compounds 

9-11, isoprene 2, 12-14, monoterpenes 15, 16, and sesquiterpenes 17, 18. Also, dicarbonyls such as glyoxal 

(GLY) and methylglyoxal (MGLY) are found to contribute significantly to SOA formation 

through aqueous and heterogeneous processes 19, 20. Predicted SOA concentrations are affected by 

the model representation of the emission, photochemical oxidation, gas-to-particle partitioning, 

and the multiphase reaction processes 21-23. Many of these physical and chemical processes remain 

uncertain due to an incomplete understanding of the SOA formation mechanisms and large 

differences between the atmospheric conditions in the ambient environment and the chamber 

conditions under which the SOA formation experiments were conducted to determine parameters 

used in the models 24, 25. 

Chemical mechanism of VOC oxidation is one of the significant driven factors to represent 

SOA formation, however, it remains uncertain for a lot of reactions. For example, toluene is one 

of the most abundant VOCs emitted in the urban atmosphere. Emitted from a variety of sources, 

including vehicular exhaust and evaporation, biomass burning, and solvent usage 26-28, it is a major 
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precursor to O3 and SOA formation 29-31. The OH addition products, whose pathways account for 

approximately 90% in the reaction of toluene with OH 32, 33, subsequently react via three different 

pathways to produce o-cresol, bicyclic peroxy radicals, or aromatic oxides. However, the relative 

importance of the cresol and bicyclic peroxy radical pathways is still under debate. So far, the 

impact of different representations of the toluene oxidation chemistry on model predictions of 

SOA has not been studied. 

 Even though large uncertainties exist in modeled SOA concentrations, predicted SOA 

concentrations are not well constrained by observations. Techniques to apportion the observed 

total organic aerosol (OA) concentrations to POA and SOA include the minimum OC/EC ratio 

method 34 and the positive matrix factorization (PMF) analysis of the aerosol mass spectrums 35, 

36. The apportioned SOA concentrations, however, are not directly related to specific precursors. 

Most of the regional model evaluations of SOA predictions were carried out by comparing model 

predictions with these bulk observation-based SOA estimations 21, 37. Few studies are reported to 

evaluate the precursor-specific SOA predictions with the corresponding observations. 

 Kleindienst, et al. 38 developed a widely-used precursor-specific tracer method to estimate 

the contributions of different precursors to ambient SOA concentrations. The mass fraction of the 

quantified precursor-specific tracers to total SOA formed from the precursor was determined in 

smog chamber experiments 38, 39. Based on these source-specific ratios and the measured ambient 

concentrations of the SOA tracers, contributions of the precursor to ambient SOA can be estimated. 

However, since the ambient conditions are different from those in the chamber experiments, it 

remains unclear how accurate these tracer-based estimations of SOA are and whether the modeled 

precursor contributions to SOA can match these tracer-based estimations. 
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Among the tracers identified, 2,3-dihydroxy-4-oxopentanoic acid (DHOPA; C5H8O5) is a 

widely used tracer for SOA formed from monoaromatic hydrocarbons. Numerous studies have 

measured concentrations of DHOPA in various atmospheric environments and used it to estimate 

aromatic SOA concentrations.11, 38-42 However, since the ambient conditions are different from 

those in the chamber experiments,24, 25 the 𝑓𝑆𝑂𝐴 determined in chamber experiments might not be 

directly applicable to estimate SOA in the ambient environment.  

 The chemical composition of isoprene SOA has been widely investigated in modeling 

studies and chamber experiments.12, 43-45 Among the identified isoprene SOA species, 2-

methyltetrols (2-MT, including 2-methylthreitol and 2-methylerythritol) and 2-methylglyceric 

acid (2-MG) are considered as unique tracer compounds,38, 46 and are used to estimate the overall 

ambient isoprene-derived SOA,47, 48 with the assumption that the mass fractions of the tracers in 

the ambient isoprene SOA (𝑓𝑆𝑂𝐴, or 𝑓𝑆𝑂𝐶 for secondary organic carbons, SOC) measured in the 

chamber experiments are similar to those in the ambient air. The current model was developed to 

simulate 2-MG and 2-MT formation in the aerosol liquid water, which are considered to be non-

volatile 49, 50. However, the scheme cannot explain the detection of these tracers in the dry condition 

chamber experiments 38, 46, 51-53 and ambient measurements in the gas phase 11. 

 Among of many compounds identified from the monoterpene SOA,54 pinic acid (PA) and 

pinonic acid (PNA) are often considered as organic tracers for major bicyclic monoterpenes (α-

pinene (APIN), β-pinene (BPIN), Δ3-carene (CARN3), and sabinene (SABI)).16, 38, 54, 55 3-methyl-

1,2,3-butanetricarboxylic acid (MBTCA) is also considered a unique tracer for α-pinene and β-

pinene 56. MBTCA is mainly generated from gas-phase oxidation of cis-PNA57 and aqueous 

oxidation of PA may also contribute to it.58  For sesquiterpene (SQT), the most commonly used 

organic tracer is β-caryophyllinic acid (BCARYA) 59, generated from the photochemical oxidation 
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of β-caryophyllene, one of the major species in biogenic SQTs 60. Although this source 

apportionment method is easy to apply, there are concerns about the validity of the assumption 

that the chamber-derived 𝑓𝑆𝑂𝐴 could be applied under ambient conditions.11, 61 One of the 

approaches to test this assumption is use CTMs to simultaneously predict the formation and gas-

particle partitioning of the precursor-specific tracers and the total amount of SOA produced from 

a specific precursor.  

 The first objective of this research is to assess the potential increase of toluene SOA yield 

with the mechanism proposed by Ji et al using a photochemical box model. And the impact of this 

new mechanism on regional O3 and SOA predictions is assessed using the Community Multiscale 

Air Quality (CMAQ) model, a regional chemical transport model developed by the United States 

Environmental Protection Agency (US EPA). 

 The second objective of this research is to compare the model predicted SOA derived from 

aromatic compounds and monoterpenes with the hourly and daily average concentrations of the 

specific SOA tracers and estimated the tracer-to-SOA ratio based on two different sets of model 

results using two different emission inventories. This study is the first evaluation of model-

predicted precursor-resolved SOA with source-specific tracers. 

 The third objective of this research is to simulate DHOPA directly and compare the 

modeled concentrations with ambient measurements. The modeled DHOPA and aromatic SOA 

concentrations were used to calculate 𝑓𝑆𝑂𝐴 and the results revealed that the organic aerosol loading 

significantly influences 𝑓𝑆𝑂𝐴. This is the first study to directly model DHOPA and assessed the 

𝑓𝑆𝑂𝐴 values used to estimate ambient aromatic SOA. 

 The fourth objective of this research is to expand the isoprene SOA model of Pye et al.49 

to simulate the formation of 2-MT and 2-MG by treating these two species as semivolatile and 
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including a non-aqueous formation pathway. This is the first regional chemical transport modeling 

study to evaluate the potential volatility and the non-aqueous formation of the two isoprene 

markers in relatively polluted atmospheres. 

 The fifth objective of this research is to simulate the concentrations of the monoterpene 

and sesquiterpene tracers along with monoterpene and SQT SOA. This is first study to evaluate 

the CTM capability in reproducing the observed organic tracer concentrations from monoterpenes 

and SQTs against ambient measurements. The modeled spatial and temporal variability of the mass 

fraction 𝑓𝑆𝑂𝐴 are evaluated against ambient measurement data over a large geographical area 

impacted by different levels of anthropogenic emissions. 

 The summary of SOA tracers simulated in this study is listed in Table 1-1. 

 

Table 1-1 Organic tracers simulated in the research. 

Tracer compounds Abbrev. Parent VOCs 𝑓𝑆𝑂𝐴 

2,3-dihydroxy-4-

oxopentanoic acid 
DHOPA Aromatics 0.002 

2-methyltetrols 

2-methylglyceric acid 
2-MT 

2-MG 
Isoprene 0.01 – 0.02 

Pinic acid 

Pinonic acid 

3-methyl-1,2,3-

butanetricarboxylic acid 

PA 

PNA 

MBTCA 

α-pinene + β-pinene 0.033 

Monoterpenes 0.015 

β-caryophyllinic acid BCARYA Sesquiterpenes 0.018 
 

 

In conclusion, this study will aid in understanding roles of SOA formation in the ambient 

environment. The 𝑓𝑆𝑂𝐴 value for each precursor-specific SOA will be assessed using CTMs and 

provide useful information on the adjustment of 𝑓𝑆𝑂𝐴 based on the difference of conditions in the 

chambers and ambient air. This study will improve the estimation of precursor-specific SOA using 

organic tracer field measurements.   
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2 ASSESSING THE UNCERTAINTIES IN OZONE AND SOA PREDICTIONS DUE TO 

DIFFERENT BRANCHING RATIOS OF THE CRESOL PATHWAY IN THE TOLUENE-

OH OXIDATION MECHANISM * 

 

 Oxidation of toluene by OH radicals plays a significant role in forming ozone (O3) and 

secondary organic aerosol (SOA) in polluted urban atmospheres. However, the branching ratio of 

the cresol formation pathway after OH addition to the aromatic ring remains uncertain, affecting 

model predictions of O3 and SOA.  In this study, SOA formation under low (18%) and high (48%) 

cresol branching ratio conditions are determined by modeling chamber experiments on toluene 

SOA formation, using a photochemical box model with the semi-explicit Master Chemical 

Mechanism (MCM) v3.2 and an SOA module for the equilibrium gas-to-particle partitioning of 

semi-volatile products. The modeled SOA concentrations are fitted to determine the SOA yields 

and saturation concentrations using the classical two-product representation. These parameters are 

then applied in the Community Multiscale Air Quality (CMAQ) model to assess the impact of the 

cresol branching ratio on SOA formation. The reaction products of ARO1 (the lump species that 

includes mostly toluene) with OH are also modified to reflect the higher cresol branching ratio. 

Two sets of CMAQ simulations for China (C0, with low SOA yields and unmodified ARO1 + OH 

reaction, and C1, with high SOA yields and modified ARO1 + OH reaction) are conducted for 

January and July 2013. Predicted monoaromatic compound concentrations in major urban areas 

are ~4-7 ppb in January and ~1.5-3 ppb in July, which generally agree with measurements. The 

 
* Reprinted with permission from “Assessing the Uncertainties in Ozone and SOA Predictions due 

to Different Branching Ratios of the Cresol Pathway in the Toluene-OH Oxidation Mechanism” 

by Zhang, J., Choi, M., Ji, Y., Zhang, R., Zhang, R., and Ying, Q., 2021. ACS Earth and Space 

Chemistry. 5, 8, 1958-1970, Copyright [2021] by American Chemical Society. 
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higher cresol branching ratio simulations leads to slightly lower OH radicals and O3 predictions. 

Less than 1 ppb decrease of monthly average daily maximum 8-hour (DM8H) and peak hour O3 

is found in the urban areas in July and in broader spatial coverage in January. Increase in January 

ARO1 SOA is approximately 1.2 µg m-3, which corresponds to a relative increase of 40-70% to 

ARO1 SOA or a ~10% increase of total SOA. This change reflects the combined effect of 

increasing ARO1 SOA due to higher yields and reduced formation of semi-volatile organic 

products and glyoxal and methylglyoxal due to lower OH radicals.  

2.1 Introduction 

 Photochemical oxidation of volatile organic compounds (VOCs) by hydroxyl (OH) radical 

results in tropospheric ozone (O3) and secondary organic aerosol (SOA) formation.62-64 Toluene is 

one of the most abundant anthropogenic VOCs in the urban atmosphere. Emitted from a variety 

of sources, including vehicular exhaust, fuel evaporation, biomass burning, and solvent usage,26-28 

it is a major precursor to O3 and SOA formation.29-31 It is generally accepted that the reaction of 

toluene with OH mainly proceeds with the addition pathway (~90%), while the H-abstraction 

reaction (from the methyl group) accounts for approximately 10%.32, 33 The OH addition products 

subsequently react via three different pathways to produce cresol, bicyclic peroxy radicals, and 

aromatic oxides. The o-cresol and bicyclic peroxy radical pathways are considered more important 

than the aromatic oxide pathway (~10%). However, the relative importance of the cresol and 

bicyclic peroxy radical pathways is still under debate. Several chamber experiments reported that 

the cresol pathway is relatively minor. For example, Klotz, et al. 65 measured a cresol yield of 18%, 

which is currently used as the cresol pathway branching ratio in the MCM mechanism, together 

with a branching ratio of 65% for the bicyclic peroxy radical pathway. While similar cresol yields 

between 15% - 18% were found in other experimental studies,66, 67 higher cresol yields between 
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25% - 28% were also reported previously.68, 69 Recently, Ji et al.70 reassessed the toluene-OH 

oxidation mechanism using both chamber experiments and quantum mechanical calculations and 

proposed a lower limit of the cresol branching ratio of approximately 48%. In a separate study, Qi 

et al. 71 recommended an overall cresol branching ratio of 42-53%, based on the real-time spectrum 

data from a single photon ionization time-of-flight mass spectrometer (SPIMS) and a single 

particle aerosol mass spectrometry (SPAMS) instruments. 

 Differences in how models represent the toluene OH oxidation pathways can affect their 

predictions of O3. Sarwar et al.72 used a regional atmospheric modeling system to evaluate the 

difference in O3 prediction due to a new condensed toluene mechanism in Carbon Bond 05 (CB05) 

mechanism with a lower cresol yield (18%) than the original mechanism (36%). An increase of 1-

2 ppb of monthly mean daily maximum 8-h (DM8H) O3 in populated US cities was estimated, and 

the higher O3 reduced the under-prediction biases in the urban areas. However, they only tested 

the changes under summer conditions. It is still unclear how sensitive the modeled results are under 

wintertime NOx saturated conditions in polluted atmospheres. Differences in the representation of 

toluene OH oxidation products are also expected to affect the formation of SOA. It has been shown 

that cresol can form highly oxygenated low-volatility products, and account for 20-40% of the 

SOA produced from toluene.29 It is expected that, for the models that use detailed oxidation 

products to predict SOA formation,73 higher cresol yields could lead to higher model predictions 

of toluene SOA.29 For the models that use lumped semi-volatile products whose yields are derived 

from chamber experiments, the difference in cresol yields can still affect the predicted SOA 

concentrations indirectly due to changes in the concentrations of OH and other oxidants. So far, 

the impact of different representations of the toluene oxidation chemistry on model predictions of 

SOA has not been studied.   
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In this study, we first used a photochemical box model to assess the potential change of 

toluene SOA yield with the mechanism proposed by Ji et al.70 We incorporated the reported 

branching ratio of the cresol pathway in the box model to evaluate how well the model can 

reproduce the observed SOA yields from toluene oxidation under high and low NOx conditions in 

chamber experiments. We then derived parameters for modeling SOA in regional models based 

on the predicted SOA yields with a higher cresol branching ratio in the box model simulations and 

assessed the impact of this new mechanism on regional O3 and SOA predictions using the 

Community Multiscale Air Quality (CMAQ) model, a regional chemical transport model 

developed by the United States Environmental Protection Agency (US EPA). The sensitivity of 

the model predictions of toluene SOA to important parameters such as the saturation vapor 

pressure is explored.  

2.2 Methods 

2.2.1 The photochemical box model simulation of SOA formation from toluene 

The photochemical box model used in this study to simulate SOA formed from 

photooxidation of toluene by OH is based on the Master Chemical Mechanism (MCM) v3.233, 74, 

75 for the gas phase photochemical reactions and is equipped with an equilibrium gas-to-particle 

partitioning SOA module. The MCM is a semi-explicit photochemical mechanism representing 

the oxidation of 142 non-methane hydrocarbons using detailed reactions and reaction products. It 

has a total of 16892 reactions (excluding inorganic reactions) and 5710 organic species. The 

toluene mechanism includes 774 reactions and 256 organic species. The initial oxidation of toluene 

by OH includes four branches. The branching ratio for the methyl group H-abstraction pathway is 

7%, as shown in reaction (R1), 

 C6H5CH3 + OH 
𝑂2
→ C6H5CH2O2, k=1.8×10-12exp(340/T)*0.07 (R1) 
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T is the temperature in K and k is the reaction rate coefficient in units of cm3 molecule-1 s-1. 

Reaction (R2) is the cresol formation pathway and has a branching ratio of 0.18,  

 C6H5CH3 + OH 
𝑂2
→ CRESOL + HO2, k=1.8×10-12exp(340/T)*0.18 (R2) 

 The SOA module calculates the equilibrium partitioning of individual semi-volatile 

products generated during the oxidation of parent VOCs using the saturation vapor pressures 

estimated by the EPI Suite program from the US EPA.76 It also considers the activity coefficients 

of SOA constituents using the UNIFAC model.77 Details of the MCM-SOA module have been 

described by Li et al.73  Particle and vapor wall losses are not considered in the current model 

because the yield data used in the analysis (Section 2.2.1) have already been corrected to account 

for wall losses.  

 In this study, the branching ratios of four toluene primary oxidation pathways in the MCM 

model are changed to match those reported by Ji et al.70 As shown in Table 2-1, the branching ratio 

for the cresol pathway is increased from 18% to 47.9% and the methyl group H-abstraction 

pathway is increased to 11.3%, based on the reported benzaldehyde yield in Ji et al.70  The other 

two pathways are reduced accordingly so that the total branching ratios add to 100%.  

 

Table 2-1 Branching ratios of the original and modified toluene reaction with hydroxyl radical in 

MCM v3.2. 

Toluene primary oxidation pathway 
Branching ratio 

Original New 

TOLUENE + OH = 

C6H5CH2O2 7% 11.3% 

CRESOL + HO2 18% 47.9% 

TLBIPERO2 65% 35.4% 

TLEPOXMUC + HO2 10% 5.4% 

 

 Chamber experiments of SOA formation from photooxidation of toluene reported by 

Hildebrandt et al.31 under high-NOx (experiments 2-6) and low-NOx conditions (experiments 7-
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11) are simulated using the original and the modified MCM mechanism with SOA formation. The 

initial concentrations of toluene and NO, H2O2 (as OH source), and chamber conditions 

(temperature and relative humidity) are strictly based on the reported values and are summarized 

in Table S2-1 in Appendix A.  

 The photolysis rate of NO2 (JNO2) is not described in the chamber experiments by 

Hildebrandt et al., but a value of 0.06 min-1 is reported in a previous study using the same 

chamber.78 However, the conditions of the black lights used in prior experiments might not be the 

same as those used by Hildebrandt et al.31 Thus, the JNO2 in the MCM box model (with the original 

toluene + OH reaction) to simulate the high-NOx chamber experiments is adjusted to minimize the 

sum of squared errors (SSE) between the predicted and reported OH concentrations in Hildebrandt 

et al.31 The optimum JNO2 is found to be 0.0767 min-1 (Figure S2-1 in Appendix A), and the 

predicted OH in each experiment generally agrees with the experimental values (Figure S2-2 in 

Appendix A). More detailed discussions regarding the photolysis rates used to simulate the 

chamber experiments are included in Section S2.1 in Appendix A.  

 The low-NOx experiments are simulated using the same optimized JNO2. The comparison 

between predicted and estimated OH concentrations is shown in Figure S2-2 in Appendix A. The 

OH concentrations in the chamber experiments are in the range of 0.5-3.5×106 molecules cm-3. All 

the simulated OH in the low-NOx cases are within a factor of 0.5 to 2 of the reported OH. 

 The SOA mass yields (Y, defined as 𝑌 = 𝐶𝑂𝑀/𝛥𝑉𝑂𝐶, where 𝐶𝑂𝑀 is the SOA 

concentration) at 𝐶𝑂𝑀 of 10 and 20 µg m-3 are determined for each high-NOx experiment and 

compared with vapor and particle wall-loss corrected chamber SOA data, as shown in Figure 2-1. 

With the original toluene-OH oxidation branch ratio, the box model simulations underpredict Y 

with a mean bias (MB) of -0.105. The agreement between observed and predicted Y is improved 
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significantly (MB = 0.015) when the updated branching ratios are used. The modified toluene 

mechanism also leads to higher Y values for the low-NOx experiments, although both the original 

and the modified mechanisms underpredict the observed yields, as shown in Figure S2-3 in 

Appendix A. SOA from glyoxal (GLY) and methylglyoxal (MGLY) surface uptake73 is included 

in the MCM simulation. However, they only account for less than 2% of the SOA formed because 

the chamber relative humidity (RH) values are all less than 20%, far below the deliquescence RH 

of the seed particles. 

 

 
Figure 2-1 Observed and modeled toluene SOA yields under high-NOx conditions using (a) the 

original toluene + OH mechanism and (b) the modified mechanism with a higher branching ratio 

for the cresol pathway. Yield-10 and yield-20 represent SOA yield when the SOA concentration 

in the experiments or the model simulations are 10 and 20 μg m-3, respectively. The outlier on (a) 

is because the modeled SOA is less than 20 μg m-3. 

 

To assess the change in the branching ratios on SOA predictions in regional scales, we fit 

the calculated SOA yields from the simulations of the chamber experiments at 298 K to the two-

product (2p) model that describes the equilibrium partitioning of semi-volatile organic vapor 

between gas and particle organic phases,79 as shown in Equation (2.1),  
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𝑌 =
𝛼1

1 + 𝐶1
∗/𝑐𝑂𝑀

+
𝛼2

1 + 𝐶2
∗/𝑐𝑂𝑀

 (2.1) 

where 𝛼1 and 𝛼2 are the mass-based stoichiometric yields of semi-volatile products, and 𝐶1
∗ and 

𝐶2
∗ are the saturation mass concentration (µg m-3) of two lumped SVOC products to be determined. 

These parameters are used to replace the existing parameters in a regional chemical transport 

model, as described in Section 2.2.2. The detailed results of the photochemical box model 

simulation of the chamber experiments are described in the Results section.  

2.2.2 Regional air quality model 

The Community Multiscale Air Quality (CMAQ) model v5.0.180 with the SAPRC-11 

photochemical mechanism81 and AERO6 aerosol module is modified to evaluate the impact of the 

higher branching ratio for cresol formation in the toluene oxidation on regional O3 and SOA. 

In this version of the SAPRC-11, toluene is included in the lumped species ARO1 

(Aromatics with kOH < 1.36x10-11 cm3 molec-1 s-1). The rate constants and product yields of the 

ARO1 + OH reaction in the original mechanism are based on an assumed mixture of species 

lumped into ARO1.81 The yields of the major products are listed in Table 2-2 as Case 0. To assess 

the impact of a higher cresol branching ratio on O3, Dr. William Carter of the University of 

California, Riverside (personal communication), the developer of the SAPRC-11 mechanism, 

provided a modified ARO1 + OH reaction by combining the OH ring addition and non-ring 

pathways and assuming that the formation of cresol (from toluene) and other phenolic compounds 

(from other monoalkylbenzenes) is the only fate of the OH ring addition pathway. The molar yields 

of major products of this theoretical upper-limit case are also listed in Table 2-2.  

To make the reaction more consistent with the modified MCM box model toluene yield of 

47.9%, we update the ARO1 + OH yield of cresol and other related products using a weighted 
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average of the yields for the original mechanism in Case C0 (with a weighting factor w1) and the 

theoretical upper-limit case (weighting factor w2). The weighting factors w1 = 0.604 and w2 = 0.396 

are calculated based on the original cresol yield of 0.18 and the upper-limit cresol yield of 0.935 

for the toluene reaction with OH, which was also provided by Dr. Carter, so that 0.180𝑤1 +

0.935𝑤2 = 0.479, and 𝑤1 + 𝑤2 = 1. The molar yields of this modified ARO1 + OH reaction are 

included in Table 2-2 as Case C1. 

 

Table 2-2 Molar yields of major ARO1 + OH reaction products used in three different CMAQ 

simulation cases 

Products 

Product yields 

Original (Case C0) 
New^ 

(Cases C1, C2) 

Upper-limit$ 

 

RO2XC 0.089 0.059 0.014 

RO2C 0.622 0.415 

0.477 

0.365 

0.087 

0.099 

HO2 0.209 0.887 

CRES 0.135 0.717 

XYNL 0.032 0.170 

xGLY 0.268 0.162 0.000 

xMGLY 0.231 0.140 0.000 

xHO2 0.612 0.396 0.065% 

xAFG1# 0.255 0.154 0.000 

xAFG2 0.244 0.147 0.000 

yRAOOH§ 0.567 0.342 0.000 

OH 0.084 0.051 0.000 

AFG3& 0.084 0.051 0.000 

AFG5* 0.042 0.025 0.000 
^ The new mechanism was interpolated between the original case and the upper-limit case.    
$ The upper-limit estimation assumed all OH + ring adducts produce cresol (toluene) or other 

phenolic compounds (for other monoalkylbenzenes).  
% Includes contributions from non-ring reactions; Non-ring xHO2 yield is 6.53% based on SAPRC 

mechanism generator for toluene (available at http://mechgen.cert.ucr.edu/). 
# Monounsaturated dialdehydes or aldehyde-ketones formed from peroxy radical reactions with 

NO and NO3 and RO2 (xAFG1 for most photoreactive, and xAFG2 for least photoreactive). 
§ Organic hydroperoxides formed following RO2+HO2 reactions, or formation of H-shift 

disproportionation products. 

& Di-unsaturated dicarbonyl aromatic fragmentation products that are assumed not to photolyze 

rapidly. 
* 3-hexene-2,5-dione and other monounsaturated diketone aromatic products. 

 

http://mechgen.cert.ucr.edu/
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In CMAQ model v5.0.1, SOA formation from ARO1 is treated using the 2p model 

approach, as described in Section 2.2.1. To assess the impact of the higher cresol yield on SOA in 

models with an explicit representation of the toluene oxidation products using the lumped model 

approach, the SOA yield parameters from the original and modified MCM mechanisms for the 

photooxidation of toluene are applied in model simulations. A detailed description of the 

determination of the parameters is included in Section 2.3.1. The yield parameters in the default 

CMAQ mechanism based on Ng et al.30 are not used in the study, as the objective of this study is 

to evaluate the potential changes in SOA due to changes in the cresol yield.  

In addition, the CMAQ model used in this study also includes the formation of non-volatile 

oligomers from the lumped semi-volatile products82 and extensions to model SOA formation from 

reactive surface uptake of GLY and MGLY.83 The model uses a precursor tracking scheme84 to 

determine the complete contribution to SOA from individual precursors using precursor-specific 

reactive species in the expanded gas and aerosol mechanisms. An illustration of the scheme for 

ARO1 is shown in Figure 2-2.  

 

 
Figure 2-2 The precursor-tracking scheme to model SOA formation from ARO1 in the CMAQ 

model. The shaded boxes represent products from the traditional 2-product model. AGLY_T and 

AMGLY_T are SOA products from irreversible surface uptake of glyoxal and methylglyoxal, 

respectively. SOA formation from other major precursors is also tracked similarly. 
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2.2.3 Model application 

The CMAQ model is applied to simulate air quality in China in January and July 2013 to 

study the impact of the toluene chemistry on O3 and SOA in winter and summer. Two sets of 

simulations are performed for each month. The first simulation (base case, Case C0) uses the 

unmodified ARO1 + OH reaction, and the ARO1 SOA yields are derived from the original MCM 

mechanism. In the second simulation, ARO1 + OH is based on Case C1 described in Section 2.2.2, 

and the SOA yields are from the modified MCM mechanism with the higher cresol branching 

ratio.  

Previous studies showed the significance of the cresol pathway contributing to toluene 

SOA.29 As cresol does not form SOA in this version of the CMAQ model directly, the changes in 

the product yields listed in Table 2-2 do not directly affect SOA predictions, although they 

indirectly affect SOA formation from changes in OH and O3 concentrations. Another sensitivity 

case (Case C2), where the gas phase mechanism is based on Case C1 but the ARO1 SOA yields 

are the same as those in Case C0 is also included in the study. This is designed to isolate the 

impacts on increased SOA yields and the reduced gas phase reactivity on predicted SOA 

concentrations. 

The 197×127 36×36 km2 spatial resolution domain covers China and the surrounding 

regions. Eighteen stretching vertical layers with a first layer height of approximately 35 m reach a 

model top nearly 20 km above the surface. Meteorological and emission inputs to the model have 

been described by Hu et al.,85 and a summary is provided in the following. Emissions in China are 

generated using the Multiscale Emission Inventory of China (MEIC) v1.0, which is based on 

activities in the base year of 2012. Emissions from other countries in the model domain are 

generated using the Regional Emission inventory in Asia version 2 (REAS2). The MEIC and 
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REAS2 inventories are in 0.25x0.25o grids and are re-projected to the Lambert conformal 

coordinates in 36x36 km2 resolution. Windblown dust emissions in the entire domain are generated 

by CMAQ inline module.86 Biogenic emissions are generated using the Model for Emissions of 

Gaseous and Aerosols from Nature (MEGAN) v2.10.87 The Weather Research and Forecasting 

model v3.6 are used to generate the meteorological inputs to the CMAQ model. Initial and 

boundary conditions are generated using the vertical profiles distributed with the CMAQ model. 

The first 5 days of the simulation results are treated as spin-up and are excluded in the final 

analysis.  

The emission inventory and meteorological fields have been used in several previous 

studies using the same host CMAQ model for O3, NOx, CO, PM2.5, secondary inorganic aerosol, 

and SOA in China during 2013.85, 88, 89 The performance of the model has been extensively 

evaluated against observations in these studies. In general, the model can reproduce the observed 

concentrations of O3 and PM2.5 in most urban areas. Model performance evaluation for the primary 

and secondary inorganic components is done mostly for Beijing due to limited observation data. 

Concentrations of total SOA in January 2013 are still underestimated.90 

To further evaluate the model capability in reproducing the observed high PM2.5 

concentrations in January and July 2013, we obtained the hourly PM2.5 concentrations in five major 

Chinese cities measured at the US Consulates (downloaded from 

https://www.airnow.gov/international/us-embassies-and-consulates/) and compared with 

predicted concentrations from Case C1, as shown in Figure S2-4 and Figure S2-5, for January and 

July, respectively. Predicted concentrations show reasonable agreement with the measurements, 

as indicated by the model performance statistics shown in Table S2-2 in Appendix A with Mean 

Fractional Biases (MFB) between -0.55 and 0.06 and Mean Fractional Errors (MFE) less than 0.7, 

https://www.airnow.gov/international/us-embassies-and-consulates/
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and can capture high concentrations up to 400-500 µg m-3. This agreement provides further 

evidence that the emissions and meteorological conditions and the formation of secondary PM2.5 

are generally well represented. The relatively larger underprediction of PM2.5 in Beijing than those 

in the other cities, as indicated by the MFB, is mostly caused by the failure of the model in 

predicting the extremely high concentrations of PM2.5 ~900 µg m-3 in Beijing on January 12-13.  

To the best of the authors’ knowledge, none of the published studies are yet able to reproduce this 

high PM2.5 pollution event. 

2.3 Results 

2.3.1 Determination of two-product SOA model parameters 

 In this study, the 2p model parameters from the original and modified MCM are used in 

the regional simulations to assess how the increased cresol yield would affect regional SOA 

predictions without the necessity of using the CMAQ-MCM-SOA model of Li et al.73 The five 

high-NOx and six low-NOx chamber experiments are simulated using a standard temperature of 

298 K instead of the reported chamber temperatures to determine the SOA yield parameters.  

 Figure 2-3 shows the simulated SOA yield data from all five high-NOx simulations, as well 

as the 2p model parameters determined using the MATLAB curve fitting app (cftool). For the SOA 

yields simulated by the original MCM toluene mechanism, α1and α2 are 0.239 and 0.738, 

respectively. The two products have drastically different C* values of 10.15 and 2147 µg m-3, 

making the second product essentially always in the gas phase under realistic atmospheric loadings 

of organics. The data from the modified MCM, when fit to the 2p model, as shown in equation (1), 

lead to two products with very similar C*. Thus, they are finally determined using a one-product 

representation with 𝛼1 = 0.770 and 𝐶1
∗ = 21.1 μg m-3. In the range of COM from 5 to 50 µg m-3, the 

high-NOx toluene SOA yields predicted by the modified MCM mechanism are approximately 1.8-
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2.5 times those of the original mechanism. Both the original and modified MCM mechanisms 

predict higher SOA yields than the default parameters used in the CMAQ model, based on those 

experiments of Ng et al. 30 The modified MCM mechanism predicts SOA yields 2.4-4.0 times of 

those based on the default CMAQ parameters in the COM range of 5-50 µg m-3.  

 

 

 
Figure 2-3 Parameters for ARO1 SOA yield under high-NOx condition used in the original CMAQ 

model (pink line) and those derived based on the photochemical box model simulations using the 

original MCM and the modified MCM mechanism with a higher branching ratio for the cresol 

pathway. Small triangles are 10-min resolution yield data from the simulations, and the large 

triangles show the yields at the end of each simulation. 

 

 

SOA formation under low-NOx conditions is much slower than that under high-NOx 

conditions, and neither the original nor modified MCM mechanism could correctly predict the 

observed SOA yields in the chamber experiments. As shown in Figure S2-3 in Appendix A, the 
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predicted SOA yields from the original MCM mechanism can be fitted with a one-product model 

with 𝛼1=0.1 and 𝐶1
∗=9.592 µg m-3

, while the data from the modified mechanism can be described 

using a non-volatile product with a fixed mass yield of 0.179. However, it is still 50% lower than 

the fixed mass yield of 0.360 used in the CMAQ model. Table S2-3 in Appendix A shows a 

summary of the ARO1 SOA yields used in this study.  

An additional set of box model simulations is conducted using data from Ng et al.30 to 

illustrate that the MCM-SOA mechanism can simulate SOA formation under different 

experimental conditions. A more detailed discussion of this evaluation is included in Section S2.3 

of Appendix A.  

2.3.2 Compare with observations  

 Before estimating the impacts of the changes in ARO1 SOA yields on regional O3 and 

SOA, it is necessary to assess if the current model gives reasonable estimations of the 

concentrations of monoaromatic precursors. However, direct observations of monoaromatic 

compounds are very limited for the year 2013. Therefore, to provide an understanding of the 

general range of the concentrations of these species, we summarize the observed concentrations of 

toluene and ethylbenzene (major species in ARO1) and xylenes (o+m/p, major species in ARO2) 

in six Chinese cities (see Figure 2-4a for the locations of the cities) in recent years, as shown in 

Table S2-4 in Appendix A. In most cities, the toluene concentrations are between 1-5 ppb, and 

ethylbenzene concentrations are approximately 20% to 40% of toluene. The concentrations of 

xylenes are usually lower than toluene, in the range of 0.5-2.0 ppb. For the same city, 

concentrations in urban locations are usually higher than those in suburban locations.  

The predicted monthly ARO1 and ARO2 concentrations in seven major cities from Case 

C1 are listed in Table S2-5 in Appendix A. In January, ARO1 and ARO2 concentrations are 
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approximately 3-4 ppb and 1.5-2.5 ppb, respectively. Concentrations in the summer are lower, 

with ARO1 and ARO2 in the ranges of 1.5-2.0 ppb and 0.7-1.4 ppb, respectively. These 

concentrations are in general agreement with the observations. However, as intensive air pollution 

controls have been implemented after 2013 throughout the country, concentrations in 2013 are 

expected to be higher than in later years. Thus, concentrations of the aromatics are likely 

underestimated, which can lead to the underestimation of toluene SOA. 

 

Table 2-3 Observed toluene (monoaromatics) SOA concentrations in China in recent years based 

on the organic tracer DHOPA* 

Location Season Conc. (µg m-3) Reference 

Beijing (urban) Summer, 2008 3.3 Guo et al.91  

Beijing (rural) Summer, 2008 3.1  
Shanghai Summer, 2014 4.6 Gao et al.92 

Shanghai Winter, 2018 3-23 He et al.93 

Shanghai Jan. 2010/2011 0.06-0.08 Feng et al.94 

 Apr.-May, 2010 0.14-0.28  

 Jul. 2010 0.48-0.52  

 Oct.-Nov., 2010 0.48-0.66  

Guangzhou Summer, 2008 4.5 Ding et al.95 

Guangzhou Fall-Winter, 2008 3.3  
Beijing (urban) Summer, 2016 3.3 Tang et al.96 

Beijing (rural) Summer, 2016 2.2  
Tianjin (urban) Summer, 2018 0.22 Wang et al.97 

Tianjin (rural) Summer, 2018 0.36  
Tianjin (urban) Autumn, 2018 0.44  
Tianjin (rural) Autumn, 2018 0.52  

* In all studies, the organic tracer 2,3-Dihydroxy-4-oxopentanoic acid (DHOPA) was used to 

estimate SOA concentrations. Some studies considered this as toluene SOA while others reported 

this as SOA from aromatic compounds. The concentrations in the original references are secondary 

organic carbon (SOC) and are converted to SOA using an OM/OC ratio of 2.0.38 

 

 

2,3-Dihydroxy-4-oxopentanoic acid (DHOPA) is considered as a specific tracer for SOA 

formed from the oxidation of toluene38 and later studies show that it can also form from other 
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monoaromatic compounds.39 DHOPA has been measured in field studies to estimate aromatic 

SOA in several Chinese cities, as summarized in Table 2-3. Among the seven references, five 

report toluene (or aromatics) SOA concentrations of 2-5 µg m-3
, and in Shanghai, the concentration 

can be as high as 23 µg m-3 on polluted days. These reported concentrations are in closer agreement 

with the predictions from Case 1, as shown in Table 2-4. It should be noted that the moderate 

difference between the two mechanisms and the large uncertainty of the toluene SOA estimation 

from DHOPA, the comparison of the predicted toluene SOA against these tracer-based estimations 

are not sufficient to draw a conclusion which mechanism is better in predicting toluene SOA. 

 

Table 2-4 Predicted monthly average SOA concentrations from ARO1 (Case C1 and C0) and 

ARO2 (Case C1 only) in 7 cities in China. Units are µg m-3. 

  January July 

Site ARO1 C1 ARO1 C0 ARO2 C1 ARO1 C1 ARO1 C0 ARO2 C1 

Beijing 
0.50  

(0.23,0.71)* 

0.34  

(0.16,0.48) 

1.22  

(0.47,1.92) 

1.12  

(0.90,1.50) 

0.79 

 (0.64,1.06) 

1.21  

(0.95,1.75) 

Shenyang 
0.80 

 (0.51,0.96) 

0.47  

(0.31,0.57) 

1.64  

(1.03,2.08) 

0.79  

(0.73,0.84) 

0.56 

 (0.51,0.59) 

0.92  

(0.80,1.05) 

Nanjing 
1.90  

(1.72,2.09) 

1.28  

(1.17,1.40) 

2.88  

(2.58,3.18) 

0.53 

 (0.43,0.72) 

0.37 

 (0.30,0.50) 

0.86  

(0.76,1.11) 

Chengdu 
2.57  

(1.44,3.14) 

1.69  

(0.96,2.09) 

3.65  

(1.90,4.29) 

1.15  

(0.53,1.15) 

0.83 

 (0.39,0.83) 

1.50  

(0.67,1.50) 

Guangzhou 
1.98  

(1.85,2.06) 

1.38  

(1.28,1.43) 

2.35  

(2.15,2.40) 

0.25  

(0.07,0.34) 

0.21 

 (0.05,0.28) 

0.37  

(0.13,0.47) 

Shanghai 
1.04  

(0.93,1.23) 

0.74 

 (0.67,0.87) 

1.53  

(1.38,1.84) 

0.78  

(0.66,0.97) 

0.55 

 (0.46,0.68) 

1.18  

(1.06,1.50) 

Zhengzhou 
1.65 

(1.37,1.98) 

1.08  

(0.91,1.30) 

3.14  

(2.54,3.61) 

1.02  

(0.80,1.02) 

0.74 

 (0.58,0.74) 

1.19  

(0.98,1.19) 
*Numbers in the parenthesis represent the range of concentrations within the 3×3 grid cells with 

the urban center in the middle. 

 

 

In July, average concentrations in Shanghai are between 0.7-1 µg m-3 for SOA from ARO1, 

and 1.7-2.5 µg m-3 if SOA from ARO2 is included. This is slightly lower than the monoaromatic 
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SOA concentrations measured in Shanghai (~4.6 µg m-3) using the tracer-based method on August 

4-7, 201492. The predicted monthly average SOA concentration from ARO1 in Beijing also range 

from approximately 1-1.5 µg m-3 (1.6-3.2 µg m-3 if ARO2 SOA is included), which is also close 

to the SOA-tracer based estimation of approximately 3 µg m-3 in Beijing in early summer 2016 96. 

In Guangzhou, Ding et al. 95 estimate that the SOA due to aromatics is about 4.5 µg m-3 in summer 

2008. The CMAQ-predicted monthly-average SOA from ARO1 and ARO2 in Guangzhou are both 

~0.1-0.5 µg m-3, lower than the estimation by Ding et al. Two of the studies 94, 97 report summer 

aromatics SOA concentrations in Shanghai and Tianjin in the range of 0.2-0.5 µg m-3, which is 

almost a factor of 10 lower than other reported values. For wintertime monoaromatic SOA, Ding 

et al. 95 estimate that the average aromatics SOA concentration in fall-winter Guangzhou is 

approximately 3 µg m-3, which is similar to the predicted ARO1 SOA of ~2 µg m-3, but is lower 

than the prediction if SOA from ARO2 (~2.5 µg m-3) was also included. He et al. 93 find that 

aromatics SOA concentrations in Shanghai vary from ~3 µg m-3 on relatively clean days to 20 µg 

m-3 on very polluted days. In comparison, the predicted monthly ARO1+ARO2 SOA in winter 

Shanghai is approximately 2.5-3 µg m-3.  

2.3.3 Impacts on regional ozone 

Figure 2-4a and 4b illustrate the severe O3 pollution in the North China Plain (NCP) in July 

2013. The highest monthly average of daily maximum 8-hour (DM8H) and peak hour O3 

concentration in Case 1 reaches 83 and 90 ppb, respectively. The modified ARO1 reaction with 

OH in SAPRC-11 leads to a small decrease in DM8H and peak hour O3 in large urban areas with 

large emissions of toluene and their immediate downwind regions where high O3 concentrations 

are predicted, mostly located along the east coast of China from the Yangtze River Delta (YRD) 

region to the Bohai Bay region north of the Shandong Peninsula. The decreases of DM8H and 
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peak hour O3 in the polluted regions are higher than 0.5 ppb (~1%), and could be large as 0.7 ppb 

and 0.9 ppb, respectively. The decreases of O3 transition to no obvious changes as one moves away 

from the urban center. The change of O3 due to the modified ARO1 reaction correlates with 

changes in the OH radical concentrations. Figure S2-6 in Appendix A shows a relative OH 

decrease of ~1% and a maximum of 2.1% in O3 in large urban areas. The small decrease of OH in 

large urban areas is expected because of the slightly lower yields of OH radicals and reactive ring 

opening products such as the di-carbonyl aromatic ring opening products (AFG3) in the modified 

reaction.  

 

 

 
Figure 2-4 Monthly average daily maximum 8-h O3 (DM8H O3) concentrations (a) and daily peak 

hour O3 (b) predicted with the modified SARPC-11 mechanism (Case 1) for July 2013; Difference 

of the monthly average DM8H O3 (c) and peak hour O3 (d) between the modified and original 

SAPRC-11 mechanisms (Case 1 - Case 0) for July 2013. Units are ppb. Relative difference of 

monthly average DM8H O3 (e) and peak hour O3 (f) between the modified and original SAPRC-

11 mechanisms ((Case 1 – Case 0)/Case 0).  
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Figure 2-4 Continued. 

 

 

 
Figure 2-5 Monthly average daily maximum 8-h O3 (DM8H O3) concentrations (a) and daily peak 

hour O3 (b) predicted with the modified SARPC-11 mechanism (Case 1) for January 2013; 

Difference of the monthly average DM8H O3 (c) and peak hour O3 (d) between the modified and 

original SAPRC-11 mechanisms (Case 1 – Case 0) for January 2013. Units are ppb. Relative 

difference of monthly average DM8H O3 (e) and peak hour O3 (f) between the modified and 

original SAPRC-11 mechanisms ((Case 1 – Case 0)/Case 0). 
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Figure 2-5a and 5b show the regional distribution of DM8H and peak hour O3 for January 

2013 in Case 1 and the relative increases in O3 (Case 1 – Case 0). O3 concentrations in northern 

China are lower, but high concentrations still occurred in southern China and the Sichuan Basin. 

The decrease in O3 is not limited to urban areas. Large areas in central and south China show 

decreases in DM8H by approximately 0.5 ppb and up to 0.7 ppb, and peak hour O3 decreases could 

be as high as 0.8 ppb. The relative changes in the O3 decreased areas are more than 1%, and the 

maximum decrease of peak hour O3 is 1.7 %. The difference in the regional distribution of the 

impact of ARO1 + OH reaction modifications on O3 between summer and winter months is likely 

due to the contributions of ARO1 oxidation to the overall VOC oxidation. In the summer month, 

biogenic VOCs such as isoprene and terpenes are abundant, and they react with OH fast and have 

large maximum incremental reactivity. Based on the analysis of Wang et al.,98 biogenic emissions 

could account for more than 50% of the O3 formation attributed to VOC in China in the summer. 

Based on the IRR analysis of the OH consumption by VOCs (Figure S2-7 in Appendix A), ARO1 

only accounted for less than 2% of the OH consumed by VOCs in most areas and about 4-8% in 

urban areas in the summer month. In the winter month, however, biogenic emissions in northern 

and central China were much lower, and the relative contribution of ARO1 became much more 

important, reaching 6-8% in most areas.  

2.3.4 Impacts on regional SOA 

Figure 2-6(a) shows that in January, higher concentrations of the ARO1 SOA are 

distributed in the mid-south and northeast areas of China, with a maximum monthly average 

concentration of approximately 3.6 µg m-3 in Case C1.  The increase of ARO1 SOA (Case C1 – 

C0) is widely distributed spatially, as shown in Figure 2-6(c), with a maximum regional increase 
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of 1.1 µg m-3. Due to the higher cresol yield, the relative increase of ARO1 SOA is approximately 

40-70% in regions where the predicted toluene SOA is greater than 0.05 µg m-3.  The impact on 

higher yields on ARO1 SOA in July is relatively small because higher temperature tends to drive 

the semi-volatile products into the gas phase. Relatively higher ARO1 SOA concentrations are in 

east China, with a maximum monthly average concentration of approximately 1.6 µg m-3, based 

on Case C1 (Figure 2-6(b)). As shown in Figure 2-6(d), the increase in ARO1 SOA is also small, 

about 0.2-0.3 µg m-3, with a maximum increase of 0.4 µg m-3. The general increase in the North 

China Plain is approximate 30-40% of the ARO1 SOA concentration in Case C0.  

 

 

 
Figure 2-6 Predicted monthly average SOA from ARO1 for January 2013 (a) and July 2013 (b) 

from Case C1, and the increase in ARO1 toluene SOA (Case C1- Case C0) for January (c) and 

July 2013 (d). Units are μg m-3. The relative increase in ARO1 toluene SOA ((Case C1 – Case 

C0)/Case C0) for January and July 2013 are shown in (e) and (f), respectively. The ARO1 SOA 

includes the two-product model components (ATOL1J, ATOL2J) under high NOx conditions and 

a non-volatile component (ATOL3J) under low-NOx conditions, as well as non-volatile 

components from surface uptake of glyoxal and methylglyoxal formed from oxidation of ARO1 

and oligomers formed from the semi-volatile components. White spaces in panels (e) and (f) are 

grid cells with ARO1 SOA concentrations less than 0.05 μg m-3 in Case C0. 
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Figure 2-6 Continued. 

 

The increase of total SOA, as shown in Figure S2-8 in Appendix A, is slightly higher than 

the increase due to ARO1 SOA alone. The relative increase in total SOA is approximately 10% in 

January and 5% in July. Most of the additional increases are due to increases in SOA from ARO2 

(Figure S2-9 in Appendix A). Figure 2-7 shows the predicted changes in monthly average ARO1 

and ARO2 SOA components for January 2013, as Case C1 – Case C0. Approximately 0.3-0.5 µg 

m-3 of the increase can be attributed to increased ARO1 oxidation products from the 2p model 

(Figure 7a). The GLY and MGLY surface uptake is decreased by less than 0.2 μg m-3. The decrease 

is likely caused by the reduction of GLY and MGLY product yields in the ARO1 + OH mechanism 

due to the reduction of peroxy radical pathway branching ratio. The oligomers are increase by 0.4-

0.7 μg m-3 following the increase of semi-volatile products from the 2p model.  The changes in 

ARO2 SOA are represented by less than 0.04 μg m-3 increases in the south of China, and slight 

decreases (less than 0.01 µg m-3) in the north. The increases of ARO2 SOA are likely due to slightly 

more semi-volatile products and their oligomers, and slightly more surface uptake of glyoxal and 

methylglyoxal. And the slight decreases of ARO2 SOA are related to the lower OH concentrations.  
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Figure 2-7 Predicted increase in monthly average ARO1 (a-c) and ARO2 (d-f) SOA components 

for January 2013 using the modified SOA yields (Case C1- Case C0). Units are µg m-3.  

 

 

Figure 2-8 and Figure S2-10 in Appendix A illustrate the hourly concentrations of ARO1 

SOA in the major cities of China in January and July 2013, respectively. The higher ARO1 SOA 

yields used in Case C1 lead to significant increases in the hourly concentrations up to 2 times 

higher than those from Case C0. In most cities, the maximum peak hour concentration of ARO1 

SOA increases ~1-2 µg m-3 for January days. Among the cities, Zhengzhou, located in central 

China, has the highest wintertime ARO1 SOA with a peak hourly concentration reaching 5.0 µg 

m-3 in Case C1. In July, the ARO1 SOA concentrations are generally lower than those in January. 

Concentrations in the coastal cities such as Guangzhou and Shanghai show larger day-to-day 
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variations in the ARO1 SOA concentrations in July, which was likely due to strong land-sea breeze 

circulation in the summer. The maximum hourly concentration of ARO1 SOA in Shanghai reached 

approximately 5 µg m-3 in July, and in nearby areas even reached as high as 10 µg m-3. Predictions 

from Case 0 were significantly lower, approximately two thirds of those predicted with higher 

yields. 

 

 
Figure 2-8 Predicted hourly concentrations of SOA from ARO1 in several urban areas for January 

2013 using the original and modified SOA yields. Units are µg m-3. Shaded areas represent the 

range of concentrations within the 3×3 grid cells with the urban in the center. The solid lines are 

the average concentrations in the 3×3 grids. 

 

 

While it appears that the MCM box model with modified branching ratios of toluene + OH 

reaction can simulate the high-NOx chamber experiments by Hildebrandt et al.9 and the predicted 

ambient toluene SOA concentrations are reasonable when compared with estimated SOA using 
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specific tracers, these results do not provide a strict confirmation of the validity of the high cresol 

branching ratio suggested by Ji et al.12 because the differences in the predictions are relatively 

small and large uncertainties exist in the estimated model parameters and input data. 

2.4 Discussion 

2.4.1 Impact on SOA formation due to changes in the gas phase chemistry only 

The change of regional SOA in Case C1 is due to the changes in gas phase ARO1 + OH 

reaction and the differences in the ARO1 SOA yields. In Case C2, the modified gas phase ARO1 

+ OH mechanism used in Case C1 and original SOA yield used in Case C0 is applied to evaluate 

the impact on the regional toluene SOA due to gas phase chemistry changes only. Figure S2-11 in 

Appendix A shows that the ARO1 SOA concentrations in Case C2 are lower than those in Case 

C0 by approximately 0.05 – 0.1 μg m-3 in winter and less than 0.05 μg m-3 in the NCP region in 

summer, which is generally consistent with the GLY/MGLY SOA changes in Case C1 (as shown 

in Figure 2-7b). These decreases account for approximately 5% of the original ARO1 SOA 

concentrations, and there are no significant changes in concentrations of the semi-volatile products 

and their oligomers. As the HO2 and NOx concentrations in Case C2 are not significantly different 

from those in Case C0, the gas phase ARO1 + OH changes do not affect the low-NOx pathway 

contributions to aromatic SOA. The relative contributions of the low-NOx pathway to ARO1 SOA 

are approximately 1%~5% in winter and 5%~15% in summer. 

2.4.2 Uncertainty of saturation vapor pressure of MCM species on the modeled SOA yields 

The simulated SOA mass concentrations, thus the SOA yields, in the chamber experiments 

are affected by the vapor pressure of individual species in the MCM mechanism, estimated using 

the Estimation Program Interface Suite (EPI Suite) from US EPA 76. The uncertainty in the 

predicted vapor pressure by the EPI Suite is estimated using the reference compounds included in 
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the EPI’s database (a total of 3707 species). As shown in Figure S2-12 in Appendix A, the error 

in the estimated vapor pressure increases with lower vapor pressure and can be as large as several 

orders of magnitude. After grouping the vapor pressure of the species into log-scale bins with a 

bin width of 1.0, the standard deviation of the ratio of the experimental vapor pressure to the EPI-

estimated vapor pressure (in logarithmic scale) is determined as a function of the EPI-estimated 

saturation concentration 𝐶𝐸𝑃𝐼
∗ , as shown in Figure S2-13 in Appendix A.  

A Monte Carlo technique is used to assess the uncertainty in the MCM-modeled SOA yield 

and major components of SOA due to uncertainties in the saturation vapor pressure. For each 

chamber experiment listed in Table S2-1 in Appendix A, 200 simulations were performed. In each 

simulation, the saturation concentrations of each semi-volatile species in the MCM mechanism 

based-on the EPI Suite (𝐶𝐸𝑃𝐼
∗ ) were modified using Equation (2.2), 

𝐶∗ = 10∆𝑙𝑜𝑔𝑝 𝐶𝐸𝑃𝐼
∗  (2.2) 

where ∆𝑙𝑜𝑔𝑝 is randomly generated to follow a normal distribution with zero mean and standard 

based on the 𝐶𝐸𝑃𝐼
∗  (equation in Figure S2-13). All simulations were conducted at 298 K and were 

run long enough so that the amount of SOA produced in the simulations exceeds at least 100 µg 

m-3. Figure S2-14 in Appendix A shows that uncertainties in the saturation vapor pressure 

estimation could lead to large uncertainties in the estimated SOA yields. For the high-NOx 

condition, SOA yields at COM = 10 µg m-3 has a 90th percentile range of [0.09, 0.45], and for the 

low-NOx condition, the 90th percentile range is [0.02,0.22]. The uncertainty in the SOA yields from 

the existing chamber experiments was equally large, as shown in Figure S2-14 in Appendix A. 

Additional studies are needed to reduce the uncertainties in the SOA yield estimations and quantify 

the impact on regional SOA estimations. 
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2.4.3 Uncertainty in SOA yields due to problems in the MCM predictions of later generation 

products 

Another large uncertainty in the predicted SOA yields is from the MCM predictions of 

later generation oxidation products from the toluene oxidation. For example, recent studies 

reported detection of tri-, tetra-, and pentahydroxy toluene, and hydroxy and dihydroxyl methyl 

benzoquinone from cresol oxidation under both low and high-NOx conditions, which imply 

successive addition of the OH group to the aromatic ring after the formation of methyl catechol.10, 

29, 99 However, the MCM mechanism assumes that OH reaction with methyl catechol follows the 

H-abstract pathway entirely to form nitro methyl catechol (MNCATECH), suggesting that it likely 

misses important SOA precursors and lead to underpredictions in the SOA yields. It is possible 

that when the additional later generation oxidation pathways are included, good predictions of 

SOA yields can be obtained without increasing the cresol pathway yield. However, the extent of 

missing these later OH addition products on SOA yield simulations also depends on their vapor 

pressure, which have large uncertainties. The inaccuracies in MCM representation of the later 

generation oxidation processes on the SOA yield may have been partially compensated by the 

uncertainties in the estimated saturation vapor pressure, leading to reasonable high-NOx SOA 

yields reported in this study. These species may be more important under low-NOx conditions, and 

properly incorporating them in a modified MCM can potentially improve the modeled SOA yields. 

Studies are needed to further assess the uncertainties in SOA yields and their impact on regional 

SOA estimations with the improved toluene oxidation chemistry for later generation oxidation 

produces while considering the uncertainties in the estimated vapor pressures.  
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3 EVALUATION OF REGIONAL MODEL PREDICTIONS OF WINTERTIME 

SECONDARY ORGANIC AEROSOL FROM AROMATIC COMPOUNDS AND 

MONOTERPENES WITH PRECURSOR-SPECIFIC TRACERS 

 

The community multiscale air quality (CMAQ), with modifications to track precursor-

specific SOA, was applied to model SOA formation from aromatic compounds and monoterpenes 

in Shanghai in November 2018. The modeled total aromatic SOA showed a strong correlation with 

measured 2,3-dihydroxy-4-oxopentanoic acid (DHOPA) concentrations in the ambient aerosols 

(R>0.5 for hourly data and R>0.75 for daily average data). The ratios of observed DHOPA and 

modeled aromatic SOA with all components included is around 0.5-1.6×10-3, lower than the 

commonly used ratio of 4×10-3 determined for toluene in a series of smog chamber experiments. 

This suggests that aromatic SOA could be underestimated when directly using the chamber-

derived ratios. The predicted monoterpene SOA shows a stronger correlation with the sum of two 

α-pinene tracers (α-pinT), pinic acid and 3-MBTCA, with R>0.6 and R>0.8 for hourly and daily 

data, respectively. The α-pinT to modeled monoterpene SOA ratios are 0.13-0.25, which generally 

match the ratio of 0.168±0.081 reported in chamber studies. However, since the current model 

does not treat α-pinene and its SOA explicitly, future modeling studies should include a more 

detailed treatment of monoterpene emissions and reactions to predict SOA from these important 

precursors and compare with the ambient precursor-specific SOA-tracers.   

3.1 Introduction 

Carbonaceous aerosols generally account for 20-50% of total ambient aerosols globally 100-

103. Cao, et al. 104 reported that elemental carbon (EC) and organic matter combined accounted for 

39-44% of PM2.5 in 14 Chinese cities, and in Shanghai, 40% of the PM2.5 were carbonaceous 
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aerosols 105. Carbonaceous aerosol can have significant impacts on atmospheric visibility 106, 

regional and global climate 107, and human health 108. While the EC aerosols are directly emitted 

from fuel combustion sources, organic aerosols are generated from direct emissions (i.e., POA) 

and gas-to-particle partitioning of the semi-volatile oxidation products from parent VOCs. SOA 

contributions to total organic aerosol loading vary from 20% to 80% with significant spatial and 

seasonal variation 1-4. 

Chemical transport models have been widely used to quantitatively study the regional and 

global impacts of carbonaceous aerosols 5-8. Correctly predicting SOA in these models is 

challenging, especially in polluted urban areas, as many precursors contribute to SOA formation, 

and the ability of each precursor to form SOA is different. Aromatic compounds 9-11, isoprene 2, 12-

14, monoterpenes 15, 16, and sesquiterpenes 17, 18 are some of the major contributors to SOA. In 

addition, aqueous 20 and heterogeneous processes 19 of dicarbonyls such as GLY and MGLY have 

been shown to contribute significantly to SOA formation. Predicted SOA concentrations are 

affected by the model representation of the emission, photochemical oxidation, gas-to-particle 

partitioning, and the multiphase reaction processes 21-23. Many of these physical and chemical 

processes remain uncertain due to an incomplete understanding of the SOA formation mechanisms 

and large differences between the atmospheric conditions in the ambient environment and the 

chamber conditions under which the SOA formation experiments were conducted to determine 

parameters used in the models 24, 25.  

Predicted SOA concentrations are not well constrained by observations. Techniques to 

apportion the observed total OA concentrations to POA and SOA include the minimum OC/EC 

ratio method 109 and its extensions 110, 111, and the positive matrix factorization (PMF) analysis of 

the aerosol mass spectrums 35, 36. Wu and Yu 112 improved the minimum OC/EC method. Instead 
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of using the minimal OC/EC ratio as the primary OC/EC ratio, they proposed to choose a 

representative primary OC/EC ratio so that the correlation between SOC and EC is minimized. 

The OC/EC ratio methods provide estimations of the total SOA, and the PMF based analysis 

typically provide estimations of several groups of oxygenated OA (which are considered as SOA) 

based on the level of oxidation and the correlation with other secondary species 113, 114. The PMF-

resolved SOA factors, however, are not directly related to specific precursors. Most of the regional 

model evaluations of SOA predictions were carried out by comparing model predictions with these 

bulk observation-based SOA estimations 21, 37. Few studies are reported to evaluate the precursor-

specific SOA predictions with the corresponding observations.  

In 2007, a tracer method to estimate the contributions of different precursors to ambient 

SOA concentrations was established by Kleindienst, Jaoui, Lewandowski, Offenberg, Lewis, 

Bhave and Edney 38. In this technique, the mass fraction of the identified precursor-specific tracers 

to SOA formed from the precursor was determined in smog chamber experiments 38, 39. Among 

the tracers identified, 2,3-dihydroxy-4-oxopentanoic acid (DHOPA) is a widely used one for SOA 

from monoaromatic hydrocarbons. Pinic acid, pinonic acid, and 3-methyl-1,2,3-

butanetricarboxylic acid (3-MBTCA) are tracers for SOA from α-pinene. The concentrations of 

the tracers in ambient particles are measured and used to calculate the total SOA formed from the 

corresponding precursor with chamber-determined mass fractions. Since then, ambient 

concentrations of these tracers have been quantified and applied to estimate the precursor 

contributions to SOA under various atmospheric environments, assuming that these ratios are 

applicable under atmospheric conditions 11, 38-42. However, since the ambient conditions are 

different from those in the chamber experiments, it remains unclear whether the tracer 
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concentrations are correlated with their target SOA concentrations and whether the SOA estimated 

using chamber-based tracer mass fractions can match these from air quality model predictions.  

In this study, we applied a regional air quality model with precursor-resolved SOA 

representation to simulate SOA in Shanghai, China, in November 2018. We compared the model 

predicted SOA derived from aromatic compounds and monoterpenes with the hourly and daily 

average concentrations of the specific SOA tracers and estimated the tracer-to-SOA ratio based on 

two different sets of model results using two different emission inventories. This study is the first 

evaluation of model-predicted precursor-resolved SOA with source-specific tracers, to the best of 

the authors’ knowledge.  

3.2 Methods 

3.2.1 Modeling precursor-specific SOA 

A precursor-specific SOA scheme was implemented in the CMAQ model v5.0.1 115. A 

complete description of the scheme is available in Ying et al. 84, so only a brief description of the 

model is provided below. The gas phase photochemical mechanism is based on SAPRC-11 81 as 

discussed in Section 2.2.2. In SAPRC-11, the aromatic compounds were lumped into two species, 

ARO1 and ARO2. ARO1 represents aromatics with lower OH reactivity, and ARO2 represents 

aromatics with higher OH reactivity. Biogenic emissions are handled in the SAPRC-11 mechanism 

with monoterpene (TERP), sesquiterpene (SESQ), and isoprene (ISOP). Since GLY and MGLY 

are formed from the oxidation reactions of multiple precursors in SARPC-11, the gas phase 

mechanism was modified to track the GLY and MGLY from different precursors with extra tagged 

species. For example, GLY generated from ARO1 and ARO2 are tracked with GLY_A1 and 

GLY_A2, respectively.  
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The SOA module is based on the aerosol AERO6. In the module, SOA was formed in three 

pathways: (1) Equilibrium gas-to-particle partitioning of semi-volatile products from the oxidation 

of precursors, represented by the classical Odum two-product model 116. The SOA yields are the 

same as those used in Hu et al. (2017). (2) Oligomerization of the particle phase semi-volatile 

products, which are assumed to form oligomers through first-order decay reactions with a half-life 

of 20 hours 117. The CMAQ original AERO6 was modified to tracked the oligomers from each 

specific precursor by introducing extra precursor-tagged species. (3) Irreversible surface uptake of 

isoprene epoxides, GLY, and MGLY on wet aerosols of cloud droplets, with uptake coefficients 

parameterized according to Li, Cleveland, Ziemba, Griffin, Barsanti, Pankow and Ying 73. As 

tagged GLY and MGLY were used in the gas phase, the SOA module was modified to track their 

contributions to the secondary GLY and MGLY from each precursor with tagged aerosol species.  

3.2.2 Model application 

The modified CMAQ model was used to simulate air quality in China during November 

2018. The predictions were used to compare with the observations from the Shanghai Academy of 

Environmental Sciences (SAES, 31.17°N, 121.43°E), located in the southwest of the central urban 

area of Shanghai, China. Details of the measurements and the observation data analyses have been 

documented elsewhere 41, 118. The CMAQ model has 197×127 grid cells in each layer and has 18 

vertical layers to reach the model top of approximately 20 km. The horizontal grid resolution is 

36×36 km2. The model uses stretching vertical layers with the first layer height of approximately 

35 m. Initial and boundary conditions for the CMAQ model were generated using the CMAQ 

default vertical profiles that represent clean continental conditions. Simulation results from the 

first five days were treated as spin-up and were not included in the analyses reported below.  
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The meteorological inputs were generated using WRFv4.2 with initial and boundary 

conditions from the NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast 

Grids (available at https://rda.ucar.edu/datasets/ds083.3/). The land use/land cover and 

topographical data were based on the 30 s resolution default WRF input dataset. Reanalysis 

nudging was enabled to improve the agreement between predicted and observed meteorological 

parameters 119. The major physics options for the WRF simulations were described by Zhang, et 

al. 120. 

Two sets of emissions were applied in this study to represent the anthropogenic emissions 

from China, the Regional Emission inventory in Asia v3.1 (REAS3) 121, and the 2017 Multiscale 

Emission Inventory of China (MEIC). Emissions from other countries were always based on the 

REAS3 inventory. The MEIC and REAS3 inventories were in 0.25°×0.25° grids and reprojected 

to the Lambert conformal coordinates. Windblown dust emissions in the entire domain were 

generated inline 86. The MEIC inventory already includes speciated nonmethane hydrocarbons 

(NMHC). For the REAS3 emissions, selected speciation profiles from the SPECAITE database 

developed by the US EPA were used to estimate emissions of model-ready VOCs 122. Biogenic 

emissions were generated by the MEGAN v2.10 123. 

3.3 Results 

3.3.1 Model performance evaluation  

The WRF model predicted meteorological inputs significantly affect the accuracy of the 

chemical transport model predictions. Predicted temperature (TEMP) and relative humidity (RH) 

at 2 m above the surface, and wind speed (WSPD) and wind direction (WDIR) at 10 m above the 

surface were compared with the observation data from the National Climate Data Center (NCDC) 

within the Yangtze River Delta (YRD) area. There were 54 observation sites available in the YRD 

https://rda.ucar.edu/datasets/ds083.3/
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region. The average observation, average prediction, mean bias (MB), gross error (GE), and root 

mean square error (RMSE) were calculated for TEMP, RH, WSPD, and WDIR, as shown in Table 

3-1. TEMP is overpredicted with an MB of 0.95 K, which is slightly higher than the recommended 

benchmark (≤ ±0.5 K) by Emery, et al. 124, but the GE of 2.1 K is close to the benchmark value of 

<2.0 K. WSPD is well predicted with the MB and RMSE lower than the benchmarks (MB ≤ ±0.5 

m s-1, RMSE < 2 m s-1), but the MB and GE of WDIR are approximately 22% and 16% higher 

than their respective benchmarks (MB ≤ ±10°, GE < 30°). In general, the WRF performance 

statistics in this study is comparable to other studies using WRF in China simulations 120, 125-127. 

 

Table 3-1 Meteorology model performance. 

  

TEMP  

(K) 

RH  

(%) 

WSPD  

(m s-1) 

WDIR 

(°) 

Average Observation  287.31 80.20 3.20 159.72 

Average Prediction  288.26 73.16 3.66 123.03 

Mean Bias 𝑀𝐵 =
1

𝑁
∑(𝑝𝑟𝑒𝑖 − 𝑜𝑏𝑠𝑖)

𝑁

𝑖=1

 0.950 -7.036 0.452 12.166 

Gross Error   𝐺𝐸 =
1

𝑁
∑ |𝑝𝑟𝑒𝑖 − 𝑜𝑏𝑠𝑖|

𝑁

𝑖=1

 2.092 11.977 1.282 34.914 

Root Mean Square 

Error 
𝑀𝐵 =

1

𝑁
∑(𝑝𝑟𝑒𝑖 − 𝑜𝑏𝑠𝑖)

𝑁

𝑖=1

 2.719 15.744 1.706 49.676 

 

 

The hourly PM2.5 mass was measured with an online beta attenuation particulate monitor 

(FH 72 C14 series, Thermo Fisher Scientific). Water-soluble inorganic ions (SO4
2−, NO3

−, NH4
+, 

Cl−, and K+) with an online Monitor for AeRosols and Gases in the ambient Air (MARGA, Model 

ADI 2080, Applikon Analytical B.V.). Organic and elemental carbon (OC and EC) were monitored 

by a semicontinuous OC–EC analyzer (model RT-4, Sunset Laboratory, Tigard, OR, USA). 

Molecular tracers were measured through the Thermal desorption Aerosol Gas chromatography 
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(TAG) every two hours from November 9 to December 3, 2018. Each sampling started at the odd 

hour and last for 1 hour. A total of 270 valid samples and 11 blank samples were collected and 

analyzed 41. Hourly model predictions with the MEIC and REAS3 emission inventory were 

evaluated by comparing with the observations, as shown in Figure 3-1. 

 

 
Figure 3-1 Time series and model performance statistics of PM2.5 mass and major chemical 

components in Shanghai, based on the MEIC (left column) and REAS3 (right column) emission 

inventories from November 9 to December 1, 2018. Black dots are the observed concentrations; 

solid lines are predicted concentrations in the grid where the observation site is located; shaded 

areas represent the concentration ranges from 3×3 grids with the observation site in the center grid. 

Units are µg m-3. 

 

Generally, the predicted PM2.5 and its components with either emission inventories agree 

with the observations with mean fractional bias (MFB) values of 0.00 and 0.34 for the MEIC and 
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REAS3, respectively. The MEIC predictions also have a slightly lower MFE than REAS3 (0.41 

vs. 0.52). The high concentration of total PM2.5 over 100 µg m-3 on November 20, 25, and 27-30 

are well captured. However, the model overpredicts the PM2.5 concentrations on November 30 for 

both simulations. The overprediction is associated with the underprediction of wind speeds during 

calm conditions around Shanghai, which causes the over-accumulation of pollutants.  

The sulfate aerosols are well-predicted using the MEIC emission inventory without a 

significant bias (MFB=0.11) but are over-predicted with the REAS3 inventory (MFB=0.48). This 

is because the REAS3 inventory SO2 emissions are 20-30% higher than those based on MEIC 

inventory in the Shanghai urban area, and the SO2 emissions in the surrounding areas are 1.4-2 

times those estimated in the MEIC inventory. The higher SO2 emissions from REAS in China were 

reported in the previous studies 128, 129. The observed concentrations of nitrate and ammonium 

secondary aerosols are well reproduced by both MEIC and REAS3 based emissions.  

Observed PM2.5 EC concentrations are between 0-4 μg m-3. Both MEIC and REAS3 

inventories lead to over-predictions of EC with MFB larger than 0.6. EC emissions were likely 

overestimated in both inventories. Predicted EC concentrations show strong spatial gradients as 

indicated by the large ranges based on the predictions within the 3x3 grid cells with the monitor 

station grid cell at the center, as it is primarily from vehicle emissions in urban areas.  Uncertainties 

in the predicted wind speed and direction could also cause large errors in the predicted 

concentrations. The PM2.5 OC predictions also compare well with the observations with MFB 

values of -0.20 and -0.08 based on the MEIC and REAS3 emissions, respectively, and the MFE 

values are less than 0.5 for both predictions. Over-predictions of EC are not expected to affect 

model predictions of SOA. 
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The positive matrix factorization (PMF) analysis of the AMS data collected during this 

period provided an estimation of the primary organic carbon (POC) and secondary organic carbon 

(SOC). The details of the sampling and data analysis were reported by He et al. 41. As shown in 

Figure 3-2, both MEIC and REAS3 emissions lead to reasonable predictions of POC, as indicated 

by the MFB (-0.33 for MEIC and 0.17 for REAS3) and MFE (0.58 for MEIC and 0.54 for REAS3) 

values. Predicted SOC using MEIC does not have an overall bias using data for the entire month 

(MFB=-0.06). However, it significantly overpredicts the SOC by more than 25 µg m-3 at the end 

of November. The model with REAS3 emissions lead to a lower predicted SOC with the MFB of 

-0.52 but better captured the high concentrations at the end of November. 

 

 
Figure 3-2 Time series of predicted POC and SOC using the (a,b) MEIC emissions (lines), (c,d) 

REAS3 emissions (lines), and PMF-based observations (dots) in Shanghai, from November 9 to 

December 1, 2018. Shaded areas represent the concentration ranges from the 3×3 grids with the 

observation site in the center grid. Units: µg m-3.  
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Figure 3-3 Time series of predicted VOCs using the MEIC and REAS3 emissions in Shanghai, 

from November 11 to 20, 2018. Observations are based on hourly individual VOCs lumped into 

SARPC11 model species. Units are ppb. 
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In summary, PM2.5 predictions from both inventories reasonably agree with observations. 

The good agreement between the predicted and observed secondary inorganic aerosols suggests 

that the model can reproduce the oxidation capacity of the urban atmosphere in this region. The 

better agreement between the PMF resolved SOC and the predicted SOC with the MEIC 

inventories could imply that the MEIC inventory is more appropriate for SOA predictions, but it 

is necessary to compare the precursor predictions to confirm this.  

Volatile organic compounds are direct precursors to SOA and affect the OH radical 

concentrations. Hourly concentrations of 115 individual VOCs monitored at SAES station for 

November 11-20 were obtained to evaluate the model performance. The measured VOC species 

were lumped to match the species in the SARPC-11 and compared with predictions using REAS3 

and MEIC emissions, as shown in Figure 3-3. While the predicted VOC concentrations using both 

inventories have some success in matching the observations and reproducing the day-to-day 

variations of the concentrations, neither emission inventory gives satisfactory results for all 

species.  

The ALK1-5 species represent the alkanes and other non-aromatic compounds with 

increasingly higher OH reaction rate constants. The predicted ALK2, which mostly includes the 

less reactive short-chain alkane species, shows relatively good agreement with observations. Both 

MEIC and REAS3 lead to similar higher predictions of ALK4-5, mainly long-chain alkanes, than 

the observations by 2-5 times. This overprediction might partially be caused by the fact that the 

measurements did not have all the species included in the emission inventories. For the other two 

groups of ALK species, REAS3 predicts better for ALK1 (ethane), but MEIC predicts better for 

ALK3. Ethene (ETHE) and OLE1-2 (olefin species with increasingly higher OH reactivities) are 

better predicted with REAS3 emissions, but all are significantly overpredicted with MEIC.   
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For the lumped aromatics species ARO1 (mostly toluene) and ARO2 (mostly xylene), the 

predicted concentrations with REAS3 show much better agreement with observations (between 

70% and two times) than those from MEIC, which are several times higher than the observations. 

Large over predictions of aromatics in MEIC was not expected as previous modeling studies using 

an earlier version of MEIC showed relatively good agreement with observations in Nanjing in 

August 2013 (MFB=-0.63-0.77) 1 and from June to August 2014 (NMB=0.2) 130. Since previous 

studies were for the summer months, it is possible that the seasonal variations in the emissions 

were not properly captured in the MEIC inventory.  

At the grid of SAES site location, isoprene (ISOP) is mostly from anthropogenic emissions, 

as shown in  

Table S3-1 in Appendix B, and is well predicted with the MEIC inventory. The VOC 

profiles used to speciate REAS3 emissions might have used lower isoprene emission factors. 

Consequently, methacrolein (MACR) and methyl vinyl ketone (MVK), which are major oxidation 

products of isoprene, are better predicted with MEIC. Methyl ethyl ketone (MEK) is also better 

predicted with MEIC as it is an oxidation product from several VOCs, including MVK and MACR. 

The other oxygenated species, acetone (ACET), acetaldehyde (CCHO), and higher aldehydes 

(RCHO), which have both primary emissions and secondary formations, are reasonably predicted 

with both inventories.  

Although neither inventory generates perfect estimations of the VOCs, the REAS3 

inventory’s better predictions of the gas phase aromatics provide more confidence in the SOA 

predictions than the SOA predicted by the MEIC inventory. The MEIC-predicted SOA should be 

considered as an upper limit of the SOA from the aromatic compounds. 
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3.3.2 Compare observed SOA tracers with modeled SOA 

The concentrations of SOA tracers (i.e., pinic acid, 3-MBTCA, and DHOPA) were 

measured hourly at SAES from November 9 through December 1, 2018 41. The total concentrations 

of the two α-pinene tracers (α-pinT) were compared with the predicted monoterpene SOA, and the 

DHOPA concentrations were compared with the total SOA (including semi-volatile components, 

oligomers, and surface uptake products from GLY and MGLY) from ARO1 and ARO2, as shown 

in Figure 3-4. Generally, the predicted SOA has similar day-to-day variations with the SOA 

tracers. High concentrations of DHOPA in the range of 0.015-0.02 µg m-3 occurred on November 

20 and the last several days of November. High concentrations of the model predicted aromatic-

SOA (~10-30 µg m-3) were also predicted for these days. The α-pinT concentrations were in the 

range of 0.001-0.08 µg m-3, while the modeled monoterpene SOA concentrations reached 0.35 µg 

m-3 and 0.6 µg m-3 with REAS3 and MEIC emissions, respectively. 

 

 

Figure 3-4 Time series of (a) model predicted aromatic SOA (AARO1J + AARO2J) and observed 

aromatic-derived SOA tracer (DHOPA), and (b) model predicted monoterpene SOA 

(ATRP1J+ATRP2J) and observed α-pinene-derived SOA tracer (α-pinT). 
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Figure 3-5 Correlation between model predicted aromatic SOA (all components) and observed 

aromatic-derived SOA tracer (DHOPA) (a,c), and model predicted monoterpene SOA (all 

components) and observed α-pinene-derived SOA tracer (α-pinT) (b,d), using hourly (a,b) and 

daily (c,d) average concentrations. 

 

The precursor-specific SOA were much higher and likely overestimated on November 29 

and 30, along with other PM species such as SOC and POC (see Figure 3-1 and Figure 3-2). These 

data points may significantly affect the analysis of the linear correlations between observed SOA 

tracers and modeled specific SOA and were excluded for a proper estimation of the relationship 

between modeled SOA and observed tracer concentrations shown in Figure 3-5. The predictions 

with REAS3 and MEIC emissions show strong correlations with the detected SOA tracers. The 

correlations between hourly predicted monoterpene SOA concentrations and measured 

corresponding tracer α-pinT concentrations (R=0.6~0.65) are slightly higher than those between 

monoaromatic SOA and DHOPA (R~0.6). The correlations are increased for daily averaged SOA 

predictions and the corresponding SOA tracers, with R~0.8 for aromatic SOA and R > 0.8 for 
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monoterpene SOA. The daily average correlations are improved likely by smoothing out the 

difference in the formation timescales of the tracers and other major SOA components. 

 

Table 3-2 Correlation between model predicted SOA mass concentrations and observed SOA 

tracers. 

Precursor Mass fraction 
Correlation 

Coefficient 
Comment 

ARO1+ARO2* 

0.00161 ± 0.00014 0.523 This study; Hourly MEIC 

0.00180 ± 0.00016 0.758 This study; Daily MEIC 

0.00553 ± 0.00032 0.571 This study; Hourly REAS3 

0.00614 ± 0.00060 0.765 This study; Daily REAS3 

ARO1+ARO2£ 

0.00053 ± 0.00003 0.584 This study; Hourly MEIC 

0.00059 ± 0.00004 0.802 This study; Daily MEIC 

0.00140 ± 0.00006 0.601 This study; Hourly REAS3 

0.00163 ± 0.00019 0.794 This study; Daily REAS3 

Aromatics^ 0.00198 ± 0.0016  He et al. 41  

Toluene 0.0040 ± 0.0013  Kleindienst et al. 38 

Toluene-NOx 0.0032 ± 0.0004  Al-Naiema et al. 39 

Toluene-H2O2 0.0068 ± 0.0008  Al-Naeima et al. 39 

o/m/p-Xylene 0.0033 ± 0.00024  Al-Naeima et al. 39 

TERP# 

0.1345 ± 0.0095 0.652 This study; Hourly MEIC 

0.1619 ± 0.0137 0.869 This study; Daily MEIC 

0.2042 ± 0.0193 0.592 This study; Hourly REAS3 

0.2524 ± 0.0365 0.806 This study; Daily REAS3 

α-Pinene 0.168 ± 0.081  
Kleindienst et al. 38 

Applied in He et al. 41 
* SOA formed from ARO1 and ARO2, including the semi-volatile SOA, oligomers, and glyoxal 

and methylglyoxal SOA products.  
£ SOA from ARO1 and ARO2, only including the semi-volatile SOA. 
^ Based on the average DHOPA-to-SOA ratio of benzene, toluene, ethylbenzene, o/m/p-xylenes 

and 1,3,5- and 1,2,4-trimethylbenzene with NOx, as reported in Al-Naiema et al. (2020) 
# SOA formed from monoterpenes, including SSOA, oligomers, and glyoxal and methylglyoxal 

SOA products. 
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The tracer-to-SOA mass ratios, representing the mass fraction of the precursor-specific 

SOA tracers in the SOA derived from the precursors, were determined using linear regression with 

forced zero intercepts (Figure 3-5). A robust linear regression method was used to reduce the 

impact of outliers, and the bootstrap technique 131 was used to determine the uncertainties in the 

slopes. For aromatic SOA, the tracer-to-SOA mass ratio is 0.00140 ± 0.00006 based on hourly 

SOA from REAS3. The slope derived from the data with MEIC emissions is significantly lower 

(0.00053 ± 0.00003) caused by higher SOA predictions due to the overestimation of ARO1 and 

ARO2 concentrations. The linear regression slopes between the model predicted monoterpene-

SOA with REAS3 and MEIC emissions and the measured α-pinT tracers are 0.2042 ± 0.0193 and 

0.1345 ± 0.0095, respectively, which are both close to the mass fraction of α-pinT to the α-pinene-

SOA of 0.1680 ± 0.0081, as suggested from the previous chamber study 38 and applied by He et 

al. 41. The detailed regression slope and uncertainties are summarized in Table 3-2. 

3.4 Discussion 

3.4.1 Impact of non-volatile SOA components to tracer-to-SOA ratio  

The predicted SOA used in the previous analyses includes semi-volatile components based 

on equilibrium gas-to-particle partitioning, oligomers from semi-volatile products, and SOA from 

irreversible surface uptake of GLY and MGLY. The significance of the surface uptake of GLY 

and MGLY on the SOA formation was discussed in previous studies 132-134. As the relative 

humidity was quite high in winter, significant contributions of GLY and MGLY to SOA were 

predicted.  
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Figure 3-6 Monthly averaged concentration of total aromatics SOA with REAS3 (left column) 

and MEIC (right column) inventories, and contributions to total SOA from semi-volatile 

components (ARO_SVOC), surface uptake of glyoxal and methylglyoxal SOA (ARO_[M]GLY), 

and oligomers from semi-volatile components (ARO_OLGM). Units are μg m-3. 
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Figure 3-6 shows the high monthly averaged total aromatic SOA concentrations in China 

for November 2018. The model with MEIC emissions predicts total aromatic SOA concentrations 

to be approximately 10-15 µg m-3 in central and eastern China, and the REAS3 emission inventory, 

with lower emissions of aromatics, predicts lower aromatic SOA, approximately 5-10 µg m-3. 

However, the fraction of GLY and MGLY SOA in total SOA predicted by the two emission 

inventories is similar. Figure 3-6 also shows that GLY and MGLY SOA has the highest 

contributions to total aromatic SOA. At the grid cell where the SAES monitor is located, semi-

volatile SOA and its oligomers combined have concentrations of 1.48 and 4.01 µg m-3 for REAS3 

and MEIC emissions, respectively. The GLY and MGLY SOA at the same grid cell is 1.51 µg m-

3 based on REAS3 and 3.62 µg m-3 based on MEIC, as high as the SOA predicted from the 

traditional pathways.  However, the chamber experiments used to measure the tracer-to-SOA ratio 

were typically operated under much lower RH e.g., 39, and the GLY and MGLY contributions to 

SOA in these chambers were expected to be very small. In addition to GLY and MGLY 

contributions, the oligomers formed from semi-volatile products contribute as much as the semi-

volatile products to the aromatic SOA. However, oligomer formation in the chamber experiments 

was usually small due to a short detention time of several hours. Thus, the chamber determined 

ratio might only be good for the estimation of the semi-volatile aromatic SOA components.  

The DHOPA tracer-to-SOA ratios were recalculated using predicted aromatic SOA 

without the oligomers and GLY and MGLY components to evaluate the predicted semi-volatile 

aromatic SOA with DHOPA. As shown in Figure 3-7, excluding the non-volatile SOA components 

does not significantly influence the correlation coefficients between the predicted aromatics SOA 

and measured DHOPA concentrations. However, the mass ratio of DHOPA to aromatic SOA with 

MEIC and REAS3 emissions are increased to 0.00161 ± 0.00014 and 0.00553 ± 0.00032, 
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respectively. The REAS3 ratio is closer to the mass fraction reported by Kleindienst et al. 38, which 

has been more broadly used in most aromatic SOA estimation 61, 135, 136. It is also in better 

agreement with those reported by Al-Naiema et al. 39 for toluene.  Since the predicted precursor 

ARO1 and ARO2 concentrations with the REAS3 inventory also generally agree with the 

observations, this suggests that the semi-volatile aromatic-SOA can be reasonably predicted by the 

SOA mechanism in the regional model if precursor emissions were estimated correctly. 

 

 
Figure 3-7 Linear correlation between model predicted aromatic-SOA (excluding oligomers and 

GLY/MGLY products) and observed aromatic-derived SOA tracer (DHOPA) with (a) REAS3 

emissions, and (b) MEIC emissions. 

 

3.4.2 Uncertainties in the tracer-to-terpene SOA ratio 

The AERO6 module in CMAQ uses the traditional Odum 2-product model for 

monoterpene SOA predictions 116. The newly released AERO7 module replaced the original 

monoterpene-SOA yield parameters with the volatility basis set (VBS) fit based on the recent 

experimental study by Saha and Grieshop 137. The semi-volatile products were lumped into seven 
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log-10-spaced bins based on saturation mass concentration (C*) from 10-2 to 104 µg m-3. The 

enthalpy of the VBS products (∆𝐻𝑣𝑎𝑝,𝑖) was estimated using ∆𝐻𝑣𝑎𝑝,𝑖 = 80 − 11(log10 𝐶𝑖
∗), which 

is based on linear regression of the chamber data. As seen in Figure S3-1 in Appendix B, at the 

standard temperature of 298K, the monoterpene-SOA yield is higher than the 2-product 

representation when the total organic aerosol concentration (COA) is less than ~27 µg m-3, and it is 

lower than the 2-product yield with higher COA.  

To check if this new model representation of monoterpene SOA can lead to significant 

changes in the estimated SOA and the tracer-to-SOA ratios, the CMAQ model was modified to 

include this new representation, and an additional simulation was conducted. The results were 

compared with the results from the original AERO6 module. As shown in Figure S3-2 in Appendix 

B, the updated VBS-style monoterpene SOA parameterization led to slightly higher SOA under 

low concentrations but lower SOA under high concentrations. As a result, the difference in the 

ratio of α-pinT to predicted TERP SOA is negligible. 

While the α-pinT to predicted monoterpene SOA ratio is in good agreement with the 

reported tracer-to-α-pinene-SOA ratio, two additional factors should be further discussed. First, 

the tracer mass fraction reported in the previous chamber study of Kleindienst, Jaoui, 

Lewandowski, Offenberg, Lewis, Bhave and Edney 38 was calculated based on the ratio of the sum 

of 7 α-pinene SOA tracers to α-pinene SOA, but only two tracers (pinic acid and 3-MBTCA) were 

measured in this study. Thus, the calculated α-pinT to SOA ratio in this study should be increased 

to directly compare with the data from Kleindienst et al. 38, but the exact amount of adjustment is 

difficult to determine. Second, only a fraction of the monoterpene SOA is α-pinene-SOA 

concentration, as α-pinene is lumped with other monoterpenes in the model and the SOA yields of 

these individual monoterpene species are not the same 138. Consider the two factors, the α-pinT to 
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modeled α-pinene SOA ratio should be higher than α-pinT to modeled monoterpene SOA ratio, 

suggesting that the SOA from monoterpenes was likely underestimated in the model, either due to 

underestimation of emissions or the SOA yields.  

3.4.3 Separate DHOPA from ARO1 and ARO2 

 

 
Figure 3-8 Estimated DHOPA concentrations from ARO1 under high-NOx conditions (ARO1-

NOx) and low-NOx conditions (ARO1-HOx), and from ARO2 based on (a) MEIC and (b) REAS3, 

and the observed DHOPA in Shanghai.   

 

 

 

In a recent chamber study on the aromatic SOA tracers, Al-Naiema, Offenberg, Madler, 

Lewandowski, Kettler, Fang and Stone 39 reported the mass fraction of DHOPA to the SOA from 

major aromatic precursors. The mass fraction of DHOPA to the toluene SOA under high and low 

NOx conditions are ftol-nox = 0.0032 ± 0.0004 and ftol-HOx = 0.0068 ± 0.0008, respectively. The 
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isomers of xylenes (o/m/p-xylenes) were tested individually in the chamber with NOx present, and 

the average DHOPA mass fraction for the three xylene isomers is fxyl = 0.0033 ± 0.00024. Using 

predicted high-NOx and low-NOx SOA from ARO1 and total SOA from ARO2, and the literature 

reported DHOPA to SOA ratio for toluene and xylene, which are the two most abundant species 

in ARO1 and ARO2, respectively, the amount of DHOPA from ARO1 and ARO2 were estimated, 

as shown in Figure 3-8. The estimated DHOPA based on predictions with REAS3 emissions 

generally agrees with the observed hourly data from the SAES site (Figure 3-8b), while the 

predictions using MEIC emissions are significantly higher (Figure 3-8a). Approximately half of 

the predicted DHOPA is from ARO1 under high-NOx conditions, and the remaining is from 

ARO2.  

3.5 Conclusions 

The predicted hourly aromatic and monoterpene SOA show strong correlations with the 

hourly tracers DHOPA (R~0.6) and α-pinT (R~0.6-0.65). The correlations become stronger when 

daily average concentrations are considered, R~0.8 for aromatic SOA and R>0.8 for monoterpene 

SOA. The mass fraction of hourly and daily DHOPA is in the range of 5-6×10-3 when SOA from 

oligomers, glyoxal (GLY), and methylglyoxal (MGLY) is excluded, close to the toluene mass 

fraction of DHOPA in aromatic SOA reported in the literature. This suggests that the CMAQ 

model can predict the semi-volatile aromatic SOA reasonably well. The mass fractions of hourly 

and daily α-pinT to the monoterpene SOA with REAS3 and MEIC emissions fall in a range of 

0.13~0.25, similar to the reported α-pinT to α-pinene SOA mass fraction of 0.168. However, since 

α-Pinene is only one of the lumped monoterpenes, and the α-pinT used in this study did not include 

all tracer species measured in the chamber experiments from which the ratio was determined, a 

future study should individually track the emissions of major monoterpene species and the SOA 
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formation from them so that a more detailed evaluation of the modeled biogenic SOA can be 

performed.  
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4 ESTIMATION OF AROMATIC SECONDARY ORGANIC AEROSOL USING A 

MOLECULAR TRACER – A CHEMICAL TRANSPORT MODEL ASSESSMENT * 

 

A modified community multiscale air quality (CMAQ) model, which can simulate the 

regional distributions of 2,3-dihydroxy-4-oxopentanoic acid (DHOPA), a marker species for 

monoaromatic secondary organic aerosol (SOA), was applied to assess the applicability of using 

the DHOPA to aromatic SOA mass ratio (𝑓𝑆𝑂𝐴) from smog chamber experiments to estimate 

aromatic SOA during a three-week wintertime air quality campaign in urban Shanghai. The 

modeled daily DHOPA concentrations based on the chamber-derived mass yields agree well with 

the organic marker field measurements (R = 0.79; MFB = 0.152; MFE = 0.440). Two-thirds of the 

DHOPA is from the oxidation of ARO1 (lumped less reactive aromatic species; mostly toluene), 

with the rest from ARO2 (lumped more reactive aromatic species; mostly xylenes). Modeled 

DHOPA is mainly in the particle phase under ambient organic aerosol (OA) loading but could 

exhibit significant gas-particle partitioning when a higher estimation of the DHOPA vapor 

pressure is used. The modeled 𝑓𝑆𝑂𝐴 shows a strong dependence on the OA loading when only 

semivolatile aromatic SOA components are included in the 𝑓𝑆𝑂𝐴 calculation.  However, this OA 

dependence becomes weaker when non-volatile oligomers and dicarbonyl SOA products are 

considered. A constant 𝑓𝑆𝑂𝐴 value of ~0.002 is determined when all aromatic SOA components 

are included, which is a factor of 2 smaller than the commonly applied chamber-based 𝑓𝑆𝑂𝐴 value 

of 0.004 for toluene. This model-derived  𝑓𝑆𝑂𝐴 value does not show much spatial variation and is 

not sensitive to alternative estimates of DHOPA vapor pressures and SOA yields, and thus 

 
* Reprinted with permission from “Estimation of Aromatic Secondary Organic Aerosol Using a 

Molecular Tracer – A Chemical Transport Model” by Zhang, J., He, X., Gao, Y., Zhu, S., Jing, S., 

Wang, H., Yu, J. Z., and Ying, Q., 2021. Environ. Sci. Technol. Accepted, Copyright [2021] by 

American Chemical Society. 
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provides an appropriate scaling factor to assess aromatic SOA from DHOPA measurements. This 

result helps refine the quantification of SOA attributable to monoaromatic hydrocarbons in urban 

environments and thereby facilitates the evaluation of control measures targeting these specific 

precursors. 

4.1 Introduction 

Kleindienst et al.38 developed a widely used organic tracer method to estimate the 

contributions of different precursors to ambient SOA concentrations. The mass fraction of the 

quantified precursor-specific organic tracers to total SOA formed from the precursor (𝑓𝑆𝑂𝐴) was 

determined in smog chamber experiments.38, 39 Based on the measured concentrations of the 

precursor-specific tracers in ambient aerosols, the total SOA formed from the precursor could be 

determined using the lab-determined mass factions, with the assumption that 𝑓𝑆𝑂𝐴 values under 

ambient conditions are similar to those determined in the chamber experiments.38, 40, 139-142 Among 

the tracers identified, 2,3-dihydroxy-4-oxopentanoic acid (DHOPA; C5H8O5) is a widely used 

tracer for SOA formed from monoaromatic hydrocarbons. Numerous studies have measured 

concentrations of DHOPA in various atmospheric environments and used it to estimate aromatic 

SOA concentrations.11, 38-42 However, since the ambient conditions are different from those in the 

chamber experiments,24, 25 the 𝑓𝑆𝑂𝐴 determined in chamber experiments might not be directly 

applicable to estimate SOA in the ambient environment.  

Chemical transport models (CTMs) have been widely used to quantitatively study the 

impacts of OA in polluted urban areas,5-8 including SOA from aromatic compounds.9-11 However, 

most regional models do not separate the various SOA components from a specific precursor, such 

as non-volatile oligomers and SOA from later generation dicarbonyl products such as GLY and 

MGLY. The lack of precursor-specific SOA representation and organic markers in the CTMs 



 

60 

 

 

 

makes it difficult to evaluate SOA model predictions for target precursors against ambient 

measurements and assess whether a constant 𝑓𝑆𝑂𝐴 could be used to estimate precursor-specific 

SOA using ambient measurements of the tracer concentrations.  

In this study, the DHOPA yields from the oxidation of toluene and xylenes under high and 

low-NOx conditions were determined using published chamber data and a theoretical equilibrium 

partitioning framework. A regional air quality model with precursor-resolved SOA representation 

was modified to include the organic marker and was applied to simulate DHOPA and aromatic 

SOA during a three-week wintertime air quality campaign in urban Shanghai when hourly 

concentrations of the organic marker species and major aerosol components were measured. This 

is the first study that directly models DHOPA and compares the modeled concentrations with 

ambient measurements. The modeled DHOPA and aromatic SOA concentrations were used to 

calculate 𝑓𝑆𝑂𝐴 and the results revealed that the organic aerosol loading significantly influences 

𝑓𝑆𝑂𝐴. Directly using the chamber measured 𝑓𝑆𝑂𝐴 could lead to overestimating the traditional 

semivolatile components of the aromatic SOA but underestimating total SOA from aromatic 

compounds.  

4.2 Methods 

4.2.1 Modeling precursor-specific aromatic SOA 

The CMAQ80 v5.0.1 was used as a base model. The gas phase chemical mechanism was 

based on the SAPRC-11143 same as the mechanism in the simulation of Section 3, which includes 

reactions of two lumped aromatic species, ARO1 and ARO2, among other SOA precursors. ARO1 

represents the less reactive aromatic compounds, with toluene as the major species and including 

other monoalkylbenzenes. ARO2 represents the more reactive species such as xylenes and other 

di- and polysubstituted alkylbenzenes with xylenes as the dominant species. The SOA module in 
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the AERO6 was used for SOA predictions. The SOA module includes SOA formation from three 

pathways. The first is the equilibrium partitioning of semivolatile products based on the classical 

Odum two-product model representations of SOA formation.79 The ARO1 yields under high-NOx 

conditions are based on the 4-bin VBS parameters reported by Hildebrandt et al.,144 fitted to the 

Odum two-product model by Ying et al. 83 and then slightly increased in Hu et al.88 to adjust for 

potential vapor wall-loss. The SOA yields for ARO2 high-NOx oxidation products are based on 

the 5-bin VBS parameters reported by Ahlberg et al.,145 fitted to the Odum two-product 

representation. The two-product model parameters are summarized in Table S4-3. The second is 

the formation of oligomers. The semivolatile SOA products from equilibrium partitioning are 

assumed to oligomerize according to a first-order decay with a half-life of 20 hours.82 The third 

process is the irreversible surface uptake of GLY and MGLY. The uptake process is considered to 

occur on wet aerosols or in cloud droplets, where the GLY and MGLY molecules undergo further 

reactions to allow continued uptake. The uptake coefficients are based on those used by Li et al.73 

Several changes to the SAPRC-11 and AERO6 were made to quantify SOA from ARO1 

and ARO2 separately as discussed in Section 3.2.1. First, since GLY and MGLY can be formed 

from multiple precursors in SAPRC-11, the gas phase mechanism was modified so that GLY and 

MGLY from different precursors are tracked with separate tagged species. The SOA code in the 

AERO6 module was modified to allow additional tagged GLY and MGLY species. Second, the 

original AERO6 only includes two oligomer species to differentiate those from biogenic and 

anthropogenic precursors. Extra species were introduced to represent oligomers from different 

precursors. More details of the precursor-resolved SOA module can be found in Ying et al.84 A 

summary schematic of the processes and species involved in the ARO1 SOA formation process is 

shown in Figure 4-1. 
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Figure 4-1 The precursor-tracking scheme to model SOA and DHOPA formation from ARO1 in 

the CMAQ model. The gray shaded boxes represent lumped SOA products from the traditional 2-

product model. These three components are termed Semi-SOA in the paper, even though ATOL3J 

is non-volatile. AGLY_T and AMGLY_T are SOA products from irreversible surface uptake of 

glyoxal and methylglyoxal, respectively. SV_DHOPA_T1 and SV_DHOPA_T2 are gas phase 

DHOPA species, and the corresponding DHOPA_T1 and DHOPA_T2 are particle phase species. 

β1 and β2 are the mass yields of the semivolatile SOA species for the high-NOx pathway, and β3 is 

the SOA yield for the low-NOx oxidation pathway. α1 and α2 are the mass yields of the DHOPA 

species for the high-NOx and low-NOx oxidation pathways. SOA and DHOPA formation from 

ARO2 are also tracked similarly. 

 

 

4.2.2 Estimation of DHOPA mass yield 

The mass yield of DHOPA (𝛼), defined as the ratio of the amount of DHOPA produced to the 

amount of precursor VOC reacted, is one of the key parameters to model DHOPA in a chemical 

transport model. Based on the equilibrium absorptive partitioning between the gas and organic 

matter (OM) in the particle phase,146 𝛼 in a chamber experiment from a specific aromatic precursor 

can be described by Eq. (4.1),147 

 

𝛼 =
𝑓𝑆𝑂𝐴

𝐹𝑝,𝑡
∑ 𝛽𝑖 ∙ 𝐹𝑝,𝑖

𝑁

𝑖=1

 (4.1) 
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where 𝑓𝑆𝑂𝐴 is the measured particle phase DHOPA to SOA mass ratio; βi’s are the mass yields of 

an individual semivolatile product i (i could be a lumped SOA species). N is the number of SOA 

products used in fitting the chamber data. The chamber SOA formation data are typically described 

by the Odum two-product model 79 or the VBS approach.148 Fp,t and Fp,i are the fraction of DHOPA 

and semivolatile products in the absorbing OM phase, respectively. Fp,t depends on the organic 

aerosol concentration (COA), as shown in Eq. (4.2), 

𝐹𝑝,𝑡 = (1 +
1

𝐾𝑂𝑀𝐶𝑂𝐴
)

−1

 (4.2) 

KOM is the absorptive gas/particle partitioning coefficient of DHOPA estimated using Eq (4.3) 

146,  

𝐾𝑂𝑀 =
𝑅𝑇

106𝑝𝐿
0𝛾𝑀𝑊̅̅ ̅̅ ̅̅

𝑂𝑀

 (4.3) 

where R is the ideal gas constant (m3 Pa K-1 mol-1); T is the temperature (K); 𝑝𝐿
0 is the subcooled 

vapor pressure (Pa); 𝛾 is the activity coefficient of the compound in the absorbing OM phase 

(assumed to be unity); 𝑀𝑊̅̅ ̅̅ ̅̅
𝑂𝑀 is the mean molecular weight of the OM phase assumed to be 200 

g mol-1, according to William et al.149 Several different estimations of 𝑝𝐿
0, which vary by three-

orders of magnitude, are considered in this study (Table 4-1). Method 1 in the vapor pressure 

estimation module from the Extended AIM aerosol thermodynamics model, hereafter E-AIM 

Method 1 (http://www.aim.env.uea.ac.uk/aim/aim.php) estimates 𝑝𝐿
0 to be 1.33×10-5 Pa using the 

group contribution method of Moller et al.150 and the boiling point estimation method of Nannoolal 

et al.151 Adopting this 𝑝𝐿
0 value, we estimate that the KOM for DHOPA is approximately 0.930 m3 

µg-1 (or C* = 1/KOM  = 1.08 µg m-3). This result suggests that DHOPA is almost entirely partitioned 

to the organic aerosol phase under smog chamber OA conditions (Fp,t ~ 0.986; see Table 4-2). This 

agrees with the finding from a previous study that DHOPA was only detected in the particle 

http://www.aim.env.uea.ac.uk/aim/aim.php
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phase.152 The E-AIM Method 1 is also the preferred method in a study that assessed the capability 

of a group of 12 methods specifically for low volatility multifunctional groups.153 E-AIM Method 

3 and the US EPA’s EPI Suite,154 both providing much higher vapor pressure estimations, lead to 

very small KOM’s of 7×10-4 and 3.9×10-3, respectively. These KOM estimates are unrealistic as most 

DHOPA would be in the gas phase, so vapor pressures from E-AIM Method 3 and the EPI Suite 

are not used in subsequent analyses. 

 

Table 4-1 Estimated thermodynamic properties of DHOPA and mass yields from toluene and 

xylene oxidation under high and low-NOx conditions 
 DHOPA thermodynamic properties DHOPA mass yield (α) 

 𝑝𝐿
0 

(Pa) 

ΔHvap 

(kJ mol-1) 

KOM 

(m3 µg-1) 

Toluene 

High-NOx 

Xylene 

High-NOx 

Toluene 

Low-NOx 

Non-volatile - - - 0.00187 0.00088 0.00388 

E-AIM Method 1* 1.33×10-5 151.12 0.9295 0.00189 0.00090 0.00391 

E-AIM Method 2^ 9.51×10-5 119.88 0.1303 0.00205 0.00100 0.00408 

E-AIM Method 3$ 1.74×10-2 88.92 0.0007 0.03428 0.02024 0.04176 

EPI Suite# 3.14×10-3 82.53 0.0039 0.00774 0.00424 0.01073 
* based on the normal boiling point estimation method of Nannoolal et al.151 and vapor pressure 

equation of Moller et al. 150  
^ based on the normal boiling point estimation method of Nannoolal et al. 151 and the vapor pressure 

equation of Nannoolal et al. 155 
$ based on the normal boiling point estimation method of Stein and Brown156 and the vapor 

pressure equation of Myrdal and Yalkowsky157 
# based on the normal boiling point estimation method of Stein and Brown156 and the vapor 

pressure equation of Grain-Watson 153 

 

 

Fp,i, which describes the volatility of the lumped semivolatile products for toluene and 

xylenes, is calculated by Eq. (4.4), 

𝐹𝑝,𝑖 = (1 +
𝐶𝑖

∗

𝐶𝑂𝐴
)

−1

 (4.4) 
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where 𝐶𝑖
∗ is the saturation mass concentration of the lumped products. The βi and 𝐶𝑖

∗ values for 

toluene and xylene are based on the VBS parameters from Hildebrandt et al. 158 and Ahlberg et 

al.,145 respectively. The Hildebrandt et al. parameters generate similar SOA yields to those 

generated using the two-product parameters used in the CMAQ model.  

 

Table 4-2 Detailed calculation of DHOPA yields (α) in the photooxidation of toluene and xylene, 

with DHOPA subcooled vapor pressure estimated using E-AIM Method 1 (1.33×10-5 Pa). 

SOA (μg m-3) fSOA Fpt YSOA
a α 

Toluene High-NOx 
b 

28.9 0.00450 0.964 0.309 0.0014 

77.8 0.00415 0.986 0.470 0.0020 

73.5 0.00245 0.986 0.460 0.0011 

97.6 0.00307 0.989 0.512 0.0016 

103.4 0.00242 0.990 0.523 0.0013 

94.7 0.00296 0.989 0.506 0.0015 

125.6 0.00462 0.992 0.561 0.0026 

116.9 0.00419 0.991 0.547 0.0023 

88.1 0.00636 0.988 0.493 0.0032 

Average 0.00385   0.00189 ± 0.0007 

Xylenes High-NOx 
c 

222.7 0.0024 0.9884 0.376 0.00091 

103.2 0.0036 0.9752 0.256 0.00095 

70.5 0.0039 0.9641 0.211 0.00085 

Average 0.0033   0.00090 ± 0.00004 

Toluene Low-NOx 
d 

143.2 0.0068 0.993 0.570 d 0.00388 

a. SOA mass yield 𝑌𝑆𝑂𝐴 = ∑ 𝛽𝑖 ∙ 𝐹𝑝,𝑖
𝑁
𝑖=1 . The toluene and xylene SOA yield under high NOx 

conditions were estimated by the VBS model from the chamber results of Hildebrandt et al. 158 

and Ahlberg et al., respectively. For toluene, the saturation concentrations (C*) for the four 

VBS bins are 1,10,100 and 1000 µg m-3, and the corresponding mass yields (β) are 0.01, 0.24, 

0.7, and 0.7. For xylene, the saturation concentrations (C*) span from 0.1 to 1000 µg m-3, with 

five log-spaced bins. The corresponding β values are 1.09×10-4, 3.37×10-3, 9.64×10-2, 0.180, 

1.04.  

b. Toluene oxidation by OH under high-NOx conditions is based on data reported by Kleindienst 

et al. 38 Chamber temperature was 25 ºC.  

c. Xylene oxidation by OH under high-NOx conditions and toluene oxidation under low-NOx 

conditions are based on data reported by Al-Naiema et al. 39. Chamber temperature was not 
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reported but assumed to be 29.1ºC based on the cited references 159, 160.  The α value for xylene 

under low-NOx conditions is assumed to be the same as the high NOx value. 

d. SOA products under low NOx conditions are non-volatile. The fixed yield of 0.570 is estimated 

using the yield of 0.300 reported by Ng et al. 30 and scaled up using the adjustment factor of 

1.9 suggested by Zhang et al.161 to account for vapor wall loss. 

 

The DHOPA mass yields derived in this study using Eq. (4.1) are listed in Table 4-1 based 

on the DHOPA chamber data reported by Kleindienst et al.38 for toluene and Al-Naiema et al.39 

for xylenes. The DHOPA mass yields for the toluene and xylene oxidation reaction under high-

NOx conditions using the E-AIM Method 1 estimated 𝑝𝐿
0 is estimated to be 0.0019 ± 0.0007 and 

0.00090 ± 0.00007, respectively. The estimated mass yields with different vapor pressure 

estimations are summarized in Table 4-1. With 𝑝𝐿
0 set at 1.33×10-5 Pa, the detailed calculations for 

the mass yields of DHOPA at various SOA concentrations are listed in Table 4-2. As shown in 

Table 4-1, the DHOPA mass fractions based on the E-AIM Method 1 and 2 are similar and are 

very close to those estimated assuming non-volatile DHOPA, even though the estimated 𝑝𝐿
0’s differ 

by almost seven times. While the DHOPA yields for ARO1 and ARO2 are based on data for 

toluene and xylene, more detailed estimation with data for ethylbenzene, trimethylbenzene, and 

naphthalene does not lead to significantly different estimations (see Section S4.1 in Appendix C). 

Since a non-negligible fraction of DHOPA can still partition to the gas phase based on the 

KOM values estimated using E-AIM Method 1 and 2, especially at low OA loadings, DHOPA is 

added to the SOA module as a semivolatile product from the oxidation reactions of the lumped 

aromatic compounds, with the mass yields listed in Table 4-1. The temperature dependence of 𝑝𝐿
0 

is calculated using the Clausius-Clapeyron equation with an estimated ∆𝐻𝑣𝑎𝑝 of 151 kJ mol-1 for 

E-AIM Method 1 and 120 kJ mol-1 for E-AIM Method 2. These values agree with the estimation 

of ∆𝐻𝑣𝑎𝑝 (129 kJ mol-1) using a simple empirical equation proposed by Epstein et al. 162, which 
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uses C* as the sole predictor. DHOPA from ARO1 and ARO2 under high-NOx and low-NOx 

conditions are tracked with four gas phase and four organic phase species. An illustration of the 

DHOPA scheme for ARO1 is shown in Figure 4-1. The impact of organic water uptake under 

ambient relative humidity conditions 73, 163, 164 is not considered in the DHOPA partitioning and 

adjustment of chamber-derived  𝑓𝑆𝑂𝐴, and will be explored in a future study. 

4.2.3 CMAQ simulation 

The modified CMAQ model is used to simulate DHOPA and SOA formation in China for 

November 2018. The CMAQ model has the same domain setup as discussed in Section 3.2.2. 

Initial and boundary conditions for the CMAQ model are generated using the vertical profiles 

distributed with the CMAQ model. The first five days of the simulation results are treated as spin-

up and excluded from the final analysis. The base case simulation describes in Section 4.3 uses 

DHOPA yields estimated using thermodynamic properties from E-AIM Method 1. Several 

additional simulations are also performed, as listed in Table S4-4.  

Anthropogenic emissions are based on the REAS3.121 Selected speciation profiles from the 

SPECAITE database developed by the US EPA are used to estimate emissions of model-ready 

VOCs.122 Windblown dust emissions in the entire domain are generated inline.86 Biogenic 

emissions are produced by the MEGAN v2.10.123 The meteorological inputs are generated using 

WRFv4.2 with initial and boundary conditions from the NCEP GDAS/FNL 0.25 Degree Global 

Tropospheric Analyses and Forecast Grids. The land use/land cover and topographical data are 

based on the 30 s resolution default WRF input dataset. Reanalysis nudging is enabled to improve 

the agreement between predicted and observed meteorological parameters.119 The major physics 

options for the WRF simulations are described by Zhang, Li, Ying, Yu, Wu, Cheng, He and Jiang 
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120 WRF performance in this study is discussed in Section 3.3.1, which is comparable to other 

studies using WRF in China simulations.120, 125-127  

4.3 Results 

4.3.1 General model performance evaluation  

The predicted hourly PM2.5 mass and major components are compared with the 

observations from SAES. Details of the measurements and the observation data analyses have been 

documented elsewhere.41, 118 As discussed in Section 3.3.1, the PM2.5 mass concentrations with 

REAS3 emission inventory are slightly overestimated, with a mean fractional bias (MFB) of 0.34 

and a mean fractional error (MFE) of 0.52. Ammonium (MFB = 0.17, MFE = 0.48), nitrate (MFB 

= -0.10, MFE = 0.56), and total organic carbon (MFB = -0.08, MFE = 0.44) agree well with the 

observations, which provides confidence that the model correctly represents the oxidation capacity 

of the atmosphere and provides the amount of organic matter needed for DHOPA and SOA 

partitioning calculations. The over-prediction of PM2.5 is mostly caused by over-predictions of 

sulfate (MFB = 0.48, MFE = 0.60) and elemental carbon (MFB = 0.76, MFE = 0.80), and 

sometimes nitrate, which are not expected to influence the SOA calculation significantly.  

4.3.2 Evaluation of DHOPA and its precursors 

Predicted precursor concentrations of ARO1 (mostly toluene) and ARO2 (mostly xylenes) 

agree well with observations of major aromatic compounds lumped to these two species, which 

are available for November 11-21, 2018 (Figure S4-7). Over-predictions are mostly due to higher 

predictions on November 15, when both ARO1 and ARO2 are overestimated significantly. 

However, since large spatial gradients around the monitor sites were predicted, the over-

predictions could be caused by slight inaccuracy in the wind fields.  
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Figure 4-2 (a) Predicted and observed hourly concentrations of DHOPA in Shanghai, from 

November 10 to November 30, 2018, (b) contributions to predicted DHOPA from ARO1 and 

ARO2 high-NOx and low-NOx pathways, (c) predicted and observed daily DHOPA, and (d) 

fraction of DHOPA in the particle phase. The dashed line in (c) is the 1:1 line. Blue dots are data 

for November 29 and 30 when all PM components are over-predicted. The solid blue line is from 

linear regression using all data points. The solid red line is from linear regression, excluding the 

two blue data points. Both lines are determined using least-squares regression by forcing a zero 

intercept. Dashed lines are the 1:2 and 2:1 lines. R is the Pearson correlation coefficient. Shaded 

areas in (a) represent the concentration ranges from the 3×3 grids with the observation site in the 

center grid. 

 

 

The base case model successfully captures the concentrations and temporal variations of 

hourly DHOPA at the monitor site, as shown in Figure 4-2(a), with an MFB value of 0.30.  Average 

predicted and observed concentrations are 6.4 and 4.9 ng m-3, respectively. The higher prediction 

is mostly caused by significant over-prediction on the last two days associated with the 

underprediction of wind speeds during calm conditions around Shanghai, which causes the over-

accumulation of all pollutants. Predicted and observed daily average DHOPA concentrations show 

a strong correlation (R = 0.793) and low bias and error (MFB = 0.152, MFE = 0.440) when the 

two over-prediction days are excluded, as shown in Figure 4-2 (c). In Shanghai, most of the 

DHOPA is from the ARO1 (52%) and ARO2 (31%) high-NOx pathways, while the low NOx 

pathways only account for 17% of the DHOPA (Figure 4-2b). While the majority of the DHOPA 
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is from ARO1 (67%), a significant fraction is from ARO2 (33%), indicating that it was likely 

incorrect to attribute all DHOPA-based aromatic SOA estimation to toluene, as did in several 

previous studies.41, 61, 165 The regional distributions of monthly average DHOPA from these four 

pathways are shown in Figures S3 and S4. In most areas, the ARO1 high-NOx pathway contributes 

to 50-60% of the DHOPA. The ARO2 high-NOx pathway is also important, with contributions 

ranging from 20-45%. The low-NOx pathways have lower contributions but are much more 

important in remote areas and over the oceans where NOx concentrations are low. The predicted 

DHOPA is almost entirely in the particle phase, with Fp,t mostly above 0.95, as shown in Figure 

4-2 (d). 

4.3.3 Impact of OA loading on DHOPA-based estimation of ambient aromatic SOA 

Since the DHOPA mass yields are independently derived based on smog chamber 

experimental data, the good agreement of predicted DHOPA with ambient measurement strongly 

supports that the method described in Section 4.2.2 appropriately describes the formation and 

partitioning of DHOPA from precursors. It also implies that 𝑓𝑆𝑂𝐴, the DHOPA to SOA mass ratio, 

should be adjusted to account for the differences in the OA loadings and temperature between the 

chamber and ambient conditions. The adjustments are done using Eq. (4.5),  

 

𝑓𝑆𝑂𝐴 =
𝛼𝐹𝑝,𝑡

∑ 𝛽𝑖 ∙ 𝐹𝑝,𝑖
𝑁
𝑖=1

 (4.5) 

where 𝐹𝑝,𝑡 and 𝐹𝑝,𝑖 are estimated using Eqs. (4.2) and (4.4), respectively, with temperature 

corrected KOM and C* values and the measured COA. The amount of ambient aromatic SOA is 

estimated by splitting the measured DHOPA into four formation pathways and divide the DHOPA 

from each pathway with the corresponding 𝑓𝑆𝑂𝐴.  
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Figure 4-3 shows the comparison of estimated aromatic SOA using adjusted 𝑓𝑆𝑂𝐴 and fixed 

𝑓𝑆𝑂𝐴. Using a single value of  𝑓𝑆𝑂𝐴 based on the toluene data alone does not lead to significantly 

different estimations than those using split DHOPA and individual 𝑓𝑆𝑂𝐴 values (Figure 4-3a). 

However, estimated SOA using adjusted 𝑓𝑆𝑂𝐴 is consistently lower than those estimated using 

constant values. The relative difference between the two approaches increases from about 50% at 

the OA loading of approximately 15 μg m-3 to 140-200% when OA is ~5 μg m-3.   

 

 
Figure 4-3 (a) Difference in the estimated daily aromatics SOA using constant chamber reported 

𝒇𝑺𝑶𝑨 (Cc) and adjusted 𝒇𝑺𝑶𝑨 (Cadj); (b) relative error in the estimated aromatics SOA as a function 

of the organic aerosol loading. Orange dots show estimations using high-NOx toluene 𝒇𝑺𝑶𝑨 only 

and blue dots show estimations using split DHOPA based on the modeled DHOPA fractions in 

Figure 4-1 and 𝒇𝑺𝑶𝑨 for individual pathways. Relative difference is defined as (Cc-Cadj)/Cadj. 

Constant 𝒇𝑺𝑶𝑨 values used in the calculation are listed in Table 2. 

 

 

4.3.4 Modeled relationships between DHOPA and aromatic SOA 

The smog chamber experiments were performed under low relative humidity so that little 

SOA was from heterogeneous uptake of glyoxal and methylglyoxal. The duration of the 



 

72 

 

 

 

experiments was usually not long enough to have significant oligomer formation. Thus, it is 

expected that using ambient DHOPA and the adjusted 𝑓𝑆𝑂𝐴 would lead to underestimation of the 

actual amount of SOA from aromatic compounds.  

 

 
Figure 4-4 (a) The modeled DHOPA mass fraction 𝒇𝑺𝑶𝑨 (DHOPA/aromatic SOA) as a function 

of total OA concentrations. The shaded areas represent the theoretical calculations of mass fraction 

for temperatures between 283 and 295 K. The solid lines are calculated mass fractions under the 

standard temperature of 298 K. Blue and red represent toluene and xylene, respectively. (b) 

Average ratio of DHOPA/aromatic SOA based on linear regression with a zero intercept. Red, 

green and blue dots represent semivolatile SOA (semi-SOA, SSOA), SSOA + oligomers (OLGM), 

and SSOA+ OLGM + glyoxal and methylglyoxal SOA products (GLY), respectively. 

 

 

Figure 4-4(a) shows that at the SAES site, the CMAQ modeled 𝑓𝑆𝑂𝐴 considering only 

semivolatile components (i.e., the mass ratio of DHOPA to semivolatile constituents) increases 

with decreasing total OA concentrations. The trend is well represented by the theoretical lines for 

toluene and xylene generated using Eq. (4.5). However, the modeled 𝑓𝑆𝑂𝐴 values are significantly 

lower when oligomers and dicarbonyl SOA products from the oxidation of aromatic compounds 

are included, as these products account for a large fraction of the SOA generated from the 
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aromatics (Figure S4-10). Since these products are treated as non-volatile in the model, 𝑓𝑆𝑂𝐴 values 

show less dependence on the OA concentrations. As shown in Figure 4-4(b), the appropriate 𝑓𝑆𝑂𝐴 

to estimate aromatic SOA from DHOPA, including oligomers and dicarbonyls SOA, is 

approximately 0.0020 at this location, based on a linear regression of modeled DHOPA and 

modeled aromatics SOA with a forced zero intercept. Thus, while the common practice of using 

𝑓𝑆𝑂𝐴~0.0040 leads to an overestimation of the semivolatile aromatic SOA (see Figure 4-3), it 

might still underestimate the total amount of SOA from the aromatic compounds by a factor of 2. 

 

 
Figure 4-5 Regional distribution of monthly average (a) DHOPA (ng m-3) and 𝑓𝑆𝑂𝐴 (b-d). The 

𝑓𝑆𝑂𝐴 represents the mass fraction of DHOPA in the aromatic (b) semi-SOA; (c) semi-SOA and 

oligomers; (d) semi-SOA, oligomers, and glyoxal and methylglyoxal products with a threshold of 

SOA larger than 0.01 µg m-3.   
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Figure 4-5 shows that the modeled monthly average DHOPA concentrations vary between 

5-20 ng m-3 in central, southern, and eastern China. 𝑓𝑆𝑂𝐴 values calculated using the monthly 

average SOA with semivolatile components only show more significant regional variations due to 

spatial variations in the OA loading and temperature. 𝑓𝑆𝑂𝐴 values for semivolatile components plus 

oligomers and all aromatic SOA components show less significant spatial differences. Table S4-6 

shows the mean and standard deviation of 𝑓𝑆𝑂𝐴 at different DHOPA concentration ranges. The 

𝑓𝑆𝑂𝐴 value of 0.002 derived in Shanghai is generally applicable in most polluted areas. For all grid 

cells with DHOPA concentration between 2-5, 5-10, and >10 μg m-3, the mean and standard 

deviation of 𝑓𝑆𝑂𝐴 are 0.00231 ± 0.00025, 0.00225 ± 0.00021 and 0.00222 ± 0.00012, respectively. 

4.4 Discussion  

4.4.1 Uncertainty in DHOPA thermodynamic data 

The modeled particle phase DHOPA concentrations are affected by its mass yields and the 

gas-to-particle partitioning of DHOPA. The mass yields of DHOPA from toluene and xylene based 

on the E-AIM Method 1 and 2 only differ by 4-8% (Table 4-1), with Method 2 giving slightly 

higher yields. However, under ambient temperatures of 281-294 K and OA loading of less than 20 

μg m-3 (most less than 10 μg m-3) in Shanghai, the fraction of DHOPA in the particle phase, Fpt, 

can be less than 70% (Figure S4-11), potentially leading to differences in the predicted DHOPA 

concentrations. An additional CMAQ simulation (Sensitivity Case 1; See Table S4-4) was 

conducted using the saturation vapor pressure estimated using the E-AIM Method 2 along with the 

slightly higher DHOPA mass yields. Predicted DHOPA concentrations are lower than those from 

the base case (Figure S4-12a, 12c). When the last two days were excluded, the predictions are 

slightly lower than the observations by about 16% on average because Fpt values frequently fall 

below 0.8, reaching as low as 0.4 (Figure S4-12b). The model estimated 𝑓𝑆𝑂𝐴  values with all 
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aromatic SOA components included, however, are different from those in the base case by only 

5% (0.0019 vs. 0.0020).  

As the model results are affected by many other input parameters, it is impossible to 

conclude whether the DHOPA thermodynamic data based on the E-AIM Method 1 are more 

realistic than those based on the E-AIM Method 2. Future in-situ observations with higher ambient 

temperature and simultaneously measuring gas and particle DHOPA can provide the information 

needed to further evaluate the DHOPA related parameters.  

4.4.2 Uncertainty in Xylene SOA yields 

The estimation of DHOPA mass yields is also be affected by the SOA yields. In several 

previous studies, the SOA yields for xylene were the same as those of toluene to provide an upper 

limit estimation of aromatic SOA. The toluene SOA yields are significantly higher than the xylene 

yields used in the base case (see Figure S4-13). To evaluate the sensitivity of DHOPA predictions 

and the modeled 𝑓𝑆𝑂𝐴 to this upper-limit xylene yield estimation, two additional simulations were 

conducted (Sensitivity Case 2 and 3; Table S4-4), using DHOPA thermodynamic data from E-

AIM Method 1 and 2, respectively. In both simulations, the xylene SOA yields are the same as 

those for toluene. As shown in Figures S9 and S10, simulated DHOPA concentrations are higher 

than those in the base case mainly because the DHOPA mass yields from xylene are increased by 

more than a factor of 3.  

The modeled ratio of DHOPA to semivolatile aromatic SOA show large variations among 

the four simulations (0.0073 ± 0.0005). However, 𝑓𝑆𝑂𝐴 values based on all aromatic SOA 

components are rather stable (0.0020 ± 0.0001), which suggests that 𝑓𝑆𝑂𝐴 = 0.002 is broadly 

appropriate to estimate the amount of total aromatic SOA in the ambient environment based on 

DHOPA measurements.   
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4.4.3 Sensitivity to temperature  

As most of the DHOPA is in the particle phase in the base case simulation, lower 

temperatures would not lead to significant differences. We explore how higher temperature can 

affect gas-to-particle partitioning and the predicted particle phase DHOPA concentrations. In two 

additional sensitivity simulations (Sen. Cases 4 and 5; see Table S4-4), temperatures in the entire 

domain are increased uniformly by 5 K and 10 K while other parameters remain the same as in the 

base case. Compared to the base case, the predicted average particle phase DHOPA concentrations 

in Shanghai decrease from 6.4 ng m-3 in the base case to 6.0 ng m-3 and 5.3 ng m-3 with the 

temperature increasing by 5 K and 10 K, respectively, as shown in Figure S4-16(a). Due to higher 

temperatures, more DHOPA is partitioned to the gas phase. Figure S4-16(b) shows that the Fp,t 

values from Sen. Case 4 are mostly between 0.7 and 1.0 and could be as low as approximately 0.5. 

While responding to the 10 K increase of temperature, the Fp,t values from Sen. Case 5 are mostly 

between 0.5 and 0.9. Figure S4-17(a) shows the regional distribution of 𝑓𝑆𝑂𝐴 responses to the 

uniform temperature increase in China. The regional plots show higher temperature sensitivity in 

the areas with larger 𝑓𝑆𝑂𝐴 in the base case, which is likely caused by the lower OA loadings. In the 

high OA loading areas, the 𝑓𝑆𝑂𝐴 changes are usually less than 10% when the temperature is 

increased by 5 K, which means the 𝑓𝑆𝑂𝐴 calculated in the base case is still appropriate to be applied 

for aromatic SOA estimation responding to the temperature uncertainties within 5 K. While with 

the uniform increase of temperature by 10 K, the 𝑓𝑆𝑂𝐴 changes are slightly larger but mostly lower 

than 20%. However, the 𝑓𝑆𝑂𝐴 based on the total aromatic SOA is relatively stable in the responses 

of temperature increase. The 𝑓𝑆𝑂𝐴 values in the southern coastal areas show reducing trends due to 

significantly higher temperatures. In those areas, the monthly average temperatures in the base 

case are as high as 20~25℃ and reach 30-35℃ in Sen. Case 5. Because the enthalpy of 
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vaporization for DHOPA (151 kJ mol-1) used in the model is larger than the CMAQ default values 

for the aromatic SOA (18 kJ mol-1 for toluene SOA and 32 kJ mol-1 for xylene SOA), more 

DHOPA is evaporated into the gas phase than the aromatic SOA, leading to lower 𝑓𝑆𝑂𝐴 values.  

4.4.4 Summertime DHOPA and 𝑓𝑆𝑂𝐴  

To further evaluate the model’s ability to predict DHOPA and its gas-particle partitioning, 

the modified CMAQ model was applied to simulate DHOPA in China from June to August 2012 

and compared with observation data from 15 sites across China from the literature.91, 136, 166-168 The 

modeled DHOPA concentrations show good agreement with the observations (MFB = -0.03, MFE 

= 0.76, R=0.43). Most of the DHOPA is still from the ARO1 high-NOx pathway, although the 

contributions of the ARO1 low-NOx pathway are higher in the summer due to lower NOx 

concentrations. The modeled 𝑓𝑆𝑂𝐴, when all aromatic SOA components are included, remains at 

approximately 0.002, without significant spatial and temporal variations. These results suggest that 

the DHOPA is semivolatile, and the mass yields and thermodynamic parameters used in the model 

are applicable in different environmental conditions. A detailed description of this modeling 

exercise is included in Section S4.1 of Appendix C.  
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5 A MODELING STUDY OF ISOPRENE SECONDARY ORGANIC AEROSOL TRACERS 

CONSIDERING VOLATILITY AND POTENTIAL CONTRIBUTIONS FROM NON-

HETEROGENEOUS FORMATION PATHWAY 

 

The isoprene-SOA scheme in the community multiscale air quality (CMAQ) model is 

expanded to simulate the unique isoprene markers 2-methyltetrols (2-MT) and 2-methylglyceric 

acid (2-MG) by treating them as semivolatile species and including a non-heterogeneous formation 

pathway. Predictions from the expanded model are evaluated against field measurements from 4 

sites in the Pearl River Delta (PRD) region and 14 sites across China during the summertime. The 

predicted 2-MT and 2-MG from the modified model agree with the PRD region observations 

(MFB = -0.007~0.002 and R = 0.6~0.8) after adjusting the gas-particle partitioning using observed 

organic aerosol (OA) concentrations. Predictions of 2-MT at the other sites also show reasonable 

agreement with observations (MFB = -0.286 and R = 0.534) after adjusting for potential errors in 

the model OA but 2-MG concentrations are under-predicted (MFB = -0.989 and R = 0.192). The 

modified scheme leads to consistently improved predictions of the two tracers with lower biases 

and errors and much stronger correlations with observations than the original scheme, in which 

the two tracers are non-volatile and are only produced in the aerosol liquid water after the surface 

uptake of their precursors, isoprene epoxide and methacrylic acid epoxide. The modeled mass 

fraction (𝑓𝑆𝑂𝐴) of the sum of 2-MG and 2-MT in the total isoprene-SOA varies gently, between 

~0.01-0.02 in polluted areas, suggesting that the chamber-derived 𝑓𝑆𝑂𝐴 of 0.063 may lead to large 

underestimations of overall isoprene SOA. This work provides new insights into the formation of 

the key isoprene SOA tracers and would allow better assessments of the contributions of biogenic 

emissions to regional and global aerosol burden.  



 

79 

 

 

 

5.1 Introduction 

Isoprene is the main biogenic nonmethane volatile organic compound emitted into the 

atmosphere, with estimated annual global emissions in the range of 500-750 Tg.123 It is highly 

reactive and can be oxidized by OH,14, 169 O3,
170 and NO3

171 to generate semivolatile and low 

volatile organic aerosol products.12, 45, 172-174 It is estimated that 20% of the global SOA is formed 

from isoprene oxidation products in cloud water.44 In areas with larger isoprene emissions, such 

as the Eastern United States, isoprene contributes to more than 45% of the summertime SOA.84 

The chemical composition of isoprene SOA has been extensively investigated in modeling 

studies and chamber experiments.12, 43-45 Among the identified isoprene SOA species, 2-

methyltetrols (2-MT, including 2-methylthreitol and 2-methylerythritol) and 2-methylglyceric 

acid (2-MG) are considered as unique tracer compounds,38, 46 and are used to estimate the overall 

ambient isoprene-derived SOA,47, 48 with the assumption that the mass fractions of the tracers in 

the ambient isoprene SOA (𝑓𝑆𝑂𝐴, or 𝑓𝑆𝑂𝐶 for secondary organic carbons, SOC) measured in the 

chamber experiments are similar to those in the ambient air. For example, Ding et al.48 estimated 

the isoprene SOC across China in an entire year using the chamber-derived 𝑓𝑆𝑂𝐴 value of 0.063 

reported by Kleindienst et al.38 However, the applicability of the chamber-derived 𝑓𝑆𝑂𝐴 or 𝑓𝑆𝑂𝐶 

values under ambient conditions needs to be verified using a chemical transport model with a 

detailed chemical mechanism of isoprene to determine the isoprene SOA and the associated unique 

tracers. 

The formation of the isoprene tracers is affected by the abundance of NOx in the 

atmosphere. Under low-NOx conditions, isoprene is oxidized to form isoprene 

hydroxyhydroperoxides (ISOPOOH) and subsequently generates isoprene epoxydiols (IEPOX) in 

the gas phase,12, 175 which is transferred to the aerosol phase and produces 2-MT through 
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multiphase chemistry.12 Under high-NOx conditions, the photooxidation of isoprene generates 

methacryloylperoxynitrate (MPAN), which further reacts with OH to generate methacrylic acid 

epoxide (MAE) in the gas phase. MAE is subsequently transported to the particle phase and 

generates 2-MG.45 In some lab experiments,12, 45 formations of 2-MT and 2-MG are enhanced in 

the presence of acidic seed aerosols.  

Pye et al.49 implemented a multiphase reaction scheme in a regional chemical transport 

model to explicitly predict the acidity-dependent surface uptake of IEPOX and MAE and the 

reactions that generate 2-MG and 2-MT in the aerosol liquid water, which are considered to be 

non-volatile.49, 50 The modeled tracer concentrations in the Eastern US show improved agreement 

with the observations than the estimations based on chamber-derived 𝑓𝑆𝑂𝐴 and the modeled Odum 

2-product116 semivolatile isoprene SOA. Budisulistiorini et al.50 implemented similar reactions 

into a box model and reaffirmed the importance of aqueous phase chemistry in the isoprene SOA 

formation based on field measurements during the 2013 Southern Oxidant and Aerosol Study. In 

China, Qin et al.176 applied the Pye et al. algorithm to study summertime biogenic SOA, and found 

that modeled isoprene concentrations were mediated by aerosol pH.   

2-MG and 2-MT have also been detected in the aerosol phase in chamber experiments 

under dry conditions, and non-acidic seed aerosols.38, 46, 51-53 For example, Kleindienst et al.51 

detected the formation of 2-MT and 2-MG in chamber experiments where RH was lower than 3%. 

Nestorowicz et al. reported that significant amounts of 2-MT and 2-MG were produced in the 

oxidation of isoprene using ammonium sulfate as seed particles under RH of 9-49%. These 

experiments suggest that formation in the aerosol water might not be the sole important pathway 

in the formation of the tracers. For instance, the formation of the tracers in the gas phase,43, 51 

followed by gas-to-particle partitioning, may also contribute to the tracers in the aerosol phase.  
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Al-Naiema and Stone11 detected 2-MT and 2-MG in Iowa City in gas and particle phases. 

Even though the data were collected in November, approximately 37% of 2-MT and 15% of 2-

MG were found in the gas phase. In addition, Xie et al.177 also measured gaseous and particle-

phase 2-MT in summer Denver and determined that the variation in gas-particle partitioning of 2-

MT was driven by the changes in OA concentrations. Furthermore, the saturation vapor pressures 

of 2-MT and 2-MG were estimated to be 1.49×10-4 Pa and 1.87×10-3 Pa, respectively, by Couvidat 

and Seigneur,43 which also suggests that they are semivolatile under typical ambient OA loadings. 

In this study, we expanded the isoprene SOA model of Pye et al.49 to simulate the formation 

of 2-MT and 2-MG by treating these two species as semivolatile and including a non-aqueous 

formation pathway. The model predictions of the two tracers were compared with summertime 

field measurements from multiple sites in China to evaluate the capability of the expanded model. 

To the best of the authors’ knowledge, this is the first regional chemical transport modeling study 

to evaluate the potential volatility and the non-aqueous formation of the two isoprene markers in 

relatively polluted atmospheres. The modeled tracer concentrations and the overall isoprene SOA 

also provide an evaluation of the appropriateness of using lab-derived 𝑓𝑆𝑂𝐴 to estimate the 

concentrations of ambient isoprene SOA.  

5.2 Methods 

5.2.1 Isoprene SOA and unique tracer formation 

Figure 5-1 shows the updated isoprene SOA and tracer formation scheme. The isoprene 

SOA scheme used in this study is mainly based on that described by Pye et al.,49 which includes 

the formation of lumped semivolatile isoprene SOA and the oligomers based on the traditional 

Odum 2-product model, and the heterogeneous formation of 2-MG, 2-MT, and organosulfate 

products in the aerosol water from surface uptake of IEPOX and MAE and the subsequent 
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aqueous-phase reactions. A summary of the scheme and the major changes made in this study are 

described as follows.  

 

 
Figure 5-1 Schematic of the formation of isoprene SOA and its organic tracers in the revised 

CMAQ model. AISO1J and AISO2J represent the lumped isoprene SOA from the equilibrium 

partitioning of semivolatile products, and AOLGIJ is their oligomerization product. The blue 

boxes represent the formation of 2-MT (TR_2MT), 2-MG (TR_2MG), two organosulfate 

compounds (AIEOS and AIMOS), and glyoxal and methylglyoxal SOA (AGLYJ and AMGLYJ) 

from the heterogeneous chemistry. The formation of organic tracers from the additional pathway 

(TR_2MTx and TR_2MGx) is shown in the red boxes. 2-MT and 2-MG are assumed to be 

semivolatile and in equilibrium with the corresponding gas-phase species (SV_2MT, SV_2MG, 

SV_2MTx, and SV_2MGx), and the equilibrium gas-particle partitioning is based on their 

estimated saturation vapor pressure and the organic matter concentration in the aerosol phase.   

 

 

The CMAQ model v5.0.1115 with aerosol module AERO6 is used as a based model to 

implement the isoprene SOA scheme. The gas-phase chemical mechanism is based on SAPRC-

11.81 The isoprene oxidation chemistry in the original SAPRC-11 is replaced with the expanded 
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isoprene mechanism described by Xie et al.178 and Lin et al.45 to simulate the formation of IEPOX 

and MAE. The yields of the two lumped semivolatile isoprene SOA products are updated to 

account for vapor wall-loss, according to Zhang et al.161 Moreover, additional species are added to 

track isoprene-specific oligomers. Glyoxal (GLY) and methylglyoxal (MGLY) from isoprene 

oxidation are also determined separately, and the SOA from the two species are modeled as 

irreversible surface uptake.134   

The reactive uptake of IEPOX and MAE into the aqueous phase is also treated as 

irreversible surface-controlled uptake processes in the heterogeneous chemistry module. The 

uptake coefficients (𝛾) depend on the pseudo-first-order reaction rates of IEPOX and MAE in the 

aerosol water (𝑘𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒, s-1), their Henry’s Law constants (H*, M atm-1), and the effective radius 

of the particle (𝑟𝑝, m), as shown in Eqs. (5.1-5.3),49, 50, 179, 180 

1

𝛾
=

1

𝛼
+

𝜈

4𝐻∗𝑅𝑇√𝐷𝑎𝑘𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  (coth(𝑞) − 1/𝑞)
 (5.1) 

𝑞 = 𝑟𝑝√
𝑘𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝐷𝑎
 

(5.2) 

𝑘𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = ∑ ∑ 𝑘𝑖,𝑗[𝑛𝑢𝑐𝑖][𝑎𝑐𝑖𝑑𝑗]

𝑁𝑎𝑐𝑖𝑑

𝑗=1

𝑁𝑛𝑢𝑐

𝑖=1

 
(5.3) 

where α is the accommodation coefficient (0.02),181 R is the ideal gas constant (0.082 L atm mol-1 

K-1), T is the ambient temperature (K), Da is the diffusivity in the aerosol phase (taken as 1.0×10-

9 m2 s-1 for both IEPOX and MAE),182 Nnuc is the number of nucleophiles (water, or SO4
2-) and 

Nacid is the number of acids (H+, NH4
+ or HSO4

-). [𝑛𝑢𝑐𝑖] and [𝑎𝑐𝑖𝑑𝑗] are the molar concentration 

of nucleophiles and acids (M), respectively, determined based on the predicted inorganic aerosol 

composition and the inorganic thermal dynamics module ISORROPIA II.183 ki,j is the third-order 
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rate constants for the particle-phase reactions (M-2 s-1), and the values are listed in Table S5-1. The 

𝑘𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 includes the formation of the tracers and the organosulfate products in the aerosol aqueous 

phase. 2-MT and 2-MG are formed with water as the nucleophile. Thus, the molar fraction of 2-

MT in total IEPOX SOA and 2-MG in the total MAE SOA newly formed at each time step can be 

determined using Eq. (5.4),  

𝛽 =
∑ [𝑤𝑎𝑡𝑒𝑟][𝑎𝑐𝑖𝑑𝑖]

𝑁𝑎𝑐𝑖𝑑
𝑖=1

𝑘𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
 (5.4) 

The formation of 2-MT dimers is not included in the study, as a previous study shows that 

dimer concentrations are much lower than the 2-MT monomer.184    

In this study, 2-MT and 2-MG are treated as semivolatile, and their equilibrium gas-to-

particle partitioning is described by their saturation mass concentrations (C*, μg m-3), calculated 

using Eq. (5.5), 

𝐶∗ =
1

𝐾𝑂𝑀
=

106𝑝𝐿
0𝛾𝑀𝑊𝑂𝑀

̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑅𝑇
 (5.5) 

where KOM is the absorptive gas/particle partitioning coefficient (m3 μg-1);146 𝑝𝐿
0 is the subcooled 

vapor pressure (Pa); 𝛾 is the activity coefficient of the compound in the absorbing OM phase 

(assumed to be unity); 𝑀𝑊𝑂𝑀
̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean molecular weight of the OM phase assumed to be 200 

g mol-1, according to Williams et al.149 𝑝𝐿
0 values for 2-MT and 2-MG are estimated from the E-

AIM aerosol thermodynamics model, which includes several methods to estimate vapor pressure 

and boiling points150, 151, 155. The 𝑝𝐿
0 for 2-MG (3.76×10-4 Pa) and 2-MT (1.81×10-4 Pa) used in this 

study are based on the lowest of the three estimations provided by E-AIM. The enthalpy of 

vaporization (∆𝐻𝑣𝑎𝑝) of the two species are 130.0 (2-MG) and 117.7 kJ mol-1 (2-MT), also from 

E-AIM estimations.   
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In addition to the heterogeneous formation of 2-MG and 2-MT, an additional pathway to 

form these two organic tracers is included. In this pathway, the formation of 2-MG and 2-MT is 

assumed to occur in the gas phase and is represented by an empirical mass yield. Since there is no 

chamber study revealing the gas-phase mass yield of 2-MG or 2-MT from isoprene oxidation 

reactions, the values are constrained by the field measurement data from the Pearl River Delta 

(PRD) in southern China, as described in Section 5.2.2. The estimated mass yields are shown in 

Table 5-1. 2-MG and 2-MT from this additional pathway are tracked separately using a different 

set of gas and particle phase species. The uncertainties caused by the yield will be analyzed in the 

discussion section. 

 

Table 5-1 Mass yield (α), saturation mass concentration (C*), and enthalpy of vaporization for 2-

MG and 2-MT in the additional formation pathway. 

Species Produced From α$ C* (μg m-3) ∆𝐻𝑣𝑎𝑝 (kJ mol-1) 

2-MG High-NOx pathway 0.0026 30.3 130.0 

2-MT Low-NOx pathway 0.0840 14.6 117.7 
$ The yields are selected so that they lead to optimal predictions of total 2-MT and 2-MG in the 

base case simulation in the PRD region.  

 

 

5.2.2 Observation data and model simulation 

Observations of 24-hour average concentrations of PM2.5 mass, major chemical 

components, and organic marker compounds, including 2-MT and 2-MG, are available from four 

monitors in the PRD region in 2012 every six days. The four monitors are Guangzhou (23.13°N, 

113.30°E), Nansha (22.75°N, 113.60°E), Dongguan (22.97°N, 113.74°E), and Nanhai (23.06°N, 

113.15°E). Guangzhou and Dongguan sites are located in urban areas; Nansha is a suburban site, 

and Nanhai is an industrial site. In addition, daily 2-MT and 2-MG data collected at 14 sites 
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(approximately two days per month) across China136 are used to further assess the model’s 

capability in predicting isoprene SOA tracers.  

The modified CMAQ model is applied to simulate isoprene SOA and the two isoprene 

SOA tracers in China in summer 2012 (June – August). The CMAQ simulation has the same 

domain as previous simulations in Section 2-4. Initial and boundary conditions are generated using 

the CMAQ default vertical profiles. The first five days of the simulation are excluded in the final 

analysis as spin-up. In addition to the base case, three sensitivity simulations are performed, as 

listed in Table S5-2. Details of the sensitivity simulations are discussed in Section 5.4.  

The meteorological inputs are generated using WRF v4.2 with initial and boundary 

conditions from the ERA5 Reanalysis 0.25 Degree Latitude-Longitude Grid (available at 

https://rda.ucar.edu/datasets/ds633.0/). The land use/land cover and topographical data are based 

on the 30 s resolution default WRF input dataset. Reanalysis nudging is enabled to improve the 

agreement between the predicted and observed meteorological parameters.119 Other major physics 

options for the WRF simulations have been described by Zhang et al.120 The model performance 

of major meteorological parameters in the PRD region is shown in Table S5-3. The model 

performance statistics are comparable with the same resolution previous modeling studies in 

China.185  

Anthropogenic emissions are based on the REAS3121 using an in-house emission processor. 

The selected detailed speciation profiles from the SPECIATE database developed by the US EPA 

are used to estimate emissions of CMAQ-ready VOCs. Windblown dust emissions in the entire 

domain are generated by the inline module 86. Biogenic emissions are produced by the MEGAN 

v2.10 123.  

https://rda.ucar.edu/datasets/ds633.0/


 

87 

 

 

 

5.3 Results 

5.3.1 General model performance evaluation 

As shown in Figure S5-1, the PM2.5 mass concentrations are slightly underpredicted, with 

a mean fractional bias (MFB) of approximately -0.3 and a mean fractional error (MFE) of 0.4, but 

the daily variations are well captured. The underprediction of PM2.5 is mainly caused by the 

underestimation of PM2.5 nitrate (MFB = -1.4) and organic carbon (OC; MFB = -0.6). Ammonium 

sulfate is the dominant PM2.5 secondary inorganic aerosol component and is reasonably captured 

by the model (MFB = -0.36 ~ -0.43, MFE = 0.5 ~ 0.64). When PM2.5 nitrate is underpredicted, 

measured concentrations at the four sites show significant differences, suggesting that the model 

does not capture some local-scale processes. Elemental carbon concentrations are also well 

captured (MFB = -0.35. MFE = 0.58).  

The primary and secondary organic carbon (POC and SOC) observations are based on the 

PMF analysis of the observed aerosol composition with marker compounds for primary and 

secondary organic aerosols 34. The SOC concentrations are slightly underestimated with an MFB 

of -0.4 and MFE of 0.6. On the other hand, the POC concentrations show significant under-

predictions with an MFB of -1.0. The under-prediction of POC is likely due to emission under-

estimation in the PRD and may have contributed to the under-prediction of semivolatile SOC. 

However, the generally good agreement in the secondary inorganic and organic PM2.5 components 

suggests that the oxidation capacity in the PRD region is reasonably captured and thus provides 

confidence in the organic tracer predictions.  

The gas-phase isoprene concentrations are compared with daily observations from 20 sites 

across the country in June – August 2012.186 The model predicted isoprene concentrations are 

unbiased and are mostly within a factor of 3 of the observations with MFB = -0.05 and MFE = 



 

88 

 

 

 

0.70, as shown in Figure S5-2. The isoprene model performance is comparable to those reported 

in Zhang et al. using 3D-REAM/MEGAN v2.1 and is also similar to that in the eastern United 

States using CMAQ/MEGAN v2.1 with improved isoprene emission factors.187     

5.3.2 2-MG and 2-MT in the PRD region 

In addition to comparing raw base case tracer predictions with observations, repartitioning 

of the tracers in the gas and aerosol phases are performed based on the observed OA concentrations 

using Eq. (5.6), 

𝐶𝑝,𝑟𝑒𝑝 =
𝐶𝑡𝑜𝑡

1 + 𝐶∗/𝐶𝑂𝐴
 (5.6) 

where the 𝐶𝑝,𝑟𝑒𝑝 is the repartitioned concentration in the aerosol phase (μg m-3); 𝐶𝑡𝑜𝑡 is the total 

tracer concentrations in the gas and aerosol phase (μg m-3); 𝐶𝑂𝐴 is the observed OA loading, which 

is estimated from OC measurements assuming an OA/OC ratio of 1.6;188, 189 𝐶∗ is the saturation 

tracer mass concentration (μg m-3) calculated using Eq. (5.5), with an adjusted 𝑝𝐿
0 based on the 

WRF modeled daily-average temperature, as shown in Eq. (5.7), 

𝑝𝐿
0 = 𝑝𝐿,𝑟𝑒𝑓

0 exp [
∆𝐻𝑣𝑎𝑝

𝑅
(

1

𝑇𝑟𝑒𝑓
−

1

𝑇
)] (5.7) 

where the 𝑝𝐿,𝑟𝑒𝑓
0  is the subcooled vapor pressure (Pa) at reference temperature (298.15 K); ∆𝐻𝑣𝑎𝑝 

is the enthalpy of vaporization (J mol-1); R is the ideal gas constant (8.314 J K-1 mol-1); 𝑇𝑟𝑒𝑓 is the 

reference temperature (K), and T is the modeled ambient temperature (K). 

The average daily temperature in the PRD region is ~300-308 K, and most of the tracers 

are in the gas phase based on the estimated saturation vapor pressure and the enthalpy of 

vaporization (Figure 5-2b and Figure 5-3b). Since OC concentrations are under-predicted in the 

PRD region, repartitioning leads to more tracers in the aerosol phase. The fractions 2-MT in the 

aerosol phase increase from 13-25% to 25~33% after repartitioning. Likewise, the aerosol fractions 
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of 2-MG increase from ~5% to ~15% due to repartitioning with the observed OA. The daily model 

predictions of the tracers include formation from heterogeneous chemistry and the additional 

pathway shown in Figure 5-1. Contributions from the additional pathway account for 74-87% of 

2-MT and 54-78% of 2-MG. The contributions are highest at the rural site (Nansha) and lowest at 

the industrial site (Nanhai).  

 

 

 
Figure 5-2 (a) Predicted and observed daily 2-MT in the PRD region. The blue bars show the base 

case model predictions. The red bars show the adjusted predictions by repartitioning based on the 

measured OA. The black lines represent field measurements. (b) Components of site average 2-

MT concentrations with observations. The left bars represent the raw model predictions, and the 

right bars represent the repartitioned concentrations. SV_2MTx and SV_2MT represent the gas-

phase 2-MT from the additional pathway and the evaporation of the tracer formed in the 

heterogeneous pathway; P_2MTx and P_2MT represent the aerosol phase 2-MT in equilibrium 

with the corresponding SV species. Units are ng m-3. 
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Figure 5-3 Same as Figure 5-2 but for 2-MG. 

 

 

The repartitioned 2-MT and 2-MG aerosol-phase concentrations agree better with the 

observations than the original base case predictions. Figure 5-2a shows that the raw model 

predicted 2-MT daily concentrations are generally lower than the observations except for the 

Nansha site, where the 2-MT concentrations are overpredicted by approximately 60%. The 

Pearson correlation coefficients between observations and repartitioned predictions are 

approximately 0.6 ~ 0.9, improved by 0.05 ~ 0.15 from the raw predictions. Figure 5-3a shows 

that the 2-MG concentrations are lower than those of 2-MT by a factor of 10, which is consistent 
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with most field measurements.38, 48, 136, 141 The repartitioned model predictions of 2-MT at 

individual sites are highly correlated with the daily measurements (R = 0.75-0.98), and the 

correlations are generally stronger than those based on raw predictions (R = 0.65-0.87).  

 

Table 5-2 Summary of 2-MG and 2-MT model performance in the PRD region. 

Average  

observation 

(ng m-3) 

Case 

Average  

prediction$ 

(ng m-3) 

MFB^ MFE R% 

2-MG: 1.6 

Base case 0.7 -1.022 1.061 0.763 

Repartitioned base case 1.7 -0.007 0.522 0.831 

NV/Het. Chem. 6.8 0.678 1.003 0.467 

Sens. 1# (lower ∆𝐻𝑣𝑎𝑝) 4.0 0.587 0.735 0.841 

Sens. 2# (higher yields) 4.5 0.847 0.862 0.877 

2-MT: 30.7 

Base case 18.0 -0.843 1.107 0.470 

Repartitioned base case 39.3 0.002 0.723 0.605 

NV/Het. Chem. 41.3 0.057 0.782 0.355 

Sens. 1 80.0 0.501 0.809 0.624 

Sens. 2 90.2 0.666 0.868 0.613 
$ The average predictions were calculated with the predicted concentrations with corresponding 

observations available. 
^ Mean fractional bias, MFB = 2

𝐶𝑝𝑟𝑒−𝐶𝑜𝑏𝑠

𝐶𝑝𝑟𝑒+𝐶𝑜𝑏𝑠
; Mean fractional error, MFE = 2

|𝐶𝑝𝑟𝑒−𝐶𝑜𝑏𝑠|

𝐶𝑝𝑟𝑒+𝐶𝑜𝑏𝑠
. 𝐶𝑝𝑟𝑒 and 

𝐶𝑜𝑏𝑠 are daily predictions and observations, respectively. 
% Pearson correlation coefficient. 
# Case Sens. 1 and Sens. 2 results shown in this table were adjusted based on the observed OA 

loadings in the PRD region. 

 

 

The model performance statistics of 2-MT and 2-MG for the raw base case and 

repartitioning-adjusted results for each site in the PRD region are shown in Table S5-4, and the 

overall model performance statistics are summarized in Table 5-2. The base case model 

underpredicted 2-MG and 2-MT with the MFB approximately -1.0 and -0.8, respectively. The 

error in the predictions is also quite significant, with an MFE of ~1.1 for both tracers. The 

repartitioning process generally removes the under-predictions with MFB close to zero and 

significantly reduces the MFE (0.522 for 2-MG and 0.732 for 2-MT). The adjusted predictions 
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also reveal higher correlations with observations (R = 0.83 for 2-MG and R = 0.60 for 2-MT) 

compared to the raw model predictions (R = 0.76 for 2-MG and R = 0.47 for 2-MT). In summary, 

the model performance statistics show that the base case model under-predicts particle phase 2-

MG and 2-MT, but the agreement with the observations improves significantly after repartitioning 

using observed OA.  

5.3.3 2-MG and 2-MT across the country 

 

Table 5-3 Summary of 2-MG and 2-MT model performance in the 14 sites across China. 

Average  

observation 

(ng m-3) 

Case 

Average  

prediction 

(ng m-3) 

MFB MFE R 

2-MG: 12.4 

Base case 1.2 -1.622 1.663 0.082 

Repartitioned base case 5.5 -0.989 1.179 0.196 

NV/Het. Chem. 8.1 -0.875 1.239 0.099 

Sens. 1# (lower ∆𝐻𝑣𝑎𝑝) 6.1 -0.970 1.176 0.316 

Sens. 2# (higher yields) 11.5 -0.485 1.028 0.281 

2-MT: 105.6 

Base case 20.7 -1.253 1.316 0.393 

Repartitioned base case 86.2 -0.286 0.824 0.543 

NV/Het. Chem. 45.1 -0.842 1.104 0.122 

Sens. 1 91.2 -0.355 0.878 0.644 

Sens. 2 152.0 0.168 1.194 0.596 
$ The average predictions were calculated with the predicted concentrations with corresponding 

observations available. 

# Case Sens. 1 and Sens. 2 results shown in this table were adjusted based on the OA loadings 

increased by a factor of 3. 

 

 

To further evaluate the updated isoprene SOA scheme, the 2-MG and 2-MT model 

performance at the 14 monitoring sites is determined and summarized in Table 5-3. The base case 

model results show significant underprediction of the two tracers (MFB = -1.62, MFE = 1.66 for 

2-MG and MFB = -1.25, MFE = 1.32 for 2-MT) and weak correlations between the predictions 

and observations (R = 0.08 for 2-MG and R = 0.39 for 2-MT).  
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Measurements of OC are not available at these locations, but it is expected that OC might 

be under-predicted, similar to those in the PRD region, by a factor of 2-3, which could cause under-

predictions of the tracers. For example, the predicted summertime average OC concentrations at 

Xianghe, a suburban site in northern China, is 7.5 μg m-3, which is approximately a factor of 3 

lower than the observed PM2.1 OC concentration of 25.2 μg m-3 in summer 2012.190 To assess this 

potential under-prediction of OC on the modeled tracer concentrations, the total tracer 

concentrations at these locations are repartitioned by increasing the predicted OC concentrations 

by a factor of 3, using the same technique described in the previous section.  

As shown in Figure S5-3, the repartitioned tracer concentrations show better agreement 

with the observations in both MFB (-0.99 for 2-MG and -0.29 for 2-MT), MFE (1.18 for 2-MG 

and 0.82 for 2-MT), and correlations (R = 0.20 for 2-MG and R = 0.54 for 2-MT). The model 

performance for individual sites is shown in Table S5-5. The adjusted concentrations are still lower 

than observations, especially for 2-MG formed under high-NOx conditions. Since the 

anthropogenic emissions could be significantly underestimated, especially in less economically 

developed western and southwestern regions 125, NOx emissions might have been underestimated, 

causing under-predictions of 2-MG. 

Figure S5-4 shows the spatial distribution of the average model predicted 2-MG and 2-MT 

concentrations from June to August. The highest concentrations of 2-MG (~30 ng m-3) and 2-MT 

(~400 ng m-3) are in southwest China near the foothill of the west rim of the Sichuan Basin, where 

the heterogeneous pathway has significant contributions to both 2-MG (~20 ng m-3) and 2-MT 

(~200 ng m-3) due to higher acidity (~1, see Figure S5-4c), which leads to higher surface uptake 

coefficients (Figure S5-5a and b). In the polluted regional in central and eastern China, predicted 

pH is in the range of 3-4, which agree with those reported by Zhang et al.191 The formation of the 
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two tracers from the additional pathway has wider spatial distributions (Figure S5-4e and f) than 

the heterogeneous pathway and is more closely related to gas-phase IEPOX and MAE.  

The spatial distributions of observed 2-MT and 2-MG are similar to the precursor gas of 

IEPOX and MAE, respectively (Figure S5-6c and d). As shown in Figure S5-7, the correlations 

between observed aerosol 2-MG and 2-MT with the modeled heterogeneous reaction products are 

low (R = -0.024 for 2-MG and 0.165 for 2-MT). In contrast, stronger correlations are obtained 

between the observed aerosol tracers and the modeled gas phase precursors (R = 0.443 for 2-MG 

with IMAE, and 0.745 for 2-MT with IEPOX) and between the tracers and the modeled 

semivolatile isoprene SOA products (R = 0.321 for 2-MG and 0.732 for 2-MT). The strong 

correlations of the observed tracers with modeled gas-phase precursors and the semivolatile SOA 

products further support the potential contributions of an additional gas-phase formation pathway 

for these tracers, particularly for 2-MT. 

5.3.4 Mass fraction of isoprene tracers in the SOA 

The mass fractions (𝑓𝑆𝑂𝐴) of organic tracers (2-MG + 2-MT) in the isoprene SOA are 

determined based on the modeled daily tracer concentrations and the isoprene SOA concentrations. 

and the total OA concentrations at the PRD sites and 8 other sites across China (sites with 

summertime average OA < 5 µg m-3 are excluded). Significant scattering is observed when fsoa is 

plotted against OA, especially at low OA concentrations, as shown in Figure 5-4(a), but at higher 

OA concentrations (OA > ~10 µg m-3), fsoa approaches a constant. To provide an estimation of 

the fsoa, a Michaelis-Menten type equation is used to fit fsoa against OA. For example, based on 

the fitted equation, fsoa approaches 0.013 when all isoprene SOA components (semivolatile 

products, oligomers, 2-MT, 2-MG, organosulfates, and SOA related to the uptake of GLY and 

MGLY from isoprene oxidation) are included. If SOA from the surface uptake of dicarbonyls are 
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excluded, 𝑓𝑆𝑂𝐴 approaches 0.040, which is ~30% lower than the average 𝑓𝑆𝑂𝐴 of 0.063 determined 

by Kleindienst et al.38. At OA ~ 4 µg m-3, 𝑓𝑆𝑂𝐴 is reduced to half of the asymptotic value for both 

estimations.  

An alternative direct approach to estimate isoprene SOA based on measured 2-MT + 2-MT 

concentrations is shown in Figure 5-4(b). The modeled isoprene SOA concentrations and tracer 

concentrations are fitted empirically with power-law equations. For example, the total isoprene 

SOA can be calculated using 𝐶𝑆𝑂𝐴 = 32.5𝐶𝑡𝑟𝑎𝑐𝑒𝑟
0.68 , where the concentrations are in µg m-3. For the 

model data, these equations lead to lower overall errors and biases. They are also more convenient 

to use as no OC or OA data are needed.  

 

 
Figure 5-4 (a) The daily tracer mass fraction (𝑓𝑆𝑂𝐴) as a function of predicted OA concentrations 

(COA) in 11 sites across the country, based on model predictions. (b) The linear relationships 

between the tracer predictions and isoprene SOA. SSOA: semivolatile isoprene SOA (which 

includes 2-MG and 2-MT from the additional pathway); POX: SOA from surface uptake of IEPOX 

and MAE; OLG: oligomers from SSOA; GLY: dicarbonyl SOA from surface uptake of glyoxal 

and methylglyoxal from isoprene oxidation. R: Pearson correlation coefficient. 

 

Figure 5-5 shows that although emissions of isoprene peaks in southern and southeastern 

China (Figure S5-6a), long-term average 𝑓𝑆𝑂𝐴 values vary slightly in the more polluted central, 
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eastern, southern, and southeastern China due to regional transport of isoprene oxidation products. 

However, the 𝑓𝑆𝑂𝐴 is increased dramatically in southwest China, where isoprene emissions are 

very low. The 𝑓𝑆𝑂𝐴 values used to estimate total isoprene SOA are within 0.01 ~ 0.02 in the polluted 

area. When SOA from dicarbonyls is excluded, 𝑓𝑆𝑂𝐴 in the polluted region is approximately 0.03-

0.04, consistent with the values derived in Figure 5-4(a) ~ 0.15. The range of 𝑓𝑆𝑂𝐴 becomes 

narrower when more isoprene SOA components are considered. Table S5-7 lists the 𝑓𝑆𝑂𝐴 values 

at the 14 monitor locations. 

 

 
Figure 5-5 Spatial distribution of 𝑓𝑆𝑂𝐴 calculated based on average base case model predictions 

from June to August 2012 when (a) only SSOA; (b) SSOA and POX; (c) SSOA, POX, and OLG; 

(d) SSOA, POX, OLG, and GLY are considered with a threshold of 0.1 μg m-3 isoprene SOA. 

 

 

5.4 Discussion 

5.4.1 Non-volatile 2-MG and 2-MT without the additional pathway 

An additional simulation (NV/Het. Chem.) is performed by turning off the additional 

pathway and setting the 2-MG and 2-MT to be non-volatile to assess if treating 2-MG and 2-MT 
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as non-volatile without the additional pathway could also lead to reasonable estimations of the two 

tracers. In this simulation, since the tracers are non-volatile, no repartitioning is necessary when 

comparing with observations. The 2-MG is over-estimated (MFB = 0.57) with moderate 

correlations with observations (R = 0.467) in the PRD region (Table 5-2) but underestimated 

significantly at other locations (MFB = -0.96) without apparent correlation with observations (R 

= 0.099; see Table 5-3). For 2-MT, the predicted average concentration in the PRD region is similar 

to that of the repartitioned base case results but with a much weaker correlation (R = 0.355). In the 

other locations, 2-MT from this simulation is much lower than observations (MFB = -0.96), and 

the correlation (R = 0.122) is weaker than that of the repartitioned base case (R = 0.520). These 

results suggest that it might not be accurate to treat the 2-MT and 2-MG as non-volatile and assume 

that they are only generated from the heterogeneous process that involves surface uptake and 

aqueous-phase reactions.  

5.4.2 Uncertainties in 2-MG and 2-MT partitioning due to the enthalpy of vaporization  

The ∆𝐻𝑣𝑎𝑝 values for 2-MG and 2-MT in the base case simulation (~120-130 kJ mol-1) are 

estimated based on the E-AIM model. Significantly lower estimations (~40 kJ mol-1) were used 

by Couvidat and Seigneur43 based on ∆𝐻𝑣𝑎𝑝 for semivolatile isoprene SOA derived from chamber 

experiments. With high ambient temperatures in the summer, higher ∆𝐻𝑣𝑎𝑝 values lead to higher 

saturation vapor pressure and lower fractions of the tracers in the aerosol phase. For example, as 

shown in Figure S5-8, for typical OA loading between 10 and 50 μg m-3, the fraction of 2-MT in 

the particle phase (𝐹𝑝,𝑡) is sensitive to temperature with a high ∆𝐻𝑣𝑎𝑝 of 117.7 kJ mol-1. When the 

temperatures are above 300 K, 2-MT is mostly in the gas phase with high ∆𝐻𝑣𝑎𝑝. However, the 

𝐹𝑝,𝑡 of 2-MT becomes higher with a lower ∆𝐻𝑣𝑎𝑝 estimation of 38.4 kJ mol-1.  
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To assess the influence of lower ∆𝐻𝑣𝑎𝑝 values on the model predictions for aerosol phase 

2-MG and 2-MT, a sensitivity simulation (Sens. 1) has been conducted with ∆𝐻𝑣𝑎𝑝 of 43.2 kJ mol-

1 and 38.4 kJ mol-1 for 2-MG and 2-MT, respectively, while keeping the other parameters the same 

as the base model. In this case, 2-MG and 2-MT aerosol fractions are significantly higher than 

those in the base case (Figure S5-9). Since the average daily temperature in the PRD region is 

generally above 300 K, the average 2-MG and 2-MT concentrations (repartitioned with observed 

OC) in the region are increased by approximately a factor of 2 compared to the base case (Table 

5-2), leading to over predictions (MFB = 0.50 for 2-MG and 0.58 for 2-MT). However, there are 

no significant differences in the correlation coefficients with observations.  

The lower ∆𝐻𝑣𝑎𝑝 has less influence on 2-MG and 2-MT predictions in other places (Table 

5-3), where the temperature is relatively lower than the PRD region. The overall repartitioned 2-

MG and 2-MT predictions are increased by approximately 11% and 6% from the repartitioned 

base case results, and the correlations between observations and model predictions become 

stronger, with an increase of approximately 0.1 for the overall correlation coefficients. While this 

sensitivity simulation shows that the model predictions can be sensitive to the estimation of ∆𝐻𝑣𝑎𝑝, 

more modeling and field studies are needed to determine the appropriate ∆𝐻𝑣𝑎𝑝 for use in the 

models.  

5.4.3 Uncertainties in 2-MG and 2-MT formation due to the yield in the additional pathway 

The 2-MG and 2-MT yields from the additional pathway in the base case simulation are 

selected so that predicted concentrations agree with field measurements in the PRD region. Next, 

the uncertainties of the model predictions to this important parameter are tested in an additional 

sensitivity simulation case (Sens. 2). Since the model under-predicts the observations in other 

places across China, the 2-MG and 2-MT yields increase by a factor of 3 and 2, respectively, in 
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this simulation. In the PRD region, the repartitioned 2-MG and 2-MT predictions are increased by 

a factor of 2.6 and 2.3, respectively, as shown in Table 5-2 (individual site performance is shown 

in Table S5-4), but the correlation with the observations increased slightly. The overall average 

predictions of 2-MG and 2-MT in other places across China, as shown in Table 5-3, are increased 

by 145% and 76%, respectively.  
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6 MODELING SECONDARY ORGANIC AEROSOL TRACERS AND TRACER-TO-SOA 

RATIOS FOR MONOTERPENES AND SESQUITERPENES USING A CHEMICAL 

TRANSPORT MODEL 

The community multiscale air quality (CMAQ) model was modified to simulate secondary 

organic aerosol (SOA) formation from five explicit (α-pinene, β-pinene, d-limonene, Δ3-carene, 

and sabinene) and one lumped monoterpene (MT) species and sesquiterpenes (SQTs). The 

contribution of each oxidation pathway (including OH, O3, NO3, and O(3P)) was explicitly tracked 

in the SOA module. Three MT SOA tracers (pinic acid, PA; pinonic acid, PNA; and 3-methyl-

1,2,3-butanetricarboxylic acid, MBTCA) and one SQT SOA tracer (β-caryophyllinic acid, 

BCARYA) were modeled to assess the tracer-to-SOA ratios (𝑓𝑆𝑂𝐴) for ambient SOA estimation. 

Good model performance for BCARYA and MBTCA and reasonable agreement between model 

predictions and observations of PA and PNA were achieved. The modeled daily 𝑓𝑆𝑂𝐴 showed 

significant variations, suggesting that using chamber-derived constant 𝑓𝑆𝑂𝐴 could lead to large 

errors in estimating terpene SOA. Among the four tracers, MBTCA and BCARYA were more 

appropriate for tracking MT and SQT SOA due to their nonvolatility. Their 𝑓𝑆𝑂𝐴 values mainly 

depend on the organic aerosol loading and could be approximated using simple power-law 

equations. In addition, equations directly linking the tracer concentrations to the corresponding 

SOA concentrations were proposed and could lead to good SOA estimations. This work provides 

new insights into the formation of the key MT and SQT SOA tracers and would allow better 

assessments of the biogenic emissions to regional and global aerosol burden. 

6.1 Introduction 

Monoterpenes (MTs, C10H16) and sesquiterpenes (SQTs, C15H24) emitted from natural 

sources are diverse mixtures of highly reactive compounds and important sources of secondary 
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organic aerosol (SOA). The major species of the naturally emitted MTs are α-pinene, β-pinene, d-

limonene, Δ3-carene, and sabinene. Model estimations of global average SOA production from 

MTs and SQTs are both on the order of 10-30 Tg a-1,192-194 which is significant considering the 

estimated range of global isoprene SOA production (10-100 Tg a-1).193  

SOA from different precursors in ambient organic aerosol samples are commonly 

determined using ambient concentrations of precursor-specific molecular tracer compounds and 

the chamber-determined mass fraction (𝑓𝑆𝑂𝐴) of the tracers in the SOA generated from the 

precursor.11, 38-42 Among many products identified from the MT SOA,195 pinic acid (PA) and 

pinonic acid (PNA) are often considered as molecular tracers.16, 38, 55, 195 3-methyl-1,2,3-

butanetricarboxylic acid (MBTCA) is also considered a unique tracer for α-pinene and β-pinene.56 

MBTCA is mainly generated from gas-phase oxidation of cis-PNA,57 and aqueous oxidation of 

PA may also contribute to it.58 For SQTs, the most commonly used molecular tracer is β-

caryophyllinic acid (BCARYA),59 generated from the photochemical oxidation of β-

caryophyllene, one of the major biogenic SQTs.60 Although this source apportionment method is 

easy to apply and has the distinct advantage of specific linkage to individual VOC precursors, the 

validity of the assumption that the chamber-derived 𝑓𝑆𝑂𝐴 could be applied under ambient 

conditions has been questioned.11, 61  

CTMs are widely used to quantify the terpene SOA in the ambient air. For example, 

Tsigaridis et al.196 modeled SOA from α-pinene and β-pinene separately in a global CTM using 

the classical Odum 2-product (2-p) representation79 but only considered their SOA formation from 

O3 oxidation. The Community Earth System Model version 2 (CESM2)197 was developed to model 

SOA from isoprene, MTs, and SQTs from OH, O3, and NO3 oxidation pathways using a 5-bin 

Volatility Basis Set. However, the MTs and SQTs were modeled as a lumped species, and SOA 
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yields for MTs with O3 and OH were not differentiated. Qin et al.198 developed a detailed treatment 

of MT chemistry in the community multiscale air quality model (CMAQ) to explicitly model SOA 

from α-pinene, β-pinene, d-limonene, Δ3-carene, and sabinene from OH, O3, NO3, and O(3P) with 

2-p representation. The detailed representation led to higher MT SOA estimations than those using 

a lumped MT, and NO3 oxidation was more important than other pathways. 

0-D box model simulations of PA and PNA and their gas-particle partitioning from 

different MTs have been performed using detailed gas-phase chemical mechanisms,199, 200 along 

with equilibrium partitioning into an absorbing organic phase.201-203 However, while the chamber 

formation of the tracers can be reasonably reproduced after optimizing model parameters such as 

the gas-organic matter partitioning coefficient (Kom)201 or including additional formation 

pathways,203 these mechanisms are often too computationally intensive to be implemented in 3-D 

CTMs. In addition, there is no reported modeling of MBTCA even in 0-D box models. As a result, 

no 3-D CTMs currently consider SOA from SQTs and explicit MTs, and their unique tracers 

simultaneously.    

In this study, the CMAQ model is modified to include a detailed representation of the gas 

phase chemistry of 5 individual MTs, one lumped MT, and one lumped SQT species. The 

formation of SOA from these explicit and lumped species via different oxidation pathways is 

tracked separately. In addition, the formation of PA, PNA, MBTCA, and BCARYA in the gas 

phase and their gas-particle partitioning are also considered in the model. The model is applied to 

simulate the concentrations of the tracers along with MT and SQT SOA in China for a three-month 

summer period. To the best of the authors’ knowledge, this is the first time that the capability of a 

3-D CTM in reproducing the observed organic tracer concentrations from MTs and SQTs, and the 

spatial and temporal variability of the mass fraction 𝑓𝑆𝑂𝐴 are evaluated against ambient 



 

103 

 

 

 

measurement data over a large geographical area impacted by different levels of anthropogenic 

emissions. 

6.2 Methods 

6.2.1 The detailed SAPRC-11 mechanism and SOA modeling 

The community multiscale air quality (CMAQ) model v5.0.1115 is applied as a base model 

to implement a detailed chemical mechanism and the associated SOA and SOA tracer calculations.  

The gas-phase photochemistry is based on a detailed SAPRC-11 mechanism (S11D).81 The S11D, 

with separate reactions for more than 700 different explicit and lumped VOCs, is the basis of more 

condensed versions of S11 used in several previous modeling studies.84, 204 The S11D implemented 

in this study has 1261 reactions and 513 species. The number of reactions and species is 

significantly lower than some other detailed mechanisms such as the Master Chemical Mechanism 

(MCM) because a small number of species is used to represent the common organic products and 

the intermediate radicals leading to these products. 

The explicit representation of the emitted VOCs allows separate tracking of SOA and SOA 

tracers from α-pinene, β-pinene, d-limonene, Δ3-carene, and sabinene. The rest of the MTs are 

included as a lumped model species. In addition, the SQTs are also modeled as a lumped species. 

The semivolatile products in the gas phase and the corresponding SOA products from OH, NO3, 

O(3P), and O3 oxidation are tracked in the model with different species to allow quantitative 

analyses of the contributions of different oxidants and precursors to MT and SQT SOA.  

The SOA module in the aerosol module version 6 (AERO6) is modified to link with the 

detailed S11D to predict SOA from different precursors. The SOA module includes SOA 

formation from equilibrium partitioning of semivolatile products based on the classical Odum 2-p 

representations.79 Oligomerization of condensed semivolatile SOA products from equilibrium 
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partitioning is modeled as a first-order decay process with a half-life of 20 hours.117 Oligomers are 

assumed to be nonvolatile. The precursor and oxidant-specific 2-p model parameters are compiled 

from the literature205,206,
 
138, 207 and summarized in Section S6.1. The SOA module also includes 

irreversible surface uptake of glyoxal and methylglyoxal on wet aerosols or cloud droplets.45 The 

multiphase reactions of isoprene epoxydiol and methacrylic acid epoxide and the formation of 2-

methyltetrols, 2-methylglyceric acid, and organosulfate are based on Pye et al.49 In addition, SOA 

formation from long-chain alkanes and major aromatic compounds (toluene, xylenes, 

ethylbenzene, naphthalene, and methylnaphthalene) is also included in the model using the 2-p 

representation.   

6.2.2 Monoterpene and sesquiterpene SOA tracer formation 

The updated CMAQ model includes three major MT tracers (PA, PNA, and MBTCA) and 

one SQT tracer (BCARYA). The tracers are formed in the gas phase oxidation of the precursors 

by OH and O3 using mass yields (α) calculated from published chamber data. The formation of 

these marker compounds with NO3 is generally smaller due to the enhanced formation of 

organonitrate compounds,206 and thus is not considered. A total of 13 unique model species are 

added to the CMAQ model to separately track the tracers from different precursors and the 

oxidation pathways (Table 6-1). Equilibrium partitioning is applied to these semivolatile tracer 

species to determine their concentrations in the gas and absorbing organic matter (OM) phases.  

The subcooled saturation vapor pressure (𝑝𝐿
0) and enthalpy of vaporization (∆𝐻𝑣𝑎𝑝) data 

are used to calculate the saturation concentration (C*) of the tracers, which is needed for the tracer 

yield and partitioning calculations. 𝑝𝐿
0 for PA is estimated using Method 1 of the vapor pressure 

estimation module from the Extended AIM (E-AIM) aerosol thermodynamics model 

(http://www.aim.env.uea.ac.uk/aim/aim.php). A previous study evaluated 12 different approaches 

http://www.aim.env.uea.ac.uk/aim/aim.php
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of vapor pressure estimation and found that the E-AIM Method 1 yielded the best estimations, 

particularly for low volatility multifunctional groups.153 The E-AIM estimated PA 𝑝𝐿
0 is 1.98×10-

4 Pa at 298K (saturation concentration C* = 16 μg m-3), which is consistent with the estimations 

from the literature (Table S6-2). However, the 𝑝𝐿
0 of PNA estimated by E-AIM is approximately 

100 times higher than the Pankow et al.55 estimation of 7.19×10-5 Pa (C* = 5.8 μg m-3), which is 

close to the estimation reported by Bilde and Pandis.208 Since the large E-AIM estimation of 𝑝𝐿
0 

would unrealistically leave all pinonic acid in the gas phase, Pankow et al.’s estimation is adopted 

in this study. The MBTCA (C* = 0.002 μg m-3)209 and BCARYA (C* = 0.02 μg m-3, based on E-

AIM) are essentially non-volatile under ambient conditions. The low C* of MBTCA is also 

demonstrated by Zhang et al. 210 that the temperature dependence of MBTCA in the particle phase 

was due to changes in OH and unrelated to gas-particle partitioning. ∆𝐻𝑣𝑎𝑝 values of the tracers 

are either from the literature or based on E-AIM, as listed in Table 6-1.  

The α values of MT SOA tracers based on reported values or determined from chamber 

data from the literature (Table 6-1). The PA and PNA yields from ozonolysis reactions are based 

on those reported by Yu et al.54 The α values of PA, PNA, and MBTCA from OH reactions with 

α-pinene and β-pinene are calculated based on the experimental data of Mutzel et al.16 using Eq. 

(6.1),61 which is based on the equilibrium absorptive partitioning of the tracer and other 

semivolatile products between the gas phase and OM in the particle phase 146. 

𝛼 =
𝑓𝑆𝑂𝐴

𝐹𝑝,𝑡
𝑌𝑆𝑂𝐴 

(6.1) 
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Table 6-1 Thermodynamic properties and mass yields (α) of monoterpene and sesquiterpene 

SOA tracers from different formation pathways 

SOA Tracers Model species Formation Pathway αa 

Pinic acid 

Base case  

C* = 16.0 μg m-3 b,  
∆𝐻𝑣𝑎𝑝 = 124 kJ mol-1 

 Optimized 

C* = 33.4 μg m-3,  
∆𝐻𝑣𝑎𝑝 = 111 kJ mol-1 

PA_1 α-pinene + OH 
0.0062 (base case) 

0.0071 (optimized g) 

PA_2 β-pinene + OH 
0.0114 (base case) 

0.0125 (optimized) 

PA_3 α-pinene + O3 0.0661 

PA_4 β-pinene + O3 0.0431 

PA_5 Δ3-carene + O3 0.0164 

PA_6 sabinene + O3 0.0191 

Pinonic acid 

Base case 

C* = 5.8 μg m-3 c,  
∆𝐻𝑣𝑎𝑝 = 108 kJ mol-1 

Optimized 

C* = 34.0 μg m-3,  
∆𝐻𝑣𝑎𝑝 = 111 kJ mol-1 
 

PNA_1 α-pinene + OH 
0.0053 (base case) 

0.0067 (optimized) 

PNA_2 β-pinene + OH 
0.0013 (base case) 

0.0016 (optimized) 

PNA_3 α-pinene + O3 0.0568 

PNA_4 β-pinene + O3 0.0085 

MBTCA d 

C* = 0.0018 μg m-3 e,  
∆𝐻𝑣𝑎𝑝 = 150 kJ mol-1 

MBTCA_1 α-pinene + OH 
0.0129 (base case) 

0.0021 (optimized) 

MBTCA_2 β-pinene + OH 
0.0065 (base case) 

0.0011 (optimized) 

 

β-Caryophyllinic acid 

C* = 0.017 μg m-3,  
∆𝐻𝑣𝑎𝑝 = 168 kJ mol-1 

BCARYA sesquiterpenes + OH/NO3/O3 0.0146 f 

a The α values for the reactions with OH were derived from Mutzel et al.16, and values for the reactions with 

O3 were obtained from Yu et al.54 
b The C* values for pinic acid and β-caryophyllinic acid were estimated based E-AIM Method 1. 

c C* for pinonic acid is derived based on the vapor pressure estimated by UNIFAC according to Pankow et 

al.55 
d MBTCA: 3-methyl-1,2,3-butanetricarboxylic acid. 
e C* for MBTCA is obtained from Kostenidou et al.211 
f The α value for β-caryophyllinic acid is derived from Kleindienst et al.38 chamber experiments using 

Eqs.(6.1)-(6.4).  
g See section 4.1 for discussion of the optimized values. 

 

 

𝑓𝑆𝑂𝐴 is the measured particle-phase organic tracer to SOA mass ratio; 𝑌𝑆𝑂𝐴 is the measured mass 

yield of total SOA; 𝐹𝑝,𝑡 is the fraction of the organic tracer in the absorbing OM phase, calculated 

using Eq. (6.2) with measured organic aerosol concentration (𝐶𝑂𝐴) in the chamber, 

𝐹𝑝,𝑡 = (1 +
1

𝐾𝑂𝑀𝐶𝑂𝐴
)

−1

 (6.2) 
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𝐾𝑂𝑀 is the absorptive gas/particle partitioning coefficient of organic tracer estimated using Eq 

(6.3)146: 

𝐾𝑂𝑀 =
𝑅𝑇

106𝑝𝐿
0𝛾𝑀𝑊̅̅ ̅̅ ̅̅

𝑂𝑀

 (6.3) 

where R is the ideal gas constant (m3 Pa K-1 mol-1); T is the temperature (K); 𝑝𝐿
0 is the subcooled 

vapor pressure (Pa); 𝛾 is the activity coefficient of the compound in the absorbing OM phase 

(assumed to be unity); 𝑀𝑊̅̅ ̅̅ ̅̅
𝑂𝑀 is the mean molecular weight of the OM phase assumed to be 200 

g mol-1, according to William et al.149 Assuming that the reported YSOA did not account for vapor 

wall loss, the solved α values were adjusted by using the correction factor of α-pinene (1.3) 

suggested by Zhang et al.161  

The α value of BCARYA is calculated similarly based on data from Kleindienst et al.38 

The 𝑌𝑆𝑂𝐴 value is not reported so it is estimated by the Odum 2-product representations of SOA 

formation from β-caryophyllene, as shown in Eq. (6.4): 

𝑌𝑆𝑂𝐴 = ∑ 𝛽𝑖 (1 +
𝐶𝑖

∗

𝐶𝑂𝐴
)

−12

𝑖=1

 (6.4) 

where 𝛽𝑖’s are the mass yields of a lumped semivolatile product i; 𝐶𝑖
∗is the saturation mass 

concentration of the lumped product. The 𝛽𝑖 and 𝐶𝑖
∗ are obtained from Carlton et al.212 and 

corrected for the vapor wall-loss.161 The average α value for BCARYA is 0.0146 and is applied in 

OH, NO3, and O3 oxidation pathways.  

6.2.3 CMAQ simulation 

The modified CMAQ model is applied to simulate organic tracers listed in Table 6-1 and 

SOA formation in China in summer 2012 (Jun. – Aug.). The CMAQ model domain has 197×127 

grid cells in each layer with a horizontal grid resolution of 36×36 km2. The 18 stretching vertical 

layers reach a model top of approximately 20 km, with the first layer height of roughly 35 m. Initial 
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and boundary conditions are generated using the CMAQ default vertical profiles. The first five 

days of the simulation are excluded in the final analysis as spin-up. In the base case simulation, 

the organic tracer yields and saturation mass concentrations are listed in Table 6-1. Details of the 

preparation of the meteorology and emission fields are described in Section S6.2.  

6.3 Results 

6.3.1 General model performance evaluation 

The daily PM2.5 mass concentration, major chemical components, and organic marker 

compounds were measured in the Pearl River Delta (PRD) region from four sites, i.e., Guangzhou 

(23.13°N, 113.30°E), Nansha (22.75°N, 113.60°E), Dongguan (22.97°N, 113.74°E), and Nanhai 

(23.06°N, 113.15°E), every six days during the summertime of 2012. The detailed description of 

PRD sites and observation data can be found from Wang et al.213 and He.214 Additional MT and 

SQT tracer measurements (approximately two days per month) from 14 sites across China136 are 

used to further evaluate the model capability to simulate the tracers in broad areas. Locations of 

the monitor sites are shown in Figure S6-17. 

Table S6-3 shows that total PM2.5 is slightly underpredicted with a mean fractional bias 

(MFB) of -0.3 and a mean fractional error (MFE) of 0.4. However, the total organic carbon (OC) 

is underpredicted by a factor of 2. As shown in Figure S6-4, the underprediction of OC is mainly 

caused by low prediction of primary OC (POC; MFB = -1.0, MFE = 1.0), which is likely due to 

the underestimation of emissions in the PRD region and may lead to the small under-prediction of 

secondary OC (SOC; MFB = -0.34, MFE = 0.61). Nevertheless, the general agreement in the 

secondary inorganic and organic PM2.5 components suggests that the oxidation capacity in the 

PRD region is reasonably captured and thus provides confidence in the SOA tracer predictions. 



 

109 

 

 

 

As there is no direct measurement of gas-phase MT mixing ratios during the simulation 

period, the seasonal average concentrations are compared with historical observation data215-218 

(Table S6-4). The predicted MT shows a broad range with lower concentrations in the urban 

centers and higher concentrations in the surrounding areas. However, the observed α-pinene and 

β-pinene concentrations are generally within the range of model predictions. Note that these two 

MT compounds contribute to approximately half of all the modeled MTs. 

6.3.2 Organic tracer evaluation in the PRD region 

As mentioned in Section 6.3.1, the total OA in the PRD region is under-predicted by 

approximately a factor of 2 (MFB = -0.6), leading to lower organic tracers partitioned into the 

aerosol phase. To remediate this under-prediction of OA on the assessment of the model 

performance of the organic tracers, repartitioning of the tracers between gas and particle phases 

are performed based on the OA measurements using Eq. (6.5): 

𝐶𝑝,𝑟𝑒𝑝 =
𝐶𝑡𝑜𝑡

1 + 𝐶∗/𝐶𝑂𝐴
 (6.5) 

where 𝐶𝑝,𝑟𝑒𝑝 is the repartitioned tracer concentrations in the aerosol phase (μg m-3); 𝐶𝑡𝑜𝑡 is the 

total tracer concentrations predicted in both gas and particle phase (μg m-3); 𝐶𝑂𝐴 is the observed 

OA loadings, which is estimated using SOC multiplied by OA/OC ratio of 1.6 188, 189; 𝐶∗ is the 

saturation mass concentration of organic tracers (μg m-3), which is adjusted based on the WRF 

modeled daily average temperature, as shown in Eq. (6.6): 

𝐶∗ = 𝐶𝑟𝑒𝑓
∗

𝑇𝑟𝑒𝑓

𝑇
exp [

∆𝐻𝑣𝑎𝑝

𝑅
(

1

𝑇𝑟𝑒𝑓
−

1

𝑇
)] (6.6) 

where the 𝐶𝑟𝑒𝑓
∗

 is the saturation mass concentration (μg m-3) at reference temperature (298 K); ∆𝐻𝑣𝑎𝑝 is 

the enthalpy of vaporization (J mol-1); R is the ideal gas constant (8.314 J K-1 mol-1); 𝑇𝑟𝑒𝑓 is the 

reference temperature (K), and T is the modeled ambient temperature (K). The repartitioning 
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process only affects semivolatile tracers (PA and PNA) concentrations but has little effect on the 

low-volatile tracers (MBTCA and BCARYA). 

Figure 6-1 and Figure S6-5 show the evaluation of repartitioned organic tracer predictions 

against the measurements from 4 sites in the PRD region. The day-to-day variations of the tracers 

are well captured at each monitor site. PA is slightly overpredicted with an MFB of approximately 

0.4, and it shows a moderate correlation between observations and predictions (Pearson correlation 

coefficient R = 0.45). The fraction of PA in the particle phase (Fp,t) is generally below 0.3 due to 

high temperature during the summertime in the PRD region. α-pinene ozonolysis is the most 

significant pathway to form PA, accounting for approximately 68% on average, followed by the 

oxidation of β-pinene by O3 and OH (~10% each). Chen and Yu reported an average OA/OC ratio 

2.1 in a suburban site in Hong Kong.219 Another set of repartitioning calculations is done with this 

higher OA/OC ratio, leading to slightly higher particle phase PA, but it does not significantly alter 

the correlations between predictions and observations (Figure S6-5). 

PNA is also overpredicted (MFB ~ 0.9, MFE ~ 1.16, and R = 0.27). The predicted fraction of 

PNA in the particle phase is generally between 0.2 and 0.6. Approximately 70% ~ 90% of PNA is 

formed from α-pinene ozonolysis, and 10-20% is from α-pinene oxidation by OH. As the C* values 

of PA and PNA have large uncertainties, the overprediction of PA and PNA can be caused by the 

underestimation of C*, which leads to more acids partitioned into the particle phase. An additional 

simulation that reduces the C* values is performed and discussed in Section 1.4.1.  
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Figure 6-1 Observed and predicted organic tracer concentrations, their mass fraction in the particle 

phase (𝑭𝒑,𝒕), and the relative contributions from different formation pathways in the PRD region. 
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The model significantly overpredicts MBTCA (MFB and MFE ~ 1.3), but the predictions 

show a high correlation with the measurements (R ~ 0.8). MBTCA is formed from α-pinene (66%) 

and β-pinene (34%) reactions with OH. Since previous studies showed that the MBTCA was nearly 

nonvolatile,209, 211 the over-prediction of MBTCA is likely caused by the overestimation of the 

mass yields and not C*. Therefore, in the additional simulation discussed in Section 1.4.1, the mass 

yields of MBTCA used in the base case are reduced to obtain better predictions.  

The predicted BCARYA agrees well with the measurements in the PRD region (MFB = -

0.06, MFE = 0.75) with a high correlation (R = 0.62). The fractions of model predictions of 

BCARYA in the particle phase are close to 1.0. 

6.3.3 Organic tracer evaluation across the country 

To further evaluate the model’s capability in simulating MT and SQT SOA tracers, the 

predictions are compared with ambient measurements at 14 sites across China.136 The overall 

model performance is generally consistent with that in the PRD region, as shown in Figure S6-6. 

The model overpredicts PA (MFB = 0.70, R = 0.17), PNA (MFB = 0.47, R = 0.52), and MBTCA 

(MFB = 1.3, R = 0.65) but BCARYA predictions agree well with the measurements (MFB = -0.16, 

R = 0.67).  

The OC measurements are not available at the monitor sites. However, it is expected that 

the OC may also be underpredicted according to OC evaluation in the PRD region (Table S6-3) 

and comparison with historical data (Figure S6-7). The average ratio of the observations to the 

predictions based on the historical data is 1.6. Therefore, the tracers are repartitioned based on OA 

loadings increased by a factor of 1.6 (Figure S6-6) to assess the impacts of potential 

underprediction of OA loadings on the tracer predictions, especially for PA and PNA. The 

repartitioning leads to slightly higher over predictions of PA and PNA, and the correlations 
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between predictions and observations are not changed. As expected, the MBTCA and BCARYA 

concentrations are not influenced by the repartitioning. 

The contributions of each MT tracer formation pathway are shown in Figure S6-8. The α-

pinene ozonolysis is the most important pathway to form PA and PNA. For MBTCA, the 

contributions are mostly from α-pinene + OH, but β-pinene + OH is also important.  

6.3.4 Monoterpene SOA formation 

In this study, the semivolatile SOA formations from individual MTs due to reactions with 

OH, O3, NO3, and O(3P) are tracked explicitly in the CMAQ model. Figure 6-2 shows the regional 

concentrations of total MT SOA formed from each oxidation pathway. The NO3 oxidation pathway 

(Figure 6-2c) has the highest contribution to MT SOA. The concentrations are above 1 μg m-3 

around the Sichuan Basin in southwest China, and the highest concentrations reach approximately 

1.8 μg m-3. The contributions of OH and O3 pathways (Figure 6-2a and b) are approximately 0.3 

μg m-3 and 0.6 μg m-3 in southern China. The relative contributions from each formation pathway 

agree with the predictions in the United States by Qin et al.,198 in which the SOA from the NO3 

oxidation is more significant than that from O3 and OH combined. The O(3P) oxidation pathway 

(Figure 6-2d) has negligible contributions to MT SOA. In addition, the oligomerized SOA 

contributes significantly to the total MT SOA (Figure 6-2e). The MT SOA oligomer concentrations 

in southern China are generally above 1 μg m-3. Since the half-life of semivolatile products to 

generate oligomers is set to 20 hours, the oligomers show much broader spatial distributions than 

the semivolatile SOA. The oligomer concentrations in this study are similar to the aged SOA 

concentrations (from stepwise decreasing of the volatility of the lumped semivolatile gas-phase 

products) in the southeastern US estimated by Qin et al.198  
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Figure 6-2 Regional contributions to the total monoterpene semivolatile SOA (SSOA) from 

individual oxidation pathways, (a) OH, (b) O3, (c) NO3, and (d) O3P, and (e) total SSOA from all 

pathways, and (f) oligomers. Units: μg m-3. The contributions of O3P are scaled up by 1000 times 

to illustrate the regional distributions. 

 

Figure S6-9 shows that β-pinene and Δ3-carene contribute most to MT SOA among the 

MTs, followed by α-pinene, d-limonene, and sabinene. The oligomers are as important as the 

corresponding semivolatile SOA formed from all oxidation pathways but have broader spatial 

distributions. The detailed contributions from each formation pathway of individual MT and the 

corresponding oligomer are shown in Figure S6-10. Even though the major contribution pathways 

of MT SOA tracers (mainly from ozonolysis) and MT SOA (mainly from reactions with NO3 

radical) are different, their spatial distributions are similar (shown in Figure S6-11), and the daily 
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SOA concentrations from OH, O3, and NO3 show high correlations (Figure S6-12), implying that 

the tracer concentrations can still be used to estimate SOA concentrations.  

6.4 Discussion 

6.4.1 Improving the model performance of PA, PNA, MBTCA  

PA and PNA are treated as semivolatile species, and their C* values have been estimated 

in wide ranges in the literature (3.2 – 57 μg m-3 for PA and 5.8 – 781 μg m-3 for PNA).55, 201, 208, 209 

The overprediction of PA and PNA could be caused by low C* values used in the base case. Thus, 

the C* of the two tracers are adjusted using the measurements in the PRD region to improve the 

model performance of PA and PNA. The optimized C* at 300 K (𝐶300
∗ ) is found by minimizing the 

MFB of the repartitioned tracer predictions in the particle phase. The ∆𝐻𝑣𝑎𝑝 values are estimated 

based on the semiempirical equation of Epstein et al.162, as shown in Eq. (6.7), 

∆𝐻𝑣𝑎𝑝 = −11 log10 𝐶300
∗ + 129 (6.7) 

where 𝐶300
∗  is the saturation mass concentration under 300 K. After optimization, C* at 298 K 

(𝐶298
∗ ) is calculated from 𝐶300

∗  and ∆𝐻𝑣𝑎𝑝. As shown in Figure S6-13, 𝐶298
∗  is 33.4 μg m-3 (∆𝐻𝑣𝑎𝑝 

= 111 kJ mol-1), which is between the estimations based on E-AIM Method 1 and Method 2 (see 

Table S6-2). The optimized 𝐶298
∗  for PNA is 34.9 μg m-3 (∆𝐻𝑣𝑎𝑝 = 111 kJ mol-1), which is close 

to the estimation by Jenkin.201 To be consistent, the α values of PA (updated to 0.0071 for APIN 

and 0.0125 for BPIN) and PNA (updated to 0.0067 for APIN and 0.0016 for BPIN) from APIN 

and BPIN photooxidation with OH radical16 are updated based on the optimized 𝐶298
∗  values using 

Eq.(1). The yields from the O3 reactions are not adjusted as they were directly measured by Yu et 

al. based on simultaneous measurements of PA and PNA in the gas and particle phases.54   

The MBTCA overprediction is likely caused by overestimating its yields from the 

photooxidation of α-pinene and β-pinene with OH because it is essentially nonvolatile and thus 
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not affected by gas-particle partitioning. The MFB of MBTCA in the PRD region and the 14 sites 

across China is consistently ~1.3, corresponding to an overall overprediction by a factor of 6. 

Because there are no other chamber studies reported the yield of MBTCA, we reduced the mass 

yields by a factor of 6 for both species (α = 0.0021 for α-pinene + OH and α = 0.0011 for β-pinene 

+ OH). 

 

 
Figure 6-3 Predicted and observed (a) pinic acid, (b) pinonic acid, (c) MBTCA, and (d) BCARYA 

at all monitor locations using optimized saturation concentrations for pinic acid and pinonic acid 

and optimized mass yield for MBTCA. R is the Pearson correlation coefficient. The cross markers 

represent data from the sites in the clean areas of west and southwest China (Linzhi, Namco, 

Dunhuang, and Xishuangbanna). Solid line is 1:1, and dashed lines represent 1:5 and 5:1. 
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An additional simulation is conducted with the updated mass yields and C* (Table 6-1), 

and the results are evaluated against the measurements in the PRD region and at the 14 sites across 

China (Figure 6-3). In this simulation, the predicted PA and PNA concentrations agree well with 

the PRD region measurements after repartitioning using observed OC concentrations, with a much-

reduced MFB of 0.07 and -0.06, respectively, and the correlation between predictions and 

observations does not change much. The model slightly overpredicts PA comparing with the 

measurements from 14 sites across the country with an MFB = 0.4 and MFE = 1.1, and the 

overprediction becomes higher by repartitioning PA with 1.6×OA loadings (Figure S6-14; MFB 

= 0.5, MFE = 1.2). The PNA is slightly underpredicted with an MFB = -0.4 but the agreement with 

the observations becomes better after repartitioning with 1.6×OA (Figure S6-14; MFB = -0.3, MFE 

= 0.9). The MBTCA predictions show good agreements with the observations in PRD (MFB = -

0.06, MFE = 0.55) and the 14 sites (MFB = -0.04, MFE = 0.62), with high correlations between 

the model predictions and measurements (R = 0.65 ~ 0.77). The improved PA, PNA, and MBTCA 

predictions are used in the subsequent analyses.  

6.4.2 Tracer-to-SOA ratio (𝑓𝑆𝑂𝐴) used to estimate terpene SOA 

The tracer-to-SOA ratios (𝑓𝑆𝑂𝐴) are determined based on the improved daily average 

concentrations extracted from the four sites in the PRD region and 14 sites across China (all days), 

as shown in Figure 6-4. The relationship between daily 𝑓𝑆𝑂𝐴 and OA loadings are fitted by power-

law functions, which allows a simple way to adjust 𝑓𝑆𝑂𝐴 to estimate MT and SQT SOA based on 

measured ambient OA loading in field campaigns. The 𝑓𝑆𝑂𝐴 values for MT SOA based on all three 

tracers (PA, PNA and MBTCA) show larger variabilities at low OA loadings because the gas-

particle partitioning of PA and PNA are sensitive to temperature changes due to large ∆𝐻𝑣𝑎𝑝 values, 

especially when the OA loading is low (Figure S6-15). In addition, the uncertainty in C* can also 
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lead to additional uncertainties in the modeled 𝑓𝑆𝑂𝐴. Instead, MBTCA is estimated to be nearly 

nonvolatile and thus is less affected by the C* or ∆𝐻𝑣𝑎𝑝. Thus, the MBTCA alone is potentially a 

better molecular tracer to estimate MT SOA (Figure 6-4b and 4e). OA dependence of MBTCA-

based 𝑓𝑆𝑂𝐴 (𝑓𝑆𝑂𝐴
𝑀𝐵𝑇𝐶𝐴) can be approximated with Eq. (6.8), 

𝑓𝑆𝑂𝐴 = 0.007𝐶𝑂𝐴
−0.49 (6.8) 

 

 
Figure 6-4 Correlation between daily SOA tracers-to-SOA ratio (𝑓𝑆𝑂𝐴) and organic aerosol 

concentrations (COA) for semivolatile SOA (SSOA) only (a-c) and total SOA (SSOA + oligomers). 

𝑓𝑆𝑂𝐴 in (a,d) are based on the sum of all three MT tracers. The shaded areas in panel (c) are the 

theoretical variations of 𝑓𝑆𝑂𝐴 due to OA loading, determined using 𝑓𝑆𝑂𝐴 = 𝛼
𝐹𝑝,𝑡

𝑌𝑆𝑂𝐴
, for the 

temperature range 15-35oC. The MATLAB curve fitting tool (robust regression with bi-square 

weighing function) is used to find the regression lines. r2 is the weighted coefficient of 

determination. The box-whisker plots are for COA bins with a bin width of 5 µg m-3. The whiskers 

are 1.5 IQR (interquartile range). Dashed lines in panels (c) and (d) are chamber-derived 𝑓𝑆𝑂𝐴 of 

0.0109 by Kleindienst et al.38 
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The MBTCA-based 𝑓𝑆𝑂𝐴 values decrease significantly with the increase of OA loadings 

due to the changes in the gas-particle partitioning of MT SOA, and show a stronger correlation 

with the OA loading than 𝑓𝑆𝑂𝐴 calculated from all three tracers. A similar trend is predicted for the 

BCARYA-based 𝑓𝑆𝑂𝐴 for total SQT SOA (𝑓𝑆𝑂𝐴
𝐵𝐶𝐴𝑅𝑌𝐴), with the power-law function shown in Eq. 

(6.9),   

𝑓𝑆𝑂𝐴 = 0.059𝐶𝑂𝐴
−0.39 (6.9) 

 

 

 

 
Figure 6-5 Regional distribution of three-month average tracer-to-SOA ratio (𝒇𝑺𝑶𝑨) based on (a,b) 

MT tracer and MT SOA, (c,d) MBTCA and MT SOA, and (e,f) BCARYA and SQT SOA. Panels 

(a,c,e) are for semivolatile SOA, and (b,d,f) are for total SOA (SSOA + oligomers). MT tracer is 

the sum of the mass concentrations of PA, PNA, and MBTCA. 

 

Figure 6-5 shows the regional distribution of 𝑓𝑆𝑂𝐴 calculated from the average 

concentrations of organic tracers and corresponding SOA concentrations during the summertime. 
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The spatial distribution of the 𝑓𝑆𝑂𝐴 values generally anticorrelate with the OA loadings (c.f., Figure 

S6-17). In areas where the OA concentrations are relatively high, the 𝑓𝑆𝑂𝐴 values are low and show 

small spatial variations. The 𝑓𝑆𝑂𝐴 determined by the seasonal average MBTCA and MT SOA 

(0.001-0.003), and BCARYA and SQT SOA (0.02-0.03) are generally uniform, while the one 

based on all three MT tracers show larger spatial variations.  

6.4.3 Simple relationship between organic tracer and SOA 

 

 
Figure 6-6 Linear and power-law equations to directly estimate MT and SQT SOA (semivolatile 

SOA, a-c; total SOA, d-f) using tracer concentrations. “MT tracers” is the sum of PA, PNA, and 

MBTCA). The Matlab curve fitting tool (robust regression with bi-square weighting function) is 

used to find the regression lines. r2 is the weighted coefficient of determination. 

 

 

 

An alternative method to estimate SOA from MT and SQT is to develop direct relationships 

between the tracer and SOA concentrations. Figure 6-6 shows two sets of equations derived from 

modeled tracer and SOA concentrations. One set of equations assumes a linear relationship 
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between the tracer and SOA concentrations, and the other set uses a power-law equation. The 

power-law relationship implies that the log-transformed tracer and SOA concentrations are linearly 

correlated. The MFB and MFE in the calculated MT and SQT SOA concentrations from the two 

sets of equations are compared in Figure S6-18. The MFB between predicted SOA and estimations 

using power functions is close to zero, and the corresponding MFE’s are all lower than 0.5. The 

power-law equations show better predictions of the MT and SQT SOA concentrations using 

MBTCA and BCARYA. The linear equations lead to slightly better results when the sum of the 

three MT tracers is used to estimate MT SOA. 

The direct power-law predictions of MT and SQT SOA described above are also compared 

to the predictions based on 𝑓𝑆𝑂𝐴, as shown in Eqs. (6.8) and (6.9), using predicted OA and tracers 

(MBTCA and BCARYA). Both methods lead to good SOA estimations when compared to the 

CMAQ-predicted SOA (MFB < ±0.1 and MFE < 0.5 for MBTCA; MFB < ±0.2 and MFE ~ 0.4 

for BCARYA). Figure S6-19 shows that the 𝑓𝑆𝑂𝐴 estimations are slightly better in matching the 

CMAQ-predicted MT and SQT SOA at higher concentrations, but the power-law equations lead 

to slightly better estimated SOA in lower concentrations. Overall, both methods can be applied in 

future field measurement studies to estimate MT SOA and SQT SOA. 

6.4.4 Diurnal variation of MT SOA and its molecular tracers 

MT SOA and tracers are generated from distinct precursor and formation pathways. Since 

OH, NO3 and O3 have different diurnal variations, it is expected that 𝑓𝑆𝑂𝐴 also demonstrates diurnal 

variations and the 𝑓𝑆𝑂𝐴 derived based on daily concentrations may not be applicable for the hourly 

SOA estimation. For example, Figure S6-20 shows that the MT SOA concentrations are higher at 

night and lower during the day in Beijing and positively correlate with the sum of all three MT 

tracers (PA, PNA, and MBTCA) (R=0.97). However, the SOA concentrations are strongly 
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anticorrelated with MBTCA (R = -0.85), which is only generated from OH oxidation. The negative 

correlation of hourly MBTCA with SOA leading to large diurnal variation of MBTCA-based 𝑓𝑆𝑂𝐴. 

In contrast, the 𝑓𝑆𝑂𝐴 based on all three tracers has much less variation and thus is more appropriate 

for estimating hourly MT SOA. However, since PA and PNA are volatile and their predictions are 

sensitive to C* values, future experimental studies are challenged to identify new low-volatile 

monoterpene tracers from the NO3 and O3 oxidation pathways. 
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7 CONCLUSIONS AND FUTURE RESEARCH  

7.1 Summary of major conclusions 

The overall objective of this study is to develop a regional chemical transport model (CTM) 

to simulate organic markers and precursor-specific SOA to evaluate model representations of 

precursor-specific SOA formation and reassess the tracer-to-SOA ratios (𝑓𝑆𝑂𝐴) used in the field 

measurement study to estimate SOA concentrations in ambient air.  

In Section 3, the model predicted aromatic SOA and monoterpene SOA show strong 

correlations with the daily measured organic tracers DHOPA (R~0.8) and α-pinT (R>0.8), which 

affirms that the tracer-based method is a good approach to evaluate model representations of 

precursor-specific SOA formation. The tracer-to-SOA ratios derived from the SOA predictions 

excluding nonvolatile components (oligomers, and secondary glyoxal GLY and methylglyoxal 

SOA) are close to the values reported in the literatures38, 39, suggesting that the chamber-derived 

𝑓𝑆𝑂𝐴 values may need to be adjusted to account for all SOA components from a specific precursor. 

The proper form of such adjustments must be determined using regional precursor and tracer-

resolved chemical transport models.  

The Community Multiscale Air Quality (CMAQ) model was modified to simulate organic 

tracers, including 2,3-dihydroxy-4-oxo-pentatonic acid (DHOPA) for aromatic SOA, 2-

methyltetrols (2-MT) and 2-methylglyceric acid (2-MG) for isoprene SOA, pinic acid (PA), 

pinonic acid (PNA), and MBTCA for monoterpene (MT) SOA, and β-caryophyllinic acid 

(BCARYA) for sesquiterpenes (SQT) SOA. Generally, the model predictions agree with the 

observations, and modeling results are reliable for the 𝑓𝑆𝑂𝐴 reassessment in the ambient 

atmosphere. 
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The DHOPA is well predicted by the modified CMAQ model comparing with the field 

measurements (R = 0.8; MFB = 0.15; MFE = 0.44) during the wintertime in Section 4. The 

modeled 𝑓𝑆𝑂𝐴 shows a strong dependence on the OA loading due to the partitioning effects on the 

DHOPA and SOA, when only semivolatile aromatic SOA components are included. The OA 

dependence becomes weaker when the oligomers and dicarbonyl SOA products are considered, 

and 𝑓𝑆𝑂𝐴 value of ~0.002 is determined to estimate total aromatic SOA. The chamber-determined 

𝑓𝑆𝑂𝐴 (0.004) leads to an underestimation of total aromatic SOA by a factor of 2. 

The isoprene-SOA scheme in the CMAQ was expanded to simulate 2-MT and 2-MG by 

treating them as semivolatile species and including a non-heterogeneous formation pathway in 

Section 5. The predictions were evaluated against field measurements across China during the 

summertime. The modified scheme leads to consistently improved predictions of the two tracers 

with lower biases and errors and much stronger correlations with observations than the original 

scheme, in which the two tracers are treated as nonvolatile species and are only formed in the 

aqueous phase after surface uptake of their precursors, isoprene epoxide and methacrylic acid 

epoxide. 

The CMAQ model was modified to simulate SOA formation from five explicit and one 

lumped MT species and SQT in Section 6. Among each explicitly tracked photooxidation pathway, 

including OH, O3, NO3, and O3P, the NO3 oxidation pathway contributes most significantly to the 

MT SOA formation. MBTCA and BCARYA predictions well agree with the observations from 18 

sites across China, and they are good tracers to estimate MT SOA and SQT SOA. The power-law 

equations directly link the tracer concentrations to the corresponding SOA concentrations were 

proposed and could lead to good SOA estimations. 
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7.2 Recommendations for future research 

This research leads to a chemical transport model that can simulate seven important organic 

tracers to cover SOA from all major precursors, including aromatic compounds, isoprene, 

monoterpenes, and sesquiterpenes. The formation pathways of each tracer species were discussed 

in detail in Section 4-6. However, the current understanding of the SOA formation pathways are 

far from complete. More chamber, field, and modeling studies are needed to resolve the detailed 

SOA chemical components and their formation pathways. 

In Section 5, the 2-MT and 2-MG were simulated considering partitioning between gas and 

organic matters, and the partitioning coefficient (Kom) was only applied to get the equilibrium 

between gas and aerosol phase. However, these two tracers can be formed in the aqueous phase 

chemistry following surface uptake of their precursors IEPOX and MAE. Some studies applied 

Raoult’s or Henry’s Law to estimate gas-particle partitioning the SOA products from IEPOX and 

MAE 220, 221. The gas-OM-aqueous three-phase partitioning equilibrium involving the tracers 

needs to be developed in the regional CTMs model and evaluated against ambient measurements. 

The gas-particle partitioning coefficients for each organic tracer in this research were 

calculated by assuming the activity coefficient of the tracers in the OM mixture is unity, as in Eq. 

(4.3). Few studies have been quantitively analyzed the impacts of activity coefficient on the SOA 

formation. A recent study from Li et al. 163 suggested that the activity coefficients of some 

semivolatile SOA species in a mixture of POA and SOA components are greater than 1.0 based 

on the widely used UNIFAC model, leading to a decrease of SOA concentrations in the CMAQ 

model in hot and humid environments. A UNIFAC activity coefficient estimation scheme, such as 

that used in Pankow et al.164, needs to be implemented to improve model predictions of SOA and 

SOA tracers and the 𝑓𝑆𝑂𝐴 evaluations need to be updated accordingly. 
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The organic tracers were treated as nonreactive products from the precursor oxidation 

chemistry without additional chemical loss. However, in reality, these tracers are not chemically 

inert. For example, the PNA oxidation reaction is responsible for the low-volatile organic tracer 

MBTCA209, and DHOPA and 2-MT were found to be heterogeneously oxidized by O3 in the OM 

phase222. The impacts on the tracer predictions and 𝑓𝑆𝑂𝐴 values due to chemical loss reactions 

should be quantified in the future work. 

The 𝑓𝑆𝑂𝐴 values are determined based on daily average concentrations of organic tracers 

and SOA in the simulations. While the 𝑓𝑆𝑂𝐴 diurnal variation has not been studied in this study. 

For example, in Section 6, the MBTCA is formed through the photooxidation of α-pinene and β-

pinene with OH radical, which is mainly occurred during the daytime. However, according to the 

modeling results in this study and previous work 198, the oxidation pathway with NO3 radical 

contributes most significantly to the total MT SOA, and it mainly occurs during the nighttime. 

Theoretically the 𝑓𝑆𝑂𝐴 values vary significantly in day and night. The variation can be revealed by 

comparing modeled organic tracers and SOA against hourly measurements.  
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APPENDIX A 

 

Table S2-1 Initial conditions of the toluene oxidation chamber experiments simulated in this 

study  

Experiments^ 

Toluene 

(ppb) 

NOx 

(ppb) 

H2O2 

(ppm) 

OH 

(106 cm3) 

Seed# 

(µg m-3) 

T 

(oC) 

Lights 

H-1 940 1300 49 3.1 61 20 30% 

H-2 380 720 72 3.5 64 20 100% 

H-3 950 570 91 2.6 113 20 100% 

H-4 190 320 87 1.9 50 18 100% 

H-5 180 270 57 1.1 42 12 100% 

H-6 200 430 85 2.4 36 31 100% 

L-1 380 <5$ 88 1.6 59 20 100% 

L-2 270 <5 40 1 57 11 100% 

L-3 180 <5 46 0.6 45 11 100% 

L-4 200 <5 42 1.2 60 32 100% 

L-5 570 <5 87 1.4 61 21 100% 

L-6 570 <5 45 1.6 47 21 100% 
^ H-1 to H-6 are high-NOx experiments and L1 to L6 are low-NOx experiments.  
* Experiment H-1 was conducted with ~30% of the black lights and the optimal JNO2 was scaled 

accordingly to verify the MCM mechanism. The SOA mass yields at COM = 10 and 20 μg m-3 

with the new mechanism (0.04 and 0.07) were slightly higher than those from the original 

mechanism (0.03 and 0.06), and both are slightly lower than the measured yields in Hildebrandt 

et al.’s study (0.08 and 0.12). This experiment was not included in the simulations to estimate 

JNO2 or in the 2-product parameter fitting. 

$ Use 3 ppb in the model simulations 
# included in the model as (NH4)2SO4.  

 

 

 

Table S2-2 Mean fractional bias and mean fraction error of predicted hourly PM2.5 at 5 United 

States Consulates in China in January and July 2013 
 January July 

Site No. of data MFB* MFE* No. of data MFB MFE 

Beijing 611 -0.528 0.641 609 -0.545 0.688 

Shanghai 596 -0.564 0.611 593 -0.255 0.455 

Guangzhou 613 -0.310 0.484 556 -0.298 0.565 

Chengdu 606 -0.158 0.408 592 0.061 0.439 

Shenyang - - - 514 0.054 0.605 

*MFE: Mean fractional bias. 𝑴𝑭𝑬 =
𝟐

𝑵
∑ |

𝑶𝒊−𝑷𝒊

𝑶𝒊+𝑷𝒊
|. MFB: Mean fractional bias. 𝑴𝑭𝑩 =

𝟐

𝑵
∑ (

𝑶𝒊−𝑷𝒊

𝑶𝒊+𝑷𝒊
). P and O represent predictions and observations, respectively. 
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Table S2-3 2p model parameters for ARO1 SOA yield under high-NOx and low-NOx conditions 

used in this study 

 Parameters 

  Case C0, C2 Case C1 

High-NOx conditions 

α1 0.239 0.770 

𝐶1
∗  (μg m-3) 10.15 21.10 

α2 0.738 - 

𝐶2
∗  (μg m-3) 2147 - 

Low-NOx conditions 
α1 0.100 0.179 

𝐶1
∗  (μg m-3) 9.592 - 

 

 

 

Table S2-4 Observed average concentrations of major aromatic compounds in Chinese cities. 

Units are ppb.  

City 

Toluen

e 

Ethylbenzen

e 

Xylene

s 

TEX

* Time Reference 

Beijing (u#) 2.42 0.79 1.24 4.44 
Nov. 2014 223 

Beijing (s) 0.92 0.37 0.46 1.75 

Beijing(s) 0.82 0.20 0.75 1.77 

Nov.2017-Feb. 

2018 
 

Chengdu (u) 1.80 0.83 1.71 4.34 

Oct.2016 – 

Sep.2017 
224 

Shanghai (u) 11.10 3.76 4.98 19.84 

Nov. 2013 (Non-

H^) 225 

 14.20 5.23 8.23 27.66 Nov. 2013 (H) 

Guangzhou 

(u) 4.64 0.79 0.74 6.17 
Nov.-Dec. 2009 226 

Guangzhou 

(s) 2.97 0.57 0.58 4.11 

Nanjing (s) 1.67 1.01 1.05 3.73 Sep. 2011-Feb.2012 227 

Nanjing (s) 3.23 1.21 1.86 6.30 Aug. 2013 88 

Guangzhou 

(u) 5.45 1.31 3.27 10.03 
Jan. 2017 (daytime) 228 

 6.08 1.81 5.52 13.41 

Jan. 2017 

(nighttime) 
 

Zhengzhou 

(u) 1.12 0.31 1.27 2.70 
Jul.-Sep. 2019 

Unpublishe

d 

* Sum of toluene, ethylbenzene and xylenes (o + m/p). These are the major compounds included 

in the SAPRC model species ARO1 (toluene+ethylbenzene) and ARO2 (xylenes). 
^ Non-H stands for non-hazy days, and H stands for hazy days. 
# (u) stands for urban monitor sites, and (s) stands for suburban monitor sites. 
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Table S2-5 Predicted concentrations of ARO1 and ARO2 concentrations from the base case 

simulation. Units are ppb.  

 January July 

Site ARO1 ARO2 Sum ARO1 ARO2 Sum 

Beijing 
4.12 

(1.23,10.02) 

2.67 

(0.69,6.87) 

6.79 

(1.92,16.88) 

1.63 

(0.45,4.58) 

0.87 

(0.21,2.77) 

2.49 

(0.67,7.35) 

Shenyang 
3.54 

(1.96,7.94) 

1.84 

(1.04,4.22) 

5.39 

(3.01,12.15) 

1.63 

(0.81,3.85) 

0.80 

(0.39,1.97) 

2.44 

(1.20,5.82) 

Nanjing 
4.32 

(3.15,6.49) 

2.19 

(1.53,3.38) 

6.52 

(4.67,9.86) 

1.39 

(0.94,3.76) 

0.70 

(0.47,1.92) 

2.09 

(1.42,5.68) 

Chengdu 
3.99 

(1.10,6.16) 

2.25 

(0.34,3.59) 

6.24 

(1.44,9.75) 

2.67 

(0.32,4.52) 

1.38 

(0.11,2.43) 

4.05 

(0.43,6.96) 

Guangzhou 
3.92 

(1.44,3.92) 

1.77 

(0.51,1.82) 

5.69 

(1.95,5.73) 

2.88 

(0.29,3.34) 

1.36 

(0.14,1.72) 

4.24 

(0.43,5.07) 

Shanghai 
2.79 

(2.59,5.00) 

1.38 

(1.12,2.65) 

4.18 

(3.71,7.64) 

2.03 

(1.54,3.40) 

0.92 

(0.68,1.66) 

2.96 

(2.22,5.05) 

Zhengzhou 
4.67 

(3.21,4.67) 

2.43 

(1.54,2.43) 

7.10 

(4.75,7.10) 

2.00 

(0.92,2.00) 

1.00 

(0.42,1.00) 

3.00 

(1.34,3.00) 

Note: For each city the concentrations are from the grid cell where the urban center is located. 

The numbers in the parenthesis represent the minimum and maximum concentrations with the 9 

grid cells with the urban center grid cell in the middle.  

 

 

 

 

 
Figure S2-1 The sum of squared errors (SSE) (units: 1012 molecules cm-3) of predicted OH for 

the high-NOx chamber experiments with different NO2 photolysis rate coefficients (JNO2). A 

quadratic function was used to fit the SSE as a function of jNO2. The minimum SSE occurs at 

JNO2=0.0767 min-1. 
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Figure S2-2 Predicted and reported OH for all chamber experiments simulated in this study with 

the optimal photolysis rate coefficient (JNO2) of 0.0767 min-1. The optimized JNO2 was found 

based on simulations for the high-NOx conditions.  

 

 

 

 
Figure S2-3 SOA yields under low-NOx conditions used in the original CMAQ model (pink 

line) and those derived based on the photochemical box model simulations using the original 

MCM3.2 (Old mech) and the modified MCM3.2 mechanism with a higher branching ratio for 

the o-cresol pathway (New mech). Triangles show the yields at the end of each simulation. The 

green error bars show the minimum, maximum and mean SOA yields measured by Hildebrandt 

et al. at Com = 10 and 20 μg m-3. 
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Figure S2-4 Predicted (blue line) and observed (black dots) hourly PM2.5 concentrations in 5 

Chinese cities in January 2013. The shaded areas represent the range of concentrations within the 

9 grid cells (3×3) with the urban center in the middle. Units are µg m-3. 
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Figure S2-5 Predicted (blue line) and observed (black dots) hourly PM2.5 concentrations in 5 

Chinese cities in July 2013. The shaded areas represent the range of concentrations within the 9 

grid cells (3x3) with the urban center in the middle. Units are µg m-3. 
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Figure S2-6 Monthly average OH radical concentrations (molecules cm-3) from Case C1 for July 

2013 (a), and the relative difference (Case C1-C0)/C0 (b).  
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Figure S2-7 The amount of ARO1 and VOCs reacted with OH radical in one hour (ppb hr-1) 

averaged for the entire month of January and July, and the fractional contribution of ARO1 in 

OH consumption by the VOCs.  
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Figure S2-8 Predicted monthly average total SOA for January 2013 (a) and July 2013 (b) from 

Case C1, and the increase in total SOA (Case C1- Case C0) for January (c) and July 2013 (d). 

Units are µg m-3.  

 

 

 

 

 
Figure S2-9 Increase in total SOA from (a) ARO1 and (b) ARO2 in January 2013 (Case C1 – 

Case C0). Units are µg m-3. 
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Figure S2-10 Predicted hourly concentrations of ARO1 SOA in several urban areas for July 

2013 using the original and modified SOA yields. Units are µg m-3. Shaded area represents the 

range of concentrations within the 3×3 grids with the urban center in the center grid. The solid 

lines are the average concentrations in the 3×3 grids. 

 

 

 

 
Figure S2-11 Predicted monthly average ARO1 SOA (Case C2) in January (a) and July (b) 

2013. The monthly average ARO1 SOA changes (Case C2 – Case C0) for January (c) and July 

(d) 2013. Units are μg m-3. 
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Figure S2-12 Predicted and experimental saturation vapor pressure for 3707 reference 

compounds in the EPI suite database.  

 

  

 

 
Figure S2-13 Standard deviation of estimated C* as a function of 𝑪𝑬𝑷𝑰

∗ .  
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Figure S2-14 Uncertainty in the predicted SOA yields using the MCM mechanism due to 

uncertainty in the saturation vapor pressure of the semi-volatile products. The error bars are 

standard deviations calculated using 100 Monte Carlo simulations with random perturbed 

saturation vapor pressures. The dashed lines show the range of the SOA yield based on the 

experimental data (based on Figure 10 in Hildebrandt et al.158) 
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Section S2.1 NO2 photolysis rate in the MCM box model 

NO2 photolysis rate in the chamber experiments (𝐽𝑁𝑂2,𝑐ℎ𝑎𝑚𝑏𝑒𝑟) is subscribed in the 

simulation. Since the detailed spectrum of black lights in the chamber experiments are not 

reported, the photolysis rate of other reactions in the chamber (𝐽𝑜𝑡ℎ𝑒𝑟,𝑐ℎ𝑎𝑚𝑏𝑒𝑟) are calculated by 

adjusting the clear sky photolysis rate using the following equation, 

𝐽𝑜𝑡ℎ𝑒𝑟,𝑐ℎ𝑎𝑚𝑏𝑒𝑟 =
𝐽𝑜𝑡ℎ𝑒𝑟,𝑐𝑙𝑒𝑎𝑟

𝐽𝑁𝑂2,𝑐𝑙𝑒𝑎𝑟
𝐽𝑁𝑂2,𝑐ℎ𝑎𝑚𝑏𝑒𝑟 (S1) 

Solar spectrum is used to calculate the clear sky photolysis rates.  

In the H2O2 experiments, the photolysis rate of H2O2 is also calculated using the above 

equation, with 𝐽𝑁𝑂2,𝑐ℎ𝑎𝑚𝑏𝑒𝑟 taken to be the same as the one determined in the high-NOx 

experiments because they are performed in the same chambers with the same light source.  

The zero solar zenith angle (𝜃𝑠) used in the calculation is chosen without a specific 

reason, as we assume that 
𝐽𝑜𝑡ℎ𝑒𝑟,𝑐𝑙𝑒𝑎𝑟

𝐽𝑁𝑂2,𝑐𝑙𝑒𝑎𝑟
 is not a strong function of solar zenith angle (see Table S2-6 

below). The potential error in the estimation of the HNO2 photolysis rate using the above 

equation at other solar zenith angles, when the ratio 
𝐽𝑜,𝑐𝑙𝑒𝑎𝑟

𝐽𝑁𝑂2,𝑐𝑙𝑒𝑎𝑟
 is determined using a solar zenith 

angle of 0, is also shown in Table S2-6.   

As shown in Table S2-6 the relative error in the estimated 𝐽𝐻𝑁𝑂2
 is less than 10% for 

solar zenith angles between 0 and 90 degrees. A better choice of solar zenith angle for our 

calculations would be ~80 degrees as it gives the NO2 photolysis rate close to the reported value 

in the chamber, but it should not lead to significant differences in predicting SOA in the 

experiments.  

The ratio 
𝐽𝑜𝑡ℎ𝑒𝑟,𝑐𝑙𝑒𝑎𝑟

𝐽𝑁𝑂2,𝑐𝑙𝑒𝑎𝑟
 with black light might be different from those based on the solar 

spectrum. In another chamber study illuminated with black lights229, the photolysis rate of NO2 
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was determined from the photo-stationary relationship between NO2, NO, and O3, and the HNO2 

photolysis was calculated using the measured black light spectrum. 𝐽𝐻𝑁𝑂2
/𝐽𝑁𝑂2

 was reported to 

be 0.145, close to the ratio of 0.161 used in our study. Furthermore, the modeled OH radical 

concentrations in the chamber experiments are close to the reported OH based on the decay of 

the precursor, further suggesting that the photolysis rates used in this study are reasonable. 

 

Table S2-6 Clear sky photolysis of NO2 and HNO2 at different solar zenith angles. 

𝜃𝑠(o) 𝐽𝑁𝑂2
 (min-1) 𝐽𝐻𝑁𝑂2

 (min-1) 𝐽𝐻𝑁𝑂2
/𝐽𝑁𝑂2

  𝐽𝐻𝑁𝑂2,𝑒𝑠𝑡
* Error^ 

0 0.656 0.107 0.163 0.107 0.0% 

10 0.650 0.106 0.163 0.106 0.0% 

20 0.632 0.103 0.163 0.103 0.3% 

30 0.599 0.097 0.162 0.098 0.8% 

40 0.548 0.088 0.161 0.089 1.5% 

50 0.473 0.075 0.159 0.077 2.6% 

60 0.370 0.058 0.156 0.060 4.4% 

70 0.235 0.036 0.152 0.038 7.2% 

80 0.091 0.014 0.149 0.015 9.2% 

90 0.008 0.001 0.153 0.001 6.6% 

* Estimated HNO2 photolysis rates are based on the NO2 photolysis rate at the specific θs and the 

constant rate of 𝐽𝐻𝑁𝑂2
/𝐽𝑁𝑂2

= 0.163 at 𝜃𝑠 = 0. 

^ Error is calculated as (𝐽𝐻𝑁𝑂2,𝑒𝑠𝑡 − 𝐽𝐻𝑁𝑂2
)/𝐽𝐻𝑁𝑂2
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Section S2.2 Full reactions of original, upper-limit and modified ARO1+OH used in the 

study 

The original ARO1 + OH reaction in SAPRC-11 mechanism is shown as the Reaction 

RS1, which is used in the simulation of Case C0. 

ARO1 + OH = 0.089 RO2XC + 0.622 RO2C + 0.209 HO2 + 0.612 xHO2 + 0.089 

zRNO3 + 0.14 yR6OOH + 0.007 xMEO2 + 0.049 xBALD + 0.064 xPROD2 + 0.003 

xCCHO + 0.006 xRCHO + 0.135 CRES + 0.032 XYNL + 0.268 xGLY + 0.231 

xMGLY + 0.255 xAFG1 + 0.244 xAFG2 + 0.567 yRAOOH + 0.084 OH + 0.084 

AFG3 + 0.042 AFG5 

(RS1) 

The upper-limit ARO1 + OH reaction assuming the OH + ring reactions generate cresol 

(from toluene) and phenolic compounds (from other monoalkylbenzenes) only.  

ARO1 + OH = 0.014 RO2XC + 0.099 RO2C + 0.887 HO2 + 0.065 xHO2 + 0.0015 

zRNO3 + 0.14 yR6OOH + 0.049 xBALD + 0.064 xPROD2 + 0.717 CRES + 0.170 

XYNL 

(RS2) 

The modified ARO1 + OH reaction in SAPRC-11 mechanism is shown as the Reaction 

RS3, which is used in the simulation of Case C1 and C2. 

ARO1 + OH = 0.059 RO2XC + 0.415 RO2C + 0.477 HO2 + 0.396 xHO2 + 0.0727 

zRNO3 + 0.14 yR6OOH + 0.0042 xMEO2 + 0.049 xBALD + 0.064 xPROD2 + 

0.0018 xCCHO + 0.0036 xRCHO + 0.365 CRES + 0.087 XYNL + 0.162 xGLY + 

0.140 xMGLY + 0.154 xAFG1 + 0.147 xAFG2 + 0.342 yRAOOH + 0.051 OH + 

0.051 AFG3 + 0.025 AFG5 

(RS3) 
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Section S2.3 Evaluation of the modified SAPRC-11 ARO1 mechanism on O3 formation 

using smog chamber data 

The SAPRC modeling program for chamber experiments was used to simulate 16 EPA 

smog chamber experiments, selected from the collection of chamber experiments used to 

evaluate the SAPRC mechanisms, to understand how the higher cresol branching ratio of 

toluene-OH initial oxidation changes the O3 formation simulation in box models. The programs 

and the input data for the chamber experiments were downloaded from Dr. William P.L. Carter’s 

SAPRC mechanism website (https://intra.engr.ucr.edu/~carter/SAPRC/SAPRCfiles.htm). The 

details of the selected experiments, including the toluene and NOx initial concentrations and the 

smog chamber conditions, are shown in Table S2-7. Each of the smog chamber experiments 

lasted for 6-10 hours. For each chamber experiment, three cases were simulated, 1) with the 

original ARO1 mechanism in the lumped SAPRC-11, 2) with the modified ARO1 mechanism, as 

shown in Table 2, and 3) the explicit toluene mechanism in the detailed version of the SAPRC-

11. The original ARO1 mechanism and the detailed toluene mechanism simulate the chamber 

data better as the SAPRC mechanism is optimized based on the chamber data. The modified 

ARO1 mechanism leads to slightly slower consumption of toluene and early formation of O3 in 

the initial stage of the experiments. In addition, the O3 concentrations at the end of the 

experiments are slightly lower than those based on the original mechanism, which agrees the O3 

responses to the toluene-OH branching ratios modification. Figure S2-15 shows a representative 

O3 time series in one chamber experiments, and the comparison of the final O3 concentrations in 

these simulations against observations is shown in Figure S2-16. The lower O3 formation with 

higher yield for the cresol pathway has also been verified in MCM box model simulations.  

  

https://intra.engr.ucr.edu/~carter/SAPRC/SAPRCfiles.htm
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Table S2-7 Selected smog chamber experiments used to test the modified SAPRC-11 toluene 

and ARO1 mechanisms. 

Run ID 

Initial Reactant Summary 

Light Type JNO2 
Avg. 

Temp 

Running 

time 
PM Wall Loss 

Test. VOC VOC NOx 

  (ppm) (ppb)  (min-1) (K) (min)  

EPA210A TOLUENE 0.26 42 Arc light solar simulator 0.260 305 377 6.3E-03 

EPA210B TOLUENE 0.26 93 Arc light solar simulator 0.260 305 377 5.4E-03 

EPA443A TOLUENE 0.17 31 Arc light solar simulator 0.260 304 364 3.3E-03 

EPA443B TOLUENE 0.36 99 Arc light solar simulator 0.260 304 364 3.3E-03 

EPA289B TOLUENE 0.22 25 Blacklights 0.165 301 492 2.9E-03 

EPA1098A TOLUENE 0.08 16 Blacklights 0.131 298 583 5.0E-03 

EPA1098B TOLUENE 0.08 30 Blacklights 0.131 298 360 3.5E-03 

EPA1099B TOLUENE 0.04 10 Blacklights 0.131 298 487 3.9E-03 

EPA1101A TOLUENE 0.08 19 Blacklights 0.401 300 491 5.5E-03 

EPA1101B TOLUENE 0.08 9 Blacklights 0.401 300 360 4.5E-03 

EPA1102A TOLUENE 0.08 43 Blacklights 0.401 300 474 6.0E-03 

EPA1102B TOLUENE 0.08 32 Blacklights 0.401 300 474 4.5E-03 

EPA1106A TOLUENE 0.03 20 Blacklights 0.401 300 630 6.2E-03 

EPA1106B TOLUENE 0.03 11 Blacklights 0.401 300 630 6.0E-03 

EPA1107A TOLUENE 0.04 40 Blacklights 0.401 300 595 5.7E-03 

EPA1107B TOLUENE 0.04 30 Blacklights 0.401 300 595 6.4E-03 
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Figure S2-15 Time series of O3, NO2 (NO2-UNC), toluene (TOLUENE), NO, PAN and PM 

volume in the smog chamber experiments using the original lumped ARO1 mechanism, the 

original toluene mechanism and the modified ARO1 mechanism for the chamber experiment 

EPA210A. 

 

 

 

 
Figure S2-16 Comparison of the final O3 concentrations in the chamber experiments simulated 

using the original ARO1 and modified ARO1 mechanisms with observations.  
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Section S2.4 Evaluation of the MCM-based box model in simulating other chamber 

experiments 

We obtained three sets of chamber data reported by Ng et al.30, including the time series 

of toluene, and wall-loss corrected and particle and vapor wall-loss corrected SOA, from Dr. 

Shantanu Jathar of Colorado State (with consent from Sally Ng). Two of the datasets (Cases 1 

and 3) are for high-NOx conditions, and one dataset (Case 2) is for low-NOx conditions. HONO 

was used as the OH source for Cases 1 and 3, and NO and NO2 were added to ensure an initial 

NOx concentration of 1 ppm. H2O2 was used as the OH source for Case 2 with an initial 

concentration of 5 ppm. The OH concentrations in the chamber experiments were not directly 

measured. We estimated OH concentrations by assuming decay of toluene is caused by OH only 

and using ktol+OH=5.63×10-12 cm3 molecules-1 s-1 at 25 ℃30. The photolysis rate of NO2 was 

estimated to be 0.45 min-1 for all three cases, which correctly predicts the decay of toluene and 

the OH concentration in the chamber (see Figure S2-17).  

Under low NOx conditions, the model predicted SOA yields with both the original (low 

cresol pathway) and new (high cresol pathway) mechanisms were lower than the chamber 

measurements. This is consistent with the results obtained when simulating the low-NOx 

chamber experiments from Hildebrandt et al.158 Under high NOx conditions, the measured SOA 

yields in Ng et al. were lower (~0.1 at OM = 20 μg m-3) than those in Hildebrandt et al.158 (0.15-

0.45 at OM = 20 μg m-3). The differences in the predicted SOA yields from the original and the 

modified mechanism are small. The new mechanism still predicted higher SOA yields, as 

reported in the original manuscript when simulating the Hildebrandt et al.’s data, and has a 

slightly closer agreement with the vapor wall-loss corrected SOA yields. 
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Figure S2-17 Comparison predicted and MCM modeled time series of toluene and OH 

concentrations, and SOA yields. “measured nowl” is the SOA yields without vapor wall-loss 

correction. “measured wlco” is SOA yields calculated based on vapor wall-loss corrected SOA 

concentrations.  
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APPENDIX B 

 

Table S3-1 Isoprene source emission rate from the grid of SAES site location based on MEIC 

inventory (unit: kg day-1) 

Source Weekday Weekend 

Industrial 346.65 225.27 

Residential 8.28 5.38 

Transportation 107.92 73.52 

MEIC 462.84 304.17 

REAS3 58.04 37.72 

Biogenic 50.24 50.24 

 

 

 

 
Figure S3-1 Monoterpene-SOA yield based on Odum fit in the AERO6 module and VBS 

approach in the AERO7 module. 
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Figure S3-2 (a) Timeseries model predicted monoterpene SOA with new and original yields. 

Black circles represent tracer-derived monoterpene SOA mass concentrations. (b) The linear 

correlation between the model predicted monoterpene SOA and observed α-pinene-derived SOA 

tracer (α-pinT).  
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APPENDIX C 

Section S4.1 Summertime DHOPA and 𝒇𝑺𝑶𝑨 

To further strengthen the conclusions in this study, the modified CMAQ model was applied 

to simulate DHOPA in China from June to August 2012. This episode was chosen because it 

represents a different season and DHOPA data are available at 15 sites across China136, 166 for 

model evaluation. A summary of this additional modeling exercise is provided below. 

Emission and meteorology inputs for the summer 2012 simulation were generated using the same 

approaches as those used for the winter 2018 simulation. Since there was no ARO1 and ARO2 

data for summer 2012, we compared the predicted precursor concentrations with August 2013 

measurements in Nanjing, located in the PRD region. The modeled average ARO1 (5.6 ppb) and 

ARO2 (2.3 ppb) concentrations in August 2012 are close to the observed concentrations (4.4 ppb 

for toluene + ethylbenzene; 1.9 ppb for xylenes).  

The predicted organic carbon (OC) concentrations were compared with reported 

concentrations at four Pearl River Delta (PRD) sites.213 Overall, the predicted OC was lower than 

observations by a factor of 2 (mean fractional bias (MFB) = -0.6), with larger underpredictions of 

primary OC (POC, MFB = -1.0) and smaller underpredictions of secondary OC (SOC, MFB = -

0.4). In addition, the observed average summertime OC concentration (25.2 μg m-3) at Xianghe, a 

rural site in northern China, was also underpredicted by a factor of 3 (7.5 μg m-3). Thus, OC 

concentrations in other locations may also be underestimated by a factor of 2-3, leading to errors 

in the gas-particle partitioning of DHOPA. Thus, primary organic aerosol (POA) emissions were 

increased uniformly in the domain by a factor of 3, and a new simulation was conducted to improve 

the OC predictions.  
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The model predicted DHOPA concentrations at the 15 sites show a moderate Pearson 

correlation with observations (R = 0.43), and the predictions are slightly lower than observations 

with a mean MFB of -0.11 and a mean fractional error (MFE) of 0.78 (Table S4-1; Figure S4-1). 

The model performance is slightly improved when the POA emission were increased by a factor 

of 3 (MFB = -0.03, MFE = 0.76, and R = 0.43). We also compared the predicted average DHOPA 

concentrations in Beijing and Fuzhou, which were made in summer and fall 2016, and the 

predictions are also in reasonable agreement with observations (Table S4-1)  

 

Table S4-1 Model performance of DHOPA during the summertime in 2012 

Site Duration 
Obs. 

(ng m-3) 
 Case 

Pre. 

(ng m-3) 
MFB MFE R 

15 sites in 

China 
June. - Aug. 2012136, 166 3.2 

OA×1 3.59 -0.11 0.78 0.43 

OA×3 3.87 -0.03 0.76 0.43 

Beijing 
Summer 2008 167 

Summer 2016 91 

13.3 (urban) 

9.7 (rural),  

11.0 (urban)  

OA×1 13.5 - - - 

OA×3 13.7 - - - 

Fuzhou Fall 2016168 2.4 
OA×1 2.67 - - - 

OA×3 3.05 - - - 

 

 

We also looked at the modeled  𝑓𝑆𝑂𝐴 values throughout the domain. As shown in Figure 

S4-2, the linear regression slopes between modeled aromatic SOA and DHOPA are similar to those 

for the winter episode. The  𝑓𝑆𝑂𝐴 values are ~0.0043-0.0046 (excluding SOA from the ARO1 and 

ARO2 GLY and MGLY) and 0.0022-0.0023 (including all aromatic SOA components) are very 

close to the ratios from the winter data. Regional plots of  𝑓𝑆𝑂𝐴 shown in Figure S4-3 also show 

rather small variations of  𝑓𝑆𝑂𝐴 in polluted regions, further confirming the universal applicability 

of the  𝑓𝑆𝑂𝐴 values in estimating aromatic SOA.  
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Figure S4-1 Model evaluation of DHOPA with 15 sites across China during the summertime in 

2012. The blue points are model predictions with the original POA emissions. The red points are 

model predictions with the POA emissions increased by a factor of 3. The circles are 48-hour 

average based on observations reported by Ding et al.136  The crosses are summertime average at 

the Tianhu site.166  

 

 

 
Figure S4-2 Average DHOPA/aromatic SOA ratio based on linear regression with a zero 

intercept, using data from the 2012 summer simulation. Red, green and blue dots represent 

semivolatile SOA (semi-SOA, SSOA), SSOA + oligomers (OLGM), and SSOA+ OLGM + 

glyoxal and methylglyoxal SOA products (GLY), respectively. The left panel shows daily data at 

the Shanghai Academy of Environmental Sciences (SAES) location, and the right panel shows 

48-hour average data (2 per month) at 14 sites across China.  
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Figure S4-3 Regional distribution of 2012 summer average (a) DHOPA (ng m-3) and 𝒇𝑺𝑶𝑨 (b-d). 

The 𝒇𝑺𝑶𝑨 represents the mass fraction of DHOPA in the aromatic (a) semi-SOA; (b) semi-SOA 

and oligomers; (c) semi-SOA, oligomers, and glyoxal and methylglyoxal products with a 

threshold of SOA larger than 0.01 µg m-3.  

 

 

 

Figure S4-4 shows the regional distribution of modeled DHOPA from each formation 

pathway in summer 2012. During the summertime, ARO1 photooxidation under high-NOx 

conditions is still the dominant formation pathway of DHOPA, but its relative contributions 

decrease. On the other hand, contributions from the ARO1 low-NOx pathway increase because 

daytime NOx concentrations in the summertime are lower than in wintertime.  
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Figure S4-4 Regional distribution of modeled average DHOPA in summer (June – August) 2012 

from (a) ARO1 high-NOx pathway, (b) ARO2 high-NOx pathway, (c) ARO1 low-NOx pathway, 

and (d) ARO2 low-NOx pathway. Units are ng m-3 
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Section S4.2 Other species in ARO1 and ARO2 and their impacts on DHOPA yields and 𝒇𝑺𝑶𝑨 

On average, the major components of ARO1 include toluene (88%, molar fraction) and 

ethylbenzene (10%), and the major components of ARO2 include xylene (88%), naphthalene (1%), 

and methylnaphthalene (2%). Other species account for 2% of the total ARO1 and 9% of total 

ARO2. In the case simulation, all species included in ARO1 use the same DHOPA yield, and so 

does the species in ARO2. 

The 𝑓𝑆𝑂𝐴 for ethylbenzene and trimethylbenzene can be found from Al-Naiema et al.’s 

study.39 The 𝑓𝑆𝑂𝐴 and DHOPA mass yield (α) is listed in Table S4-2. The average yields of 

DHOPA calculated based on the fractions of detailed speciated ARO1 and ARO2 are lower than 

the yields of toluene and xylene by approximately 10%, so they do not significantly affect the 

overall DHOPA and 𝑓𝑆𝑂𝐴 predictions.  

 

Table S4-2 The 𝒇𝑺𝑶𝑨 and mass yield (α) of DHOPA from aromatics photooxidation reaction 

under high-NOx. 

Species Fraction 𝑓𝑆𝑂𝐴 α 

Toluene 88% 0.004 0.00189 

Ethylbenzene 10% 0.00015 9.75E-05 

Other ARO1 2% n.a.# n.a. 
  Average: 0.00165 

Xylenes 88% 0.0033 0.00096 

Naphthalene 1% n.a. n.a. 

Methylnaphthalene 2% n.a. n.a. 

Other ARO2^ 9% 0.0013 0.00034 
  Average: 0.00087 

# n.a.: there is no experimental data available. 
^ assume to have the same 𝑓𝑆𝑂𝐴 as trimethylbenzene. 

 

 

In this study, the SOA yield parameters for ARO1 were based on the experimental data of 

toluene, and the parameters for ARO2 were based on the experimental data of xylene. Based on 



 

177 

 

 

 

the mass yields for ethylbenzene, trimethylbenzene230, and naphthalene231, and the molar fractions 

reported in Table S4-2, we calculated more accurate SOA yields for ARO1 and ARO2, as shown 

in Figure S4-5. The estimated SOA yield for lumped ARO1 species is slightly lower than that for 

toluene alone by less than 5%, and the estimated SOA yield for lumped ARO2 is pretty close to 

that for xylene alone. Thus, the toluene and xylene SOA yields are good enough to represent the 

yields for lumped ARO1 and ARO2 species. 

 

 

Figure S4-5 SOA yield curves for detailed ARO1 (a) and ARO2 (b) species, and mixture yield 

for lumped ARO1 and ARO2.  
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Section S4.3 Other supporting tables and figures 

 

 

Table S4-3 SOA two-product model parameters used in the base case CMAQ modeling 
 𝛽1

$ 𝐶1
∗ 𝛽2 𝐶2

∗ ∆𝐻𝑣𝑎𝑝 𝛽3 
  µg m-3  µg m-3 kJ/mol  

ARO1^ 0.2545 8.02 0.7623 119.3 18.0 0.57 

ARO2# 0.0883 7.43 0.5647 192.7 32.0 0.612 
$ The mass yields (𝛽1, 𝛽2) and saturation concentrations (𝐶1

∗, 𝐶2
∗) are parameters for the high-NOx 

pathways. The enthalpy of evaporation is applied to both products. 𝛽3 is based on the mass yield 

for the low-NOx pathway. The products are considered non-volatile.  
^ High-NOx pathway based on the 4-bin VBS parameters reported by Hildebrandt et al. 158, fitted 

to the Odum two-product model by Ying et al. 83 and then slightly increased in Hu et al.88    
# High-NOx pathway Based on the 5-bin VBS parameters reported by Ahlberg et al. 145, fitted to the Odum 

two-product model in this study. 

 

 

 

Table S4-4 List of base case and sensitivity CMAQ runs performed in this study. 

 Base case 
Sensitivity Cases 

Case 1 Case 2 Case 3 Case 4 Case 5 

𝑝𝐿
0 and ∆𝐻𝑣𝑎𝑝 

E-AIM  

Method 1 

E-AIM 

Method 2 

E-AIM 

Method 1 

E-AIM 

Method 2 

E-AIM  

Method 1 

E-AIM 

Method 1 

Xylene SOA yields Ahlberg et al. Same as toluene Ahlberg et al. 

DHOPA 

mass 

yields 

(𝛼) 

Toluene high-NOx 0.00189 0.00205 0.00189 0.00189 0.00189 0.00189 

Toluene low-NOx 0.00391 0.00408 0.00391 0.00391 0.00391 0.00391 

Xylene high-NOx 0.0009 0.00101 0.00304 0.0009 0.0009 0.0009 

 Xylene low-NOx 0.0009 0.00101 0.00304 0.0009 0.0009 0.0009 

Temperature unchanged unchanged unchanged unchanged +5K +10K 
 

 

Table S4-5 Meteorology model performance and comparison with proposed benchmarks. 

      Statistics Benchmarks# 

TEMP (K) 
MB 0.95  ≤ ±0.5 

GE 2.09  < 2.0 

RH (%) 
MB -7.04   

GE 11.98   

WSPD (m s-1) 
MB 0.45  ≤ ±0.5 

RMSE 1.61  < 2 

WDIR (°) 
MB 12.17  ≤ ±10 

GE 34.91  < 30 
# Benchmarks for temperature, wind speed, and wind direction were proposed by Emery et al.124 
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Table S4-6 Distribution of 𝒇𝑺𝑶𝑨 values calculated using the monthly average SOA and DHOPA  

DHOPA concentration 2 – 5 ng m-3 5 – 10 ng m-3 ≥ 10 ng m-3 

  Mean Stdv. Mean Stdv. Mean Stdv. 

Semi-Volatile SOA (SSOA) 0.00843 0.00297 0.00779 0.00164 0.00665 0.00068 

SSOA + OLGM 0.00469 0.00109 0.00436 0.00071 0.00399 0.00023 

SSOA + OLGM + GLY 0.00231 0.00025 0.00225 0.00021 0.00220 0.00012 

Three ways of calculating SOA: (1) semivolatile SOA (semi-SOA, SSOA) only, (2) SSOA + 

oligomers (OLGM), and (3) SSOA+ OLGM + glyoxal and methylglyoxal SOA products (GLY). 
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Figure S4-6 Time series and model performance statistics of PM2.5 mass and major chemical 

components in Shanghai, based on the MEIC (left column) and REAS3 (right column) emission 

inventories from November 9 to December 1, 2018. Black dots are the observed concentrations; 

solid lines are predicted concentrations in the grid where the observation site is located; shaded 

areas represent the concentration ranges from 3×3 grids with the observation site in the center 

grid. Units are µg m-3. 
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Figure S4-7 Time series of predicted VOCs using the MEIC and REAS3 emissions in Shanghai, 

from November 11 to 20, 2018. Observations are based on hourly individual VOCs lumped into 

SARPC11 model species. Black dots are the observed concentrations; solid lines are predicted 

concentrations in the grid where the observation site is located; shaded areas represent the 

concentration ranges from 3×3 grids with the observation site in the center grid. Units are ppb. 

 

 

 
Figure S4-8 Regional distribution of modeled monthly average DHOPA from (a) ARO1 high-

NOx pathway, (b) ARO2 high-NOx pathway, (c) ARO1 low-NOx pathway, and (d) ARO2 low-

NOx pathway.  
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Figure S4-9 Fractional contributions to modeled monthly average DHOPA from (a) ARO1 high-

NOx pathway, (b) ARO2 high-NOx pathway, (c) ARO1 low-NOx pathway, and (d) ARO2 low-

NOx pathway. 

 

 

 
Figure S4-10 Monthly averaged concentration of (a) total aromatics SOA and contributions to 

total SOA from (b) semivolatile components, (c) surface uptake of glyoxal and methylglyoxal 

SOA, and (d) oligomers. Units are μg m-3. 
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Figure S4-11 Fraction of DHOPA in the particle phase as a function of the OA loading 

estimated based on the thermodynamic data using (a) E-AIM method 1 and (b) E-AIM method 2 

at different temperatures. 
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Figure S4-12 (a) Predicted and observed hourly DHOPA concentrations, (b) modeled fraction of 

DHOPA in the particle phase, (c) predicted vs. observed daily average DHOPA, and (d) modeled 

mass ratio of DHOPA to aromatic SOA with different SOA components.  R is the Pearson 

correlation coefficient. Shaded areas in (a) represent the concentration ranges from the 3×3 grids 

with the observation site in the center grid. This set of results is different from the base case in 

that the DHOPA thermodynamic data are generated using E-AIM Method 2.   
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Figure S4-13 Comparison of xylene SOA yield based on Ng et al., Ng et al. with vapor wall-loss 

correction, Ahlberg et al., and the toluene SOA yield used in CMAQ.  

 

 

 
Figure S4-14 Same as Figure S4-12, but for sensitivity Case 2, in which DHOPA 

thermodynamic data are generated using E-AIM Method 1 and xylene SOA yields are taken to 

be the same as toluene SOA yields.  
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Figure S4-15 Same as Figure S4-12, but for sensitivity Case 2, in which DHOPA 

thermodynamic data are generated using the E-AIM Method 1 and xylene SOA yields are taken 

to be the same as toluene SOA yields. 

 

 

 
Figure S4-16 (a) Predicted hourly DHOPA with the base case (red), sensitivity cases with 

temperature increases of 5K (green) and 10K (blue), and observed hourly DHOPA 

concentrations (black dots). (b) Modeled fraction of DHOPA in the particle phase for three cases. 
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Figure S4-17 Regional distribution of monthly average  𝒇𝑺𝑶𝑨 from (a-c) the base case; (b-f) the 

difference in 𝒇𝑺𝑶𝑨 between Sen. Case 4 and the base case (Sen. Case 4 – base case); and (g-l) the 

difference in 𝒇𝑺𝑶𝑨 between Sen. Case 5 and the base case (Sen. Case 5 – base case).  
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APPENDIX D 

 

Table S5-1 Heterogeneous formation of isoprene SOA components through surface uptake and 

heterogeneous reactions in the aerosol aqueous phase, along with their parent hydrocarbons, 

nucleophiles, acids, and rate constants for the ring opening reactions. 

Species 
Parent 

hydrocarbon 
Nucleophile Acid 𝑘𝑖,𝑗 (M-2 s-1) 

2-MT IEPOX Water H+ 9.00×10-4 

 IEPOX Water HSO4
- 1.31×10-5 

 IEPOX Water NH4
+ 3.10×10-7 

AIEOS IEPOX SO4
2- H+ 8.83×10-3 

 IEPOX SO4
2- HSO4

- 2.92×10-6 

2-MG MAE Water H+ 9.00×10-4 

 MAE Water HSO4
- 1.31×10-5 

AIMOS  MAE SO4
2- H+ 2.00×10-4 

 MAE SO4
2- HSO4

- 2.92×10-6 

2-MT: 2-methyltetrols; 2-MG: 2-methylglyceric acid; AIEOS: isoprene-derived organosulfate; 

AIMOS: MAE-derived organosulfate. 

 

 

Table S5-2 Summary of simulations in this study. 

Case Base case$ NV/Het. Chem. Sens. 1 Sens. 2 

Tracer Volatility Semi-volatile Non-volatile Semi-volatile Semi-volatile 

Pathways 
Het. Chem. 

+ Additional 
Het. Chem. 

Het. Chem. 

+ Additional 

Het. Chem. 

+ Additional 

∆𝐻𝑣𝑎𝑝  

(kJ mol-1) 

(2-MG/2-MT) 

130.0 / 117.7 - 43.2 / 38.4 130.0 / 117.7 

Tracer Yield 

(2-MG/2-MT) 
0.0026 / 0.084 - 0.0026 / 0.084 0.0078/ 0.168 
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Table S5-3 Model performance of major meteorological parameters in the PRD region a. 

Parameter Month 
Average 

observation 

Average  

prediction 
MB e GE f RMSE g 

TEMP b (K) 

Jun. 300.88 300.26 -0.62 1.67 1.98 

Jul. 301.80 300.55 -1.25 2.09 2.79 

Aug. 301.95 301.61 -0.34 1.84 2.16 

RH (%) 

Jun. 81.04 87.71 6.67 10.80 7.96 

Jul. 78.04 86.66 8.62 11.99 9.60 

Aug. 76.96 81.62 4.66 10.62 7.34 

WSPD c 

(m s-1) 

Jun. 3.81 4.75 0.94 1.67 3.19 

Jul. 3.70 4.74 1.04 1.65 2.98 

Aug. 3.27 4.10 0.82 1.62 3.79 

WDIR d (°) 

Jun. 156.10 158.55 12.49 35.33 22.08 

Jul. 163.39 170.70 11.19 37.46 23.24 

Aug. 189.02 186.96 11.63 48.35 26.03 
a 40 surface monitoring stations from NOAA NCDC are available in the PRD region in 2012. 
b WRF predicted temperature at height of 2 m. 
c WRF predicted wind speed at height of 10 m. 
d WRF predicted wind direction at height of 10 m. 
e Mean Bias: 𝑀𝐵 = ∑ (𝑝𝑟𝑒𝑖 − 𝑜𝑏𝑠𝑖)/𝑁𝑁

𝑖 . 
f Gross Error: 𝐺𝐸 = ∑ |𝑝𝑟𝑒𝑖 − 𝑜𝑏𝑠𝑖|/𝑁𝑁

𝑖 . 

g Root mean square error: 𝑅𝑀𝑆𝐸 = √∑ (𝑝𝑟𝑒𝑖 − 𝑜𝑏𝑠𝑖)2/𝑁𝑁
𝑖 . 
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Table S5-4 Model performance of 2-MG and 2-MT in the PRD for each site. 

Site 

Average  

observation 

(ng m-3) 

Case 

Average  

prediction 

(ng m-3) 

MFB MFE R 

Dongguan 2-MG: 1.1 

Base case 0.6 -1.012 1.081 0.690 

Repartitioned 1.6 0.055 0.594 0.852 

NV/Het. Chem. 6.7 0.783 1.118 0.392 

Sens. 1 3.6 0.644 0.789 0.838 

Sens. 2 4.1 0.881 0.882 0.904 

Guangzhou 2-MG: 1.8 

Base case 0.7 -1.032 1.089 0.859 

Repartitioned 2.0 0.069 0.494 0.837 

NV/Het. Chem. 6.3 0.745 0.962 0.439 

Sens. 1 4.6 0.697 0.784 0.867 

Sens. 2 5.1 0.906 0.943 0.916 

Nanhai 2-MG: 2.3 

Base case 1.1 -0.898 1.047 0.873 

Repartitioned 2.4 -0.135 0.319 0.983 

NV/Het. Chem. 12.5 0.816 1.011 0.746 

Sens. 1 5.7 0.587 0.717 0.982 

Sens. 2 6.1 0.722 0.722 0.976 

Nansha 2-MG: 1.1 

Base case 0.4 -0.819 0.943 0.653 

Repartitioned 0.8 -0.237 0.641 0.763 

NV/Het. Chem. 2.5 0.096 0.846 0.236 

Sens. 1 1.3 0.126 0.480 0.739 

Sens. 2 2.3 0.713 0.713 0.724 

Dongguan 2-MT: 20.6 

Base case 15.2 -0.815 1.064 0.660 

Repartitioned 35.8 0.168 0.744 0.807 

NV/Het. Chem. 44.0 0.267 0.869 0.364 

Sens. 1 74.6 0.696 0.969 0.806 

Sens. 2 82.0 0.809 1.008 0.833 

Guangzhou 2-MT: 46.9 

Base case 19.0 -0.988 1.162 0.537 

Repartitioned 48.3 -0.022 0.661 0.588 

NV/Het. Chem. 38.9 -0.142 0.689 0.455 

Sens. 1 101.2 0.518 0.745 0.603 

Sens. 2 112.7 0.669 0.832 0.589 

Nanhai 2-MT: 31.4 

Base case 20.9 -0.688 1.135 0.675 

Repartitioned 45.2 0.065 0.885 0.816 

NV/Het. Chem. 70.8 0.182 0.874 0.530 

Sens. 1 96.6 0.586 0.925 0.818 

Sens. 2 100.7 0.644 0.953 0.812 

Nansha 2-MT: 16.5 

Base case 18.0 -0.752 1.049 0.841 

Repartitioned 24.8 -0.218 0.679 0.888 

NV/Het. Chem. 20.4 0.025 0.756 0.886 

Sens. 1 40.0 0.162 0.625 0.886 

Sens. 2 56.2 0.497 0.688 0.895 
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Table S5-5 Model performance of 2-MG across the country for each site. 

Site 

Average 

observation 

(ng m-3) 

Case 

Average  

prediction 

(ng m-3) 

MFB MFE 

Hailun (HL) 11.8 

Base case 1.8 -1.501 1.501 

Repartitioned 8.1 -0.504 0.559 

NV/Het. Chem. 9.2 -0.974 1.424 

Sens. 1 8.2 -0.552 0.656 

Sens. 2 19.2 0.376 0.393 

Tongyu (TYU) 25.0 

Base case 1.2 -1.779 1.779 

Repartitioned 6.4 -1.157 1.157 

NV/Het. Chem. 8.7 -1.140 1.140 

Sens. 1 7.0 -1.107 1.107 

Sens. 2 14.8 -0.586 0.961 

Beijing (BJ) 24.7 

Base case 2.0 -1.694 1.694 

Repartitioned 9.8 -0.834 0.834 

NV/Het. Chem. 15.1 -0.548 0.950 

Sens. 1 12.4 -0.633 0.640 

Sens. 2 19.6 -0.221 0.346 

Taiyuan (TY) 12.5 

Base case 2.0 -1.391 1.391 

Repartitioned 8.7 -0.327 0.481 

NV/Het. Chem. 10.8 -0.280 0.683 

Sens. 1 9.0 -0.314 0.493 

Sens. 2 18.7 0.362 0.735 

Dunhuang (DH) 12.5 

Base case 0.04 -1.976 1.976 

Repartitioned 0.2 -1.875 1.875 

NV/Het. Chem. 0.5 -1.682 1.682 

Sens. 1 0.2 -1.877 1.877 

Sens. 2 0.7 -1.706 1.706 

Shapotou (SPT) 12.5 

Base case 0.7 -1.826 1.826 

Repartitioned 3.3 -1.292 1.292 

NV/Het. Chem. 10.0 -0.846 1.195 

Sens. 1 3.3 -1.282 1.282 

Sens. 2 5.8 -0.832 0.832 

Hefei (HF) 19.3 

Base case 1.4 -1.600 1.600 

Repartitioned 8.1 -0.665 0.918 

NV/Het. Chem. 8.5 -0.596 0.807 

Sens. 1 12.2 -0.335 0.704 

Sens. 2 20.6 0.097 0.546 
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Table S5-5 Continued. 

Site 

Average 

observation 

(ng m-3) 

Case 

Average  

prediction 

(ng m-3) 

MFB MFE 

Wuxi (WX) 11.9 

Base case 1.0 -1.605 1.605 

Repartitioned 5.8 -0.713 0.995 

NV/Het. Chem. 7.3 -0.450 0.988 

Sens. 1 9.6 -0.396 1.018 

Sens. 2 15.3 -0.115 1.113 

Qianyunzhou (QYZ) 11.7 

Base case 2.1 -1.544 1.544 

Repartitioned 10.2 -0.672 1.040 

NV/Het. Chem. 14.5 -0.565 1.099 

Sens. 1 12.5 -0.480 0.919 

Sens. 2 22.4 0.013 0.887 

Kunming (KM) 5.1 

Base case 3.8 -0.526 1.081 

Repartitioned 12.4 0.306 1.192 

NV/Het. Chem. 23.1 0.693 1.431 

Sens. 1 8.2 0.008 1.032 

Sens. 2 16.3 0.526 1.326 

Xishuangbanna (BN) 11.5 

Base case 0.1 -1.964 1.964 

Repartitioned 0.6 -1.802 1.802 

NV/Het. Chem. 2.3 -1.365 1.365 

Sens. 1 0.5 -1.831 1.831 

Sens. 2 1.3 -1.579 1.579 

Linzhi (LZ) 5.0 

Base case 0.2 -1.592 1.592 

Repartitioned 0.5 -1.396 1.396 

NV/Het. Chem. 0.4 -1.502 1.502 

Sens. 1 0.1 -1.801 1.801 

Sens. 2 1.1 -1.002 1.260 

Namco (mCo) 3.6 

Base case 0.1 -1.945 1.945 

Repartitioned 0.2 -1.776 1.776 

NV/Het. Chem. 0.4 -1.566 1.566 

Sens. 1 0.04 -1.963 1.963 

Sens. 2 0.5 -1.579 1.579 

Sanya (SY) 6.8 

Base case 0.1 -1.853 1.853 

Repartitioned 0.9 -1.338 1.338 

NV/Het. Chem. 0.6 -1.546 1.546 

Sens. 1 1.2 -1.238 1.305 

Sens. 2 2.6 -0.821 1.269 
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Table S5-6 Model performance of 2-MT across the country for each site.  

Site 

Average  

observation 

(ng m-3) 

Case 

Average  

prediction 

(ng m-3) 

MFB MFE 

Hailun (HL) 178.3 

Base case 43.4 -1.221 1.221 

Repartitioned 156.4 -0.158 0.294 

NV/Het. Chem. 55.7 -1.025 1.025 

Sens. 1 154.5 -0.206 0.378 

Sens. 2 286.4 0.424 0.339 

Tongyu (TYU) 118.6 

Base case 25.2 -1.316 1.316 

Repartitioned 121.2 -0.104 0.498 

NV/Het. Chem. 57.6 -0.785 0.785 

Sens. 1 124.9 -0.107 0.511 

Sens. 2 217.3 0.428 1.143 

Beijing (BJ) 98.7 

Base case 15.5 -1.316 1.316 

Repartitioned 66.7 -0.197 0.465 

NV/Het. Chem. 38.4 -0.664 0.664 

Sens. 1 77.2 -0.069 0.478 

Sens. 2 114.3 0.272 0.925 

Taiyuan (TY) 50.3 

Base case 18.8 -0.701 0.849 

Repartitioned 77.3 0.461 0.769 

NV/Het. Chem. 37.5 -0.146 0.694 

Sens. 1 77.5 0.458 0.768 

Sens. 2 134.8 0.867 0.589 

Dunhuang (DH) 100.2 

Base case 3.5 -1.863 1.863 

Repartitioned 23.0 -1.327 1.327 

NV/Het. Chem. 11.9 -1.608 1.608 

Sens. 1 23.8 -1.323 1.323 

Sens. 2 44.4 -0.969 1.886 

Shapotou (SPT) 48.4 

Base case 13.8 -1.240 1.240 

Repartitioned 70.3 0.115 0.512 

NV/Het. Chem. 67.3 -0.508 1.075 

Sens. 1 70.9 0.094 0.593 

Sens. 2 114.2 0.616 1.584 

Hefei (HF) 300.8 

Base case 30.7 -1.388 1.388 

Repartitioned 142.0 -0.558 1.093 

NV/Het. Chem. 45.8 -1.198 1.289 

Sens. 1 183.9 -0.360 0.951 

Sens. 2 264.6 -0.092 1.240 
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Table S5-6 Continued. 

Site 

Average  

observation 

(ng m-3) 

Case 

Average  

prediction 

(ng m-3) 

MFB MFE 

Wuxi (WX) 174.7 

Base case 24.8 -1.165 1.427 

Repartitioned 119.4 -0.339 1.114 

NV/Het. Chem. 49.7 -0.594 1.352 

Sens. 1 160.0 -0.148 0.976 

Sens. 2 219.7 0.036 1.579 

Qianyunzhou (QYZ) 152.2 

Base case 38.9 -1.340 1.340 

Repartitioned 164.5 -0.314 0.809 

NV/Het. Chem. 89.0 -0.936 1.252 

Sens. 1 188.1 -0.153 0.679 

Sens. 2 288.4 0.207 1.319 

Kunming (KM) 86.6 

Base case 42.4 -0.651 1.125 

Repartitioned 125.4 0.200 0.938 

NV/Het. Chem. 125.9 0.175 0.988 

Sens. 1 95.0 -0.039 0.960 

Sens. 2 176.7 0.467 0.658 

Xishuangbanna (BN) 47.9 

Base case 6.8 -1.478 1.478 

Repartitioned 41.4 -0.221 0.521 

NV/Het. Chem. 28.4 -0.523 0.577 

Sens. 1 36.3 -0.337 0.575 

Sens. 2 75.4 0.334 1.736 

Linzhi (LZ) 23.9 

Base case 14.4 -0.874 0.874 

Repartitioned 31.2 -0.118 0.544 

NV/Het. Chem. 5.1 -1.420 1.420 

Sens. 1 10.5 -1.094 1.094 

Sens. 2 60.0 0.475 0.466 

Namco (mCo) 55.3 

Base case 1.6 -1.880 1.880 

Repartitioned 7.2 -1.528 1.528 

NV/Het. Chem. 2.4 -1.787 1.787 

Sens. 1 1.7 -1.889 1.889 

Sens. 2 13.5 -1.214 1.477 

Sanya (SY) 43.3 

Base case 9.5 -1.107 1.107 

Repartitioned 61.2 0.090 1.124 

NV/Het. Chem. 16.3 -0.772 0.940 

  Sens. 1 72.7 0.200 1.113 

  Sens. 2 118.7 0.503 1.779 
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Table S5-7 𝒇𝑺𝑶𝑨 values at 14 sites across China 

Site 
Ave_tracer 

(ng m-3) 
𝑓𝑆𝑂𝐴,1 𝑓𝑆𝑂𝐴,2 𝑓𝑆𝑂𝐴,3 𝑓𝑆𝑂𝐴,4 

Beijing 0.023 0.075 0.069 0.029 0.009 

Dunhuang 0.003 0.112 0.065 0.013 0.005 

Hailun 0.041 0.140 0.123 0.047 0.016 

Hefei 0.038 0.064 0.059 0.029 0.009 

Kunming 0.114 0.730 0.473 0.149 0.059 

Linzhi 0.031 0.862 0.676 0.174 0.076 

mCo 0.006 0.760 0.518 0.085 0.032 

QYZ 0.044 0.072 0.067 0.035 0.012 

Sanya 0.014 0.068 0.063 0.026 0.009 

Shapotou 0.045 0.357 0.231 0.067 0.024 

Taiyuan 0.038 0.139 0.123 0.045 0.014 

Tongyu 0.021 0.119 0.101 0.032 0.010 

Wuxi 0.021 0.058 0.053 0.026 0.008 

XSBN 0.049 0.326 0.213 0.109 0.050 

𝑓𝑆𝑂𝐴,1 for isoprene semivolatile SOA only. 

𝑓𝑆𝑂𝐴,2 for isoprene SOA including semivolatile products and species formed from IEPOX and 

MAE in the aerosol liquid water. 

𝑓𝑆𝑂𝐴,2 for isoprene SOA including semivolatile products, corresponding oligomers, and species 

formed from IEPOX and MAE in the aerosol liquid water. 

𝑓𝑆𝑂𝐴,2 for isoprene SOA including semivolatile products, corresponding oligomers, species 

formed from IEPOX and MAE in the aerosol liquid water, and dicarbonyl products 

(GLY/MGLY). 
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Figure S5-1 Model performance of PM2.5 mass concentrations and major chemical components 

in the PRD region. The blue line represents the predictions from the grid cell of the Guangzhou 

site. The red shaded area represents the range of concentrations from the 3×3 grid cells around 

the Guangzhou (GZ) site, where the other three sites, Dongguan (DG), Nanhai (NH), and Nansha 

(NS), are located. 
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Figure S5-2 Predicted and observed daily isoprene concentrations at 20 sites across China from 

June to August 2012. The locations of the monitoring sites are shown in Figure S5-5(b). 

 

 

 
Figure S5-3 Predicted and observed daily average 2-MT and 2-MG at 14 sites. The blue markers 

show original model predictions, and the red markers show repartitioned predictions by 

increasing the predicted organic aerosol (OA) by a factor of 3. The cross symbols indicate data at 

three remote sites, Linzhi (LZ) and Namco (mCo) in Tibet and Dunhuang (DH) in Gansu.  
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Figure S5-4 The average model predicted total 2-MG and 2-MT (a, b), their formation in the 

aqueous phase following the multiphase chemistry (c, d), and formation from additional pathway 

(e, f) in June – August 2012. 
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Figure S5-5 Predicted average uptake coefficient of (a) IEPOX and (b) MAE, and (c) pH of 

aerosol water based on ISORROPIA for June – August 2012.   

 

 

 
Figure S5-6 The average modeled (a) isoprene emissions, (b) isoprene concentrations, (c) gas-

phase IEPOX, and (d) gas phase MAE, in June – August 2012. Circles on panel (b) show the 

location of the isoprene monitors. The 14 sites where 2-MT and 2-MG were measured are: 

Hailun (HL), Tongyu (TYU), Beijing (BJ), Taiyuan (TY), Hefei (HF), Wuxi (WX), 

Qianyunzhou (QYZ), Sanya (SY), Kunming (KM), Xishuangbanna (BN), Sapotou (SPT), 

Dunhuang (DH), Linzhi (LZ), and Namco (mCO).  
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Figure S5-7 Correlation between observed daily 2-MG and 2-MT from Ding et al. and the 

corresponding model predictions of the corresponding heterogenous chemistry products 

(AIMAJ=TR_2MG+AIMOS, AIEPOXJ=TR_2MT+AIEOS), MAE and IEPOX in the gas, and 

the isoprene semi-volatile SOA (AISOJ) in the aerosol phase. R is the Pearson correlation 

coefficient.  
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Figure S5-8 Theoretically calculated fraction (𝑭𝒑,𝒕) of 2-MT in the particle phase with OA 

loadings and temperature change. 

 

 

 
Figure S5-9 Gas-particle distribution of 2-MG (a) and 2-MT (b) in the base case simulation (left 

bars) and the sensitivity simulation with lower ∆𝑯𝒗𝒂𝒑 estimations (Sens. 1; right bars), based on 

repartitioned concentrations.   
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APPENDIX E 

Section S6.1 Two-product SOA model parameters  

The traditional semi-volatile SOA yields in the original AERO6 module of the CMAQ 

model are mostly based on the data from historical chamber experiments,30, 138 which generally 

lead to lower SOA yields due to the lack of vapor wall-loss correction.161 In this study, the 

semivolatile product yields (β) for long-chain alkanes, toluene, benzene, monoterpenes, isoprene, 

and sesquiterpenes are adjusted by considering vapor wall-loss, which were used in the previous 

study.134 The ethylbenzene (S11D model species C2B) and other lumped less reactive aromatics 

(S11D model species ARO1) yields are kept the same as toluene. Yields of xylenes under high-

NOx conditions are based on the 2-product fitting of the 5-bin volatility basis set (VBS) 

parameters reported by Ahlberg et al.,145 which included vapor wall-loss correction, and the 

yields of other lumped more reactive aromatics (ARO2) are the same as xylenes. Naphthalene 

(S11D model species NAPH) and methylnaphthalene (S11D model species MNAP) yields are 

determined based on the 2-product model parameters reported by Chan et al.231 and vapor wall-

loss bias correction for naphthalene.161  

The yields from lumped other monoterpene species (S11D model species TERP) 

photooxidation with OH radical are obtained from Carlton et al.212 and corrected for vapor wall-

loss161. α-Pinene and d-limonene SOA yields with OH and NO3 radicals are based on the most 

recent experimental data from Mutzel et al.206 β-Pinene, Δ3-carene, and sabinene yields with OH 

and NO3 radicals are derived from Griffin et al.’s experiments 138, and the reported β values are 

corrected for the SOA density212 and vapor wall-loss.161 The yields of the monoterpene species 

with O3 are based on Takekawa and Takasu.205 The yields for monoterpene species with O(3P) 

are taken to be the same as OH reactions, as no experimental data is available. Table S1 lists all 
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the yields and the saturation concentration (C*) values used in this study. The enthalpy of 

vaporization (∆𝐻𝑣𝑎𝑝) for semivolatile products generated from ozonolysis are also obtained from 

Takekawa and Takasu205 (α-pinene 37 kJ mol-1, β-pinene 33 kJ mol-1, d-limonene 49 kJ mol-1, 

Δ3-carene 40 kJ mol-1, sabinene 40 kJ mol-1, and other terpenes 41 kJ mol-1). In addition, ∆𝐻𝑣𝑎𝑝 

values for semivolatile products from the OH and NO3 pathways are kept the same as the lumped 

monoterpene SOA in the original CMAQ model (40 kJ mol-1). 

Section S6.2 Meteorology and emission inputs  

The meteorological inputs are generated using WRFv4.2 with initial and boundary 

conditions from the ERA5 Reanalysis 0.25o gridded data (available at 

https://rda.ucar.edu/datasets/ds633.0/). The land use/land cover and topographical data are based 

on the 30 s resolution default WRF input dataset. Reanalysis nudging is enabled to improve the 

agreement between the predicted and observed meteorological parameters.119 Other major 

physics options for the WRF simulations are described by Zhang et al.120  

Anthropogenic emissions are based on the Regional Emission inventory in Asia v3.1 

(REAS3)121 using an in-house emission processor. The selected detailed speciation profiles from 

the SPECIATE database developed by the US EPA are used to estimate emissions of CMAQ-

ready VOCs. Windblown dust emissions in the entire domain are generated by the inline 

module.86 Biogenic emissions are produced by the Model for Emissions of Gaseous and Aerosols 

from Nature (MEGAN) v2.10.123 The MEGAN model is modified to output emissions of the 

individual monoterpene species and other explicitly represented model species for detailed S11D 

mechanism. In addition, emissions of all monoterpenes  (MTs) and sesquiterpenes (SQTs) are 

increased by 75% to match those reported by Qin et al., which used China-specific plant 

functional type data to improve biogenic emission estimations.176 Figure S2 shows the average 

https://rda.ucar.edu/datasets/ds633.0/
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emission rates of total MTs and SQTs, and emission rates for individual MT species in the model 

are shown in Figure S3.   

 

Table S6-1 Two-product model parameters to model terpene SOA from different precursors and 

oxidation pathways 

SOA 

name 
Precursor 

SVOC1 SVOC2 # NVOC § 

β1 C1
* β2 C2

* β 

ALK Alkane 0.0865 0.020 - - - 

XYL Xylene 0.0883 7.430 0.5647 192.7 0.612 

NAPH Naphthalene 0.252 1.695 1.284 270.3 0.876 

MNAP 1-Methylnaphthalene 0.600 9.091 - - 0.816 

ARO2 
Other more reactive 

aromatics 
0.0883 7.430 0.5647 192.7 0.612 

TOL Toluene 0.2545 8.024 0.7623 119.3 0.570 

C2B Ethylbenzene 0.2545 8.024 0.7623 119.3 0.570 

ARO1 
Other less reactive 

aromatics 
0.2545 8.024 0.7623 119.3 0.570 

BNZ Benzene 0.090 0.302 1.110 111.1 0.666 

ISOP Isoprene 0.063 0.617 0.510 116.0 - 

SQT Sesquiterpene 1.537 24.98 - - - 

oTERP_1 Other Terpenes + OH 0.1807 14.79 0.5905 133.7 - 

oTERP_2 Other Terpenes + O3 0.0533 0.46 0.1430 11.63 - 

oTERP_3 Other Terpenes + NO3 0.1807 14.79 0.5905 133.7 - 

oTERP_4 Other Terpenes + O(3P) 0.1807 14.79 0.5905 133.7 - 

APIN_1 α-Pinene + OH 0.0680 3.72 - - - 

APIN_2 α-Pinene + O3 0.0624 4.72 0.0845 4.76 - 

APIN_3 α-Pinene + NO3 0.0980 3.60 - - - 

APIN_4 α-Pinene + O(3P) 0.0680 3.72 - - - 

BPIN_1 β-Pinene + OH 0.2315 31.62 0.6965 284.9 - 

BPIN_2 β-Pinene + O3 0.0377 0.55 0.3107 204.1 - 

BPIN_3 β-Pinene + NO3 1.6900 61.35 - - - 

BPIN_4 β-Pinene + O(3P) 0.2315 31.62 0.6965 284.9 - 

DLIM_1 d-Limonene + OH 0.2910 22.73 - - - 

DLIM_2 d-Limonene + O3 0.1690 0.10 0.6747 29.41 - 

DLIM_3 d-Limonene + NO3 0.1890 5.38 - - - 

DLIM_4 d-Limonene + O(3P) 0.2910 22.73 - - - 

CARN_1 Δ3-Carene + OH 0.2662 67.57 0.9888 689.7 - 

CARN_2 Δ3-Carene + O3 0.1976 2.18 0.0845 158.73 - 

CARN_3 Δ3-Carene + NO3 0.4343 109.9 1.2557 113.6 - 

CARN_4 Δ3-Carene + O(3P) 0.2662 67.57 0.9888 689.7 - 

SABI_1 Sabinene + OH 0.1015 4.298 0.6478 291.5 - 
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Table S6-1 Continued 

SOA 

name 
Precursor 

SVOC1 SVOC2 # NVOC § 

β1 C1
* β2 C2

* β 

SABI_2 Sabinene + O3 0.0598 0.94 0.0052 71.43 - 

SABI_3 Sabinene + NO3 1.6900 86.96 - - - 

SABI_4 Sabinene + O(3P) 0.1015 4.298 0.6478 291.5 - 
# The SVOC1 and SVOC2 represent the semi-volatile products formed under high-NOx conditions. 
§ The NVOC represent the non-volatile products formed under low-NOx conditions 

 

Table S6-2 Terpene SOA tracer vapor pressure estimation and saturation concentration 

estimation. 

Tracer 𝑝𝐿
0 (298K) [Pa] C* [μg m-3] Method Reference 

Pinic acid 

(C9H14O4) 

1.98×10-4 16.0 E-AIM Method 1 - 

7.02×10-4 56.7 E-AIM Method 2 - 

4.00×10-4 32.4 
Group 

contribution 
Capouet and Müller 232 

1.20×10-4 9.7 UNIFAC Pankow et al. 55 

1.01×10-4 8.2 - Zhang et al. 233 

4.27×10-5 3.5 Experimental Bilde and Pandis 208 

1.24×10-4 10.0 SIMPOL Müller et al. 209 

3.96×10-5 3.2 
Optimized fitting 

of chamber data 
Jenkin 201 

Pinonic acid 

(C10H16O3) 

7.19×10-5 5.8 UNIFAC Pankow et al.55 

7×10-5 (296K) 5.6 (296K) - Bilde and Pandis 208 

9.67×10-3 780.6 E-AIM Method 1 - 

3.68×10-4 29.4 
Optimized fitting 

of chamber data 
Jenkin 201 

3-methyl-1,2,3-

butanetricarboxylic 

acid (MBTCA) 

(C8H12O6) 

2.23×10-8 1.8×10-3 Experimental Kostenidou et al.211 

1.24×10-7 0.01 SIMPOL Müller et al. 209 

β-Caryophyllinic 

acid 

(C14H22O4) 

2.14×10-7 0.02 E-AIM Method 1 - 

1.3×10-8 1.3×10-3 
SPARC on-line 

calculator 
Li et al. 234 

6.6×10-6 0.55 - Alfarra, et al. 235 

Bold fonts are the C* values used in the base case simulations. 
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Table S6-3 Model performance of the mass concentration of PM2.5 mass and major components 

Species Mean Obs. Mean Pred. MFB# MFE^ R* 

Total PM2.5 30.4 22.7 -0.34 0.43 0.70 

PM2.5 NH4
+ 3.2 1.7 -0.36 0.64 0.68 

PM2.5 NO3
- 2.9 0.5 -1.37 1.41 0.53 

PM2.5 SO4
2- 8.5 5.0 -0.43 0.50 0.67 

PM2.5 EC 1.8 1.3 -0.35 0.58 0.37 

PM2.5 OC 8.5 5.4 -0.57 0.68 0.70 

PM2.5 POC 6.5 2.2 -1.00 1.00 0.62 

PM2.5 SOC 2.9 2.3 -0.34 0.61 0.83 

# Mean Fractional Bias: 𝑀𝐹𝐵 =
1

𝑁
∑

2(𝑃𝑖−𝑂𝑖)

𝑃𝑖+𝑂𝑖

𝑁
𝑖=1 , N is the number of data points, P is observation, and O is 

observation. 
^ Mean Fractional Error: 𝑀𝐹𝐸 =

1

𝑁
∑

2|𝑃𝑖−𝑂𝑖|

𝑃𝑖+𝑂𝑖

𝑁
𝑖=1  

* R: Pearson correlation coefficient 

 

 

Table S6-4 Average mixing ratios of monoterpenes 

Site Site Type Sampling Period Monoterpenes (ppbv) Source 

Beijing  Jun. - Aug. 2012 0.04 – 0.16# 
This work 

   0.08 – 0.31^ 

 Urban Nov. - Dec. 2016 0.57 ± 0.20 Zhang, et al.215 

 Urban Jun. 2017 0.16 ± 0.10 Zhang, et al.215 

 Suburban Dec. 2014 0.04 ± 0.04 Li, et al.217 

 Urban Feb. 2015 0.06 ± 0.06 Li, et al.217 

 Suburban Nov. 2014 0.05 – 0.09 Li, et al.218 

Guangzhou  Jun. – Aug. 2012 0.05 – 0.43 
This work 

   0.08 – 0.79 

 Urban Sep. 2005 0.16 ± 0.03 Barletta, et al.216 

Dongguan  Jun. – Aug. 2012 0.01 – 0.34  
This work 

   0.02 – 0.62 

 Urban Sep. 2005 0.15 ± 0.02 Barletta, et al.216 
# Total mixing ratio range of α-pinene and β-pinene within 3×3 grid cells with the center of 

cities. 
^ Total mixing ratio range of monoterpenes within 3×3 grid cells with the center of cities. 
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Figure S6-1 SOA yields of individual monoterpene species used in this model.  

 

 

 
Figure S6-2 Average summertime (June – August 2012) emission rates of total MTs and SQTs. 

Units: gC km-2 h-1. 
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Figure S6-3 Average emission rates for α-pinene (APIN), β-pinene (BPIN), d-limonene (DILM), 

Δ3-carene (CARN), sabinene (SABI), and the lumped other terpene (oTERP) species. Units: gC 

km-2 h-1. 
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Figure S6-4 Predicted and observed organic carbon (OC), primary OC (POC), and secondary 

OC (SOC) in the PRD region. The blue line represents the predictions from the grid cell of the 

Guangzhou site. The red shaded area represents the range of concentrations from the 3×3 grid 

cells around the Guangzhou (GZ) site, where the other three sites, Dongguan (DG), Nanhai 

(NH), and Nansha (NS), are located. 
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Figure S6-5 Predicted and observed pinic acid, pinonic acid, MBTCA and BCARYA at four 

PRD sites. Pinic acid and pinonic acids predictions are repartitioned using the observed OC and 

an OA/OC ratio of 1.6. The blue dots represent repartitioned predictions using an OA/OC ratio 

of 2.1. Repartitioning does not affect MBTCA and BCARYA because they are almost non-

volatile.  
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Figure S6-6 Model evaluation of organic tracers (a) pinic acid, (b) pinonic acid, (c) MBTCA, 

and (d) BCARYA from the 14 sites across China. The open circles represent the data from sites 

in the clean areas of west and southwest China (Linzhi, Namco, Dunhuang, Shapotou, 

Xishuangbanna, and Sanya). 
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Figure S6-7 Model evaluation of OC by comparing with historical data.190, 236 Units are μg m-3. 

(The city abbreviations are XH: Xianghe, CC: Changchun, UR: Urumqi, BJ: Beijing, TJ: Tianjin, 

JC: Jinchang, YL: Yulin, TY: Taiyuan, QD: Qingdao, XN: Xining, XA: Xi’an, NJ: Nanjing, SH: 

Shanghai, HZ: Hangzhou, WH: Wuhan, CD: Chengdu, CQ: Chongqing, XM: Xiamen, GZ: 

Guangzhou, HK: Hongkong.) 
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Figure S6-8 Regional distributions the monoterpene SOA tracers (pinic acid, pinonic acid, and 

MBTCA) from individual formation pathways. Units are ng m-3. Circles show the location of the 

14 sites. 
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Figure S6-9 Average concentration of semi-volatile SOA (SSOA; left column), corresponding 

oligomers (OLGM; middle column), and total SOA (SSOA+OLGM; right column). Units: μg m-

3. 
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Figure S6-10 Average contributions to the monoterpene SOA from individual species and 

formation pathways. Units are μg m-3. 
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Figure S6-11 Average concentration of monoterpene tracers (MT_tracers, sum of PA, PNA and 

MBTCA) and sesquiterpene tracer BCARYA (left column). Semi-volatile SOA (SSOA) and 

total SOA (SSOA + oligomers (OLGM)) from α-pinene + β-pinene (pinene SOA), all 

monoterpenes (Terp SOA), and sesquiterpenes (SQT SOA). Units are µg m-3. 
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Figure S6-12 Correlation of daily MT SOA from three major formation pathways (OH, NO3, 

and O3). 

 

 

 
Figure S6-13 Saturation mass concentration optimization for PA and PNA. 
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Figure S6-14 Model evaluation of PA and PNA predictions with optimized saturation mass 

concentrations against measurements at the 14 sites across China. Predictions are based on 

repartitioning with OA increased by a factor of 1.6. The cross markers represent data from the 

sites in the clean areas of west and southwest China (Linzhi, Namco, Dunhuang, Shapotou, 

Xishuangbanna, and Sanya). 
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Figure S6-15 Fraction of pinic acid (PA) in the aerosol phase (Fp,t) (panels a and c) and Tracer-

to-SOA ratio (𝒇𝑺𝑶𝑨) (panels b and d) using enthalpy of vaporization (∆𝑯𝒗𝒂𝒑) of 111 kJ mol-1 (a, 

b) and 40 kJ mol-1 (c, d). The calculations are done assuming that PA is from α-pinene 

ozonolysis and monoterpene SOA is due to β-pinene reaction with NO3, and the reacted α-

pinene/β-pinene molar ratio is 1:1. Optimized C* of PA (33.4 μg m-3) is used in the calculation. 

Mass yield of PA is 0.0661, from Table 6-1. C* and semivolatile product mass yields (β) for β-

pinene + O3 is from Table S6-1.   
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Figure S6-16 Variation of daily average MBTCA-to-SOA ratio (𝒇𝑺𝑶𝑨) with organic aerosol 

concentration (COA). The 𝒇𝑺𝑶𝑨 values are calculated using (a) α-pinene and β-pinene SOA and 

(b) monoterpene SOA. 

 

 

 
Figure S6-17 Average OA loadings during the summertime. Units: μg m-3. The 14 sites marked 

in black open circles are: Hailun (HL), Tongyu (TYU), Beijing (BJ), Taiyuan (TY), Hefei (HF), 

Wuxi (WX), Qianyunzhou (QYZ), Sanya (SY), Kunming (KM), Xishuangbanna (BN), Shapotou 

(SPT), Dunhuang (DH), Linzhi (LZ), and Namco (mCO). Guangzhou (GZ) in the PRD region is 

marker with a red circle. Three other PRD sites, Dongguan, Nanhai, and Nansha are very close to 

GZ and are not shown on the map. 
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Figure S6-18 Fractional bias of predicted semivolatile SOA (SSOA) (a1-c2), and total SOA 

(SSOA + oligomers) (d1-f2) using the linear equations (a1-c1, d1-f1) and power-law equations 

(a2-c2, d2-f2). MT tracers (sum of PA, PNA and MBTCA) (first column) and MBTCA (second 

column) are used to estimate MT SOA. BCARYA is used to estimate SQT SOA. 
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Figure S6-19 CMAQ-predicted and tracer estimated daily (a) MT SOA and (b) SQT SOA at 

monitor sites. The dash lines show 1:2 and 2:1 ratio. The blue dots are estimations using the 

power equations derived in Section 6.4.3, and the red dots are estimations using the fSOA 

equations Error! Reference source not found. and (6.9) in Section 6.4.2. 

 

 

 
Figure S6-20 Diurnal variation of average (a) MT SSOA formation from each oxidation 

pathway and tracer concentrations, and (b) the 𝑓𝑆𝑂𝐴 to estimate SSOA using MT tracers (sum of 

PA, PNA, and MBTCA) and MBTCA. 


