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ABSTRACT

This dissertation presents a novel surface tracking, and advection algorithm for incompress-

ible fluid flows in two and three dimensions. This method based on the volume-of-fluid (VOF)

method, is named VOF-with-center-of-mass-and-Lagrangian-particles (VCLP), and it uses spa-

tially and temporally localized Lagrangian particles (LPs) inside a finite volume framework. The

fluid surface is recaptured and reconstructed piecewise using the mean slope, mean curvature, and

fluid estimated using new methods from the local spatial distribution of the volume fluid fraction

values. The reconstructed surfaces are either a finite plane or part of a spherical surface, in 3D

and line segments or circular arcs, in 2D. The fluid mass inside each cell is discretized spatially by

LPs and distributed as blue noise. LPs are then advected cell by cell with a choice of two different

advection schemes in time using interpolated velocity and approximated acceleration fields. VCLP

continuously tracks the center of mass of the fluid parcels in the Lagrangian way and this helps to

reduce the errors due to numerical acceleration resulting from lack of information to reconstruct

the interface accurately. LPs enable VCLP to work with structured and unstructured grids in two

and three dimensions and might work for Courant–Friedrichs–Lewy numbers larger than one. LPs

exist only inside a single fluid cell at a given time-step, allowing it to work without constraints on

domain size and storage memory, unlike standard Lagrangian methods. LPs make it easy to adjust

computational accuracy vs. speed by only changing the number of LPs. VCLP’s performance

is evaluated using standard benchmark tests such as translation, rotation, single vortex, deforma-

tion, and Zalesk’s tests from the literature. VCLP is applied to TSUNAMI2D, a 2D Navier-Stokes

model to simulate the dam-break problem and breaking waves.
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NOMENCLATURE

2D Two dimensional

ALE Arbitrary Lagrangian-Eulerian method

ANSYSFluent Commercial computational fluid dynamics software

BEM Boundary element method

CFD Computational Fluid Dynamics

CFL Courant–Friedrichs–Lewy condition/number

CONVERGE Commercial computational fluid dynamics software

CLSVOF Coupled level-set VOF method

CM center of mass

DES Detached eddy simulation

DNS Direct numerical simulation

FDM Finite difference method

FLOW-3D Commercial computational fluid dynamics software

FNFP-BEM fully non-linear potential flow theory and a higher-order
boundary element method

FVM Finite volume method

H&N Hirt and Nichols method

LBM Lattice Boltzmann method

LES Large-eddy-simulation

LHS Left hand side

LP Lagrangian particle

LPs Lagrangian particles
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LSM Level-set method

LVOF Lagrangian volume of fluid

MAC Marker and cell method

MIC Mean interface curvature

MoF Moment of fluid method

NSF National Science Foundation

N-S Navier-Stokes

OpenFOAM Commercial computational fluid dynamics software

PCIC Piecewise-Circular-Interface-Calculation method

PIC Particle in cell method

PLIC Piecewise-Linear-Interface-Calculation

PPM Piecewise Parabolic Method

RANS Reynold’s averaged Navier-Stokes model

R&K Rider and Kothe method

RHS Right hand side

SCO Skip core optimization method

SPH Smoothed particle hydrodynamics

SSC Sorted surface constant method

STAR-CCM+ Commercial computational fluid dynamics software

TJSM Proposed numerical advection scheme- Tracking journey in
spiral method

TSUNAMI2D a two-dimensional Navier-Stokes numerical model

TSUNAMI3D a three-dimensional Navier-Stokes numerical model

VCLP VOF with center of mass and Lagrangian particles method

VOF Volume of fluid method

VTG Volcanic tsunami generator
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F a function defined at every point in the computational do-
main. It is 1 when fluid is present, else 0

f Fractional volume of fluid

Ω Computational domain

ρw density of water/heavier fluid

ρa density of air/lighter fluid

ρ density of the fluid in a single phase flow

µw viscosity of water/heavier fluid

µa viscosity of air/lighter fluid

µ viscosity of the fluid in a single phase flow

t time

u velocity vector

a acceleration vector

X X axis in the Cartesian coordinate system

Y Y axis in the Cartesian coordinate system

Z Z axis in the Cartesian coordinate system

x position vector component in X direction

y position vector component in Y direction

z position vector component in Z direction

ux velocity vector component in X direction

uy velocity vector component in Y direction

uz velocity vector component in Z direction

ax acceleration vector component in X direction

ay acceleration vector component in Y direction

az acceleration vector component in Z direction

p pressure

viii



g body acceleration vector

x position vector

ν kinematic viscosity

τ stress tensor

I Interface

un normal component of the velocity vector

ut tangential component of the velocity vector

Θ a scalar field function representing fraction volume of a cell
open to fluid flow

t tangential vector

p0 ambient pressure

σ surface tension

κ curvature

nX number of cells in the X direction

nY number of cells in the Y direction

nZ number of cells in the Z direction

tm time at time step

m mth time step

∆tm duration of the mth time step

i cell index in X direction

j cell index in Y direction

k cell index in Z direction

s space occupied by a cell

δx cell dimension along X axis

δy cell dimension along Y axis

δz cell dimension along Z axis

ix



v volume of the fluid inside a cell

Vm Total volume of fluid in the domain at a time

c the center of mass vector

cx center of mass vector component in X direction

cy center of mass vector component in Y direction

cz center of mass component in Z direction

UX,m Matrix of size nX × nY × nZ with ux values of cells at the
mth time step.

UY,m Matrix of size nX × nY × nZ with uy values of cells at the
mth time step.

UZ,m Matrix of size nX × nY × nZ with uz values of cells at the
mth time step.

Um denotes the three matrices UX,m, UY,m, and UZ,m of size
nX × nY × nZ

fm Matrix of size nX ×nY ×nZ with f values of cells at the mth

time step.

cm denotes the three matrices with the CM location components

Mw mass of water in the cell

E Empty Cell

S Surface Cell

Ns Inner Surface Cell

N Inner Surface Cell

Nm Inner Mantle Cell

Nc Inner Core Cell

CT Cell type value for classification

q Ceiling function of Courant–Friedrichs–Lewy number

CT∗ Temporary Cell type value for classification

N Number of Lagrangian Particles
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L Reconstructed Planar interface with Piecewise-Linear-
Interface-Calculation

C Reconstructed spherical interface with Piecewise-Circular-
Interface-Calculation construction

n Interface normal

nx Interface normal vector component in X direction

ny Interface normal vector component in Y direction

nz Interface normal component in Z direction

nz Interface normal component in Z direction

∇nX Numerical gradient in X direction

Sx, Sy interface normal estimation parameters

Hx, Hy interface normal estimation parameters

Fx, Fy interface normal estimation parameters

κ̄ Mean interface curvature

a Planar and surface constant

Λ The location coordinates of Lagrangian particles representing
the fluid region within a cell

cr Center of rotation

Ψ Stream function

Egeo Geometric Error

h0 Water depth

H0 Solitary wave height

η Water elevation

g Acceleration due to gravity

psi Pounds per square inch

Cm Crest height from numerical model

Tm Trough height from numerical model
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Ce Crest height from the laboratory experiment

Te Trough height from the laboratory experiment

TE Percentage error in the estimation of creTrough height from
the laboratory experiment

xii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxiii

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Fluid flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Multiphase flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Computational Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Computational Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Interface Tracking and Advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Volume of Fluid Method (VOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2. GOVERNING EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Fluid Dynamics Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Equation of Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Navier-Stokes Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Equations of the Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3. VOF WITH THE CENTER OF MASS AND LAGRANGIAN PARTICLES (VCLP)
METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Classification of Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xiii



3.3 Interface Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Interface Normal for PLIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1.1 Numerical Gradient Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1.2 Minimum Slope method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1.3 T-Slope method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1.4 Comparison of methods to find the interface normal . . . . . . . . . . . . . . . . 39

3.3.2 Interface Curvature for PCIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2.1 MIC in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2.2 MIC in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2.3 Locating the PLIC and PCIC interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2.4 Bisection Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2.5 Sorted Surface Constant Method for PLIC. . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2.6 Sorted Surface Constant Method for PCIC . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.3 PLIC and PCIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Lagrangian Particles and Center of Mass Tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Lagrangian Particle Creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1.1 White Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.1.2 Blue Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.1.3 Modifying the Template for Surface Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.2 Center of Mass Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.2.1 Estimation of the Center of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.2.2 Mass Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 The Advection of Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.1 Numerical Advection Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1.1 Taylor’s First Order and Second Order Methods . . . . . . . . . . . . . . . . . . . . 57
3.5.2 Tracking Journey In Spiral Method (TJSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.2.1 Derivation of TJSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.2.2 TJSM in Scalar Form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.3 Interpolation of Velocity Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.4 Finding the Acceleration for Advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.5 Comparison of the Numerical Advection Schemes in 2D . . . . . . . . . . . . . . . . . . . . . . 65

3.5.5.1 Comparison of the Numerical Advection Schemes in 3D . . . . . . . . . . . 68
3.6 Updating Mass and Center of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.7 Filters and Optimization for VCLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7.0.1 Skip Core Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4. VCLP BENCHMARK TESTS AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Translation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Rotation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Single Vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 Quantitative Analysis of Single Vortex Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 Deformation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4.1 Quantitative Analysis of 2D Deformation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5 Zalesak’s disk Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xiv



4.5.1 Quantitative Analysis of Zalesak’s disk Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.6 3D Deformation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6.1 Quantitative Analysis of 3D Deformation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.7 Computational Performance of VCLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.8 VCLP Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.8.1 Dam Break Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.8.2 Breaking Wave Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5. NUMERICAL MODELING OF VOLCANIC TSUNAMI EXPERIMENTS . . . . . . . . . . . . . . . 107

5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Physical modeling of Volcanic Tsunamis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3 Numerical Modeling of Volcanic Tsunami Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.1 Numerical Model Input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.2 Numerical Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.3 Comparison with the Wave Gauge Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6. SUMMARY AND CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

APPENDIX A. FIRST APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.1 Comparison of the numerical modeling and experimental results . . . . . . . . . . . . . . . . . . . . . . 146

xv



LIST OF FIGURES

FIGURE Page

1.1 Different types of two-phase flows a) Separated flow b) Transient flow c) Dispersed
flow - bubbles and droplets. Blue is the gas and red is the liquid . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Control volume in the a) Eulerian and the b) Lagrangian approach in a accelerating
non-divergent rotational velocity field given by eqn. 1.1. The curved lines are the
stream lines and red color is the control volume after one time step and the blue
after two time steps of advection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Control volume in the Lagrangian and Eulerian approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 A schematic representation of a computational domain Ω containing a two-phase
flow with rigid stationary and moving objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 An illustration of a three-dimensional control volume with a moving object. . . . . . . . . . 23

2.3 Solid boundary velocity profiles for no-slip and free-slip boundary conditions. . . . . . . . 26

3.1 Schematic representation of the 2D cross-sectional view of a computational do-
main for a typical nearshore two-phase ocean flow with slopped bottom and beach.
The resolution of Cartesian cells varies in a quadratic manner along the X and Z
directions. Zoomed in view shows the numbering of cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Cell space s(i, j, k) at time step tm with fluid volume v(i, j, k,m), dimension
(δxi, δyj, δzk). Exact location of (xi, yj, zk) and (xi−1, yj−1, zk−1) is shown along
with the three components of the advective velocity u(i, j, k,m) defined at the cell
face centers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Left: 3D cell classification into empty (‘E’), surface (‘S’) and interior (‘N’). Cell
‘C’ is a surface cell. Slanted plane is the fluid surface. Middle: A part of a 2D
circular fluid body and grid cells drawn on top. Right: Equivalent f -value, cell
classifications and the CM locations represented by ‘*’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Circular fluid domain reconstructed from the f values using PLIC with interface
normal calculated using a) Normal Gradient Method b) Minimum Slope Method. . . . 40

3.5 Circular fluid domain reconstructed from the f values using PLIC with interface
normal calculated using the T-Slope Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xvi



3.6 Estimation of the mean interface curvature in 2D for the PCIC construction. Nor-
mals are drawn from the mid point of nearest four neighboring PLICs to the normal
of the surface cell in consideration passing through its PLIC construction’s mid-
point. Neighbor curvatures are averaged to get the mean interface curvature (MIC). 42

3.7 Estimation of planar constant a using the Sorted Surface Constant (SSC) method
for the surface cell given the interface normal and the f -value. . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Sorted Surface Constant (SSC) method for PCIC. Each N points inside cell is
mapped to the normal through the PLIC midpoint such that intersecting point is at
distance R. Points are then sorted (color) according to the signed distance(surface
constant value) from PLIC midpoint to the intersecting point (example: points 1,
2). fN th surface constant provides the center of circle ’c’, making fraction of num-
ber of points inside PCIC to be f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9 Piecewise Circular Interface Calculation (PCIC) in 3D. The rectangular plane is
the PLIC interface, and the spherical surface has some portion above and below
the plane to have the same f - value. For each point in the cell, ‘a’ is the surface-
constant, signed distance from the centroid of L to the intersection of normal
through centroid and of a sphere of signed radius R (mean radius of curvature)
centered at that point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.10 (a) Reconstructed PLIC interfaces and (b) Reconstructed Piecewise Circular Inter-
face Calculation (PCIC), using f values. Center of mass locations are shown as
dots. Fluid body is circular with a radius of 0.15 inside a unit square domain with
a resolution of 32 × 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.11 Comparison of blue noise template generated by J-method and white noise using
uniform random numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.12 Modification of the LPs template: (a) Initial Lagrangian particles unit square tem-
plate with N = 25 particles per cell dimension uniformly distributed (b) Region of
particles from the template is scaled in to rectangle that fills fluid region with no
change in the aspect ratio. The orange colored LPs represent the fluid inside PCIC
reconstruction. The blue colored LPs outside the interface are removed. . . . . . . . . . . . . . . 52

3.13 Lagrangian Particles: The fluid region inside the surface cells represented by uni-
formly and randomly distributed LPs as a blue noise per cell. The effect of sub-
domain approach to increase LPs resolution inside cells with smaller f values are
shown. The locations of LPs (LN) before the CM correction are orange colored
LPs and after correction is the blue colored dots as seen in the zoomed view, the
right panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xvii



3.14 Center of mass (CM) tracking: A rectangular fluid body (A tm) is inside a square
cell of 1 m dimension with a velocity field uy= 0.5 m/s. The ideal state of fluid body
at the start (lower panel) and after one second (upper panel) is shown in (A). (B)
the numerical simulation of fluid flow for a CFL value of 0.5 without CM tracking.
(C) the numerical simulation of fluid flow for a CFL value of 0.5 with CM tracking.
Blue dot is the true CM (c) which is tracked in the Lagrangian way, while red dot,
the estimated CM (c̃m+1). The reconstructed fluid region is translated to match the
true CM shown by the arrow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.15 Trilinear Interpolation of velocity: Trilinear interpolation with partial volumes
as weights to interpolate advection velocity for a LP at (px, py, pz) using known
velocities at the vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.16 The velocity field at t = 0 for the deformation test of a circular fluid body of radius
0.15 centered at (0.5,0.75). There are sixteen time-varying vortices inside the unit
square domain that deforms a fluid body inside. The velocity field is defined by
Eqn. 3.79 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.17 Deformation test results t = 1 = T/2 (Top), t = T = 2 s (Bottom). a) Taylor’s
first order (left) and Taylor’s Second order (right) b) Taylor’s third order (left) and
Runge-Kutta fourth order (right) order c) TJSM second-order (error ∆t3).. . . . . . . . . . . . 68

3.18 Deformation test results for three numerical advection schemes a) Euler’s method

b) Taylor’s second order c) TJSM second order. Column A: t =
T

2
= 6s, B:

t = T = 12s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.19 Mass transfer and CM Update: Left: LPs representing the fluid before advection.
f - value and center of mass is shown for the surface cell(middle cell). Right:
advected LPs from the middle and neighbor cells into the middle cell (orange color)
and their transferred CMs. The updated f - value and CM is also shown. Note
cells are advected one by one and this figure is an combined representation of the
process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.20 Skip Core Optimization: Top: Rectangular block is a simplified 1-D translation
diagram with CFL = 0.75 showing if core is not advected the core gain equals
mantle loss. Hatched is before advection and filled is after. Left: an ellipsoidal fluid
body with a circular hole inside inside a rectangular computational domain with a
grid resolution of 64 × 64 before advection. Right: fluid body after advection
with CFL = 1 with a uniform velocity field of cos(3π/4)̂i + sin(3π/4)ĵ. Left:
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1. INTRODUCTION

1.1 Fluid flows

The states of matter, such as liquid, gas, and plasma, are examples of fluid, defined as a material

with zero shear modulus and undergoes continuous deformations under applied shear stress. Two

fluids can have the same state of matter and different phases as phase is defined as the region with

uniform physical and chemical properties. This definition would mean that water and water vapor

are different phases, and so is the case of water and oil, even though both are liquids. A phase

is ‘continuous’ if the fluid exists within a continually connected region and ‘disperse’ if it occu-

pies a disconnected region. Fluid flows consisting of more than one phase are called multiphase

flows, and natural processes such as sea waves and sediment transport are examples of multiphase

flows. Even though all fluid flows are compressible, they are classified into two compressible and

incompressible flows for practical purposes. Flows with significant changes in fluid density are

treated as compressible, and if the Mach number (which is the ratio of flow speed to the speed of

sound) greater than 0.3, it is considered compressible as the density change would be more than

5% [8]. A flow in which the material density is nearly constant within an infinitesimal fluid volume

moving with the flow velocity (fluid parcel) is referred as an incompressible or an isochoric flow.

In most scenarios, liquid flows can be considered incompressible flows, while gas flows with high

velocities, as in jet engines or rocket motors, need to be treated as compressible flows. There are

miscible and immiscible flows within multiphase flows, and two phases are miscible if they mix in

all proportions forming a solution. Immiscible phases in a multiphase flow would have an interface

or a boundary separating them.

1.2 Multiphase flows

The presence of multiple phases makes it challenging to describe and quantify the nature of

flow due to phase flows affecting each other. The unknown velocities of each phase at a point in

space makes it difficult to determine the velocity distribution.
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The forces involved in a multiphase flow can be classified into five: pressure, inertia, viscous,

buoyancy, and surface tension. Pressure forces accelerate the fluid in the opposite direction of

the pressure gradient acting on surface elements. The viscous forces come into play when there

is a velocity gradient, and it attempts to make the flow uniform by reducing the differences in

velocities. Inertia force acting on the volume retains the direction and magnitude of the fluid

motion. Buoyancy force represents the net gravitational force in the presence of a non-uniform

density. Surface tension is a localized force that tries to minimize the surface area of the interface

and acts on a line, and its magnitude is inversely proportional to the local radius of curvature of the

interface.

While modeling two-phase flows with a significant difference in molecular viscosity and den-

sity like sea waves where the density of the seawater phase is around 837 times more than that

of the air phase, the dynamics of the heavier phase is independent of the presence of the lighter

phase. In this situation, the presence of the lighter phase can be neglected, and then the interface

is called a free surface or surface. This assumption is valid for modeling many liquid-gas flows

such as ocean waves because of the significant difference in the magnitude of the pressure, inertia,

viscous, and buoyancy forces due to the liquid and gas. This assumption is attractive to numerical

modelers and widely used as this would significantly increase the computational speed. However,

it also depends on the purpose of simulation in the first place. For example, to study the mixing of

CO2 in the sea through breaking waves is impossible without taking the dispersed gaseous phase,

i.e., the air bubbles, into account; other examples can be found in [9, 10].

The Lagrangian and Eulerian specifications are two classical perspectives to look at fluid flows.

In the Lagrangian approach, as an individual fluid parcel moves through space and time, the

observer follows it [11, 12] and the position plot of the parcel gives the pathline. In the Eu-

lerian approach, the focus is on spatial locations through which fluid flows with time, and the

observer is watching the change happening inside the specific location over time. In computational

fluid dynamics (CFD), Eulerian(Euler) simulations are carried out inside a fixed mesh, while La-

grangian(Lagrange) simulations are mesh-free and have nodes following the velocity field. Euler-
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Lagrange and Euler-Euler are the two most chosen ways to model multiphase flows containing

dispersed and continuous phases. Both of these approaches assume the immiscibility of the phases.

In the Euler-Lagrange method, pressure and velocity fields of the fluid phase are solved using

the Navier-Stokes equation by considering it as a continuum, and the dynamics of the dispersed

phase such as solid particles, bubbles, or droplets are solved by tracking them in the Lagrangian

way [13]. In the Euler-Euler two-phase immiscible flow, both dispersed and continuous phases are

treated as fluids and solved using the Navier-Stokes equations. This approach is signified by the

volume-averaged mass conservation equation for each phase and requires tracking of interfaces

[14]. The concept of volume fraction enables the interface tracking in this approach, and the

simplified version of this approach is to treat each phase independently utilizing the homogeneous

flow model concept. The discontinuity in density and viscosity at the interface of the phases are

generally present for the immiscible liquid-liquid or liquid-gas flows, and the interface is critical as

it is the gate of momentum and energy transfer. The interface leads the phase flows, and hence its

shape and location are crucial components of the solution, making interface tracking a vital aspect

in modeling multiphase fluid flows.

Figure 1.1 shows the different types of two-phase flows, which are transient, separated, and

dispersed. In the transient flow, both phases act as a continuous and dispersed phase. In the

separated flow, both phases are continuous, whereas in dispersed flow, one phase is continuous, and

the other phase is dispersed. In the case of liquid-gas flows, if gas is the dispersed phase, it is called

bubbles, else droplets. In general, the Eulerian approach would be more efficient for the separated

flow. For the dispersed flow, bubbles and droplets could be tracked using the Lagrangian approach

while continuous phase using the Eulerian approach. The transient two-phase flow is complicated

and might need a coupled Eulerian-Lagrangian approach to model in the most efficient way. Two-

phase immiscible flows are also called interfacial flow, and it is seen in many natural and industrial

processes such as sloshing waves, oil extraction, and liquid atomization. In many applications, the

numerical modeling of these flows is essential to understand their mechanics and dynamics.
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Figure 1.1: Different types of two-phase flows a) Separated flow b) Transient flow c) Dispersed
flow - bubbles and droplets. Blue is the gas and red is the liquid

1.3 Computational Fluid Dynamics

To model and predict the fluid flows with complex geometry or complex flows is challenging

without the help of Computational Fluid Dynamics (CFD). CFD was developed as a branch of fluid

dynamics to understand better and predict fluid flows using numerical analysis and data structures.

It uses high-speed computers to perform calculations based on the equations such as Navier-Stokes

and continuity equations that govern the fluid flow to simulate the time-dependent free-stream flow

of the fluid and its interactions with different kinds of structures or objects. The conservation laws

of mass, linear momentum, and energy are the most critical equations in CFD. CFD has vast

applications in engineering and research problems in aerodynamics, ocean engineering, weather

simulation, combustion analysis, and environmental engineering. In general, CFD solutions have

three stages: preprocessing, simulation, and post-processing. The preprocessing phase begins by

defining the geometry and fluid distributions. The next step is constructing meshes through which
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the fluid domain is discretized into cells or control volumes. The meshes can be structured, unstruc-

tured, hybrid, orthogonal, and non-orthogonal. The governing physics equations with applicable

assumptions in the discretized form are modeled as the next step. The final step in pre-processing

stage takes initial conditions and boundary conditions for the problem. Running the simulation is

the second stage during which many equations are solved iteratively and march forward in time.

The final stage is post-processing, where the resulting solution is analyzed and visualized. One of

the most distinguishing features of CFD models is how numerically model the physics of the fluid

flow. Popular discretization approaches in CFD are the finite volume method (FVM), finite ele-

ment method (FEM), Finite difference method (FDM), and Boundary element method (BEM). In

FVM, the computational domain is partitioned into fixed cells, and the partial differential equations

representing the conservation laws are integrated within each cell representing control volumes to

obtain a set of balance equations. The balance equations undergo discretization, resulting in dis-

cretized linear or non-linear equations that depend on a finite set of unknowns. If these systems

of equations are linear, direct or iterative solvers are used, else fixed type methods are used. FVM

has lower memory requirement, better speed, and works well with source-dominated and high

Reynolds number flows [15]. FEM application areas of interest include heat transfer, structural

analysis, fluid flow, and electromagnetic potential. Variation methods such as the Galerkin method

characterize FEM. In FEM, the computational domain is divided into smaller overlapping parts

called finite elements, over which local functions, generally polynomials, approximate the func-

tions. FEM needs more computation time, and memory than FVM methods [16]. In FDM, deriva-

tives in the partial differential equations are approximated by joining function values in the nearby

locations using weights. The approximated equations defined at discretized points are solved us-

ing matrix algebra techniques. In BEM, partial differential equations are solved by formulating

integral equations. BEM requires less computational resources than other methods when the sur-

face to volume ratio is small [17]. One important area in CFD is the modeling turbulence in fluid

flows and models like Reynold’s-averaged-Navier-Stokes (RANS), Large-eddy-simulation (LES),

Detached-eddy-simulation (DES), and Direct-numerical-simulation (DNS) are some of the most
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successful ones.

1.4 Computational Grid

A computational grid is a CFD model’s necessity, and the choice depends on the strengths and

weaknesses of the model, requirements of the solution, and characteristics of the specific prob-

lem. The computational grid can generally be classified based on three criteria: the grid structure,

its relation to boundary, and its degree of freedom. The grid or mesh divides a geometrical vol-

ume or area into many elements or cells, and they are used to construct control volumes. Corners

of the cells are called nodes, faces are the boundaries of a cell, and edges are the boundaries of

faces. Grids are classified into three based on the structure: structured, unstructured, and hybrid.

Regular connectivity among cells identifies a structured grid, and its cells are hexahedra in 3D

and quadrilateral in 2D. The storage arrangement determines the neighborhood relationships of a

structured grid, and hence it has high space efficiency. The structured grid also has higher res-

olution, and better convergence [18]. An unstructured grid typically employs tetrahedral in 3D

and triangles in 2D and is identified by irregular connectivity. An unstructured grid needs explicit

storage for neighborhood relationships and can be highly space inefficient. A hybrid grid is made

up of portions of a structured and an unstructured grid in an optimized manner. While regions

around regular geometry may use a structured grid, the complex geometry regions would have an

unstructured grid. Structured grids can be Cartesian or curvilinear. The Cartesian grid edges are

parallel to the coordinate axes, while in the curvilinear grid system, coordinate surfaces are body

fitted or curved to fit the boundaries [19]. If the fluid domain boundary cuts the computational

cell, then the grid is an example for non-boundary fitted grid [20, 21, 22, 23]. Structured grids are

also classified as orthogonal and non-orthogonal grids depending on the angle at which grid lines

cross. Block-structured grids are another variation in which the domain is composed of a small

number of regions, and the Chimera grid is an example [24]. As the flow gets complicated, as in

the case of three dimensions, multiphase, dispersed or transient flow, generating boundary fitted

grids is computationally expensive than the Cartesian grid. In contrast, if an optimized number of

finer resolution grids are required near complex flow patterns or geometry, it is more difficult in
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the structured than the unstructured grid. The Cartesian grid system can have varying or stretched

grid size along the x, y, or z-axis, but this allows only to create a rectangular cuboid region with

the desired resolution, and as a consequence, the computational time is wasted [25]. Discretization

of equations in the structured grids is lucid than the unstructured grid, locally refined according to

the geometry and flow. When it comes to the free-surface flow or the interface flow, structured grid

topology is more convenient given that the geometrical observations are the basis of most numer-

ical models that have the interface advection capacity. However, methods like the front-tracking

method use an unstructured grid for interface tracking, and other examples may include [26].

1.4.1 Interface Tracking and Advection

Interface in a multiphase flow is the boundary separating two immiscible phases. While the

interfaces around the bubbles and droplets in the transient and dispersed phases are small in radius

with surface tension being the dominating force, the interfaces of the separated flows have a larger

radius of curvature, and phases are continuous without droplets or bubbles. The sizes of bubbles

and droplets are generally smaller than the size of the grid cell, and hence for FVMs where only

the integrated properties are used, it is not possible to model the interfaces around the bubbles and

droplets present in the transient and dispersed flows, without extra efforts. When a small fluid

element containing the interface in a separated flow is considered, the interface has one dimension

less than the fluid element. For example, the interface of a small 3D fluid element is a 2D surface,

and that of a 2D fluid element is a line segment. In numerical modeling of interfacial flows, a

grid cell would represent the fluid element, and mathematical surfaces or curves approximate the

interface inside the element. These interfaces are usually captured and reconstructed in the Eule-

rian methods and tracked in the Lagrangian method, which means that the information about the

interface is not explicit in the Eulerian approach and is extracted or captured from the knowledge

of the spatial distribution of the phases and reconstructed in piecewise manner inside grid cells

containing the interface. In the Lagrangian approach, trackers or body-fitted mesh are distributed

throughout the interface and follow it in time, and hence the shape and location of the interface are

explicitly known or tracked.
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The reconstructed or tracked interface is advected by the interface advection methods that

calculate the movement and deformation of the interface according to the velocity field during

the time step. The Lagrangian interface advection methods are tracking methods in which the

individual particles’ trajectory, momentum, and collision are calculated while the observer travels

along with the particle. Thus, the interface tracking methods that use the Lagrangian approach have

either particles or fitted mesh moving with the interface [27, 28, 29]. Eulerian interface advection

methods are associated with calculating the changes happening to a collection of particles or fluid

mass inside a fixed control volume. Figure 1.2 illustrate the two approaches. A cubical fluid

element located at the origin with unit dimension in positive axes is placed in a velocity field

given by Eqn. 1.1. (ux, uy, uz) is the velocity components in X, Y, and Z directions, and the time

step is 0.1s. Now, since we are interested in the incompressible fluid flows, the divergence of the

velocity field should be zero, and this can be verified as shown in Eqn. 1.2. Vorticity, defined as

a pseudovector field that describes the rotational tendency near a point, as would be seen by an

observer traveling along with the flow. Vorticity ω is calculated by taking the curl of the velocity

as given by Eqn. 1.3.

ux =− y + 2.0 m/s

uy =− z − 2.0 m/s

uz = 2x− 2.4 m/s

(1.1)

∇ ·U =
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0 (1.2)

∇×U =

(
∂uz

∂y
− ∂uy

∂z

)
î+

(
∂ux

∂z
− ∂uz

∂x

)
ĵ +

(
∂uy

∂x
− ∂ux

∂y

)
k̂ (1.3)

ω = 1̂i− 2ĵ + 1k̂ Hz

The Eulerian control volume is fixed with no shape or size change, and fluid may continuously
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enter and exit the control volume, whereas, in the Lagrangian approach, the fluid mass inside the

control volume remains fixed, which means that the control volume move and changes in shape

and size and move along with the fluid flow. It can be seen in the Fig. 1.2 that the control volume

undergoes deformation and is rotated while maintaining the constant volume.

Figure 1.2: Control volume in the a) Eulerian and the b) Lagrangian approach in a accelerating
non-divergent rotational velocity field given by eqn. 1.1. The curved lines are the stream lines and
red color is the control volume after one time step and the blue after two time steps of advection.

The early work with the Lagrangian approach for interface tracking is found in the Marker

and Cell method (MAC) [30]. In the MAC method, the velocity field models the fluid flow, while

the markers represent the fluid in space, and fluid flow is simulated by moving the marker parti-

cles through space as per the interpolated velocities from the velocity field. Peskin [31] used the

immersed boundary method to analyze the blood flow in the heart where the moving heart walls

were treated as inner boundaries. Other Lagrangian methods use a deformable mesh that conforms

to the interface at all times as in the front-tracking method [32] and Arbitrary Lagrangian Eule-

rian (ALE) methods [33, 34, 35]. In the front-tracking method, the flow field is discretized on a

stationary grid using conservative finite difference approximation, while the interface is identified

using an unstructured grid that can move through the stationary grid along with it. Now, since

the interface undergoes deformation, as the calculations proceed, the unstructured grid needs re-

meshing. In the immersed boundary methods, the structure is represented on a Lagrangian system,
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whereas the fluid is represented on an Eulerian grid system. In the Lagrangian approach, the mark-

ers, interface, or structure are parameterized to be defined completely and easily [36, 37, 38, 39].

The Lagrangian approach defines interfaces as internal boundaries, and boundary conditions are

prescribed on them. This approach may not be suitable for fluid flows with large deformations,

fragmenting interfaces, and fluid-structure interactions [40] because of the computational cost for

frequent re-meshing and interpolation errors introduced while re-meshing. However, a Lagrangian

grid is mostly two-dimensional, and it is possible to remove, add or reconnect the particles in case

of large deformations [1], and it is used by Chen et al. [41] where fluid fronts can be converged us-

ing the sub-grid information. Figure 1.3 shows an example of Lagrangian tracking of the interface

inside the Euler mesh.

Figure 1.3: Control volume in the Lagrangian and Eulerian approach.

Smoothed-particle-hydrodynamics (SPH) is a mesh-free Lagrangian method introduced by

Gingold and Monaghan [42], and Lucy [43], initially for astrophysical problems. Its increasing

use in fluid simulation is concentrated in real-time animation and games where accuracy is not as

critical as interactivity. Lack of mesh makes SPH ideally suited to simulate problems dominated

by complex boundary dynamics like free surface flows and simplifies1 the model implementation

and its parallelization, even for many-core architectures [44, 45]. The expense of grid-based simu-
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lations per number of cells is substantially higher than the price of SPH simulations per number of

particles. However, this is not advantageous for fluids like water due to the high-density [46] re-

quiring a very high number of particles. SPH’s main limitation includes the difficulty in setting up

the boundary conditions and the need for many particles to produce simulations of equivalent res-

olution compared to Eulerian methods. Another Lagrangian method called Particle-in-cell (PIC)

method, have discrete mass points representing the fluids, and it have been used since the 1960’s

[47]. Differential equations of mass, momentum characterize flow and energy in this method, and

mass points move by weighted velocities. PIC method can follow interfaces and advect particles

accurately because of its Lagrangian nature [48].

Lattice Boltzmann methods (LBM) use a very different approach from rest that, instead of

solving the Navier-Stokes equation directly, it uses streaming and collision processes to simulate

fluid density on a lattice. Even though this modern method can deal with complex multiphase

flows, the number of iterations required to satisfy the stability conditions are many times more

than the conventional finite volume methods, and not recommended for incompressible fluids.

The interface capturing methods are mostly used in the Eulerian framework, where the interface

is not tracked explicitly, but it is hidden in the Eulerian data from a previous time step and can be

captured and reconstructed. Color function is a capturing method where the interface may have a

width of the order of the cell size. In the case of a two-phase flow, each phase is represented by a

different color. If the grid cell is filled with one phase alone, the color function value for that cell is

the color representing that phase. If there is an interface inside the cell, both phases will be present

and the color function’s value will be the resultant color got by mixing the two colors, according

to the proportion of the volume filled by the corresponding phases. Since the relation that the total

derivative of the color function with time is zero, it is discretized to solve for the advection. This

approach is called the continuum advection method. The major drawback of this method is that

the interface is diffused along with the time steps, increasing the interface width to multiple times

the cell size. This problem could be solved by introducing a color function that varies smoothly in

the fluid domain, and this is the idea behind the level-set method (LSM) [49, 50].
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LSM uses -sets to analyze the surfaces and shapes and allows easier numerical computations

with curves and surfaces on a fixed Cartesian grid without parameterization [51]. LSM is also

efficient in tracking topology changes. In this method for any given point in domain, the level-

set function provide its shortest distance from the interface. The interface with zero width at any

time would be easily defined by setting the level-set function to zero. The normal direction to

the interface is calculated from the gradient of the level-set function. Even though the advection

using the level-set function is smooth and well defined, the original level-set method LSM cannot

ensure volume conservation and shape and size conservation in an advection field. Attempts have

been made to overcome this shortcoming by coupling with volume-of-fluid method (VOF) like

the Coupled-Level-Set-VOF (CLSVOF), and others [52]. Eulerian and Lagrangian frameworks

have been coupled previously to avoid shortcomings and to complement each other. Semi-implicit

surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid by

Schroeder [53] and enhancement of pressure calculation by the incorporation of background mesh

scheme by Wang [54] are such cases. A hybrid particle-level-set method proposed by Enright [55]

called the Lagrangian volume of fluid (LVOF) improved the level-set method’s mass conservation

properties using the Lagrangian marker particles. When an interface is passively advected in a

flow field, LVOF rebuilds the level-sets in the underresolved regions using marker particle, thereby

producing better results [56, 57, 58]. LVOF couples Lagrangian level set [59] and the marker

and cell method [60] with the continuum body force method [61] to compute surface tension.

For interface reconstruction, an extension of the VOF method was introduced by Dyadechko &

Shashkov [62] called the moment of fluid method (MoF) that keeps track of the cell-wise material

centroids and uses this information to reconstruct interface by minimizing the defect of the first

moment along with volume conservation constraint. This method allows the reconstructing of the

interface with no information on neighboring cell fluid volume. Very recent work by Wenzel and

Garrick [63] introduced the point-mass particle method, which is an Eulerian-Lagrangian approach

where Navier-Stokes equations are solved in the Eulerian grid while Lagrangian particles discretize

the fluid mass and phase information. Further review on interface tracking methods can be found
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in [64, 65, 66, 67].

1.5 Volume of Fluid Method (VOF)

Among the interface capturing methods, the volume-of-fluid method is the most popular. Hirt

and Nichols introduced the VOF method in 1979, a widely used FVM for tracking incompressible

fluid interfaces [68, 69]. VOF’s computational efficiency, straightforward treatment of changes in

interface topology, and mass conservation make it a success [3]. VOF is characterized by a static or

moving mesh and a discontinuous scalar function that gives the percentage of fluid present inside

each mesh cell. VOF is faster and has lower memory requirements than other methods, and is

used in the popular commercial CFD codes such as FLOW-3D, ANSYS Fluent, STAR-CCM+,

OpenFOAM, and CONVERGE. VOF method introduces a new function ‘F ’ that can vary in space

and time. If the fluid occupies any given point in space at a given time, then the function ‘F ’ takes

the value of one, else zero. So theoretically, ’F ’ is analogous to marker particle-filled in the entire

space. However, it is customary in the VOF method to use only one value per cell to define the fluid

state. By the definition of the ‘F ’ function, if we take the average value of ‘F ’ inside a grid cell,

represented as f , its value would always satisfy the relation 0 < f < 1 and the average value would

then represent the fractional volume of the cell that is filled with a specific fluid or phase. The value

of one would mean that the cell is completely filled with the fluid, and zero would mean that the

corresponding fluid is not present. A two-phase flow with air and water, ‘fw’ value of 0.6 for a cell

means 60% of the cell volume is filled with water and ‘40%’ with air. Even though the F function

carries the exact information about the interface, we know only f , which is the average value. Still,

VOF can reconstruct the interface from the f values. The mean normal direction of the interface

could be found out from the spatial gradient of the f function. Once this is known, a plane in three

dimensions or a line in two dimensions is constructed such that the f value and normal direction

are satisfied, which is the approximate boundary or interface. The evolution of the f function is

given by Df/Dt = 0, which states that the F moves with the fluid. One of the main advantages of

the VOF method is that it stores the minimum number of variables and follows the region instead

of an interface, and avoids the problems associated with the intersecting and splitting surfaces.
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In the original VOF advection, the piecewise constant scheme was used, i.e., the interface inside

each cell is parallel to one of the axes. An improvement to this method can be seen in Nichols et.

al. [70], Hirt and Nichols [69], Torrey et al. [71] and Duff [72]. Improvement is facilitated via an

additional degree of freedom to form stair shaped profile within a cell, according to the local spatial

distribution of fluid mass. Piecewise-linear schemes are an improvement in terms of accuracy to

piecewise-constant schemes, even though these are more complex and computationally expensive.

Since the fluid volume is conserved, the interface is located uniquely from interface normal alone.

Interface normal can be estimated using many algorithms in the context of VOF, but all of them rely

on the material volume data from the neighboring cells for interface reconstruction. Some notable

piecewise linear schemes include Rider and Kothe [3], Harvie and Fletcher [73, 74], Geuyffier et

al. [75], and Scardovelli and Zaleski [76, 4].

1.6 Outline

This dissertation presents a new interface tracking and advection method for incompress-

ible and immiscible fluid flows through four subsequent chapters. The proposed method named

VOF with Center of Mass and Lagrangian Particles (VCLP) couples Eulerian and Lagrangian ap-

proaches by using localized Lagrangian particles (LPs) inside the Volume of Fluid (VOF) frame-

work. Chapter one provides the background for the interface tracking and advection methods and

the review of the literature. The mathematical basis for the development of the proposed numeri-

cal method is presented in the second chapter. This chapter contains the continuity equation, the

Navier-Stokes equation, interface equations, and boundary conditions. The mathematical frame-

work of the VCLP method can be seen in the third chapter. It begins with the formulation of

the problem and algorithm and then explains the different steps inside VCLP. These steps include

the classification of grid cells, interface reconstruction, Lagrangian particles, the center of mass

tracking, fluid advection, updated fluid distribution, and filters and optimization. The interface re-

construction section includes methods to find the interface normal, interface curvature, and locate

the interface in two and three dimensions. The Lagrangian particles section explains its production,

storage, and how it is used to represent the fluid flow in a localized spatial and temporal manner. It
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also shows how the center of mass of the fluid is being tracked to improve accuracy. The advection

of fluid section explains methods to interpolate the velocity and figure out the acceleration field. A

new mathematical advection scheme used in VCLP is also presented in this section. Chapter four

contains the numerical test performed to evaluate the performance of the proposed method. The

numerical tests include translation, rotation, single vortex, deformation, and Zalesak’s test in 2D,

and 3D deformation test in 3D. The computational accuracy vs. speed of the method is presented in

the next section. The final section covers the application of the VCLP method with TSUNAMI2D,

a 2D Navier-Stokes model to simulate the dam break and breaking wave problems. The breaking

wave simulation results are compared with the literature.

The fifth chapter presents the numerical modeling of volcanic tsunami experiments conducted

using TSUNAMI3D, a fully 3D Navier-Stokes model. The final chapter summarizes and concludes

the dissertation.
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2. GOVERNING EQUATIONS

2.1 Introduction

In the mid-1800s, the French engineer and physicist Claude-Louis Navier and Anglo-Irish

physicist and mathematician George Gabriel Stokes independently derived the most prominent

and influential set of equations for fluid flows based on Euler’s equation following Newton’s sec-

ond law, called by the name Navier-Stokes(N-S) equations. Euler’s equation derived in the 17th

century, which is the backbone of N-S equations dealt with non-viscous fluids and subsequently

are non-realistic for vast regimes of unsteady flows. N-S equations included the viscosity effects

based on Newton’s law of viscosity and opened the possibility to solve and realize the complicated

phenomena such as vorticity and turbulence. Mass conservation equations and N-S equations,

which are momentum conservation equations, and the energy conservation equations, form the

foundation of fluid dynamic simulations. Even after two centuries, immense advancements in

mathematics and physics, and many practical applications, N-S equations remain as one of the

most difficult problems. However, scientists and engineers have been using it by reducing it into

simpler forms, adding constraints, and using empirical relationships. With the exponential rise of

the computational power, numerical calculations became faster and cheaper than ever. They hence

opened the possibility to solve millions of unknown variables in discretized forms of N-S equations

that would converge to the real solution as the resolution gets finer and closer to the Kolmogorov

microscales [77]. CFD uses different methods such as FVM, finite difference method (FDM), fi-

nite element method (FEM), and spectral methods to discretize the fluid flow problem into smaller

domains in terms of time, space, and frequency. CFD has tackled the N-S equations very efficiently

with the computational resources as far as a single fluid is present. However, the multiphase fluid

flows and single-phase flow with free-surface are challenging to solve efficiently. Complexity in-

creases as a multiphase flow goes from a separated flow to dispersed flow, and from a dispersed

flow to transient flow. The interface tracking and capturing techniques are used in these scenarios,
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which help to apply boundary conditions and estimate the momentum and energy transfer between

the flow phases. An introduction to interface tracking and advection method is given in the first

chapter. The proposed surface tracking and advection method VCLP is based on the VOF method,

an interface tracking and advection method. The interfaces are captured and reconstructed from

the fluid distribution. The fluid volume bounded by the interfaces and boundaries are relocated to

match the center of mass (CM) of the cells that is tracked via Lagrangian approach. The fluid cells

are then advected using LPs representing the fluid mass.

2.2 Fluid Dynamics Equations

The governing equations and boundary conditions of an incompressible and immiscible fluid

flow with a free surface are presented in this section. The corresponding equations are modified

for stationary and solid moving objects. The fluid flows considered in this dissertation have the

following conditions.

• The fluids are incompressible, and the bounded domain is given by Ω.

• The density and viscosity of the heavier phase and water is represented as ρw and µw respec-

tively and are constants.

• The density and viscosity of the lighter phase and the air is represented as ρa and µa, respec-

tively.

• When a single-phase flow is described, the density and viscosity of the fluid is represented

as ρ and µ, respectively.

2.2.1 Equation of Continuity

In the absence of mass-energy conversion, the law stating "energy can neither be created nor be

destroyed" is equivalent of "mass is neither created nor destroyed in a system." Mass conservation

is the basis of the continuity equation in fluid dynamics which states that the rate at which mass

enters a system is equal to the rate at which the mass leaves the system plus accumulation of mass

within the system [78, 79]. Now, if we consider an infinitesimally small control volume within the
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fluid flow, it satisfies the equation of continuity in the differential form represented as Eqn. 2.1

where t is the time and u is the velocity vector [78].

∂ρ

∂t
+∇ · (ρu) = 0

or

∂ρ

∂t
+

∂ρux

∂x
+

∂ρuy

∂y
+

∂ρuz

∂z
= 0 (2.1)

The accumulation or loss of fluid mass in time can be understood from the time derivative part, and

this is zero throughout the space for a typical flow domain. The divergence term calculates the net

inflow and outflow of fluid mass in the system. In general, liquids have very low compressibility

and the variation in volume is minimal even for a high pressure difference. Liquid are generally

considered incompressible for this reason. With the incompressibility assumption of the fluid, the

continuity equation reduces to a volume conservation equation. Eqn. 2.2 gives the volume continu-

ity equation stating that the divergence of velocity is zero throughout space for an incompressible

fluid flow.

∇ · u = 0

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0 (2.2)

2.2.2 Navier-Stokes Equation

Newton’s second law of motion states that the rate of change of momentum of an object is

directly proportional to the force applied, and in the absence of an external force, the momentum

is conserved. Navier-Stokes (N-S) equations are a set of non-linear partial differential equations

that represents Newton’s second law for fluid flows with the forces included. Eqn. 2.3 shows N-S

equations in the convective form, which assumes constant dynamic and second viscosity value for

the fluid.

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ µ∇2u+

1

3
µ∇(∇ · u) + ρg (2.3)
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This equation is applicable for both compressible and incompressible flows, and with the assump-

tion of incompressibility, it reduces to Eqn. 2.4.

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u+ g (2.4)

This equation assumes that the Cauchy stress tensor is Galilean invariant which means that it only

depends on the spatial derivatives of the flow velocity and not directly on the fluid flow velocity.

Moreover, the fluid is assumed to be isotropic. The divergence of the deviatoric stress is given by

the second term in the RHS of the Eqn. 2.4. In the Eqn. 2.4, u(x, t) is the velocity vector and

is the function of position vector x and time. The scalar components of the velocity vector in the

Cartesian coordinate system is represented as u = (ux, uy, uz) and that of the position vector is

given by x = (x, y, z) . p is the pressure and a scalar. ν is the kinematic viscosity which is equal

to
µ

ρ
where µ is the dynamic viscosity of the fluid. g is the body forcing or an acceleration vector.

For example, in case of gravity gx = 0, gy = 0, and gz = −g, where g is the acceleration due to

gravity. In comparison with the Cauchy momentum equation, N-S equations can be understood

as follows. The first term on LHS is the variation, the second term is the convective acceleration,

and the combination is the total derivative of the velocity. Hence often, LHS is written using the

material derivative as below.
Du

Dt
=

∂u

∂t
+ (u · ∇)u

The pressure term represents an internal source, and the acceleration term represents an exter-

nal source or forcing. The viscosity term is the diffusive term. The equation 2.4 is in the non-

conservative form and the second term on the LHS, (u ·∇)u can be represented in the conservative

form as below Eqn. 2.5

(u · ∇)u = ∇ · (uu)− u(∇ · u) = ∇ · (uu) (2.5)
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Applying continuity equation into Eqn. 2.5, the resulting term ∇ · (uu) is the conservative form.

The conservation argument holds as long as there are no external outflows and inflows in the fluid

domain Ω. Nevertheless, there are instances where an external inflow or outflow exists, in which

case, Eqn. 2.5 needs to be modified as below Eqn. 2.6

(u · ∇)u = ∇ · (uu)− ϕu (2.6)

Here, ϕ is an internal function, and it represents the volume that is created by a source object or

taken away by a sink object in the control volume domain. It is more convenient to use the viscous

term in the following manner given in Eqn. 2.7 since we are dealing with the Newtonian fluid.

Here τ is the stress tensor, and ∇u is the rate of strain.

ν∇2u =
1

ρ
∇ · (µ∇u) =

1

ρ
∇ · τ (2.7)

2.2.3 Equations of the Interface

Figure 2.1 shows a schematic representation of the computational domain for a two-phase flow

with stationary and moving objects. The seafloor is treated as a rigid stationary object, and the

ellipsoid represents a rigid moving object. The sea surface or the air-water interface can be seen.

Because of the large density and viscosity of water compared to air, it is common to only simulate

water by neglecting air, in which case the air-water interface is a free surface. The computational

domain is a bounded box, and it will be divided into smaller control volumes in a typical FVM

procedure. Every point on the interface moves along with the fluid, which would mean that if

we ride a particle at the interface, its material derivative is zero. So, if the interface at anytime t is

represented as scalar function I(x, t), then its material derivative is zero as given in Eqn.2.8.

DI

Dt
=

∂I

∂t
+ (u · ∇)I = 0 (2.8)
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Figure 2.1: A schematic representation of a computational domain Ω containing a two-phase flow
with rigid stationary and moving objects.

This equation describes the evolution of the interface in space and time, and at the same time, the

scalar function I also satisfies the continuity equation since the flow is incompressible. The veloc-

ity field would advect the interface I along with it. In Eulerian methods, the interface’s position and

shape are unknown at the beginning of each time-step, and it needs to be captured from the spatial

distribution of the fluid. Interface I is solved only in the fluid domain, and it is more consistent

with the convection term presented in the non-conservative form [80]. Grid cells or computational

elements that are part of an internal object and wholly immersed in the fluid are called object ele-

ments. An interesting way to consider the internal objects is as a fluid of zero velocity and infinite

density, and hence no force is enough to move or deform it and remains stationary behaves like a

solid object. Alternative approach to model the internal objects is by blocking out the entire object
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elements, but this leads to objects with step-wise boundaries. To achieve a finer geometric repre-

sentation of the boundaries of the curved objects in the computational domain, a technique called

Fractional Area Volume Obstacle Representation (FAVOR) [70, 81, 82, 80] is used. In FAVOR

method, the stationary or moving rigid bodies may have any arbitrary shape as geometry is defined

only by the fractional face area and fractional volume that allows the fluid flow. A scalar field func-

tion Θ(x) takes the value zero if it is entirely an object element, whereas if some percentage of the

volume of the object element is open for the fluid flow, then Θ(x) takes that fractional value. So

in the case of internal objects, the continuity, Navier-Stokes, and free-surface advection equations

can be written as follows.

∇ · (Θu) = 0

Θ
∂u

∂t
+ (Θu · ∇)u = −Θ

ρ
∇p+Θν∇2u+Θg

∂Θf

∂t
+ (u · ∇)Θf = 0

(2.9)

When there are moving objects, the momentum and continuity equations need to be changed to

account for occupying new grid cells or retrieving from old cells, imparting a force on the fluid

and changing the boundaries of the fluid domain. Figure 2.2 illustrates a three-dimensional control

volume with a moving object. Vo is the volume of object inside the control volume, and VF the fluid

volume inside. So and SF represent the object and fluid surfaces, while Sof is the interface of the

object and fluid. If more object volume is entering than leaving the control volume, that means the

fluid volume decrease and vice-versa. Therefore, the conservation mass inside the control volume

V is given by Eqn. 2.2.3 and 2.2.3 where
dVo

dt
is the rate of change of object volume inside the

control volume.

∫
S

(u · n) dS =

∫
SF

(u · nF ) dSF +

∫
So

(uo · no) dSo = 0 (2.10)

and,
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∫
SoF

(uo · no) dSoF =
dVo

dt
(2.11)

Taking this into account the new continuity equation inside the control volume becomes Eqn.

2.2.3

∆ · u =
1

V
(
dVo

dt
) = ϕ(x, t), (2.12)

where, the function ϕ(x, t), ensures a zero divergence inside the control volume. The momen-

tum equations for the control volume with moving object is attained by substituting Eqn. 2.2.3 into

2.4 to get Eqn. 2.13.

∂u

∂t
+ (u · ∇)u− ϕu = −1

ρ
∇p+ ν∇2u+ g (2.13)

Figure 2.2: An illustration of a three-dimensional control volume with a moving object.
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In general, the interface tracking methods use an Eulerian or Lagrangian approach. In the La-

grangian approach, either a set of marker particles distributed throughout the interface continuously

track the interface, or an interface fitted mesh moves over a stationary Eulerian mesh. However,

both strategies are not apt in case of large interface deformations or the breaking and merging

interfaces, in such case, frequent remeshing would be required and would result in significantly

higher computational cost. The Eulerian approach is generally more efficient and straightforward

in the presence of highly deforming, merging, and breaking interfaces. It is also better than the

Lagrangian methods in updating the interface location since the fluid flowing through the mesh is

computed using the finite-difference method. Nevertheless, fluid flow properties get averaged in

Eulerian methods while Eqn. 2.8 is solved numerically because of the integration of functional

values over the control volume or grid cells. It would also spread the interface and reduce its cur-

vatures, along with smoothing the fluid flow properties. Hence, extracting more information about

the interface position or shape in the sub-grid resolution is not easy. One solution is to recreate

an interface with the highest mathematical likelihood from the known averaged values. Interface

capturing methods attempt to do this with better accuracy and lesser computational effort. Differ-

ent types of interface capturing and advection methods are discussed in the first chapter. These

discussions led to the development of a new surface tracking algorithm that can overcome some

of the limitations by combining the strengths of the Lagrangian and Eulerian approaches. The

literature review guided the author to use the volume-of-fluid (VOF) method as a starting point.

VOF method developed by Hirt and Nichols in 1979 is a popular method that is currently being

used in multiple commercial software with newer modifications. VOF method is outlined in the

first chapter, and it will be explained in detail later in this chapter. The presented surface tracking

and advection method is based on the VOF method and is named VOF-with-Center-of-Mass-and-

Lagrangian-Particles (VCLP). The mathematical formulation of VCLP is presented in detail in the

next chapter.
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2.3 Boundary Conditions

The interfaces in the fluid flow and internal objects, both stationary and moving, requires

boundary conditions. It is the initial conditions and the boundary conditions that introduce the

dynamics and decide the path of solution. Moreover, if surface tension needs to be considered,

the boundary condition at the contact line is required, which is the intersection of the surface of

the solid object with the free surface. A typical computational domain related to ocean engineer-

ing problems features a sea bottom floor,seawall, structures, beach, wavemakers, landslides, dam

gates, and floating objects as the internal objects, with some moving and some stationary. The

solid boundaries have, in general, the no-slip boundary condition if fluid is viscous. The no-slip

boundary condition is a Dirichlet and Neumann condition prescribed at the flow domain boundary,

which states that the boundary is impermeable and fluid very close to the solid wall would have

the same velocity or a zero velocity relative to the wall. So, fluid velocity at the point of contact

will be zero for seafloor and other stationary objects. In contrast, the free-slip boundary condition

neglects shear stress at the solid boundary, which means that the presence of the wall does not

affect the tangential flow. Eqn. 2.3 shows the free-slip boundary condition.

un = 0,

∂ut

∂n
= 0

The dot product of velocity and normal wall vector gives un, and the dot product of velocity and

tangential vector gives ut. un is the normal component of the fluid velocity at the solid wall, and

ut is the tangential velocity. Figure 2.3 shows the difference between the velocity profiles near

the solid boundary wall with no-slip and free-slip boundary conditions. The physical boundary

conditions at the interface between air and water play a major role in determining the behavior

of the water waves. In the surface capturing methods, the interface is only known in the initial

time t = 0. The kinematic and dynamic boundary conditions need to be applied at the free surface.

While the kinematic boundary condition describes the evolution of the interface or free surface, the
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Figure 2.3: Solid boundary velocity profiles for no-slip and free-slip boundary conditions.

stresses acting on the interfaces are described by the dynamic boundary conditions. The tangential

free-surface dynamic boundary condition can be obtained from the force balance at the boundary,

and Eqn. 2.14 shows it below.

µ

(
∂un

∂t
+

∂ut

∂n

)
= 0 (2.14)

The normal free-surface dynamic boundary condition got from the force balance at the boundary

is given by Eqn. 2.15.

− p+ 2µ
∂ut

∂n
= −p0 + σκ (2.15)

Here p0 is the ambient air pressure, σ is the surface tension, and κ is the interface curvature. The

mean curvature of an interface is given by the divergence of normal n as shown in Eqn. 2.16.

κ = ∇ · n = ∇ ·
(

∇I

|∇I|

)
(2.16)

It is assumed in the dynamic boundary condition that the ambient pressure is constant or zero.

Because of this approximation, the air and water phases in ocean waves are decoupled. If surface

tension and viscosity effects on the boundary are neglected, it leads to p = p0. Kinematic bound-
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ary conditions describe the evolution and movement of the free surface. Many surface tracking

methods exist because even though kinematic conditions are well defined in both Eulerian and

Lagrangian approaches, we can derive different forms of kinematic boundary conditions. In order

to balance the forces, the interface has to satisfy the boundary conditions and be in agreement with

the stationary and moving objects. Since the exact interface is only known at the initial time t = 0,

the Eulerian approach requires the reconstruction of interfaces each time step, and its accuracy is

crucial to the solution.
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3. VOF WITH THE CENTER OF MASS AND LAGRANGIAN PARTICLES (VCLP)

METHOD

3.1 Problem formulation

Consider a laboratory wave basin with a two-dimensional piston wavemaker creating waves

that travel towards the increasing slope and the beach. The wave propagates in the X-direction,

and the computational domain is divided using a Cartesian grid system with non-uniform cell sizes.

The control volumes are fixed in space and time. Figure 3.1 shows a schematic representation of

the 2D cross-sectional view of the computational domain. The cell dimensions have a higher

resolution near the wave-breaking zone, and the resolution in each direction varies in a quadratic

manner.

Figure 3.1: Schematic representation of the 2D cross-sectional view of a computational domain
for a typical nearshore two-phase ocean flow with slopped bottom and beach. The resolution of
Cartesian cells varies in a quadratic manner along the X and Z directions. Zoomed in view shows
the numbering of cells.

The known quantities at the start of a time step in the computational domain are the geom-

etry, boundary conditions, grid locations, fluid distribution, pressure, and velocity field from the

previous time step. Now, the equation of continuity and N-S equations in the discretized form

are applied to the control volumes, and by solving this large set of simultaneous equations corre-
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sponding to every cells, the pressure and velocity field for the given time step is solved. Once the

pressure and velocity field is known, fluid is advected according to the velocity field. The changes

to the control volume quantities such as mass and momentum are updated and given as an input to

solve pressure and velocity for the next time step.

Now, when an interfaces is present inside a cell, it needs to be located and reconstructed before

advection, and during advection, different methods are implemented to ensure accuracy and a

non-divergent flow. The increase in grid resolution is one way to improve accuracy, but by the

expense of computational time as this would lead to an increase in the number of pressure-velocity

coupled simultaneous equations to be solved implicitly. The proposed method, VCLP, attempts

to improve surface tracking and advection accuracy of the SOLA-VOF [70] method, without a

significant increase in computational intensity compared to the increasing resolution. It uses the

solved velocity field, fluid mass and CM distribution from a given time step, reconstructs interfaces,

advects, and redistributes the fluid for the next time step.

To present the proposed method in the simplest way, consider the earlier mentioned laboratory

wave basin with a two-dimensional waves traveling towards the beach. We assume air is void,

making it a single-phase flow with a free surface or surface. Now, the computational domain

Ω represent the 3D space occupied by the wave basin, and Ω is discretized into nX , nY , nZ

Cartesian grid cells or control volumes in positive X, Y, Z directions. The wave simulation time

Ts is discretized into nt time steps where mth time step tm have a duration of ∆tm units. The space

occupied by any cell inside Ω is denoted by ‘s′ and is located by a 3-tuple (i, j, k), which are cell’s

position numbers along X, Y , and Z axes. δxi, δyj, δzk are corresponding cell’s dimensions along

X, Y and Z axes. So, Ω is the sum of all the control volumes or cell spaces as given in Eqn. 3.1.

k=nZ∑
k=1

j=nY∑
j=1

i=nX∑
i=1

s(i, j, k) = Ω (3.1)

If the volume of water inside the cell s(i, j, k) at time tm is v(i, j, k,m), then total volume of water
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in the wave basin during time tm is represented as Vm given by the Eqn. 3.2.

k=nZ∑
k=1

j=nY∑
j=1

i=nX∑
i=1

v(i, j, k,m) = Vm (3.2)

Now, consider a partially filled surface cell in Ω, s(i, j, k) at time tm. The volume of water inside

this cell is denoted by v(i, j, k,m) and the cell is shown in Fig. 3.2. The point (xi, yj, zk) is located

at top diagonal corner of the cell and velocity components satisfying the zero divergence condition

are shown defined at the the cell centers. The dimensions of the cell are δxi, δyj , and δzk). The

Figure 3.2: Cell space
s(i, j, k) at time step tm with
fluid volume v(i, j, k,m),
dimension (δxi, δyj, δzk).
Exact location of (xi, yj, zk)
and (xi−1, yj−1, zk−1) is
shown along with the three
components of the advective
velocity u(i, j, k,m) defined
at the cell face centers.

volume occupied by this cell is calculated from its dimensions using Eqn. (3.3). Here the modulus

sign represents the volume of the cell space s(i, j, k).

|s(i, j, k)| = δxiδyjδzk (3.3)
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The center of mass (CM) denoted by ‘c’ of the water inside the cell is given by Eqn. (3.4), where

ρw is water’s density, Mw is mass, and x = (x, y, z) is the position vector. ρw is taken outside

the integral on the assumption that density is uniform throughout the cell volume. If the fluid is

represented by infinitely many uniformly distributed particles with equal mass, then the average of

their positions would be equal to the location of the CM.

c(i, j, k,m) = (cx, cy, cz) =
ρw
Mw

∫∫∫
v(i,j,k,m)

x dv =

∫∫∫
v(i,j,k,m)

x dv∫∫∫
v(i,j,k,m)

dv
(3.4)

The volume occupied by the water in any cell in Ω always satisfies the inequality condition given

by Eqn. (3.5) which simply states volume is a positive quantity and its maximum value is the

volume of cell space itself.

0 ≤ v(i, j, k,m) ≤ |s(i, j, k)| (3.5)

Now, a binary value function F (x,m) with outputs zero and one, based on the VOF method, is

defined at every point in computational domain Ω and through time [0, Ts]. F can be considered

a marker particle of zero sizes that takes a value of one if water is present, else zero as given in

Eqn. 3.6. This means that an empty cell have zeros and completely filled fluid cells have ones

throughout the cell space.

F (x,m) =


1, if water is present at location x at time tm

0, otherwise
(3.6)

For the cell space s(i, j, k,m) where F is defined everywhere, the average of value of F function

gives an another function f known as fractional fluid volume is given by Eqn. 3.7. f is a scalar
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value defined for every cells in the domain.

f(i, j, k,m) =
1

G

g=G∑
g=1

F (xg, yg, zg, tm)



where xi−1 < xg ≤ xi

yj−1 < yg ≤ yj

zk−1 < zg ≤ zk

G → ∞

(3.7)

Since, the marker particles are filled uniformly, the value of f(i, j, k,m) would be exactly same as

the fractional volume of water in the cell s(i, j, k,m) which gives the Eqn. 3.8. This means that f

value is is the ratio of fluid volume estimated from the geometry of the fluid boundaries inside cell

including the interface to the cell space volume.

f(i, j, k,m) =
v(i, j, k,m)

|s(i, j, k)|
(3.8)

If Eqn. 3.5 is applied to Eqn. 3.8, it gives that the value of f always lies between zero and one, as

shown in Eqn. 3.9. Even though this is a strict condition in theory, numerical methods may cause

it go out of the limit (f > 1.0 or f < 0) because of non-zero divergence error.

0 ≤ f(i, j, k,m) ≤ 1 (3.9)

fm is a matrix of dimension nX × nY × nZ filled with f(i, j, k,m) values of all cells. Now,

consider three matrices of same dimensions containing the velocities u(i, j, k,m) corresponding

to every cells in Ω, represented as UX,m, UY,m, and UZ,m. Together these three matrices is

denoted as Um. Similarly the CM matrices is denoted as cm. Then the entire purpose of VCLP

can be conveyed by the simple relation between input and output parameters given by Eqn. 3.10.

Thus VCLP needs velocity field, fluid distribution, and the CM location of the given time step

to provide the fluid distribution, and the CM for the next time step. So it takes seven/four scalar
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input/output in 3D and five/three in 2D.

VCLP(input parameters) = (output parameters)

VCLP(fm, cm, Um) = (fm+1, cm+1) (3.10)

3.2 Classification of Cells

The purpose of classification of cells is to identify if a cell have fluid and interface as only cells

with fluid needs advection and only cells with interface require interface reconstruction. Therefore,

all the cells in Ω are classified into empty (E), surface (S), and interior cells N . VCLP further

classifies the interior cells into three more to increase the computational performance by skipping

cells that satisfy certain conditions using a new method called Skip Core Optimization (SCO),

which is explained later in the chapter. The three subdivisions of the interior cells are Inner Surface

(Ns), Inner Mantle (Nm), and Inner Core (Nc). The classification is done on the basis on the value

of cell-type denoted by CT . Table 3.1 gives the classifications and the corresponding CT values.

Table 3.1: Classification of cells in the computational domain Ω.

Class Notation CT

Empty E 0

Surface S 1

Inner Surface Ns 2

Inner Mantle Nm 3

Inner Core Nc 4

Interior N 2,3,4

The CT values for the classification of cells are calculated in the following steps 1 to 6, where

q is the ceiling function value of the Courant–Friedrichs–Lewy (CFL) number (q = ⌈CFL⌉) and

33



the CFL number is given by CFL =
umax∆t

δx
. C∗

T is the temporary CT value which gets updated

along the steps.

1. C∗
T (i, j, k,m) = ⌊f(i, j, k,m)⌋

2. CT1(i, j, k,m) =
∑k=k+q

k=k−q

∑j=j+q
j=j−q

∑i=i+q
i=i−q C

∗
T (i, j, k,m)

3. CT (i, j, k,m) =


2 where CT1 = (2q + 1)3 and f(i, j, k,m) > 0.5

C∗
T (i, j, k,m) otherwise

4. CT2(i, j, k,m) =
∑k=k+q

k=k−q

∑j=j+q
j=j−q

∑i=i+q
i=i−q C

∗
T (i, j, k,m)

5. C∗
T (i, j, k,m) =


3 where CT2 = 2(2q + 1)3

C∗
T (i, j, k,m) otherwise

6. CT (i, j, k,m) =


4 where CT3 = 3(2q + 1)3

C∗
T (i, j, k,m) otherwise

Figure 3.3 shows the classification of cells in 2D and 3D. The left figure shows a surface cell

C and its twenty-six neighbors and some of their classifications: which are empty(E), surface(S),

and interior(N ) cells based on the CT value. Here a planar fluid surface cuts through the cell C.

The figure in the middle shows a part of a circular 2D fluid body inside a rectangular domain with

square grid cells. The radius is 4.8 times the cell length. Figure in the right shows how the 2D

fluid body is classified according to the CT values, and transformed into the f values, and the CM

locations.
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Figure 3.3: Left: 3D cell classification into empty (‘E’), surface (‘S’) and interior (‘N’). Cell ‘C’
is a surface cell. Slanted plane is the fluid surface. Middle: A part of a 2D circular fluid body
and grid cells drawn on top. Right: Equivalent f -value, cell classifications and the CM locations
represented by ‘*’.

The calculation of CT can be explained as follows. Cells without any fluid are an empty cell

(E) with CT = 0, else non-empty . If two cell have at least a face, edge, or vertex in common, they

are called neighbor cells. In 2D Cartesian grid system, there are eight neighbor cells and twenty-

six in 3D. Step 1 label all non-empty cells as surface cells (CT = 1). Steps 2 and 3 identifies

surface cells with all neighbors also being surface cells and classify them as inner surface cells

(CT = 2). Steps 3 and 4 then identifies the inner surface cells with all neighbors also being inner

surface cells and classify them as inner mantle cells (CT = 3). Finally Steps 5 and 6 identify the

inner mantle cells with all neighbors also being inner mantle cells and classify them as inner core

cells (CT = 4).

3.3 Interface Reconstruction

Interface reconstruction is done after the classification for all the surface cells (S) in Ω iden-

tified by f value between less than one and greater than zero. In VCLP, there are two choices for

interface reconstruction calculation; Piecewise-Linear-Interface-Calculation (PLIC) method and

the Piecewise-Circular-Interface-Calculation method (PCIC). PLIC is used by many models and it

creates a line segment representing the interface in 2D and a plane in 3D, whereas PCIC creates a

circular arc for the interface in 2D and a spherical surface in 3D. The following sections look into
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two methods closely.

3.3.1 Interface Normal for PLIC

The objective of an analytically recreated PLIC interface is to match closely to the actual fluid

interface in terms of two parameters which are the f value and mean slope. Even though it may not

be possible to predict the interface exactly from the averaged Eulerian information, it is possible to

predict the most likely interface. Now, we go back to the surface cell s(i, j, k,m) mentioned in Fig.

(3.2). The PLIC construction is done using the f values of the cell and its neighbors. L(i, j, k,m)

denotes the PLIC construction of the cell given by Eqn. 3.11.

L(i, j, k,m) : nxx+ nyy + nzz + a = 0 (3.11)

Where direction of the planar surface is given by its normal n = (nx, ny, nz) and a is the planar

constant. In theory, the planar normal is determined using the Eqn. 3.12 where ∇F is the gradient

of the F . However, only average of F in the cell, f is known and not F . As the size of cells

gets smaller, f converges towards F and hence, the approximate Eqn. 3.13 is written where ∇f is

given by Eqn. 3.14.

n =
∇F

|∇F |
(3.12)

∇f

|∇f |
≈ ∇F

|∇F |
(3.13)

∇f =
∂f

∂x
î+

∂f

∂y
ĵ +

∂f

∂z
k̂ (3.14)

f function is discretized in space, and to find the gradient along the X axis the Eqn. 3.15 is used.

Similarly, the other two components along Y and Z axes of the gradient function can be estimated.

∇nf denotes the interface normal estimated this where subscript n stands for numerical.

∇nX
f =

∂f

∂x (i,j,k)
=

f(x)(i+ 1)− f(x)(i)

δxi+1 + δxi

+
f(x)(i)− f(x)(i− 1)

δxi−1 + δxi

(3.15)

where,
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f(x)(i) =

∑k=k+1
k=k−1

∑j=j+1
j=j−1 f(i, j, k)δyjδzk∑k=k+1

k=k−1

∑j=j+1
j=j−1 δyjδzk

In the literature, the two common ways to estimate the interface normal are by finding the ∇nf and

by using a method dealing minimum slope with respect to the axes. We may call these numerical

gradient method and the minimum slope error method. Descriptions for these methods are given

below, after which a new proposed method called T- Slope method, is presented.

3.3.1.1 Numerical Gradient Method

This method is same as finding ∇nf , however Eqn. 3.16 shows the calculation of normal

using matrices in 2D. The linear system of equations can form a matrix and can be represented

as Añ = b and this can be solved by multiplying with the transpose of A matrix which gives

ñ = ATb and is solved by Gaussian elimination method. The ‘normal’ is normalized by n =
ñ

|ñ|



0.5(δxi+1 + δxi) 0

0.5(δxi+1 + δxi) 0.5(δyj+1 + δyj)

0 0.5(δyj+1 + δyj)

−0.5(δxi−1 + δxi) 0.5(δyj+1 + δyj)

−0.5(δxi−1 + δxi) 0

−0.5(δxi−1 + δxi) −0.5(δyj−1 + δyj)

0 −0.5(δyj−1 + δyj)

0.5(δxi+1 + δxi) −0.5(δyj−1 + δyj)



ñx

ñy

 =



fi+1,j+0 − fi,j

fi+1,j+1 − fi,j

fi+0,j+1 − fi,j

fi−1,j+1 − fi,j

fi−1,j+0 − fi,j

fi−1,j−1 − fi,j

fi+0,j−1 − fi,j

fi+1,j−1 − fi,j



(3.16)

3.3.1.2 Minimum Slope method

This method is described by the developers of the VOF method [69], checks if the surface

is represented more error-free as Y (x) or X(y). ‘This is determined by calculating minimum of∣∣∣∣dXdy
∣∣∣∣ and

∣∣∣∣dYdx
∣∣∣∣. If

∣∣∣∣dXdy
∣∣∣∣ is smaller, then surface is represented as X(y), else Y (x). The equations
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used for this are shown in Eqns. 3.17 to 3.20.

Yi = Y (xi) =fi,j−1δyj−1 + fi,jδyj + fi,j+1δyj+1 (3.17)

Xj = X(yj) =fi−1,jδxi−1 + fi,jδxi + fi,j+1δxi+1 (3.18)

(
dY

dx

)
i

=
2(Yi+1 − Yi−1)

δxi+1 + 2δxi + δxi−1

(3.19)(
dX

dy

)
j

=
2(Xj+1 −Xj−1)

δyj+1 + 2δyj + δyj−1

(3.20)

3.3.1.3 T-Slope method

T-Slope method is a new proposed method to estimate the interface normal. It uses some of

the ideas behind both, the numerical gradient method and the minimum slope method. The T-

slope method is described by Eqns. 3.21 to 3.26 in order to find the interface normal based on

the intermediate parameters Sx, Sy, Hx, Hy, Fx, Fy, α and θ. The first two parameters Sx and Sy

represent the change is volume of with change in distance, with units of height. They are calculated

with Eqn. 3.21.

Sx =

j=j+1∑
j=j−1

δyj

(
fi+1,jδxi+1 − fi,jδxi

δxi + δxi+1

+
fi,jδxi − fi−1,jδxi−1

δxi + δxi+1

)

Sy =
i=i+1∑
i=i−1

δxi

(
fi,j−1δyj−1 − fi,jδyj

δyj + δyj−1

+
fi,jδyj − fi,j+1δyj+1

δyj + δxj+1

) (3.21)

Then, Eqn. 3.22 is used to estimate the two slopes parameters Hx and Hy which are non-dimensional.

Hx =

j=j+1∑
j=j−1

δyj

(
fi+1,j − fi,j
δxi + δxi+1

+
fi,j − fi−1,j

δxi + δxi+1

)

Hy =
i=i+1∑
i=i−1

δxi

(
fi,j−1 − fi,j
δyj + δyj−1

+
fi,j − fi,j+1

δyj + δxj+1

) (3.22)

Eqn. 3.23 estimates two non-dimensional parameters which are independent of the cell dimen-
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sions.

Fx =

∑j=j+1
j=j−1 fi+1,j −

∑j=j+1
j=j−1 fi−1,j∑j=j+1

j=j−1 fi,j

Fy =

∑i=i+1
i=i−1 fi,j−1 −

∑i=i+1
i=i−1 fi,j+1∑i=i+1

i=i−1 fi,j

(3.23)

The magnitudes of these two parameters Fx and Fy are used to estimate an another parameter α as

in Eqn. 3.24.

α =


1 if |Fx| < |Fy|

0 else
(3.24)

The calculated parameters Sx, Sy, Hx, Hy, Fx, Fy and α are used as in Eqn. 3.3.1.3 to estimate θ

which is the angle of rotation of interface with respect to the X-axis.

θ =



tan−1(Hy) + π if α = 0 & Sx ≥ 0

− tan−1(Hy) if α = 0 & Sx < 0

tan−1(Hx) +
π

2
if α = 1 & Sy ≤ 0

− tan−1(Hx)−
π

2
if α = 1 & Sy > 0

(3.25)

Finally, the components on the interface normal are estimated using Eqn. 3.26.

nx = cos θ, ny = sin θ (3.26)

3.3.1.4 Comparison of methods to find the interface normal

A two-dimensional circular fluid domain is reconstructed from the actual f values, i.e., from

the intersection area of the circle and cell boundaries using PLIC with the three methods described
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in previous sections. The circular domain is centered at (1,1) with a radius of 0.15 units. The grid

resolution for two cases are 1) δx = 0.025, δy = 0.025, with aspect ratio 1:1, and 2) δx = 0.05

and δy = 0.01 with aspect ratio 5:1. The qualitative results are shown in Fig. 3.4 and 3.5. The

numerical gradient method interfaces are not smooth and have significant discontinuities in both

cases with different aspect ratios. The minimum slope method works well with 1:1 aspect ratio,

however for the larger or smaller aspect ratios it is biased and have larger errors. It can be seen that

the estimated slope near the top and bottom parts of the circular fluid are more horizontal than the

true slope for the aspect ratio of 5:1. The introduced T-slope method seems to resolve this issue,

producing good result for both scenarios as can be seen from Fig. 3.5.

(a) Normal Gradient Method.

(b) Minimum Slope Method.

Figure 3.4: Circular fluid domain reconstructed from the f values using PLIC with interface normal
calculated using a) Normal Gradient Method b) Minimum Slope Method.
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Figure 3.5: Circular fluid domain reconstructed from the f values using PLIC with interface normal
calculated using the T-Slope Method.

3.3.2 Interface Curvature for PCIC

The Piecewise-Circular-Interface-Calculation (PCIC) is an alternative interface reconstruction

method to PLIC, but with a higher order. It constructs a circular arc (2D) or a spherical surface

(3D) for all the surface cells in with f values less than one. A PLIC construction can be seen as an

equivalent PCIC construction withe radius of the of the circular arc approaching infinity. As PCIC

have higher order than PLIC, improved accuracy is expected in the reconstructed interface, and

consequently in the simulated flow. Since the curvature information can also be used to estimate

the surface tension force, it is expected to improve accuracy in related scenarios also. PCIC build

on top of PLIC meaning PLIC calculation are required for the PCIC. The PCIC construction inside

the cell s(i, j, k,m) is denoted as C(i, j, k,m) and in 3D, it is given by Eqn. 3.27,

C(i, j, k,m) : (x− x0)
2 + (y − y0)

2 + (z − z0)
2 −R2 = 0


xi−1 < x ≤ xi

yj−1 < y ≤ yj

zk−1 < z ≤ zk

(3.27)

where (x0, y0, z0) is the sphere’s center and R its radius. The extra information required for PCIC

than PLIC is radius of the sphere which PCIC construction is part of or equivalently the mean
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interface curvature (MIC) which is the reciprocal of R, i.e. κ.

3.3.2.1 MIC in 2D

VCLP use a new method named, average neighbor curvature method in 2D to estimate the

mean-interface -curvature (MIC) or κ̄. Here, MIC is found by averaging four curvatures calculated

from the four nearest neighbor surface cells. Figure 3.6 shows the normals drawn at the four

neighbors and their intersection with the normal of the surface cell in consideration providing

the neighbor radius’. MIC is then calculated using Eqn. (3.28) where Rm is the mean radius of

curvature and rk is the neighbor radius. Normals are drawn at the midpoints of PLICs, which are

shown as dots.

Figure 3.6: Estimation of the
mean interface curvature in 2D
for the PCIC construction. Nor-
mals are drawn from the mid point
of nearest four neighboring PLICs
to the normal of the surface cell
in consideration passing through
its PLIC construction’s midpoint.
Neighbor curvatures are averaged
to get the mean interface curvature
(MIC).

Rm =
4∑k=4

k=1
1
rk

(3.28)

Neighbor radius rk is found using Eqn. (3.29) where (x0, y0) is the mid point of the PLIC construc-

tion and (nx, ny) is its normal passing through its midpoint, (mx,my). (nex, ney) is the normal of
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the neighbor’s PLIC construction.

rk =
|nex(y0 −my)− ney(x0 −mx)|√

nxney − nynex

(3.29)

3.3.2.2 MIC in 3D

To estimate MIC in 3D, a new method called differential interpolation (DI) is used. DI uses

the surface normals located at the centroids of L constructions in the cell and in its nearest three

neighboring surface cells. The centroid of the cell of consideration is e0 and its three neighbors are

e1, e2 and e3. Similarly four normals at the centroids are n0 to n3. The mean radius of curvature

or the inverse of MIC (κ̄) is given by Eqn. (3.30) where ∇ ·n is the divergence of normal at the L

centroid.

R =
1

κ̄
= − 2

∇ · n
, ∇ · n =

∂nx

∂x
+

∂ny

∂y
+

∂nz

∂z
(3.30)

The three components of ∇ · n are found using Eqn. (3.31) to (3.33). Note that here n0 −

nk = (Xk, Yk, Zk) and e0 − ek = (xk, yk, zk) where k =1, 2, and 3 representing the three nearest

neighboring surface cells.

∂nx

∂x
=

X1(y2z3 − y3z2) +X2(y3z1 − y1z3) +X3(y1z2 − y2z1)

D
(3.31)

∂ny

∂y
=

Y1(x3z2 − x2z3) + Y2(x1z3 − x3z1) + Y3(x2z1 − x1z2)

D
(3.32)

∂nz

∂z
=

Z1(x2y3 − x3y2) + Z2(x3y1 − x1y3) + Z3(x1y2 − x2y1)

D
(3.33)

where, D = x1(y2z3 − y3z2) + x2(y3z1 − y1z3) + x3(y1z2 − y2z1)

3.3.2.3 Locating the PLIC and PCIC interfaces

The previous section showed the estimation of the interface normal n for PLIC and MIC for

PCIC. The remaining variable in the exact definition of the interface is the planar constant ‘a’ in

PLIC and the center of the sphere (x0, y0, z0) for PCIC. In the PLIC construction if the interface is
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accurately located, then the fractional volume of of the cell that satisfies the condition nxx+nyy+

nzz > −a will be equal to the f value. Similarly for PCIC, if the interface is accurately located,

the space (volume) inside the cell that satisfies the relation (x−x0)
2 +(y− y0)

2 +(z− z0)
2 < R2

or (x− x0)
2 + (y − y0)

2 + (z − z0)
2 > R2 ( depending on the sign of radius of curvature ) would

be exactly equal to the fluid volume present.

Two common approaches to locate the interface are the analytical and the numerical itera-

tive methods (bisection method for example). Analytical solution is accurate but computationally

intensive, especially when it is in 3D. Bisection method is a numerical iterative method and its iter-

ation is stopped when the error is below a predefined limit. A new numerical approach is proposed

to locate the interface named the Sorted-Surface-Constant method.

3.3.2.4 Bisection Method

In the bisection method, the initial upper and lower bounds for finding the solution is obtained

by estimating the planar constant at every vertices of the cell, which is four in 2D and eight in

3D. If the upper bound of the planar constant is au and lower bound is al then, the intermediate

value is the average of these two. The interface is constructed using the average planar constant

obtaining a new signed error. Then either al or ar is set to the intermediate value based on the

sign of the error. These steps are repeated until absolute error is less than a predefined limit. Even

though this method is iterative, it takes lesser computational effort than analytical solution in 3D

and convergence is ensured. Therefore this method has been successfully used.

3.3.2.5 Sorted Surface Constant Method for PLIC

Given the interface normal vector, planar constant a is estimated using a new non-iterative

numerical method called the Sorted Surface Constant (SSC). Figure 3.7 shows PLIC construction

using this method. For illustration uniformly distributed points inside the cell are colored according

to their planar constant values. SSC method works for structured, unstructured grids in 2D and 3D

with the same efficiency given boundaries are well defined to determine if a point is inside or

outside the fluid volume. This method is developed based on the principle that planar constants in
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normal direction vary linearly.

Figure 3.7: Estimation of planar
constant a using the Sorted Sur-
face Constant (SSC) method for
the surface cell given the interface
normal and the f -value.

The algorithm to apply SSC method for the PLIC in 2D and 3D follows.

1. Fill the surface cell uniformly with N points with a blue noise distribution.

2. Calculate planar constants for all N points by simply substituting coordinates of each points

in Eqn. (3.34).

3. Sort the planar constants in ascending order and find fN th planar constant.

If fN is not an integer, find weighted average of ⌊fN⌋th and {⌊fN⌋+ 1}th planar constants. Here

‘⌊⌋’ is the floor function which gives the largest integer smaller than the next integer.

a = −(nxxi + nyyj + nzzk) (3.34)

3.3.2.6 Sorted Surface Constant Method for PCIC

The sorted surface constant (SSC) method for PCIC is depicted in the Fig. 3.8. The first step

is to fill the cell with random points of blue noise distribution. Then all points are mapped to the
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PLIC normal line passing through the PLIC mid point. For a given point, (example: 1 or 2 in

Fig. 3.8) the mapped point on the normal line is located at distance R from it. The mapped points

are then sorted based on the surface-constant ‘a’ which is the signed distance from the midpoint

to the mapped point to locate the interface. Now while mapping, there are two possible location

along the normal. If R is negative, the point with minimum surface constant value is chosen else

the maximum. After sorting, we find the fN th (surface constant), which gives the sphere’s center.

Thus, the final equation of C (Eqn. 3.27) is achieved.

Figure 3.8: Sorted Surface Constant (SSC) method for PCIC. Each N points inside cell is mapped
to the normal through the PLIC midpoint such that intersecting point is at distance R. Points are
then sorted (color) according to the signed distance(surface constant value) from PLIC midpoint
to the intersecting point (example: points 1, 2). fN th surface constant provides the center of circle
’c’, making fraction of number of points inside PCIC to be f .

There is an alternative approach for the SSC, which is SSC*. The steps for SSC* is the follow-

ing.
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1. Make N uniformly distributed random points inside a unit square with blue noise distribution

but sorted in positive y direction. Random points need to fill a larger volume or area than the

cell.For example: a square or cube with a side length equal to the length of the cell’s largest

diagonal.

2. Rotate and orient points such that sorted direction align with the normal direction.

3. Remove points outside the cell ending up with M points.

4. Find (fM)th point’s planar constant.

If fM is not an integer, find weighted average of ⌊fM⌋th and {⌊fM⌋+ 1}th planar constants.

Figure 3.9 shows a C construction with spherical surface. Parts of C surface would lie on both

sides of equivalent L as both have same f value in comparison with Fig. 3.7.

Figure 3.9: Piecewise Circular In-
terface Calculation (PCIC) in 3D.
The rectangular plane is the PLIC
interface, and the spherical surface
has some portion above and be-
low the plane to have the same f -
value. For each point in the cell,
‘a’ is the surface-constant, signed
distance from the centroid of L to
the intersection of normal through
centroid and of a sphere of signed
radius R (mean radius of curva-
ture) centered at that point.

The computational speed of SSC is depended on the speed of sorting the array (surface constant

‘a’). This is a one step process. It does not require to solve any equations as in the analytical case,

which usually gets complicated in 3D and for unstructured and curvilinear systems. SSC is flexible
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because speed vs. accuracy is dependent only on number of points N, which can be customized.

While using large number of points, SSC* may be more efficient than SSC as sorting is required

in the latter.

3.3.3 PLIC and PCIC

Figure 3.10a depicts the reconstructed fluid domain along the interfaces using PLIC and Fig.

3.10b shows the fluid domain constructed with PCIC. It can be seen that the PCIC interface con-

structions are more accurate and the radius of curvatures are close to the true value (circle of radius

is 0.15 m on cell size of 1/32 × 1/32 m).

3.4 Lagrangian Particles and Center of Mass Tracking

Fluid is advected after the interface reconstruction. To advect in VCLP, the fluid inside the

cell is represented using Lagrangian particles (LPs) as concentrated mass points. A template of

fluid mass points generated with blue noise distribution is used to represent the fluid with uniform

density. Here, LPs representing the fluid are advected cell by cell, and after advection of one

cell, the same LPs template is used for the next cell advection. This is an important difference

to the common Lagrangian approaches, where the entire fluid domain or interface are represented

simultaneously by LPs and all LPs are tracking through the simulation time, requiring very large

number of LPs proportional to the domain size for the same resolution. VCLP uses only one blue

noise template of LPs with custom number of particles, and hence only a total of 100 to 1000 LPs

are required for the entire simulation irrespective of the domain size in 2D, and 1000 to 8000 LPs

in 3D.
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(a) PLIC (b) PCIC

Figure 3.10: (a) Reconstructed PLIC interfaces and (b) Reconstructed Piecewise Circular Interface
Calculation (PCIC), using f values. Center of mass locations are shown as dots. Fluid body is
circular with a radius of 0.15 inside a unit square domain with a resolution of 32 × 32.

3.4.1 Lagrangian Particle Creation

The way in which the LPs are distributed is important, because if they are not uniformly dis-

tributed or not isotropic, advection error will increase. As mass particles represent the fluid with

uniform density, a perfectly uniform distribution without any spatial bias is the best scenario. One

possibility is divide the cell into rectangles or hexagons and place the particles at the vertices.

However, they have directional bias. Other possibility is to generate uniformly distributed random

numbers as a white noise for the coordinates of the points inside the cell. Nevertheless, this also

doesn’t ensure uniform distribution locally and so, not an ideal representation for the fluid with

uniform density leading to an another possibility to use blue noise or Poisson disk sampling [83].

The difference between these sampling techniques can be seen in Fig. 3.11. The blue noise have

no clusters and every small regions looks similar but they feature tightly packed random points

with a minimum allowed distance between them.

A blue noise template of LPs is created once and reused in each cell to advect the fluid. If a
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finer resolution is opted the a template with larger number of LPs or density is generated. It is

expected that LPs distributed as blue noise is more uniform than LPs as white noise. Figure 3.11

shows blue noise generated by a proposed method named J-method with N = 402 on the left side,

and white noise on right. It can be seen that blue noise representation of the fluid with uniform

density is free from directional bias, which is a concern while using white noise template. The

template of LPs is a square area (2D) or cubic volume (2D) with unit dimension located at the

origin. The generation procedure for white noise and blue noise is given below.

(a) Blue Noise. (b) White Noise.

Figure 3.11: Comparison of blue noise template generated by J-method and white noise using
uniform random numbers.

3.4.1.1 White Noise

White noise template of N LPs along each dimension inside a unit square or cubic cell is done

as follows.

• generate a 2-tuple of N2 uniformly distributed random numbers in 2D or a 3-tuple N3 uni-

formly distributed random numbers in 3D , which are the position coordinates of LP.
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3.4.1.2 Blue Noise

Blue noise template with N particles along each dimension using the J-method is as follows.

• Estimate the radius r, where r =
1√
2N

in 2D and r =

√
3

2N
in 3D.

• Divide the cell equally with δx = δy =
1

N
creating N2 square cell division in 2D and into

N3 cell divisions in 3D with δx = δy = δz =
1

N

• Generate 2-tuple of N2 uniformly distributed random numbers multiplied by δx in 2D and

3-tuple of N3 uniformly distributed random numbers multiplied by δx and place one LP

inside each cell divisioin using the random numbers.

• Check through all cell divisions if shortest distance between the LPs inside the neighbor cell

is less than r, in which case delete the LP in the cell division (not the LP in neighbor cell).

• Consider the cell division from which LP was deleted in the previous step. Fill those cell

divisions with 30 to 100 random particle in 2D and 200 to 1000 in 3D and remove newly

generated LPs that are within distance r from the neighbors. Select just a single LP from the

remaining set of newly generated LPs that makes sure every cell division have one LP and

shortest distance between any two LPs are larger than r.

3.4.1.3 Modifying the Template for Surface Cells

After blue noise LP template with N LPs along each dimension is created, the template is used

to populate the fluid region in every cells.

Template is used to fill the cell space completely or partially after which LPs outside the PCIC

construction C are removed representing the fluid region. Figure 3.12 shows the modification of

blue noise template on the left side into a representation of fluid in a surface cell with a PCIC

interface. The blue noise LPs 2D template have N = 25 per dimension.
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Figure 3.12: Modification of the LPs template: (a) Initial Lagrangian particles unit square template
with N = 25 particles per cell dimension uniformly distributed (b) Region of particles from the
template is scaled in to rectangle that fills fluid region with no change in the aspect ratio. The
orange colored LPs represent the fluid inside PCIC reconstruction. The blue colored LPs outside
the interface are removed.

The blue noise LPs template fills only the part of the cell with fluid. A limiting cell subdomain

is constructed to improve the accuracy and efficiency in the calculations pertaining to advection.

The subdomain is the smallest rectangle that can accommodate the fluid region. The subdomain

boundary is shown by the dashed line in the Fig.3.12. The subdomain keeps the same aspect ratio.

Therefore most of the LPs from the template, could be used to represent the fluid even in case of a

surface cell with a small f value.

The scaling of template by keeping the aspect ratio is possible since blue noise spatial distribu-

tion properties is not lost, however if there is a change in the aspect ratio as in the case of Fig.3.12,

the following (2D) Eqns. 3.35 and 3.36 are used to maintain the blue noise spatial distribution

properties with maximum possible LP representing the fluid. Tx and Ty are the array of coordi-

nates of LP in the template and xmin, xmax, ymin, and ymax are the bounds of the subdomain, the

smallest rectangle that fluid can fit in. Rx and Ry are final location coordinates of LPs after the
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transformation.

Rx(i, j) =


Txδx

′
i,j + xmin(i, j) if β ≥ 0 where, 0 ≤ Ty ≤

δy′i,j
δx′

i,j

Txδx
′
i,j + xmin(i, j) if β < 0 where, 0 ≤ Tx ≤

δx′
i,j

δy′i,j

(3.35)

Ry(i, j) =


Tyδy

′
i,j + ymin(i, j) if β ≥ 0 where, 0 ≤ Ty ≤

δy′i,j
δx′

i,j

Tyδy
′
i,j + ymin(i, j) if β < 0 where, 0 ≤ Tx ≤

δx′
i,j

δy′i,j

(3.36)

where,

β = δx′
i,j − δy′i,j,

δx′
i = xmax(i, j)− xmin(i, j)

δy′j = ymax(i, j)− ymin(i, j)

Using Eqn. 3.27 of C and normal direction, point masses representing fluid (orange) are

separated from other LPs in the subdomain and retained. A function called elimination function

E(p,n) as defined in Eqn. (3.37) is used to determine whether a LPs are retained or not. LPs are

eliminated if the elimination function value is negative. Here sgn stands for signum function.

E(p,n) =


sgn {nxpx + nypy + nzpz + a} : for L

sgn {(px − x0)
2 + (py − y0)

2 + (pz − z0)
2 −R2} sgn {∇ · n} : for C

(3.37)

After elimination, the LPs representing the fluid inside the cell space s(i, j, k) at time tm before the

CM correction is given by Λ̃(i, j, k,m) . The X, Y , and Z coordinates of LPs are Λ̃x(i, j, k,m),

Λ̃y(i, j, k,m), and Λ̃z(i, j, k,m). The LPs after CM correction is denoted by Λ and its calculation

is provided later in the next section.

Figure 3.13 shows an overlapped image of transformed LPs using blue noise template with

PLIC construction of a part of circular fluid domain. It can be seen that the number of LPs are
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good enough even when f value is small, even it mostly have higher resolution than cells with

larger f value, but depends also on the aspect ratio of the smallest rectangle the fluid can fit it.

3.4.2 Center of Mass Tracking

Figure 3.13: Lagrangian Particles: The fluid region inside the surface cells represented by uni-
formly and randomly distributed LPs as a blue noise per cell. The effect of subdomain approach
to increase LPs resolution inside cells with smaller f values are shown. The locations of LPs (LN)
before the CM correction are orange colored LPs and after correction is the blue colored dots as
seen in the zoomed view, the right panel.

The accuracy of an interface reconstruction is increased if we could use extra information about

the fluid in the cell. Tracking of the center of mass (CM) is such an idea following the Lagrangian

approach. In theory if the grid cell size is infinitesimal, this converges to pure Lagrangian method.

So for control volumes, tracking CM in Lagrangian way is essentially tracking the entire fluid

whole time, but with minimal number of points, one per cell. This is the one of the main idea

behind the VCLP method. During an interface reconstruction CM mostly will not be match exactly

due to different reasons, mainly due to the simplification of the interface into PLIC or PCIC, that
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too constructed from the mean slope and curvature that itself is an approximation. These errors

make the fluid move slower or faster in the wrong direction, depending on the errors and velocity-

field. Figure 3.13 shows the CM of cells after reconstruction (black) and the red dot shows the

corrected CM. All the LPs are corrected with this change as seen in the zoomed in image. Even

though the change is very small, results shows that it is not negligible over hundreds or thousands

of time steps which is the usual case for a simulation. The importance of CM correction could be

visualized from the following illustration Fig. 3.14, showing a scenario where a fluid region inside

a cell with a vertical velocity uy not advected correctly.

Figure 3.14: Center of mass (CM) tracking: A rectangular fluid body (A tm) is inside a square cell
of 1 m dimension with a velocity field uy= 0.5 m/s. The ideal state of fluid body at the start (lower
panel) and after one second (upper panel) is shown in (A). (B) the numerical simulation of fluid
flow for a CFL value of 0.5 without CM tracking. (C) the numerical simulation of fluid flow for a
CFL value of 0.5 with CM tracking. Blue dot is the true CM (c) which is tracked in the Lagrangian
way, while red dot, the estimated CM (c̃m+1). The reconstructed fluid region is translated to match
the true CM shown by the arrow.
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Consider a rectangular fluid body inside a square cell of 1 m dimension with a velocity field

uy= 0.5 m/s as depicted in Fig. 3.14 (A, lower panel). The ideal state of fluid body after one second

is shown in (A, (top panel). Case (B) and (C) show the surface tracking simulation results with

and without CM tracking respectively for a CFL value of 0.5, i.e., for a time step interval of 1 s.

For cases (B) and (C), lower panel shows the fluid body’s initial condition (mth time step). The

dashed line is the location of the fluid region inside cell immediately after the advection being in

the same time step. Note that for case (C), the CM location after advection is also known (dashed

dot). In the next time step, after 1 s, the available information of case (B) are the f value (0.25),

the cell dimensions, velocity field (uy= 0.5 m/s), time step duration (1 s), and the interface normal

(estimated). For case (C), the CM location is also known additionally. The reconstructed fluid

body at tm+1 with available information for case (B) is shown in the top panel, and it is same as

the lower panel, meaning that the fluid advection is not correct. For case (C) at tm+1, the initial

reconstructed fluid body (red dashed line) is incorrect ans same as case (B). However, from the

difference of the estimated CM (c̃m+1, red dot) of the fluid cell and the true CM of the new time

step, tm+1 (blue dot), the fluid region inside the cell is translated so as to match CM. Thus, the

numerical result is matched with the ideal case in (A). This shows the advantages of using CM

tracking in the VCLP method.

3.4.2.1 Estimation of the Center of Mass

During the time step tm, there are two CMs for the cell space s(i, j, k), the tracked CM known at

tm−1 denoted as c(i, j, k,m), and the estimated CM after the reconstruction given by c̃(i, j, k,m).

The LPs representing the fluid inside the cell space s(i, j, k) at time tm before the CM correction

is given by Λ̃(i, j, k,m). The X, Y , and Z coordinates of LPs are Λ̃x(i, j, k,m), Λ̃y(i, j, k,m),

and Λ̃z(i, j, k,m). The LPs after CM correction is denoted by Λ. Estimated CM location (c̃) is

found using the Eqn. 3.38, where Λ is the average of the positions all LPs inside the cell space

s(i, j, k,m).

c̃(i, j, k,m) = Λ(i, j, k,m) (3.38)
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Once c̃ is known, the positions of the LPs representing the fluid are corrected using the following

Eqn. 3.39.

Λ(i, j, k,m) = Λ̃(i, j, k,m) + c(i, j, k,m)− c̃(i, j, k,m) (3.39)

3.4.2.2 Mass Distribution

When the fluid inside the cell is represented by LPs, each LP would represent a fraction of the

total mass of that fluid within the cell. That mass denoted by mp is estimated using Eqn. 3.40,

where NΛ(i,j,k,m) is the number of LPs in Λ(i, j, k,m).

mp(i, j, k,m) = ρ
|s(i, j, k,m)|f(i, j, k,m)

NΛ(i,j,k,m)

(3.40)

3.5 The Advection of Fluid

After the interface reconstruction as explained in section 3.3 and the correction using CM, the

next step is to advect the LPs representing the fluid according to the velocity field. VCLP use one

of two numerical advection schemes, Taylor’s second-order numerical advection scheme or a new

proposed scheme named Tracking-Journey-in-Spiral (TJSM) method to advect the fluid.

3.5.1 Numerical Advection Schemes

In this section the numerical advection schemes that can be used to advect LPs are explained.

Consider a single LP whose position at time step tm is denoted by pm = px(m)̂i+py(m)ĵ+pz(m)k̂.

The velocity and acceleration is denoted by u(pm, tm) and a(pm, tm), respectively with time step

∆tm = tm+1 − tm.

3.5.1.1 Taylor’s First Order and Second Order Methods

The simplest numerical advection scheme used in CFD codes is the first order advection given

by Eqn. (3.41). It is also known as Euler’s method or Taylor’s first order method. The first order

advection scheme is implemented when the velocity field is known, but not the acceleration field.

This is mostly the case as the acceleration field is not available from the solution of N-S equation.
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pm+1 = pm + u(pm, tm)∆tm (3.41)

To bring the acceleration into Eqn. 3.41,Taylor series is applied and the resultant Taylor’s second-

order method is Eqn. (3.42).

pm+1 = pm + u(pm, tm)∆tm +
1

2
a(pm, tm)∆t2m (3.42)

VCLP uses Taylor’s second-order method as this can advect LPs more precisely.

3.5.2 Tracking Journey In Spiral Method (TJSM)

Tracking Journey In Spiral Method (TJSM) is a proposed numerical advection scheme to inte-

grate the equation of motion. This scheme tries to capture rotational effects inside a velocity field

which may be more intuitive for fluid flows where vorticity is present. Instead of a linear motion,

TJSM assumes that the particle undergoes a circular motion with a constant angular velocity dur-

ing the time step intervals. In the higher-order TJSM, thus particle could move following a spiral

path, hence the name. The derivation of TJSM is given below.

3.5.2.1 Derivation of TJSM

In a 3D domain, the position, velocity and acceleration of the particle at time step tm within

∆tm are pm, um, and am. This is written as Eqn. 3.43.

pm =x(tm)̂i+ y(tm)ĵ + z(tm)k̂

um =ux(pm, tm)̂i+ uy(pm, tm)ĵ + uz(pm, tm)k̂

am =ax(pm, tm)̂i+ ay(pm, tm)ĵ + az(pm, tm)k̂

(3.43)

Now impose a small time duration much smaller than the time step ∆tm, δt for which the particle

is advected in a straight line. The position and velocity of the advected particle after δt are given

by pm′ and um′ (Eqn. 3.44). From the Taylor series expansion, their approximate values can be
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evaluated as shown in .
pm′ = pm + umδt

um′ = um + amδt

(3.44)

Now we assume that during δt particle is undergoing a uniform circular planar motion which

means then there would be a center of rotation (cr), a plane of rotation, a radius (r), and an angular

velocity (ω). The center of rotation should pass through the plane which is parallel to the planes

that can carry both um′ and um and passes through the point pm. We name this as plane P1. The

cr would also pass through a plane with normal as um and passing through point pm, plane P2.

Finally cr passes also through a plane with normal as um′ and through point pm′ , plane P3. The

intersection of P1, P2, and P3 uniquely identify the center of rotation, cr. The equations for the

three planes are given by Eqn. 3.45 to 3.47.

P1 : (um × um′) · (x− pm) = 0 (3.45)

P2 : um · (x− pm) = 0 (3.46)

P3 : um′ · (x− pm′) = 0 (3.47)

Substituting Eqn. 3.44 and Eqn. 3.43 in Eqn. 3.45, we get Eqn. 3.48

P1 : (um × (um + amδt)) · (x− pm) = 0

(um × am) · (x− pm) = 0

(3.48)

Substituting Eqn. 3.44 Eqn. 3.46 and in Eqn. 3.45, Eqn. 3.49 is obtained.

P3 : (um + amδt) · (x− (pm + umδt)) = 0

(am · x)− (am · pm)− (um · um)− δt (am · um) = 0

(am · x)− (am · pm)− ∥um∥2 = 0

(3.49)
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The term multiplied by δt is neglected as it tends to zero. The three equations Eqn. 3.46, 3.48 and

3.49 where ‘∥∥’ is the Euclidean norm is solved for cr. After simplification using identities we get

Eqn. 3.50 for cr .

cr,m = pm + {(um × am)× um}
∥um∥2

∥(um × am)∥2
(3.50)

From Eqn. 3.50, Eqn. 3.51 for radius vector is obtained as indicated below.

rm = pm − cr,m = −{(um × am)× um}
∥um∥2

∥(um × am)∥2
(3.51)

Once radius vector and velocity vector is known, angular velocity vector ω can be estimated from

3.55, by using Eqns. 3.52 and 3.53 indicated below.

ωm =
(rm × um)

∥rm∥2
(3.52)

ωm =

− [{(um × am)× um} × um]
∥um∥2

∥(um × am)∥2

∥(um × am)× um∥2
∥um∥4

∥(um × am)∥4

(3.53)

(3.54)

After simplification using identities, the angular velocity vector is obtained as

ωm = − (um × am) ∥(um × am∥4

∥um∥2∥(um × am)× um∥2
(3.55)

Now, the angular rotation θ during the time step and normalized vector ω is given by Eqn. 3.56

and Eqn. 3.57

θm = ∥ωm∥∆tm =
∆tm∥um × am∥5

∥um∥2∥(um × am)× um∥2
(3.56)

ω̂m = − um × am

∥um × am∥
(3.57)
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Using Rodrigues’ formula given by Eqn. 3.58 [84], after simplification using vector identities, we

get the final advected location of the particle as given by Eqn. 3.59.

pm+1 = cr,m + rm cos θm + (ω̂m × rm) sin θm + ω̂m(ω̂m · rm)(1− cos θm) (3.58)

pm+1 = pm +
{⟨(um × am)× um⟩ (1− cos θm)− um∥um × am∥ sin θm} ∥um∥2

∥(um × am)∥2
(3.59)

If um = 0, or um × am = 0, then Taylor’s second order advection method is to be used to advect

LPs ( Eqn. 3.43).

3.5.2.2 TJSM in Scalar Form

The final TJSM equation advection Eqn. 3.59 is not easy to apply directly to advect LPs

because of use of operators like the curl and the norm. So, it is simplified into multiple steps and

presented here. Subscript ‘m’ representing time step is left out until the final calculation step.

• The position (p), velocity (u), and acceleration (a) vector components are substituted into

Eqns. 3.60 to 3.65, to find the intermediate parameters. α, β, γ and ϵ where α is a vector,

and the rest are scalars obtained as

αx = uyaz − uzay (3.60)

αy = uzax − uxaz (3.61)

αz = uxay − uyax (3.62)

β = u2
x + u2

y + u2
z + axpx + aypy + azpz (3.63)

γ = uxpx + uypy + uzpz (3.64)

ϵ = α2
z + α2

x + α2
y (3.65)

• The position (p), acceleration (a), α, β, and γ are substituted into Eqns. 3.66 to 3.68, to get
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an intermediate vector parameter, δ.

δx = αx(pzαz + pyαy + pxαx) + γ(ayαz − azαy) + β(uzαy − uyαz) (3.66)

δy = αy(pxαx + pzαz + pyαy) + γ(azαx − axαz) + β(uxαz − uzαx) (3.67)

δz = αz(y0αy + x0αx + pzαz) + γ(axαy − ayαx) + β(uyαx − uxαy) (3.68)

• The position (p), δ, and ϵ are substituted into Eqn. 3.69, to get ζ, a parameter related to the

center of rotation.

ζ =

(
px −

δx
ϵ
, py −

δy
ϵ
, pz −

δz
ϵ

)
(3.69)

• In the final step, δ, ζ, and the velocity um are substituted into Eqn. 3.70, to get the advected

position pm+1 of the particle, where m is the current time step.

pm+1 = δm + ζm cos

(
∥um∥∆tm
∥ζm∥

)
+ ûm sin

(
∥um∥∆tm
∥ζm∥

)
∥ζm∥ (3.70)

3.5.3 Interpolation of Velocity Field

In VCLP, the velocity of the LPs is the function of their position within the cell, however

the velocity is known only at specific discretized locations relative to the cell (example: at the

cell vertices). In this case, velocity at the position of LPs are interpolated using bilinear (2D)

and trilinear (3D) methods. Figure 3.15 shows a LP at position (px, py, pz) within the cell s(i, j, k).

Velocities at the eight vertices of cell are u1 to u8. V1 to V8 are the eight weight factors (proportional

to the volumes of the blocks) used in the trilinear interpolation. Weights are estimated based on

the cell dimensions and the position of the LP inside the cell.
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Figure 3.15: Trilinear Interpo-
lation of velocity: Trilinear inter-
polation with partial volumes as
weights to interpolate advection
velocity for a LP at (px, py, pz) us-
ing known velocities at the ver-
tices.

The velocity of the LP located at position p is determined using Eqn. 3.71, thus

u(p) =
1∑k=8

k=1 Vk

(V1u7 + V4u6 + V5u3 + V8u2 + V2u8 + V3u5 + V6u4 + V7u1) (3.71)

3.5.4 Finding the Acceleration for Advection

For second-order advection methods described in Eqn. 3.42 and Eqn. 3.59, acceleration term

is also required to advect the particle. Equations to find an approximate value for acceleration is

derived as follows.

The acceleration of a particle in the compact Eulerian form is written in Eqn. 3.72.

a =
∂u

dt
+ (u · ∇)u (3.72)
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when Eqn. 3.72 is expanded at each directions of the domain axes, it becomes

ax =
dux

dt
=

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z

ay =
duy

dt
=

∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+ uz

∂uy

∂z

az =
duz

dt
=

∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z

(3.73)

The partial derivative terms of ux,
∂ux

∂x
,
∂ux

∂y
, and

∂ux

∂z
in Eqn. 3.73 are derived using Eqn.

3.74.

−∂ux

∂x
=
(ux1 − ux2)

δxi

+
(py − yj)

δxiδyj
E1x +

(pz − zk)

δxiδzk
E2x +

(py − yj)(pz − zk)

δxiδyjδzk
)E0x

−∂ux

∂y
=
(ux1 − ux4)

δyj
+

(px − xi)

δxiδyj
E1x +

(py − yj)

δyjδzk
E3x +

(pz − zk)(px − xi)

δxiδyjδzk
)E0x

−∂ux

∂z
=
(ux1 − ux5)

δzk
+

(px − xi)

δxiδzk
E2x +

(py − yj)

δyjδzk
E3x +

(py − yj)(px − xi)

δxiδyjδzk
)E0x

(3.74)

The partial derivative terms of the Y component of velocity, uy
∂uy

∂x
,
∂uy

∂y
, and

∂uz

∂x
are given by

Eqns. 3.75.

−∂uy

∂x
=
(uy1 − uy2)

δxi

+
(py − yj)

δxiδyj
E1y +

(pz − zk)

δxiδzk
E2y +

(py − yj)(pz − zk)

δxiδyjδzk
)E0y

−∂uy

∂y
=
(uy1 − uy4)

δyj
+

(px − xi)

δxiδyj
E1y +

(pz − zk)

δyjδzk
E3y +

(py − yj)(pz − zk)

δxiδyjδzk
)E0y

−∂uy

∂z
=
(uy1 − uy5)

δzk
+

(px − xi)

δxiδzk
E2y +

(py − yj)

δyjδzk
E3y +

(py − yj)(px − xi)

δxiδyjδzk
)E0y

(3.75)

The partial derivatives of the Z component of velocity uz,
∂uz

∂x
,
∂uz

∂x
, and

∂uz

∂x
are found using
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Eqns. 3.76.

−∂uz

∂x
=
(uz1 − uz2)

δxi

+
(py − yj)

δxiδyj
E1z +

(pz − zk)

δxiδzk
E2z +

(py − yj)(pz − zk)

δxiδyjδzk
)E0z

−∂uz

∂y
=
(uz1 − uz4)

δyj
+

(px − xi)

δxiδyj
E1z +

(pz − zk)

δyjδzk
E3z +

(px − xi)(pz − zk)

δxiδyjδzk
)E0z

−∂uz

∂z
=
(uz1 − uz5)

δzk
+

(px − xi)

δxiδzk
E2z +

(py − yj)

δyjδzk
E3z +

(px − xi)(py − yj)

δxiδyjδzk
)E0z

(3.76)

The terms E0i to E3i where i takes x, y and z depending on the component axis, seen in the above

equations are calculated using the set of Eqns. 3.77 given below.

E0i =(ui1 − ui2 + ui3 − ui4 − ui5 + ui6 − ui7 + ui8)

E1i =(−ui1 + ui2 − ui3 + ui4)

E2i =(−ui1 + ui2 + ui5 − ui6)

E3i =(−ui1 + ui4 + ui5 − ui8)

(3.77)

Finally the partial derivative of acceleration with respect to time (Eqn. 3.73), is determined by

Eqn. 3.78. This term (
∂a

∂t
) requires the velocities from the previous time step.

∂a

∂tm
=

um − um−1

tm − tm−1

(3.78)

Having obtained all terms described in the Eqns. 3.73, the approximate acceleration for all LPs are

obtained. Thus, using the interpolated velocity and approximate acceleration LPs are advected by

implementing the Taylor’s second order (Eqn. 3.42) or the TJSM (Eqn. 3.59) numerical advection

schemes.

3.5.5 Comparison of the Numerical Advection Schemes in 2D

The performance of the proposed numerical advection scheme, the TJSM method is tested

using one of the deformation benchmark test for the interface tracking. In this test, a circular fluid

body of radius 0.15 centered at (0.5,0.75) inside a square domain of unit size with its left bottom
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corner at the origin (0,0). The fluid body is inside a solenoidal velocity field that deforms the

circular fluid body. Deformation test induces radical deformation and topology change of fluid

bodies, which is more challenging than single vortex test (discussed later) [3]. There are sixteen

vortices in the domain, and flow fields are time-reversed. Time reversed flow field means that for

half of the simulation time, the fluid body undergoes deformation and then for the next half the

velocity field is time-reversed causing the circular fluid to go back to its original shape and location.

For the numerical case where time is discretized, final state of the fluid body is not exactly same as

the starting state. Thus the similarity of the final state to the initial state is the measure of goodness

for the advection method. The stream function for this velocity field is given by Rider et al. [7] as

shown in Eqn. (3.79).

Ψ =
1

4π
sin

{
4π

(
x+

1

2

)}
cos

{
4π

(
y +

1

2

)}
(3.79)

The velocity field is given by Eqns. 3.80, and Fig. 3.16 shows the velocity field at time t = 0.

The time-varying field have its maximum magnitude of velocity at t = 0 and t = T and zero at

t = T/2 where it reverses.

ux =sin(4πy) sin(4πx) cos

(
πt

T

)
uy =cos(4πx) cos(4πy) cos

(
πt

T

) (3.80)
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Figure 3.16: The velocity field at t = 0 for the deformation test of a circular fluid body of radius
0.15 centered at (0.5,0.75). There are sixteen time-varying vortices inside the unit square domain
that deforms a fluid body inside. The velocity field is defined by Eqn. 3.79

.

The 2D test is conducted by putting marker particles on the circle perimeter, and each particle

is advected in time using several numerical advection schemes. The numerical advection schemes

tested are 1) Euler’s Method, 2) Taylor 2nd order, 3) Taylor 3rd order, and 4) Runge-Kutta 4th order,

and 5) TJSM 2nd order. The number of time steps is 256 for a simulation time of T = 2 s.

The deformation test results are depicted in the Fig. 3.17 where marker particles bound the

fluid area to improve the contrast. The 2D deformation test results for the numerical advection

schemes show that at t = T/2 difference between methods are not easily noticeable except for the

T-shaped tip of the top part in the Taylor’s first order method, which is shorter than other methods

(see top panels of Fig. 3.17). At t = T , the final shape is ideally the initial circle itself, however

all methods show some deviations from it. Taylor’s first order have large deviation from circular

shape, while other cases are closer to the initial circle. Taylor’s second and third order have an

67



(a) (b) (c)

Figure 3.17: Deformation test results t = 1 = T/2 (Top), t = T = 2 s (Bottom). a) Taylor’s first
order (left) and Taylor’s Second order (right) b) Taylor’s third order (left) and Runge-Kutta fourth
order (right) order c) TJSM second-order (error ∆t3).

elliptical shape at the bottom and the third order have slightly closer shape to the initial circle than

the second order. The Runge-Kutta fourth order have an overall circular and symmetric shape,

however edges are flatter over the bottom half of fluid body and is similar to a polygon like shape.

The TJSM result looks very close to the initial circle and very slight deformation can be noticed at

the top and bottom part. While comparing all methods qualitatively, the closeness to the circular

shape is in the order 1) TJSM second order, 1) Runge-Kutta fourth order, 3) Taylor’s third order, 4)

Taylor’s second order, and 5) Taylor’s first order. So, as per the test results, the proposed advection

method, TJSM performs well.

3.5.5.1 Comparison of the Numerical Advection Schemes in 3D

The deformation test in 3D is carried out in the similar way as in 2D, where the spherical

fluid body of radius 0.15 centered at (0.5,0.5,0.5) is considered. The fluid body is placed inside a

solenoidal time-reversing velocity field. The three numerical advection schemes compared are 1)

Taylor’s first order, 2) Taylor’s second order, and the TJSM second order. The velocity field for
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this test is given by given by Eqns. 3.81 to 3.83 for velocity components in X, Y, and Z axes.

ux =2 sin2(πx) sin(2πy) sin(2πz) cos

(
πt

T

)
(3.81)

uy =− sin2(πy) sin(2πx) sin(2πz)

(
πt

T

)
(3.82)

uz =− sin2(πz) sin(2πx) sin(2πz)

(
πt

T

)
(3.83)

The simulation time of T = 12 s is completed in 32 time steps. Figure 3.18 shows the deformation

test results of the fluid body. At t = T/2, the fluid deformation (pointed peaks) of Taylor’s first

order method ( a) Left panel ) is shorter than the other two methods. At t = T , the first order have

a polyhedron shape with faces bending inwards, while the second order method (panel b) have the

polyhedron shape too, but more spherical. TJSM results (panel c) resembles sphere quite well, but

there are some visible perturbation over the fluid body surface. Qualitatively, the resemblance of

the final results to the spherical shape are in the order 1) TJSM second order, 2) Taylor’s second

order, and 3) Taylor’s first order. So, as per the test results in 3D, the proposed numerical advection

scheme, TJSM seems to perform well in comparison with the two standard methods.
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Figure 3.18: Deformation test results for three numerical advection schemes a) Euler’s method b)

Taylor’s second order c) TJSM second order. Column A: t =
T

2
= 6s, B: t = T = 12s.
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3.6 Updating Mass and Center of Mass

After the surface reconstructions, and advection of LPs are completed in a cell, next step is

to update the f values and the CM locations of the cells involved in the advection process. The

updating of f value and the CM is depicted in Fig. 3.19. An new copy of the computational

domain Ω is created to receive the fluid mass advected, denoted by Ω∗
m. This new domain receives

the advected LPs from cell-by cell and new values for the fluid mass and CM keeps updating. ‘*’

denotes that the functions and parameters belongs to Ω∗. After advection of all the fluid in the

cells, this updated domain copy, Ω∗
m becomes the next time step value, Ωm+1. A typical interface

Figure 3.19: Mass transfer and CM Update: Left: LPs representing the fluid before advection.
f - value and center of mass is shown for the surface cell(middle cell). Right: advected LPs from
the middle and neighbor cells into the middle cell (orange color) and their transferred CMs. The
updated f - value and CM is also shown. Note cells are advected one by one and this figure is an
combined representation of the process.

before and after advection along with the LPs are shown on the left and right panels, respectively.
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Transferred mass and transferred CM from three neighbor cells into the surface cell in the middle

are shown on right panel of Fig. 3.19, along with the final CM location and the f value (right

panel). If a cell space s(i, j, k) receives n LPs from a cell with mass per point mp as indicated in

Eqn. (3.40), then the updated f value is estimated by Eqn. (3.84) as

f ∗
up(i, j) = f ∗(i, j) +

nmp

ρδxiδyj
(3.84)

Finally, Eqn.3.85 provides the updated CM, where (ctr) is the transferred CM.

c∗up =
c∗ef

∗δxiδyjρ+ ctrnmp

nmp + δxiδyjρ
(3.85)

3.7 Filters and Optimization for VCLP

The advection using LPs might result in cells with f value greater than one, which is mainly

due to the fact that velocity field is discretized. When the velocity field is interpolated to advect

LPs the divergence of the interpolated velocity field at certain location become non-zero. Hence,

it can be said the f value larger than one at times is the result of the non-zero divergence resulting

from the necessity to interpolate the discretized velocity field. As this is unavoidable, a filter is used

for cells having f > 1 and takes the excess and redistributes mass to non-empty neighboring cells

uniformly. After this, excess mass from cells with f > 1 is redistributed uniformly to interior cells

with f < 1 and repeated until all f value becomes less than or equal to one, and typically it takes

one or two iterations. To account for the non-conservative character arising from the interpolation

of the velocity field, VCLP uses a scaling technique. If an interior cell has f value differ from

one, the area or volume of the advected cell from its advected boundaries are estimated, and LPs’

locations are scaled about the center of mass such that the advected cell volume or area is the

same as the cell volume or area. VCLP method proposes an optimization technique named skip

core optimization (SCO) to increase computational efficiency. This technique allows us to skip the

computation for a portion of cells which are far from the interface.
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Figure 3.20: Skip Core Optimization: Top: Rectangular block is a simplified 1-D translation dia-
gram with CFL = 0.75 showing if core is not advected the core gain equals mantle loss. Hatched is
before advection and filled is after. Left: an ellipsoidal fluid body with a circular hole inside inside
a rectangular computational domain with a grid resolution of 64×64 before advection. Right: fluid
body after advection with CFL = 1 with a uniform velocity field of cos(3π/4)̂i+sin(3π/4)ĵ. Left:
Classification of cells before advection. Right: cells with changes in classification after advection
and the corresponding change.

3.7.0.1 Skip Core Optimization

Figure 3.20 shows an ellipsoidal fluid body with a circular hole in it inside a square compu-

tational domain with the grid resolution of 64 × 64. The classification of cells can be seen in the

left panel and the criteria for the classification of cells and definition of q is given in section 3.2.

The inner surface and inner mantle thickness depends on q, which is closely related to the max-

imum CFL number. If q is one, then there needs to be only one layer of inner surface and inner

mantle cells, and if it is two, there should be two layers of inner surface cells and inner mantle

cells. It can be seen that the percentage of each cell type depends on the surface area to volume or

surface perimeter to area ratio for 3D and 2D respectively. Figure 3.20 left panel depicts the fluid

domain before advection and right panel after advection with CFL = 1, where entire fluid domain
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is translated δx along direction cos(3π/4)̂i + sin(3π/4)ĵ. q value of one means that the LPs from

the surface cell cannot create any effect on the inner mantle and inner core cells. Similarly, inner

surface cells cannot affect inner core cells. Vice versa is also true, which means it is enough to

advect only the surface, inner surface, and inner mantle. So, to conserve the fluid mass inside the

inner core cells, the mass received from the inner mantle cells should be exactly equal to the mass

advected from the inner core cells. This means than if the fluid inside all cells except the inner core

cells are advected, then it is enough to put back exactly the mass received from the inner mantle

cells while no change happening to the fluid inside the inner core cells. This means that f value of

inner mantle and inner core should remain as one after advection if the entire fluid were advected.

However, if only fluid inside the surface cells are advected, inner surface, and inner mantle, those

core cells will receive fluid from the mantle, and the mantle will lose some of its fluid to the interior

cells. Loss and gain can be further understood from colored cells in Fig. 3.20 which shows that the

inner core cells that became inner mantle cells are almost the same as the number of inner mantle

cells that became the inner core cells. Core cells can interact only with the mantle cell because of

the CFL limit. Since the core is filled with fluid before and after advection; the only possibility is

that the net fluid received from the inner mantle by the inner core should be the same as net fluid

that is meant to be given by the inner core to the mantle cells to satisfy the mass conservation, i.e.,

if the fluid inside surface cells, inner surface cells, and inner mantle cells alone are advected, then

the extra fluid volume received by inner core cells (core gain) and the net fluid volume lost by the

inner mantle cell (mantle loss) should be same. The f value of inner mantle cells and inner core

cells are set to one, and their CM location is not updated for next time step. However, there will be

a tiny difference in the core gain and mantle loss that results from the non-zero divergence error.

The application of filters is the final step of VCLP producing the final outputs the new f value

matrix (fm+1) and the new CM matrices (cm+1). A simplification technique is proposed to mini-

mize the computer memory storage and making VCLP code a module with similar input and output

parameters as in VOF method. That is, fc,m and Um as the input parameters and fc,m+1 as the

single output, where fc,m+1 is made by merging fm+1 matrix and cm+1 without creating extra
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variables for CM. This is achieved via following steps.

The CM locations are normalized with respect to the cell by the Eqn. 3.86.

cnx =
cx − xi

δxi

cny =
cy − yj
δyj

cnz =
cz − zk
δzk

(3.86)

The normalized CM locations cn are then combined with f value to get fc using the Eqn. (3.87).

fcc = f + 10⌊104cnx⌋+ 105⌊104cny⌋+ 109⌊104cnz ⌋ (3.87)

To retrieve the normalized CM locations and f values, Eqns. 3.88 are used.

cnz =10−4⌊10−9fc⌋

cny =10−4⌊10−5(fc − 1013cnz )⌋

cnx =10−4⌊10−1(fc − 1013cnz − 109cny )⌋

f =fc − 1013cnz − 109cny − 105cnx

(3.88)

Subsequently, (cx, cy, cz) are retrieved from Eqn. 3.86. This procedure compresses four scalar

values into one, thus saving computational memory storage, but with customizable round of errors.
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4. VCLP BENCHMARK TESTS AND RESULTS

To evaluate the accuracy of VCLP method for interface reconstruction and advection, five

benchmark tests in 2D and one in 3D are conducted. The 2D tests are translation, rotation, single

vortex, deformation, and Zalesak’s test. In each of these tests, a well defined 2D fluid body inside a

computational domain with specified grid resolution and dimensions is allowed to flow according

to a specified solenoidal (non-divergent) velocity field. The flow is then simulated till the given

time T , using the proposed method with the specified time intervals. The ideal final state of the

fluid body at time T is known and the performance of the proposed method is evaluated on the basis

of its qualitative and quantitative similarity with the simulation result. The translation test have a

uniform velocity field, while the rotation test have a circular velocity field for a rigid body rotation.

The single vortex and deformation test velocity fields can be thought as mixing, causing large

variations such as stretching, tearing, and folding in the interfacial area through vorticity [7]. The

single vortex test spins fluid into a filament spiraling toward the vortex center and it was introduced

by Bell [85]. The deformation test introduced by Smolarkiewicz [86] has sixteen vortices inside

the domain that causes fluid elements to undergo large topology changes [7]. Single vortex and

deformation tests are time-reversible T-periodic tests following Leveque [87] in which flow returns

ideally to the initial condition. This is achieved by multiplying velocity field by cos
(
πt
T

)
. This

reversal makes a quantitative comparison and evaluation of these tests possible.

In the following sections, VCLP with PLIC is written as ‘VCLP-’ and with PCIC as ‘VCLP+.’

’VCLP+’ with Skip Core Optimization is given as ’VCLP+ SC’ and ’VCLP+’ while using Eqn.

3.42 for advection it is shown as ’VCLP+ T2’.

4.1 Translation Test

For translation tests, a circular and a square fluid body are placed inside two different velocity

fields. The fluid bodies are transported in 1000 time steps over a distance approximately five

times the diameter of the fluid. The number of grid cells along the diameter or the size of the
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fluid body is equal to 15. The two velocity fields are u = ĵ and u = 2̂i + ĵ. For this case,

the VCLP results (PLIC- column f, PCIC colum-g) are compared with two well known methods,

Hirt and Nichols with height function (column c) and without (column b) and Young’s method

with height function (column e) and without (column d). The test results are shown in Fig. 4.1.

Figure 4.1: Translation of a circle (rows A and C) and a square (rows B and D) in two different
velocity fields u = ĵ ( rows A and B) and u = 2̂i + ĵ ( rows C and D). (a) Initial condition, (b)
Hirt and Nichols without local height function, (c) Hirt and Nichols with local height function,
(d) Young’s without local height function, (e) Young’s with local height function, (f) VCLP- with
PLIC and (g) VCLP+ with PCIC Note: Results from column (a) to (e) are obtained from [1].

For translation velocity field u = ĵ, for circular fluid body (panel A), VCLP- and VCLP+ match

the initial circular shape without perturbation as in the other methods. Young’s results without

the height function is also comparable. VCLP has a very slight expansion along the horizontal

axis, which is normal to the velocity field. VCLP is more symmetric across both velocity field

direction and its normal, than the other methods. For square,(panel B) the corners are smoothed
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in VCLP, edges are almost straight, and maintains square form. Original Hirt and Nichols (H&N)

and Young’s method have straight top and bottom edges, but left and right edges has deformed.

Height functions causes little perturbations at the corners. For the velocity field u = 2̂i + ĵ, for

circle (panel C), Young’s maintains the shape and size, VCLP has maintained more circular shape.

H&N method seems to lose some fluid volume. For square (panel D), VCLP results are symmetric,

edges are almost straight and maintains right angle with edges. Corners are more smoothed than

the vertical translational test. H&N method have straight edges, but the angles have changed and a

new edge is formed at the leading region. Young’s method have smoothened the edges and edges

are no longer straight. The difference between VCLP- and VCLP+ is not noticeable.

4.2 Rotation Test

In rotation test, a circular fluid body of radius 0.15 m and a square shaped fluid body of side

length 0.30 m are placed inside a 1 m square computational domain where a circular-anticlockwise

velocity field is present. The fluid bodies undergo a rigid body rotation of 2π radian (one complete

circle) during 600 time-steps. The distance between the fluid’s CM and the center of rotation is 0.6

m with a grid resolution of 50 × 50. Ideally, after one complete cycle of rigid body rotation, the

expected final state of the fluid body would be exactly same as the initial state. Thus, the accuracy

of a surface tracking and advection methods can be evaluated based on the resemblance of the final

and initial fluid body states. The rotation test results of the VCLP method (column f with PLIC

and column g with PCIC) are presented in Fig. 4.2. The rotation test results under an ideal case

(column a), H&N method without the height function (column b), H&N with the height function

(column c), Young’s method without the height function (column d), and Young’s method with the

height function (column e) are also presented.

Rigid body rotation test results with the circular fluid body (panel A) show, that the VCLP

results maintain the circular shape. H&N method results have rough surface with perturbations

and fails to maintain the circular shape, while Young’s method have maintained circular shape

except for the right side, which is the trailing edge in the rotation test. For the square shaped fluid

body (panel B), VCLP results conserve fluid mass, and maintain right angles between the edges,
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Figure 4.2: Rigid body rotation test results of a circular (panel A) and a square shaped fluid body
(panel B). (a) Ideal case (b) Hirt and Nichols without local height function, (c) Hirt and Nichols
with local height function, (d) Young’s without local height function, and (e) Young’s with local
height function,(f) VCLP with PLIC and (g) VCLP with PCIC. Note: Results from column (a) to
(e) is obtained from [1]

.

even though the edges are slightly curved. Results of Young’s methods maintain the shape only

partially, however they are closer to the ideal shape than H&N methods. The use of local height

function seems to improve Young’s method results, but not the H&N results. There is no noticeable

difference between VCLP- and VCLP+ results. Overall, the VCLP methods produce good results

for the rigid body rotation tests, for both, circular and square shaped fluid bodies.

4.3 Single Vortex

The single vortex test for evaluating the accuracy of a surface tracking and advection method

was proposed by Rider and Kothe [7] and the solenoidal flow velocity field was suggested by Bell

et al. [85]. For this test, a circular fluid body of radius 0.15 m, centered at (0.5,0.75) is placed

inside a solenoidal velocity field whose stream function (Ψ) is given by Eqn. 4.1 as following.

Ψ =
1

π
sin2(πx)sin2(πy) cos

(
πt

T

)
(4.1)
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The velocity field is related to the stream function as (ux, uy) =

(
−dΨ

dy
,
dΨ

dx

)
and defined as

follows.

ux = −sin2(πx) sin(2πy) cos

(
πt

T

)
(4.2)

uy = sin2(πy) sin(2πx) cos

(
πt

T

)
(4.3)

where the T is the time period of the single vortex and t is the time. The cos(πt
T
) term makes

the velocity field reversible. At time t = 0, velocity field have maximum magnitude and it keeps

reducing reaching zero at time t = T
2

. From time t = T
2

to t = T , the velocity field reverses, and

keeps increasing in magnitude. Thus, in an ideal case the initial circular fluid body in a solenoidal

velocity field gets stretched into a filament spiraling around the vortex center till time t = T
2

, and

gets back into the initial circular shape at t = T . Similarity of the final state to the initial state is the

measure of accuracy for the surface tracking and advection method. Figure 4.3 depicts the single

vortex test results of the VCLP methods along with that of H&N and Young’s methods. Column

(b) and (c) are the results of H&N method, without and with local height function respectively,

whereas column (d) and (e) are the results of Young’s method, without and with local height

function respectively. Results of VCLP with PLIC is shown in column (f), whereas VCLP with

PCIC results are portrayed in column (g). All tests are conducted for a CFL value of one. Two grid

resolutions of 60×60 and 100×100 are used for the tests. While panels A to D use 60×60, panels

E and F uses 100× 100 resolution. Panels A and B show results of a single test (with T = 2 s) at

times t = T
2
= 1 s and t = T = 2 s, respectively, while panels C and D depict results of a single

test (with T = 8 s) at times t = T
2
= 4 s and t = T = 8 s, respectively. Bottom panels E and F are

the results of a single test (with T = 8 s and 100 × 100 ) at times t = T
2
= 4 s and t = T = 8 s,

respectively. The results in column (b) to (e) are obtained from [1].

Test results from all methods, in panel A ( t = T
2
= 1s with grid resolution 60× 60 ), are very

similar except for some small perturbation with the H&N results. Circular shape is maintained in

all test results from panel B ( t = T = 2s with grid resolution 60 × 60 ), except for the H&N
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(column b and c) results, where the right half of both circular fluid bodies are deformed and have

more noticeable perturbations. Circular shapes obtained from VCLP methods (column f and g)

are almost perfect, while that from Young’s methods (column d and e) have slight deviations from

the circular shape. Test results from panel C ( t = T
2
= 4s with grid resolution 60 × 60 ) have

significant differences among the different methods. The vortex filament features discontinuity

when H&N method is used (column b and c). The filament remains unbroken or continuous for

half length with Young’s results (column d and e). The filament in VCLP results (column f and g)

are the longest and remains unbroken for most part. Distance between the discontinuous filaments

are also minimum for VCLP results. Results at time t = T = 8 s for the grid resolution of 60× 60

are shown in panel D, where H&N method result (column b) shows completely broken and spread

out fluid body. H&N with height function (column c) and Young’s results (column d and e ) are

able to concentrate most part of fluid near the initial fluid state, but fail completely in maintaining

the circular shape. Results from VCLP methods (column f and g) have good circular shape, except

for the top part which is flatter. The finer grid resolution results in panel E (t = T = 8 s with grid

resolution 100 × 100) show significantly better results than panel C with grid resolution 60 × 60.

The filaments in Young’s and VCLP results (column d to g) are continuous and smooth for most

parts. The final time t = T = 8 s results for the grid resolution of 100 × 100 are shown in panel

F. Results show significant improvement than panel D for column c to g, where the fluid body is

more circular.

VCLP results (column f and g) are significantly more close to perfect circular shape than the

results from H&N with height function and Young’s method (column c to e).
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Figure 4.3: Single vortex test result: Advection of a circular body of fluid placed in a single-
vortex field. The maximum simulation time is equal to T = 8 except for rows A and B, where
T = 2. Snapshot are shown at time T/2 (rows A, C, and E) and at time T (rows B, D, and F).
The computational grid consists of 60 x 60 cells (rows A,B,C and D) or 100 x 100 cells (rows E
and F). (a) Fluid body at time t = 0 or initial state, (b) Hirt and Nichols results without local height
function, (c) Hirt and Nichols with local height function, (d) Young’s without local height function,
and (e) Young’s with local height function, (f) VCLP with PLIC and (g) VCLP with PCIC. Note:
Results from column (a) to (e) are obtained from [1]
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Overall, VCLP results succeed more than than H&N and Young’s method in stretching the

circular fluid body into a continuous vortex filament and then bringing it back by the reversal of

the solenoidal velocity field. In comparison, even VCLP results using a lower resolution (60× 60

resolution, panel D, column f and g) are comparable with results from H&N and Young’s method

using a finer resolution of 100× 100 (panel F column c, d, and e).

Single vortex tests are conducted for CFL = 0.5 and T = 8 s with two grid resolutions of

64×64 and 128×128 to compare VCLP results with two newer methods, moment of fluid (MOF)

and coupled level set volume of fluid (CLSVOF). Figure 4.4 shows the test results at time t = T

for the grid resolution of 64 × 64 where the circle drawn in black color is the ideal case, whereas

the dashed red lines are the test results. Single vortex test results a and b are obtained from [2].

The lower half of the test results from MOF (case a) matches well with circle, but the upper half

does not. CLSVOF result (case b) is not circular for this resolution. VCLP results have circular

shape, however some perturbations exist on topside.

Results of grid resolution 128× 128 are presented in Fig. 4.5. All methods show significantly

improved result than 64 × 64. Single vortex test results a and b are obtained from [2]. Qualita-

tively, the VCLP results are closest to the circular shape, followed by CLSVOF, and then MOF.

Perturbations are present at the top part of the fluid body in all cases, however VCLP results have

the least perturbations and deviation from the circular shape. Overall, qualitatively, VCLP single

vortex test results for CFL= 0.5 and the two grid resolutions are good in comparison with results

of MOF and CLSVOF.
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Figure 4.4: Time reversed single vortex test results for grid resolution 64 × 64 and CFL = 0.5 for
T = 8 s. Results at t = T = 8 s for a) Moment of Fluid (MOF) and b) Coupled Level Set Volume
of Fluid (CLSVOF) c) VCLP- and d) VCLP+. Results a) and b) are obtained from [2].

Figure 4.5: Time reversed single vortex test results for grid resolution 128×128 and CFL = 0.5 for
T = 8 s. Results at t = T = 8 s for a) Moment of Fluid (MOF) and b) Coupled Level Set Volume
of Fluid (CLSVOF) c) VCLP- and d) VCLP+. Results a) and b) are obtained from [2].

4.3.1 Quantitative Analysis of Single Vortex Tests

Geometric error is used to quantify advection tests’ accuracy by comparing the initial and final

fluid distribution or the f -matrix. The f -matrix error is integrated over the computational domain,

to account for the error in geometry of the fluid body. Geometric error in 2D is estimated using the

Eqn. 4.4.

Egeo =
i=nx∑
i=1

j=ny∑
j=1

|f(i, j, T )− f(i, j, 0)|dxidyj (4.4)
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where t = T is final time. Table 4.1 shows the single vortex test results of VCLP and five other

surface tracking and advection methods. The tests are conducted for three grid resolutions: 32 x

32, 64 x 64 and 128 x 128. For each grid resolution, two cases of T = 2 and T = 8 are performed.

For convenient representation, H&N and Young’s method with ‘+’ sign denotes the application of

local height function and ‘-’ denotes without, while for VCLP, ‘+’ means PCIC is used for interface

construction and ‘-’ means PLIC is used. The Taylor second order advection scheme is denoted as

‘T2’ and TJSM as ‘TJ’. ‘SC’ denotes the use of skip core optimization.

From table 4.1, the error ratio of the best result of VCLP vs. the best of H&N for T = 8 s are

10.3, 30.7, and 48.5 for grid resolutions of 32× 32, 64× 64, and 128× 128, respectively. Young’s

method error ratios are 7.3, 10.2, and 12.3, whereas Rider & Kothe (R&K) error ratios are 5.9, 3.5,

and 2.2 respectively. For T = 2, the error ratio of the best result of VCLP vs. the best of H&N are

12.2, 26.9, and 42.4 for grid resolutions of 32× 32, 64× 64, and 128× 128, respectively. Young’s

method error ratios are 6.9, 15.5, and 20.9, whereas Rider & Kothe (R&K) error ratios are 2.7, 3.1,

and 1.7 respectively.

As per results, VCLP performed better than the other methods, especially for larger T , which

is the most demanding scenario. Geometric errors of VCLP- and VCLP+ are very close to each

other. There is no considerable increase in error with the skip core optimization, which implies the

optimization technique is successful. Taylor’s second-order advection shows slightly better results

than TJSM. Overall, geometric error results show that both VCLP- and VCLP+ do well compared

to other methods for the single vortex test.

Single vortex tests for time periods T = 2, 4 and 6 are conducted for a grid resolution of

64× 64 and CFL= 1 to compare with results from five other methods, obtained from [7]. The five

methods are 1) 1st Order Upwind, 2) Piecewise Parabolic Method (PPM), 3) Level Sets, 4) SLIC,

and 5) PLIC.
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Table 4.1: Geometric errors Egeo for single vortex time reversible tests with time periods T = 2 s
(upper panel) and T = 8 s (lower panel). H&N and Young’s method with ‘+’ sign denotes the
application of local height function and ‘-’ denotes without, while for VCLP, ‘+’ means PCIC is
used for interface construction and ‘-’ means PLIC is used. The Taylor second order advection
scheme is denoted as ‘T2’ and TJSM as ‘TJ’. ‘SC’ denotes the use of skip core optimization.
Results for all tests except VCLP are obtained from literature [1, 3].

Method (T = 2 s) 32 × 32 64 × 64 128 × 128

H&N - 1.90 × 10−2 1.02 × 10−2 7.90 × 10−3

H&N + 1.07 × 10−2 5.13 × 10−3 3.31 × 10−3

Young’s - 6.04 × 10−3 2.97 × 10−3 1.93 × 10−3

Young’s + 7.23 × 10−3 3.19 × 10−3 1.63 × 10−3

Rider& Kothe 2.36 × 10−3 5.85 × 10−4 1.31 × 10−4

VCLP - TJ 1.39 × 10−3 5.18 × 10−4 2.48 × 10−4

VCLP - T2 8.74 × 10−4 2.01 × 10−4 7.87 × 10−5

VCLP + TJ 1.35 × 10−3 5.19 × 10−4 2.49 × 10−4

VCLP + T2 9.11 × 10−4 1.93 × 10−4 7.80 × 10−5

VCLP+ T2 SC 9.16 × 10−4 1.91 × 10−4 1.11 × 10−4

Method (T = 8 s) 32 × 32 64 × 64 128 × 128

H&N - 1.01 × 10−1 7.96 × 10−2 6.76 × 10−2

H&N + 8.39 × 10−2 6.05 × 10−2 3.17 × 10−2

Young’s - 5.95 × 10−2 2.00 × 10−2 8.25 × 10−3

Young’s + 1.10 × 10−1 4.49 × 10−2 8.02 × 10−3

Rider& Kothe 4.78 × 10−2 6.96 × 10−3 1.44 × 10−3

VCLP - TJ 9.03 × 10−3 2.10 × 10−3 7.25 × 10−4

VCLP - T2 8.14 × 10−3 1.97 × 10−3 6.90 × 10−4

VCLP + TJ 9.49 × 10−3 2.03 × 10−3 7.93 × 10−4

VCLP + T2 1.02 × 10−2 2.24 × 10−3 7.10 × 10−4

VCLP + T2 SC 8.32 × 10−3 2.43 × 10−3 6.53 × 10−4
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The test results are presented in table 4.2. For T = 2, 4 and 6, the error ratio of 1st Order

Upwind results to VCLP results (least error case) are 68.2, 149.3, and 88.4 respectively. For PPM,

the error ratios are 4.0, 19.5, and 26.5, whereas for level set method, they are 5.1, 20.9, and 19.0.

The error ratios for SLIC are 19.5, 54.4, and 54.7, while for PLIC, they are 0.8, 2.4, and 3.12. Thus,

the geometric error of VCLP results are smaller compared with other methods except for one case,

suggesting a good performance. Errors associated with VCLP with skip core optimization tests are

close to VCLP+ TJ, suggesting. Within VCLP methods, Taylor second order advection scheme

results have lesser error than the results with the proposed TJSM advection scheme.

Table 4.2: Geometric errors Egeo for single vortex time reversible tests with a grid resolution
of 64 x 64 and CFL = 1. VCLP+ denotes VCLP with PCIC and VCLP- denotes VCLP with
PLIC.‘T2’ is Taylor second order advection and ‘TJ’ is the TJSM method while ‘SC’ is the Skip
Core Optimization. Results for all tests except VCLP methods are taken from literature obtained
from [7]

Method Vor T = 2 Vor T = 4 Vor T = 6

1st Order Upwind 5.96 × 10−2 9.66 × 10−2 1.14 × 10−1

Piecewise Parabolic Method (PPM) 3.48 × 10−3 1.26 × 10−2 3.42 × 10−2

Level Sets 4.42 × 10−3 1.35 × 10−2 2.45 × 10−2

SLIC 1.70 × 10−2 3.52 × 10−2 7.05 × 10−2

PLIC 7.00 × 10−4 1.55 × 10−3 4.03 × 10−3

VCLP - TJ 1.39 × 10−3 8.59 × 10−4 1.40 × 10−3

VCLP - T2 8.74 × 10−4 6.47 × 10−4 1.29 × 10−3

VCLP + TJ 1.35 × 10−3 8.63 × 10−4 1.53 × 10−3

VCLP + T2 9.11 × 10−4 6.76 × 10−4 1.42 × 10−3

VCLP + T2 SC 9.16 × 10−4 6.79 × 10−4 1.36 × 10−3

Table 4.3 gives the geometric errors for the single vortex tests for the three grid resolutions,

32× 32, 64× 64 and 128× 128 with CFL=0.5. The ratio of MOF error to VCLP error for coarser
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to finer resolutions are 5.36, 5.77, and 7.55 respectively. The error ratios for CLSVOF to VCLP

are 8.47, 6.20 and 4.64. Thus, quantitatively, VCLP single vortex test results are significantly more

accurate than newer methods MOF and CLSVOF.

Table 4.3: Geometric errors Egeo for single vortex time reversible tests with CFL = 0.5 and T = 8 s.
VCLP+ denotes VCLP with PCIC and VCLP- denotes VCLP with PLIC.‘T2’ is Taylor second
order advection and ‘TJ’ is the TJSM method while ‘SC’ is the Skip Core Optimization. VCLP
test results are compared against MOF & CLSVOF results obtained from [2]

Method 32 × 32 64 × 64 128 × 128

MOF 4.06 × 10−2 1.61 × 10−2 5.62 × 10−3

CLSVOF 6.46 × 10−2 1.73 × 10−2 3.45 × 10−3

VCLP - T2 7.58 × 10−3 2.93 × 10−3 7.44 × 10−4

VCLP + T2 SC 7.63 × 10−3 2.79 × 10−3 8.69 × 10−4

Like geometric error, the relative position error is a quantitative measure used in literature [88]

to evaluate the accuracy of advection methods. The relative position error estimates the positional

change of fluid parcels in the obtained result to the ideal result and it is defined by Eqn. 4.5. The

relative position error of VCLP - T2 for resolution of 64 × 64 is 2.79%, whereas the new VOF

method proposed by Wang et al. [88] have a relative position error of 40.95%.

Relative position Error =

∑i=nx

i=1

∑j=ny

j=1 |f(i, j, 0)− f(i, j, T )|∑i=nx

i=1

∑j=ny

j=1 |f(i, j, 0)|
(4.5)

The relative mass losses found out using Eqn. 4.6 during the single vortex tests using VCLP

are of the order 10−15, with nearly perfect mass conservation. In contrast, the relative mass loss

using CLSVOF method are 1.42 × 10−5 by Zhao et al. [89], 4.0 × 10−4 by Wang et al. [88], and

1× 10−4 Menard et al. [90].
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Relative mass loss =

∑i=nx

i=1

∑j=ny

j=1 f(i, j, 0)δxiδyj −
∑i=nx

i=1

∑j=ny

j=1 f(i, j, T )δxiδyj∑i=nx

i=1

∑j=ny

j=1 f(i, j, 0)δxiδyj
(4.6)

In conclusion, according to the single vortex test results, VCLP method have lesser geometric

and relative position error along with negligible mass loss. Hence by quantitative analysis, VCLP

performs and better in comparison with other presented methods.

4.4 Deformation Test

Deformation field test is more stringent than the single vortex test, where sixteen vortices are

present in the computational domain inducing a radical deformation and topology change of fluid

bodies. This test was proposed by Rider et al. [7] and it is a time-reversed flow field defined by the

stream function given in Eq. (4.7). The velocity field at time t = 0 can is illustrated in Fig. 3.16

inside which a circular fluid body of radius 0.15 m, centered at (0.5,0.75) is placed.

Ψ =
1

4π
sin

{
4π

(
x+

1

2

)}
cos

{
4π

(
y +

1

2

)}
cos

(
πt

T

)
(4.7)

Deformation tests were conducted using VCLP with PCIC (VCLP+) for two time periods,

T = 2 and T = 4 with CFL = 1 and grid resolutions of 32×32, 64×64 and 128×128. Test results

at final time t = T are depicted in Fig. 4.6 (column b and c). Results using R&K method for T = 4

(column a) are obtained from [3]. For T = 4, grid resolution of 32× 32 seems not fine enough for

both methods (panel C, column a and b). For 64 × 64, VCLP has a more circular and symmetric

shape. For 128× 128, both methods produce better results. While VCLP is more symmetric than

R&K at the top and bottom, R&K results are more circular. For T = 2, only VCLP results are

shown; it is nearly a circle for 128 × 128. Overall, qualitatively, VCLP results and R&K’s results

are comparable.
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Figure 4.6: Deformation test result at t = T for CFL = 1 and grid resolutions A) 32 × 32, B)
64× 64 and C) 128× 128. Column (a) results are for T = 4 using R&K method obtained from [3]
, Column (b) and (c) use VCLP with PCIC for T = 4 and T = 2 respectively.

4.4.1 Quantitative Analysis of 2D Deformation Test

Table 4.4 gives geometric errors of the deformation test results for two time periods, T = 2

and T = 4 with CFL = 1 and grid resolutions of 32× 32, 64× 64 and 128× 128. For T = 2, best

of VCLP results have 1.61, 2.26 and 3.52 times smaller error than R&K respectively. For T = 4,

ratio of errors are 1.33, 0.99 and 8.33. So quantitatively, VCLP results have smaller errors than

R&K. So overall, VCLP performs well in this challenging deformation tests.
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Table 4.4: Geometric error for time reversed deformation test for T = 2 and T = 4 for three grid
resolutions, 32 x 32, 64 x 64 and 128 x 128 and CFL = 1. VCLP+ denotes VCLP with PCIC
and VCLP- denotes VCLP with PLIC.‘T2’ is Taylor second order advection and ‘TJ’ is the TJSM
method while ‘SC’ is the Skip Core Optimization. Results for all tests except VCLP are from
literature [7]

Method T(s) 32 × 32 64 × 64 128 × 128

R& K 2.0 1.96 × 10−2 1.12 × 10−2 5.95 × 10−3

VCLP - TJ 2.0 1.43 × 10−2 6.14 × 10−3 2.00 × 10−3

VCLP - T2 2.0 1.35 × 10−2 5.04 × 10−3 1.70 × 10−3

VCLP + TJ 2.0 1.22 × 10−2 5.90 × 10−3 2.01 × 10−3

VCLP + T2 2.0 1.54 × 10−2 4.96 × 10−3 1.80 × 10−3

VCLP + T2 SC 2.0 1.61 × 10−2 5.62 × 10−3 1.69 × 10−3

R& K 4.0 4.68 × 10−2 1.63 × 10−2 9.08 × 10−2

VCLP - TJ 4.0 3.51 × 10−2 1.65 × 10−2 1.09 × 10−2

VCLP - T2 4.0 3.90 × 10−2 1.80 × 10−2 1.12 × 10−2

VCLP + TJ 4.0 3.54 × 10−2 1.68 × 10−2 1.09 × 10−2

VCLP + T2 4.0 4.29 × 10−2 1.87 × 10−2 1.16 × 10−2

VCLP + T2 SC 4.0 3.96 × 10−2 2.00 × 10−2 1.14 × 10−2

4.5 Zalesak’s disk Test

Zalesak’s test problem (Zalesak et al. [91]) is a modified version of the rigid body rotation test

presented earlier where instead of a circular fluid body a slotted disk (Zalesak’s disk ) is used. The

slotted disk centered at (0.5, 0.75) have a radius r = 0.15 m. The slot in the disk is defined such

that it satisfies the relations, |x− 0.5| ≤ 0.025 and y ≤ 0.85. The slotted fluid is placed inside the
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velocity field for rigid body rotation given by Eqns. 4.8.

ux = −2π(y − 0.5)

uy = 2π(x− 0.5)

(4.8)

The slotted disk undergoes a rigid body rotation of 2π radian (one complete circle) during 628

time-steps. This test is carried out for a resolution of 200× 200 and Fig. 4.7 shows the initial and

final states from the test results using VCLP.

Figure 4.7: Zalesak’s rigid body rotation test result for 200 × 200 resolution and 628 time steps
using VCLP.

Figure 4.8 compare the results for 100 × 100 resolution with the work of Scardovelli et al.[4]

using ELVIRA reconstruction method and its variations. The inner edge of the slot has become

rounded in all three cases as well as the tip of the slot as observed in left, middle and right panels.

The slot edges is not completely parallel with the ELVIRA method, but edges are maintained

well with VCLP and the continuity algorithm. The sharpness of the slot tip is maintained in the
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decreasing order of 1) VCLP, 2) quadratic fit with the continuity algorithm, 3) quadratic fit, and

4) ELVIRA reconstruction. Overall, VCLP method results are as good as the compared methods

from [4].

Figure 4.8: Comparison of Zalesak’s rigid body rotation test results for 100 × 100 resolution
obtained from [4] with VCLP result. a) ELVIRA reconstruction (solid line) and the linear best fit
(dashed line) b) with the quadratic fit alone (solid line) and with the continuity algorithm (dashed
line) c) VCLP. Dotted line is the ideal result.

4.5.1 Quantitative Analysis of Zalesak’s disk Tests

Table 4.5 gives the relative error of Zalesak’s disk test results for the 200× 200 grid resolution.

The relative errors of 10 other methods are presented from literature. VCLP methods have the

least error, even lesser than purely Lagrangian methods. TJSM advection scheme have slightly

lesser error than Taylor’s second-order scheme. PCIC reconstruction performs better than PLIC

with lesser error. So, overall VCLP methods performs very well in the Zalesak’s disk test.
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Table 4.5: Relative error for Zalesak’s disk rigid body rotation test for resolution of 200× 200.

Reconstruction/Advection Methods Relative Error

Higher-order bounded convection/Eulerian [92] 5.72× 10−3

Youngs/Stream (unsplit) [4] 1.07× 10−2

Puckett/Stream /Eulerian [4] 1.00× 10−2

ELVIRA/Lagrangian (split) [4] 1.00× 10−2

Linear fit/Lagrangian [4] 9.42× 10−3

gVoFoam/Eulerian [93] 1.36× 10−2

interFoam/Eulerian [93] 6.61× 10−2

OpenFoam®/Eulerian [94] 7.03× 10−2

Quadratic fit/Lagrangian [4] 5.47× 10−3

Quadratic fit+continuity/Lagrangian [4] 4.16× 10−3

VCLP - TJ/ Eulerian-Lagrangian 4.21× 10−3

VCLP - T2/ Eulerian-Lagrangian 4.36× 10−3

VCLP + TJ/ Eulerian-Lagrangian 3.79× 10−3

VCLP + T2/ Eulerian-Lagrangian 3.96× 10−3

VCLP + T2 SC/ Eulerian-Lagrangian 4.05× 10−3

4.6 3D Deformation Test

The 3D deformation test is used in literature to test the accuracy of surface tracking and advec-

tion methods in 3D. In this test a spherical fluid body centered at (0.35, 0.35, 0.35) with a radius

of 0.15 m is placed inside a time reversing solenoidal velocity field with vortices. Equations 4.9

gives the velocity field for the deformation test proposed by LeVeque [87].

94



ux(x, y, z, t) = 2 sin2(πx) sin(2πy) sin(2πz) cos(πt/T )

uy(x, y, z, t) = − sin(2πx) sin2(πy) sin(2πz) cos(πt/T )

uz(x, y, z, t) = − sin(2πx) sin(2πy) sin2(πz) cos(πt/T )

(4.9)

The time period for the test is, T = 3 s with CFL= 0.5, which is long enough to stretch the sphere

into a thin curved sheet by t = T
2
= 1.5 s and reverse to get back the initial sphere at t = T = 3 s.

The 3D deformation tests for VCLP uses 20 LPs per dimension and these are conducted for two

grid resolutions, 32× 32× 32 and 64× 64× 64.

Figure 4.9 displays the result for resolution 64 × 64 × 64. The spherical fluid body on the

left panel is the initial state at t = 0, whereas the middle panel is the maximum stretched shape

at t = T = 1.5 s. The final result at t = T = 3 s, on the right panel shows the final result at

t = T = 3 s. The fluid body have a spherical shape, even though there are some perturbations on

the surface. Overall, qualitatively, VCLP performs satisfactorily in the 3D deformation test.

Figure 4.9: 3D Deformation test results of VCLP with T = 3 s and CFL = 0.5 for a grid resolution
of 64 × 64 × 64. Left panel: initial state at t = 0, middle panel: maximum deformed state at
t = T

2
= 1.5 s, Right panel: final results for t = T = 3 s.
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4.6.1 Quantitative Analysis of 3D Deformation Test

Table 4.6 provide the geometric errors of the 3D deformation test results using VCLP and other

methods from literature. VCLP results are compared with the Moment of fluid method (MOF) [95]

and CLSVOF [52] obtained from [2].

Table 4.6: Geometric errors Egeo and order of convergence for 3D deformation tests with CFL =
0.5 and T = 3 s. MOF and CLSVOF test results are obtained from [2].

Method 32 × 32 × 32 Order 64 × 64 × 64

MOF 5.62 × 10−3 1.26 2.35 × 10−3

CLSVOF 7.77 × 10−3 1.15 3.50 × 10−3

VCLP- 4.40 × 10−3 1.34 1.73 × 10−3

VCLP+ 4.35 × 10−3 1.33 1.73 × 10−3

From results with grid resolution of 32× 32× 32, VCLP has 1.29 and 1.78 times lesser errors

than MOF and CLSVOF, respectively. For 64 × 64 × 64, VCLP has 1.35 and 2.02 times less

geometric error than MOF and CLSVOF, respectively. VCLP also shows a slightly better order of

convergence (a measure of how quickly solution converge with increase in resolution) with a value

of 1.33. The total fluid volume loss in VCLP is 2.7 × 10−17 m3, which means nearly a perfect

mass conservation. Therefore, based on the quantitative error analysis, VCLP performs well in

comparison with the MOF and CLSVOF methods.

4.7 Computational Performance of VCLP

A parametric study was conducted for LPs per dimension distributed as blue noise to evaluate

the optimum number of LPs. The single vortex test with resolution of 64 × 64 and T = 8 s was

chosen for the study. Absolute errors and relative computational times were obtained as indicated

in Fig. 4.10. The total computational time for time-steps is normalized with the case using 89 LPs.
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It can be seen that error decreases rapidly with an increase in the number of LPs till 25 LPs. After

that, error is nearly constant passing 40 LPs. Computational time seems reduce initially till 12 LPs

and then increases somewhat linearly, suggesting that a number around 33 LPs is optimal for these

tests. The initial decreasing trend from 7 to 12 LPs, is because of the increase in accuracy and

reduction in the number of surface cells arising from the broken vortex filament.

Figure 4.10: Geometric error and relative computational time for VCLP-PCIC with skip core
optimization with respect to number of Lagrangian particles for the single Vortex test with T = 8 s
in a 64× 64 grid.

A blue noise template has advantages over a white noise template because the distribution of

LPs is more uniform in the former. For the same accuracy, the number of LPs required in a blue

noise template is considerably lesser that in a white noise template and hence blue noise template

is used in VCLP. The following table 4.7 compares the computational time and accuracy for the

single vortex test as defined in the section 4.2. The resolution of the VCLP tests is 60× 60 and are

conducted for 10 and 33 LPs per dimension. In the table 4.7, non-advective means the advection
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is entirely skipped from calculation to account for the computational time all methods have in

common. CM means with the center of mass tracking, T2 stands for Taylor’s second-order method

with acceleration, TJ stands for the advection using second-order TJSM method with acceleration.

The results show that without the advection (skipping all steps of VCLP; classification, interface

reconstruction, advection and updating), the computational time is around 7.4 s. The VCLP method

with 10 LPs, Taylor 2nd order advection, and CM tracking takes 19 % more time than VOF, but

the error reduced by 1289 %, whereas the VCLP method with 10 LPs, TJSM advection, and CM

tracking takes 45 % more time than VOF, but the error reduced by 1350 %.

The case with the least error is VCLP T2 CM 33, followed by VCLP TJ CM 33. The com-

putational time increases somewhat linearly with the number of LPs per dimension in 2D, with

an exception for the TJSM method for which it is of a higher power than one. The CM tracking

seems to reduce the error by 268 to 600 % and less than five percent more computational time.

For a resolution of 120 × 120, VOF takes 105.5 s with an error of 0.07924, which is 629 % more

computational time and 1200 % times more error. This supports the claim that using VCLP at

lower resolution obtains better results than SOLA-VOF with lesser computational time. Skip core

optimization is not tested since it depends on the ratio of surface perimeter to the area and varies

for each tests. With skip core optimization, there will be further reduction in computational time

with very small increase in error as evident from the benchmark tests. The advection algorithm

typically takes a small fraction of the total computational time and its major portion is consumed

by the N-S solver. Therefore, the computational time for advection tests accounts only for the

minor portion since N-S equations are not solved.

Notice that some of geometrical errors are more than the area of the circular fluid body (0.07068

m2). The upper limit of geometrical error is two times the area of the fluid body(0.14137 m2),

which occurs when the fluid bodies at the initial and final times have zero overlap.
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Table 4.7: Computational time and error compared of VCLP method compared with original VOF
method for Single Vortex T= 8, δx = δy = 1/60 with the circle.

No. Method Computational Time Geometric Error m2

1 No Advection 7.359 -

2 VOF 14.078 0.0851

3 VCLP T2 10 16.594 0.0396

4 VCLP T2 33 38.484 0.0169

5 VCLP TJ 10 19.875 0.0393

6 VCLP TJ 33 79.250 0.0168

7 VCLP T2 CM 10 16.765 0.0066

8 VCLP T2 CM 33 40.141 0.0042

9 VCLP TJ CM 10 20.438 0.0063

10 VCLP TJ CM 33 83.219 0.0045

4.8 VCLP Applications

To test the proposed method, two practical CFD problems are presented; the dam break prob-

lem, and the breaking wave problem. The CFD code used for these simulations is TSUNAMI2D

by Horrillo [80] with the VCLP advection module. These two problems are explained in detail

below. Additional information on the TSUNAM2D model can be found in [80].

4.8.1 Dam Break Problem

The computational domain is 10 m in length and 15 m in height. The free surface at time t = 0

has a width of 3 m and a height of 8 m. There is a square obstacle placed on the floor at position

5 m. Figure 4.11 shows a qualitative comparison of VCLP and VOF using TSUNAMI2D code.

The grid cells are squares with a resolution of 0.10 m, and there are 150 x 100 cells. The time step

∆t = 0.003 s.
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Figure 4.11: Dam break VCLP (left) SOLA-VOF (right) t = 1.0s and t = 1.4s

There are subtle changes in the location and shape of the fluid at time t = 1 s. Compared to the

SOLA-VOF results, the surfaces in the VCLP result are smoother, and the tip of the projected fluid

is higher (top panels). At time t = 1.4 s (lower panels), the fluid hits the wall, and some minute

100



differences are noticed, example: the projected fluid reflecting from the wall is moving in a slightly

upward direction in the VCLP and an unrealistic upward movement of a fluid parcel is visible in

SOLA-VOF result. Overall, there is not any considerable difference in the flow pattern and VCLP

result is devoid of some minor unrealistic errors such as surface roughness and upward moving

fluid parcel. Since VCLP has more surface features and capability than the SOLA-VOF, it can be

understood from this simulation, that VCLP is able to produce very similar result to SOLA-VOF,

with some improvement.

4.8.2 Breaking Wave Problem

The breaking wave is a challenging transient multiphase problem to numerically simulate and

solve for converging breaker jet free surfaces. However, the problem may be simplified by assum-

ing air is absent (void), making it as a single-phase flow. The simplified version is also difficult to

model and has undergone extensive research. Grilli et al. [5] have numerically modeled shoaling

and breaking of 2D solitary waves generated by a moving lateral boundary and traveling over a

plane slope. The model used for these simulations is based on the fully non-linear potential flow

theory and a higher-order boundary element method (FNFP-BEM). One of the drawback of this

method is that a singularity is reached at the wave breaking points and at the converging breaker

jets. Later, researchers have simulated beyond the breaking point by coupling the FNFP-BEM

with the NS-VOF method (Lachaume et al. [6]). They implement two types of coupling princi-

ples, weak and strong coupling. In the weak coupling the wave is generated and propagated in

the BEM domain, up to near the breaking point and then NS-VOF is used in the breaking zone

to simulate breaking and post-breaking. In strong coupling, a moving vertical boundary exchange

boundary conditions between models where the fluid regions overlap.

The experiment conducted on this study using TSUNAMI2D-VCLP is same as the one by

Grilli et. al [5], where a solitary wave of height H0 = 0.45 m in a 1 m deep wave tank shoals and

breaks over a slope of 1:15. Figure 4.12 shows the 2D numerical wave tank for the simulation of

the breaking wave. The numerical wave tank is 36 m long and 2 m high. The slope is 1:15 starting

at x = 20 m and ending at x = 34 m. This specific breaking wave problem is taken from Grilli et al.
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[5], where a solitary wave is generated using a piston wavemaker. As the wave travels towards the

slope in the positive X direction, the wave shoals and eventually breaks. The water depth (h0) is

1 m, and the solitary wave is 0.45 m high. The domain resolution in the Y direction has 400 cells

with δy = 0.5 cm and in the X direction, δx reduces from 10 at x = 0 to 0.5 cm at x = 25 m till the

end of the numerical wave tank. Number of cells in X direction is 3944 for a total of (400× 3944)

1,577,600 cells.

Figure 4.12: Numerical wave tank for the simulation of a solitary wave that shoals and breaks

Equation 4.10 defines the movement of the piston wavemaker to generate the solitary waves.

Here H0 is the solitary wave height in constant depth h0, and c is the celerity of the solitary

wave ( analytically for constant depth, c =
√
g(h0 +H0)). The motion of the piston wavemaker

corresponds to a wave profile that is cut at λ distance on both sides of the wave crest. More detailed

information about the piston wavemaker can be found in [5].

xp(t) =
H0

κ

[
tanh

κ

h0

(ct− xp(t)− λ+ tanh
κλ

h0

)

]
(4.10)

where κ =
1

2

√
3H

′
0

The evolution of the simulated breaking solitary wave using TSUNAMI2D-VCLP is given in

Fig. 4.13 from time 1 to 10 s. It takes around 3 seconds to create the solitary wave of length 2λ.

Speed of the solitary wave in the numerical experiment (3.75 m/s) confirms the theoretical speed

of 3.77 m/s estimated from the celerity equation. The shoaling and the breaking can be seen during

time from 10.5 to 11.4 s in Fig. 4.13. The solitary wave breaks approximately at 34 m. The hollow

region formed at the breaking can be seen clearly and eventually splashing upwards after breaking.
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Figure 4.13: Breaking wave problem: Evolution of the solitary wave in time from 1 to 10s. Plots
are in in the order of 1, 1.5, 2, 2.25, 2.5, 2.75, 3, 4, 6, 8, 10 seconds.
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Figure 4.14: Breaking wave problem: Evolution of the solitary wave of height 0.45 m in time
during 10.1 to 11 s. Plots are in the order of 0.1 seconds apart.

The TSUNAMI2D-VCLP results till the breaking point is compared with the FNFP-BEM re-

sults by Grilli et al. [5] obtained from [6] and are given in Fig. 4.15. The dotted line is FNFP-BEM,

while the solid line represents the TSUNAMI2D-VCLP results. The solitary wave at locations ‘a’
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to ‘f’ matches well in terms of height position and shape.

Figure 4.15: Comparison of the evolution of a solitary wave model using TSUNAMI2D-VCLP
and FNPF-BEM model by Grilli et al. [5] with Ho/ ho = 0.45, over a slope of 1:15. The solid lines
are FNPF-BEM model results and dotted lines are TSUNAMI2D-VCLP.

TSUNAMI2D-VCLP simulation result after breaking is compared with the numerical model-

ing results by Lachaume et al. [6] that uses strong-coupled FNPF-BEM/NS-VOF model in Fig.

4.16.

Figure 4.16: Comparison of the shoaling and breaking of the solitary wave model using
TSUNAMI2D-VCLP and strong-coupled FNPF-BEM/NS-VOF(SL-VOF) model by Lachaume [6]
et al. with Ho/ho = 0.45, over a slope of 1:15. The dotted lines are strong coupled FNPF-BEM/NS-
VOF(SL-VOF) model results and solid lines are TSUNAMI2D-VCLP.
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The NS-VOF model developed by Guignard et al. [96] uses the SL-VOF and PLIC recon-

struction for interface tracking and a N-S solver by De Jouette [97]. The N-S solver of [97] use a

5th order Runge-Kutta scheme, while TSUNAMI2D-VCLP uses second-order Van Leer scheme.

Both VCLP and the SL-VOF models use PLIC construction. It can be seen that the model re-

sults ‘a’ to ‘e’ match, before and after breaking in terms of height position and shape. So, overall

TSUNAMI2D-VCLP performs well in simulating the breaking wave problem.
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5. NUMERICAL MODELING OF VOLCANIC TSUNAMI EXPERIMENTS

5.1 Introduction

Tsunami is a sequence of waves in a water body, generally in an ocean or a large lake, caused

by the displacement of a huge volume of water. On December 26, 2004, more than two hundred

thousand lives were lost by the Indian Ocean tsunami. While an underwater earthquake caused this

catastrophic tsunami, tsunamis can also be originated from submarine and subaerial landslides,

volcanic activities, meteorological causes, and asteroid impacts. A tsunami is generated when

enormous energy from one or more above-mentioned sources is transferred to a water body by

either displacement, or deformation. Once generated, it can propagate through the ocean with a

large velocity, and on approaching shore, it undergoes shoaling, resulting in the slowing down of

tsunami waves and decrease in its wavelength. The lost kinetic energy is then transformed into

potential energy with an increase in wave heights. While tsunami in open water is minuscule, it

is of great size and power while traveling towards land and boats [98, 99]. The great sized waves

then become tsunami runups, bore formation, overland flow, and inundation that can devastate the

coastal regions on their way.

Volcanic tsunami makes up to five percent of all tsunamis, and among volcanic fatalities, about

16.9 percent are caused by tsunamis [100]. A volcanic tsunami can be formed from submarine

volcanic activities like explosions, caldera collapses, flank failures, pyroclastic, and tectonic plate

movements. Ninety-plus events have been identified in the last 250 years, and it is estimated

that volcanic-tsunami fatalities make up to 25% of all lives lost due to volcanic eruptions. The

disastrous tsunamis can reach up to 25 km, more extensive than other volcanic effects.

It is believed that the explosion/collapse of the volcano of Santorin in the Aegean Sea destroyed

the Minoan civilization in Greece in 1490 B.C. The volcanic activity of Mount Unzen situated in

the Shimabara Peninsula, Japan, in 1792 caused a mega volcanic tsunami [101] of 165-foot height,

killing 15,000 people. The massive lateral collapse of Ritta Island on March 13, 1888, caused the
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second-largest volcanic tsunami making waves tens of meters high [102]. Even when they arrived

at the parts of New Guinea Island after traveling hundreds of kilometers, the waves were still 8 m

tall according to witnesses [102]. The most disastrous and most enormous volcanic tsunami was

the Krakatoa eruption on August 27, 1883, and there were more than 40 m waves and 36000 fatal-

ities [100, 103]. Shortly after the eruption, the magma chamber collapsed, seawater rushed into it,

and a second explosion generated a 10 m tsunami. The third-largest volcanic tsunami ever and dis-

astrous one taking 437 lives is only three years old, as Anak Krakatau volcano, Indonesia, laterally

collapsed on December 22, 2018 [104]. The eruption and the lateral collapse of the Anak Krakatau

volcano generated a tsunami with runups up to 13 m causing at least 426 fatalities. In Fig. 5.1, the

left side shows the erupting mount Anak Krakatau after the tsunami, making waves. The right side

shows the drone image after the flank collapse of Anak Krakatau with a missing 320 meters tall old

summit. In comparison with earthquake-generated tsunamis, volcanic tsunamis are short-period

Figure 5.1: a) Erupting mount Anak Krakatau. b) Anak Krakatau after collapsed flank 320 meters
tall old summit is missing. (Source: Helmholtz Association of German Research Centres)

waves with larger dispersion and limited far-field effects. They have intermediate water depth

wavelengths and produce large wave heights locally and near the source, [105, 106, 107, 108].

Twenty percent of volcanic tsunamis result from earthquakes [105, 109]. Only volcano-tectonic

earthquakes with high frequency can deform ground, large enough to produce a tsunami. Volcanic-
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tectonic earthquakes with magnitudes typically less than six are seismic swarms at shallow depth

and generate only tsunamis with small magnitude. However, these tsunamis often occur before

volcanic eruptions [110, 111]. Now, earthquakes of any origin could cause slope instability flank

failures and thus, indirectly generate tsunamis. Even though these tsunamis from volcano flank

failures make up one percent of all tsunamis in the past four centuries, on a local scale, they are

potentially high magnitude hazards [112]. Volume, origin, and dynamics determine the charac-

teristics of a landslide tsunami from slope instability [113]. In terms of energy, these may match

earthquake induced tsunamis, but radial spreading limits their propagation [114]. Tsunamis pro-

duced by landslides with high acceleration or deceleration produce short wavelengths, and disper-

sion restricts its far-field propagation [115]. Pyroclastic flows made up of hot gas and particles can

also generate tsunamis. It is shown that the dense, basal debris component of pyroclastic flow is

required for energetic and coherent wave formation [116]. Pyroclastic flows are suggested for the

cause of the large waves of 15-30 m formed in Sunda Strait during the 1883 tsunami [117, 118].

Another source for a volcanic tsunami could be shock wave. Volcanic explosion pressure could be

high enough to cause a meteorological tsunami; a rare phenomenon [119, 120]. This might explain

the worldwide tsunami after Krakatao explosion [103, 121]. Caldera collapse resulting from large

volcanic explosions and eruptions can displace large water masses, producing tsunamis. Geometry

and duration of collapse determine the amplitude of water subsidence that initiates propagation of

the tsunami’s leading trough. A tsunami can also result from an underwater volcanic explosion,

and depending on the water depth and energy of the explosion, a water crater development may

be initiated. Two successive bore waves are produced when an expansion rise to follow this, and

gravitational collapse of the crater occurs [114]. Many slight undulations follow the bore waves

that propagate radially outwards from the crater. Studies show explosion energy determines the

initial water crater depth [122]. Underwater explosions typically produce small amplitude and

short period waves, and the dispersion effects restrict far-field effects. However, for the underwa-

ter explosion in shallow water, the dispersion rate is lower, and the result is tall runups locally, as

in the case of Karymsky Lake in 1996 with 19 m runup [90, 109, 110]. The physics of underwater
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explosions and magma-water interactions are complicated as it is the function of the geometry of

the vent and magma-water interface, water depth, thermal energy transfer, mixing processes of

water and magma, metastability of the superheated water, and the amount of gas inside magma

that is moving up [111, 112, 113]. Compared to the Surtseyan explosion, underwater violent

steam explosions like the Taal volcano in 1965 forming maars and tuff rings more likely produce a

tsunami. The physical experiments are modeled based on the active volcano in Grenada, Kick’em

Jenny. Figure 5.2 shows the bathymetry, location, and eruption in the action of this volcano with

an ‘Orange Alert’ issued in 2015. Disastrous tsunamis in the past two decades, such as Papua

Figure 5.2: Kick’em Jenny Volcano elevation, eruption and location. (Sources: Left, Middle:
Seismic Research Centre at the University of the West Indies. Right: 2013 R/V Nautilus data set in
the main map and GEBCO in the inset)

New Guinea (1998), the Indian Ocean (2004), Japan (2011), and Indonesia (2018), stirred the re-

search interests in earthquake and submarine landslide tsunamis. Although relatively infrequent,

the fatalities and magnitude of the recent events due to volcanic tsunamis show the relevance of

modeling and predicting volcanic tsunami. The prediction and monitoring of volcanic tsunamis

are complex, and the available time is just a few minutes to issue an alarm [123, 117, 124, 125]. In

the case of volcanic tsunamis, distant tide gauges and post-tsunami field surveys are the only avail-

able field observations. Experimental or numerical modeling studies are required to understand

different source mechanisms and tsunami wave generation. Numerical models can be used for

validation, and physical modeling experiments can provide data to validate. The increase in com-

putational power and memory in past decades allows numerical modeling of large water domains
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with thousands of kilometers in area, with a few-meter resolution even while solving a highly non-

linear Navier-Stokes equation. Even though Direct Numerical Simulation (DNS) of such a large

domain is not even closely achieved yet, methods such as Reynolds Averaged Navier-Stokes Sim-

ulation (RANS), and Large Eddy Simulation (LES) are up-and-coming in terms of non-linearity

and complexity it can handle, and accuracy. Thus, numerical modeling is a feasible and effective

way to learn and predict tsunamis, even large scale. Since the past two eventful decades, there have

been considerable developments and better tools in understanding, modeling, and studying tsunami

source mechanisms, and geographical distribution [104]. Landslide tsunami from lateral collapses

has been widely modeled, including large landslides on ocean islands [126, 127, 128]. However,

validation of these models is incomplete due to the lack of historical examples [129, 130, 131].

Numerical models are sensitive to various parameters, grid sizes, boundary conditions, approxi-

mations and the equations used, and thus errors could be coupled and cumulative. In this scenario,

one of the best ways to validate a numerical model would be to validate with the laboratory ex-

periments on tsunamis in wave basins even though they are costly, time-consuming, and limited

in different scenarios that can be constructed for experiments. The NSF-funded volcanic tsunami

physical experiments were conducted inside the three-dimensional NHERI O. H. Hinsdale Wave

Research Laboratory at Oregon State University [132], by deploying a novel Volcanic Tsunami

Generator (VTG) on the basin floor. Measurements from four wave gauges are compared to val-

idate its potential in modeling submarine volcanic tsunami experiments. This model successfully

predicts highly non-linear volcanic tsunami waves with intricate wave patterns. Thus, in the fu-

ture, validated models can conduct experiments that are not feasible due to laboratory or time

constraints, which would help assess volcanic tsunami hazards more accurately, improve tsunami

warning and mitigating systems, and save lives.

5.2 Physical modeling of Volcanic Tsunamis

Physical modelling of volcanic tsunamis can be classified into surface impact models and bot-

tom uplift models. Related to the atomic tests in 1946 Marshall islands, Johnson dropped steel

plates on the water surface to model the underwater explosions and experimentally determined
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that the ratio of wave height to the water depth is inversely proportional to the radius [101]. Ac-

cording to Kranzer’s mathematical model, power of radius should be -1/2, and it matches with the

study of Law’s experiments with sliding blocks of different mass and aspect ratios into a channel

[133, 134]. The fact that attenuation from viscosity and radial propagation are both proportional to

power of -1/2 supports this study. Van Dorn arrived at a result on the tsunami amplitude attenuation

with the power of radius being -5/6 [135]. Méhauté and Wang compared the wave profiles with

non-linear wave theory [136]. The result shows the first two waves of similar and highest ampli-

tudes were followed by a series of smaller waves. In an experiment to model submarine landslides,

Watts used sliding triangular blocks at an angle of 45° and found out that around only 3-7% of the

kinetic energy was transformed into wave energy [137, 138]. Fritz generated waves from granu-

lar impulse and found the kinetic to wave energy conversion was between 2 to 30% [139, 139].

McFall modeled subaerial landslide tsunamis using a pneumatic landslide generator and provided

empirical equations to predict the wave amplitude of the first two largest waves [140]. Kim numer-

ically modeled these experiments using TSUNAMI3D to validate [141]. Grilli used sliding solid

block with Gaussian cross-section to study subaerial landslides [142]. Wave runups of subaerial

landslides were found to be larger than submarine landslides based on the video analysis. A bot-

tom uplift model experiment conducted by by Hammack used the upward motion of a rectangular

piston at the bottom of the tank and adjacent to the wall to generate solitary waves and dispersive

trailing waves [143]. Jamin used a solid flat circular piston under a circular region covered by a

stretchable elastic sheet [144]. A minimal water depth of 25 mm with a stroke of 5 mm was used,

and hence scalability is questionable due to the presence of capillary and viscous effects in this

scale. In 2019, Hermann Fritz and team conducted physical modeling experiments to understand

better how underwater eruptions generate tsunami waves and to characterize volcanic tsunamis,

inside Oregon State University’s Hinsdale wave basin laboratory, an NSF-funded NHERI experi-

mental facility, by deploying a novel Volcanic Tsunami Generator (VTG) on the basin floor [132].

VTG is the wavemaker, a pneumatically controlled and vertically expandable cylindrical telescopic

eruptive column tank of 1.2 m diameter and 73 cm to 103 cm of height (expanded), which can push
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the water column 0.3 m up through the water surface in less than a second, causing a significant

displacement, which can model the source mechanism of a submarine volcanic eruption and sub-

sequent tsunami waves. Over 300 experiments simulated explosions at different water depths and

different energy and kinematics, to isolate the source mechanism of submarine volcanic eruptions,

using sensors measuring 3D velocities, surface elevation around the volcano, and the wave runup

on the shoreline. Eight synchronized pneumatic pistons of diameter 80 mm each with a stroke

length of 30 cm accelerates and expands the VTG. Underwater snapshots of the VTG at the initial

and final stages are shown in Fig. 5.3. Fig 5.3 a) shows the retracted stage or the initial stage

where water is still, and VTG is 73 cm in height. b) shows the fully expanded VTG height of 103

cm with a radial wave around VTG. The controlled acceleration capability of VTG allows vari-

Figure 5.3: Volcanic Tsunami Generator (VTG) under water: a) retracted VTG. b) Fully expanded
VTG.

able eruption velocities that mimic different kinds of underwater volcanic activities ranging from

slower mud volcanoes to violent underwater explosions. Eruptive energy is from the pressurized

air inside the pistons. The VTG displacement as a function of time is obtained from the internal

linear potentiometer. Volcanic tsunami physical experiments satisfy generalized Froude similarity

given by the equation 5.1 where ‘M’ is the model, and ‘P’ is the prototype.

VM√
gLM

=
VP√
gLP

(5.1)
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VTG is deployed 10.08 m away from the wavemaker panels along the centerline of the wave

basin of dimension 44.2 m × 26.5 m. The layout of the O. H. Hinsdale wave research lab basin

and locations of VTG and the gauges are shown in Fig. 5.4 Surface elevation measurements

Figure 5.4: O. H. Hinsdale wave research basin layout and locations of volcanic tsunami generator
and gauges.

were done using 26 resistance wave gauges and six runup gauges, as shown in the Fig. 5.4. The

experimental team selected gauges’ locations to measure radial propagation, dispersion, and decay

of the generated radial waves. Four are chosen among the 26 resistance gauges ( 4, 8, 16, and

20 ) to validate the numerical model. The wave basin of inner dimension 44.2 m × 26.5 m has

a slope from halfway, i.e., 22.1 m that rises to 2.1 m at 44.2 m. Figure 5.5 shows the numerical

wave basin, retracted VTG, and the four gauges with a water depth of 1.2 m. The sampling rate

for the gauges is 200 Hz. The experimental procedure begins with filling or removing water from

the wave basin to achieve the required water depth and then waits for 15 min until we have almost
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Figure 5.5: Numerical wave basin layout and locations of volcanic tsunami generator and gauges.

still water. The pressure chamber is then set to the required air pressure. Finally, the activation

switch releases the pressurized air to eight pistons inside VTG, expanding it vertically and pushing

the water column above to produce the wave. VTG has an initial height of 73 cm and a stroke

length of 30 cm. Eight of the physical experiments are numerical modeled, in which water depth

and tank pressure vary. Water depth ranges from 90 m to 150 m, and tank pressure varies from 40

psi to 145 psi. The piston’s peak velocity during the stroke ranges from 0.68 m/s to 2.05 m/s. The

water depth, tank pressure, and peak velocities of the ten experiments are shown in Table 5.1. The

velocity-time series of VTG is obtained from the linear potentiometer inside. It can be seen that for

experiment number one to four, VTG pierces water surface by 13 cm, and for experiments VTG is

completely submerged during expansion and create non-piercing waves. The velocity-time series

of VTG for ten experiments are shown in Fig. 5.6. As expected, peak velocity reduces as water

depth increases or tank pressure decreases. For all cases, after attaining peak velocity, there are

local peaks that get smaller exponentially. For all cases, peak velocity is achieved between 0.05

and 0.09 seconds. The second peak occurs around 0.3 seconds, with a magnitude half of the first

peak. The displacement profile is shown in Fig. 5.7. The left side of Fig. 5.8 shows underwater
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Figure 5.6: Velocity profile for the ten volcanic tsunami generator experiments with water depth
and tank pressure.

Table 5.1: Physical experiment parameters for the eight cases that is numerically modeled.

Exp. Water Tank Peak
N Depth (cm) Pressure(psi) Velocity (m/s)
1 90 40 0.92
2 90 70 1.30
3 90 100 1.62
4 90 145 2.05
5 120 40 0.68
6 120 70 1.05
7 120 100 1.35
8 120 145 1.77

video time-series of volcanic tsunami generator erupting through the water surface with a depth of

0.97 m and launch pressure of 145 psi. The right side shows the video time-series (top to bottom)

of the surface spike above the submerged VTG with a water depth of 1.17 m and a launch pressure

of 130 psi.
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Figure 5.7: Displacement profile for the ten volcanic tsunami generator experiments with water
depth and tank pressure.

5.3 Numerical Modeling of Volcanic Tsunami Experiments

The major objective of this study is to validate a fully 3D Navier-Stokes(N-S) numerical model,

TSUNAMI3D, in modeling submarine volcanic tsunamis, using the set of physical laboratory ex-

periments described in the earlier section. The N-S equations and continuity equations represented

using the finite difference method are solved in TSUNAMI3D, and the transient water surfaces are

tracked using the VOF method deveoped by [69] at the Los Alamos National Laboratory. VOF

method is explained in chapter one 1.5. The Fractional Area Volume Obstacle Representation

(FAVOR) technique defines internal obstacles such as walls, floor, and topography using partial

and completely blocked grid cells. For the submarine volcanic tsunami experiments, the VTG

and its motion are numerically modeled using this technique. The governing equations used in

TSUNAMI3D are N-S equations and the continuity equations that are explained in chapter two

2.2.2.
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Figure 5.8: Left: Underwater video time-series of volcanic tsunami generator erupting through the
water surface, Right: video time-series (top to bottom) of surface spike above the submerged VTG.
(Source: Yibin Liu, Georgia Tech).
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5.3.1 Numerical Model Input parameters

The computational domain represents the Hinsdale wave basin which is 48.4 m long and 26.5

m wide. The VTG in the retracted position is considered as the part of bathymetry as a cylindrical

rise with a diameter of 1.2 m, centered at (9.9,13.25) with a height of 73 cm. The geometry and

bathymetry of the wave basin, water depth, and the information about the location, shape, and

motion of the VTG are the input parameters to the numerical model. VTG motion is modeled as

a piston pushing from below. The walls of the computational domain are considered as reflective

boundaries. The simulation time is 16 seconds. The initial wave state evolution close to the wave

producing region is difficult to model. Very fine resolution is need at this location to capture highly

non-linear characteristics of the wave [141]. However, for the tsunamis we are more concerned

about the first few waves approaching the shore, and hence the grid resolution was chosen with this

in mind. Cartesian grid system with uniform grid cell size is used for the simulations. Resolution

along length and width is 5 cm and along depth is 1.25 cm. So, a total of 44 million cells are used

for the simulation. The time step used for the simulation is 0.005 s. TSUNAMI3D takes around

24 hrs to simulate the 16 seconds on a Cray CX1 computer with Intel Xeon CPUs having a total

of 8 core utilizing two processors at 2.13 GHz.

5.3.2 Numerical Model Results

Numerical results are compared with the experimental water elevation time series measure-

ments from the four gauges. The location of the gauges are given in the Table 5.2. The first three

gauges are along the center line, and gauge 3 is at an angle of 12.58◦. Gauge 0 is the closest to the

VTG and gauge 3 is the farthest. The evolution of volcanic tsunami wave generated by the VTG

for case 7 is shown through Fig, 5.9, 5.10 and 5.11. For this case the water depth is 120 cm and the

tank pressure is 100 psi. The peak velocity is 1.35 m/s. The water level elevation with respect to

the mean level is magnified 10 times for visualization. The color bar gives the elevations. Gauge

0 results is top left, gauge 1 is top right, gauge 2 is bottom left, and the gauge 3 is bottom right.

The physical experimental measurements are shown as blue plots and the simulation results are
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Table 5.2: Water level gauge location and numbers

Gauge No. x (m) y (m) r (m) θ (o)
0 11.81 13.22 1.91 0
1 13.93 13.25 4.02 0
2 16.88 13.24 6.98 0
3 19.32 11.12 19.44 12.58

red plots. The plot on the left bottom corner shows the VTG velocity with time. The deformation

of the water surface during the motion of VTG is captured in Fig. 5.9.

Figure 5.9: Numerical simulation results of case 7 with a water depth of 120 cm and the tank
pressure of 100 psi. Results shows the time 0 to 0.3 s of the initial wave generation.
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The second stage of the wave generation, the wave energy is dispersed in to the closer regions

around VTG creating the first few largest waves. This can be seen from the Fig. 5.10.

Figure 5.10: Numerical simulation results of case 7 with a water depth of 120 cm and the tank
pressure of 100 psi. Results shows the time 2 to 6 s the initial large waves.

The third stage shows the reflected and superimposed waves. Some of the waves are propa-

gating towards the beach and the circular waves are being transformed in to parallel waves. The

wave elevation is increasing while moving through the region with slope toward the beach. These

characteristics can be seen from the Fig. 5.11 where it shows snapshots from 10 to 16 seconds.

121



Figure 5.11: Numerical simulation results of case 7 with a water depth of 120 cm and the tank
pressure of 100 psi. Results shows the time 10 to 16 s the initial large waves.

5.3.3 Comparison with the Wave Gauge Results

The comparison of the numerical results with the measurement from the submarine volcanic

tsunami experiments for the cases 5 (table 5.1) is presented in this section. The results from the

other cases can be found in the Appendix A. The wave gauge locations and number denoting

each are provided in table 5.2. The time series from the wave gauge measurements and numerical

model are plotted for the eight cases. The measurement of the first two crests and troughs from

each experiments are compared with the numerical result and error percentage with respect to the
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maximum wave height is also estimated. The gauges are denoted as gi for convenience, where

subscript ‘i’ is the gauge number.

Case 5 produces the smallest waves as it have the lowest pressure of 40 psi and higher water

depth of 1.2 m and its results are shown in Fig. A.5. It is a non- piecing case with the lowest peak

velocity of 0.68 m/s. The table A.5 shows the experimental measurement and the numerical results

of the first two crests and troughs from case 5. The average absolute error percentage for gauges 0

to 3 in order are 9.8, 9.3, 8.4, and 7.8%.

Figure 5.12: Comparison of the numerical results with the measurements from four laboratory
wave gauges for the submarine volcanic tsunami experiment. Results are for the experiment no. 5
with water depth of 120 cm and tank pressure of 40 psi.
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Table 5.3: Comparison of the numerical results with the measurements from four laboratory wave
gauges for the submarine volcanic tsunami experiment according to the crest and trough heights.
Results are for the experiment no. 5 with water depth of 120 cm and tank pressure of 40 psi. Cm1

and Cm2 are the first and second crest heights in from the numerical model, while Tm1 and Tm2, the
troughs. ‘m’ denotes the numerical results, and ‘e’, the experimental measurements.‘E’ stands for
the error with respect to maximum experimental wave height. All measurements are in millimeter
and errors in percentage.

No. Cm1 Ce1 C1E Tm1 Te1 T1E Cm2 Ce2 C2E Tm2 Te2 T2E

0 22.79 16.13 19.9 -22.51 -17.39 -15.3 9.92 9.67 0.7 -9.74 -10.87 3.4

1 8.50 7.85 3.1 -15.38 -12.87 -12.1 10.72 7.45 15.8 -5.08 -3.81 -6.1

2 4.68 4.34 2.4 -8.70 -7.72 -6.9 8.07 6.53 10.8 -6.85 -4.92 -13.5

3 3.35 2.84 4.8 -6.17 -5.86 -3.0 6.13 4.78 12.7 -5.59 -4.45 -10.7

5.4 Conclusion

A submarine volcanic tsunami is a complex natural phenomenon. In this study, eight labo-

ratory experiments of volcanic tsunami generation have been compared with results from the 3D

numerical simulation with same initial conditions. The laboratory experiments were carried out

at Hinsdale laboratory at the Oregon State University (OSU). The presented work focuses on the

numerical validation of a 3D numerical model, TSUNAMI3D, in modeling 3D submarine volcanic

tsunamis. Results attained from experiments and numerical simulations shows that submarine vol-

canic eruptions can create highly non-linear waves posing a challenging task to modelers for vali-

dation purpose. From the results, in general, TSUNAMI3D models have successfully simulated the

waves generated by the volcanic tsunami generator (VTG). The wave gauges in the nearby regions

that experience high non-linearity shows more error than the ones in the far-field regions. For case

5, the average percentage absolute error(two crests and troughs) with respect to the experimental

wave height for the wave gauges are 9.85%, 9.27 %, 7.41 %, 7.8 %. For the water surface piercing

cases, the wave gauges close to VTG predict a higher crest and trough. This can be understood

from the fact that the energy lost by the breaking of water is not accounted in the numerical model.
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The overall results shows an average error around 10 percent. Thus, it can be concluded that the

TSUNAMI3D is able to model submarine volcanic tsunami experiments satisfactorily. The future

work could include the simulation with different parameters such as the initial VTG height, ex-

pansion distance, and diameter of the piston. Subsequently, the actual volcano (Kick’em Jenny)

bathymetry can be used, along with the scaled numerical VTG according to Froude number, and

the inundation maps and wave run-up results from the simulation could be useful to prepare for a

submarine volcanic tsunami event.
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6. SUMMARY AND CONCLUSION

6.1 Summary

This dissertation proposes a new surface tracking, and advection method for incompress-

ible and immiscible fluid flows, named the VOF-with-center-of-mass-and-Lagrangian-particles

(VCLP) method. The VCLP is based on the volume of fluid (VOF) method ans couples Eulerian

and Lagrangian approaches to localized Lagrangian particles (LPs) inside a finite volume frame-

work. For a given time step, the computational domain input parameters are 1) spatially discretized

fluid distribution (f matrix), 2) the discretized velocity field, and 3) the fluid center of mass (CM)

location within the grid cells. The final output parameters are the 1) new spatially discretized fluid

distribution (new f ) and 2) the new fluid CM location within the grid cells. The major steps in the

VCLP method to produce these outputs are the classification of grid cells, interface reconstruction

representing fluid regions using LPs, correcting the location of LPs using fluid CM tracking, fluid

advection via LPs, updating fluid distribution and center of mass, and filtering to achieve perfect

mass conservation. VCLP completes all steps mentioned above for a single fluid cell and then

moves to the next cell. This facilitates the VCLP method to be computationally parallelized. Cells

are classified to identify if a cell has fluid and interface, as only cells with fluid need advection,

and cells with interface require its reconstruction. Therefore, all cells in the computational domain

are classified into empty, surface, and interior fluid cells. VCLP method further classifies the in-

terior cells into three more kinds to increase the computational performance by skipping one kind

of interior cells that satisfy certain conditions using the proposed skip core optimization technique

in this study. After the classification, interfaces are reconstructed for all cells classified as surface

cells. In the VCLP method, there are two choices for the calculation of interface reconstruction;

the Piecewise-Linear-Interface-Calculation (PLIC) method and the Piecewise-Circular-Interface-

Calculation method (PCIC). Several existing surface tracking methods use PLIC, and it creates a

line segment representing the interface in 2D and a plane in 3D, whereas PCIC, which is a pro-
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posed approach, creates a circular arc for the interface in 2D and a spherical surface in 3D. A PLIC

construction can be seen as an equivalent PCIC construction withe radius of the of the circular arc

approaching infinity. Along with improving the accuracy of interface reconstruction, the radius of

curvature from the PCIC could also be used to estimate the surface tension force. In the interface

reconstruction, VCLP uses new methods to estimate the interface normal (T-Slope method), find

interface curvatures, and locate the interface (Sorted Surface Constant method). After the inter-

face reconstruction, the fluid regions bounded by the interface are advected. Before advection, the

fluid within the cells is represented using LPs as concentrated mass points. A template of LPs

is generated with blue noise distribution (using a proposed technique, J-method ) to represent the

fluid. LPs are advected cell by cell, and after advection of each cell, the same LPs template is used

for the next cell advection. This is an essential difference to the common Lagrangian approaches,

where the entire fluid domain or interface is represented simultaneously by LPs, and all LPs used

are tracked through the simulation time, requiring a vast number of LPs proportional to the domain

size. VCLP uses only one blue noise template with a customizable number of LPs. Only 10 to

1000 LPs are required for the entire simulation irrespective of the domain size in 2D and 1000 to

8000 LPs in 3D. This enables large computational domains feasible with meager memory alloca-

tion. Because of the customization, VCLP gives control to the user over computational speed vs.

accuracy by changing the number of LPs used for the given grid resolution. After the fluid region is

represented using LPs, a correction is applied to the location of LPs to improve the accuracy of the

interface reconstruction. This correction is based on tracking the fluid center of mass (CM), which

follows the Lagrangian approach. In theory, if the grid cells or the control volumes are infinites-

imal in size, then tracking of the CM in a Lagrangian approach is essentially tracking the entire

fluid. So, it can be said that VCLP tracks fluid in the Lagrangian way, but with a minimal number

of points, one per cell. The interface reconstruction introduces inaccuracies or errors due to the

simplification of the interface into PLIC or PCIC, constructed from the mean slope and curvature,

which is also an approximation. Even though the correction due to CM tracking is minimal, results

show that it is not negligible over thousands of time steps which is the case for typical numerical
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simulations. Moreover, the correction also tackles the error associated with the numerical accel-

eration or deceleration of fluid due to the interface reconstruction, which reduces the cumulative

error of pressures and velocities. After correcting LPs locations using CM, the next step is to ad-

vect the LPs representing the fluid according to the velocity field. While advecting LPs, cell size

is not a constraint, and hence VCLP method could work for CFL numbers larger than one. VCLP

method uses one of the two numerical advection schemes, Taylor’s second-order numerical advec-

tion scheme or a new scheme named Tracking-Journey-in-Spiral (TJSM) method. TJSM method

is a proposed numerical advection scheme to integrate the equation of motion numerically. This

scheme tries to capture rotational effects inside a velocity field which may be more intuitive for

fluid flows where vorticity is present. TJSM assumes that the particle undergoes a circular motion

with constant angular velocity during a time-step interval instead of a linear motion. In the VCLP

method, the velocity of the LPs is a function of their position within the cell. However, for most

N-S finite volume solvers, velocity is known only at specific discretized locations within the cell.

In this case, individual LP’s velocity is interpolated using bilinear (2D) and trilinear (3D) methods.

The advection of fluid using LPs enables the VCLP method applicable to structured and unstruc-

tured grid domains. As the fluid mass inside a cell is precisely equal to the sum of masses of LPs

representing it, perfect mass conservation is ensured if all advected LPs are received by the cells

in the domain after advection. Because of this, the VCLP method can conserve mass perfectly.

The numerical advection schemes used in VCLP contain both velocity and acceleration terms.

Since the acceleration is not obtained from the N-S solver, the VCLP method uses newly derived

equations (for the Cartesian grid) to find approximate acceleration to advect each LP within in the

cell. The fluid mass distribution (new f ) and CM location within the cells are updated after the

advection. The advection of LPs might result in cells not satisfying the volume constraints due to

the non-zero velocity divergence in certain regions arising from the interpolation of the velocity

field. These non-divergent velocity fields are difficult to avoid, therefore a filter function is used to

redistribute excess of fluid mass that satisfies the volume constraints.
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6.2 Conclusion

The accuracy of the VCLP method for interface reconstruction and advection is evaluated based

on five benchmark tests in 2D and 3D. The 2D tests are translation, rotation, single vortex, defor-

mation, and Zalesak’s disk test and the 3D test is deformation. In these a tests, a well-defined

2D fluid body inside a computational domain with specified grid resolution and dimensions is

placed in a solenoidal (non-divergent) velocity field. The flow is then simulated for a given time

T with specified time intervals. The ideal final state of the fluid body at time T is known and the

performance of the method is evaluated based on its similarity to the test result’s final state. The

results of 2D translation, rotation, deformation and 3D deformation tests show that VCLP performs

qualitatively well compared to conventional methods such as Hirt and Nichols (H&N), Young’s,

and newer methods such as the moment of fluid (MoF) and Coupled Level Set Volume of Fluid

methods (CLSVOF). Later, the quantitative error comparisons support this observation.

From the solenoidal 2D single vortex field test results, VCLP has lesser geometric error than

H&N, Young’s, 1st order upwind, PPM, Level sets, SLIC, and PLIC. For example, the 2D single

vortex test with the grid resolution of 64 × 64 and a maximum simulation time of T = 8 s, the

geometric error of the VCLP-PCIC (VCLP + T2) is 0.00197, while the errors from other methods,

as H&N without and with height function, Young’s method without and with height function, and

Rider & Kothe methods are 40.4, 30.7, 10.1, 22.8, and 3.53 times 0.00197, respectively. Quan-

titative results of the deformation and Zalesak’s disk test using VCLP also show less or similar

error than the other methods in 2D and 3D. From the Zalesak’s test result for grid resolution of

200×200, VCLP errors are smaller than successful methods from literature such as Youngs, Puck-

ett, ELVIRA, gVoFoam, interFoam, OpenFoam, Quadratic fit, and Quadratic fit with continuity.

VCLP-PCIC errors are even smaller than the completely Lagrangian advection methods such as

the Quadratic fit, and Quadratic fit with continuity. For deformation and Zalesak’s disk tests, TJSM

performs better than Taylor’s second order advection scheme. Also, VCLP-PCIC have lesser error

than VCLP-PLIC for Zalesak’s disk tests. This proves that the proposed advection scheme TJSM

and the reconstruction method, PCIC are successful.
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The computational performance study of the VCLP method for the single 2D vortex test for

resolution of 60 × 60 shows that the VCLP method with 10 LPs, Taylor 2nd order advection,

and CM tracking takes 19 % more time than SOLA-VOF, but the error reduced by 1289 %. The

CM tracking seems to reduce the error from 2.68 to 6 times with less than five percent more

of computational time. For a resolution of 120 × 120, SOLA-VOF takes 105.5 s with an error

of 0.07924, which is 629 % more computational time and 1200 % times more error than VCLP

with 10 LPs per dimension. This supports the claim that using VCLP at lower resolution obtains

better results than SOLA-VOF with lesser computational time. Overall, from the computational

performance analysis in 2D, the VCLP method shows considerable improvement with a slightly

more computation time.

From the dam break comparison between TSUNAMI2D-VCLP and TSUNAMI2D-(SOLA-

VOF) methods, the surfaces in the VCLP result are smoother and devoid of some numerical errors

that causes unrealistic flows regions. So, it was understood from the simulation supported by the

evidence from the benchmark tests, that VCLP is able to produce very similar result to SOLA-VOF,

with some improvement.

The challenging breaking wave problem was simulated using TSUNAMI2D-VCLP and results

were compared with the FNFP-BEM and the strong coupled FNPF-BEM/NS-VOF methods from

literature. The analysis showed that even with higher-order solvers, the results are very compa-

rable. Thus, the applications of the VCLP method in the TSUNAMI2D solver show satisfactory

results.
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APPENDIX A

FIRST APPENDIX

A.1 Comparison of the numerical modeling and experimental results

The maximum crest height measured by the four laboratory gauges are 11.75, 5.75, 2.67, and

1.97 mm respectively and maximum trough depths are 13.26, 6.25, 3.79, and 3 mm. So the wave

amplitude seems to reduce in amplitude as the distance is more. From the errors it can be seen

that numerical model over predicts the crest and crest and trough. The average absolute error

percentage for gauges 0 to 3 in order are 31.2, 9.4, 2.1, and 4.2%. So the numerical results are

matching well except for g0.

Figure A.1: Comparison of the numerical results with the measurements from four laboratory wave
gauges for the submarine volcanic tsunami experiment. Results are for the experiment no. 1 with
water depth of 90 cm and tank pressure of 40 psi.
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Table A.1: Comparison of the numerical results with the measurements from four laboratory wave
gauges for the submarine volcanic tsunami experiment according to the crest and trough heights.
Results are for the experiment no. 1 with water depth of 90 cm and tank pressure of 40 psi. Cm1

and Cm2 are the first and second crest heights in from the numerical model, while Tm1 and Tm2, the
troughs. ‘m’ denotes the numerical results, and ‘e’, the experimental measurements.‘E’ stands for
the error with respect to maximum experimental wave height. All measurements are in millimeter
and errors in percentage.

No. Cm1 Ce1 C1E Tm1 Te1 T1E Cm2 Ce2 C2E Tm2 Te2 T2E

0 14.14 11.75 9.6 -20.65 -13.26 -29.6 16.54 3.93 50.4 -13.80 -4.96 -35.3

1 4.76 4.81 -0.4 -6.79 -6.25 -4.9 5.75 4.61 10.4 -7.21 -4.80 -21.8

2 2.66 2.65 0.2 -3.67 -3.79 1.9 2.67 2.51 2.5 -3.25 -3.00 -3.9

3 1.96 1.90 1.2 -2.69 -3.00 5.8 1.97 2.07 -2.0 -2.18 -2.58 7.7

Case 2 results shown in Fig. A.2 is a surface piercing case with a water depth of 90 cm and

medium-low tank pressure of 70 psi and have a 40% higher peak velocity than case 1. The table

A.2 shows the experimental measurement and the numerical results of the first two crests and

troughs from case 2. The average absolute error percentage for gauges 0 to 3 in order are 27, 4.5,

2.5, and 4.2%.
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Figure A.2: Comparison of the numerical results with the measurements from four laboratory wave
gauges for the submarine volcanic tsunami experiment. Results are for the experiment no. 2 with
water depth of 90 cm and tank pressure of 70 psi.

Table A.2: Comparison of the numerical results with the measurements from four laboratory wave
gauges for the submarine volcanic tsunami experiment according to the crest and trough heights.
Results are for the experiment no. 2 with water depth of 90 cm and tank pressure of 70 psi. Cm1

and Cm2 are the first and second crest heights in from the numerical model, while Tm1 and Tm2, the
troughs. ‘m’ denotes the numerical results, and ‘e’, the experimental measurements.‘E’ stands for
the error with respect to maximum experimental wave height. All measurements are in millimeter
and errors in percentage.

No. Cm1 Ce1 C1E Tm1 Te1 T1E Cm2 Ce2 C2E Tm2 Te2 T2E

0 15.33 13.18 7.2 -23.87 -16.73 -23.9 20.87 6.08 49.5 -16.43 -8.25 -27.4

1 4.88 4.93 -0.4 -7.03 -7.26 1.8 6.15 5.53 4.8 -7.99 -6.59 -10.9

2 2.70 2.76 -0.7 -3.75 -3.97 3.1 2.75 3.12 -5.0 -3.36 -3.46 1.3

3 1.96 1.90 1.2 -2.69 -3.00 5.8 1.97 2.07 -2.0 -2.18 -2.58 7.7
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Case 3 results shown in Fig. A.3 is a surface piercing case with a water depth of 90 cm and

medium-high tank pressure of 100 psi with a peak velocity 76% higher than case 1. The table A.3

shows the experimental measurement and the numerical results of the first two crests and troughs

from case 3. The average absolute error percentage for gauges 0 to 3 in order are 26.3, 3.9, 5.6,

and 8.8%.

Figure A.3: Comparison of the numerical results with the measurements from four laboratory wave
gauges for the submarine volcanic tsunami experiment. Results are for the experiment no. 3 with
water depth of 90 cm and tank pressure of 100 psi.
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Table A.3: Comparison of the numerical results with the measurements from four laboratory wave
gauges for the submarine volcanic tsunami experiment according to the crest and trough heights.
Results are for the experiment no. 3 with water depth of 90 cm and tank pressure of 100 psi. Cm1

and Cm2 are the first and second crest heights in from the numerical model, while Tm1 and Tm2, the
troughs. ‘m’ denotes the numerical results, and ‘e’, the experimental measurements.‘E’ stands for
the error with respect to maximum experimental wave height. All measurements are in millimeter
and errors in percentage.

No. Cm1 Ce1 C1E Tm1 Te1 T1E Cm2 Ce2 C2E Tm2 Te2 T2E

0 15.66 14.10 4.8 -25.06 -18.76 -19.2 24.79 9.53 46.5 -18.93 -7.51 -34.8

1 4.81 5.10 -2.0 -6.81 -7.32 3.6 6.18 6.14 0.3 -8.48 -7.12 -9.7

2 2.67 2.77 -1.4 -3.61 -4.27 8.9 2.58 3.06 -6.4 -3.31 -3.74 5.7

3 1.94 2.28 -6.3 -2.60 -3.10 9.0 1.83 2.31 -8.7 -2.09 -2.70 11.2

Case 4 have the highest tank pressure and the largest peak velocity of 2.05 m/s and its results

are shown in Fig. A.4. The table A.4 shows the experimental measurement and the numerical

results of the first two crests and troughs from case 4. The average absolute error percentage for

gauges 0 to 3 in order are 26, 6.2, 8.8, and 10.2%.
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Figure A.4: Comparison of the numerical results with the measurements from four laboratory wave
gauges for the submarine volcanic tsunami experiment. Results are for the experiment no. 4 with
water depth of 90 cm and tank pressure of 145 psi.

Table A.4: Comparison of the numerical results with the measurements from four laboratory wave
gauges for the submarine volcanic tsunami experiment according to the crest and trough heights.
Results are for the experiment no. 4 with water depth of 90 cm and tank pressure of 145 psi. Cm1

and Cm2 are the first and second crest heights in from the numerical model, while Tm1 and Tm2, the
troughs. ‘m’ denotes the numerical results, and ‘e’, the experimental measurements.‘E’ stands for
the error with respect to maximum experimental wave height. All measurements are in millimeter
and errors in percentage.

No. Cm1 Ce1 C1E Tm1 Te1 T1E Cm2 Ce2 C2E Tm2 Te2 T2E

0 15.52 15.17 1.0 -25.89 -19.87 -17.2 27.85 11.05 47.9 -19.62 -6.39 -37.7

1 4.66 5.26 -4.1 -6.42 -7.85 9.8 6.12 6.54 -2.8 -8.93 -7.73 -8.2

2 2.58 2.78 -2.4 -3.34 -4.51 14.2 2.35 3.29 -11.5 -3.27 -3.84 7.0

3 1.88 1.97 -1.5 -2.41 -3.11 12.4 1.62 2.53 -16.0 -1.98 -2.60 10.9
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Case 5 produces the smallest waves as it have the lowest pressure of 40 psi and higher water

depth of 1.2 m and its results are shown in Fig. A.5. It is a non- piecing case with the lowest peak

velocity of 0.68 m/s. The table A.5 shows the experimental measurement and the numerical results

of the first two crests and troughs from case 5. The average absolute error percentage for gauges 0

to 3 in order are 9.8, 9.3, 8.4, and 7.8%.

Figure A.5: Comparison of the numerical results with the measurements from four laboratory wave
gauges for the submarine volcanic tsunami experiment. Results are for the experiment no. 5 with
water depth of 120 cm and tank pressure of 40 psi.
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Table A.5: Comparison of the numerical results with the measurements from four laboratory wave
gauges for the submarine volcanic tsunami experiment according to the crest and trough heights.
Results are for the experiment no. 5 with water depth of 120 cm and tank pressure of 40 psi. Cm1

and Cm2 are the first and second crest heights in from the numerical model, while Tm1 and Tm2, the
troughs. ‘m’ denotes the numerical results, and ‘e’, the experimental measurements.‘E’ stands for
the error with respect to maximum experimental wave height. All measurements are in millimeter
and errors in percentage.

No. Cm1 Ce1 C1E Tm1 Te1 T1E Cm2 Ce2 C2E Tm2 Te2 T2E

0 22.79 16.13 19.9 -22.51 -17.39 -15.3 9.92 9.67 0.7 -9.74 -10.87 3.4

1 8.50 7.85 3.1 -15.38 -12.87 -12.1 10.72 7.45 15.8 -5.08 -3.81 -6.1

2 4.68 4.34 2.4 -8.70 -7.72 -6.9 8.07 6.53 10.8 -6.85 -4.92 -13.5

3 3.35 2.84 4.8 -6.17 -5.86 -3.0 6.13 4.78 12.7 -5.59 -4.45 -10.7

Case 6 and Case 7 results shown in Fig. A.6 and A.7. Both are non-piercing cases with a

water depth of 120 cm and tank pressures 70 and 100 psi, respectively. The table A.2 shows the

experimental measurement and the numerical results of the first two crests and troughs from case

6. For the case 6, the average absolute error percentage for gauges 0 to 3 in order are 13.1, 10.7,

9.8, and 7.8%. For the case 7, the average absolute error percentage for gauges 0 to 3 in order are

14, 10.7, 9.4, and 8.2%.
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Figure A.6: Comparison of the numerical results with the measurements from four laboratory wave
gauges for the submarine volcanic tsunami experiment. Results are for the experiment no. 6 with
water depth of 120 cm and tank pressure of 70 psi.

Table A.6: Comparison of the numerical results with the measurements from four laboratory wave
gauges for the submarine volcanic tsunami experiment according to the crest and trough heights.
Results are for the experiment no. 6 with water depth of 120 cm and tank pressure of 70 psi. Cm1

and Cm2 are the first and second crest heights in from the numerical model, while Tm1 and Tm2, the
troughs. ‘m’ denotes the numerical results, and ‘e’, the experimental measurements.‘E’ stands for
the error with respect to maximum experimental wave height. All measurements are in millimeter
and errors in percentage.

No. Cm1 Ce1 C1E Tm1 Te1 T1E Cm2 Ce2 C2E Tm2 Te2 T2E

0 31.61 20.63 23.3 -38.52 -26.48 -25.6 9.81 11.15 -2.9 -12.67 -13.06 0.8

1 9.84 8.67 4.3 -19.49 -16.16 -12.1 16.94 11.32 20.4 -8.22 -6.56 -6.0

2 5.20 4.29 5.3 -10.29 -9.16 -6.5 10.51 8.14 13.6 -9.52 -7.13 -13.8

3 3.66 3.36 2.3 -7.13 -6.31 -6.5 7.58 6.29 10.3 -7.29 -5.79 -11.9
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Figure A.7: Comparison of the numerical results with the measurements from four laboratory wave
gauges for the submarine volcanic tsunami experiment. Results are for the experiment no. 7 with
water depth of 120 cm and tank pressure of 100 psi.

Table A.7: Comparison of the numerical results with the measurements from four laboratory wave
gauges for the submarine volcanic tsunami experiment according to the crest and trough heights.
Results are for the experiment no. 7 with water depth of 120 cm and tank pressure of 100 psi. Cm1

and Cm2 are the first and second crest heights in from the numerical model, while Tm1 and Tm2, the
troughs. ‘m’ denotes the numerical results, and ‘e’, the experimental measurements.‘E’ stands for
the error with respect to maximum experimental wave height. All measurements are in millimeter
and errors in percentage.

No. Cm1 Ce1 C1E Tm1 Te1 T1E Cm2 Ce2 C2E Tm2 Te2 T2E

0 034.74 22.15 24.8 -42.26 -28.54 -27.1 9.99 10.34 -0.7 -13.08 -14.88 3.6

1 10.18 9.31 3.0 -20.45 -16.76 -12.7 18.31 12.43 20.2 -9.55 -7.49 -7.1

2 5.32 4.79 3.0 -10.65 -9.34 -7.2 11.03 8.83 12.1 -10.07 -7.31 -15.2

7 3.73 3.49 1.8 -7.35 -6.32 -7.9 7.89 6.70 9.1 -7.62 -5.82 -13.8
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The final one, case 8 have highest tank pressure same as case 4 of 145 psi, but lesser peak

velocity of 1.77 m/s because of the larger water depth of 120 cm. The results are shown in Fig.

A.8. The table A.2 shows the experimental measurement and the numerical results of the first two

crests and troughs from case 8. The average absolute error percentage for gauges 0 to 3 in order

are 14.8, 10.3, 10.1, and 7.1%.

Figure A.8: Comparison of the numerical results with the measurements from four laboratory wave
gauges for the submarine volcanic tsunami experiment. Results are for the experiment no. 8 with
water depth of 120 cm and tank pressure of 145 psi.
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Table A.8: Comparison of the numerical results with the measurements from four laboratory wave
gauges for the submarine volcanic tsunami experiment according to the crest and trough heights.
Results are for the experiment no. 8 with water depth of 120 cm and tank pressure of 145 psi. Cm1

and Cm2 are the first and second crest heights in from the numerical model, while Tm1 and Tm2, the
troughs. ‘m’ denotes the numerical results, and ‘e’, the experimental measurements.‘E’ stands for
the error with respect to maximum experimental wave height. All measurements are in millimeter
and errors in percentage.

No. Cm1 Ce1 C1E Tm1 Te1 T1E Cm2 Ce2 C2E Tm2 Te2 T2E

0 37.56 23.86 25.3 -45.10 -30.24 -27.5 10.69 12.32 -3.0 -13.43 -15.19 3.2

1 10.45 9.32 3.6 -21.30 -17.62 -11.8 19.48 13.45 19.4 -10.44 -8.48 -6.3

2 5.41 4.67 4.0 -10.94 -9.39 -8.4 11.44 8.95 13.6 -10.53 -7.92 -14.3

3 3.78 3.47 2.4 -7.51 -6.61 -6.6 8.16 6.89 9.4 -7.93 -6.58 -10.0
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