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ABSTRACT

Bio-fermentation process is difficult to model given its use of living micro-organisms to pro-

duce useful products via complex reaction mechanisms. Their kinetics are hard to characterize;

hence, approximate formulations are used when building a first-principles model. Consequently,

such a model will be of poor accuracy. Recently, there is a lot of interest towards data-driven

modeling as the amount of data collected, stored, and utilized is growing tremendously due to the

advent of super-computing power and data storage device. Additionally, data-driven models are

simple and easy to build but their utility is hugely restricted by the amount and quality of data used

to develop them. Therefore, hybrid modeling is an attractive alternative to purely data-based mod-

eling, wherein it combines a first-principles model with a data-based model resulting in improved

accuracy and robustness. In this work, we develop a three-step method to build a hybrid model for

a full-scale bio-fermentation process with a volume of over 100,000 gallons. Firstly, we improved

the accuracy of the first-principles model via incorporating mathematical terms in its equations

which are based on obtained process knowledge from a literature study. Secondly, we performed

local and global sensitivity analysis to identify sensitive parameters in the improved first-principles

model that have considerable influence on its prediction capability. Finally, we developed a deep

neural network (DNN) based hybrid model by integrating the improved first-principles model with

a DNN which is trained to predict the identified model parameters. The resulting hybrid model is

more accurate and robust than the (original and improved) first-principles models as it is equipped

with a trained DNN to predict the uncertain parameters and process states accurately.

Based on the developed hybrid model, a hybrid model-based observer was developed to track

the different states present in the process. As the available measurements were fairly accurate,

the open-loop observer was re-initialized with a new set of measurements whenever they become

available. This method is computationally less demanding and was able to accurately estimate

the states. Next, we build an optimal control algorithm on GAMS software to estimate the opti-

mal operating conditions of the fermenter in real-time. This is carried out in order to maximize
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the product amount and minimize the cost by manipulating the inputs and taking practical con-

straints into account. The resulting control algorithm was able to improve the profitability and the

productivity of the full-scale bio-fermentation process.
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1. INTRODUCTION

Bio-fermentation processes are widely used for industrial production of many useful products

such as chemicals, enzymes, food products, and pharmaceuticals. They involve the use of micro-

organisms as ‘catalysts’ which convert substrates to products of interest. These micro-organisms

can be bacteria, fungi, mammalian cells, etc., and are often optimized and engineered to achieve

greater yields of product than observed in naturally occurring systems. These processes are ad-

vantageous over chemical processes as they are sustainable due to there low-temperature and low-

pressure operations, and no requirements for harsh chemicals (1). A typical bio-fermentation pro-

cess is carried out in two phases. During the first phase, a bulk of substrate is combined with

micro-organisms and other essential nutrients which are required for their growth. During this

phase, the micro-organisms consume the available substrate, and consequently, there is an increase

in the biomass concentration. In the second phase, other additional substrates are continuously fed

into the reactor, and the rates of feeding are heavily regulated to avoid overfeeding or underfeed-

ing which can significantly reduce the productivity of the process. Product is recovered from the

reactor either continuously during the process or at the end of the second phase.

Modeling a bio-fermentation process is a challenging task given the complex interactions that

occur within it. Usually, a first-principles model is developed using mass and energy conservation

laws, kinetic laws, thermodynamic laws, etc., and it is able to capture the essential dynamics

of the process. For this reason, building such a model requires significant time, resources, and

process insight. Additionally, due to the complex nature of the process, some mechanisms within

the process are not understood to a level that they can be accurately modeled, and in such cases,

empirical formulations are introduced in the first-principles model. The overall accuracy of the

first-principles model is dependent on these empirical relationships. On the other hand, a data-

based model can be developed using historical process data, which is easy to build and is accurate

in its training regime, but will not be robust over a wide range of operating conditions of the

process (2). Another class of models called hybrid models exist which are a combination of first-
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principles models and data-based models (3).

In process modeling, the idea of hybrid models was advanced from the field of neural net-

works (4), which was to build hybrid models by combining NNs with first-principles knowledge.

This combination led to models with higher accuracy than the first-principles model, and better

extrapolation and interpretation capabilities than solely NN-based black-box models. Now, there

are many kinds of hybrid models depending on the nature of combination between first-principles

models and data-based models. For instance, during the 1990s, the concept of grey-box models

was used in systems and control theory where structural information from first-principles mod-

els was incorporated into the black-box models (5). But, since then, the understanding of the

term ‘hybrid model’ has grown to represent any combination of a first-principles model with a

data-based model, and it has been applied in various chemical and biochemical engineering ap-

plications, which includes: modeling of bacteria cultivations (6), chemical reactor (7; 8), crystal-

lization (9), distillation columns (10), fungi cultivations (11), hybridoma cell cultivations, (12), in-

sect cell cultivations (13), mammalian cell cultivations (14), mechanical reactors (15), metallurgic

processes (16; 17), milling (18), polymerization processes (19), thermal devices (20), yeast fer-

mentations (21; 22), hydraulic fracturing (23), intracellular signaling pathway (24), etc. For more

information on hybrid modeling in the field of process systems engineering, one can view (25), an

excellent review paper.

Given the advantages of a hybrid model, it has been widely used to model lab-scale or pilot-

scale bio-fermentation processes. Hybrid models usually involve an ANN as a function approxi-

mator predicting unknown parameters or states to be combined with a first-principles model (26;

27; 28; 29; 30). The resulting hybrid model shows superior model accuracy compared to the first-

principles model. But the field of neural networks has evolved from the use of a single hidden layer

in an ANN to the use of multiple hidden layers in a DNN which requires exponentially less number

of neurons than their shallow counterparts to approximate a specific function (31). Additionally, a

hybrid modeling approach has never been applied to a full-scale bio-fermentation reactor.

Motivated by these limitations, we developed a DNN-based hybrid model approach for a full-
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scale bio-fermentation process with a volume of over 100,000 gallons. Specifically, prior to build-

ing the hybrid model, we first improved the first-principles model by adding additional components

and parameters to its equations based on process knowledge acquired from literature studies. This

improved first-principles model was tested against multiple experimental datasets provided by an

industry sponsor. Then, we identified critical parameters in the improved first-principles model

which highly influence its outputs using local and global sensitivity analysis. Finally, these time-

varying parameters were then estimated using a data-clustering approach, and approximated using

a DNN which was then combined with the first-principles model to build a hybrid model (32). This

hybrid model’s performance was tested against multiple batches of process data provided by the

industry sponsor, and compared against the accuracy of the first-principles model and the improved

first-principles model.

Based on this developed hybrid model, the next step was building an observer to accurately

track the states of the bio-fermentation process. An initial step in the design of the observer was

assessing the performance of the traditional nonlinear Kalman filters, i.e., the Extended Kalman

filter (EKF), and the Unscented Kalman filter (UKF) (33), to determine if they could be used

to track the different states (34; 35). But these traditional methods were not able to accurately

capture the nonlinearity of the states in this process model. Thus, in order to handle inter-sampling,

i.e., assuming the available measurements are fairly accurate (little noise), another method was

adopted. We developed an open-loop observer which utilized new sets of measurements, whenever

they become available, to re-initialize the open-loop observer with the measured values (36). The

developed observer showed superior estimation accuracy compared to the traditional Kalman filter

and is computationally less expensive. The performance of the observer was then tested against

other batches of process data.

As the final step of this work, an optimal control algorithm was developed in order utilizing the

hybrid model to estimate the optimal operating conditions of the bio-fermenter in real-time. It is

essential to maximize the product amount and minimize the Primary unit (Cost) for the profitability

and productivity of the plant. It is also important to take practical constraints into account while

3



achieving these targets and computing the optimal operating conditions of the bio-fermenter to

maintain an optimal substrate concentration throughout the process. And optimization problem

was developed on GAMS which maximized the product and minimized the cost while considering

the practical constraints. These optimal operating conditions are compared to the desired targets

and the obtained state concentrations are plotted against the historical plant measurements.

The remainder of this thesis is organized as follows: Chapter 2 provides a brief background

about DNNs, Levenberg-Marquardt algorithm, the methodology proposed by Bangi and Kwon

(2020) to build a DNN-based hybrid model, a bio-fermentation process, and its first-principles

model. It also describes the ideas used to improve the first-principles model using process knowl-

edge. Chapter 3 presents the sensitivity analysis and clustering of parameters. It also presents

building of the hybrid model for the bio-fermentation process using the improved first-principles

model. Chapter 4 presents the observer design and the optimal control algorithm. Chapter 5

presents the concluding remarks.
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2. Background

2.1 Deep neural networks

DNNs are neural networks with more than one hidden layer with each layer containing multiple

neurons. The neurons in each layer are connected to all the neurons in the adjacent layers. Each

connection between any two neurons carries a parameter called weight w, each layer has a bias b,

and each neuron is associated with a function called activation function f .

Let nk+1(i) be the cumulative input received by unit i in layer k + 1 which is given as

nk+1(i) =

Sk∑
j=1

wk+1(i, j)ak(j) + bk+1(i) (2.1)

where Sk is the number of neurons in layer k, and ak(j) is the output of unit j in layer k which is

given as

ak(j) = fk(nk(j)), j = 1, ..., Sk (2.2)

Assuming there are M layers in the network, the equations in matrix form can be represented as

Ak = F k(W kAk−1 +Bk), k = 0, 1, ...,M − 1 (2.3)

A0 = uq, q = 1, 2, ..., Q (2.4)

where uq is the input vector given to the neural network whose corresponding output is AMq ob-

tained at the final layer M . The column vectors Ak, F k, and Bk contain the outputs, the activation

functions, and biases of all the neurons in layer k, respectively. The matrix W k contains weights

associated with the neurons in layers k and k− 1, i.e., each row contains all the weights associated

with a particular neuron of layer k, and the number of columns is equal to the number of neurons

in layer k−1. The aim of the DNN is to learn the functional relationship between input and output
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pairs {(u1, y1), (u2, y2), ....(uQ, yQ)}. The accuracy of the DNN is measured as follows:

V =
1

2

Q∑
q=1

eTq eq (2.5)

eq = yq − AMq (2.6)

where eq is the error between the predicted output AMq and the actual output yq when the qth input

(i.e., uq) is fed to the DNN. The error matrix E can be defined as follows:

E = [e1 e2 . . . eQ]T (2.7)

2.2 Levenberg-Marquardt training

The Levenberg-Marquardt algorithm (37; 38) is a combination of two other parameter update

algorithms, i.e., the Steepest Descent method and the Gauss-Newton algorithm. Consequently, it

combines the stability characteristic of the steepest descent algorithm and the fast convergence of

the Gauss-Newton algorithm. The update rule of the Levenberg-Marquardt algorithm is given by

wk+1 = wk − (JTk Jk + µTrainI)−1JkEk (2.8)

bk+1 = bk − (JTk Jk + µTrainI)−1JkEk (2.9)

where µTrain is the combination coefficient used in training of the parameters, I is the identity

matrix, and J is the Jacobian matrix which is defined as:

J =



∂e1
∂w1

∂e1
∂b1

∂e1
∂w2

. . .
∂e1
∂wN

∂e1
∂bN

∂e2
∂w1

∂e2
∂b1

∂e2
∂w2

. . .
∂e2
∂wN

∂e2
∂bN

...
...

... . . . ...
...

∂eQ
∂w1

∂eQ
∂b1

∂eQ
∂w2

. . .
∂eQ
∂wN

∂eQ
∂bN


(2.10)
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where N is the total number of parameters involved in the learning of the DNN, and Q is the total

number of data points used to train the DNN.

2.3 Hybrid model

Consider a dynamical system whose states are x, inputs are u, and outputs are y, and its dy-

namics is represented as:

y = h(x, u, p) (2.11)

To build a hybrid model, a DNN will be trained to predict an unknown parameter p. This DNN is

combined with the process model as shown in Fig. 2.1 to build a hybrid model (39). Before the

training process can be initialized, certain parameters of the DNN are needed to be defined such

as the number of layers, number of neurons in each layer, types of activation functions, and the

initial values of weights and biases. Some of the commonly used activation functions are Sigmoid,

Hyperbolic tangent, Rectified linear unit (ReLU), and Leaky rectified linear unit (Leaky ReLU). A

point to remember is that if there is a lot of variation in the input-output variables, then it is better

to normalize them as this helps speed up the DNN training process (40).

2.4 Training algorithm

An input-output training dataset with data points (u1, y1), (u2, y2), ..., (uq, yq), ..., (uQ, yQ) is

used for training the hybrid model. The inputs are presented to the DNN and the first-principles

model, and the outputs of the hybrid model y′ are obtained. During this calculation, the output

from the DNN, i.e., parameter values p, are obtained using Eqs. (2.1)-(2.4). These predictions are

used as additional inputs to the first-principles model to calculate the outputs of the hybrid model

y
′ . During the training of the hybrid model, the squared prediction error of the outputs for all Q

data points was minimized as follows:

V̂ =
1

2

Q∑
q=1

(eq)
T (eq) (2.12)
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Figure 2.1: A schematic of the proposed hybrid model.

eq = yq − y
′

q (2.13)

The parameters of the DNN are updated using Eqs. (2.8) and (4.2). But in order to calculate the

Jacobian, the effect of the predicted parameter pq on error eq needs to be quantified indirectly as

the DNN’s output pq is not directly related to eq. To deal with this issue, we use a finite difference

method to calculate the gradient of the hybrid model’s output y′q with respect to the DNN’s output

pq, and is shown below:
∂eq
∂y′q

= −1 (2.14)

∂y
′
q

∂pq
=
y
′
q+1 − 2y

′
q + y

′
q−1

pq+1 − pq−1

(2.15)
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∂eq
∂pq

=
∂eq
∂y′q

∂y
′
q

∂pq
= −

y
′
q+1 − 2y

′
q + y

′
q−1

pq+1 − pq−1

(2.16)

The sensitivity of the error eq to changes in the cumulative input of unit i in layer k is defined as:

δkq (i) =
∂eq
∂nkq(i)

(2.17)

Using Eq. (2.4), the above equation can be rewritten as:

δkq (i) =
∂eq
∂nkq(i)

=
∂eq
∂akq(i)

∂akq(i)

∂nkq(i)
=

∂eq
∂akq(i)

ḟk(nkq(i)) (2.18)

The above equation for the last layer M is as follows:

δMq =
∂eq
∂AMq

ḞM(nMq ) (2.19)

But the output from the final layer is the predicted parameter pq. Consequently,

∂eq
∂pq

=
∂eq
∂AMq

(2.20)

Therefore, using Eqs. (2.16), (2.19), and (2.20), the δMq value can be calculated. Now, the Jacobian

matrix contains the sensitivities of the error eq with respect to the parameters of the DNN, i.e., W k

and Bk. These sensitivities can be calculated for the parameters associated with the final layer M

using δMq and Eq. (2.1) as follows:

∂eq
∂WM

= δMq A
M−1
q (2.21)

∂eq
∂BM

= δMq (2.22)

For the parameters in the other layers, k = 1, ..., M − 1, δkq value can be calculated using the

following recurrence relation:

δkq = Ḟ k(nkq) W
k+1T δk+1

q (2.23)
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Using δMq value, the sensitivities of error eq with respect to the parameters in the other layers can

be calculated using Eqs. (2.21), (2.22) and (2.23). Once the calculation of the Jacobian matrix is

completed, the parameters of the DNN can be updated using Eq. (2.8). The parameter µTrain in

the Levenberg-Marquardt training algorithm is not constant during the training process. It starts

with an initial value but is multiplied with a factor β whenever a parameter update would result

in the increase of V̂ value. On the other hand, whenever a parameter update reduces the V̂ value,

then µTrain is divided by β. The training algorithm is carried out until the value of V̂ converges to

a desired value. The flow diagram of the proposed hybrid modeling framework is presented with

details in Fig. 2.2.

Figure 2.2: A block diagram for Levenberg-Marquardt based hybrid model training.

2.5 First-principles model of the bio-fermentation process

The first-principles model presented and discussed throughout this work is based on real pro-

cess data provided by an industry sponsor, where the original first-principles model is similar to

one used in (41). The growth rate model is as follows:

µ = µS1 + µS2 + µI (2.24)
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µS1 =
µmax,S1 · ξS2 · ξI · S1

KS,S1 + S1 + aS1,S2 · S2 + aS1,I · I
(2.25)

µS2 =
µmax,S2 · S2

KS,S2 + S2 + aS2,S1 · S1 + aS2,I · I
(2.26)

µI =
µmax,I · I

KS,I + I + aI,S1 · S1 + aI,S2 · S2

(2.27)

where, µ, µi, and µmax,i refer to the overall growth rate, the growth rates associated with each

component (i.e., Substrate 1 (S1), Substrate 2 (S2), Intermediate (I)), and the maximum specific

growth rate of the micro-organisms associated with each component, respectively. KS,i and ai,j

refer to the half-velocity constant associated with each component, and the inhibitory effect of

component i on utilization of component j by the micro-organisms, respectively. It is important

to note that ξS2 · ξI in Eq. (2.25) is incorporated with µmax,S1 to account for any inhibitory effects

Substrate 2 and Intermediate have on the growth rate associated with Substrate 1. The process has

two operation modes, i.e., phase 1 and phase 2, and since the nutrient source is different in these

two phases, the respective reactor models for each phase are different.

During phase 1, the reactor model can be described by the following equations:

µ = µS1 (2.28)

µS1 =
µmax,S1 · ξS2 · ξSI · S1

KS,S1 + S1 + as1,s2 · S2 + as1,I · I
(2.29)

dB

dt
= (µS1 + µS2 + µI) ·B (2.30)

dS1

dt
= −µS1 ·B

YB/S1

(2.31)

where B refers to Biomass, and YB/S1 refers to the yield coefficient of Biomass associated with

Substrate 1.

During phase 2, the reactor model can be described by the following equations:

dB

dt
= (µS1 + µS2 + µI) ·B −mp1 ·

Fin
V
·B (2.32)

11



dS1

dt
= −µS1 ·B

YB/S1

− Fin
B
· S1 (2.33)

dS2

dt
= k1 · µS1 ·B −

µS2 ·B
YB/S2

− Fin
V
· (S2 − S2initial) (2.34)

dI

dt
= (k2 · µS1 + k3 · µS2) ·B −

µI ·B
YB/I

− Fin
V
· I (2.35)

dP

dt
= (α1 · µS1 + α2 · µS2 + α3 · µI) ·B + β ·B − Fin

V
· P (2.36)

dV

dt
= Fin (2.37)

where P is the Product concentration, V is the reactor volume, αi is the coefficient linked to the

growth rate responsible for increase in Product, ki refers to the coefficient linked to the growth rate

responsible for the increase in Substrate 2 and Intermediate, β is the coefficient linked to the non-

growth associated term responsible for the increase in Product, and Fin refers to the feed flow rate

of Substrate 2. The parameters YB/S1 , YB/S2 , and YB/I refer to the yield coefficients of Biomass

associated with each component. It should be noted that the coefficients linked to the growth rate,

ki, incorporate temperature dependence through Arrhenius equation as follows:

ki = ci · e
−Eai
RT (2.38)

where ci is the pre-exponential factor, Eai is the activation energy, R is the universal gas constant,

and T refers to the temperature.

It is important to note that this is the original model that was provided by the industry sponsor,

who also introduced a manipulated parameter (mp1) to the second term of Eq. (2.32) associated

with Biomass in order to obtain a better fit. The following section will provide a summary of

modifications that were carried out on the original first-principles model to improve its prediction

capability. It is also important to note that all results presented in this work are normalized, at the

request of the industry sponsor.
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2.6 Improving the first-principles model

The previous sections provides a background of deep neural networks (DNNs), the Levenberg

Marquadt training algorithm, and the hybrid model that will be used in the bio-fermentation pro-

cess. A description of the original first-principles model for this process, specifically the growth

rate model, and the reactor models for phase 1 and phase 2, was also presented.

Experimental data was utilized in order to carry out estimation of the growth rate parameters

and the overall growth rate for the original first-principles model. These parameters were esti-

mated using fmincon optimization in MATLAB by minimizing the normalized sum of squared

error (SSE) of all the outputs. A summary of the estimated growth rate parameters for the origi-

nal first-principles model is provided in Table 2.1. A comparison of the estimated overall growth

rate to the experimental overall growth rate is illustrated in Chapter 3, where the model estimate

obtained using Eqs. (2.24)-(2.28) is observed to be accurate, despite some variability in the exper-

imental values. It is important to note that the growth rate parameters were assumed to be constant

throughout the bio-fermentation process.
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Table 2.1: Estimated growth rate parameters for the original first-principles model.

Parameter Value Unit

µmax,S1 0.775 hr−1

KS,S1 2.30× 102 g Substrate 1 L−1

µmax,S2 0.544 hr−1

KS,S2 4.16× 102 g Substrate 2 L−1

µmax,I 0.545 hr−1

KS,I 2.82× 102 g Intermediate L−1

as1,s2 1.94× 102 −

as1,I 1.94× 102 −

as2,s1 1.93× 102 −

as2,I 1.95× 102 −

aI,s1 2.08× 102 −

aI,s2 1.95× 102 −

The yield coefficient for Substrate 1 is assumed to differ in each phase. Assuming the yield

coefficient is the only unknown during phase 1, the reactor model for phase 1 is solved in order to

obtain the yield coefficient, i.e., YB/S1 = 0.749. A comparison of the estimated states to experi-

mental data for phase 1 is provided in Fig. 2.3, where the model estimates obtained are shown to

be accurate.

Similarly, the reactor model for phase 2 was solved in order to obtain estimates of concen-

trations of Biomass, substrates, etc., as illustrated in Fig. 2.4. Although the model values for

Biomass, Substrate 1, Product, Intermediate, and Volume are reasonable, a downward trend can

be observed for Substrate 2. Substrate 2 is a raw material and related to operating costs, and thus,

accurate estimation of this state is essential. A summary of the kinetic parameters used in the

original first-principles model for phase 2 is provided in Table 2.2. It should also be noted that the

industry sponsor desires accurate estimation of Product and Biomass as well.
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Figure 2.3: A comparison of the original first-principles model and training data during phase 1.

A second set of experimental data was used for validation purposes employing the model pa-

rameters obtained using the original experimental data, and these results are presented in terms

of root mean squared error (RMSE) values in the next chapter and are illustrated in Fig. 3.1. It

can be observed that the model estimates for Biomass, Substrate 1, Product, and Volume are rea-

sonable. However, a downward trend can once again be observed for Substrate 2. In addition, a

large discrepancy is observed between the model and experimental values for Intermediate. As

the estimation results for the original first-principles model are not ideal for certain states, an im-

provement in the original first-principles model was first pursued through the incorporation of two

additional components. These components may account for discrepancies encountered when uti-

lizing the original first-principles model, and these modifications will be discussed next. These

modifications include the incorporation of two components X1 and X2. Component X1 is a ma-

nipulated input for which continuous values are available, and it behaves similar to catalyst when
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Table 2.2: Estimated phase 2 parameters for the original first-principles model.

Parameter Value Unit
YB/S1 (phase 2) 0.184 g Cell/g Substrate 1

YB/S2 0.212 g Cell/g Substrate 2
YB/I 0.250 g Cell/g Intermediate
c1 0.250 g Substrate 2/g Cell
c2 0.250 g Intermediate/g Cell
c3 0.045 g Intermediate/g Cell
α1 0.100 g Product/g Substrate 1
α2 0.085 g Product/g Substrate 2
α3 0.013 g Product/g Intermediate
β 2.14× 10−5 g Product/g Cell.hr
Ea1 0.100 J/mol
Ea2 0.100 J/mol
Ea3 9.27× 102 J/mol
mp1 0.005 −

added during phase 2 of the process. Component X2 is an essential chemical which ensures opti-

mal conditions for micro-organisms. Measurements of component X2 are also available, and the

incorporation of both components in the original first-principles model is highly desirable.

2.6.1 Incorporation of component X1

Through information obtained from historical operation data, the addition of component X1 in

phase 2 was observed to increase the production of the micro-organisms, consequently resulting in

an increase in the consumption of Substrate 2, and thus, an increase in the production of Product.

This information was utilized to update Eqs. (2.34) and (2.36) through the addition of empirical

terms as follows:

dS2

dt
= k1 · µS1 ·B −

µS2 ·B
YB/S2

− Fin
V
· (S2 − S2initial)− p1 ·X1 (2.39)

dP

dt
= (α1 · µS1 + α2 · µS2 + α3 · µI) ·B + β ·B − Fin

V
· P + p2 ·X1 (2.40)

where p1 and p2 are empirical coefficients that allow X1 to be incorporated as consumption and

production terms in the equations for Substrate 2 and Product, respectively.
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Figure 2.4: A comparison of the original first-principles model and training data during phase 2.

It is important to note that since X2 functions in a way similar to catalyst, it was initially

incorporated in the growth rate coefficient related to µS2 in Eq. (2.26). Unfortunately, satisfactory

results were not obtained through this approach, and the empirical terms shown in Eqs. (2.39) and

(2.40) had to be introduced instead.

2.6.2 Incorporation of component X2

Through information obtained from historical operation, it is understood that measurements

from an online sensor are available for X2. Therefore, it is desirable to incorporate component

X2 as well. X2 is expected to play a role similar to the role played by oxygen in bio-fermentation

processes, and was hence incorporated as follows (42):

µ = (µS1 + µS2 + µI) ·
(

X2

KX2 +X2

)
(2.41)

dX2

dt
= kLa · (X2max −X2)− qX2 ·B (2.42)
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Figure 2.5: A comparison of the original first-principles model and validation data during phase 2.

where X2max and KX2 are the maximum value of X2 during a particular batch run, and the half-

velocity constant associated with X2, respectively. kLa and qX2 are the mass transfer coefficient,

and uptake rate of X2, respectively. It should be noted that online measurements for X2 are avail-

able throughout phase 1 and phase 2 of the bio-fermentation process. An additional objective of

the industry sponsor was to incorporate X2 in the original first-principles model and predict it like

the other states, so that its estimates can be tracked in real-time.

Experimental data was utilized in order to estimate the growth rate parameters and the overall

growth rate for the revised first-principles model. A comparison of the experimental overall growth

rate and the overall growth rate available from the original and revised first-principles model is

provided in the next chapter, where estimates from both the original and revised model are shown to

be accurate. A summary of the estimated growth rate parameters for the revised model is provided

in Table 2.3.

The revised first-principles model can now be solved for phase 1, and a comparison of the

model fit to experimental data is provided in Fig. 2.6. The corresponding model parameter values

are provided in Table 2.4. Model estimates are shown to be accurate for all states. Two additional
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Table 2.3: Estimated growth rate parameters for the revised first-principles model.

Parameter Value Unit
µmax,S1 0.808 hr−1

KS,S1 2.44× 102 g Substrate 1 L−1

µmax,S2 0.377 hr−1

KS,S2 1.84× 102 g Substrate 2 L−1

µmax,I 0.954 hr−1

KS,I 63.7 g Intermediate L−1

as1,s2 5.08× 102 −
as1,I 9.99× 102 −
as2,s1 4.91× 102 −
as2,I 1.01× 102 −
aI,s1 4.95× 102 −
aI,s2 5.13× 102 −
KX2 6.49× 10−4 hr−1

Table 2.4: Estimated phase 1 parameters for the revised first-principles model.

Parameter Value Unit
YB/S1 (phase 1) 0.903 g Cell/g Substrate 1
kLa (phase 1) 0.117 g Substrate 1 hr−1

qX2 (phase 1) 0.223 −

experimental datasets were utilized in order to validate the revised first-principles model for phase

1 and compare it with first-principles model using RMSE values. It is seen in Table 2.5 that RMSE

values for the model estimates for all the states, especially Substrate 1 and Biomass, are reasonably

good. This demonstrates the significantly improved accuracy of the revised first-principles model

for phase 1.

Similarly, the revised first-principles model can now be solved for phase 2, and a comparison of

the model and the experimental data is provided in Fig. 2.7. The corresponding model parameter

values are provided in Table 2.6. It should be noted that Substrate 1 is 0 in phase 2 (see Fig. 2.4

and Fig. 2.5), as it is consumed completely in phase 1, and is therefore not included in the plots

for phase 2 for the remainder of this work. While the model estimates for Biomass, Product, X2,

and Volume are fairly accurate, discrepancies can be noted in the model estimates for Substrate

2 and Intermediate. It should be noted that while there may be inaccuracies in the estimation of
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Figure 2.6: A comparison of the revised first-principles model and training data during phase 1.

Table 2.5: RMSE values for both models using training data and two validation datasets during
phase 1

Dataset Model Substrate 1 Biomass X2

Training data
First-principles model 0.1299 0.1273 -

Revised first-principles model 0.0959 0.0870 0.0754

Validation dataset 1
First-principles model 0.1235 0.3553 -

Revised first-principles model 0.0927 0.1060 0.2155

Validation dataset 2
First-principles model 0.2260 0.4163 -

Revised first-principles model 0.0978 0.144 0.1345

Intermediate, it may be attributed to the complexity of the revised first-principles model due to

incorporation of added components.
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Figure 2.7: A comparison of the revised first-principles model and training data during phase 2.

Table 2.6: Estimated phase 2 parameters for the revised first-principles model.

Parameter Value Unit
YB/S1 (phase 2) 0.321 g Cell/g Substrate 1

YB/S2 0.459 g Cell/g Substrate 2
YB/I 0.012 g Cell/g Intermediate
c1 0.108 g Substrate 2/g Cell
c2 0.108 g Intermediate/g Cell
c3 0.036 g Intermediate/g Cell
α1 0.173 g Product/g Substrate 1
α2 0.040 g Product/g Substrate 2
α3 0.156 g Product/g Intermediate
β 1.34× 10−4 g Product/g Cell·hr
Ea1 24.8 J/mol
Ea2 24.8 J/mol
Ea3 0.498 J/mol
p1 9.99× 10−5 hr−1

p2 1.80× 10−7 hr−1

kLa 5.13 −
qX2 16.6 −
mp1 1 −

Additional experimental data was utilized in order to validate the revised first-principles model
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for phase 2 (Fig. 2.8) and quantified using RMSE values in chapter 3. These results further

highlight the inability of the revised first-principles model to accurately estimate Substrate 2, par-

ticularly at the start of phase 2, even though Intermediate is estimated reasonably well in this case.

The results also show thatX2 is predicted reasonably well but it is important to further improve the

accuracy. Since the estimation of Substrate 2 is crucial, a hybrid model can improve the estimation,

and a sensitive analysis, clustering, and a hybrid modeling approach is presented in the following

chapter to guide its development.

Figure 2.8: A comparison of the revised first-principles model and validation data during phase 2.
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3. Sensitivity analysis, and a hybrid modeling approach

To develop a hybrid model that utilizes all available information (i.e., first-principles), sensi-

tivity analysis needs to be carried out to identify highly sensitive model parameters.

3.1 Sensitivity analysis

Before modifying the model further by considering new measurements or using data-driven

approaches to improve the existing model, it is essential to perform a sensitivity analysis to under-

stand which parameters greatly influence the outputs. In this section, a local and global sensitivity

analysis of the model is presented.

A local sensitivity analysis around the nominal values of the model parameters is initially

carried out to understand how the model parameters and initial conditions influence the different

outputs, i.e., Substrate 1, Substrate 2, Biomass, Product, Intermediate, and X2.

A sensitivity matrix is first derived in order to come up with the parameter set which affects

the outputs (43). The sensitivity matrix shows the dependencies of the outputs with respect to the

parameters and initial conditions, as shown below:

S =



∂y1(t1)/∂θ1 . . . ∂y1(t1)/∂θnθ
... . . . ...

∂y1(tnt)/∂θ1 . . . ∂y1(tnt)/∂θnθ
... . . . ...

∂yny(t1)/∂θ1 . . . ∂yny(t1)/∂θnθ
... . . . ...

∂yny(tnt)/∂θ1 . . . ∂yny(tnt)/∂θnθ



(3.1)

Here, yεRny represents the output states, and θεRnθ represents the parameters and initial condition

whose sensitivity analysis is carried out (44). These sensitivity matrix values are typically normal-

ized by multiplying with the nominal values of parameters and by dividing through the nominal
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values of the outputs to ensure that different units for the parameters/outputs do not affect the

sensitivity analysis results.

To capture the effect that these parameters have on the outputs, a criterion called Fisher infor-

mation matrix is calculated in the form of sensitivity matrix as follows:

FIM = STΣS (3.2)

where Σ is an identity matrix. A specific criterion is required to evaluate the information contained

in the Fisher information matrix, and for this purpose, the D-optimality criterion (φD) is used. It

minimizes the logarithm of the determinant of the inverse of the Fisher information matrix. Using

inverse determinant property, we get:

φ∗
D = max φD (FIM) = max log det (FIM) (3.3)

For the purpose of this sensitivity analysis, one parameter is evaluated at a time, and φD is com-

puted to show the effect it has on an output. A higher φD value implies that the concerned model

parameter has a higher influence on the given output. As the process states in the first-principles

model are measurable, these states are the model outputs in the bio-fermentation process, i.e., y

= x where x is the state. It is important to note that the study is carried out for the outputs of the

reactor model for phase 2, since it is the most important phase of the bio-fermentation process as

Substrate 2 is present in this phase and majority of Product is formed in this phase. Substrate 2

is tied to the operating cost of the process and is the main energy source for the micro-organisms.

As the supply of Substrate 1 is limited, it is primarily used for the initial growth of Biomass, and

only a relatively small percentage of product is formed in phase 1 when compared to phase 2. To

calculate the sensitivity of states with respect to the parameters, the following equation is solved:

d

dt

∂x

∂θi
=

∂f

∂xT
∂x

∂θi
+
∂f

∂θi
(3.4)

When θ represents an initial condition of the state in Eq. (3.4), the second term ( ∂x
∂θi

) is 1, and
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Table 3.1: Local sensitivity analysis: a list of sensitive parameters with D-optimality criterion
(φD) values for (a) when output states in the model for phase 2 are equally important, and (b) when
Substrate 2 and Product are 5 times more weighted than the other states.

Equal weight to
outputs

φD Substrate 2/Product
with 5 times weight

φD

S2initial 22.7 V0 68.6
YB/S2 22.6 S2initial 68.01
V0 22.3 YB/S2 67.8
B0 9.02 α2 27.4

µmax,S2 8.66 µmax,S2 25.9
KS,S2 8.24 KS,S2 24.6
α2 5.47 B0 6.08

man_para 0.858 β 2.08
β 0.416 G0 0.018
G0 0.018 P0 −5.77

for all other parameters, this term is 0 (43). For the case of this bio-fermentation process, the

dimension of the overall sensitivity matrix is [195, 6, 38] where 195 denotes the number of time

instants in the process, 6 denotes the number of states (i.e. Substrate 1, Biomass, Product, Substrate

2, Intermediate, added component X2), and 38 is the number of parameters including the initial

conditions. Overall, in this sensitivity analysis study, we consider the effect of these 38 parameters

on the output states. The parameters consist of six initial conditions corresponding to the six states,

and 32 parameters from the growth rate and phase 2 reactor model. The nominal values of these

parameters are the values listed in Tables 2.1 and 2.2.

Since the local sensitivity analysis was carried out initially, all the parameters were considered

to be at the nominal values. The result from this study is shown in Table 3.1. Two cases are

examined, the first case is where all the output states are assumed to be equally important, and

the second case is where Substrate 2 and Product are considered 5 times more weighted than the

rest, as they are the primary states of interest and need to be predicted accurately. Parameters are

listed according to decreasing order of φD for both the cases. The importance of the parameter is

determined by how high it appears in the table.

For the first case where output states are assumed to be equally weighted, it is seen that the yield

coefficient associated with Substrate 2 and the initial concentration of Substrate 2 being fed into
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the reactor are particularly important, along with the initial conditions of the state. Additionally,

µmax,S2 , KS,S2 , and α2 are also considerably important. The initial conditions of the output and the

initial concentration of pure Substrate 2 flowing into the fermenter, S2initial , cannot be estimated

using optimization. This is because, their value is subject to the real-time operation of the bio-

fermentation plant, varying with different batches. Thus, the main focus is on the parameters

present in the growth rate and phase 2 that can be better estimated in order to attain a superior

output prediction compared to the revised first-principles model.

From the local sensitivity analysis, it can be concluded that regardless of the weight to the

states, the initial concentration of Substrate 2 in the feed, the yield coefficient with respect to Sub-

strate 2, and the initial value of Volume are important parameters. The initial conditions of most

of the states are important. The half-velocity constant KS,S2 , which is associated with Substrate 2,

is the only half-velocity constant that is important. The non-associated growth term β is an impor-

tant parameter affecting Product. The maximum specific growth rate associated with Substrate 2,

µmax,S2 , and the growth rate coefficient associated with Substrate 2 responsible for the increase in

Product, α2, also play important roles in affecting the outputs.

As the parameters generally vary a lot depending on different batches, operating conditions,

and changes in measurements, it is important to see how sensitive the outputs are, based on a

wide range of parameter values, i.e., through a global sensitivity analysis. From global sensitivity

analysis, we can identify the parameters and initial conditions that are the most important and

significantly affect the outputs, particularly, Substrate 2 and Product concentrations. To decide the

range of parameter values upon which the global sensitivity analysis model would be developed,

5 experimental datasets were run with a slight change in certain conditions, e.g., initial parameter

guess, parameter bounds, etc. Based on the estimated parameter values obtained from these runs,

an overall range was decided for each parameter and initial condition, leaving a 20-50% margin of

error to account for the maximum range of values possible. A wider range is generally preferred

because different batches can estimate different parameter values, and it is helpful to see how the

outputs might react to parameter values that are far from their nominal value.
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For the global sensitivity analysis, we use lhsdesign (Latin Hypercube Sampling) in MATLAB

to construct a matrix of random values between 0 to 1 for each parameter. 100 different cases of

parameter sets are considered for this analysis and are averaged at the end. The overall combined

global sensitivity analysis of the model is done using the formulation below:

φD(model) = φD(Substrate 1) + φD(Biomass) + φD(Intermediate)

+5 · [φD(Substrate 2) + φD(Product)]

(3.5)

Table 3.2 lists the parameters along with their lower and upper bounds (LB and UB) that were

used for global sensitivity analysis. The range of each parameter considered is shown below:

Range of each parameter = [LB LB + (UB − LB) · lhsdesign] (3.6)
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Table 3.2: A list of parameters with lower and upper bounds for global sensitivity analysis.

No. Parameter LB UB

1 YB/S1
0.01 0.25

2 α1 0 0.25

3 β 10−5 10−3

4 c1 0 0.25

5 YB/S2
0.01 0.25

6 c2 0 0.25

7 YB/I 0.01 0.25

8 α2 0 0.25

9 α3 0 0.25

10 c3 0 0.25

11 S10
0 2

12 B0 50 70

13 P0 0.1 1.2

14 S20
200 3000

15 I0 0 0.2

16 V0 4× 104 1.2× 105

17 S2initial 500 1200

18 µmax,S1
0.1 1.2

19 µmax,S2
0.4 1.2

20 µmax,I 0.4 1.2

21 Ea1 0 25

22 Ea2 0 1000

23 Ea3 0 1200

24 man_para 0.001 1.5

25 KS,S1
0 500

26 KS,S2
100 1000

27 KS,I 100 4000

28 as1,s2
100 8000

29 as1,I 0 4000

30 as2,s1
0 4000

31 as2,I 100 4000

32 aI,s1 100 4000

33 aI,s2 100 4000

34 p1 1× 10−6 1× 10−4

35 p2 1× 10−8 1× 10−6

36 KX2
0 0.01

37 kLa 0 50

38 qX2
0 50

The effect of all these 38 parameters on the outputs is studied, individually and for the model as

a whole. The results of global sensitivity analysis for individual outputs are summarized in Table

3.3, where the importance of the parameter is determined by how high it appears in the table. Most

of the parameters in Table 3.3 have a positive φD value and parameters not included in this table

are negative, implying that they do not affect the outputs significantly.

It should be noted that the parameters are much more significant for the global sensitivity analy-
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Table 3.3: Global sensitivity analysis: a list of sensitive parameters for each output present in the
revised first-principles model for phase 2.

No. Substrate 1 Biomass Product Substrate 2 Intermediate Added component X2

Parameters
1 YB/S1 YB/S2 α2 aS2,I aS2,I V0
2 G0 E0 YB/S2 E0 µmax,S2 kLa
3 µmax,S1 S2initial E0 µmax,S2 E0 S2initial

4 − aS2,I S2initial YB/S2 YB/S2 qX2

5 − man_para β aS2,S1 aS2,S1 YB/S2

6 − B0 aS2,I KS,S2 aS2,I p1
7 − µmax,S2 µmax,S2 S2initial KS,S2 YB/S1

8 − aS2,S1 V0 V0 S2initial µmax,S2

9 − V0 c3 man_para c3 KS,S2

10 − c3 aS2,S1 aI,S2 µmax,I B0

11 − KS,S2 P0 B0 YB/I E0

12 − YB/I KS,S2 c3 man_para YB/I

sis, compared to the local sensitivity analysis where the initial conditions were of high significance

to the outputs. It is seen that the yield coefficient associated with Substrate 2, initial concentration

of Substrate 2 when it is fed into the fermenter, inhibition parameters aS2,I (effect of Substrate

2 on utilization of Intermediate by micro-organisms), and maximum specific growth rate of the

micro-organisms associated with Substrate 2 are the most important parameters. Additionally, β

(non-growth associated term responsible for the increase in Product) and α2 (coefficient associated

with Substrate 2 responsible for the increase in Product) are sensitive to Product. KS,S2 (Half ve-

locity associated with Substrate 2) is sensitive to Substrate 2. Only three parameters are seen to

affect Substrate 1 in phase 2, and the rest of the parameters have a negative or zero φD value.

In combined global sensitivity analysis of the developed revised first-principles model, the

effect of all outputs is considered together. Substrate 2 and Product outputs are given five times

more weight than Substrate 1, Biomass, and Intermediate. As mentioned earlier, the reason for that

is the need for accurate prediction of these two states. A summary of the results of the combined

global sensitivity analysis is shown in Table 3.4. From Table 3.4, the following conclusions can be

made:

• Regardless of the weight to the states and global/local analysis, it should be noted that the
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Table 3.4: Global sensitivity analysis: a list of sensitive parameters with D-optimality criterion
(φD) values when Substrate 2 and Product are 5 times more weighted than the other states.

Substrate 2/Product
with 5 times weight

φD

E0 65.0
aS2,I 59.9
YB/S2 55.4
µmax,S2 38.6
α2 37.34

S2initial 29.4
β 16.9

aS2,S1 6.80
KS,S2 −7.14
P0 −8.74

initial concentration of Substrate 2 in the feed, S2initial , the yield coefficient with respect to

Substrate 2, YB/S2 , coefficient associated with Substrate 2 responsible for the increase in

Product, α2, and maximum specific growth rate associated with Substrate 2, µmax,S2 , are

important parameters.

• The initial condition of all states is important for local analysis, but not as important for

global analysis.

• The half-velocity constant associated with Substrate 2, KS,S2 , appears to be the only half-

velocity constant of significant importance.

• Inhibition parameters are very important and sensitive to the model according to the global

sensitivity analysis, especially the ones associated with Substrate 2.

• The non-associated growth term, β, is an important parameter affecting Product.

The results of the sensitivity analysis can be utilized in order to examine variation in sensitive

model parameters, through parameter clustering as presented in the following section.
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3.1.1 Improving the revised first-principles model through clustering

The sensitivity analysis identified µmax,S2 , µmax,I , and KS,S2 as the sensitive model parame-

ters for the growth rate, and YB/S2 , c3, α2, and kLa as the sensitive model parameters for phase 2.

Some of the other sensitive parameters like aS2,I and other inhibition parameters are sensitive to the

outputs but they do not vary with time. The identified model parameters can now be utilized in a

parameter clustering approach to observe their variation through the course of the bio-fermentation

process, and to determine which parameters might benefit from a hybrid model approach. This ap-

proach is beneficial if there is no first-principles model to define potential time-varying parameters.

In these cases, DNNs are used to develop a relation between frequently available online measure-

ments and estimated parameters. This allows the model accuracy to be improved by utilizing

time-varying parameters rather than a single estimate for the given model parameter.

To the knowledge of the authors, there were no first-principles models for any of the sensitive

model parameters that were identified, and thus, a clustering approach was pursued to determine if

there were large variations in the sensitive model parameters. In this approach, sensitive parameters

are estimated separately in different clusters of time. This approach provides different estimates

for the sensitive model parameter in each cluster, thus enabling time-varying parameters to be

obtained.

Experimental datasets provided by the industry sponsor included the values at 50 different

time instants for each state. These were used to create 5 clusters, each comprised of 10 values.

Insensitive growth parameters were fixed to the values provided in Table 2.1. This is done since

limited experimental data is available, and re-estimating all parameters may lead to over-fitting.

A comparison of the simulation results of all the developed models, i.e., first-principles model,

revised first-principles model, and clustered model with experimental data for the growth rate, is

provided in Fig. 3.1. Here, improved estimation of the growth rate using the parameter clustering

approach can be observed on the normalized time scale. But still the clustered model is unable

to accurately track the time-varying nature of the growth rate characteristics. The parameters

estimated by the clustered approach for the growth rate are presented in Table 3.5. Similarly, the
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parameters estimated by the clustered approach for the reactor model for phase 2 are presented

in Table 3.6. These results demonstrate that the sensitive model parameters are time-varying,

particularly the growth rate coefficients associated with Substrate 2 and Intermediate, µmax,S2 and

µmax,I , and yield coefficient associated with Substrate 2, YB/S2,1. These parameters may benefit

from developing a hybrid model, which will be explored in the following section.

Figure 3.1: A comparison of growth rate parameter estimation using the first-principles model,
revised first-principles model, and clustered model.
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Table 3.5: Clustered growth rate parameters.

Growth rate parameter Time period (normalized) Value Unit

µmax,S2,1 0.0-0.2 0.512 hr−1

µmax,S2,2 0.2-0.4 0.202 hr−1

µmax,S2,3 0.4-0.6 0.133 hr−1

µmax,S2,4 0.6-0.8 0.124 hr−1

µmax,S2,5 0.8-1.0 0.129 hr−1

KS,S2,1 0.0-0.2 68.9 g Substrate 2L−1

KS,S2,2 0.2-0.4 2.03× 102 g Substrate 2L−1

KS,S2,3 0.4-0.6 2.37× 102 g Substrate 2L−1

KS,S2,4 0.6-0.8 2.85× 102 g Substrate 2L−1

KS,S2,5 0.8-1.0 2.79× 102 g Substrate 2L−1

µmax,I,1 0.0-0.2 0.972 hr−1

µmax,I,2 0.2-0.4 0.772 hr−1

µmax,I,3 0.4-0.6 0.687 hr−1

µmax,I,4 0.6-0.8 0.555 hr−1

µmax,I,5 0.8-1.0 0.612 hr−1

Table 3.6: Clustered phase 2 parameters.

Phase 2 parameter Time period (normalized) Value Unit

YB/S2,1 0.0-0.2 0.855 g Cell/g Substrate 2

YB/S2,2 0.2-0.4 0.155 g Cell/g Substrate 2

YB/S2,3 0.4-0.6 0.135 g Cell/g Substrate 2

YB/S2,4 0.6-0.8 0.115 g Cell/g Substrate 2

YB/S2,5 0.8-1.0 0.156 g Cell/g Substrate 2

c3,1 0.0-0.2 0.30 g Intermediate/g Cell

c3,2 0.2-0.4 1.00 g Intermediate/g Cell

c3,3 0.4-0.6 1.50 g Intermediate/g Cell

c3,4 0.6-0.8 1.50 g Intermediate/g Cell

c3,5 0.8-1.0 1.50 g Intermediate/g Cell

α2,1 0.0-0.2 0.011 g Product/g Substrate 2

α2,2 0.2-0.4 0.056 g Product/g Substrate 2

α2,3 0.4-0.6 0.051 g Product/g Substrate 2

α2,4 0.6-0.8 0.035 g Product/g Substrate 2

α2,5 0.8-1.0 0.010 g Product/g Substrate 2

kLa1 0.0-0.2 13.4 hr−1

kLa2 0.2-0.4 3.36 hr−1

kLa3 0.4-0.6 3.36 hr−1

kLa4 0.6-0.8 2.36 hr−1

kLa5 0.8-1.0 2.06 hr−1
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3.2 Development of the hybrid model

3.2.1 Improving the revised first-principles model through hybrid modeling

In the previous section, sensitive model parameters were identified and estimated in a clustered

manner, where each of the five values estimated for the parameters was used to improve model

prediction. The parameters mentioned in Table 3.5 and Table 3.6 show that there was significant

variation in their values with time, but parameters such as µmax,S2 , µmax,I , and YB/S2,1 change more

frequently, and nonlinearly in time unlike kLa, and c3,1. Thus, to get a more accurate representation

of these parameters and capture their complete time-varying nature over all the time instants, a

hybrid modeling approach was adopted.

As described in Chapter 2, a hybrid model is one that utilizes a data-driven model along with a

first-principles model (45; 46). A DNN is trained to estimate µmax,S2 , µmax,I , and YB/S2,1, which

are to be utilized in the improved first-principles model. The inputs to the DNN are the concen-

trations of Substrate 2, Biomass, Intermediate, Product, Volume, and X2. As this approach is

primarily for phase 2 model, Substrate 1 is not considered since it is experimentally known to be

negligible during this phase as it gets consumed almost completely in phase 1. Even the model fit

shows a negligible concentration of Substrate 1 as seen in Fig. 2.4 and Fig. 2.5. The first layer is

the input, and the last layer is the output. The nodes are connected using weights, and each node

has a bias. Rectified Linear (ReLu) activation function is used to calculate the output of each node.

The DNN used in this work consists of 3 hidden layers with 5 nodes each and 3 outputs, which are

the parameters mentioned above. These parameters are then used in the first-principles model, and

the output concentrations are calculated.

Now, as shown in Fig. 2.1, xk are the states of the improved first-principles model mentioned

earlier, i.e., Substrate 2, Biomass, Product, Intermediate, X2, and Volume, and uk are the ma-

nipulated inputs to the process which will also be used as an input to the hybrid model such as

temperature, added component X1, alkali flow rate, and Substrate 2 flow rate. It is important to

note that alkali flow rate is a critical input to the fermenter as it is added to keep the pH in check
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as it can neutralize Intermediate and added chemical X1.

The DNN is initially pre-trained using the MATLAB deep learning toolbox, and the clustering

parameter values. These parameters are used in the first-principles model for phase 2 wherein the

other parameters are constant. The output concentrations from the hybrid model are represented as

xk+1, which will be used as input to the model in the next time step. Yk is the plant measurement of

these output concentrations. Once we have the output from the hybrid model, the error is calculated

using Eq. (2.13). Based on the error for all outputs, the SSE is calculated using Eq. (2.12). As

mentioned in Section 2.2, Jacobian matrix is then calculated which is used to update the weights

and biases. Levenberg Marquardt algorithm is used to update the DNN parameters. These updated

weights and biases are then used in the next iteration, and the hybrid model gives a new set of

outputs. Once again, the error is calculated, and SSE is computed. This process is repeated until

the error is less than a tolerance value. It is important to note that unlike the clustering method

which had 5 estimated values for each parameter, the DNN has 50 parameter values corresponding

to 50 output measurements, thus estimating time-varying parameters in a much more accurate

manner (47).

The results for the hybrid model using the training data are illustrated in Fig. 3.2. It can

be seen that all the states are predicted well and the model fit is more accurate than the revised

first-principles model’s prediction, especially for Product and Substrate 2, which are the primary

states of interest in this work. Estimation of states using validation data is shown in Fig. 3.3, and

it shows that all the states except Intermediate are predicted fairly accurately. There is an order

of magnitude difference between the measurements of Intermediate from different batches due to

uncertainty from the yeast cells and the significant effectsX1 and alkali flow rate have on it. Hence,

its prediction for validation batch is not as accurate as the other states. The main concern with

Intermediate concentration is regarding identification of abnormality in bio-fermentation process,

and there are other means of tracking Intermediate that the industry sponsor uses. The results also

show that the prediction accuracy of component X2 is high thus the developed model can be used

to successfully track X2 along with the other states.
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Figure 3.2: A comparison of the hybrid model and training data during phase 2.

The parameters estimated by the hybrid model were used to further validate 2 additional

batches, and both showed accurate predictions of Substrate 2 and product, as shown in Fig. 3.4,

and Fig. 3.5. Due to difficulty in taking offline measurements, only Substrate 2 and Product con-

centrations are measured during normal operation of the bio-fermentation plant. The results show

reasonable prediction for both these states using the two batches. For further improving the pre-

diction accuracy, it is crucial to have more experimental data so that the neural network can be

trained even more precisely as larger the sample size of data, the better the parameter estimates.

For the objective of this work, all these validation plots show that the states, especially Substrate 2

and Product, are predicted reasonably well.

3.2.2 Error analysis

In order to quantify and compare the performance of the three models, i.e., original first-

principles model, revised first-principles model, and hybrid model, we utilize the relative error

(RE) formulation as defined below:

REk = 1− xk+1

Yk
(3.7)
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Figure 3.3: A comparison of the hybrid model and validation data during phase 2.

In Eq. (3.7), xk+1 are the predicted state concentrations using the models and Yk are the plant

measurements, as described in detail in the previous section. First, performance of the three models

is compared using the training batch that was used to train the DNN in the hybrid model. The

predicted outputs from these three models were utilized to calculate the RE value as defined in Eq.

(3.7) at every time step. The RE plots for the training dataset are plotted and compared in Fig. 3.6.

The key observation here is that the hybrid model outperforms the first-principles model and the

revised first-principles model. This can be attributed to the fact that the hybrid model includes a

trained DNN which accurately predicts the sensitive parameter values as well as the dependencies

among themselves, and this results in better prediction of outputs.

Next, the performance of the three models is compared using the validation batch. The pre-

dicted outputs were utilized to calculate the RE value as defined in Eq. (3.7). Once again, the

hybrid model performs much better than the other two models, except in the case of the prediction

of Intermediate, where the performance of the hybrid model is comparable to the first-principles

model.

Additionally, the error is numerically quantified using the root mean squared error (RMSE)
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Figure 3.4: A comparison of the hybrid model and additional validation dataset 1, during phase 2.

formulation as defined below:

RMSE =

√√√√√N−1∑
k=0

(Yk − xk+1)2

N
(3.8)

RMSE values were calculated by comparing the predictions from all three models against the

training and validation batches, and are summarized in Table 3.7 and Table 3.8, respectively. From

these tables, it can be observed that the hybrid model outperforms the first-principles model and

the revised first-principles model in the prediction of all the states except for the Intermediate.

Moreover, the RMSE values for Product and Substrate 2 for the two additional validation batches

using the hybrid model were found to be low: 0.0625 (Product) and 0.1279 (Substrate 2) for the

first, and 0.0448 (Product) and 0.1240 (Substrate 2) for the second. In conclusion, the hybrid model

shows superior performance as it is equipped with a DNN that predicts time-sensitive parameters
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Figure 3.5: A comparison of the hybrid model and additional validation dataset 2, during phase 2.

accurately.

Table 3.7: RMSE values for all three models using training data

Biomass Product Substrate 2 Intermediate X2 Volume

First-principles model 0.2162 0.0260 0.2886 0.2046 - 0.0792

Revised first-principles model 0.2218 0.0672 0.1932 0.4851 0.1158 0.0993

Hybrid model 0.0590 0.0278 0.0707 0.1368 0.0719 5.877e-04

Table 3.8: RMSE values for all three models using validation data

Biomass Product Substrate 2 Intermediate X2 Volume

First-principles model 0.1972 0.0480 0.2968 2.536 - 0.0862

Revised first-principles model 0.2189 0.0463 0.6030 0.3460 0.1170 0.0776

Hybrid model 0.1274 0.0278 0.1862 1.079 0.0639 9.792e-04
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Figure 3.6: Relative errors between the models (i.e, the first-principles model, revised first-
principles model, and hybrid model) and the training data obtained from the industry sponsor.
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4. Observer Design and Optimal Control Algorithm

The previous chapter details the development of hybrid model after identifying the highly sen-

sitive model parameters using sensitivity analysis and clustering. The next step in order to further

towards running the model online is developing an observer which can track the internal states of

the system. And after that, we develop an optimal control algorithm using an optimization problem

which can be used in a model predictive framework.

4.1 Observer Design

The main goal of an observer is to accurately estimate internal states of the process between

the sampled data (Inter-sample measurements). An initial step in the design of the observer was

to assess the performance of the traditional nonlinear Kalman filters in order to determine if they

could be used to estimate the states of the bio-fermentation process. The assumption here is that

three states have measurements available: product, Substrate 2, and X2. The goal is to determine

if all the other states can be tracked using these available measurements. For better estimation, the

measurements were interpolated and Forward-Euler method was used in the simulation. But the

results showed that both EKF and UKF were unsuccessful in tracking biomass, and Intermediate.

Thus, in order to handle inter-sampling, an open-loop observer with re-initialization was used.

The available measurements were assumed to be fairly accurate and with little noise present. This

method utilized a new set of state measurements, whenever they become available, to re-initialize

the open-loop observer with the measured values. This approach is computationally less demand-

ing, and given the scarcity in measurements, it is a reasonable method to implement. The observer

is designed for both phases and the states are re-initialized whenever an new measurement is avail-

able. For phase 1, Substrate 1, and X2 were re-initialized while in phase 2, Substrate 2, Product,

and X2 were re-initialized.

It should be noted that the observer designed is multi-rate i.e all the states measurements do not

need to be available at the same instant. Thus, as online measurements of X2 and Volume are
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available at a much higher frequency, they can be utilized as input to the observer.

A schematic illustration of the observer model is shown in Fig. 4.1. The observer model

utilizes continuous input from the online sensors for volume, X1, X2, temperature, and Substrate

2 flow rate. The observer model also utilizes Substrate 2 and Product lab measurements whenever

available in order to re-initialize the open-loop observer. States that are output from the model are

Substrate 2, Product, Biomass, Intermediate, X2, and volume.

Figure 4.1: A schematic illustration of observer design.

The observer is implemented for data from training batch, and the plot for the time series

evolution of all states is illustrated in Fig. 4.2 and Fig. 4.3. It should be noted that Substrate 2,

Product, Volume, and X2 states are only re-initialized every time when the plant measurements are

available. The results show reasonable performance of the observer for all states for both phase
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shown in Fig. 4.1, and for the overall process (phase 1 and phase 2 combined) shown in Fig. 4.2.

Figure 4.2: A comparison of the hybrid model-based observer fit and training data during phase 1.

Another validation dataset was used to test the developed hybrid model-based observer design.

The plots for the time series evolution of all states is illustrated in Fig. 4.4 (Phase 1) and Fig. 4.5

(Combined phase 1 and 2). It is seen that all the three states in phase 1 are tracked accurately.

In this case, for illustration purposes, even Intermediate state is re-initialized and we can see in

Fig. 4.4 that all the six states are tracked well in between the samples thus showing the prediction

accuracy of the developed observer.

4.2 Optimal control algorithm

The primary aim of any industrial process is increased productivity and reduced cost. In order

to achieve that aim, many resources are used to optimize the process such that it runs at optimal

operating conditions and maximises the profitability. The same is true for a bio-fermentation pro-

cess. The motivation behind developing an optimization problem is to utilize the developed hybrid

model to estimate the optimal operating conditions of the bio-fermenter in real-time. It is essential

to maximize the product amount and minimize the Primary unit (Cost) for the profitability and pro-

ductivity of the plant. It is also important to take practical constraints into account while achieving
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Figure 4.3: A comparison of the hybrid model-based observer fit and training data for phase 1 and
2 combined.

these targets and computing the optimal operating conditions of the bio-fermenter to maintain an

optimal Substrate 2 concentration throughout the process. The practical considerations include

setting bounds on temperature, flow rates, and rate of change of both of them. In order to do this,

a Nonlinear program (NLP) is developed on GAMS.

According to the industry sponsor, it is desired to have a Substrate 2 concentration of S2opt ,

target product amount as Prodopt and primary unit as Ecoopt. Here, primary unit is described as

follows:

Primary unit =
Total Substrate 2 used (l)

Amount of Product (kg)
(4.1)

The main target is to maximize product amount, i.e., get Product higher than Prodopt, and min-

imize primary unit, i.e., get primary unit lesser than Ecoopt. To do that, an optimization problem is

developed and it is given as follows:
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Figure 4.4: A comparison of the hybrid model-based observer fit and validation data during phase
1.

min
T,Fin,X1

(Prod(f)− Prodopt)2 −
Prod2opt
Eco2opt

(Eco(f)− Ecoopt)2 − 105 × (TS − 195× S2opt)

(4.2a)

s.t. 0.95× S2opt < S2(t) < 1.05× S2opt (4.2b)

78.8 < T < 88 Temperature in F (4.2c)

1500 < Fin < 1800 Substrate 2 flow rate in lb/h (4.2d)

− 50 < fr < 50 Rate of change of Substrate 2 flow rate in l/h (4.2e)

17 < X1 < 25 X1 Flow rate in lb/h (4.2f)

− 0.2 < tr < 0.1 Rate of change of Temperature in F (4.2g)

where TS is the total sum of Substrate 2 concentrations over the duration of the process. The

decision variables are Temperature T, Substrate 2 flow rate Fin, and X1. A new decision variable

fr and tr are introduced to denote the rate of change of Substrate 2 flow in l/h, and temperature,

respectively. The product amount is given a free role to take any value, and as it is a maximization

problem, the product tries to go as high as possible. There is a multiplication factor of Prod2opt
Eco2opt

in

front of the primary unit term to equally weigh the primary unit. A term 105× (TS − 195×S2opt)
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Figure 4.5: A comparison of the hybrid model-based observer fit and validation data for phase 1
and 2 combined.

is subtracted in order to maintain Substrate 2 concentration near S2opt . A factor of 105 is used so

that the term in the bracket goes to near zero and the Substrate 2 concentration is driven to the

desired value. Another important consideration is the volume end condition (Volume should be

less than reactor volume of around 100,000 gallons) which is also the end point of the optimization

problem.

The optimization problem is now solved for training dataset, and the optimal operating condi-

tions and concentration of states are plotted and shown in Fig. 4.6, and Fig. 4.7, respectively. From

the plots, it is seen that the modified control algorithm is able to maintain Substrate 2 concentration

at S2opt for most of the duration of the process and between 0.95× S2opt- 1.05× S2opt throughout

the process. Also, the product target is met and the product amount is found to be almost 10%

more than the desired amount, and the volume end condition is satisfied too. The primary unit is

found to be around 0.995×Ecoopt which is lower than the optimal target. The total x1 is within the
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bounds, and thus, the process is feasible. The input trajectories for temperature, Substrate 2 flow

rate, and X1 flow rate are seen to change dynamically with time throughout the process, and that

plays a big role in maintaining the Substrate 2 concentration at S2opt . We also see that Intermediate,

Biomass, and X2 are also around the same range as the historical plant values thus confirming that

the states are indeed optimal.

Figure 4.6: Optimal operating conditions and bounds for training data.

Now, the optimal control algorithm is implemented on the validation dataset, and the optimal

operating conditions and concentration of states are plotted and shown in Fig. 4.8, and Fig. 4.9,

respectively. It is important to note that this dataset runs for a lesser duration of time compared to

the previous batch hence the product amount is lower than optimal target but it is still around 8%

higher than the plant value. Also, the volume end condition is met and Substrate 2 is maintained

within a 5% range of S2opt .
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Figure 4.7: A comparison of optimal states, historical plant values, and optimal targets for training
data.

Based on the above plots, we can say that the optimization problem is able to effectively main-

tain Substrate 2 concentration near the desired range throughout the process, while also meeting

and improving upon the target product amount and primary unit. This control algorithm works

well for a full-scale bio-fermentation process while considering practical temperature and flow

rate constraints throughout the process. This control algorithm can now be used as part of a model

predictive framework in order to implement the observer and optimization problem online for

closed-loop operation.
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Figure 4.8: Optimal operating conditions and bounds for validation data.

Figure 4.9: A comparison of optimal states, historical plant values, and optimal targets for valida-
tion data.
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5. SUMMARY AND CONCLUSIONS

In this work a hybrid modeling strategy was proposed, where a DNN was used to predict un-

certain process parameters in a bio-fermentation process. Due to a lack of first-principles approach

to model the time-varying parameters, a sensitivity analysis was initially carried out to determine

which model parameters had a huge influence on the model outputs. Then, a clustering approach

was utilized to study the time sensitive nature of these model parameters, before employing those

with large variations in the hybrid model. The hybrid model showed superior accuracy over the

first-principles model, particularly for the estimation of Biomass, Product, and Substrate 2, which

was of importance to the industry sponsor. This is attributed to the utilization of the DNN to accu-

rately predict uncertain time-varying model parameters. Next, an open-loop hybrid model-based

observer was designed using re-initialization of available measurements in order to accurately esti-

mate the internal states of the process. All the states, especially Biomass, Substrate 2, and Product

were tracked precisely compared to the available measurements within the sampled time, through-

out the duration of the bio-fermentation process. This further reaffirms the prediction accuracy

of the hybrid model. After designing the observer, an optimal control algorithm was developed

which maximized the product amount and minimized the use of Substrate 2(responsible for cost

of the process). Along with increasing productivity, a desired concentration of Substrate 2 was

maintained while considering all the practical constraints like temperature, flow rate, and volume

of the bio-fermenter. Thus, we were able to compute the optimal operating conditions of the bio-

fermenter to maintain an optimal Substrate 2 concentration throughout the process while achieving

optimal product and cost targets.

5.1 Further Study

Further research involves developing a model predictive control framework for closed-loop

operation using the optimization problem used in order to perform online control of the bio-

fermentation process. In order to do so, an interactive framework between MATLAB and GAMS
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needs to be developed which imports and exports the manipulated inputs, real-time measurements,

and optimal operating conditions of the process. In order to further improve the prediction accu-

racy of the states, a future direction can be to use adaptive hybrid modeling which is able to train

the parameters while the process is running. This would ensure that accurate parameter estimation

as well as further improve the observer and control algorithm accuracy.
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