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ABSTRACT

The Fourier transform generates a time-averaged amplitude spectrum of time series; seismic

data however is non-stationary, i.e., the frequency content of seismic data changes with time and

depth. Spectral decomposition is an essential tool in seismic exploration for analyzing seismic

data. Modern spectral decomposition methods such as the Short-Time Fourier Transform, the

Continuous Wavelet Transform, and the S-transform address the non-stationary nature of seismic

data. The above-mentioned common spectral decomposition methods are however inadequate

for certain high-resolution seismic interpretation purposes. In addition, the above methods are

performed on individual traces and do not take into account the continuous nature of geological

structures or significant events of interest.

The first part of this dissertation presents and describes a new method called the Auxiliary S-

transform. The Auxiliary S-transform is an invertible spectral decomposition method designed to

significantly improve on the resolution of the S-transform by making use of the multi-dimensional

nature of seismic data as well as the separation of seismic events in slowness coordinates. Multi-

trace information is utilized with seismic processing techniques such as the linear Radon transform

and the parabolic Radon transform. The linear Radon transform and the parabolic Radon transform

are ideal for separating seismic events and extracting coherency information because they intrin-

sically take into account the velocity and curvature of seismic events. The workflow transforms

data into the time-frequency-slowness or time-frequency-curvature domain where seismic events

are better separated and the coherency attribute is more easily accessible. A filter can be applied

in this domain to remove unwanted noise and further enhance the separation between events, to

improve the temporal resolution of the method.

The Auxiliary S-transform is applied to synthetic data and its performance is compared to that

of the S-transform. It is also applied to real seismic data for a shallow hydrocarbon environment.

The results demonstrate that the Auxiliary S-transform has superior temporal resolution at all fre-

quencies compared to the S-transform. The results also demonstrate that the Auxiliary S-transform
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is suitable for imaging the lateral continuity of seismic events and geological structures compared

to the S-transform.

The second part of this dissertation presents a new quantitative approach for estimating the crit-

ical moment in a petroleum system. The petroleum system concept spans the spatial and temporal

extent of all elements and processes required for the generation and preservation of petroleum. The

critical moment of a petroleum system is the moment with the highest probability for the genera-

tion–migration–accumulation of hydrocarbons. It is an important concept in petroleum exploration

risk assessment because the stratigraphic and geographic extents of a petroleum system are deter-

mined at the critical moment. In petroleum systems, thermal history data, burial history data, and

vitrinite reflectance data may be unavailable, unreliable, or incomplete; this introduces significant

uncertainty in the choice of the critical moment. This study presents a quantitative probabilistic

framework for estimating the critical moment and quantifying the associated uncertainty in such

cases. The quantitative probabilistic framework defines a probabilistic early bound and late bound

for the critical moment (which, combined together, is termed the critical range) and then estimates

the moment with the highest numerical probability of generation–migration–accumulation. It de-

fines the uncertainty associated with the critical moment as half the absolute value of the critical

range. In cases with little ambiguity or duplicity in the timing of petroleum system elements and

processes, the critical range converges to one point, which is also the critical moment. The quan-

titative probabilistic framework introduces consistency to the critical moment estimation problem

and quantifies the level of uncertainty in the estimation. This significantly reduces the risk involved

in petroleum exploration assessment.
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NOMENCLATURE

AST Auxiliary S-transform

AU Assessment Unit

CWT Continuous Wavelet Transform

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

FWHM Full Temporal Width at Half Maximum

LFS Low-Frequency Shadow

LRT Linear Radon Transform

PCF Percentile Coherency Filter

PRT Parabolic Radon Transform

ST S-transform

STFT Short Time Fourier transform

TPS Total Petroleum System

The abbreviations are primarily used in figure labeling.
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1. INTRODUCTION TO SPECTRAL ANALYSIS

Seismic data contains more information than is directly observable in the time/depth domain.

To obtain a better understanding of the Earth’s subsurface it is necessary to simultaneously ex-

amine the temporal and frequency content of seismic data using spectral decomposition. Spectral

decomposition transforms seismic data into the time-frequency domain to reveal geophysical re-

sponses and structural and stratigraphic details of subsurface rocks, which preferentially appear

at specific frequencies. Commonly used spectral decomposition methods such as the Continuous

Wavelet Transform and the S-transform are inadequate for some high-resolution seismic interpre-

tation purposes such as tracking thin lateral hydrocarbon layers, and stratigraphic interpretation.

Coherency-based spectral decomposition methods represent a novel approach in addressing this

problem. These methods simultaneously utilize information from multiple traces in the spectral

decomposition process. The objective of the first part of this dissertation is to introduce and present

such a new method: the Auxiliary S-transform, examine its properties, evaluate its effectiveness

and demonstrate its improved resolution as compared to conventional methods.

1.1 Statement and Significance of Problem

The Fourier transform generates a time-averaged amplitude spectrum of a time series in the

frequency domain. The time-averaged amplitude spectrum, however, is inadequate for tracking

changes in non-stationary time series. Non-stationary time series are those for which the frequency

content changes with time. Fourier analysis decomposes signals into terms of sines and cosine at

predetermined frequencies. It can also be viewed as a projection of infinite sinusoidal bases on the

signal i.e. it changes the delta bases function of the signal in the time domain to infinite sinusoidal

bases in the frequency domain.

There are some intrinsic problems with the Fourier transform:

1. The Fourier transform cannot estimate fractional frequencies instead, it spreads the spectrum

to other frequencies.
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2. The time averaging nature of the Fourier transform makes it inadequate for analyzing non-

stationary signals and lastly.

3. Short-duration signals do not appear noticeable in the amplitude spectrum of a superimposed

signal.

Figure 1.1 illustrates examples of (a) stationary and (c) non-stationary signals and their ampli-

tude spectra (b and d respectively). The time series in Figure 1.1a is constructed by superimposing

a 10 Hz time series and a 16 Hz time series. The frequency of the time series in Figure 1.1b on

the other hand, changes from 10 Hz for the first half of the time series to 16 Hz in the second half,

hence it is non-stationary. It is difficult to deduce information about a particular frequency com-

ponent from the Fourier amplitude spectrum of the non-stationary signal. Figures 1.1e and f show

a short duration 40 Hz signal superimposed on a longer duration 10 Hz signal and the correspond-

ing Fourier spectrum. The short duration high-frequency signal is barely visible in the frequency

domain and does not have good energy concentration. Time-frequency analysis addresses these

problems.

To adequately capture the time variation of non-stationary signals and to address other inade-

quacies of the Fourier transform, time-frequency analysis was introduced. The Short Time Fourier

Transform (STFT) is one of the earlier developed time-frequency analysis methods. In the STFT

process, the time series is multiplied with a series of shifted time windows of constant window size,

and then the Fourier transform of the multiplied signal is calculated. The choice of window size

ensures that the windowed signal segment behaves as if it were stationary. The localizing window

is shifted along the entire length of the time series and the localized spectrum is calculated. The

resulting time-frequency map is called a spectrogram (Cohen, 1995). The problem with this ap-

proach is that the choice of window size significantly affects the resulting decomposed spectrum.

The window has to be short enough to effectively isolate temporal signals from a specific layer

without impinging on nearby signals. At the same time, shortening the windows reduces the fre-

quency resolution and can distort the spectral characteristics. A wrong window size could result in

frequency smearing. This is a fundamental problem in time-frequency analysis affecting methods
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Figure 1.1: a) A time series generated by summing a 10 Hz time series with a 20 Hz time series,
c) A time series with a frequency of 10Hz for the first 500 sample points and a frequency of 20 Hz
for the next 500 sample points. e) A time series of a short duration 40 Hz signal superimposed on
a longer duration 10 Hz signal. b), d) and f) show the respective Fourier transforms of the three
signals in a), c) and e) .
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that utilize windowing; the trade off between temporal resolution and frequency resolution. This

relationship is described by the Heisenberg-Gabor uncertainty principle and is expressed as:

∆t ·∆ f >Cw (1.1)

In equation 1.1, ∆t is the time resolution, ∆ f is the frequency resolution and Cw is a constant

that depends on the type of window used. Figure 1.2 illustrates the Heisenberg-Gabor uncertainty

principle. Figure 1.3 illustrates the effect of window size on the Short Time Fourier Transform.

Temporal resolution refers to how well a transform can capture the rapid variations in a time series

in the time domain and frequency resolution refers to how well the changes in the frequencies

of a signal can be tracked. Both temporal and frequency resolutions are directly controlled by

the choice of window width in Fourier-based time-frequency analysis methods. The temporal

resolution is proportional to the length of the windowing function while the frequency resolution

is proportional to the frequency range of the windowing function. Hence a short window results in

better temporal resolution whereas a wider window results in better frequency resolution.

Some commonly used time-frequency analysis methods focus on modifying the shape of the

window or wavelet used. Two of these methods that attempt to capture the time variation are

the continuous wavelet transform (CWT) and the S-transform. The continuous wavelet transform

is defined as the sum over all time of the time series multiplied by a scaled and shifted version

of an analyzing wavelet function. Mathematically, it is defined as the inner product of a family of

wavelets with the time series. The continuous wavelet transform is represented as a time scale plot,

which is often converted to a time-frequency plot since the scale is inversely related to frequency.

The main purpose of using the mother wavelet is to provide a source function to generate the

daughter wavelets (Miao and Cheadle, 1998) which are simply the translated and scaled versions

of the mother wavelet (Miao and Moon, 1994). The S-transform can conceptually be viewed as

a hybrid of short time Fourier analysis and wavelet analysis. The S-transform uses a frequency-

dependent window; the standard deviation in S-transform is a function of frequency. As the width

of the window is dictated by the frequency, it is apparent that the window is wider in the time
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Figure 1.2: The Heisenberg-Gabor uncertainty principle of time and frequency resolution.

domain at lower frequencies which means the window provides good localization in the frequency

domain for low frequencies (Stockwell et al., 1996; Stockwell, 2007).

However, despite better performance than the STFT and the CWT, the S-transform may not

have sufficient resolution for certain applications and situations. Figure 1.4 shows a synthetic seis-

mic section generated from a stratigraphic impedance model by convolving it with a 50Hz wavelet.

The synthetic seismic section contains a thin layer between two thick layers. The spectrally de-

composed panel is obtained using the S-transform. It shows that that the S-transform cannot suf-

ficiently temporally resolve the thin layer. The Auxiliary S-transform is designed to be able to

address problems of this nature and improve on the temporal localization of seismic events. The

resolution provided by the Auxiliary S-transform improves on the resolution of the S-transform

for coherent signals. The coherency is defined using multi-trace techniques such as the slant-stack

transform and the parabolic Radon transform. The result is that signals that are more coherent are

preferentially resolved in the spectrally-decomposed seismic data. The Auxiliary S-transform also
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Figure 1.3: Effect of window size on the Short Time Fourier Transform. The wider the window
in time, the narrower the frequency width. The STFT is also affected by truncation effects which
cause sharp edges.

improves the temporal localization of coherent signals hence it is suitable for high lateral resolution

seismic interpretation studies.
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Figure 1.4: S-transform of a thin layer contained within a thicker even layer pair. The S-transform
is unable to resolve the thin layer.
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1.2 A Compact History of Spectral Analysis

The early history of spectral theory can be traced back to the Greek philosopher, Pythagoras

(about 570 – 495 B.C.), who studied wave phenomena using strings in an attempt to establish the

laws of musical harmony (Dampier, 1961). In 1672, Sir Isaac Newton (1642-1727) conducted a

famous experiment where he split light from the sun into a band of colors using a prism (Newton,

1704). In the 19th century, Robert Wilhelm Bunsen (1811-1899) repeated Newton’s experiment us-

ing a burning rag soaked in a sodium chloride solution (Bunsen and Roscoe, 1863). The spectrum

revealed narrow lines including a bright yellow one which is the spectrum of table salt. Together

with Gustav Robert Kirchhoff (1824-1887), Bunsen determined that every chemical element has

a characteristic spectrum, however, the spectral theory of the elements could not be explained by

classical physics. The theory would later be explained by developments in quantum physics.

In the 17th century, it was assumed that any mathematical function describing physical phe-

nomena was differentiable. Brook Taylor (1685-1731) introduced the concept of the analytic func-

tion and developed the Taylor series (Taylor, 1715). The Taylor series, given in equation (1.2),

expands analytic functions as an infinite summation of the successive derivatives of the function

at a point and makes it possible to uniquely determine the shape of a function at a finite distance

from the point around which the function is expanded.

f (a+h) = f (a)+
1
1!

f
′
(a)h+

1
2!

f
′′
(a)h2 + ... (1.2)

Taylor’s series was in discordance with the work of Daniel Bernoulli (1700-1782). Bernoulli

along with other scientists, Jean le Rond d’Alembert (1717-1783), Leonhard Euler(1707-1783),

and Joseph-Louis Lagrange (1736-1813) worked on the solution to the wave equation (d’Alembert,

1747; Euler, 1755; Lagrange, 1759; Euler, 1766). The development of the wave equation was

inspired by the Pythagoras’ above-mentioned studies. The wave equation is given as:

∂ 2u
∂ 2x
− 1

c2
∂ 2u
∂ 2t

= 0 (1.3)
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where u is the displacement, x is the horizontal coordinate, t is time and c is the velocity of the

traveling waves on a string.

Bernoulli introduced the method of separation of variables and claimed that the general solution

to the wave equation was an infinite sum of sine and cosine functions i.e. an arbitrary non-analytic

function could be expressed as an infinite sum of analytic functions (Bernoulli, 1738). In 1807,

Jean Baptiste Joseph de Fourier (1768-1830) proposed the Fourier series to the French Academy

(Fourier, 1822). He made the claim that an arbitrary function defined over a finite interval by

a rough or even discontinuous graph could be represented by an infinite sum of cosine and sine

functions. The Fourier series was also at odds with the Taylor series at the time.

It is worthy of note that in 1891, Albert Abraham Michelson (1852-1931) developed an in-

terferometer, a device that merges two or more sources of light to create an interference pattern,

which can be measured and analyzed (Michelson, 1891). He conducted a series of experiments

and was able to calculate the autocovariance of the original signal and with a mechanical harmonic

analyzer, the Fourier transform of the visibility curve.

The discrepancy between the Bernoulli’s solution, the Fourier series, and Taylor series is

bridged by the z-transform, the fundamental theory of digital signal processing. The z-transform

(Ragazzini and Zadeh, 1952), expands an analytic function f (z) around the point z−1 = 0 as given

by equation (1.4).

f (z) =
∞

∑
n=0

anz−n (1.4)

For points on a unit circle the Taylor expansion for f (z) is:

f (z) = f (eiθ ) =
∞

∑
n=0

an(cosnθ − isinθ) (1.5)

which is the form of the complex Fourier series in the angle θ . The convergence of the Taylor

series on the unit circle is exactly the convergence of the Fourier series; hence the z-transform

reconciles the two theories (Robinson, 1967).
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Following the success of the Fourier series, its properties were further developed and conse-

quently, any expansion in terms of orthogonal functions is referred to as a Fourier series. Other

theories were developed. Charles Sturm (1803-1855) and Joseph Liouville (1809-1882) developed

the Sturm-Liouville theory of differential equations (Sturm, 1836; Liouville, 1838). The Sturm-

Liouville theory is the foundation of the spectral theory of differential equations; it reveals the

eigenfunctions of the Helmholtz equation (the time-independent form of the wave equation) as

sines and cosines corresponding to the Fourier series.

In an important breakthrough in quantum physics, Erwin Schrödinger (1887-1961), developed

the Schrödinger spectral theory of atoms in which he demonstrated the connection between vibra-

tions in atoms and the Sturm-Liouville theory (Schrödinger, 1926; Schrödinger, 1928). The theory

explained the discrete spectra observed by Bunsen and Kirchoff. An equivalent matrix mechanics

formulation was developed in 1925 by Werner Heisenberg (1907-1976) (Heisenberg, 1930). Quan-

tum mechanics represents the electron by a probability density function and successfully explained

the energy state and transition of electrons and the generation of photons.

The next stage in the development of spectral theory was the application of general operators in

Hilbert space. Following the work of Heisenberg and Schrödinger, quantum physics briefly faced

an abstract mathematical crisis because the quantum mechanics needed could not be adequately

formulated within the existing mathematical framework (Robinson, 1967). John von Neumann

established the spectral representation of the Hermitian operator and reformulated the eigenvalue

problem (the spectrum corresponds to different eigenvalues) into the spectral representation prob-

lem with the additional advantage that his solution could be extended to Hilbert space (Neuman,

1929). The Hilbert space (an infinitely dimensional space) was named after David Hilbert (1862-

1943). The development was mathematical in nature, but it laid the foundation for further advance-

ment.

In 1827, A botanist, Robert Brown (1773-1858) described a kinetic phenomenon known as

Brownian motion (Brown, 1827). He found that minute particles of solid matter when suspended

in pure water exhibit irregular zigzag movement. Marian von Smoluchoski (1872-1917) and Albert
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Einstein (1879-1955) developed the physical theory of Brownian motion (Einstein, 1906; Smolu-

chowski, 1914) while Norbert Wiener (1894-1964) developed its mathematical theory (Wiener,

1923). Their studies showed that the Fourier transform of a white noise process in time was a

white noise process in frequency.

In 1898, Sir Arthur Schuster (1851-1934) introduced the periodogram for spectrum analysis of

empirical time series (Schuster, 1898). Many empirical time series observed in nature, however,

did not yield periodograms with dominant peaks. George Udny Yule (1871-1951) introduced the

autoregressive spectrum estimation method which gives the power spectrum, amplitude, and phase

spectrum of a time series (Yule, 1927). Wiener in 1930 published "Generalized Harmonic Anal-

ysis" (Wiener, 1930). He obtained the precise relationship between the autocovariance function

and the power spectrum. He showed how to take the Fourier transform of a stationary random

process. Wiener’s spectral theories and von Neumann’s spectral theories find common ground in

the Hilbert space by the Cayley transform (Cayley, 1846). Wiener also contributed to the Weiner-

Levinson prediction theory for predicting the future value of a stationary discrete-time stochastic

process (Levinson, 1947; Wiener, 1949).

John Wilder Tukey (1915-2000) in a symposium paper in 1949 showed how to compute the

power spectra from empirical data and laid the statistical foundation for the analysis of a short-

time series. In 1951, Tukey’s spectra was computed for various sections of Mobil seismic records

by Enders Robinson (Robinson, 1967). A seismic analysis method based on Wiener’s prediction

theory was then successfully used in digital deconvolution for the first time. This success led to

the establishment of the MIT Geophysical Analysis Group with ties to the oil industry, in 1952.

From 1952 to 1957 the MIT Whirlwind digital computer (Figure 1.5) was used to analyze seismic

records. Tukey’s method for estimating coherence (sometimes called semblance) is vital in the

estimation of seismic velocity as in other multi-trace methods. In 1965, James William Cooley

(1926–2016) and Tukey published the Fast Fourier Transform (FFT; Cooley and Tukey, 1965).

Their paper described an algorithm for the discrete Fourier transform. The algorithm meant spec-

tral quantities could be computed an order of magnitude faster. The Fast Fourier Transform (FFT)
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is a fast algorithm for calculating the discrete Fourier transform. Evaluating the discrete Fourier

transform directly requires operations of order (N2), however, an FFT can compute the same re-

sults in operations of order (NlogN). The FFT function automatically places some restrictions

on the time series to be evaluated in order to generate a meaningful, accurate frequency response.

Because the FFT function uses a base 2 logarithm by definition, it requires that the range or length

of the time series to be evaluated contains a total number of data points precisely equal to a 2-to-

the-nth-power number (e.g., 512, 1024, 2048, etc.). The existence of the FFT meant that spectral

analysis could be performed rapidly.

Figure 1.5: Memory bank in the MIT Whirlwind computer (1953). Banks of magnetic-core as-
semblies replace electrostatic tube memory. The Whirlwind was the first computer used for digital
seismic analysis. Picture reproduced with the permission of The MITRE Corporation. Copyright
The MITRE Corporation. All Rights Reserved.
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In the late 1950s, transistors were introduced to replace bulky vacuum tubes in digital com-

puters; this led to a digital revolution. The Whirlwind computer, developed at MIT, was the first

real-time high-speed digital computer using random-access magnetic-core memory which replaced

electrostatic storage tubes. The success of this computer led to the United States Air Force’s Semi

Automatic Ground Environment (SAGE) system, which centralized the control of multiple radar

stations. On September 12, 1958, Jack Kilby (1923-2005) at Texas Instruments demonstrated the

first working example of a hybrid integrated circuit germanium chip; he submitted a patent appli-

cation of the device on February 6, 1959 (Kilby, 1964). Jack Kilby won the 2000 Nobel prize in

physics for his contribution to the invention (Alferov et al., 2000). The first monolithic integrated

circuit silicon chip was invented by Robert Noyce at Fairchild Semiconductor (Noyce, 1977). The

number of transistors per unit area in integrated circuits doubled every 2 years over several decades.

This is known as Moore’s Law, named after Gordon Moore (Moore, 1965; Moore, 1975). Intel

released the first microprocessor, the Intel P4004 microprocessor, in 1969. The development of

the microprocessor meant thousands of integrated circuits could be placed onto a single silicon

chip and a single chip could now contain all of the components of a computer. The invention of

the integrated circuit and microprocessor led to a universal digital revolution of epic proportions

including the development of home computers from the mid-1970s.

The seismic industry converted to digital technology in the early 1960s. Since then nearly every

seismic record in oil and gas exploration has been digitally processed. This led to the discovery of

giant oil fields including offshore discoveries like the North Sea, the Gulf of Mexico, the Persian

Gulf, and onshore discoveries in Alaska, Asia, Africa, South America, and the Middle East (which

would not otherwise have been found by analog methods); in 1951, it took a whole summer to

process 32 traces (Robinson, 1982). Today with improved microprocessors and new computing

developments like parallel processing, millions of traces can now be processed in a few seconds.

Several studies had considered the classical problem of estimating time series from limited

information about its autocovariance function. In 1967, John Parker Burg introduced the maximum

entropy spectral analysis method that obtained power spectrum from a measured autocovariance
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function using nonzero estimates at all lags (Burg, 1967). The method obtains an estimate of

the power spectrum by maximizing the spectral entropy with the known autocorrelation values as

constraints. It requires the computation of the minimum phase deconvolution operator or prediction

error filter. The power spectrum is then obtained as the square inverse of the Fourier transform of

the operator, which mathematically, is the inverse of a finite trigonometric series.

Following the work of Burg, other important developments occurred in spectral analysis. Itakura

and Saito (1968) introduced maximum likelihood in spectrum estimation. Parzen (1974) intro-

duced the Parzen window for spectral analysis. Parzen (1974) and Akaike (1969, 1974) further

developed autoregressive spectrum estimation and autoregressive order-determining criteria which

made possible the widespread application of autoregressive spectrum estimation in diverse fields

(Robinson, 1982).

1.3 Modern Spectral Analysis

In recent years, developments in spectral analysis have focused on addressing the non-stationary

nature of some time series. The short-time Fourier transform (STFT) where time-frequency res-

olution is fixed over the entire time-frequency space by preselecting a window length, initially

introduced by Gabor (1946) was discussed by Cohen (1995). The continuous wavelet transform

(CWT) which produces a time-scale map called a scalogram instead of a time-frequency spectrum

was discussed by Daubechies (1992). The scalogram was converted to a time-frequency map by

taking the scale to be inversely proportional to the center frequency of the wavelet by Hlawatsch

and Boudreaux-Bartels (1992). The S-transform was introduced by Stockwell et al. (1996). The

S-transform is an invertible time-frequency spectral localization technique that combines elements

of wavelet transforms and the STFT. Time-frequency is discussed in more detail in the second

chapter. Table (1.1) gives a summary of the major events in the timeline of spectral analysis.
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Table 1.1: Major Events in the Timeline of Spectral Theory

Year and Scientist Work

Circa 570 B.C.

Pythagoras of Samos (570-495 BC)

Development of the calendar and the clock; studied

the laws of musical harmony.

1704

Isaac Newton (1642-1727)

Empirical discovery of spectra using the glass prism

to split rays of the sun.

1715

Brook Taylor (1685-1731)

Introduced the concept of the analytical function.

Taylor series expanded an analytical function into an

infinite summation of component functions.

1738

Daniel Bernoulli (1700-1782)

Demonstrated that non analytic function can be

expressed as a sum of analytic functions.

1746

Jean le Rond d’Almbert (1717-1783)

1D Wave Equation.

1755

Leonhard Euler (1707-1783)

3D Wave Equation. Solved for coefficients of the

analytic functions that sum to create non analytical

functions.

1755

Joseph Louis Lagrange (1736-1813)

Solved for coefficients of the analytic functions that

sum to create non analytical functions.

1828

George Green (1793-1841)

Green’s function which exhibits impulse response

function of a linear system in terms of its spectrum.

1807

John Baptist Joseph de Fourier

(1768-1830)

Proposed the Fourier series: any arbitrary function

defined over a finite interval by a rough and even

discontinuous graph could be represented as an

infinite summation of sines and cosines.

continued on the next page
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Table 1.1: Major Events in the Timeline of Spectral Theory (continued)

Year and Scientist Work

1830

Charles Sturm (1803-1855)

Joseph Liouville (1809-1882)

Spectral theory of differential equations: vibration of

infinitely long right circular cylinder can be described

as second order differential equation.

1859

Robert Wilhelm Bunsen (1811-1899)

Gustav Robert Kirchoff (1824-1887)

Repeated Newton’s experiment using a burning rag as

a light source. The spectrum exhibited narrow lines,

one bright yellow corresponding to sodium.

1896

John Willian Strutt (1842-1919)

Applications of the expansion of functions in terms of

orthogonal functions.

1926

Erwin Schroedinger (1887-1961)

Showed vibrations occurring within atoms can

understood by means of the Sturm-Liouville theory.

1929

Von Neumann (1903-1957)

Reformulated the Eigen value problem as the spectral

representation problem and extended it to Hilbert

space (an infinitely dimensional space named after

David Hilbert (1862-1943).

1946

Dennis Gabor (1900-1949)

Development of the Short Time Fourier Transform.

1947

John Ralph Ragazzini (1912-1988)

Lotfi Aliasker Zadeh (1921-2017)

Z-transform: bridges the gap between Taylor series

and Fourier series.

1950

Jack Kilby (1923-2005)

Development of the transistor and integrated circuits.

1951

Enders Robinson

First ever digital analysis of a seismic record on the

MIT Whirlwind computer.

continued on the next page
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Table 1.1: Major Events in the Timeline of Spectral Theory (continued)

Year and Scientist Work

1969

Intel Corporation

Development of the microprocessor.

1965

John Wilder Tukey (1915-2000)

James William Cooley (1926-2016)

Discovery of Fast Fourier Transform, Radix-2 FFT

program.

1992

Ingrid Daubechies

Development of the Continuous Wavelet Transform.

1996

Robert Glenn Stockwell

Development of the S-transform.
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2. CONVENTIONAL SPECTRAL DECOMPOSITION AND INTEGRAL GEOMETRY

TRANSFORMS

2.1 Seismic Interpretation and Spectral Decomposition

The goal of seismic interpretation is to retrieve all subsurface information from the seismic vol-

ume. It aims to establish the subsurface rock properties, discover the depositional history, delineate

structure and fault networks, establish a stratigraphic framework and identify reservoirs and other

features of interest. Seismic waves probe the Earth’s internal structure and the energy reflected

from subsurface layers gives insight into the subsurface rock properties. Consider a source and a

receiver at the same location above a layered Earth model where the layers had different velocities,

seismic waves propagating downward will be reflected back to the surface at each interface and

recorded by the receiver at specific arrival times as a series of peaks. By repeating this at different

closely spaced points along the surface and plotting the peaks as a function of time and distance an

image of the subsurface interfaces is produced. This type of seismic image is called a zero-offset

section (no source-receiver offset). In reality, the data are recorded at a variety of source-receiver

offsets, but the data are processed and combined in a way that removes the offset dependence. This

ensures the lateral variability in reflector depth can be properly imaged.

Seismic amplitudes are generated from the interaction of band-limited signals with the local

distribution of impedance contrasts. Conventional seismic interpretation relies wholly on the dif-

ference in full-bandwidth amplitudes for the interpretation of continuous structures and signals of

interest; in doing so, it disregards the narrow band information that is available. The interaction

of band-limited signals with local impedance contrasts makes geological features tune in at some

frequencies and tune out at other frequencies (Brown, 2011). Spectral decomposition is therefore

necessary and effective because it reveals the frequencies at which geological features stand out. It

provides greater resolution and detection of layer heterogeneity, layer terminations, and thickness

variability than are possible with traditional seismic interpretation.
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Spectral analysis was applied in steam-based recovery of bitumen at Cold Lake, Alberta,

Canada by Dilay and Eastwood (1995). Peyton et al. (1998) studied an incised valley system

by applying spectral decomposition and coherency on 3D seismic data. Spectral decomposition

(SD) was used as a seismic interpretation tool by Partyka (1999). The study introduced the use of

spectral decomposition in estimating layer thickness. He related the frequency of occurrence of

notched spectra to the thickness of certain layers and concluded that the notched spectral could be

sometimes be used to infer layer thickness and geological discontinuities. Gabor (1946) introduced

the Short Time Fourier Transform (STFT). The STFT, time-frequency resolution is fixed using

pre-selected window length. The continuous wavelet transform (CWT) produces a time-scale map

called a scalogram (Daubechies, 1992). The scale can be converted to frequency by taking scale as

inversely proportional to the center frequency of the wavelet (Hlawatsch and Boudreaux-Bartels,

1992). Stockwell et al. (1996) introduced an invertible time-frequency spectral localization tech-

nique called the S-transform as a tool for optimal time-frequency analysis of geophysical signals.

There are numerous geological applications of spectral decomposition. Instantaneous spec-

tral analysis (ISA) was used by Castagna et al. (2003) and Castagna and Sun (2006) in detecting

hydrocarbons. They indicated that low-frequency shadows were more apparent in spectrally de-

composed data than in seismic sections. Deng et al. (2007) used spectral decomposition techniques

to stack seismic sections from a deepwater reservoir. The study showed that gas-associated spectral

anomalies occur at both low and high-frequency iso-frequency sections. Reine et al. (2009) used

spectral decomposition techniques in measuring seismic attenuation. The study compared several

time-frequency transforms and showed that the choice of a fixed or variable window affects the

robustness and accuracy of the resulting attenuation measurements. Zhang et al. (2009) propose

using multiple spectral components to delineate architectural elements that fall at or below seismic

resolution and address depositional patterns. They showed that the peak frequency and mean fre-

quency are stratigraphically sensitive attributes that can characterize vertical changes in sequence

packages. Liu et al. (2011) proposed a new method for seismic noise attenuation measurement by

applying non-stationary polynomial fitting. They showed that compared with conventional meth-
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ods the proposed method can efficiently suppress seismic noise and improve the signal-to-noise

ratio. Cichostȩpski et al. (2019) demonstrated that spectral decomposition can be used for the

verification of bright spots in the presence of thin beds. Spectral decomposition is routinely used

in identifying channels in seismic data (Gridley and Partyka, 1997; Xiao et al., 2008; Verma et al.,

2009; Li et al., 2010; Yoon and Farfour, 2012).

Conventional seismic interpretation is also typically carried out by studying patterns across

multiple traces. By studying the overall shape or pattern from multiple traces in vertical or hori-

zontal slices, characteristic shapes and patterns may emerge and be interpreted as a feature of geo-

logical significance (Broussard, 1975). For example, Broussard (1975) and Klein (1985) have pro-

vided depositional models for interpreting observed depositional features. Mitchum et al. (1977)

studied seismic sequences, reflector termination patterns, and characteristic seismic facies which

correspond to varied depositional environments. The observed patterns span multiple traces and

are used for geological interpretation. The goal of this work is to employ multi-trace interpretation

techniques in improving spectral decomposition results.

2.2 Conventional Spectral Decomposition Methods

Fourier analysis decomposes signals into terms of sines and cosine at predetermined frequen-

cies. It can also be viewed as a projection of infinite sinusoidal bases on the signal i.e. it changes

the delta bases function of the signal in the time domain to infinite sinusoidal bases in the frequency

domain.

The Fourier transform S( f ) of a signal d(t) is given as:

S( f ) =
∫

∞

−∞

d(t)e−i2π f tdt (2.1)

The inverse Fourier transform is:

d(t) =
∫

∞

−∞

S( f )ei2π f td f (2.2)
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where t is time, f is frequency, s(t) is the continuous time signal, and S( f ) is the continuous

complex spectrum.

2.2.1 Short Time Fourier Transform

The Short Time Fourier transform (STFT) derived by Gabor (1946) adds time dependence to

the Fourier transform by windowing the signal and then performing the Fourier transform on the

windowed data to obtain localized frequency information. The resulting time-frequency map is

called a spectrogram (Cohen, 1995). The STFT is given by the inner product of the signal d(t)

with a time-shifted window function ω(t) The STFT is given as:

S(τ, f ) =
∫

∞

−∞

d(t)ω(t− τ)e−i2π f tdt (2.3)

(Gabor, 1946)

The inverse STFT is:

d(t) =
∫

∞

−∞

∫
∞

−∞

S(τ, f )ei2π f tdτd f (2.4)

2.2.2 Continuous Wavelet Transform

The continuous wavelet transform (CWT) is defined as the sum over all time of the signal d(t)

multiplied by a scaled and shifted version of the analyzing wavelet function. Mathematically, it

is defined as the inner product of a family of wavelets with signal s(t). The CWT is defined by

Cohen (1995) as;

S(a,b) =
∫

∞

−∞

d(t)
1√
|a|

W
(

t−b
a

)
dt (2.5)

where a is called the dilation parameter or scale and b is called the translation parameter. The

main purpose of using the mother wavelet is to provide a source function to generate the daughter

wavelets which are simply the translated and scaled versions of the mother wavelet (Mia and Moon,

1994). The wavelet is localized in both time and frequency.
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The inverse CWT is:

d(t) =
1

cW

∫
∞

0

∫
∞

−∞

S(a,b)
1√
a

W (
t−b

a
)db

da
a2 (2.6)

where

cW =
∫

∞

0

|W (ω)|2

ω
dω < ∞

CWT is represented as a time scale plot, where scale is the inverse of frequency. At a low scale

(high frequency), CWT offers high time resolution and at higher scales (lower frequencies) CWT

gives high-frequency resolution.

2.2.3 S-transform

The S-transform (ST) can be viewed as a hybrid of short-time Fourier analysis and wavelet

analysis or an extension to the Gabor and Wavelet transforms (Stockwell et al., 1996) and is based

on a moving and scalable localizing gaussian window. It is defined as:

S(τ, f ) =
∫

∞

−∞

d(t)W (τ− t,σ( f ))e−i2π f tdt (2.7)

where t is time, f is frequency, τ is a parameter that controls the position of the Gaussian

window along the time axis and
∫

∞

−∞
W (τ− t,σ( f ))dt = 1

W (τ,σ( f )) is the Gaussian window defined as:

W (τ,σ( f )) =
1√

2πσ( f )
e

(
− τ2

2σ2( f )

)

and

σ( f ) =
1
f
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The inverse S-Transform is defined as:

d(t) =
∫

∞

−∞

[∫
∞

−∞

S(τ, f )dτ

]
ei2π f td f (2.8)

Figure 2.1: Comparison of STFT, CWT, and S-transform for a single simple synthetic chirp with
increasing frequency from 5 Hz to 40 Hz.
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Figure 2.2: Comparison of STFT, CWT, and S-transform for a single simple synthetic trace.

Figures 2.1 and 2.2 compare the performance of the STFT, CWT, and S-transform for a syn-

thetic chirp and a simple synthetic trace with two peaks. In Figure 2.1 both the ST and CWT image

widths change as the frequency changes. The ST image is better resolved (narrower) than that of

the CWT at low frequencies. Figure 2.2 illustrates the resolution limitations of all three meth-

ods. Figure 2.3 demonstrates the forward and inverse S-transform and Figure 2.4 shows single
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frequency panels obtained from the S-transform. The S-transform performs better than the STFT

and CWT at low frequencies. The S-transform and STFT are both derived from the Fourier trans-

form of the time series multiplied by a time-shift window (Stockwell, 1996). Unlike the STFT, the

standard deviation σ( f ) in the S-transform is a function of frequency making the window func-

tion a function of time and frequency. The frequency controls the window width, hence at low

frequencies, the window is wide in the time domain and well localized in the frequency domain

(Stockwell, 2007).

In both S-transform and CWT, the window size changes with both time and frequency, how-

ever, the shapes of the real and imaginary parts of the S-transform wavelet change when the Gaus-

sian window translates in time while the shape of wavelet of CWT is consistent. Consequently, the

S-transform combines progressive resolution with absolutely referenced phase information (Stock-

well, 2007), hence it could estimate the local amplitude spectrum and the local phase spectrum.

The S-transform window is divided into two parts, the slowly varying envelope, the Gaussian func-

tion which localizes in time, and the oscillatory exponential kernel e−2π f t which selects the fre-

quency being localized. The time localizing Gaussian envelope is translated while the oscillatory

exponential kernel, which is provided by the complex Fourier sinusoid, is stationary (Pinnegar and

Mansinha, 2003). As a result, the shapes of the real and imaginary parts of the S-transform wavelet

change when the Gaussian window translates in time (Pinnegar and Mansinha, 2003). Thus the

S-transform independently localizes the phase spectrum as well as the amplitude spectrum. The

S-transform is also sampled at the discrete Fourier transform frequencies (Stockwell, 2007). The

S-transform, therefore, performs better than the STFT and the CWT however its resolution may

still be inadequate for certain interpretation purposes as shown in Figure 2.2; the S-transform is

unable to completely resolve the two peaks in time.

The generalized S-transform which permits greater control on the window behavior was intro-

duced by McFadden et al. (1999) and Pinnegar and Mansinha (2003) by replacing the Gaussian in

the S-transform with a generic window. The generalized S-transform is given by:
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Figure 2.3: Demonstration of the forward and inverse S-transform for three seismic events, one
with a parabolic moveout and two with linear moveouts. a) Original data. b) Time-frequency-
space volume generated by applying the S-transform. c) Reconstructed data from the inverse
S-transform. d) to f) show Traces and sections extracted from a), b) and c).
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Figure 2.4: Single frequency sections extracted from the ST time-frequency-offset volume for
seismic data given in Figure 2.3.

27



S (τ, f , p) =
∫

∞

−∞

d(t)w(τ− t, p)e−2πi f tdt (2.9)

where w is the window function of the generalized S-transform and p is the set of parameters that

determine the shape of the window function.

The window satisfies the condition:
∫

∞

−∞
w(τ− t, f ,β )dτ = 1

2.3 Integral Geometry and the Radon Transform

Integral geometry focuses on the numerical characteristics or measures for sets of points, lines,

planes, and other geometrical objects, computed with the aid of integration. The measures must

meet the requirements of additivity and invariance to motion. This branch of mathematics was

developed to address problems related to geometric probabilities (defined as the ratio of the mea-

sure of the set of favorable cases to the measure of the set of all possible cases). The problem is

addressed using integral transforms such as the Radon transform and its generalizations . The first

and most famous example of this is Buffon’s needle problem (Buffon, 1777). The problem seeks

to find the probability that a needle of a given length will land on a line, given a floor with equally

spaced parallel lines (Buffon, 1777). Applying the Radon transform on the Buffon’s needle images

at different line densities and calculating the variance for different angles, shows a clear marker for

symmetry breaking and loss of randomness (Hart, 2019).

The Radon transform is a natural measure that is invariant to translation, rotation, and scale

changes. It maps data to the new domain, where some of its properties can be more easily derived,

by integration over hyperplanes (summing elements of the data along selected trajectories). The

Radon transform was established in 1917 by Johan Radon (1887-1956) (Radon, 1917). It is a

mathematical technique that has been widely used in seismic data processing and image analysis.

Deans (1983) and Durrani and Bisset (1984) examined the mathematical theory and fundamental

properties of the Radon transform. Many studies have used the Radon transform for multiple

attenuation (Hampson, 1986; Bradshaw and Ng, 1987; Kelamis et al.,1990; Kostov, 1990; Foster

and Mosher, 1992; Hugonnet and Canadas, 1995; Sacchi and Ulrych, 1995; Cary, 1999; Sacchi
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and Porsani, 1999; Trad, 2001; Oppert, 2002).

Three types of Radon transforms have been used in seismic data processing: the slant-stack or

τ− p transform; the parabolic Radon transform and the hyperbolic Radon transform (Trad,2001).

The generalized Radon transform is defined for seismic data as:

M(τ,q) =
∫

∞

−∞

d(t = τ +qφ(q,x),x)dx

where M(τ,q) is the Radon transform; d(x, t) is a seismic section, x is offset, φ(x) is the

curvature for which the transform is defined; q is slope of the curvature; t is two-way travel time

and τ is intercept two-way time. The inverse Radon transform is given by Beylkin (1987) and

Yilmaz (2001) as:

d(t,x) =
∫

∞

−∞

ρ(τ)∗M(q,τ = t−φ(q,x))dq

where ∗ is the convolution of φ(q,x) with the rho filter ρ(τ). Yilmaz (2001) states that for 2-D

data, the rho filter has a Fourier transform of the form
√

(ω)exp(iπ/4), where ω is the temporal

frequency (Yilmaz, 2001).

There are many versions, variations, and generalizations of the Radon transform as well as

varied nomenclature used to describe different types of Radon transforms. In this study, I focus

on the properties of the linear Radon transform or slant stack transform and the parabolic Radon

transform.

2.3.1 Slant Stack Transform

The linear Radon transform is also called the slant-tack transform or the τ−P transform. Given

a 2D section of seismic data, it is defined by summing data in the time-offset domain along a linear

path:

M(τ, p) =
∫

∞

−∞

d(t = τ + px,x)dx
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The discrete version of the slant stack transform is:

M(τ, p) = ∑
x

d(t = τ + px,x)

where M(τ, p) is the slant stack transform; d(x, t) is a common seismic gather; τ is two-way

intercept time, t is two way travel time; x is offset; p is the ray parameter.

A seismic signal with a linear moveout in the time-offset domain can be mapped to a point with

the slant-stack transform (Treitel et al., 1982).

2.3.2 Parabolic Radon Transform

A parabolic Radon transform can be built by summing the data along the stacking paths defined

by the equation t = τ + qx2 (Hampson, 1986). An exact parabolic curve in the CMP domain can

theoretically be mapped to a focused point in the parabolic Radon transform.

M(τ,q) =
∫

∞

−∞

d(t = τ +qx2,x)dx

M(τ,q) = ∑
x

d(t = τ +qx2,x)

where d(x, t) is a 2D seismic section; x is offset; τ is two way intercept time, t is two way travel

time; q is the curvature of the parabola.
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Figure 2.5: Demonstration of the forward and inverse linear Radon transforms for three seismic
events, one with a parabolic moveout and two with linear moveouts.
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Figure 2.6: Demonstration of the forward and inverse parabolic Radon transforms for three seismic
events, one with a parabolic moveout and two with linear moveouts.
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Figures 2.5 and 2.6 illustrate the forward and inverse linear and parabolic Radon transforms

respectively for two events, one with a parabolic moveout and one with a line moveout. In the

slowness domain, the three seismic events are well separated. The linear event sums to a point

while the amplitude of the parabolic event is spread over a curve. In the curvature domain, three

events are also separated. The parabolic event is spread over a limited curvature range while the

amplitudes of the linear events are also spread out around curvature values close to zero.
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3. THE AUXILIARY S-TRANSFORM

3.1 Introduction

Conventional time-frequency analysis is applied to seismic data on a trace by trace basis. While

this approach is useful, it doesn’t make use of all available information since subsurface rocks are

three-dimensional. The goal here is to develop a method that utilizes multi-trace coherency infor-

mation and the separation of seismic events in the slowness or curvature domain in carrying out

spectral decomposition and in improving the resolution of spectrally decomposed data. Multi-trace

seismic processing techniques include integral transforms, commonly applied in the seismic data

processing stage of seismic analysis such as the slant-stack transform or linear Radon transform

and the parabolic Radon transform. These methods are generalizations of velocity filtering tech-

niques for determining wave arrival slowness. Slant stacking can be considered as a directional

beam-forming technique (Chapman, 1981); it can also be considered as a plane wave decomposi-

tion technique (Yilmaz, 2001). Slant stacking replaces the offset with the ray parameter p, which

is the inverse of the horizontal phase velocity. It is typically carried out in shot-gather coordinates;

seismic processing, however, is carried out in common mid-point coordinates. Each trace in a shot

gather represents a plane wave that propagates at a certain angle from the vertical. As long as there

is no dip, the travel times in a common-shot and a common-midpoint gather are indistinguishable;

however a CMP gather is not from a single wavefield (Yilmaz, 2001). The technique however has

also been applied in mid-point coordinates (Taner, 1977).

For post-stack migrated data in the CMP domain, velocity corrections have already been ap-

plied, hence at the depth location of the amplitudes of reflectors that line up in these coordinates,

the seismic wave had similar ray parameters just before arriving at the interface. The slant stack

procedure thus decomposes the data into traces with the same ray parameter p. I use the term

ray parameter in the mathematical sense, i.e., it is the invariant in Snell’s law and the time/offset-

slope of the data; however, the ray parameter concept does not represent ray paths or wavefronts in
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CMP coordinates (Ottolini and Claerbout, 1984). For practical purposes, the Radon transform is

essentially a summation of amplitudes along a trajectory which represents the inverse of apparent

velocity. Thus, applying this procedure to post-stack migrated data serves the purpose of repre-

senting the data in a domain where events are better separated and more coherent. For example,

reflectors that form a straight line will sum up to separated points in the time-slowness domain.

The amplitude in this domain is directly proportional to the coherency of the signal. The procedure

emphasizes the energy associated with the events that follow linear trajectories in the CMP gather.

The Auxiliary S-transform integrates the Radon transform into the spectral decomposition pro-

cess. The Auxiliary S-transform using the linear Radon transform is defined for a seismic section

d(x, t), where x is trace number and t is time as follows:

A(η , f , p) =
∞∫
−∞

∞∫
−∞

d(x, t = τ + px)
| f |√
2π

w(η− τ, f )e−i2π f τdxdτ (3.1)

where τ is intercept time, η is a parameter that controls the position on the time axis, p is

slowness and w(η , f ) is the Gaussian window defined as:

w(η , f ) =
1√

2πσ( f )
e
− η2

2σ2( f ) (3.2)

with the constraint that:
∫

∞

−∞
w(η− τ, f )dτ = 1

The inverse of the Auxiliary S-transform is defined as:

d(x, t) =
∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

[ρ(τ)∗A(η , f , p)]ei2π f τdηd f d p (3.3)

where ρ(τ) is the rho filter given as ρ(τ) = |wo|
2π

= | fo| (Yilmaz, 2001).

A percentile coherency filter can be applied in the time-frequency-slowness domain, in this

case, the inverse is given as:

dFilter(x, t) =
∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

[ρ(τ)∗A(η , f , p)]F(η , p)ei2π f τdηd f d p (3.4)
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where ρ(τ) is the rho filter and F(η , p) is a percentile coherency filter defined as:

F(η , p) =


1, if |m(p,η)| ≥ |m(p,η)|percentile

0, otherwise
(3.5)

and

m(p,η) =
∫

∞

−∞

d(x,τ + px)dx (3.6)

m(p,η) is the linear Radon transform or slant-stack transform (Thorson and Claerbout, 1985)

which is obtained by summing the seismic section along the linear trajectory (η = τ + px).

3.2 Methodology

The Auxiliary S-transform is applied using the following steps:

1. The Radon transform is applied to a seismic section and the data is transformed to the time-

slowness domain.

2. Equation 3.1 is applied to the section to produce a time-frequency-slowness volume.

3. A percentile coherency filter can be derived using the absolute value of the amplitudes in

the new domain. Amplitudes below a certain selected threshold are muted. The percentile

coherency filter can be applied to preserve the most coherent amplitudes and increase the

separation of seismic events in the new domain.

4. Equation 3.3 is applied to the time-frequency-slowness volume to reconstruct the original

data.

5. The inverse Radon transform can be applied to the time-frequency-slowness volume to map

the data back into the time-frequency-offset domain for comparison with other methods and

visualization. A 2D section is picked up based on a specific frequency. The horizontal axis

of the 2D section represents trace location and the vertical represents time.

Figure 3.1 is a schematic illustrating the methodology of the Auxiliary S-Transform.
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Figure 3.1: Methodology of the Auxiliary S-Transform

Figure 3.2 demonstrates the forward and inverse Auxiliary S-transform. Equation 3.1 is ap-

plied to a synthetic section with three events, one with a parabolic moveout and two with lin-

ear moveouts. The time-frequency-slowness volume generated is shown in Figure 3.2c. The in-

verse S-transform is applied to the time-frequency-slowness volume to map the data back into the

intercept-time-slowness (τ − p) domain, (Figure 3.2d). The linear Radon transform is then ap-

plied to transform the data back into the time-offset domain. The reconstructed data is shown in

Figure 3.2e. In practice, it is useful to transform time-frequency-slowness volume into the time-

frequency-offset domain. This is done by applying the linear Radon transform directly to the

time-frequency-slowness volume (Figure 3.1c) for all frequencies. This is illustrated in Figure 3.3.

Figure 3.3a shows the original data while Figure 3.3b shows the linear Radon transform of the data.

The ST is applied to the data and LRT where the data is better separated. Figures 3.3c to h show

single frequency panels at 20 Hz, 40 Hz, and 60 Hz for the ST and the AST (in Tau-p coordinates).

The events are better separated in the AST panels. Figure 3.4 illustrates AST results mapped to
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Figure 3.2: Demonstration of the forward and inverse Auxiliary S-transform (AST) for three seis-
mic events, one with a parabolic moveout and two with linear moveouts. a) Original data. b) The
linear Radon transform. c) The AST time-frequency-slowness volume. d) The AST inverted to the
tau-p domain. e) The AST inverted to the time-offset domain to obtain the reconstructed data. f)
The residual is obtained by subtracting the reconstructed data from the original data.

the time-offsets domain and compared to the ST. The temporal resolution of the AST is improved

compared to the ST. Figures 3.4e and f show zoomed-in sections of the 60 Hz panel at Trace 71

for the ST and AST respectively and illustrate the improved temporal resolution of the AST.
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Figure 3.3: Separation of events on single frequency panels for the ST and the AST, for the three
seismic events in Figure 3.1. a) The original data b) The linear Radon transform. c), e), and g)
show the ST at 20Hz, 40Hz, and 60Hz respectively. d), f), and h) show the AST at 20 Hz, 40 Hz
and 60 Hz respectively. Events at better separated in slowness coordinates.
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Figure 3.4: Comparison of single frequency panels of the ST and AST in time-offset coordinates
inverted from the LRT. e) and f) show improved temporal resolution of the AST for a single trace.
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3.3 Derivation of the Auxiliary S-transform

Given seismic section d(x, t). The linear Radon transform is given as:

m(p,τ) =
∫

∞

−∞

d(x,τ + px)dx (3.7)

Apply the s-transform to the individual traces in the τ− p domain:

A( f ,η , p) =
∫

∞

−∞

m(p,τ)
| f |√
2π

W (η− τ)e−2πi f τdτ (3.8)

A( f ,η , p) =
∫

∞

−∞

m(p,τ)
| f |√
2π

e
−(η−τ)2 f 2

2 e−2πi f τdτ (3.9)

Average over all η :

∫
∞

−∞

A( f ,η , p)dη =
∫

∞

−∞

∫
∞

−∞

m(p,τ)
| f |√
2π

e
−(η−τ)2 f 2

2 e−2πi f τdτdη (3.10)

∫
∞

−∞

A( f ,η , p)dη =
∫

∞

−∞

m(p,τ)e−2πi f τdτ

∫
∞

−∞

| f |√
2π

e

(
−(η−τ)2 f 2

2

)
dη (3.11)

I first solve for the second integral:

∫
∞

−∞

| f |√
2π

e
−(η−τ)2 f 2

2 dη (3.12)

A curve translation doesn’t change the shape under the curve, hence:

∫
∞

−∞

e
−(η−τ)2 f 2

2 dη =
∫

∞

−∞

e
−η2 f 2

2 dη (3.13)

By using the integral principle of the Gaussian:

∫
∞

−∞

e−
x2
m dx =

√
πm (3.14)
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By applying equations 3.13 and 3.14 to equation 3.11 we obtain:

| f |√
2π
×
√

2π

| f |
= 1 (3.15)

Equation 3.11 then becomes:

∫
∞

−∞

A( f ,η , p)dη =
∫

∞

−∞

m(p,τ)e−2πi f τdτ = M(p, f ) (3.16)

Which is the Fourier transform M(p, f ) of m(p,τ).

Hence the m(p, t) can be retrieved from the AST as:

M(p,τ) =
∫

∞

−∞

[∫
∞

−∞

A( f ,η , p)dη

]
ei2π f τd f (3.17)

The data can be retrieved from m(p, t) as:

d(x, t) =
∫

∞

−∞

| fo|M(p,τ = t− px)d p (3.18)

which is the inverse of the AST (substitute (3.17) in (3.18)):

d(x, t) =
∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

A( f ,η , p)| fo|ei2π f τdηd f d p (3.19)

To prove equation (3.18): Recall the following three relations:

m(p,τ) =
∫

∞

−∞

d(x,τ + px)dx (3.20)

M(p, f ) =
∫

∞

−∞

m(p,τ)e−2πi f τdτ (3.21)

D(x, f ) =
∫

∞

−∞

d(x, t)e−2πi f tdt (3.22)
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Equation 3.20 can be written in the frequency domain using the shift theorem as:

M(p, f ) =
∫

∞

−∞

D(x, f )ei2π f pxdx (3.23)

The standard back projection is:

D′(x, f ) =
∫

∞

−∞

M(p, f )e−i2π f pxd p (3.24)

Substitute equation (3.23).

D′(x, f ) =
∫

∞

−∞

∫
∞

−∞

D(x′, f )e−i2π f p(x′−x)dx′d p (3.25)

D′(x, f ) =
∫

∞

−∞

dx′D(x′, f )
∫

∞

−∞

e−i2π f p(x−x′)d p (3.26)

If the p has an infinite range (−∞,∞) we can define the function ρ(x, f ) as follows:

ρ(x, f ) =
∫

∞

−∞

e−i2π f pxd p (3.27)

Then:

D′(x, f ) =
∫

∞

−∞

D(x′, f )ρ(x− x′, f )dx′ (3.28)

D′(x, f ) = D(x, f )∗ρ(x, f ) (3.29)

Define

p′=−2π fo p (3.30)

Then:

ρ(x, f ) =
∫

∞

−∞

1
|2π fo|

eixp′d p′=
2π

|2π fo|
δ (x) (3.31)
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D′(x, f ) =
2π

|2π fo|
D(x, f )∗δ (x) (3.32)

D′(x, f ) =
1
| fo|

D(x, f ) (3.33)

D(x, f ) = | fo|D′(x, f ) (3.34)

Substitute equation (3.24)

D(x, f ) = | fo|
∫

∞

−∞

M(p, f )e−i2π f pxd p (3.35)

which is the time domain is:

d(x, t) =
∫

∞

−∞

| fo|m(p,τ = t− px)d p (3.36)

Note that in the case that p is of a limited range (p1, p2) equation (3.27) becomes:

ρ(x, f ) =
∫ p2

p1

e−i2π f pxd p =


e−i2π f p1x− e−i2π f p2x

i2π f x
, if f x 6= 0

p2− p1, if f x = 0

(3.37)
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3.4 Auxiliary S-transform with parabolic trajectory summation

In the above derivation, the multi-trace coherency information is retrieved by summing the data

along linear trajectories. It is possible to sum the data along a curved trajectory such as a parabolic

trajectory. The Auxiliary S-transform with a parabolic summation trajectory is outlined below.

Given a seismic section d(x, t), where x is trace number and t is time, it is defined as:

A( f ,η ,q) =
∫

∞

−∞

∫
∞

−∞

d(x, t = τ +qx2)
| f |√
2π

w(η− τ, f )e−i2π f τdxdτ (3.38)

where τ is intercept time, η is a parameter that controls the position on the time axis, q is the

curvature and w(η , f ) is the Gaussian window defined as:

w(η , f ) =
1√

2πσ( f )
e
− η2

2σ2( f ) (3.39)

with the constraint that:
∫

∞

−∞
w(η− τ, f )dτ = 1

The inverse of is defined as:

d(x, t) =
∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

A( f ,η ,q)

√
2π

fokq
ei2π f τdηd f dq (3.40)

kq is a variable that corresponds to variable to the curvature q. A percentile coherency filter can be

applied in the time-frequency-curvature domain, in this case, the inverse is given as:

dFilter(x, t) =
∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

A( f ,η ,q)

√
2π

fokq
F(η ,q)ei2π f τdηd f dq (3.41)

F(η ,q) is a percentile coherency filter defined as:

F(η ,q) =


1, if |m(q,η)| ≥ |m(q,η)|percentile

0, otherwise
(3.42)
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and

m(q,η) =
∫

∞

−∞

d(x,τ +qx2)dx (3.43)

m(q,η) is the parabolic Radon transform.

Figure 3.5 demonstrates the forward and inverse Auxiliary S-transform with parabolic summa-

tion trajectory. Equation 3.38 is applied to a synthetic section with three events, one with a linear

moveout and two with parabolic moveouts. The time-frequency-slowness volume generated is

shown in Figure 3.5c. The inverse S-transform is applied to the time-frequency-slowness volume

to map the data back into the intercept-time-curvature (τ−q) domain, (Figure 3.5d). The parabolic

Radon transform is then applied to transform the data back into the time-offset domain. The re-

constructed data is shown in Figure 3.5e. In practice, it is useful to transform time-frequency-

curvature volume into the time-frequency-offset domain. This is done by applying the parabolic

Radon transform directly to the time-frequency-curvature volume (Figure 3.5c) for all frequencies.

This is illustrated in Figure 3.6. Figure 3.6a shows the original data while Figure 3.6(b) shows the

parabolic Radon transform (PRT) of the data. The ST is applied to the data and PRT where the data

is better separated. Figure 3.6c to h show single frequencies panels at 20 Hz, 30 Hz, and 50 Hz

for the ST and the AST (in Tau-q coordinates). The events are better separated in the AST panels.

Figure 3.7 illustrates AST results mapped to the time-offsets domain and compared to the ST. The

temporal resolution of the AST is improved. Figures 3.7e and f show zoomed in sections of the

50 Hz panel at Trace 69 for the ST and AST respectively, and illustrate the improved temporal

resolution of the AST.
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Figure 3.5: Demonstration of the forward and inverse AST for events with linear and parabolic
moveouts. a) Original data. b) The parabolic Radon transform. c) The AST time-frequency-
curvature volume d) The AST inverted to the Tau-p domain. e) The AST inverted to the time-offset
domain to obtain the reconstructed data. f) The residual is obtained by subtracting the reconstructed
data from the original data.
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Figure 3.6: Separation of events on single frequency panels for the ST and the AST, for the three
seismic events in Figure 3.1. a) The original data b) The parabolic Radon transform. c), e) and g)
show the ST at 20Hz,40Hz and 60Hz respectively. d), f) and h) show the AST at 20 Hz, 40 Hz,
and 60 Hz respectively. Events at better separated in curvature coordinates.
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Figure 3.7: Comparison of single frequency panels of the ST and AST in time-offset coordinates
inverted from the PRT. e) and f) show improved temporal resolution of the AST for a single trace.
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3.4.1 Derivation of the Auxiliary S-transform with parabolic trajectory summation

Given seismic section d(x, t). The linear Radon transform is given as:

m(q,τ) =
∫

∞

−∞

d(x,τ +qx2)dx (3.44)

Apply the s-transform to the individual traces in the τ− p domain:

A( f ,η ,q) =
∫

∞

−∞

m(q,τ)
| f |√
2π

W (η− τ)e−2πi f τdτ (3.45)

A( f ,η ,q) =
∫

∞

−∞

m(q,τ)
| f |√
2π

e
−(η−τ)2 f 2

2 e−2πi f τdτ (3.46)

Average over all η :

∫
∞

−∞

A( f ,η ,q)dη =
∫

∞

−∞

∫
∞

−∞

m(q,τ)
| f |√
2π

e
−(η−τ)2 f 2

2 e−2πi f τdτdη (3.47)

∫
∞

−∞

A( f ,η ,q)dη =
∫

∞

−∞

m(p,τ)e−2πi f τdτ

∫
∞

−∞

| f |√
2π

e

(
−(η−τ)2 f 2

2

)
dη (3.48)

I first solve for the second integral:

∫
∞

−∞

| f |√
2π

e
−(η−τ)2 f 2

2 dη (3.49)

A curve translation doesn’t change the shape under the curve, hence:

∫
∞

−∞

e
−(η−τ)2 f 2

2 dη =
∫

∞

−∞

e
−η2 f 2

2 dη (3.50)

By using the integral principle of the Gaussian:

∫
∞

−∞

e−
x2
m dx =

√
πm (3.51)
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By applying equations 3.50 and 3.51 to equation 3.48 I obtain:

| f |√
2π
×
√

2π

| f |
= 1 (3.52)

Equation 3.48 then becomes:

∫
∞

−∞

A( f ,η ,q)dη =
∫

∞

−∞

m(q,τ)e−2πi f τdτ = M(q, f ) (3.53)

Which is the Fourier transform M(q, f ) of m(q,τ).

Hence the m(p, t) can be retrieved from the AST as:

m(q,τ) =
∫

∞

−∞

[∫
∞

−∞

A( f ,η ,q)dη

]
ei2π f τd f (3.54)

The data can be retrieved from m(p, t) as:

d(x, t) =
∫

∞

−∞

√
2π

fokq
m(q,τ = t− px)d p (3.55)

which is the inverse of the AST (substitute (3.54) in (3.55)):

d(x, t) =
∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

A( f ,η ,q)

√
2π

fokq
ei2π f τdηd f d p (3.56)

To prove equation (3.55), I first define the inverse parabolic Radon transform as:

d(x, t) =
∫

∞

−∞

m(q, t−qx2)dq (3.57)

In the frequency domain, this translates to:

D(x, f ) =
∫

∞

−∞

M(q, f )e−i2π f qx2
(3.58)
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To obtain the forward projection:

M′(q, f ) =
∫

∞

−∞

D(x, f )ei2π f qx2
(3.59)

Substitute equation (3.58):

M′(q, f ) =
∫

∞

−∞

∫
∞

−∞

M(q′, f )ei2π f x2(q−q′)d p′dx (3.60)

M′(q, f ) =
∫

∞

−∞

d p′M(p′, f )
∫

∞

−∞

ei2π f x2(q−q′)dx (3.61)

M′(q, f ) =
∫

∞

−∞

M(p′, f )ρ(q−q′, f )d p′ (3.62)

M′(q, f ) = M(p′, f )∗ρ(q, f ) (3.63)

where

ρ(q, f ) =
∫

∞

−∞

ei2π f qx2
dx (3.64)

In the frequency domain this becomes:

M′(q, f ) = M(kq, f )ρ(kq, f ) (3.65)

M(kq, f ) =
M′(q, f )
ρ(kq, f )

(3.66)

M(kq, f ) =
√

2π foM′(q, f )
ρ ′(kq, f )

(3.67)

Zhou and Greenhalgh (1994) showed that in the case when x is infinite equation (3.64) be-
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comes:

ρ
′(kq) =

2π√
kq

(3.68)

Hence:

M(kq, f ) =

√
fokq

2π
M′(q, f ) (3.69)

M(kq, f ) =

√
fokq

2π

∫
∞

−∞

D(x, f )ei2π f qx2
(3.70)

D(x, f ) =

√
2π

fokq

∫
∞

−∞

M(kq, f )e−i2π f qx2
(3.71)

which is the frequency domain equivalent of equation (3.55). In the case when the range of x is

finite in the range (−x1,x2) there is no analytical solution for ρ(q, f ), however the integral can be

approximated by numerical quadrature methods (Zhou and Greenhalgh, 1994)). For a rectangular

integration rule:

ρ(q, f )≈ ∆x
x2

∑
xk=x1+(k−1)∆x

ei2π f qx2
k (3.72)
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3.5 The percentile coherency filter

The improved temporal resolution of the Auxiliary S-transform depends on the separation of

seismic events achieved in the slowness or curvature domain. Due to the polarity of the data,

complex geometry, and significant interference of events, it is possible the seismic events interfere

in the slowness domain. A percentile coherency filter (PCF) can be applied in this domain to

increase the separation between coherent events in the slowness/curvature domain. The parameter

is chosen in such a way as to strike a balance between the separation of events and retaining useful

data. If the parameter value is too low, the events will not be well separated. If the parameter value

is too high, useful data may be muted and some events may be missing after reconstruction. The

optimal choice can be achieved by iteratively computing the filter and visually selecting the value

that causes reasonable separation of events while retaining all coherent signals. Typical values of

the PCF range from 90% to 99.5%.

To test the effect of the percentile coherency filter on the performance of the Auxiliary S-

transform I apply it to the complex geometry of a synthetic igneous intrusion cutting across several

horizontal rock layers. Figure 3.8 shows the synthetic igneous intrusion created by convolving a 30

Hz wavelet with a complex reflector geometry. I first compare the performance of the S-transform

to the performance of the Auxiliary S-transform (99% PCF) for the igneous intrusion (Figure

3.8). I generate time-frequency-offset volumes and compare the S-transform and the Auxiliary S-

transform at specific frequencies (Figure 3.9). The S-transform is unable to completely resolve the

horizontal layers at 20 Hz, 36 Hz, and 40 Hz; while the Auxiliary S-transform is able to completely

resolve the geometry at these frequencies. The Auxiliary S-transform for this example is computed

using a 99% percentile coherency filter. I vary the value of the percentile coherency filter from

96% to 99% (Figure 3.10). For a percentile coherency filter of 96%, the filtered image shows

poor separation between the events in the slowness domain and the igneous intrusion geometry

is not well resolved. The percentile coherency filter images show increasing separation as the

value increases to 99% where the complete separation is achieved in the slowness domain and the

geometry is properly reconstructed.
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Figure 3.8: Synthetic seismic igneous intrusion generated by convolving a 30 Hz Ricker wavelet
with a geometry of reflectors containing three tuning wedges.
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Figure 3.9: Comparison of ST and AST for igneous intrusion using a 99% percentile coherency
filter (PCF).
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Figure 3.10: Effect of percentile coherency filter (PCF). The temporal resolution increases as the
the value of the PCF changes from 96% to 99%.
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3.6 Time and Frequency Resolution of the Auxiliary S-transform

Spectral decomposition reveals features that may only be obvious at specific frequencies.

While the S-transform improves on other methods like the STFT and the CWT, its resolution

may still be insufficient for high-resolution seismic interpretation problems. The features revealed

are thus limited by the resolution. The Auxiliary S-transform is designed to significantly improve

on the resolution of the S-transform. To test the resolution of both methods I make use of a syn-

thetic tuning seismic wedge. The zero-offset seismic wedge model is generated by convolving a

40 Hz Ricker wavelet with a reflectivity wedge model for an odd reflection coefficient pair. The

reflectivity is generated from the geological model given in Table (3.1).

Geological Model
Layer
Type

Vp
(m/s)

Vs
(m/s)

ρ

(g/cn3)
Impedance
(m/s.g/cn3)

Shale 2340 966 2.19 5125
Gas Sand 1850 1228 1.9 3515
Water sand 2342 970 2.20 5152

Table 3.1: Geological model for constructing synthetic wedge. The layer properties generate a
reflectivity of -0.2 between shale and gas sand layers and a reflectivity of +0.2 between the gas
sand and water sand layers.

Figure 3.11 shows the generation of the synthetic tuning wedge for a bright spot scenario.

Figure 3.11a shows the odd reflection coefficient pair generated from the geological model in Table

(3.1). Figure 3.11b and c show a 25 Hz Ricker wavelet and its amplitude spectrum. The Ricker

wavelet is convolved with the pair of reflectors to generate the data in panel (d). The black line

in panel (d) indicates the tuning thickness of the wedge where constructive wavelet interference

peaks (Widess, 1973). I apply both the S-transform (ST) and the Auxiliary S-transform (AST) to

the synthetic seismic wedge and compare their time-frequency-space volumes (Figure 3.12). The

temporal resolution of the AST is much better than the resolution of the ST at low, intermediate,
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Figure 3.11: Generation of a synthetic tuning wedge. a) Odd reflection coefficient pair. b) A 25 Hz
Ricker wavelet. c) The amplitude spectrum of the Ricker wavelet. d) The seismic tuning wedge
generated by convolving the 40 Hz Ricker wavelet with the reflector pair.

and high frequencies. In addition, at low frequencies, the AST has higher amplitudes at the center

of the wedge. This effect reduces towards the edge of the wedge, with the exception of the wedge
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junction. This indicates the AST is better at imaging coherent (laterally continuous) signals. By

measuring the distance between the wedge arms at the same location on the ST and AST volumes,

I estimate that that the AST improves on the resolution of the ST by as much as 40%.

To investigate the frequency resolution of the AST, I examine the behavior at specific traces

as the separation between the wedge increases (Traces 35, 51, 81, and 111). I extract the time-

frequency panels for each trace and examine the change in amplitude at a specific time and compare

the frequency resolution to that of the ST in Figure 3.13. The red curves in the last column of panels

of Figure 3.13 are amplitudes extracted from the ST panel along the white line while the blue

curves are amplitudes extracted from the AST panel along the white line. The red and blue curves

match indicating that the AST at least preserves the frequency resolution of the ST. In addition

as opposed to the AST, the ST amplitudes are affected by interference where the reflectors almost

meet, at Traces 35 and 51.

Figure 3.14 examines the temporal resolution of the AST and compares it to that of the ST.

Again, I examine the specific traces (Traces 35, 51, 81, and 111) as the separation of the wedge

increases. The ST is unable to completely resolve the time separation between the two arrivals at

all trace locations, however, the AST is able to resolve the arrivals. For each trace, I extract the

time-frequency panels and extract amplitudes at a specific frequency along the white line for both

the ST and AST. I compare the amplitudes in the last column of panels of Figure 3.14. The red

and blue curves are amplitudes extracted from the ST and AST panels respectively; they indicate

superior temporal resolution of the AST compared to the ST. The AST thus preserves the frequency

resolution of the ST but demonstrates superior temporal resolution to the ST at all frequencies.

I repeat the process for AST with a 99% percentile filter. Figures (3.15) and (3.16) show the

frequency and temporal resolution respectively. Again the AST preserves the frequency resolution

of the ST but further improves on the temporal resolution at all frequencies.

Figure 3.17 shows the full temporal width at half maximum (FWHM) as a function of frequency

at the location of Trace 10, for the ST and AST. The temporal FWHM is a measure of window

width. The FWHM for the AST is lower than that of the ST at all frequencies; this demonstrates
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that the AST has superior temporal resolution to the ST. The superior temporal resolution of the

AST is most prominent at low frequencies, where the separation between the FWHM for the ST

and AST increases (Figure 3.17). For the AST, the FWHM is constant at low and intermediate

frequencies and further improves at high frequencies.

Figure 3.12: Comparison of ST and AST time-frequency-space volumes for the synthetic wedge.
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Figure 3.13: Comparison of the frequency resolution of the ST to that of the AST at different
trace locations extracted from the synthetic wedge as the wedge separation increases. The second
and third column of panels show the time-frequency panels for the ST and AST respectively. The
amplitudes shown in the fourth column of panels are extracted along the white lines.
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Figure 3.14: Comparison of the temporal resolution of the ST to that of the AST at different trace
location extracted from the synthetic wedge as the wedge separation increases. The second and
third columns of panels show the time-frequency panels for the ST and AST respectively. The
amplitudes shown in the fourth column of panels are extracted along the white lines.
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Figure 3.15: Comparison of the frequency resolution of the ST to that of the AST (99% PCF)
at different trace locations extracted from the synthetic wedge as the wedge separation increases.
The second and third columns of panels show the time-frequency panels for the ST and AST
respectively. The amplitudes shown in the fourth column of panels are extracted along the white
lines.
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Figure 3.16: Comparison of the temporal resolution of the ST to that of the AST (99% PCF) at
different trace locations extracted from the synthetic wedge as the wedge separation increases.
The second and third columns of panels show the time-frequency panels for the ST and AST
respectively. The amplitudes shown in the fourth column of panels are extracted along the white
lines.
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Figure 3.17: Comparison of full temporal width at half maximum (FWHM) as a function of fre-
quency for the ST and AST. For the ST, the FWHM decreases as frequency increases, however, it is
almost constant for the AST. This implies the AST has better temporal resolution at all frequencies
especially lower frequencies.
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3.7 Auxiliary S-transform for broadband seismic data

Recent technological developments have enabled the acquisition of broader bandwidth seismic

data (Hill et al., 2006; Ten Krood et al., 2013). Traditional marine seismic acquisition produces

data with a frequency range of about 8-80 Hz, however, broadband seismic data has frequencies

ranging from about 2.5-200 Hz. The advantages of broader bandwidth seismic acquisition are that

they produce higher-resolution seismic images, better signal penetration to greater depths, and bet-

ter suitability for seismic inversion (Ten Krood et al., 2013). Low-frequency seismic waves travel

to greater depths and are useful for imaging deep targets. They also give greater stability in seis-

mic inversion. In addition, low-frequency shadows found below gas reservoirs have been used as a

direct hydrocarbon indicator (Castagna et al., 2003). In the frequency resolution test performed in

section (3.6), the data used was generated using a single wavelet with a peak frequency. It is useful

to test the frequency resolution using broadband seismic data. I apply the Auxiliary S-transform

to synthetic broadband seismic data in order to further investigate the frequency resolution, and

investigate its applicability for low-frequency related studies. The synthetic broadband data is gen-

erated by respectively convolving a tuning wedge with a pair of reflectors with opposite polarity

with three different Ricker wavelets with peak frequencies 20 Hz, 40 Hz, and 70 Hz. The seismic

data generated from all three are then stacked together. Figure 3.18 shows the broadband seismic

data generated and its amplitude spectrum. Figure 3.19 shows the three wavelets used in generating

the broadband seismic data. Figures 3.20 and 3.21 compare the temporal and frequency resolution

of the Auxiliary S-transform for the synthetic broad data to that of the S-transform. The Auxiliary

S-transform improves on the temporal resolution of the S-transform at all frequencies. The resolu-

tion of the Auxiliary S-transform is the same as that of the S-transform, however, the S-transform

spectrum is affected by interference which artificially boosts high frequencies. On the other hand,

the Auxiliary S-transform spectrum better resembles the actual spectrum of the data and attenuates

high frequencies faster. The Auxiliary S-transform is thus more suitable for low-frequency studies

compared to the S-transform.
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Figure 3.18: Stacked broadband synthetic seismic data generated by convolving a pair of reflectors
with odd reflection coefficients with three Ricker wavelets of different frequencies (20 Hz, 40 Hz
and 70 Hz).
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Figure 3.19: Three wavelets (20 Hz, 40 Hz, and 70 Hz) used in generating the synthetic seismic
wedge in Figure 3.17.
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Figure 3.20: Comparison of the temporal resolution of the ST to that of the AST (99% PCF) at
different trace locations extracted from the broadband synthetic wedge as the wedge separation
increases. The second and third columns of panels show the time-frequency panels for the ST and
AST respectively. The amplitudes shown in the fourth column of panels are extracted along the
white lines.
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Figure 3.21: Comparison of the frequency resolution of the ST to that of the AST (99% PCF)
at different trace locations extracted the broadband synthetic wedge as the wedge separation in-
creases. The second and third columns of panels show the time-frequency panels for the ST and
AST respectively. The amplitudes shown in the fourth column of panels are extracted along the
white lines.
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Some studies have documented the existence of low-frequency shadows below gas reservoirs

(Taner et al., 1979; Castagna et al., 2003; Ebrom, 2004). While the phenomenon is not yet well

understood, some hypotheses include reflection boosting due to tuning effects in gas reservoirs,

the heterogeneous nature of reservoir zones, and wavelength-scale fluid flow (Chabyshova and

Goloshubin, 2014) and high P-wave attenuation at low seismic frequencies (Korneev et al., 2004).

A simple way to reproduce the LFS effect is to making use of reflection coefficients that vary as

a function of frequency (Chen et al., 2016). To simulate the low-frequency shadows, I apply the

Auxiliary S-transform to a tuning wedge overlaying a series of reflectors with frequency-dependent

reflection coefficients. I generate broadband seismic data by respectively convolving three wavelets

(20 Hz, 40 Hz, and 70 Hz) with the reflector geometry in Figure 3.22 and stacking the data. The

reflection coefficient significantly reduces as the frequency increases below the reservoir, hence

the high frequencies are attenuated below the reservoir. Figure 3.23 shows the disappearance of

the shadows at high frequencies (75 Hz) for the Auxiliary S-transform and the S-transform. At

high frequencies such as 60 Hz, the shadow disappears for the Auxiliary S-transform however,

it is still slightly visible for the S-transform due to smearing in the frequency domain caused by

interference. At 20 Hz, the Auxiliary S-transform better localizes the low-frequency shadows.

Considering that the appearance of the low-frequency shadow is a combination of the properties

of the reservoir and the properties of the rocks below, it may be useful to obtain well log and

core data at the precise location where the low-frequency shadow occurs to further investigate the

phenomenon. The Auxiliary S-transform is useful for temporal and therefore depth localization of

the low-frequency shadows. Figures 3.24 and 3.25 compare the frequency and temporal resolution

of the Auxiliary S-transform to that of the S-transform. The Auxiliary S-transform improves on the

temporal resolution of the S-transform at all frequencies. The frequency resolution (Figure 3.24)

indicates Auxiliary S-transform better images low-frequency phenomena.
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Figure 3.22: Generation of broadband synthetic data simulating the case of the low-frequency
shadows (LFS) observed below some gas reservoirs.
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Figure 3.23: Comparison of the detection of the low-frequency shadow (LFS) for the ST and AST.
The LFS appears on the 20 Hz panel but disappears at high frequencies. Due frequency smearing
of the ST and better localization by the AST, the LFS completely disappears on the 60 Hz panel
but is slightly visible for the ST.
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Figure 3.24: Comparison of the frequency resolution of the ST to that of the AST (99% PCF) at
different trace locations for the case of a low-frequency shadow below a gas reservoir.
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Figure 3.25: Comparison of the temporal resolution of the ST to that of the AST (99% PCF) at
different trace locations for the case of a low frequency shadow below a gas reservoir.
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3.8 Computational Cost of the Auxiliary S-transform

I measure and compare time for computing the Auxiliary S-transform to the S-transform (Fig-

ure 3.26) as the number of traces increases. The computer architecture used has an i7 Intel proces-

sor and 16 GB random access memory (RAM). The red bar shows the computational time for the

traditional S-transform. The blue bar shows the computational time for the S-transform applied in

the slowness domain. The black bar shows the computational time for both the forward and inverse

Radon transforms. The green bar gives the computational time of the Auxiliary S-transform. It

is equal to the sum of the black and blue bars. The Auxiliary S-transform is done in two steps,

the Radon transform and the S-transform in the slowness domain. If the trajectory of the data

doesn’t change the number of traces in the slowness remains the same even though the number of

offset traces increases. Hence the computational time for the S-transform in the slowness domain

(blue bar) is almost constant. The computational time increase with the number of traces for the

traditional S-transform and the Radon transform both. The resulting configuration is that before

a certain number of traces (500 traces in this case), the Auxiliary S-transform takes more com-

putational time than the Auxiliary S-transform; but as the number of traces increases further, the

S-transform takes more computational time. The Auxiliary S-transform is thus more computation-

ally efficient for large data seismic sets (as is the case in most seismic projects) compared to the

S-transform while at the same time improving the resolution.
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Figure 3.26: Computational cost of the AST and ST as a function of the number of traces.
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3.9 Application to Real Seismic Data

The Auxiliary S-transform is applied to real seismic data from the F3 block, a 16 X 24 Km

block, located offshore the Netherlands (Figure 3.27. In this area, shallow gas has been of interest

because the gas can be a hazard and a risk when drilling a well, or choosing the site of an offshore

platform at the seabed and may also indicate deeper hydrocarbon reserves (Schroot and Schutten-

helm, 2003). It is therefore important to accurately track the location of thin lateral shallow gas

layers in the time/depth domain.

The North Sea basin is a sedimentary basin that was dominated by rifting during most of the

Mesozoic, with acceleration in rifting activity at the transition from the Jurassic to the Cretaceous

(Ziegler, 1990). Occasionally rifting or thermal subsidence was interrupted by compressional tec-

tonic events, such as those related to the Alpine deformation (Schroot et al, 2005). The area is

strongly disturbed by salt diapirs, which were active several times, from the Zechstein to the Pa-

leogene periods (Remmelts, 1996). The Zechstein carbonate and salt formations serve as a seal

for Lower Permian reservoirs. Several bright spots are found over salt domes in the area. Other

features of interest include a Mid-Miocene unconformity, buried at depths ranging from 1000 to

1500 m and a complex fan delta system, prograding over the Mid-Miocene unconformity (Schroot

et al., 2005).

Table (3.2) gives the stratigraphy of the study area. The data used in this study span the North

Sea Group which was assembled in the Cenozoic. The North Sea Group is subdivided into the

Paleogene Lower and Middle North Sea Groups, and Neogene Upper North Sea group. The de-

positional setting of the Lower and Middle North Sea groups are predominantly marine while the

depositional setting of the Upper North Sea Group is shallow marine with terrestrial beds of a flu-

vial and lacustrine origin (Van Adrichem Boogaert and Kouwe, 1993). The Lower North Sea group

is made up of grey sands, sandstones and clay; the Middle North Sea group consists of sands, silts,

and clays while the Upper North Sea Group consists of clays and fine-grained to coarse-grained

sands with gravel, peat, and brown coal seams (Van Adrichem Boogaert and Kouwe, 1993).
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Figure 3.27: Location map of the study area, the F3 block, offshore the Netherlands.

80



Era Period Epoch Lithographic units Orogeny
Time

(Ma)

CENOZOIC

Neogene

Pleistocene-Holocene

Upper North Sea Group

ALPINE

0

Pliocene

Miocene

Paleogene

Oligocene Middle North Sea Group

Eocene
Lower North Sea Group

Paleocene 62

Table 3.2: Stratigraphy of the the study area, modified from Van Adrichem Boogaert and Kouwe
(1993).

Figure 3.28: A composite seismic section from a 3D post-stack seismic dataset. The data is from
block F3 of the Netherlands North Sea sector showing a bright spot over a flat spot.
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Figure 3.28 shows a composite section that contains a bright spot over a flat spot correspond-

ing to Upper Pliocene gas sands (Schroot et al., 2005). The configuration represents a sand layer

containing hydrocarbons trapped between a shale layer on top, and brine sand below. The hy-

drocarbon sand has lower impedance than both the overlying shale and the brine sand while the

brine sand has lower impedance than the overlying shale. The observed signal in the seismic data

is a bright spot over a flat spot. There is a decrease in amplitude over the crest of the structure.

The bright spot corresponds to the shale-hydrocarbon contact and the flat spot corresponds to the

hydrocarbon-brine contact. I apply the Auxiliary S-transform to the seismic section in Figure 3.28.

Figure 3.29 shows the comparison of the ST and the AST at different frequencies (10 Hz, 60 Hz,

and 75 Hz). The Auxiliary S-transform successfully captures the shape of the structural traps more

accurately than the S-transform and shows a significant improvement in the temporal resolution

compared to S-transform for all frequencies. Figure 3.30 shows a comparison of the Auxiliary S-

transform with linear and parabolic trajectories to the S-transform at low and high frequencies. The

Auxiliary S-transform for both cases demonstrates significantly better temporal resolution than the

S-transform and better resolves structure of the bright spot. The Auxiliary S-transform with linear

and parabolic trajectories produce similar imaging results.

I apply the Auxiliary S-transform to a 3D volume of the data ranging from crossline 655 to

730 and inline 500 to 700. I create single frequency volumes, obtain time slices at different depths

and compare the performance of the S-transform to that of the Auxiliary S-transform. Figures

3.31 shows a time slice passing through the bright spot. Figure 3.31a shows a time slice of the

seismic data. Figures 3.31b, d and f show S-transform images of the time slice at 10 Hz, 30 Hz

and 60 Hz respectively while Figures 3.31c, e and g show the Auxiliary S-transform images of the

time slice at 10 Hz, 21 Hz, and 60 Hz respectively. The Auxiliary S-transform demonstrates better

localization of the bright spot.

Figures 3.32, 3.33, 3.34, 3.35, and 3.36 show time slices of the seismic data ranging from 0.87s

to 0.89s and several single-frequency panels (21 Hz, 30 Hz, 78 Hz) imaged using the S-transform

and Auxiliary S-transform. The Auxiliary S-transform is able to image a complex network of
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meandering channels, indicated with white arrows, which are not visible on the original seismic

data and on the S-transform images. The channel is better imaged at high frequencies. This

demonstrates the better performance of the Auxiliary S-transform and its ability to better image

coherent signals compared to the S-transform.
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Figure 3.29: Comparison of ST and linear AST for the composite 2D section from the F3 block at
different frequencies. The AST better images the bright spot over a flat spot structure.
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Figure 3.30: Comparison of ST and linear AST and parabolic AST for the composite 2D section
from the F3 block at low and high frequencies. The AST better images the bright spot over a flat
spot structure.
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Figure 3.31: Time slice at 0.62 s. a) Time slice of the seismic data. b), d), and f) show ST images
of the time slice at 10 Hz, 21 Hz, and 60 Hz respectively. c), e), and g) show AST images of the
time slice at 10 Hz, 21 Hz and 60 Hz respectively. The AST is able to detect a complex network
of channels (indicated by the white arrow).
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Figure 3.32: Time slice at 0.876 s. a) Time slice of the seismic data. b), d), and f) show ST images
of the time slice at 21 Hz, 30 Hz, and 78 Hz respectively. c), e), and g) show AST images of the
time slice at 21 Hz, 30 Hz, and 78 Hz respectively. The AST is able to detect a complex network
of channels (indicated by the white arrow).
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Figure 3.33: Time slice at 0.88 s. a) Time slice of the seismic data. b), d), and f) show ST images
of the time slice at 21 Hz, 30 Hz, and 78 Hz respectively. c), e), and g) show AST images of the
time slice at 21 Hz, 30 Hz, and 78 Hz respectively. The AST is able to detect a complex network
of channels (indicated by the white arrow).
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Figure 3.34: Time slice at 0.884 s. a) Time slice of the seismic data. b), d), and f) show ST images
of the time slice at 21 Hz, 30 Hz, and 78 Hz respectively. c), e), and g) show AST images of the
time slice at 21 Hz, 30 Hz, and 78 Hz respectively. The AST is able to detect a complex network
of channels (indicated by the white arrow).
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Figure 3.35: Time slice at 0.888 s. a) Time slice of the seismic data. b), d), and f) show ST images
of the time slice at 21 Hz, 30 Hz, and 78 Hz respectively. c), e), and g) show AST images of the
time slice at 21 Hz, 30 Hz, and 78 Hz respectively. The AST is able to detect a complex network
of channels (indicated by the white arrow).
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Figure 3.36: Time slice at 0.892 s. a) Time slice of the seismic data. b), d), and f) show ST images
of the time slice at 21 Hz, 30 Hz, and 78 Hz respectively. c), e), and g) show AST images of the
time slice at 21 Hz, 30 Hz, and 78 Hz respectively. The AST is able to detect a complex network
of channels (indicated by the white arrow).
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3.10 Conclusion to Chapter 3

This chapter presents the Auxiliary S-transform, a novel method for spectral decomposition of

seismic data. The Auxiliary S-transform is an invertible spectral decomposition method that takes

into account velocity and multi-trace coherency information in performing spectral decomposition

of seismic data. It achieves this by mapping the data into the time-frequency-slowness or the

time-frequency-curvature domain, where seismic events are better separated. The resolution of

the inverted image can be improved by applying a percentile coherency filter in this domain. The

Auxiliary S-transform incorporates the Radon transform into the spectral decomposition process.

While the Radon transform is affected by smearing artifacts, the effects of the artifacts can be

reduced by applying the percentile coherency filter while simultaneously increasing the separation

between coherent seismic events in the time-frequency-slowness or the time-frequency-curvature

domain. The choice of trajectory path used in the Radon transform may also reduce smearing

effects.

Performance evaluation of the Auxiliary S-transform compared to the S-transform, indicates

the new method improves on the temporal resolution at all frequencies. The resolution properties

of the Auxiliary S-transform indicate its suitability for reservoir volume estimation. In general,

the Auxiliary S-transform preserves the frequency resolution of the S-transform. For broadband

seismic data, the Auxiliary S-transform is not affected by interference which artificially boosts high

frequencies as is the case for the S-transform. The Auxiliary S-transform is thus more suitable for

low-frequency studies and direct hydrocarbon indication than the S-transform. The Auxiliary S-

transform is applied to real seismic data from the F3 block offshore the Netherlands. The method

successfully images a complex network of meandering channels not visible in the original seismic

data or detectable by the S-transform.
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4. A QUANTITATIVE PROBABILISTIC FRAMEWORK FOR ESTIMATING THE

CRITICAL MOMENT IN A PETROLEUM SYSTEM

4.1 Introduction, Definition and Statement of Problem

The petroleum system is a unifying concept that spans all the disparate elements and processes

of petroleum geology including all pods of active source rock and all genetically related oil and

gas accumulations, shows and seeps (Magoon and Dow, 1994). The essential elements of the

petroleum system are the source rock, the reservoir rock, the seal rock, and the overburden rock

while the processes are trap formation and generation-migration-accumulation of petroleum. These

essential elements and processes have to be arranged in the right temporal order and the system has

to be subjected to the right temperature conditions for petroleum generation to take place. Three

important time concepts associated with the petroleum system are the age of the petroleum system,

the critical moment and the preservation time (Magoon and Beaumont, 1999). The age or duration

of the petroleum system is the time required to deposit the essential elements plus the time re-

quired for the processes of generation-migration-accumulation of petroleum. The critical moment

is the point in time that best depicts the generation-migration-accumulation of petroleum. At the

critical moment, about 50% to 90% of the petroleum is generated and expelled. Technically, it is

the point in time with the highest probability for generation-migration-accumulation of petroleum

to take place. It is best estimated using vitrinite reflectance data together with burial history and

thermal history data of the essential elements of the petroleum system and it often occurs when the

source rock is at or near the depth of maximum burial. In many cases, these data are unavailable,

unreliable or incomplete or there is a high degree of uncertainty associated with them because of

uplift and erosion. This uncertainty translates to risk in petroleum exploration assessment because

the stratigraphic and geographic extents of the petroleum system are constructed at the critical mo-

Parts of this chapter have been published in the American Association of Petroleum Geologists (AAPG) Bulletin,
(Amosu and Sun, 2019)
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ment. It is therefore important to determine the critical moment in a quantitative manner within a

probability-based framework and to quantify the uncertainty in its determination. The preservation

time starts after the process of generation-migration-accumulation is complete and continues till

present day. A petroleum system is named by combining the source rock name, the major reservoir

rock name and one of three levels of uncertainty: speculative (?), hypothetical (.) or known (!). The

level of uncertainty indicates the level of confidence one has that the petroleum in an accumulation

came from the source rock specified in the name. In a known petroleum system, a geochemical

match exists between the source rock and hydrocarbon accumulations; in a hypothetical petroleum

system, geochemical data identifies the source rock but lacks a geochemical match to hydrocarbon

accumulations; while in a speculative petroleum system, the existence of source rocks is only pos-

tulated on the basis of petroleum (Magoon [1992]). A quantitative probabilistic estimation of the

critical moment is useful for all categories of petroleum systems.

To better illustrate the concept of a petroleum system, Magoon and Dow (1994) presented a

useful example of a fictitious petroleum system called the Deer-Boar(.). Figure 4.1 shows the strati-

graphic and geographic configuration of the elements of the Deer-Boar(.) at the critical moment.

A line encompassing the pod of active source rock and all petroleum accumulations defines the

geographic extent. The stratigraphic extent of the petroleum system contains all lithological units,

which encompass the essential elements within the geographic extent of the petroleum system.
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Figure 4.1: Geographical and stratigraphic extent of the Deer-Boar(.) petroleum system. A-A’ is
location of cross-section. A line encompassing the pod of active source rock and all petroleum
accumulations defines the geographic extent. The stratigraphic extent encompasses all essential
elements and stratigraphic units within the geographic extent of the petroleum system. Modified
from Magoon and Dow (1994).
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4.2 Quantitative Probabilistic Framework

The petroleum system can be investigated using different types of data including geochemical

data, spatial geographic data, and temporal stratigraphic data. Commonly used charts and table

are the burial history chart, table of hydrocarbon accumulations, the petroleum system map and

cross-section at the critical moment and the events chart. The quantitative probabilistic framework

will focus on the events chart in order to estimate the timing of the critical moment; data relating

to the timing of generation-migration-accumulation and preservation can be included in the events

chart as well. Sequence stratigraphic studies can be used to constrain the timing of the events and

processes (see Amosu and Sun, 2017 a, b). In an events chart, the x-axis usually represents geologic

time (usually measured in mega-annum time units: Ma); the essential elements and processes are

arranged in a column in order of increasing difficulty and the known time range of occurrence of

each is plotted. In addition, the critical moment and preservation time are included.

The essential elements and processes have to be present in order to have a viable petroleum

system. The quantitative probabilistic framework aims to estimate the probability for each mo-

ment in time using data of the timing of the essential elements and processes, i.e. I will calculate

the probability as a function of time. The probability of the critical moment occurring generally

increases after the occurrence of each essential element or process. There are four stages involved:

1. Estimating the early limit (Ma).

2. Estimating the late bound (Ma).

3. Estimating the critical moment (Ma) and the early bound (Ma).

4. Estimating the critical range (Ma) and uncertainty (Ma).

4.2.1 Estimating the Early Limit

The early limit of the critical moment (cEL) is defined as the earliest moment with probability

greater than zero for the generation-migration-accumulation of hydrocarbons estimated using only

the first participating block of each essential element or process while treating all the essential
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elements and processes as independent events. The early limit is the first moment in time with

the possibility of the critical moment occurring, before this point, it is not possible for the critical

moment to exist (i.e. the probability is zero). Note that the late limit for the occurrence of the

critical moment is present day.

For each moment in time i the probability of cEL is defined as:

P(cEL)
i =

n

∏
E=1

WEP(E)i
1 (4.1)

where P is the probability, n is the total number of elements and processes, E is the element or

process being considered, the second subscript (1) is the participating block position within the

element or process row (in this case only the first participating block), the superscript represents

the moment i in time, WE is a weight with values between 0 and 1 representing the confidence in

the data source for the timing of element or process E. ∏ is the product symbol.

If it is assumed that WE is 1 for all elements and processes, then equation 4.1 can be written

out explicitly as:

P(cEL)
i = P(SR)i

1 ·P(RR)i
1 ·P(SL)i

1 ·P(OV )i
1 ·P(T F)i

1 ·P(GMA)i
1 ·P(PT )i

1 (4.2)

where SR is the source rock, RR is the reservoir rock, SL is the seal rock, OV is the overburden rock

and TF is trap formation, GMA is generation-migration-accumulation and PT is preservation time

(GMA and PT should be used only used if available from another data source). These abbreviations

will be used throughout the rest of this paper. I choose the early limit cEL as the location of the

earliest occurring non-zero probability value. See figure 4.2(a-f) for an example of the application

of equation (4.2).

4.2.2 Estimating the Late Bound

The late bound of the critical moment (cLB) is defined as the earliest moment with the greatest

probability value for the generation-migration-accumulation of hydrocarbons estimated using all

participating blocks of each element or process while treating all the essential elements and pro-
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cesses as independent events. For each moment in time i within the age of the petroleum system

the probability of cLB is:

P(cLB)
i =

n

∏
E=1

WE

(
mE

∑
j=1

P(E) j

)i

(4.3)

where P is the probability, E is the element or process being considered, mE is the number of

participating blocks in the row of E, the second subscript j ranges from 1 to mE , n is the total

number of elements and processes, WE (with values between 0 and 1) is a weight representing the

confidence in the data source for the timing of element or process E . The oldest moment with the

greatest probability calculated this way is then selected as cLB. See figure 4.2(g-l) for an example

of the application of equation (4.3).

4.2.3 Estimating the Critical Moment and the Early Bound

The best estimate of the critical moment is obtained by making use of some additional insight

into the actual processes of generation-migration-accumulation. Generation and migration of the

hydrocarbons are dependent on the presence of a source rock and a sufficient overburden rock.

The source rock contains organic matter and the overburden rock pushes the source rock into the

oil/gas window where it is subjected to the appropriate temperature for generation and migration

to take place. The effectiveness of the overburden rock in pushing the source rock into the oil/gas

window is directly related to the proportion of overburden rock above the source rock. This can

be estimated as the thickness of overburden rock above a particular source rock (Tj) divided by the

total thickness of overburden rock (Tt) in the petroleum system. The probability of generation and

migration (P(GM)i) at a moment in time i is then given as:

P(GM)i =

(
WSR

mSR

∑
j=1

Tj

Tt
P(SR) j.WOV

mOV

∑
j=1

P(OV ) j

)i

(4.4)

Accumulation is dependent on the reservoir rock, the seal rock and trap formation. It begins to

take place only after the beginning of generation and when the reservoir rock is present together

with a seal rock and a trap to keep the hydrocarbons in place. I calculate the probability of accu-

mulation P(A)i at any moment in time i, given that the reservoir rock and seal rock exists and that
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the traps have been formed after the process of generation has begun.

P(A)i =

(
WRR

mRR

∑
j=1

P(RR) ·WSL

mSL

∑
j=1

P(SL) ·WT F

mT F

∑
j=1

P(T F)

)i

(4.5)

The probability of critical moment occurring at time i is then found by combining both proba-

bilities P(GM)i and P(A)i as independent events:

P(cM)i = P(GM)i ·P(A)i (4.6)

The critical moment is then selected as the earliest position i with the greatest probability value.

To estimate the early bound cEB I again make use of equation (4.3). I select as the early bound the

location of the greatest probability next to but older than the position of the best estimate cM. See

figure (4.3) for an example of the application of equation (4.6).

4.2.4 The Critical Range and Uncertainty

The critical range (cR) is defined as the absolute value of the difference between the early bound

and the late bound.

cR = |cEB− cLB| (4.7)

The critical moment falls within the critical range such that: (cLB <= cM <= cEB); where cM

is the critical moment. The critical range can thus be used to quantify uncertainty associated with

estimation of the critical moment. The uncertainty associated with the estimation uCM is defined

as follows:

uCM =
1
2

cR =
1
2
|cEB− cLB| (4.8)

The critical moment is then reported as cM±|uCM|.
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4.3 Application

4.3.1 The Ellesmerian(!)

I will demonstrate the application of the quantitative probabilistic framework using the Ellesme-

rian(!). The Ellesmerian(!) is located in the North slope of Alaska. Trap formation preceded

generation-migration-accumulation by several million years resulting in major oil accumulations

and timing favorable for stratigraphic traps (Bird, 1994). However there is significant risk asso-

ciated with migrating petroleum from the source rock upward and structural traps (Peters et. al.,

2009). Table 4.1 shows the data used as input into the quantitative probability framework for the

Ellesmerian(!). I choose the weight WE for all elements and processes as 1 in all examples. I

assume the burial history is unknown and omit input of any direct information about generation-

migration-accumulation and preservation from other source rocks. Figure 4.2 shows the estimation

of the early limit, the early bound and the late bound for the Ellesmerian(!). It depicts the proba-

bility as a function of time for all elements and processes. Figures 4.2(a and g) shows probability

as a function of time calculated using the source rock. Before deposition of the source rock, the

probability is zero; it then increases once the source rock is deposited. Figures 4.2(f) show the

product of all probabilities calculated using only the first block of each element or process in the

events chart. Figures 4.2(l) show the product of all probabilities calculated using all block of each

element or process in the events chart. The early limit is 166 Ma (black square), the early bound is

64 Ma (blue triangle) and the late bound is 44 Ma (red dot). Figure 4.3 shows the estimate of cM

(green star) for the Ellesmerian(!). Combining the analysis in figures 2 and 3, I obtain values of 61

± 10 Ma for the critical moment and uncertainty, which is consistent with (Peters et. al., 2009).

Figure 4.4 shows the events chart for the Ellesmerian(!) with the critical range and critical moment

included.
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Element or Process Start Time (Ma) End Time (Ma)

Source Rock 234.2 212.8

Reservoir Rock 349.7 335.2

Reservoir Rock 326.0 305.4

Reservoir Rock 244.9 234.3

Reservoir Rock 230.4 225.1

Reservoir Rock 214.4 207.5

Reservoir Rock 202.2 196.0

Reservoir Rock 147.1 131.0

Reservoir Rock 111.2 105.0

Reservoir Rock 79.0 61.0

Reservoir Rock 61.0 46.1

Seal Rock 336.0 326.1

Seal Rock 306.2 294.0

Seal Rock 234.3 231.3

Seal Rock 225.9 217.5

Seal Rock 209.9 201.5

Seal Rock 196.9 190.8

Seal Rock 131.8 123.5

Seal Rock 106.6 97.5

Seal Rock 64.6 59.2

Seal Rock 49.3 40.1

Overburden Rock 208.4 8.8

Trap Formation 166.4 129.7

Trap Formation 44.8 31.0

Table 4.1: Input into the quantitative probability framework for the Ellesmerian(!)
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Figure 4.2: Estimating early limit (black square), early bound (blue triangle) and late bound (red
dot) of the critical moment for the Ellesmerian(!).
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Figure 4.3: Estimating the critical moment (green star) for the Ellesmerian(!).
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4.3.2 Simple Petroleum Systems

A special case for the critical range occurs in simple petroleum systems with very little or no

duplicity in the elements of the system. The critical range (both early and late bounds) converges

at a point, which is also the critical moment. To examine this I apply the quantitative probability

framework to the fictitious Deer-Boar(.) (figure 4.1) introduced by Magoon and Dow, (1994).

Table 4.2 shows the data used as input into the quantitative probability framework for the Deer-

Boar(.). Figures 4.5 to 4.6 show the estimation of the early limit, the late bound, the critical moment

and the early bound for the Deer-Boar(.). All four numbers converge at 241 Ma. To estimate

the uncertainty for special cases as this, I choose the position with the next highest probability

predicted by the individual elements or processes. In this case, I select the position of GMA in

figure 4.5 (inverted blue triangle) which is 258 Ma . I then subtract the position of cM from this

and half the result to obtain an uncertainty of 8.5 Ma. The critical moment is then reported as

241± 8.5 Ma, which is consistent with Magoon and Dow (1994). Figure 4.7 shows the events

chart for the Deer-Boar(.).

Element or Process Start Time (Ma) End Time (Ma)

Source Rock 338.01 378.1

Reservoir Rock 378.1 314.02

Seal Rock 314.02 301.3

Overburden Rock 378.1 247.1

Trap Formation 288.5 267.7

GMA 258.6 240.6

Preservation Time 240.6 0

Table 4.2: Input into the quantitative probability framework for the Deer-Boar(.)
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Figure 4.5: Estimating early limit (black square), early bound (blue triangle) and late bound (red
dot) of the critical moment for the Deer-Boar(.). In this case the points all have the same value.
The inverted blue triangle is selected for uncertainty analysis.
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Figure 4.6: Estimating the critical moment (green star) for the for the Deer-Boar(.)
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4.3.3 The Total Petroleum System

The concept of the petroleum system described above only includes discovered hydrocarbon,

it was, therefore, necessary to develop to include undiscovered oil and gas fields. Magoon (1995)

termed undiscovered resources complementary plays and complementary prospects. The total

petroleum system (TPS) refers to the petroleum system of Magoon and Dow (1994), and the sum

of all undiscovered oil and gas fields in the complementary plays and complementary prospects

within that system (Magoon, 1995; Magoon and Beaumont, 1999).

Magoon and Schmoker (2000) define the TPS as the essential elements (source rock, reservoir

rock, seal rock, and overburden rock) and processes (generation-migration-accumulation and trap

formation) as well as all genetically related petroleum that occurs in seeps, shows, and accumu-

lations, both discovered and undiscovered, whose provenance is a pod or closely related pods of

active source rock. The assessment unit (AU) is a volume of rock within the TPS that encompasses

fields, discovered and undiscovered, sufficiently homogeneous in terms of geology, exploration

strategy and risk characteristics to constitute a single population of field characteristics with re-

spect to criteria used for resource assessment (Magoon and Schmoker, 2000). Two commonly

used accumulation types are conventional and continuous accumulations. Conventional oil and

gas accumulations generally occur in stratigraphic and structural traps within fields while contin-

uous oil and gas accumulations include those types of accumulations where the source rock and

reservoir rock are interbedded or the same (Dubiel, 2013).

In this section I apply the quantitative probability framework to total petroleum systems from

the San Juan Basin Province. The data and information used as input to the quantitative probability

framework in this section is obtained from the U.S. Geological Survey Digital Data Series 69–F

(Dubiel, 2013). I follow the TPS nomenclature used in this report. The San Juan Basin (Figure

4.8) is a Laramide structural depression that may have formed about 75 million years ago. It is

located on the eastern margin of the Colorado Plateau in New Mexico and Colorado. The basin

has a pronounced northwest-southeast structural grain that appears to have controlled sedimentary

geometry and shoreline positions throughout the Phanerozoic (Dubiel, 2013). The basin margin is

109



characterized by Mesozoic sedimentary outcrops. Early and late Cenozoic tectonic activity resulted

in folding, fracturing, and uplift. Two total petroleum systems found in the San Juan Basin are the

Lewis Shale TPS and the Fruitland TPS. The Fruitland TPS contains the Tertiary Conventional

Gas AU while the Lewis Shale TPS contains the Lewis Continuous Gas Resource. Table 4.3 gives

a summary of their major elements. I apply the quantitative probability framework the two TPSs.

Figures 4.9, 4.10, and 4.11 show the results for Tertiary Conventional Gas AU while Figures 4.12,

4.13, and 4.14 show the results for the Lewis Continuous Gas Resource. The critical moments for

the Tertiary Conventional Gas AU and Lewis Continuous Gas Resource are estimated as 25 Ma

and 56 Ma respectively. The ability to predict the critical moment in total petroleum systems will

reduce the risk associated with the exploration assessment of undiscovered resources.

TPS & AU Source Reservoir Trap/Seal

Fruitland TPS

Tertiary

Conventional Gas

AU

Coal of the

Fruitland Formation

Paleocene Ojo

Alamo Sandstone,

Nacimiento

Formation, and San

Jose Formation.

Overbank

mudstones,

stratigraphic

pinchouts and an

anticline.

Lewis Shale TPS

Lewis Continuous

Gas Resource
Lewis Shale

La Ventana and

Chacra Tongues of

the Cliff House

Sandstone

Lewis Shale

Table 4.3: Summary of the major elements of Fruitland and Lewis Total Petroleum Systems, San
Juan Basin (from the U.S. Geological Survey Digital Data Series 69–F; Dubiel, 2013))
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Figure 4.8: Map showing the location and boundary of the San Juan Basin, the Fruitland TPS, and
the Lewis Shale TPS.
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Figure 4.9: Estimating early limit (black square), early bound (blue triangle) and late bound (red
dot) of the critical moment for the Tertiary Conventional Gas AU.
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Figure 4.10: Estimating the critical moment (green star) for the Tertiary Conventional Gas AU.
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Figure 4.12: Estimating early limit (black square), early bound (blue triangle) and late bound (red
dot) of the critical moment for the Lewis TPS.
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Figure 4.13: Estimating the critical moment (green star) for the Lewis TPS.
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4.4 Conclusion to Chapter 4

The critical moment of a petroleum system is best estimated using the burial history data and

thermal history data such as vitrinite reflectance measurements. In the study of many petroleum

systems these data are unavailable, unreliable or incomplete. This introduces uncertainty into the

determination of the critical moment. The critical moment is important because the stratigraphic

and geographic extents of a petroleum system are defined at the critical moment. The uncertainty

of the critical moment can therefore translate to risk in exploration assessment, hence it is im-

portant to quantify the amount of uncertainty involved in the estimation of the critical moment. I

develop a quantitative probability framework for estimating the critical moment and associated un-

certainty. I calculate the best probabilistic estimate of the critical moment and define an early limit,

an early bound and a late bound for the critical moment. I define the critical range as the absolute

value of the difference between the early bound and the late bound and estimate the uncertainty

associated with the critical moment as half the critical range. The quantitative probability frame-

work introduces consistency in estimating the critical moment and the quantification of uncertainty

helps reduce the risk associated with exploration assessment.
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5. Appendix

5.1 Lemma 1: Proof that the Fourier transform of a Gaussian is a Gaussian.

The Gaussian is defined as:

w(t,σ) =
1√

2πσ2
exp
(
−(τ− t)2

2σ2

)
(5.1)

Take the Fourier transform

W (α,σ) =
∫

∞

−∞

w(t,σ)exp(−2πiαt)dt =
∫

∞

−∞

1√
2πσ2

exp
(
−(τ− t)2

2σ2

)
exp(−2πiαt)dt (5.2)

A shift doesn’t change the shape of the integral:

W (α,σ) =
∫

∞

−∞

1√
2πσ2

exp
(
−t2

2σ2

)
exp(−2πiαt)dt (5.3)

W (α,σ) =
1√

2πσ2

∫
∞

−∞

exp
(
−t2

2σ2 −2πiαt
)

dt (5.4)

W (α,σ) =
1√

2πσ2

∫
∞

−∞

exp
[
−1
2σ2

(
t2 +4πiασ

2t
)]

dt (5.5)

Complete the square

W (α,σ) =
1√

2πσ2

∫
∞

−∞

exp
[
−1
2σ2

(
t2 +2(2πiασ

2)t
)
+(2πiασ

2)2− (2πiασ
2)2
]

dt (5.6)

W (α,σ) =
1√

2πσ2
exp
(
−1
2σ2 (−2πiσα

2)2
)∫

∞

−∞

exp
(
−1
2σ2 (t +2πiασ

2)2
)

dt (5.7)
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W (α,σ) =
1√

2πσ2
exp
(
−1
2σ2 (−4π

2i2α
2
σ

4)

)[∫
∞

−∞

exp
(

t2

2σ2

)
dt
]

(5.8)

W (α,σ) =
1√

2πσ2
exp(−2π

2
α

2
σ

2)[
√

2πσ2] (5.9)

W (α,σ) = exp
(
−2π

2
α

2
σ

2) (5.10)

W (α,σ) = exp
(
−2π2α2

f 2

)
(5.11)

Which is a Gaussian window also.

5.2 Lemma 2: Proof of the Integral of a Gaussian

Let I =
∫

∞

−∞

exp(−ax2)dx (5.12)

I2 =
∫

∞

−∞

exp(−ax2)dx
∫

∞

−∞

exp(−ay2)dy (5.13)

I2 =
∫

∞

−∞

∫
∞

−∞

exp(−a(x2 + y2))dxdy (5.14)

Transform to polar coordinates x = rcosθ and y = rsinθ

dx = cosθdr− rsinθdθ (5.15)

dy = sinθdr+ rcosθdθ (5.16)

Jacobian of the transformation
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dxdy =

cosθ rsinθ

sinθ rcosθ

drdθ

dxdy = r(cos2
θ + sin2

θ)drdθ (5.17)

dxdy = drdθ (5.18)

I2 =
∫ 2π

0

∫
∞

0
exp(−ar2)rdrdθ (5.19)

Integrate over θ

I2 = 2π

∫
∞

0
exp(−ar2)rdr (5.20)

Change of variables: u = r2 du = 2rdr

I2 = 2π

∫
∞

0
exp(−au)

1
2

du (5.21)

I2 =
π

−a
exp(−au)|∞0

I2 =
π

−a
[0−1]

I2 =
π

a

I =
√

π

a
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5.3 Matlab Code for the Auxiliary S-transform

1 %%%-----------------------------------------------------------------------

2 %%%---- AST DEMO FIG3_1

3 %%%-----------------------------------------------------------------------

4 %%---Requires seislab and cqi_plotmatrix; add to path before running

5 %%https://www.mathworks.com/matlabcentral/fileexchange/53109-seislab-3-02

6 %%https://www.mathworks.com/matlabcentral/fileexchange/51122-

cqi_plotmatrixdata-varargin

7 %%------------------------------------------------------------------------

8

9

10

11 clear all; clc; close all;

12 temp1=s_create_synthetic_gather(0:4:1000,{’times’,200}, ...

13 {’moveout’,’parabolic’},{’offsets’,0:8:2000,’m’}, ...

14 {’amplitudes’,1},{’velocities’, 900});

15

16 temp2=s_create_synthetic_gather(0:4:1000,{’times’,300}, ...

17 {’moveout’,’linear’},{’offsets’,0:8:2000,’m’}, ...

18 {’amplitudes’,1},{’velocities’, 1050});

19

20 temp3=s_create_synthetic_gather(0:4:1000,{’times’,500}, ...

21 {’moveout’,’linear’},{’offsets’,0:8:2000,’m’}, ...

22 {’amplitudes’,1},{’velocities’, 2500});

23

24

25 st1=temp1.traces;

26 st2=temp2.traces;

27 st3=temp3.traces;

28

29 hl=100;

30 st=st1+st2+st3;
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31 stt=st(:,1:hl);

32 stt=padarray(stt,[100,10]);

33

34 seis2ev_par_lin=temp2;

35 seis2ev_par_lin.traces=stt;

36 [nt,nh]=size(seis2ev_par_lin.traces);

37 seis2ev_par_lin.headers=1:nh;

38 t=[0:nt-1]*4*10^-3;

39

40 seismic=s_filter(seis2ev_par_lin,{’ormsby’,[0,20,40,100]});

41 seismic.step=0.004;seismic.last=1.8;

42 seis2ev_par_lin=seismic;

43 data=seis2ev_par_lin.traces;

44 h=seis2ev_par_lin.headers;

45

46 fntsz=10;

47 y1=t(80); y2=t(nt-80);

48 x1=10;x2=nh-10;

49 sc=0.0015;

50 scc=0.001;

51 %%%%%---------------------------------------------------------------------

52

53

54 pow=1; %change to 2 for parabolic

55

56

57 if pow ==1

58 nq=3000;q1=linspace(0, 1.3,nq);%linear %%reduce nq to 1000 for speed

59 end

60 if pow==2

61 nq=1000;q1=linspace(0,60,nq);%parabolic

62 end

63
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64 mode1=1; %inverse rad

65 mode2=-1; %forward rad

66 %%----------------------------------------------------------------------

67

68 tic

69 slowstruct=radls(data,t,h,q1,pow,mode1);

70 slowdata=slowstruct.output;

71 datarad=slowdata;

72 toc

73

74 [nt,nh]=size(datarad);

75

76 tic

77 for kk=1: nh

78 trace1=datarad(:,kk);

79 factor=1;

80 samplingrate=.004;

81 [st,tt,f]=str1d(trace1,factor,samplingrate);

82 Rdatst(:,kk,:)=abs(st);

83 ist=invstr(st);

84 Ristinv(:,kk)=ist’;

85 end

86 RistinvStruct.output=Ristinv;RistinvStruct.sc=slowstruct.sc;

87 DataRECstruct=radls(RistinvStruct,t,h,q1,pow,-1);

88 DataREC=DataRECstruct.output;

89 toc

90

91

92

93 %%%%----plot----------------------------------------------------------

94 figure(’units’,’normalized’,’outerposition’,[0 0 1/2 1])

95 subplot(321)

96 cqi_plotmatrix(data,’dt’,.004,’t0’,0,’scale’,2,’skip’,1,’fillco’,’k’,’
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linewidth’,1,’unit’,’s’);

97 set(gca,’fontsize’,fntsz,’Xaxislocation’,’bottom’)

98 ylim([y1 y2]);xlim([x1 x2]);

99 title(’(a) Original Data’)

100 box on;

101 xlabel(’Trace’);

102

103 tic

104 subplot(322)

105 slowdata(256:451,:)=0;

106 ind=find(q1 >=1.025 & q1 <=1.037);

107 slowdataV=slowdata(:,ind);

108 q1V=q1(ind);

109 cqi_plotmatrix(slowdataV,’traceIndex’,q1V,’dt’,.004,’t0’,0,’scale’,sc,’skip’

,0,’fillco’,’k’,’linewidth’,1,’unit’,’s’);

110 set(gca,’fontsize’,fntsz,’Xaxislocation’,’bottom’)

111 ylim([y1 y2]);

112 xlim([1.025 1.037])

113 xlabel(’p (s/m)’);

114 ylabel(’Tau (s)’);

115 box on;

116 title(’(b) LRT’)

117 toc

118

119 tic

120 subplot(3,2,3)

121 RdatstV=Rdatst(:,ind,:);

122 RdatstV=RdatstV./max(abs(RdatstV),[],’all’);

123 szarray=size(RdatstV);

124 [y,x,z] = meshgrid(q1V,f,t);

125 slice(y, x, z,RdatstV,[],[10:10:50],[])

126 shading(’interp’);colormap(’jet’);

127 zlim([y1 y2]);
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128 xlim([1.025 1.037])

129 set(gca,’fontsize’,fntsz)

130 set(gca,’Zdir’,’reverse’)

131 set(gca,’Ydir’,’reverse’)

132 caxis([0.02 0.9])

133 [az,el] = view;

134 view([ -65 30])

135 title(’(c) AST Volume’)

136 box on;

137 ylabel(’Frequency (Hz)’);zlabel(’\eta (s)’);xlabel(’p (s/m)’);

138 toc

139

140 tic

141 subplot(324)

142 Ristinv(256:451,:)=0;

143 RistinvV=Ristinv(:,ind);

144 cqi_plotmatrix(RistinvV,’traceIndex’,q1V,’dt’,.004,’t0’,0,’scale’,sc,’skip’,0,

’fillco’,’k’,’linewidth’,1,’unit’,’s’);

145 set(gca,’fontsize’,fntsz,’Xaxislocation’,’bottom’)

146 ylim([y1 y2]);xlim([1.025 1.037])

147 title(’(d) Inverse ST’)

148 box on;

149 xlabel(’Trace’);

150 ylabel(’Tau (s)’);

151 toc

152

153 subplot(325)

154 cqi_plotmatrix(DataREC,’dt’,.004,’t0’,0,’scale’,2,’skip’,1,’fillco’,’k’,’

linewidth’,1,’unit’,’s’);

155 set(gca,’fontsize’,fntsz,’Xaxislocation’,’bottom’)

156 ylim([y1 y2]);xlim([x1 x2]);

157 title(’(e) Reconstructed Data’)

158 box on;
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159 xlabel(’Trace’);

160

161 subplot(326)

162 resid=data-DataREC;

163 scc=max(min(resid./data,[],’all’),scc);

164 cqi_plotmatrix(resid,’dt’,.004,’t0’,0,’scale’,scc,’skip’,2,’fillco’,’k’,’

linewidth’,1,’unit’,’s’);

165 set(gca,’fontsize’,fntsz,’Xaxislocation’,’bottom’)

166 ylim([y1 y2]);xlim([x1 x2]);

167 title(’(f) Residual’)

168 box on;

169 xlabel(’Trace’);

170

171

172

173 %%%-----------------------------------------------------------------------

174 %%%---- AST DEMO FIG3_4

175 %%%-----------------------------------------------------------------------

176

177

178 clear all; clc;

179 temp1=s_create_synthetic_gather(0:4:1000,{’times’,200}, ...

180 {’moveout’,’parabolic’},{’offsets’,0:8:2000,’m’}, ...

181 {’amplitudes’,1},{’velocities’, 900});

182

183 temp2=s_create_synthetic_gather(0:4:1000,{’times’,500}, ...

184 {’moveout’,’parabolic’},{’offsets’,0:8:2000,’m’}, ...

185 {’amplitudes’,1},{’velocities’, 950});

186

187 temp3=s_create_synthetic_gather(0:4:1000,{’times’,600}, ...

188 {’moveout’,’linear’},{’offsets’,0:8:2000,’m’}, ...

189 {’amplitudes’,1},{’velocities’, 5500});

190
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191

192 st1=temp1.traces;

193 st2=temp2.traces;

194 st3=temp3.traces;

195

196 hl=100;

197 st=st1+st2+st3;

198 stt=st(:,1:hl); %%stt(:,1:5)=0;stt(:,95:100)=0;

199 stt=padarray(stt,[100,10]);

200

201 seis2ev_par_lin=temp2;

202 seis2ev_par_lin.traces=stt;

203 [nt,nh]=size(seis2ev_par_lin.traces);

204 seis2ev_par_lin.headers=1:nh;

205 t=[0:nt-1]*4*10^-3;

206

207 seismic=s_filter(seis2ev_par_lin,{’ormsby’,[0,20,40,100]});

208 seismic.step=0.004;seismic.last=1.8;

209 seis2ev_par_lin=seismic;

210

211

212

213 fntsz=10;

214 y1=t(80); y2=t(nt-80);

215 x1=10;x2=nh-10;

216 sc=.5;

217 scc=0.001;

218

219 data=seis2ev_par_lin.traces;

220 h=seis2ev_par_lin.headers;

221 %%%%s_wplot(seis2ev_par_lin);

222 %%----------------------------------------------------------------------

223
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224

225 pow=2;

226

227 if pow ==1

228 nq=1000;q1=linspace(-1, 1.3,nq);%linear %%reduce nq to 1000 for quick run

229 end

230 if pow==2

231 nq=1000;q1=linspace(-10,50,nq);%linear

232 end

233

234 mode1=1; %inverse rad

235 mode2=-1; %forward rad

236 %%----------------------------------------------------------------------

237

238 slowstruct=radls(data,t,h,q1,pow,mode1);

239 slowdata=slowstruct.output;

240 datarad=slowdata;

241

242 [nt,nh]=size(datarad);

243

244 for kk=1: nh

245 trace1=datarad(:,kk);

246 factor=1;

247 samplingrate=.004;

248 [st,tt,f]=str1d(trace1,factor,samplingrate);

249 Rdatst(:,kk,:)=abs(st);

250 ist=invstr(st);

251 Ristinv(:,kk)=ist’;

252 end

253 RistinvStruct.output=Ristinv;RistinvStruct.sc=slowstruct.sc;

254 DataRECstruct=radls(RistinvStruct,t,h,q1,pow,-1);

255 DataREC=DataRECstruct.output;

256
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257

258 % %%%--------------------------------------

259

260

261 %%%%----plot----------------------------------------------------------

262 figure(’units’,’normalized’,’outerposition’,[0 0 1/2 1])

263 subplot(321)

264 cqi_plotmatrix(data,’dt’,.004,’t0’,0,’scale’,2,’skip’,1,’fillco’,’k’,’

linewidth’,1,’unit’,’s’);

265 set(gca,’fontsize’,fntsz,’Xaxislocation’,’bottom’)

266 ylim([y1 y2]);xlim([x1 x2]);

267 title(’(a) Original Data’)

268 box on;

269 xlabel(’Trace’);

270

271 subplot(322)

272 cqi_plotmatrix(slowdata,’traceIndex’,q1,’dt’,.004,’t0’,0,’scale’,sc,’skip’,2,’

fillco’,’k’,’linewidth’,1,’unit’,’s’);

273 set(gca,’fontsize’,fntsz,’Xaxislocation’,’bottom’)

274 ylim([y1 y2]);

275 xlim([-3 4])

276 xlabel(’q (s/m^2)’);ylabel(’Tau (s)’);

277 box on;

278 title(’(b) PRT’)

279

280 subplot(3,2,3)

281 RdatstV=Rdatst./max(abs(Rdatst),[],’all’);

282 szarray=size(Rdatst);

283 [y,x,z] = meshgrid(q1,f,t);

284 slice(y, x, z,Rdatst,[],[10:10:50],[])

285 shading(’interp’);colormap(’jet’);

286 zlim([y1 y2]);

287 xlim([-3 4])
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288 set(gca,’fontsize’,fntsz)

289 set(gca,’Zdir’,’reverse’)

290 set(gca,’Ydir’,’reverse’)

291 %caxis([0.02 0.9])

292 [az,el] = view;

293 view([ -70 30])

294 title(’(c) AST Volume’)

295 box on;

296 ylabel(’Frequency (Hz)’);zlabel(’\eta (s)’);xlabel(’q (s/m^2)’);

297

298

299 subplot(324)

300 cqi_plotmatrix(Ristinv,’traceIndex’,q1,’dt’,.004,’t0’,0,’scale’,sc,’skip’,2,’

fillco’,’k’,’linewidth’,1,’unit’,’s’);

301 set(gca,’fontsize’,fntsz,’Xaxislocation’,’bottom’)

302 ylim([y1 y2]);xlim([-3 4])

303 title(’(d) Inverse ST’)

304 box on;

305 xlabel(’q (s/m^2)’);ylabel(’Tau (s)’);

306

307 subplot(325)

308 cqi_plotmatrix(DataREC,’dt’,.004,’t0’,0,’scale’,2,’skip’,1,’fillco’,’k’,’

linewidth’,1,’unit’,’s’);

309 set(gca,’fontsize’,fntsz,’Xaxislocation’,’bottom’)

310 ylim([y1 y2]);xlim([x1 x2]);

311 title(’(e) Reconstructed Data’)

312 box on;

313 xlabel(’Trace’);

314

315 subplot(326)

316 resid=data-DataREC;

317 scc=max(min(resid./data,[],’all’),scc);

318 cqi_plotmatrix(resid,’dt’,.004,’t0’,0,’scale’,scc,’skip’,1,’fillco’,’k’,’
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linewidth’,1,’unit’,’s’);

319 set(gca,’fontsize’,fntsz,’Xaxislocation’,’bottom’)

320 ylim([y1 y2]);xlim([x1 x2]);

321 title(’(f) Residual’)

322 box on;

323 xlabel(’Trace’);

324

325

326

327

328 %%%----------------------------------------------------------------------

329 function outstruct = radls(input,t,h,q,power,md)

330

331 dt = t(2) - t(1);

332 nt = length(t);

333 nh = length(h);

334 nq = length(q);

335 nfft = 2*(2^nextpow2(nt));

336

337

338 if md == 1 %%%%space to slowness

339 [sc,inputnorm]=tracenorm(input);

340 if power==2; h=h/max(abs(h));end

341 mu = 10^12;

342

343

344 output = zeros(nfft,nq);

345 D = fft(inputnorm,nfft,1)/sqrt(nfft);

346

347 M = zeros(nfft,nq);

348 i = sqrt(-1);

349

350 Q = eye(nq)*nh;
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351

352 for ifreq=2:floor(nfft/2)

353

354 f = 2.*pi*(ifreq-1)/nfft/dt;

355 L = exp(i*f*(h.^power)’*q);

356 y = D(ifreq,:)’;

357 xa = L’*y;

358 A = L’*L + mu*Q;

359

360 x = A\xa;

361

362

363

364 M(ifreq,:) = x’;

365 M(nfft+2-ifreq,:) = conj(x)’;

366

367 end

368

369 M(nfft/2+1,:) = zeros(1,nq);

370 output = real(ifft(M,[],1)*sqrt(nfft));

371 output = output(1:nt,:);

372 outstruct.output=output;

373 outstruct.sc=sc;

374 return

375

376 %%--------------------------------------------------------------

377 else %%slowness to space

378 %%--------------------------------------------------------------

379 insub=input.output;

380 insc=input.sc;

381 output = zeros(nfft,nh);

382 M = fft(insub,nfft,1)/sqrt(nfft);

383 i = sqrt(-1);
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384 if power==2; h=(h/max(abs(h))).^2; end

385

386 for ifreq=2:floor(nfft/2)

387 f = 2.*pi*(ifreq-1)/nfft/dt;

388 L = exp(i*f*(h’*q ));

389 x = M(ifreq,:)’;

390 y = L * x;

391 D(ifreq,:) = y’;

392 D(nfft+2-ifreq,:) = conj(y)’;

393 end

394

395 D(nfft/2+1,:) = zeros(1,nh);

396 output = real(ifft(D,[],1)*sqrt(nfft));

397 output = output(1:nt,:);

398 [~,output2]=tracenorm(output);

399

400 outstruct.output=output2.*insc;

401 outstruct.sc=1;

402 return;

403

404 end

405 end

406

407

408 function out = invstr(S)

409 N=size(S,2);

410 for ii=1:size(S,1)

411 ss(ii)=sum(S(ii,:));

412 end

413 ss_real=real(ss);

414 ss_imag=imag(ss);

415 ss_imag(1:round(N/2))=-1*ss_imag(1:round(N/2));

416 ss=ss_real+(1i*ss_imag);
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417 ist=real(ifft(ss,N));

418 out=fliplr(ist);

419 end

420

421

422 function [m,out]=tracenorm(in)

423 m=max(in);

424 out=in./m;

425 out(isnan(out))=0;

426 end

427

428 function [str,t,f]=str1d(data,factor,smp)

429 tmsr=data;

430 minf = 0;

431 maxf = fix(length(tmsr)/2);

432 freqsmp=1;

433 t = (0:length(tmsr)-1)*smp;

434 nele =ceil((maxf - minf+1)/freqsmp) ;

435 f = (minf + [0:nele-1]*freqsmp)/(smp*....

436 length(tmsr));

437 n=length(tmsr);

438 vec=fft(tmsr);

439 vec=[vec,vec];

440 str=zeros(ceil((maxf - minf+1)/freqsmp),n);

441 if minf == 0

442 str(1,:) = mean(tmsr)*(1&[1:1:n]);

443 else

444 str(1,:)=ifft(vec(minf+1:minf+n).*...

445 gauss(n,minf,factor));

446 end

447 for i=freqsmp:freqsmp:(maxf-minf)

448 str(i/freqsmp+1,:)=ifft(vec(minf+i+1:minf+i+n).*...

449 gauss(n,minf+i,factor));
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450 end

451 end

452

453 function ga=gauss(len,freq,factor)

454 vac(1,:)=[0:len-1];

455 vac(2,:)=[-len:-1];

456 vac=vac.^2;

457 vac=vac*(-factor*2*pi^2/freq^2);

458 ga=sum(exp(vac));

459 end

Figure 5.1: Matlab GUI for the Auxiliary S-transform.
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5.4 Matlab Code for the Critical Moment Estimation

Figure 5.2: Matlab GUI for estimating the critical moment.
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1 function varargout = QPFA(varargin)

2 % QPFA MATLAB code for QPFA.fig

3 % QPFA, by itself, creates a new QPFA or raises the existing

4 % singleto n*.

5 %

6 % H = QPFA returns the handle to a new QPFA or the handle to

7 % the existing singleton*.

8 %

9 % QPFA(’CALLBACK’,hObject,eventData,handles,...) calls the local

10 % function named CALLBACK in QPFA.M with the given input arguments.

11 %

12 % QPFA(’Property’,’Value’,...) creates a new QPFA or raises the

13 % existing singleton*. Starting from the left, property value pairs are

14 % applied to the GUI before QPFA_OpeningFcn gets called. An

15 % unrecognized property name or invalid value makes property application

16 % stop. All inputs are passed to QPFA_OpeningFcn via varargin.

17 %

18 % *See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

19 % instance to run (singleton)".

20 %

21 % See also: GUIDE, GUIDATA, GUIHANDLES

22

23 % Edit the above text to modify the response to help QPFA

24

25 % Last Modified by GUIDE v2.5 12-Nov-2017 20:50:28

26 %---------------------------------------------------------------

27

28

29

30

31 % Begin initialization code - DO NOT EDIT

32 gui_Singleton = 1;

33 gui_State = struct(’gui_Name’, mfilename, ...
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34 ’gui_Singleton’, gui_Singleton, ...

35 ’gui_OpeningFcn’, @QPFA_OpeningFcn, ...

36 ’gui_OutputFcn’, @QPFA_OutputFcn, ...

37 ’gui_LayoutFcn’, [] , ...

38 ’gui_Callback’, []);

39 if nargin && ischar(varargin{1})

40 gui_State.gui_Callback = str2func(varargin{1});

41 end

42

43 if nargout

44 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

45 else

46 gui_mainfcn(gui_State, varargin{:});

47 end

48 % End initialization code - DO NOT EDIT

49

50

51 % --- Executes just before QPFA is made visible.

52 function QPFA_OpeningFcn(hObject, eventdata, handles, varargin)

53 % This function has no output args, see OutputFcn.

54 % hObject handle to figure

55 % eventdata reserved - to be defined in a future version of MATLAB

56 % handles structure with handles and user data (see GUIDATA)

57 % varargin command line arguments to QPFA (see VARARGIN)

58

59 % Choose default command line output for QPFA

60 handles.output = hObject;

61

62 % Update handles structure

63 guidata(hObject, handles);

64

65 % UIWAIT makes QPFA wait for user response (see UIRESUME)

66 % uiwait(handles.figure1);
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67

68

69 % --- Outputs from this function are returned to the command line.

70 function varargout = QPFA_OutputFcn(hObject, eventdata, handles)

71 % varargout cell array for returning output args (see VARARGOUT);

72 % hObject handle to figure

73 % eventdata reserved - to be defined in a future version of MATLAB

74 % handles structure with handles and user data (see GUIDATA)

75

76 % Get default command line output from handles structure

77 varargout{1} = handles.output;

78

79

80

81 function edit1_Callback(hObject, eventdata, handles)

82 % hObject handle to edit1 (see GCBO)

83 % eventdata reserved - to be defined in a future version of MATLAB

84 % handles structure with handles and user data (see GUIDATA)

85

86 % Hints: get(hObject,’String’) returns contents of edit1 as text

87 % str2double(get(hObject,’String’)) returns contents of edit1 as a

double

88

89

90 % --- Executes during object creation, after setting all properties.

91 function edit1_CreateFcn(hObject, eventdata, handles)

92 % hObject handle to edit1 (see GCBO)

93 % eventdata reserved - to be defined in a future version of MATLAB

94 % handles empty - handles not created until after all CreateFcns called

95

96 % Hint: edit controls usually have a white background on Windows.

97 % See ISPC and COMPUTER.

98 if ispc && isequal(get(hObject,’BackgroundColor’),...
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99 get(0,’defaultUicontrolBackgroundColor’))

100 set(hObject,’BackgroundColor’,’white’);

101 end

102

103

104 % --- Executes on button press in pushbutton1.

105 function pushbutton1_Callback(hObject, eventdata, handles)

106 % hObject handle to pushbutton1 (see GCBO)

107 % eventdata reserved - to be defined in a future version of MATLAB

108 % handles structure with handles and user data (see GUIDATA)

109 warning off;

110 [PathName,FileName] = uigetfile({’*.xlsx’},’Select the Data file’);

111 if (FileName == 0)

112 set(handles.edit2,’String’,’Input file is not selected’)

113 pause(1)

114 set(handles.edit2,’String’,’’)

115 return;

116 end

117

118 filein=fullfile(FileName,PathName);

119 set(handles.edit2,’String’,[’Selected Input file: ’ filein]) ;

120

121 %store data

122 [elems, petData]=getpetData(filein);

123 f = figure;

124 t = uitable(f,’Data’,petData,’Position’,[20 20 500 350]);

125 handles.elems=elems;

126

127 n_ys=find(~cellfun(@isempty,elems));

128 nsubp=(length(n_ys)+1);

129 n_no=find(cellfun(@isempty,elems));

130 nind(1:7)=1;nind(n_no)=0;

131
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132 handles.nsubp=nsubp;

133 handles.nind=nind;

134 guidata(hObject,handles);

135

136

137 function edit2_Callback(hObject, eventdata, handles)

138 % hObject handle to edit2 (see GCBO)

139 % eventdata reserved - to be defined in a future version of MATLAB

140 % handles structure with handles and user data (see GUIDATA)

141

142 % Hints: get(hObject,’String’) returns contents of edit2 as text

143 % str2double(get(hObject,’String’)) returns contents of edit2 as a

double

144

145

146 % --- Executes during object creation, after setting all properties.

147 function edit2_CreateFcn(hObject, eventdata, handles)

148 % hObject handle to edit2 (see GCBO)

149 % eventdata reserved - to be defined in a future version of MATLAB

150 % handles empty - handles not created until after all CreateFcns called

151

152 % Hint: edit controls usually have a white background on Windows.

153 % See ISPC and COMPUTER.

154 if ispc && isequal(get(hObject,’BackgroundColor’),...

155 get(0,’defaultUicontrolBackgroundColor’))

156 set(hObject,’BackgroundColor’,’white’);

157 end

158

159

160 % --- Executes on button press in pushbutton2.

161 function pushbutton2_Callback(hObject, eventdata, handles)

162 % hObject handle to pushbutton2 (see GCBO)

163 % eventdata reserved - to be defined in a future version of MATLAB
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164 % handles structure with handles and user data (see GUIDATA)

165

166 %get strat code

167 u = get(get(handles.uibuttongroup1,’SelectedObject’), ’Tag’);

168 if strcmp(u,’radiobutton1’)

169 [levelss,ncol]=choose_time_scale(’GSA1983’);

170 elseif strcmp(u,’radiobutton2’)

171 [levelss,ncol]=choose_time_scale(’HARLAND1990’);

172 elseif strcmp(u,’radiobutton3’)

173 [levelss,ncol]=choose_time_scale(’HAQ1998’);

174 elseif strcmp(u,’radiobutton4’)

175 [levelss,ncol]=choose_time_scale(’GSA1999’);

176 elseif strcmp(u,’radiobutton5’)

177 [levelss,ncol]=choose_time_scale(’USGS2001’);

178 end

179 handles.levelss=levelss;

180 handles.ncol=ncol;

181

182 if ~isfield(handles,’elems’)

183 set(handles.edit2,’String’,’ Warning: First Load Data ’)

184 return

185 end

186

187 %close open figures

188 set(QPFA, ’HandleVisibility’, ’off’);

189 close all;

190 set(QPFA, ’HandleVisibility’, ’on’);

191

192 set(handles.edit2,’String’,’ Please Wait ...’)

193 if isfield(handles,’saveFlag’)

194 saveFlag = handles.saveFlag;

195 else

196 saveFlag = 0;
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197 end

198 [minall, maxall,elemval,cricUL,cricUP,cricD,cricM,uncertainty]=rankSCAL(

handles.elems,handles);

199 set(handles.edit2,’String’,’’)

200 unt=’ Ma’;

201 result_str=[{’Results:’},{’’},{[’ Early Limit: ’ num2str(cricUL) unt]},{[’

Early Bound: ’ num2str(cricUP) unt]},...

202 { [’ Best Estimate Critical Moment: ’ num2str(cricM) unt]},{[’

Uncertainty: ’ num2str(uncertainty) unt]},...

203 {[’ Late Bound: ’ num2str(cricD) unt]},{’ Late Limit: Present day’},{’’},{

’ For Theory See: Amosu and Sun (2018), A Quantitative Probabilistic

Framework for Estimating the Critical Moment in a Petroleum System, AAPG

Bulletin’}];

204

205 set(handles.edit2,’String’,’’)

206 set(handles.text4,’String’,result_str)

207 guidata(hObject,handles);

208

209 u2=get(handles.radiobutton6,’Value’);

210 if (u2 == 1)

211 plotEventChart(levelss,elemval,cricUL,cricUP,cricD,cricM,ncol,minall,maxall);

212 if (isfield(handles,’saveFlag’) && handles.saveFlag==1)

213 saveas(gcf, handles.saveName5,’fig’);

214 saveas(gcf, handles.saveName6,’png’);

215 close(gcf);

216 end

217

218 end

219

220 guidata(hObject,handles);

221

222

223
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224 % --- Executes on button press in pushbutton4.

225 function pushbutton4_Callback(hObject, eventdata, handles)

226 % hObject handle to pushbutton4 (see GCBO)

227 % eventdata reserved - to be defined in a future version of MATLAB

228 % handles structure with handles and user data (see GUIDATA)

229 if ~isfield(handles,’elems’)

230 set(handles.edit2,’String’,’ Warning: First Load Data ’)

231 return

232 end

233 handles.saveFlag=1;

234 guidata(hObject,handles);

235

236 set(handles.edit2,’String’,’Please Wait...Saving Plots’)

237 mkdir(’./QPFA_Output’);

238 PathName=’./QPFA_Output’;

239 datvarnam=datestr(now, ’dd_mmm_yyyy_HH_MM_SS’);

240 FileName1a=[’QPF1_’,datvarnam,’.fig’];

241 FileName1b=[’QPF1_’,datvarnam,’.png’];

242 FileName1c=[’QPF2_’,datvarnam,’.fig’];

243 FileName1d=[’QPF2_’,datvarnam,’.png’];

244 FileName1e=[’QPF3_’,datvarnam,’.fig’];

245 FileName1f=[’QPF3_’,datvarnam,’.png’];

246 handles.saveName1 = fullfile(PathName,FileName1a);

247 handles.saveName2 = fullfile(PathName,FileName1b);

248 handles.saveName3 = fullfile(PathName,FileName1c);

249 handles.saveName4 = fullfile(PathName,FileName1d);

250 handles.saveName5 = fullfile(PathName,FileName1e);

251 handles.saveName6 = fullfile(PathName,FileName1f);

252

253 pushbutton2_Callback(hObject, eventdata, handles);

254 handles.saveFlag=0;

255 set(handles.edit2,’String’,’Done’)

256 guidata(hObject,handles);

157



257

258

259 % -----------------------------------------------------------------------

260 function [levelss,ncol]=choose_time_scale(tscal)

261 addpath(’dependencies’)

262 switch tscal

263 case ’GSA1983’

264 gsa1983=readtable(’geol_time_lab.xlsx’,’Sheet’,’GSA1983’);

265 level1=gsa1983(1:7,:);level2=gsa1983(9:21,:);

266 level3=gsa1983(23:32,:);level4=gsa1983(34:37,:);

267 levelss={level1;level2;level3;level4};

268 ncol=37;

269 clearvars gsa1983 leve11 level2 level3 level4;

270 case ’HARLAND1990’

271 harland1990=readtable(’geol_time_lab.xlsx’,’Sheet’,’HARLAND1990’);

272 level1=harland1990(1:7,:);level2=harland1990(9:21,:);

273 level3=harland1990(23:28,:);level4=harland1990(30:32,:);

274 levelss={level1;level2;level3;level4};

275 ncol=32;

276 clearvars harland1990 leve11 level2 level3 level4;

277 case ’HAQ1998’

278 haq1998=readtable(’geol_time_lab.xlsx’,’Sheet’,’HAQ1998’);

279 level1=haq1998(1:7,:);level2=haq1998(9:21,:);

280 level3=haq1998(23:32,:);level4=haq1998(34:37,:);

281 levelss={level1;level2;level3;level4};

282 ncol=37;

283 clearvars haq1998 leve11 level2 level3 level4;

284 case ’GSA1999’

285 gsa1999=readtable(’geol_time_lab.xlsx’,’Sheet’,’GSA1999’);

286 level1=gsa1999(1:7,:);level2=gsa1999(9:21,:);

287 level3=gsa1999(23:32,:);level4=gsa1999(34:37,:);

288 levelss={level1;level2;level3;level4};

289 ncol=37;
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290 clearvars gsa1999 leve11 level2 level3 level4;

291 case ’USGS2001’

292 usgs2001=readtable(’geol_time_lab.xlsx’,’Sheet’,’USGS2001’);

293 level1=usgs2001(1:7,:);level2=usgs2001(9:21,:);

294 level3=usgs2001(23:26,:);level4=usgs2001(28:31,:);

295 levelss={level1;level2;level3;level4};

296 ncol=31;

297 clearvars usgs2001 leve11 level2 level3 level4;

298 end%%%endswitch

299

300

301 % -----------------------------------------------------------------------

302

303 function [elems, petData]=getpetData(filein)

304 [~, ~, petData]=xlsread(filein);

305 %%keywords have to match in file

306 SR = petData(strcmp(petData(:,1),’Source Rock’),:);

307 RR = petData(strcmp(petData(:,1),’Reservoir Rock’),:);

308 OV = petData(strcmp(petData(:,1),’Overburden’),:);

309 SL = petData(strcmp(petData(:,1),’Seal Rock’),:);

310 TF = petData(strcmp(petData(:,1),’Trap Formation’),:);

311 GMA= petData(strcmp(petData(:,1),’Generation Migration and Accumulation’),:);

312 PR = petData(strcmp(petData(:,1),’Preservation Time’),:);

313 elems={SR;RR;SL;OV;TF;GMA;PR};

314

315 % -----------------------------------------------------------------------

316

317 function hfig1=plotEventChart(levelss,elemval,cricUL,cricUP,cricD,cricM,ncol,

minall,maxall)

318 hfig1=figure(4);

319 set(hfig1,’units’,’normalized’,’outerposition’,[0 0 0.98 0.98]);

320 xr=[0 -100 -100 0];yr=[-100 -100 100 100];

321 %patch(xr,yr,[1 1 1])
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322

323 col=plotscale(levelss,ncol,minall,maxall);

324 col2=flipud(col);

325 col2(1:7,:)=[0 0 0; 0 0.5 0; 0 0 1;1 0 0;0.8 0.5 0; 0 1 0; 0.5 0.5 0.4];

326

327

328 elestring={’Source Rock’;’Reservoir Rock’;’Seal Rock’;’Overburden’;...

329 ’Trap Formation’;{’Generation’; ’Migration’; ’Accumulatiom’};...

330 ’Preservation’;{’Critical Range &’; ’Critical Moment’}};

331 count=0;

332

333 for kk=1:length(elemval)

334 if ~isnan(elemval{kk});if ~isempty(elemval{kk})

335 val=elemval{kk};

336 for jj=1:2:length(val)

337 xx=[val(jj) val(jj+1) val(jj+1) val(jj)];

338 yy=[count-1 count-1 count count];

339 patch(xx,yy,col2((-count+1),:),’FaceAlpha’,1);

340 text(minall-1,count-0.5,elestring{kk,:},’Fontsize’,15,’Fontweight’,’bold’,’

Color’,’k’);

341 end

342 count=count-1;

343 clear val;

344 end;end

345 end

346 mksz=28;

347 for mm=kk+1:kk+1

348 plot(cricUL,count-0.5,’ks’,’Markersize’,mksz+10,’MarkerFacecolor’,’k’);

hold on

349 line([ cricUP cricD],[count-0.5 count-0.5],’Linewidth’,2,’Color’,’k’);

hold on;

350 plot(cricUP,count-0.5,’b^’,’Markersize’,mksz-2,’MarkerFacecolor’,’b’);hold

on
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351 %if (cricUP == cricD); mksz=mksz-8; end

352 plot(cricD,count-0.5,’ro’,’Markersize’,mksz-4,’MarkerFacecolor’,’r’);hold

on;

353 % if (cricM == cricD); mksz=mksz-8; end

354 plot(cricM,count-0.5,’gh’,’Markersize’,mksz-8,’MarkerFacecolor’,[0

0.3906 0]);hold on

355 %text(pos+2.5,count-0.5,’\uparrow’,’Fontsize’,50,’Fontweight’,’bold’,’

Color’,’r’)%2.5 corrects for arrow head length

356 text(minall-1,count-0.5,elestring{8,:},’Fontsize’,15,’Fontweight’,’bold’,’

Color’,’k’);

357 count=count-1;

358 end

359 grid on; grid minor;

360 xlabel(’Time (m.y.)’,’Fontsize’,35)

361 set(gca,’Fontweight’,’bold’,’Fontsize’,30,’Yticklabel’,[],’XColor’,’k’,’Ycolor

’,’k’);

362 ylim([count 3]);

363 box on;

364

365

366

367 % -----------------------------------------------------------------------

368

369

370

371 function [minall, maxall,elemval,cricUL,cricUP,cricD,cricM,uncertainty]=

rankSCAL(elems,handles)

372

373 %%sourcerock

374 sr=elems(1);sr=sr{1,1};[nsr,~]=size(sr);

375 srval=cell2mat(reshape(sr(1:nsr,2:3)’,1,[]));

376

377 %%reservoir rock
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378 rr=elems(2);rr=rr{1,1};[nrr,~]=size(rr);

379 rrval=cell2mat(reshape(rr(1:nrr,2:3)’,1,[]));

380

381 %%seal rock

382 sl=elems(3);sl=sl{1,1};[nsl,~]=size(sl);

383 slval=cell2mat(reshape(sl(1:nsl,2:3)’,1,[]));

384

385 %%overburden rock

386 ov=elems(4);ov=ov{1,1};[nov,~]=size(ov);

387 ovval=cell2mat(reshape(ov(1:nov,2:3)’,1,[]));

388

389 %%%%trapformation

390 tf=elems(5);tf=tf{1,1};[ntf,~]=size(tf);

391 tfval=cell2mat(reshape(tf(1:ntf,2:3)’,1,[]));

392

393 %%GMA

394 gma=elems(6);gma=gma{1,1};[ngma,~]=size(gma);

395 gmaval=cell2mat(reshape(gma(1:ngma,2:3)’,1,[]));

396

397 %%Preservation time

398 pt=elems(7);pt=pt{1,1};[npt,~]=size(pt);

399 ptval=cell2mat(reshape(pt(1:npt,2:3)’,1,[]));

400

401 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CRITICAL UMD

402 xvec=1:5000;

403 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%upper limit

404 geolct3a=zeros(1,5000);geolct3b=zeros(1,5000);geolct3c=zeros(1,5000);

405 geolct3d=zeros(1,5000);geolct3e=zeros(1,5000);geolct3f=zeros(1,5000);

406 geolct3g=zeros(1,5000);

407

408 p=srval(1); geolct3a(xvec < p)=geolct3a(xvec < p)+1;

409 p=newp(rrval,p);geolct3b(xvec < p)=geolct3b(xvec < p)+1;

410 p=newp(slval,p);geolct3c(xvec < p)=geolct3c(xvec < p)+1;

162



411 p=newp(ovval,p);geolct3d(xvec < p)=geolct3d(xvec < p)+1;

412 p=newp(tfval,p);geolct3e(xvec < p)=geolct3e(xvec < p)+1;

413 if ~isempty(gmaval);p=newp(gmaval,p);geolct3f(xvec < p)=geolct3f(xvec < p)+1;

end

414 if ~isempty(ptval);p=newp(ptval,p);geolct3g(xvec < p)=geolct3g(xvec < p)+1;end

415 geolct3=geolct3a;

416 if any(geolct3b>0);geolct3=geolct3.*geolct3b;end

417 if any(geolct3c>0);geolct3=geolct3.*geolct3c;end

418 if any(geolct3d>0);geolct3=geolct3.*geolct3d;end

419 if any(geolct3e>0);geolct3=geolct3.*geolct3e;end

420 if any(geolct3f>0);geolct3=geolct3.*geolct3f;end

421 if any(geolct3g>0);geolct3=geolct3.*geolct3g;end

422

423 geolct3=geolct3./max(geolct3);

424

425 maxall=max([srval rrval slval ovval tfval gmaval ptval]);

426 minall=min([srval rrval slval ovval tfval gmaval ptval]);

427 elemval={srval;rrval;slval;ovval; tfval; gmaval;ptval};

428 cricUL=round(p);

429

430

431 nsubp=handles.nsubp;

432 nind=handles.nind;

433

434 hfig4=figure(1);

435 set(hfig4,’units’,’normalized’,’outerposition’,[0 0 0.5 1]);

436 plotsub=[’a’;’ ’;’b’;’ ’;’c’;’ ’;’d’;’ ’;’e’;’ ’;’f’;’ ’;’g’;’ ’;...

437 ’h’;’ ’;’i’;’ ’;’j’;’ ’;’k’;’ ’;’l’;’ ’;’m’;’ ’;’n’;’ ’;...

438 ’o’;’ ’;’p’;’ ’;’q’;’ ’;’r’;’ ’;’s’;’ ’;’t’;’ ’;’u’;’ ’;’v’];

439

440 plotcnt=1;

441 if (nind(1) ==1)

442 subplot(nsubp,2,plotcnt)
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443 plotprob(geolct3a,minall,maxall,[ ’(’ plotsub(plotcnt,:) ’) Source Rock: First

Block’]);

444 plotcnt=plotcnt+2;

445 end

446

447 if (nind(2) ==1)

448 subplot(nsubp,2,plotcnt)

449 plotprob(geolct3b,minall,maxall,[ ’(’ plotsub(plotcnt,:) ’) Reservoir Rock:

First Block’]);

450 plotcnt=plotcnt+2;

451 end

452

453 if (nind(3) ==1)

454 subplot(nsubp,2,plotcnt)

455 plotprob(geolct3c,minall,maxall,[ ’(’ plotsub(plotcnt,:) ’) Seal Rock: First

Block’]);

456 plotcnt=plotcnt+2;

457 end

458

459 if (nind(4) ==1)

460 subplot(nsubp,2,plotcnt)

461 plotprob(geolct3d,minall,maxall,[ ’(’ plotsub(plotcnt,:) ’) Overburden: First

Block’]);

462 ylabel(’Probability’, ’Fontsize’,25,’Color’,’k’);

463 plotcnt=plotcnt+2;

464 end

465

466 if (nind(5) ==1)

467 subplot(nsubp,2,plotcnt)

468 plotprob(geolct3e,minall,maxall,[ ’(’ plotsub(plotcnt,:) ’) Trap Formation:

First Block’]);

469 plotcnt=plotcnt+2;

470 end
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471

472 if (nind(6) ==1)

473 subplot(nsubp,2,plotcnt)

474 plotprob(geolct3f,minall,maxall,[ ’(’ plotsub(plotcnt,:) ’) GMA: First Block’

]);

475 plotcnt=plotcnt+2;

476 end

477

478 if (nind(7) ==1)

479 subplot(nsubp,2,plotcnt)

480 plotprob(geolct3g,minall,maxall, [ ’(’ plotsub(plotcnt,:) ’) Preservation:

First Block’]);hold on;

481 plotcnt=plotcnt+2;

482 end

483

484

485 subplot(nsubp,2,plotcnt)

486 plotprob(geolct3,minall,maxall,[ ’(’ plotsub(plotcnt,:) ’) Product of

Probabilities: First Block’]);hold on;

487 plot(cricUL,max(geolct3),’ks’,’Markersize’,22,’MarkerFacecolor’,’k’);

488 xlabel(’Time (m.y.)’, ’Fontsize’,25,’Color’,’k’);

489 set(gca,’Xaxislocation’,’bottom’);grid on;grid minor;

490

491 box on;

492

493

494 %%%%%%%%%%%%%%%%%%%%lower limit

495

496 %%Best Estimate

497 %%%%%%%%%%%%%%%%%%%%%%%%%%criticalmoment

498 %%soucerock and overburden

499 geolct1=zeros(1,5000);

500 %find total length of overburden rock
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501 lenov=0;for jj=1:2:nov*2;lenov=lenov +(ovval(jj)-ovval(jj+1)); end

502 %%find section length above source rock and divide

503 for kk=1:2:nsr*2

504 lenab=0;

505 for jj=1:2:nov*2

506 if (ovval(jj+1) < srval(kk)) && (ovval(jj) <= srval(kk+1))

507 lenab=lenab + ( ovval(jj)-ovval(jj+1) );

508 elseif (ovval(jj+1) < srval(kk)) && (ovval(jj) > srval(kk+1))

509 lenab=lenab + ( srval(kk+1)-ovval(jj+1) );

510 end

511 end

512 factr=lenab/lenov;

513 ind=(xvec < ovval(jj) & xvec < srval(kk) );

514 geolct1(ind)=geolct1(ind)+factr;

515 end

516

517 %%%ReservoirRock and Seal and Trap

518 geolct2=zeros(1,5000);

519 for jj=1:2:nrr*2

520 for kk=1:2:nsl

521 ind=(xvec <= slval(kk) & xvec <= rrval(jj) & xvec <= cricUL );

522 geolct2(ind)=geolct2(ind)+(1./nsl);

523 end

524 for kk=1:2:ntf

525 ind=(xvec <= tfval(kk) & xvec <= rrval(jj) & xvec <= cricUL );

526 geolct2(ind)=geolct2(ind)+(1./ntf);

527 end

528

529 end

530 geolct1=geolct1./max(geolct1);geolct2=geolct2./max(geolct2);

531 geolct=geolct1.*geolct2;

532 geolct=geolct./max(geolct);

533
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534 pos=find(geolct==max(geolct),1,’last’);

535 cricM=round(pos);

536

537 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

538

539 %%source rock conditions

540 geoltimesr=zeros(1,5000);

541 %%Does time point fall after the initial source rock deposition.

542 %%Are there other younger source rock depositions?

543 %%assign score for time line after sr deposition

544 %%additional score for points after each new younger sr

545 if ~isnan(srval);if ~isempty(srval)

546 for jj=1:2:nsr*2

547 ind=(xvec <= srval(jj));

548 geoltimesr(ind)=geoltimesr(ind)+1;

549 end

550 geoltimesr=geoltimesr./max(geoltimesr);

551 end;end

552

553

554 %%reservoir rock conditions

555 geoltimerr=zeros(1,5000);

556 %%Presence of reservoir rock

557 if ~isnan(rrval);if ~isempty(rrval)

558 for jj=1:2:nrr*2

559 ind=(xvec <= rrval(jj));

560 geoltimerr(ind)=geoltimerr(ind)+1;

561 end

562 geoltimerr=geoltimerr./max(geoltimerr);

563 end;end

564

565 if isempty(srval) || isempty(rrval)

566 disp(’No Source Rock or No Reservoir Rock: No Petroleum System’)
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567 else

568

569

570 %%seal rock conditions

571 %%time younger than seal rock counts

572 geoltimesl=zeros(1,5000);

573 if ~isnan(slval);if ~isempty(slval)

574 for jj=1:2:nsl*2

575 ind=(xvec <= slval(jj));

576 geoltimesl(ind)=geoltimesl(ind)+1;

577 end

578 geoltimesl=geoltimesl./max(geoltimesl);

579 end;end

580

581

582 %%overburden rock conditions

583 geoltimeov=zeros(1,5000);

584 if ~isnan(ovval);if ~isempty(ovval)

585 for jj=1:2:nov*2

586 ind=(xvec <= ovval(jj));

587 geoltimeov(ind)=geoltimeov(ind)+1;

588 end

589 geoltimeov=geoltimeov./max(geoltimeov);

590 end;end

591

592

593

594 %%trap formation conditions

595 geoltimetf=zeros(1,5000);

596 if ~isnan(tfval);if ~isempty(tfval)

597 for jj=1:2:ntf*2

598 ind=(xvec <= tfval(jj));

599 geoltimetf(ind)=geoltimetf(ind)+1;
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600 end

601 geoltimetf=geoltimetf./max(geoltimetf);

602 end;end

603

604

605 %%gma conditions

606 geoltimegma=zeros(1,5000);

607 if ~isnan(gmaval);if ~isempty(gmaval)

608 for jj=1:2:ngma*2

609 ind=(xvec <= gmaval(jj));

610 geoltimegma(ind)=geoltimegma(ind)+1;

611 end

612 geoltimegma=geoltimegma./max(geoltimegma);

613 end;end

614

615

616 %%preservation conditions

617 geoltimept=zeros(1,5000);

618 if ~isnan(ptval);if ~isempty(ptval)

619 for jj=1:2:npt*2

620 ind=(xvec <= ptval(jj));

621 geoltimept(ind)=geoltimept(ind)+1;

622 %begining of preservation time

623 ind=round(ptval(1));

624 geoltimept(ind)=geoltimept(ind)+1;

625 end

626 geoltimept=geoltimept./max(geoltimept);

627 end;end

628

629

630 %%%sum all together and normalize

631 %%%geoltime=geoltimesr+geoltimerr+geoltimesl+geoltimeov+geoltimetf+geoltimegma

+geoltimept;
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632 geoltime=geoltimesr;

633 if any(geoltimerr>0); geoltime=geoltime.*geoltimerr; end

634 if any(geoltimesl>0); geoltime=geoltime.*geoltimesl; end

635 if any(geoltimeov>0); geoltime=geoltime.*geoltimeov; end

636 if any(geoltimetf>0); geoltime=geoltime.*geoltimetf; end

637 if any(geoltimegma>0); geoltime=geoltime.*geoltimegma; end

638 if any(geoltimept>0); geoltime=geoltime.*geoltimept; end

639 geoltime=geoltime./max(geoltime);

640

641 pgeoltime=geoltimesr+geoltimerr+geoltimesl+geoltimeov+geoltimetf+geoltimegma+

geoltimegma;

642 pgeoltime=pgeoltime./max(pgeoltime);

643 p=find(geoltime==max(geoltime),1,’last’);

644 cricD=round(p);

645

646 geolnextlev=max(geoltime(xvec > cricM));

647 pUP=find(geoltime==geolnextlev,1,’last’);

648 cricUP=round(pUP);if (cricUP > cricUL); cricUP=cricUL;end

649

650 geolnextlev=geoltime(xvec==cricUP);

651 %%%%%%%%%%

652 %%uncertainty

653 if (cricUP == cricD)

654 geolnextlev=max(pgeoltime(xvec > cricM));

655 uncUP=find(pgeoltime==geolnextlev,1,’last’);

656 uncertainty=0.5*(uncUP-cricUP);

657 else

658 uncertainty=0.5*(cricUP-cricD);

659 end

660

661 hfig2=figure(1);

662 set(hfig2,’units’,’normalized’,’outerposition’,[0 0 0.5 1]);

663 oldplotcnt=plotcnt;
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664 plotcnt=2;

665 if (nind(1) ==1)

666 subplot(nsubp,2,plotcnt)

667 plotprob(geoltimesr,minall,maxall,[ ’(’ plotsub(oldplotcnt+plotcnt,:) ’)

Source Rock: All Blocks’]);

668 plotcnt=plotcnt+2;

669 end

670

671 if (nind(2) ==1)

672 subplot(nsubp,2,plotcnt)

673 plotprob(geoltimerr,minall, maxall,[ ’(’ plotsub(oldplotcnt+plotcnt,:) ’)

Reservoir Rock: All Blocks’]);

674 plotcnt=plotcnt+2;

675 end

676

677 if (nind(3) ==1)

678 subplot(nsubp,2,plotcnt)

679 plotprob(geoltimesl,minall,maxall,[ ’(’ plotsub(oldplotcnt+plotcnt,:) ’) Seal

Rock: All Blocks’]);

680 plotcnt=plotcnt+2;

681 end

682

683 if (nind(4) ==1)

684 subplot(nsubp,2,plotcnt)

685 plotprob(geoltimeov,minall,maxall,[ ’(’ plotsub(oldplotcnt+plotcnt,:) ’)

Overburden: All Blocks’]);

686 ylabel(’Probability’, ’Fontsize’,25,’Color’,’k’);

687 plotcnt=plotcnt+2;

688 end

689

690 if (nind(5) ==1)

691 subplot(nsubp,2,plotcnt)

692 plotprob(geoltimetf,minall,maxall,[ ’(’ plotsub(oldplotcnt+plotcnt,:) ’) Trap
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Formation: All Blocks’]);

693 plotcnt=plotcnt+2;

694 end

695

696 if (nind(6) ==1)

697 subplot(nsubp,2,plotcnt)

698 plotprob(geoltimegma,minall,maxall,[ ’(’ plotsub(oldplotcnt+plotcnt,:) ’) GMA:

All Blocks’]);

699 plot(uncUP,1,’bv’,’Markersize’,20,’MarkerFaceColor’,’b’)

700 plotcnt=plotcnt+2;

701 end

702

703 if (nind(7) ==1)

704 subplot(nsubp,2,plotcnt)

705 plotprob(geoltimept,minall,maxall,[ ’(’ plotsub(oldplotcnt+plotcnt,:) ’)

Preservation: All Blocks’]);

706 plotcnt=plotcnt+2;

707 end

708

709 subplot(nsubp,2,plotcnt)

710 plotprob(geoltime,minall,maxall,[ ’(’ plotsub(oldplotcnt+plotcnt,:) ’) Product

of Probabilities: All Blocks’]);

711

712 hold on;

713 plot(cricUP,geolnextlev,’b^’,’Markersize’,20,’MarkerFacecolor’,’b’);

714 plot(cricD,max(geoltime),’ro’,’Markersize’,14,’MarkerFacecolor’,’r’);

715 xlabel(’Time (m.y.)’, ’Fontsize’,25,’Color’,’k’);

716 set(gca,’Xaxislocation’,’bottom’);grid on;

717 end

718 box on;

719

720 if (isfield(handles,’saveFlag’) && handles.saveFlag==1)

721 saveas(hfig2, handles.saveName1,’fig’);
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722 saveas(hfig2, handles.saveName2,’png’);

723 close(hfig2);

724 end

725

726 hfig3=figure(3);

727 set(hfig3,’units’,’normalized’,’outerposition’,[0 0 0.5 1]);

728 subplot(3,1,1)

729 plotprob(geolct1,minall,maxall,’(a) Probability of Generation and Migration’);

730 subplot(3,1,2)

731 plotprob(geolct2,minall, maxall,’(b) Probability of Accumulation’)

732 ylabel(’Probability’, ’Fontsize’,25,’Color’,’k’)

733 subplot(3,1,3)

734 plotprob(geolct,minall, maxall,’(c) Product of Probabilities’)

735 hold on;

736 plot(cricM,max(geolct),’gh’,’Markersize’,18,’MarkerFacecolor’,[0 0.3906

0]);

737 xlabel(’Time (m.y.)’, ’Fontsize’,25,’Color’,’k’);

738 set(gca,’Xaxislocation’,’bottom’);grid on;

739 box on;

740

741 if (isfield(handles,’saveFlag’) && handles.saveFlag==1)

742 saveas(hfig3, handles.saveName3,’fig’);

743 saveas(hfig3, handles.saveName4,’png’);

744 close(hfig3);

745 end

746

747

748 % -----------------------------------------------------------------------

749

750 function p=newp(new,p)

751 nn=length(new);

752 fp_new=[];

753 for jj=2:2:nn
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754 if ( new(jj) <= p ); fp_new=[ new(jj-1) new(jj) ];break; end

755 %%%%first_participating influence from higher block

756

757 end

758 if (~isempty(fp_new) ); p=fp_new(1); end %%influence from upper block

759 %%%if (~isempty(fp_new) && fp_new(1) < p); p=fp_new(1); end

760

761 % -----------------------------------------------------------------------

762

763 function col=plotscale(levelss,ncol,minall,maxall)

764 col=simple_separate_colors(ncol*2);count=1;

765 for kk=4:-1:1

766 levelcell=table2cell(levelss{kk});[n,~]=size(levelcell);

767 st=min([ levelcell{:,3}]);

768 for jj=1:n

769 len=levelcell{jj,4}-levelcell{jj,3};

770 if (kk ==1)

771 yst=kk-2;

772 xx=[st st+len st+len st];yy=[yst+1 yst+1 yst+1+0.5 yst+1+0.5 ];

773 hpat=patch(xx,yy,col(count,:),’FaceAlpha’,0.6);

774 txpos=st+len/1.8;

775 if (txpos <= maxall && txpos > (minall+5))

776 h=text(txpos,(yst+1.2),levelcell{jj,2},’Fontsize’,20,’Fontweight’,’bold’,’

Color’,’k’);

777 %set(h,’Rotation’,270);

778 end

779 else

780 yst=kk-2;

781 xx=[st st+len st+len st];yy=[yst yst yst+1 yst+1];

782 hpat=patch(xx,yy,col(count,:),’FaceAlpha’,1);

783 txpos=st+len/1.8;

784 if (txpos <= maxall && txpos > (minall+10) )

785 h=text(txpos,(yst+0.6),levelcell{jj,1},’Fontsize’,20,’Fontweight’,’bold’,’
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Color’,’k’);

786 %set(h,’Rotation’,270);

787 end

788 end

789 count=count+1;

790 hold on

791

792 st=st+len;

793

794 end

795 clear levelcell;

796 end

797 ylim([-10 3]);xlim([minall maxall+5]);

798 set(gca,’Xdir’,’reverse’,’Xaxislocation’,’top’,’XColor’,’k’,’YColor’,’k’,’

Fontsize’,35);

799

800

801 % -----------------------------------------------------------------------

802

803

804 function col=simple_separate_colors(n)

805 col = zeros(n,3);

806 x=linspace(0.1,0.9,30);[X,Y,Z]=meshgrid(x,x,x);col_large_rgb=[X(:),Y(:),Z(:)];

807 C = makecform(’srgb2lab’);col_large_lab = applycform(col_large_rgb,C);

808 benchmarkcol = applycform([1 0 0],C);prevcol = benchmarkcol(end,:); gap = inf(

size(col_large_rgb,1),1);

809 for k = 1:n

810 eulerd=sqrt(sum((col_large_lab-repmat(prevcol,[size(col_large_lab,1) 1]))

.^2,2));

811 gap = min(eulerd,gap);[~,ind] = max(gap);

812 prevcol = col_large_lab(ind,:); col(k,:) = col_large_rgb(ind,:);

813 end

814
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815 % -----------------------------------------------------------------------

816

817 function plotprob(geoltm,minall,maxall,titl)

818 plot(geoltm,’Linewidth’,3);xlim([minall maxall]);

819 set(gca,’Xdir’,’reverse’,’Xaxislocation’,’top’);grid on;grid minor;

820 set(gca,’Fontsize’,18,’XColor’,’k’,’YColor’,’k’)

821 t=title(titl,’Color’,’k’);

822

823 %right align

824 % set(t, ’horizontalAlignment’, ’right’);

825 % set(t, ’units’, ’normalized’)

826 % h1 = get(t, ’position’);

827 % set(t, ’position’, [1 h1(2) h1(3)])

828 hold on

829 % -----------------------------------------------------------------------

830

831

832 % --- Executes during object creation, after setting all properties.

833 function uipanel1_CreateFcn(hObject, eventdata, handles)

834 % hObject handle to uipanel1 (see GCBO)

835 % eventdata reserved - to be defined in a future version of MATLAB

836 % handles empty - handles not created until after all CreateFcns called

837

838

839 % --- Executes during object creation, after setting all properties.

840 function uibuttongroup1_CreateFcn(hObject, eventdata, handles)

841 % hObject handle to uibuttongroup1 (see GCBO)

842 % eventdata reserved - to be defined in a future version of MATLAB

843 % handles empty - handles not created until after all CreateFcns called

844

845

846 % --- Executes on button press in radiobutton6.

847 function radiobutton6_Callback(hObject, eventdata, handles)
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848 % hObject handle to radiobutton6 (see GCBO)

849 % eventdata reserved - to be defined in a future version of MATLAB

850 % handles structure with handles and user data (see GUIDATA)

851

852 % Hint: get(hObject,’Value’) returns toggle state of radiobutton6

853

854 % --- Executes on button press in pushbutton5.

855 function pushbutton5_Callback(hObject, eventdata, handles)

856 % hObject handle to pushbutton5 (see GCBO)

857 % eventdata reserved - to be defined in a future version of MATLAB

858 % handles structure with handles and user data (see GUIDATA)

859 close(gcbf);

860 close all;

861 QPFA;

862 clear all; clc;

863

864 % --- Executes on button press in pushbutton6.

865 function pushbutton6_Callback(hObject, eventdata, handles)

866 % hObject handle to pushbutton6 (see GCBO)

867 % eventdata reserved - to be defined in a future version of MATLAB

868 % handles structure with handles and user data (see GUIDATA)

869 close(gcbf);

870

871 % --- Executes during object creation, after setting all properties.

872 function text4_CreateFcn(hObject, eventdata, handles)

873 % hObject handle to text4 (see GCBO)

874 % eventdata reserved - to be defined in a future version of MATLAB

875 % handles empty - handles not created until after all CreateFcns called
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