
ESL-TR-01/02-02

AIR-SIDE ACCURACY TESTS FOR FOUR HVAC SYSTEMS: DUAL DUCT CONSTANT VOLUME (DDCAV), DUAL DUCT VARIABLE VOLUME (DDVAV), CONSTANT VOLUME WITH REHEAT (CAVRH), VARIABLE VOLUME WITH REHEAT (VAVRH), FOUR PIPE FAN COIL UNIT (FC), FOUR PIPE INDUCTION UNIT (FI), AND SINGLE ZONE (SZ) SYSTEMS

Prepared by

Jeff S. Haberl, Ph.D., P.E. Namir Saman, Ph.D., P.E. Tarek Bou-Saada

> March 2001 Revised June 2002

ENERGY SYSTEMS LABORATORY

Texas Engineering Experiment Station Texas A&M University System

ABSTRACT

This report contains engineering calculations for seven (7) air-side, heating, ventilating and airconditioning systems (HVAC) systems, including: dual duct constant volume (DDCAV), dual duct variable volume (DDVAV), constant volume with reheat (CAVRH), and variable volume with reheat (VAVRH), four pipe fan coil unit (FC), four pipe induction unit (FI), and a single zone air conditioning system (SZ).

These calculations are presented in spreadsheets that include a running commentary so that the reader can trace through the calculations to see what is being performed. Each system also contains a one-line diagram that shows the system being simulated and the location of the variables used in the calculation.

These calculations were developed as part of the ASHRAE 865-RP project, and include tables that list the results for the 865-RP accuracy tests, as well as the test conditions. These spreadsheets are also useful for developing educational materials, and can be used to check the values obtained from a computer simulation program that contain the exact same schematic as is shown for each system. With only a few exceptions, the formulas for the calculations have come from the ASHRAE Handbook, as indicated in the spreadsheet narrative.

These spreadsheets were developed in the most basic Lotus *.wk1 format and can be run in any spreadsheet that accepts Lotus *.wk1 format. To use the spreadsheets the user loads the spreadsheet, updates only the values needed and recalculates the spreadsheet manually (i.e., press the F9 button). Calculations are repeated column -wise in the spreadsheet to reach convergence. Each calculation represents one set of conditions. To obtain answers for multiple conditions the user will need to enter the new conditions and recalculate for each set of conditions.

This work was sponsored by ASHRAE under research project 865-RP. The original spreadsheets were developed by Drs. Saman and Haberl and refined by Haberl. The DOE-2 input files were developed by Tarek Bou-Saada.

TABLE OF CONTENTS

ABSTI	RACT	
ACKN	IOWLEDGEMENTS	2
1.0	GENERAL INSTRUCTIONS FOR USING THE SPREADSHEETS	б
2.0	FILES INCLUDED WITH THIS REPORT	
3.0	DESCRIPTION OF 865-RP TEST CASES	9
4.0	SYSTEM DESCRIPTIONS	
4.1	DUAL DUCT CONSTANT VOLUME (DDCAV).	
4.2	DUAL DUCT VARIABLE VOLUME (DDVAV).	
4.3	CONSTANT VOLUME WITH REHEAT (CAVRH).	
4.4	FOUR PIPE FAN COIL UNIT (FC)	
4.5	FOUR PIPE INDUCTION UNIT (FI)	
4.6	SINGLE ZONE (SZ)	

LISTING OF TABLES

 Fable 1: Test cases (I-P units)
 Fable 4: Constant Volume Dual Duct System Results for 865-RP Accuracy Tests (DDCAV). NOTE: the PSU1 and PSU2 values are those that represent accuracy calculations by Penn State University. The TAMU values are the current spreadsheets. The BLAST values are the simulations performed by Penn State using BLAST, and the DOE-2 values represent the simulations run by the authors using the DOE-2 input files contained in this report. Fable 5: Variable Volume Dual Duct System Conditions for 865-RP Accuracy Tests (DDVAV) Fable 6: Variable Volume Dual Duct System Results for 865-RP Accuracy Tests (DDVAV)
 PSU1 and PSU2 values are those that represent accuracy calculations by Penn State University. The TAMU values are the current spreadsheets. The BLAST values are the simulations performed by Penn State using BLAST, and the DOE-2 values represent the simulations run by the authors using the DOE-2 input files contained in this report. 16 Table 5: Variable Volume Dual Duct System Conditions for 865-RP Accuracy Tests (DDVAV)
 TAMU values are the current spreadsheets. The BLAST values are the simulations performed by Penn State using BLAST, and the DOE-2 values represent the simulations run by the authors using the DOE-2 input files contained in this report. 16 Fable 5: Variable Volume Dual Duct System Conditions for 865-RP Accuracy Tests (DDVAV)
 Penn State using BLAST, and the DOE-2 values represent the simulations run by the authors using the DOE-2 input files contained in this report. 16 Fable 5: Variable Volume Dual Duct System Conditions for 865-RP Accuracy Tests (DDVAV) Fable 6: Variable Volume Dual Duct System Results for 865-RP Accuracy Tests (DDVAV)
DOE-2 input files contained in this report
Cable 5: Variable Volume Dual Duct System Conditions for 865-RP Accuracy Tests (DDVAV)53Cable 6: Variable Volume Dual Duct System Results for 865-RP Accuracy Tests (DDVAV)54
Cable 6: Variable Volume Dual Duct System Results for 865-RP Accuracy Tests (DDVAV)
Table 7: Constant Volume Debast System Conditions for 865 DD Acouracy Tests (CAVDH) 59
Table 7. Constant volume Reneat System Conditions for 803-RF Accuracy Tests (CAVRIT)
Cable 8: Constant Volume Reheat System Results for 865-RP Accuracy Tests (CAVRH)
Table 9: Variable Volume Reheat System Conditions for 865-RP Accuracy Tests (VAVRH)
Cable 10: Variable Volume Reheat System Results for 865-RP Accuracy Tests (VAVRH) 64
Fable 11: Four pipe Fan Coil Unit Conditions for 865-RP Accuracy Tests (FC) 67
Fable 12: Four pipe Fan Coil Unit Results for 865-RP Accuracy Tests (FC) 68
Fable 13: Four pipe Induction Unit Conditions for 865-RP Accuracy Tests (FI) 72
Fable 14: Four pipe Induction Unit Results for 865-RP Accuracy Tests (FI)
Table 15: Single Zone System Conditions for 865-RP Accuracy Tests (SZ) 77
Fable 16: Single Zone System Results for 865-RP Accuracy Tests (SZ)

LISTING OF FIGURES

Figure 1: General layout of the spreadsheets used for the air-side calculations	6
Figure 2: Example spreadsheet for the dual duct constant air volume system (DDCAV). NOTE: the ma,	
pca,s, cd, z2s, Z1, Z2, mr, rfi, z2s values indicate those listed in the results tables	7
Figure 3: Constant Volume Dual Duct System Schematic (DDCAV)	10
Figure 4: Results section of the spreadsheet showing coil loads	13
Figure 5: Results section of the spreadsheet showing conditions	14
Figure 6: Dual Duct Variable Air Volume System Schematic (DDVAV)	50
Figure 7: Constant Air Volume with Reheat System Schematic (CAVRH)	55
Figure 8: Variable Air Volume Reheat System Schematic (VAVRH)	60
Figure 9: Four Pipe Fan Coil System Schematic (FC)	65
Figure 10: Four Pipe Induction System Schematic (FI)	69
Figure 11: Single Zone System Schematic (SZ)	

1.0 GENERAL INSTRUCTIONS FOR USING THE SPREADSHEETS

The spreadsheets that are used to perform the air-side calculations are formatted as shown in Figure 1.1. Input values are entered into the cells in the upper left corner of the spreadsheet. The output from the spreadsheet is posted directly to the right of the input section. The calculations are performed in the columns below the input-output section. Since the air-side calculations often require an iterative solution, the calculations are repeated in columns across the spreadsheet from left to right using the values from the columns that were previously calculated. The "answer" is posted from the rightmost set of columns in the output section. These spreadsheets are provided in an unprotected mode. Hence the user should only enter values into the "input" section shown. Changing values in other parts of the spreadsheet can cause incorrect answers.

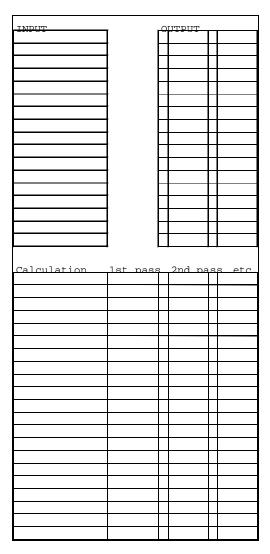


Figure 1: General layout of the spreadsheets used for the air-side calculations.

*** spreadsheet for	calculatin	g CVDDUC	CT.WK1 03/	05/00								
TEST # (18)=	8.00		Case 6 -R	AFE			RESULTS:			l i	T	
ECON(0,1=T,2=E)	2.00		Case 0 -RA	LL			RESULTS.	1			1	
LCO1.(0,1-1,2-L)	2.00							"u col."	"v col."	average'	1	
CCLASP(F) =	55.00		SAMPLE	W calc			QCL=	14645.05	14645.40	14645.22	1	
CCLABP(psia)=	14.70		Tdew(F	55.000			QCS=	23570.06	23570.28	23570.17	1	
EXHAUST(0=sys,	14.70		Tdew(P Tdew(R	514.670			QC3= QCT=	38215.11	38215.67	38215.39	4	
CFMZD1 (CFM) =	600.00		Tdry(F)	75.000			QC1-	36213.11	38213.07	36213.39	4	
CFMZD1 (CFM) = CFMZD2 (CFM) =	700.00			534.670			QPH=	0.00	0.00	0.00	+	
CFMZD2 (CFM) = CFMZMIN1=	200.00		Tdry(R) P(psia)=	534.670 14.696			QPH= QHC=	9187.08	9186.90	9186.99	+	
CFMZMIN1= CFMZMIN2=	300.00		pws,dev	0.242			QHC= QHT=	9187.08	9186.90	9186.99	4	
CPMIZ/MIN2= CPAIR(Btu/lbF)=		@ 80 F		0.242			QHI=	9187.08	9180.90	9180.99	4	
· · · · · ·		@ 55 F	pws,dev					0.640	0.640	0.640	4	
CPh20(Btu/lbF)=		@ 55 F	pws,dry	0.540			FAN(HP)=	0.649	0.649	0.649	+	
FTP(in-H20) =	2.00		pws,dry	0.430			RFAN(HP)=	0.199	0.199	0.199	4	
FRACT(0,1) =	0.00		w(sat,de	0.009			CONTRACT	0.007	0.00-	0.077	+	
FRACTR(0,1)=	0.00		mlass 1	0.019			CONV(H) =	0.000	0.000	0.000	+	
FAN EFFICIENC			w(sat,dr	0.019			CONV(C)=	0.000	0.000	0.000	Ţ	
HCLASP (F) =	110.00			0.400								
HCLABP(psia)=	14.696		mu=	0.490								
MOTEFF=	0.90		RH%=	0.498								
MOTEFFR=	0.90					ents for pw,						
OADB(F)=	74.00					SHRAE HOF, 1997						
OAWB(F)=	70.00		C1=	-10214		100.45						
PHLABP (PSIA) =	14.70		c2=	-4.893		33.1930		т.	1	r	1	
PHLASP(F)=	45.00		c3=	-0.005		2.3190		o!	ma	pco	s	cd
QZL1(Btuh)=	2000		c4=		C17=	0.1707	T(F)	OADB	MADB	PHLADB	SADB	CCLADB
QZL2(Btuh)=	3000		c5=		C18=	1.1907	W(lb/lb)	OAW	MA	PHLAW	SAW	CCLAW
QZS1(Btuh)=	5000		c6=	0.000			v(ft3/lb)			Vtot	Vs	Vcc
QZS2 =	8000		c7=	4.164			i(Btu/lbda)					
RFAN EFFICIEN	0.70		c8=	-10440			M(lb/min)	Moa	Mma	Mma	Ms	Mcc
~			c9=	-11.295				-				
R =	1545.32		c10=	-0.027			"v col"	oa	ma	pco	S	cd
Ra =	53.35		c11=	0.000			T(F)	74.0000	74.9403	74.9403	76.0126	55.0000
RABPNF=	14.696		c12=	0.000			W(lb/lb)	0.01483	0.01222	0.01222	0.01222	0.00920
RABP=	14.696		c13=	6.546			v(ft3/lb)			13.7425		13.1668
					000000		i(Btu/lbda)	33.9947	04.5051	04.5051	31.6379	23.1918
DETENC MADE	1.00	. 1	NOTE: This	assumes 1"H	20 = 0.03	61 psi	M(lb/min)	36.4594	94.5971	94.5971	94.5971	76.2556
RFTP(in-H20)=	1.00						-					-
								z2s	Z1	Z2	mr	rfi
							T(F)	ZSADB2	ZDB1	ZDB2	RADBNF	RADBNF
ZDB1(F)=	74.00						W(lb/lb)	ZSAW2	ZW1	ZW2	RAW	RAW
QRA1(F)=	0.00						v(ft3/lb)	Vz2			Vradbnf	Vradbnf
ZDB2(F)=	76.00						i(Btu/lbda)		241	10	N	N
QRA2(F)=	0.00						M(lb/min)	Mz2	M1	M2	Mradbnf	Mradbnf
ZSABP1(Psia)=	14.696								~			
ZSABP2(Psia)=	14.696						"v col"	z2s	Z1	Z2	mr	rfi
ZBP1(Psia)	14.696						T(F)	65.2954	74.0000	76.0000	75.0009	75.0009
ZBP2(Psia)	14.696						W(lb/lb)	0.00976	0.01051	0.01066	0.01059	0.01059
							v(ft3/lb)	13.4422			13.7086	13.7086
							i(Btu/lbda)				L	
							M(lb/min)	50.9369	29.0416	29.0961	58.1377	58.1377
7: 0. E									DDCAU			

Figure 2: Example spreadsheet for the dual duct constant air volume system (DDCAV). NOTE: the ma, pca,s, cd, z2s, Z1, Z2, mr, rfi, z2s values indicate those listed in the results tables.

2.0 FILES INCLUDED WITH THIS REPORT

This report includes a CDROM with four spreadsheets that contain the air-side accuracy tests for four HVAC systems, including: dual duct constant volume (DDCAV), dual duct variable volume (DDVAV), constant volume with reheat (CAVRH), and variable volume with reheat (VAVRH).

The file names and contents of the four files on the CDROM are included in the table below. The spreadsheets were written with Lotus 123 and can be executed with any spreadsheet that can read .wk1 format files. No external calls or macros are used in the files.

ITEM NO:	FILENAME:	DESCRIPTION:
1.	CVDDUCT.WK1	Spreadsheet containing accuracy tests for the dual
		duct constant volume system (listed as DDCAV
		in 865-RP final report).
2.	VVDDUCT.WK1	Spreadsheet containing accuracy tests for the dual
		duct variable volume system (DDVAV).
3.	CVREHEAT.WK1	Spreadsheet containing accuracy tests for the
		constant volume with reheat system (CAVRH).
4.	VVREHEAT.WK1	Spreadsheet containing accuracy tests for the
		variable volume with reheat system (VAVRH).
5.	FOURPIPE.WK1	Spreadsheet containing accuracy tests for the four
		pipe fan coil system (FC).
6.	FPINDUCT.WK1	Spreadsheet containing accuracy tests for the four
		pipe induction system (FI).
7.	SINGLEZ.WK1	Spreadsheet containing accuracy tests for the
		single zone system (SZ).
8.	DDCAV.INP	DOE-2 input file used for the dual duct constant
		volume system.
9.	DDVAV.INP	DOE-2 input file used for the dual duct variable
		volume system .
10.	CAVRH.INP	DOE-2 input file used for the constant volume
		reheat system .
11.	VAVRH.INP	DOE-2 input file used for the variable volume
		reheat system .

3.0 DESCRIPTION OF 865-RP TEST CASES

In ASHRAE Research Project 865-RP each of the seven mechanical systems was tested over a range of four conditions using all possible economizer cycles. The four conditions are summarized in the first four cases shown in Table 1. Those systems capable of enthalpy economizer operation were tested, using only the enthalpy economizer, under two additional conditions. These two conditions are summarized in the final two cases of Table 1. Negative cooling loads shown in Table 1 are equivalent to positive heating loads. Other fixed conditions and their applicability to the various systems are shown in Table 2.

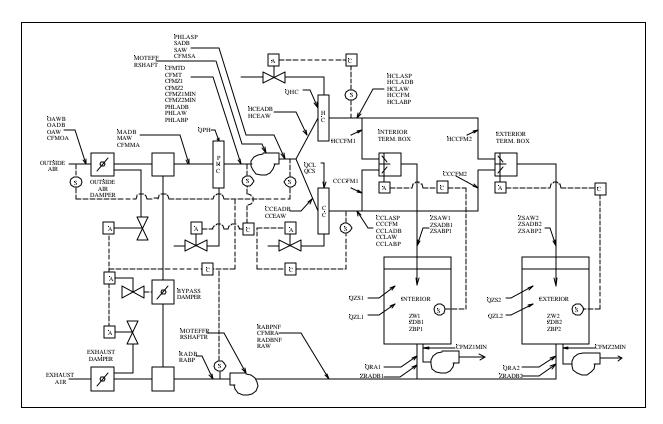

	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
Ambient						
Dry bulb (F)	-20	30	60	80	77	74
Wet bulb (F)	-20	20	45	75	55	70
Zone 1						
Dry bulb set point temperature (F)	70	71	74	75	74	74
Sensible cooling load (Btu/hr)	-10,000	-2,000	5,000	10,000	5,000	5,000
Latent cooling load (Btu/hr)	2,000	2,000	2,000	2,000	2,000	2,000
Zone 2						
Dry bulb set point temperature (F)	72	73	76	77	76	76
Sensible cooling load (Btu/hr)	-8,000	1,000	8,000	12,000	8,000	8,000
Latent cooling load (Btu/hr)	3,000	3,000	3,000	3,000	3,000	3,000

 Table 1: Test cases (I-P units)

	CV	VAV	DDCV	DDVAV	SZ	FC	IU
2" design supply fan pressure	Х	Х	Х	Х	Х	Х	Х
1" design return fan pressure	Х	Х	Х	Х	Х		
55°F supply air set point	Х	Х					
55°F cold deck set point			Х	Х			
110°F hot deck set point			Х	Х			
1°F return duct heat gain	Х	Х	Х	Х	Х		
600 CFM zone 1 supply	Х		Х		Х	Х	Х
200 CFM zone 1 exhaust	Х	Х	Х	Х	Х	Х	Х
700 CFM zone 2 supply	Х		Х		Х	Х	Х
300 CFM zone 2 exhaust	Х	Х	Х	Х	Х	Х	X
Return air temperature economy cycle	Х	Х	Х	Х	Х		
Return air enthalpy economy cycle	Х	Х	Х	Х	Х		
45°F preheat coil set point	Х	Х	Х	Х			Х

Table 2: Test case parameters (I-P) Units

4.0 SYSTEM DESCRIPTIONS

4.1 DUAL DUCT CONSTANT VOLUME (DDCAV).

Figure 3: Constant Volume Dual Duct System Schematic (DDCAV)

The input values for the DDCAV spreadsheet are as follows:

	-	
TEST # (18)=	8.00	This switch is used for cosmetic purposes only. It is used to change the label that appears directly to the right of the input cell and creates a set of "canned" labels used for one of the tests that the spreadsheet was developed for.
ECON(0,1=T,2=E)		This switch turns the economizer "on" or "off". It is also used to select whether the temperature (T) or enthalpy (E) economizer is used.
CCLASP(F) =	55.00	This variable is the cooling coil leaving air setpoint temperature (F).
CCLABP(psia)=	14.70	This variable is the cooling coil leaving air barometric pressure (PSIA).
EXHAUST(0=sys,1=zone)	1.00	This switch is used to calculate 'zone air exhaust' or 'system air exhaust'. This will cause a difference in the mass flow rates returning from the zone, and heat gain from the return fan.
CFMZD1 (CFM) =	600.00	This is the design air flow for zone 1 (CFM).
CFMZD2 (CFM) =		This is the design air flow for zone 2 (CFM).
CFMZMIN1=	200.00	This is the exhaust air for zone 1 (CFM)
CFMZMIN2=	300.00	This is the exhaust air for zone 2 (CFM)
CPAIR(Btu/lbF)=	0.2402	This is the constant that is used for the specific heat of air (80F).
CPh20(Btu/lbF)=		This is the constant that is used for the specific heat of water (55F).
FTP(in-H20) =	2.00	This is the total fan pressure across the supply fan (in-H20).
FRACT(0,1)=	0.00	This is the switch that is used to place the supply fan in the air stream (1) or outside of the air stream (0).
FRACTR(0,1)=	0.00	This is the switch that is used to place the return fan in the air stream (1) or outside of the air stream (0).
FAN EFFICIENCY=	0.70	This is the constant fan efficiency (%).
HCLASP (F) =	110.00	This is the heating coil leaving air setpoint temperature (F).

HCLABP(psia)=	14.696	This variable is the heating coil leaving air barometric
		pressure (PSIA).
MOTEFF=	0.90	This variable is the constant motor efficiency of the
		supply fan (%).
MOTEFFR=	0.90	This variable is the constant motor efficiency of the
		return fan (%).
OADB(F)=	74.00	This variable is the outside air dry bulb temperature
		(F).
OAWB(F)=	70.00	This variable is the outside air wet bulb temperature
		(F).
PHLABP (PSIA) =	14.70	This variable is the preheat coil leaving air barometric
		pressure (PSIA).
PHLASP(F)=	45.00	This variable is the setpoint temperature of the
		preheat coil (F).
QZL1(Btuh)=		This variable is the latent load of zone 1 (BTUH).
QZL2(Btuh)=		This variable is the latent load of zone 2 (BTUH).
QZS1(Btuh)=		This variable is the sensible load of zone 1 (BTUH).
QZS2 =		This variable is the sensible load of zone 2 (BTUH).
RFAN EFFICIENCY=	0.70	This variable is the constant fan efficiency of the
		return fan (%).
R =	1545.32	This variable is the gas constant for dry air (currently
		not used).
Ra =	53.35	This variable is the gas constant for dry air (ft-lbf/R-
		lb).
RABPNF=	14.696	This variable is the barometric pressure at a point in
		front of the return fan (PSIA).
RABP=	14.696	This variable is the barometric pressures at point in
		back of the return fan (PSIA).
RFTP(in-H20)=	1.00	This is the total fan pressure across the supply fan (in-
		H20).
ZDB1(F)=		This variable is the zone temperature for zone 1 (F).
QRA1(F)=	0.00	This variable is the heat gain of the ducts returning
		from zone 1 (F).
ZDB2(F)=		This variable is the zone temperature for zone 2 (F).
QRA2(F)=	0.00	This variable is the heat gain of the ducts returning
		from zone 2 (F).

ZSABP1(Psia)=	14.696	This variable is the barometric pressure of the supply
		air for zone 1 (PSIA).
ZSABP2(Psia)=	14.696	This variable is the barometric pressure of the supply
		air for zone 2 (PSIA).
ZBP1(Psia)	14.696	This variable is the barometric pressure of the air in
		zone 1 (PSIA).
ZBP2(Psia)	14.696	This variable is the barometric pressure of the air in
		zone 2 (PSIA).

The output from the DDCAV is listed in two tables to the left of the input table. In the upper table that is shown below, the coil loads and fan loads are shown. The QCL, QCS and QCT rows indicate the

RESULTS:			
	"u col."	"v col."	average
QCL=	0.00	0.00	0.00
QCS=	-0.22	0.00	-0.11
QCT=	-0.22	0.00	-0.11
QPH=	10032.82	10032.96	10032.89
QHC=	54929.10	54928.80	54928.95
QHT=	64961.92	64961.76	64961.84
FAN(HP) =	0.649	0.649	0.649
RFAN(HP) =	0.217	0.217	0.217
CONV(H) =	0.000	0.000	0.000
CONV(C) =	0.000	0.000	0.000

Figure 4: Results section of the spreadsheet showing coil loads.

main latent (QCL) and sensible (QCS) cooling coil loads. The "u col" and "v col" show the values for the last two iterations of the spreadsheet and the "average" shows the average of the last two columns of calculations.

The QPH, QHC and QHT are the totals of the preheating coil load (QPH), the main heating coil load (QHC) and the total of the preheat and main coil loads (QHT).

The power required by the supply (FAN) and return fans (RFAN) is indicated in horsepower (HP).

The CONV(H) and CONV(C) values indicate the difference between the calculations in the last two columns (i.e., a convergence indicator.

The second table indicates the psychrometric properties at various points around the simulation. The location of these points is shown in the DDCAV one-line schematic.

In the second table the values are listed in two rows. The units are listed in the vertical leftmost column. The variable names are listed across the rows. In the first row the OADB, MADB, PHLADB, SADB, CCLADB, HCLADB and ZSADB1 are shown. Where the OADB are the outside air conditions, the MADB are the mixed air conditions just before the preheating coil, the PHLADB are the conditions after the preheating coil. The SADB are the conditions after the main supply fan, the CCLADB are the conditions after the conditions of the air entering zone 1.

						1. 1	1
	0!	ma	pco	s	cd	hd	zls
T(F)	OADB	MADB	PHLADB	SADB	CCLADB	HCLADB	ZSADB1
W(lb/lb)	OAW	MA_	PHLAW	SAW	CCLAW	HCLAW	ZSAW1
v(ft3/lb)			Vtot	Vs	Vcc	Vhc	Vzl
i(Btu/lbda)							
M(lb/min)	Moa	Mma	Mma	Ms	Mcc	Mhc	Mzl
"v col"	oa	ma	pco	S	cd	hd	zls
T(F)	-20.0000	38.1894	45.0000	46.0093	46.0093	110.0000	84.7077
W(lb/lb)	0.00026	0.00157	0.00157	0.00157	0.00157	0.00157	0.00157
v(ft3/lb)			12.7550		12.7805	14.3978	13.7586
i(Btu/lbda)	-4.5284			12.7483	12.7523		
M(lb/min)	37.2204	101.9206	101.9206	101.9206	42.5330	59.3879	47.0403
	z2s	Z1	Z 2	mr	rfi	rfo	
T(F)	ZSADB2	ZDB1	ZDB2	RADBNF	RADBNF	RADB	
W(lb/lb)	ZSAW2	ZW1	ZW2	RAW	RAW	RAW	
v(ft3/lb)	Vz2			Vradbnf	Vradbnf	Vradb	
i(Btu/lbda)							
M(lb/min)	Mz2	Ml	M2	Mradbnf	Mradbnf	Mradb	
"v col"	z2s	Z1	Z 2	mr	rfi	rfo	
T(F)	82.0853	70.0000	72.0000	71.0072	71.0072	71.5378	
W(lb/lb)	0.00157	0.00222	0.00241	0.00232	0.00232	0.00232	
v(ft3/lb)	13.6923			13.4284	13.4284		
i(Btu/lbda)						19.7198	
M(lb/min)	54.8803	32.1158	32.5844	64.7002	64.7002	64.7002	

Figure 5: Results section of the spreadsheet showing conditions.

In the second row, the ZSADB2, ZDB1, ZDB2, RADBNF, and RADB conditions are indicated. The ZSADB2 are the conditions entering zone 2, the ZDB1 are the conditions in the zone (i.e., the set point temperature), the ZDB2 are the setpoint conditions of zone 2, the RADBNF are the conditions just prior to the return fan (if used), and the RADB are the conditions immediately after the return fan (if used).

DDCV system	OA	МА	PCLA	SFLA	CCLA	HCLA	ZSA1	ZSA2	Z1	Z 2	MRA	RFEA	RFLA
	UA	MA	FCLA	SFLA	CCLA	IICLA	ZSAI	LSAL	21	L 14	WIKA	KFEA	KFLA
Case 1 - all AMS													
DB (F)	-20.0000						84.7077			72.0000			71.5378
W (lb/lbda)	0.00026	0.00157		0.00157	0.00157		0.00157		0.00222	0.00241	0.00232	0.00232	0.00232
V (ft3/lbda)			12.7550		12.7805	14.3978	13.7586	13.6923			13.4284	13.4284	
i (BTU/lbda)	-4.5284			12.7483	12.7523								19.7198
δ _m /δ _t (lbda/min)	37.2204	101.9206	101.9206	101.9206	42.5330	59.3879	47.0403	54.8803	32.1158	32.5844	64.7002	64.7002	64.7002
Case 2 - NE													
DB (F)	30.0000	56.7100	56.7100	57.7428	55.0000	110.0000	74.0100	71,7100	71.0000	73.0000	72.0049	72.0049	72.5365
W (lb/lbda)	0.00000	0.00129	0.00129	0.00129	0.00129	0.00129	0.00129	0.00129	0.00196	0.00214	0.00206	0.00206	0.00206
V (ft3/lbda)			13.0451		13.0019	14 3913	13,4822	13,4240			13.4480	13,4480	
i (BTU/lbda)	7.2061			15.2714	14.6132								19.6719
δ _m /δ _{t (lbda/min)}	37.1661	99.6542	99.6542	99.6542	67.4535	32.2006	45.9943	53.6600	31.0915	31.3966	62.4881	62.4881	62.4881
Case 2 - RAEE. RATE													
DB (F)	30.0000	53,9726	53.9726	55.0000	55 0000	110 0000	73.9942	71 7168	71.0000	73.0000	72.0055	72.0055	72,5371
W (lb/lbda)	0.00000		0.00103	0.00103	0.00103		0.00103		0.00169			0.00179	0.00179
V (ft3/lbda)	0.0000	0.00105	12.9704	0.00005	12,9964		13 4760		0.00109	0.0016/	13 4422	13 4422	
i (BTU/lbda)	7 2061		1	14 3248	14 3255	14,10,17		1.1				1,1,	19 3774
$\delta_{\rm m}/\delta_{\rm f}$ (lbda/min)	41 1938	100 2279	100 2279			32 3792	46 2590	53 9689	31 3499	31 6959	63 0458	63 0458	
	1												
Case 3 - NE													
DB (F)	60.0000	69.6447	69.6447	70.7026		110.0000			74.0000		75.0026		
W (lb/lbda)	0.00292	0.00420	0.00420	0.00420	0.00420		0.00420	0.00420	0.00488	0.00508	0.00499	0.00499	0.00499
V (ft3/lbda)	-		13.4342		13.0626	14.4585	13.3491	13.3272			13.5873	13.5873	
i (BTU/lbda)	17.5840			21.5697	17.7684								23.6009
δ _m /δ _{t (lbda/min)}	36.7850	96.7677	96.7677	96.7677	77.7175	19.0498	44.6620	52.1057	29.9122	30.0705	59.9827	59.9827	59.9827
Case 3 - RAEE. RATE													
DB (F)	60.0000	60.0000	60.0000	61.0390	55.0000	110.0000	66.4300	65.6183	74.0000	76.0000	75.0048	75.0048	75,5392
W (lb/lbda)	0.00292	0.00292	0.00292	0.00292	0.00292	0.00292	0.00292	0.00292	0.00358	0.00378	0.00369	0.00369	0.00369
V (ft3/lbda)			13.1624		13.0358	14,4289	13.3253	13.3047			13.5592	13.5592	
i (BTU/lbda)	17.5840			17.8349	16.3765								22.1805
$\delta_{\rm m}/\delta_{\rm t~(lbda/min)}$	98.7659	98.7659	98,7659	98,7659	79.0246	19.7409	45.5842	53.1816	30.8039	31.1006	61.9045	61.9045	61.9045
G 4 11 4 14 G													
Case 4 - all AMS	80,0000	77 8884	77 8884	70.0502	55 0000	110 0000	50 0705	60.0 0 .64	75 0000			76.0000	76 50 40
DB (F)				78.9682			59 2725		75.0000				
W (lb/lbda)	0.01757	0.01316		0.01316	0.00920		0.00950		0.01020	0.01052		0.01037	0.01037
V (ft3/lbda)	20,4022		13.8388	22 20 42	13.1668	14.6654	13.2825	13.3246			13.7296	13.7296	20.7404
i (BTU/lbda) δ _{m/δt} (lbda/min)	38.4833	93.9391	93.9391	33.3942 93.9391	23.1918 85.2682	9 (702	12 2565	50.5826	29.7592	20 7776	57 5250	57.5359	29.7404 57.5359
	30.4032	93.9391	95.9591	95.9591	63.2082	8.0703	43.3303	30.3820	20.7303	28.7770	37.3339	37.3339	37.3339
Case 5 - RAEE	-												
DB (F)	77.0000	77.0000	77.0000	78.0726	55.0000	110.0000	66.1847	65.2819	74.0000	76.0000	75.0010	75.0010	75.5352
W (lb/lbda)	0.00418	0.00418	0.00418	0.00418	0.00418	0.00418	0.00418	0.00418	0.00487	0.00507	0.00498	0.00498	0.00498
V (ft3/lbda)	-		13.6206		13.0622	14.4581	13.3461	13.3232			13.5871	13.5871	
i (BTU/lbda)	23.0766				17.7513								23.5952
δm/δt (lhda/min)	95 4438	95 4438	95 4438	95 4438	76 8773	18 5661	44 0510	51 3928	29 3011	29 3575	58 6586	58 6586	58 6586
Case 6 - RAEE													
DB (F)	74.0000	74.9403	74.9403	76.0126	55.0000	110.0000	66.1953	65.2954	74.0000	76.0000	75.0009	75.0009	75.5345
W (lb/lbda)	0.01483	0.01222	0.01222	0.01222	0.00920	0.01222	0.00981	0.00976	0.01051	0.01066	0.01059	0.01059	0.01059
V (ft3/lbda)			13.7425		13.1668	14.6437	13.4663	13.4422			13.7086	13.7086	
i (BTU/lbda)	33.9947			31.6379	23.1918								29.7312
δ _m /δ _{t (lbda/min)}	36.4594	94.5971	94.5971	94.5971	76.2556	18.3411	43.6602	50.9369	29.0416	29.0961	58.1377	58.1377	58.1377

Table 3: Constant Volume Dual Duct System Conditions for 865-RP Accuracy Tests (DDCAV)

DDCV system	Preheat Coil	Cooling Coil (sens)	Cooling Coil (latent)	Cooling Coil (total)	Heating Coil	Total Heat
Case 1 - all AMS						
PSU1	9,934.00		0.00	0.00	54,891.00	64,825.00
PSU2	24,528.00		0.00	0.00	40,404.00	64,932.00
TAMU	10,032.89		0.00	0.00	54,928.95	64,961.84
BLAST	24,578.00		0.00	0.00	40,461.00	65,039.00
DOEII	16,446.00	0.00	0.00	0.00	54,989.00	71,435.00
Case 2 - NE						
PSU1	0.00	2,708.00	0.00	2,708.00	24,269.00	24,269.00
PSU2	0.00	2,116.00	0.00	2,116.00	23,785.00	23,785.00
TAMU	0.00	2,672.45	0.00	2,672.45	24,309.33	24,309.33
BLAST	0.00	2,123.00	16.00	2,139.00	23,846.00	23,846.00
DOEII	0.00		0.00	3,028.00	26,560.00	26,560.00
Case 2 - RAEE, RATE						
PSU1	0.00	0.00	0.00	0.00	25,693.00	25,693.00
PSU2	0.00		0.00	0.00	24,797.00	23,093.00
TAMU	0.00		0.00	-0.07	25,714.51	25,714.51
BLAST	0.00		0.00	0.00	24,862.00	24,862.00
DOE II	0.00		0.00	0.00	28,688.00	28,688.00
						·
Case 3 - NE	0.00	17 722 00	0.00	17 722 00	10.850.00	10.850.00
PSU1 PSU2	0.00		0.00	17,732.00 17,524.00	10,850.00 10,722.00	10,850.00 10,722.00
TAMU	0.00		0.00	17,524.00	10,722.00	10,722.00
				17,724.34	<i>,</i>	10,786.00
BLAST DOE II	0.00		225.00 0.00	17,453.00	10,786.00 11,542.00	11,542.00
	0.00	0.00	0.00	17,455.00	11,342.00	11,342.00
Case 3 - RAEE, RATE						
PSU1	0.00	· · · · · ·		6,914.00	13,982.00	13,982.00
PSU2	0.00		0.00	6,805.00	13,325.00	13,325.00
TAMU	0.00		0.00	6,914.83	14,004.90	14,004.90
BLAST	0.00	6,811.00	71.00	6,883.00	13,406.00	13,406.00
DOE II	0.00	0.00	0.00	8,220.00	15,082.00	15,082.00
Case 4 - all AMS						
PSU1	0.00	30,410.00	20,874.00	51,285.00	3,960.00	3,960.00
PSU2	0.00	30,149.00	22,270.00	52,870.00	4,163.00	4,163.00
TAMU	0.00	30,087.57	21,439.12	51,526.69	3,972.08	3,972.08
BLAST	0.00	30,108.00	24,176.00	54,356.00	4,221.00	4,221.00
DOEII	0.00	0.00	0.00	49,848.00	3,179.00	3,179.00
Case 5 - RAEE						
PSU1	0.00	25,748.00	0.00	25,748.00	8,594.00	8,594.00
PSU2	0.00		0.00	25,866.00	8,695.00	8,695.00
TAMU	0.00		0.00	25,760.97	8,609.11	8,609.11
BLAST	0.00		380.00	25,269.00	8,994.00	8,994.00
DOE II	0.00		0.00	24,147.00	8,885.00	8,885.00
Case 6 - RAEE						
PSU1	0.00	23,466.00	14,823.00	38,289.00	9,173.00	9,173.00
PSU2	0.00		7,138.00	30.699.00	9,255.00	9,255.00
TAMU	0.00		14,645.22	38,215.39	9,255.00	9,235.00
BLAST	0.00		7,942.00	31,535.00	9,311.00	9,311.00
	0.00		0.00	27,957.00	9,767.00	9,767.00

Table 4: Constant Volume Dual Duct System Results for 865-RP Accuracy Tests (DDCAV). NOTE: the PSU1 and PSU2 values are those that represent accuracy calculations by Penn State University. The TAMU values are the current spreadsheets. The BLAST values are the simulations performed by Penn State using BLAST, and the DOE-2 values represent the simulations run by the authors using the DOE-2 input files contained in this report.

Listing of example DDCAV spreadsheet.

The spreadsheet for the dual duct constant air volume system is listed in the following pages. These calculations begin directly below the input-output section and continue down the spreadsheet for the first iteration. The second iteration then uses the calculations from the first column, and so forth across the columns until the last column is reached. The number of columns was determined by a convergence of less than 1% for this type of system.

The spreadsheets were written in a narrative format to allow them to be easily traced. The actual calculations take place in the "First pass", "second pass" ... etc... columns.

NOTE: In certain systems, oscillation has been observed. In such a case it is recommended to use the average value of the last two columns.

Calculations begin here		First	Second
-	Pass	Pass	

[STEP 1a:]-----

Calculate the supply air temperature for Zone#1 necessary

for meeting the sensible loads on the zone.

(First pass) Assume a supply air temperature = 55 F. and assume a RH = 100% to start the simulation.

ZSADB1 = 55	55.0	66.5
ZSADB1(R) =	514.7	526.2

Calculate (w= ZSAW1) with assumed ZSADB1. assume that Tdew = Tdry = ZSADB1.

First, calculate Pws<32, Pws>32.

Pws,dew(<32)=	0.2
Pws,dew(>32)=	0.2

Now, calculate the (W = ZSAW1) with assumed ZSADB1

and Tdew = Tdry = ZSADB1.

ZSAW1 = 0.0092

NOTE: in the 2nd and following passes...one can calculate the ZSAW1

using a moisture balance from the first pass

First, calculate the mass flow rate of the cold air entering

the terminal box.

Mcold#1 = Mmix#1 - Mhot#1

Now, solve a moisture balance around terminal box #1 using values from

the first pass.

Wmix#1 = Mhot#1 x HCLAW + Mcold#1 x CCLAW / Mmix#1

0.0087

Calculate (v) the specific volume w/ T = 55F.

NOTE: 7/99 OLD METHOD USES (v) at SADB1... First, convert the ZSABP1 from psia to inHg.

using 1 psia = 2.036 in Hg

v = Ra x T (1 + 1.6078 x W)/(70.7262 x Pzsabp1) 13.2 13.5

NOTE: This is the 7/99 change to move mass calc. to the supply fan.

Copy the specific volume from the previously calculated fan...

using the conditions at PHLADB which are in front of the fan...

Use this "v" instead of the "v" calc'd at the diffuser on 2,3,4 calcs.

Vphladb = Ra x Tphladb (1 + 1.6078 x Wphlaw) / (70.7262 x Pfan,enter)

Vphladb= 13.73

Next, calculate the air mass flow rate for Zone #1 using

NOTE: This uses Vsabp1 for #1 calc, and Vphladb for #2,#3,#4...etc.

 $m = CFMZ1 \times 60 \times 1/v$ $m1 = 2734.2 \times 2621.1$

NOTE: 7/99 Changed to include sensible heat of moisture in the air .444xW

This next equation assumes that Wzdb1 = Wzsadb1...i.e. moisture at room conditions.

Calculate the ZSADB1 = ZDB1 - QZS1/(m x (cp + .444 W))

ZSADB1 = 66.5 66.18

[Step 1b:]-----

Now, repeat the calculations for the Zone #2

(First pass) Assume a supply air temperature = 55 F. and assume a RH = 100% to start the simulation.

(2nd pass) Use the calculated ZSADB1 temperature from the end

of this step.

ZSADB2 = 55	55.0	65.7
ZSADB2(R) =	514.7	525.4

Calculate (w= ZSAW2) with assumed ZSADB2. assume that Tdew = Tdry = ZSADB2.

First, calculate Pws<32, Pws>32.

Pws,dew(<32)=	0.2
Pws,dew(>32)=	0.2

Now, calculate the (W = ZSAW2) with assumed ZSADB2

and Tdew = Tdry = ZSADB2.

NOTE: in the 2nd and following passes...one can calculate the ZSAW2

using a moisture balance from the first pass

First, calculate the mass flow rate of the cold air entering

the terminal box.

Mcold#2 = Mmix#2 - Mhot#2

Now, solve a moisture balance around terminal box #2 using values from

the first pass.

Wmix#2 = (Mhot#2 x HCLAW + Mcold#2 x CCLAW) / Mmix#2

ZSAW2=	0.009
--------	-------

Calculate (v) the specific volume w/ T = 55F.

First, convert the ZSABP2 from psia to inHg. using 1 psia = 2.036 in Hg

v = Ra x T (1 + 1.6078 x W)/(70.7262 x Pzsabp2) 13.2 13.4

Next, calculate the air mass flow rate for Zone #2 using

NOTE: This is the 7/99 change to move mass calc. to the supply fan.

Copy the specific volume from the previously calculated fan...

using the conditions at PHLADB which are in front of the fan...

Use this "v" instead of the "v" calc'd at the diffuser on 2,3,4 calcs.

Vphladb = Ra x Tphladb (1 + 1.6078 x Wphlaw) / (70.7262 x Pfan,enter)

Vphladb=	13.73
----------	-------

Next, calculate the air mass flow rate for Zone #1 using NOTE: This uses Vsabp1 for #1 calc, and Vphladb for #2,#3,#4...etc.

 $m = CFMZ2 \ x \ 60 \ x \ 1/v$ $m2 = 3189.8 \ 3058.0$

NOTE: 7/99 Changed to include sensible heat of moisture in the air .444xW

Now, calculate the ZSADB1 = $ZDB1 - QZS1/(m \times cp + .444 \text{ W})$

NOTE: 7/99 Changed to include sensible heat of moistu2e in the air .444xW

This next equation assumes that Wzdb2 = Wzsadb2...i.e. moisture at room conditions.

Calculate the ZSADB2 = ZDB2 - QZS2/(m x (cp + .444 W))

ZSADB2 = 65.7 65.28

[Step 2a:]

Calculate the return air temperature for zone#1 (ZRADB1) including any

return air heat gain (QRA1).

NOTE: This next calculation assumes QRA1 is entered in degrees F.

ZRADB1 = ZDB1 + QRA1 74.0 74.0

Now, calculate the humidity ratio leaving the zone

ZW1 = ZSAW1 + QZL1 / [(1061 + .444 (ZDB1)) m1]

ZW1 = 0.0099 = 0.0094

[Step 2b:]------

Calculate the return air temperature for zone#2 (ZRADB2) including any

return air heat gain (QRA2).

NOTE: This next calculation assumes QRA2 is in degrees F.

ZRADB2 = ZDB2 + QRA2/(m2 x cp2)ZRADB2 = 76.0 76.0

Now, calculate the humidity ratio leaving the zone

Calculate the average return air dry bulb temperature before the return fan RADBNF

1856.15

1878.15

1742.48

1745.17

m1,w/exh =

m2,w/exh =

 $RADBNF = (ZRADB1 \ x \ m1 \ x \ cp1 + ZRADB2 \ x \ m2 \ x \ cp2)/(mradb \ x \ cpradb)$

Where it is assumed cp1 = cp2 = cpradb...(CP+.444W) has small effect.

mradb = m1 + m2

RADBNF = (ZRADB1 x m1 + ZRADB2 x m2)/(m1 + m2)

RADBNF= 75.0 75.0

Now, calculate the humidity ratio in the return air duct from both

zones by calculating a humidity balance.

NOTE: 9/18/99 the equation below uses the M1 & M2 air flow into the zone...versus M1 & M2 (EXHAUST) above...?

 $RAW = (ZW1 \times m1 + ZW2 \times m2) / (m1 + m2)$

RAW = 0.0100 0.0095

Now calculate the return air temperature after the fan (RADB)

First, calculate the specific volume (v)

 $Vra = Ra \times Tra (1 + 1.6078 \times Wra) / (70.7262 \times Pfan,enter)$

P = RABPNF = see above in variables...

Vra= 13.7 13.7

Next, calculate the total CFM across the return fan (CFMT)

 $CFMTr = Mradb \ge 1/60 \ge 0.000$

Mradbnf = M1 + M2 Mradbnf = 3734.3 3487.6 CFMTr = 852.4 795.4

NOTE: 7/99 This now includes the sensible heating of the dry air (CP)

and moisture contained in the moist air (.444W)

Now, calculate the temperature rise across the fan using DTRAF = QFAN/Mra x (cp+.444W)

NOTE: 2/12...new FAN equations from Knebel, checked against p. 207 Kreider, Rabl

First, assume constant volume, design conditions...calculate FanHP, Motor HP, DTFAN

then calculate conditions for variable speed fan using Brandemuehl's equations.

for VSD, Inlet vane, discharge dampers, etc.

Fan HP(design) = 0.0001573 x CFM x TP / EFFfan

where Fan HP is calculated on CFMTD = total design CFM

where TP = FTP = total pressure across fan inH2O EFFfan = fan efficiency

CFMdesign = value from above

Fan HP(design) = $0.19 \quad 0.18$

Next, calculate the Motor HP for the constant volume system

Motor HP = Fan HP(design)/EFFmotor

where Motor HP = HP of constant volume design conditions

EFFmotor = electric motor efficiency

Motor HP(design) = $0.21 \quad 0.20$

Next calculate DTFAN(design) using FRACT = 0,1where FRACT = 1 (motor in air), 0 (motor not in air)

 $DTFAN = FanHP \times 2544.85 / [Mdesign \times (CP + .444 \times RAW)]$

for the motor NOT in the air stream...

DTFAN = FanHP x 2544.85 / [Mdesign x (CP + .444xRAW)] x EFFm

for the motor in the air stream...use FRACT = 0,1 as choice...

where

Mdesign = (CFMdesign)*60/Vradb=		3734.3	3487.6		
DTFAN(design,motor out) =	DTFAN(design,motor out) =				
DTFAN(design,motor in) =	0.59	0.59			
FRACT=	0				
DTRAF(F) =	0.53	0.53			

Now, calculate the return air dry bulb temperature after the fan

RADB = RADBNF + DTRAF

RADB = 75.5 75.5

[Step 4]:-----

These next set of equations are for temperature-base economizer.

Next, precalculate all possible MADB temperatures depending upon economizer mode...then select economizer type

[Cold range]-----

First, we need to calculate the minimum mass flow rate of the

ventilation air for zone #1 and zone#2. This requires recalculating (v1) at ZW1 and ZDB1 for zone #1 and etc. for zone#2.

NOTE: 7/99 This calculation was left alone...since it appears that PSU

is calculating the conditions at the zone conditions for min air.

This therefore assumes ZDB1, ZDB2, etc...for calc. (v). Vphladb is not used here...

Zone#1

v = Ra x T (1 + 1.6078 x W)/(70.7262 x P)

where

v = Ra x ZDB1 (1 + 1.6078 x ZW1)/(70.7262 x Pzone#1)

v= 13.7 13.7

Vphladb = Ra x Tphladb (1 + 1.6078 x Wphlaw) / (70.7262 x Pfan,enter)

Vphladb= 13.73

Next, calculate the ventilation air mass flow rate for Zone #1 using

 $m1,min = CFMZMIN1 \ge 60 \ge 1/v$

m1,min=

878.0 878.7

Zone#2

v = Ra x T (1 + 1.6078 x W)/(70.7262 x P)

where

v = Ra x ZDB2 (1 + 1.6078 x ZW2)/(70.7262 x Pzone#2)

NOTE: 7/99 this assumes zone conditions for min air..as Zone #2.

v= 13.7 13.7

Next, calculate the ventilation air mass flow rate for Zone #2 using

$m2,min = CFMZMIN2 \ge 60 \ge 1/v$	m2,min =	1311.7	1312.8	
moa,(zone#1+#2)=(m1,min + m2,min) m	10a,1+2=	2189.7	2191.5

Next, calculate the mass of the return air = mra = (m1+m2)

NOTE: 7/99 this copies down the prev. calc. mradbnf

mra = 3734.3 3487.6

NOTE: 7/99 This had to be changed to account for zone exhaust.

The next equation only works when EXHAUST = 0. This is because it assumes Mma = Mra since there is no zone exhaust.

Now, calculate the mixed air dry bulb temperature (cold range, w/sys exhaust)

 $MADB = (moa \times OADB + (mra - moa) \times RADB)/mra$

(w/system exhaust) MADB,cold range = 74.6 74.6

NOTE: 8/99...NEW...Now, calculate the mixed air dry bulb for zone exhaust...

Knowing that Mra = Mma - (Moa#1 + Moa#2) Where Moa#1 and Moa#2 was exhausted at the zone. MADB=[Moa(cp+.444Woa)OADB+Mra(cp+.444Wra)RADB]/[Mma(cp+.444Wma)]

(w/zone exhaust) MADB,cold range = 75.0 74.9

Now, choose which one based on EXHAUST(0=sys,1=zone)

	EXHAUST =	1.00	1.00
(either system)	MADB,cold range =	75.02	74.91

SADB = MADB + DTSAF

Assume DTSAF = 1 F for first iteration, calc. for 2,3,4th.

SADB,cold range 76.0 76.0

Next, calculate the humidity ratio of the mixed air

First, calculate the saturation vapor pressure at (Pws(OAWB))

	OAWB(F)=	70.0	70.0
	OAWB(R)=	529.7	529.7
<32	Pws,dew(<32)=	0.4	0.4
>32	Pws,dew(>32)=	0.4	0.4

Now, calculate the (Wwb = at T = OAWB).

Next, calculate the Woa using

Woa = [(1093 - 0.556 * OAWB)*Wwb - (0.24(OADB-OAWB))]/(1093+0.444*OADB-OAWB)

 $Woa = 0.0148 \ 0.0148$

This next calculation fixes the ASHRAE Handbook when OAW < 0 at cold, dry temps

by replacing the ASHRAE value with a slightly positive value = 0.0000001

Woa = OAW OAW = 0.0148 0.0148

Now, calculate the humidity ratio of the mixed air using:

NOTE: 7/99 This also needs two equations with EXHAUST as a 0,1 variable.

This equation works for EXHAUST =0

 $Wma = (moa \times Woa + mbp \times wbp)/mma = MAW$

MAW = [moa x OAW + (mra-moa) x RAW]/mra

(w/sys. exhaust) MAW, cold range = 0.0128 0.0128

This new equation works with EXHAUST = 1 = zone exhaust

MAW = (Moa x OAW + (Mra)RAW)/Mma

(w/zone exhaust)	MAW,cold range =	0.0118 0.0115
------------------	------------------	---------------

	EXHAUST =	1.0	1.0	
(either system)	MAW,cold range =		0.0118	0.0115
NOTE: 7/99 Enthalp	y calculation added here for cold range			
Calc. the enthalpy at	OADB,OAW using p. 6.13 of HOF			
where $h = 0.24T + W$	(1061+.444T)			
	h(OADB,OAW)=	33.99	33.99	
Calc. the enthalpy at	RADB,RAW			
	h(RADB,RAW)=	29.05	28.50	
Calc. the enthalpy at	SADB,MAW, where SADB = MADB +	DTSAF		
	h(SADB,MAW)=	31.14	30.88	
Calc. the enthalpy at	PHLASP,MAW			
	h(PHLASP,MAW)=	23.53	23.27	
[Free cooling range]:		-		
	IADB = SADB - DTSAF CCLASP (i.e. 55 F)then the system enter	ers Econor	mizer rang	ge.
This calculation ther	efore assumes SADB = CCLASP = 55.			
For the first calc. use	1 F then DTSAF for 2,3,4			
	MADB,free cool =	54.0	53.9	
NOTE: 7/99 this was	changed to switch between EXHAUST	= 0,1		
When there is EXHA	AUST =0 (system) then use the following	;;		
NOTE: this eq. only	considers sensible energy (i.e., CP only	. no CP+.	444)	
Moa = [Mra *(SADE	B - RADB) - Qfan/(cp)] / (OADB - RADB))		
where				
SADB = PHLASP =	(input variable) =	45.0	45.0	

Qfan/cp is assumed = 2000/.2402 lbm-F/hr for first iteration

The second iteration uses the actual Qfan from the first iteration...

where SADB is fixed at CCLADB

(EXHAUST=system) M	loa,free,system=	55231 #VALU	Æ!	
MAW = [moa x OAW + (mra-moa) x RAW]/mra			
(EXHAUST=system)	MAW, free cooling =	0.0819	#VALUE!	
When there is a zone exh	aust (EXHAUST=1) use the f	ollowing		
Calculate the mass flow of the outside air using an energy balance at the economizer = MADBand assume Moa & Mbp & iteratively solve				
Assume Moa = M1,min +	M2,min from above			
Assume $Mbp = Mma - (M1,min + M2,min)$ from above				
Calc. the difference in energy balance to determine difference in Moa,est and Moa,act.				
and plug into next iterationassume CPAIR = sameso it cancels.				

<pre>(2nd,3rd) Moa,adjust x OADB + Mbp,adjust x RADB= Adj.to Moa & Mbp = diff./MADB = -2300.53 ##### This is now used in the 2,3,4 calcsetc. Moa,adjust = Moa - Moa,adjust for 1stthen look at previous calc. Mbp,adjust = Mbp + Moa,adjust for 1stthen look at previous calc. (EXHAUST=zone) Moa,adjust = 4490 6983 Mbp,adjust= 1434 -1059 Finally, calc. the MADB using the above Moa and Mbp MADB = ((Moa x OADB) + (Mbp x RADB))/Mma MADB,adjust= 74.37 76.90 MADB,target= 54.00 53.91 MAW = (Moa x OAW + (Mbp)RAW)/Mma (w/zone exhaust) MAW,cold range = 0.0137 0.0162</pre>	
Adj.to Moa & Mbp = diff./MADB = This is now used in the 2,3,4 calcsetc2300.53####Moa,adjust = Moa - Moa,adjust for 1stthen look at previous calc.Mbp,adjust = Mbp + Moa,adjust for 1stthen look at previous calc.(EXHAUST=zone) Moa,adjust =44906983 Mbp,adjust=Mbp,adjust=1434-1059-1059Finally, calc. the MADB using the above Moa and MbpMADB = ((Moa x OADB) + (Mbp x RADB))/Mma MADB,adjust=74.3776.90 76.90MADB,target=54.0053.91	5
Adj.to Moa & Mbp = diff./MADB = This is now used in the 2,3,4 calcsetc2300.53####Moa,adjust = Moa - Moa,adjust for 1stthen look at previous calc.Mbp,adjust = Mbp + Moa,adjust for 1stthen look at previous calc.(EXHAUST=zone)Moa,adjust =44906983Mbp,adjust=1434-1059Finally, calc. the MADB using the above Moa and MbpMADB = ((Moa x OADB) + (Mbp x RADB))/MmaMADB,adjust=74.3776.90	
Adj.to Moa & Mbp = diff./MADB = This is now used in the 2,3,4 calcsetc2300.53####Moa,adjust = Moa - Moa,adjust for 1stthen look at previous calc.Mbp,adjust = Mbp + Moa,adjust for 1stthen look at previous calc.(EXHAUST=zone)Moa,adjust =44906983Mbp,adjust=1434-1059Finally, calc. the MADB using the above Moa and MbpMADB = ((Moa x OADB) + (Mbp x RADB))/Mma	
Adj.to Moa & Mbp = diff./MADB = This is now used in the 2,3,4 calcsetc2300.53####Moa,adjust = Moa - Moa,adjust for 1stthen look at previous calc.Mbp,adjust = Mbp + Moa,adjust for 1stthen look at previous calc.(EXHAUST=zone)Moa,adjust =44906983 1434-1059Finally, calc. the MADB using the above Moa and Mbp	
Adj.to Moa & Mbp = diff./MADB =-2300.53####This is now used in the 2,3,4 calcsetc2300.53####Moa,adjust = Moa - Moa,adjust for 1stthen look at previous calc.Mbp,adjust = Mbp + Moa,adjust for 1stthen look at previous calc.(EXHAUST=zone)Moa,adjust =4490Mbp,adjust=1434-1059	
Adj.to Moa & Mbp = diff./MADB = This is now used in the 2,3,4 calcsetc2300.53####Moa,adjust = Moa - Moa,adjust for 1stthen look at previous calc.Mbp,adjust = Mbp + Moa,adjust for 1stthen look at previous calc.(EXHAUST=zone)Moa,adjust =4490	
Adj.to Moa & Mbp = diff./MADB = -2300.53 #### This is now used in the 2,3,4 calcsetc. Moa,adjust = Moa - Moa,adjust for 1stthen look at previous calc. Mbp,adjust = Mbp + Moa,adjust for 1stthen look at previous calc.	
Adj.to Moa & Mbp = diff./MADB =-2300.53####This is now used in the 2,3,4 calcsetc2300.53####Moa,adjust = Moa - Moa,adjust for 1stthen look at previous calc.	
Adj.to Moa & Mbp = diff./MADB = -2300.53 #### This is now used in the 2,3,4 calcsetc.	
Adj.to Moa & Mbp = diff./MADB = -2300.53 #### This is now used in the 2,3,4 calcsetc.	
Adj.to Moa & Mbp = diff./MADB = -2300.53 #####	
(2nd,3rd) Moa,adjust x OADB + Mbp,adjust x RADB=	####
Moa x OADB + Mbp x RADB= 444125 440576	
Mma x MADB = 319896 306173	

Now, choose the Moa depending upon EXHAUST = 1,0

	EXHAUST =	1.00	1.00
(EXHAUST=either)	Moa,free cool =	4490.24	6983.23
	MAW, free cooling =	0.0137	0.0165

NOTE: 7/99 Enthalpy calculation added here for free cooling range

This assumes that h(OADB, OAW) and h(RADB,RAW) are the same as cold range.

Therefore, only h(MADB, MAW) needs to be calculated with values from free cooling.

where h = 0.24T + W(1061 + .444T)

Calc. the enthalpy at SADB, MAW note this is the same as PHLASP, MAW

h(PHLASP,MAW) & h(SADB,MAW)=		25.57	28.61
Calc. the enthalpy at OADB+DTSAF,OAW			
h(OADB+DTSAF,OAW)=	34.24	34.26	
Calc. the enthalpy at CCLASP/MAW			
h(CCLASP,MAW)=	28.03	31.09	

[Economizer Range]: -----

In the economizer range the O.A. damper us full open, R.A. damper is closed.

therefore MADB = OADB whenever OADB > SADB and OADB < RADB.

where DTSAF = 1 F assumed for first iteration...and calculated 2nd,3rd,& 4th.

MADB=economizer =		74.0
In the economizer range MADB = OADB		
0.015	0.015	
5924.0	5679.1	

NOTE: 7/99 Enthalpy calculation added here for economizer range

This assumes that h(OADB, OAW) and h(RADB,RAW) are the same as cold range.

Therefore, only h(MADB, MAW) needs to be calculated with values from economizer.

where h = 0.24T + W(1061 + .444T)

Calc. the enthalpy at MADB/MAW

h(MADB,MAW)=	33.99	33.99
Calc. the enthalpy at PHLASP,MAW		
h(PHLASP,MAW)=	26.84	26.84
Calc. the enthalpy at CCLASP/MAW		
h(CCLASP,MAW)=	29.31	29.31

[Maximum Cooling Range]:-----

In the maximum cooling range the o.a. dampers are at minimum

air and the calculation is the same as the cold range.

and OADB > RADB

Therefore, this copies down the equations from the cold range...

MADB,max cooling = 75.0 74.9

and, the humidity ratio is calculated in a similar fashion as the

and therefore the number is copied down from above.

MAW, max cooling = $0.0118 \quad 0.0115$

NOTE: 7/99 Enthalpy calculation added here for max cooling range

This assumes that h(OADB, OAW) and h(RADB,RAW) are the same as max cooling.

Therefore, only h(MADB, MAW) needs to be calculated with values from economizer.

where h = 0.24T + W(1061 + .444T)

Calc. the enthalpy at MADB/MAW

h(MADB,MAW)=	30.89	30.61

[Temperature based economizer selection]-----

NOTE: 7/99 These temperature equations were modified during the edit.

Now, select which range the economizer is in based on the following

test (assume 1 F for DTSAF for 1st iter):

Cold Range = SADB < 45 (=PHLASP) where SADB = MADB + DTSAF

Free Cooling = SADB > 45 (=PHLASP) and OADB+DTSAF < 55 (=CCLASP)

Economizer = OADB+DTSAF >= CCLASP (55) and OADB < RADB

Max Cool = OADB > RADB.

Now, select the range by showing (=)	1):				
Cold Range=	1			0.0	0.0
Free Cooling=	=2			0.0	0.0
Economizer=3	3			3.0	3.0
Max Cooling=	=4			0.0	0.0
Total		3.0	3.0		

[Enthalpy based economizer selection]-----

NOTE: 7/99 Here is the addition of the enthalpy economizer equations.

Now, select which range the economizer is in based on the following

test (assume 1 F for DTSAF for 1st iter):

Now, test the enthalpy at each of the conditions:

Cold Range = h(SADB,MAW) < h(PHLASP,MAW) where SADB = MADB + DTSAF

Free Cooling = h(SADB,MAW) > h(PHLASP,MAW) and h(OADB+DTSAF,OAW) < h(CCLASP,MAW)

and h(OADB,OAW) < h(RADB,RAW) Economizer = h(OADB+DTSAF,OAW) >= h(CCLASP,MAW)

and h(OADB,OAW) < h(RADB,RAW)Max Cool = h(OADB,OAW) > h(RADB,RAW).

Now, select the range by showing (=1,2,3..):

Cold Range=1	0.0	0.0
Free Cooling=2	0.0	0.0
Economizer=3	0.0	0.0
Max Cooling=4	4.0	4.0

Total 4.0 4.0

Now, check to see if the economizer is activated by looking at \$b\$3

Finally, select the MADB and MAW according to the economizer schedule

using an @choose(1,2,3,4) statement

ECONOMIZER	=				2.00	2.00
ECONOMIZER	SWITCH=			4.00	4.00	
	MADB=		75.0	74.9		
	MAW=		0.0118		0.0115	
	Moa=	2189.7	2191.5			

[Step 5]:-----

NOTE: The DTSAF was removed from the following equations 7/99.

Calculate the preheat coil load (QPHC) and leaving air conditions

depe.ding upon the m)xed air dry bul" temp (MADB) & Oreheat coil sep/int.

IF MADB >= PHLASP=45F then QPHC=0 and PHLADB=MADB

IF MADB < PHLASP = 45 then

NOTE: 7/99 The (CP) changed to (CP+.444W) to ac#ount for sensib,e heating

of the moisture contained in the moist air.

QPHC= mma x (CP+.444w)(PHLASP - MADB) and PHLADB = PHLASP

Mma =	5924.0	00	5679.12
QPHC=	0.0	0.0	
PHLADB=	75.0	74.9	

[Step 6]:-----

Calculate the cooling coil (CCEADB) and heating coil (HCEADB)

entering air dry bulb temperature, including the temperature

rise across the fan.

First, calculate the specific volume (v)

 $Vphladb = Ra \ x \ Tphladb \ (1 + 1.6078 \ x \ Wphlaw) \ / \ (70.7262 \ x \ Pfan, enter)$

Assuming P=atmospheric pressure

	Vphladb=	13.7	13.7		
Next, calculate the total CF	M across the fan (CFMT)				
CFMT = Mphladb x 1/60 x y	7				
	Mphladb =	5924.0	0	5679.1	
where Mphladb = Mma	CFMT=	1356.	1	1299.3	
NOTE: 7/99 The (CP) chan	ged to (CP+.444W) to accou	unt for s	sensible h	eating	
of the moisture in the moist	air.				
Now, calculate the tempera using DTSAF = QFAN/Mpl					
NOTE: 2/12new FAN equ	ations from Knebel, checke	d again	st p. 207	Kreider,Rabl	
First, assume constant volu	me, design conditionscal	culate F	FanHP, M	lotor HP, DTFAN	
then calculate conditions for	or variable speed fan using	Brande	muehl's e	equations.	
for VSD, Inlet vane, dischar	rge dampers, etc.				
Fan HP(design) = 0.0001573	x CFM x TP / EFFfan				
where Fan HP is calculated	on CFMTD = total design C	CFM			
where TP = FTP = total pressure across fan inH2O EFFfan = fan efficiency CFM = CFMT					
Fan	HP(design) =		0.61	0.58	
Next, calculate the Motor HP for the constant volume system					
Motor HP = Fan HP(design)/EFFmotor					
where Motor $HP = HP$ of constant volume design conditions					
EFFmotor = electric moto	or efficiency				

Motor HP(design) = 0.68

0.65

DTFAN = FanHP x 2544.85 / [Mdesign x (CP + .444xCCLAW)]

for the motor NOT in the air stream ...

DTFAN = FanHP x 2544.85 / [Mdesign x (CP + .444xCCLAW)] x EFFm

for the motor in the air stream...use FRACT = 0,1 as choice...

where

Mdesign =	= (CFMT)*60/V	/phladb=			5924.0	5679.1
	DTFAN(desig	gn,motor out) =		1.09	1.07	
	DTFAN(desig	gn,motor in) =		1.21	1.19	
	FRACT=		0			
		DTSAF(F) =	1.09	1.07		

Now, calculate the cooling coil & heating coil entering air dry bulb

CCEADB = HCEADB = SADB = PHLADB + DTSAF

CCEADB=	76.1	76.0
HCEADB=	76.1	76.0

[Step 7a,7b]:-----

NOTE: 7/99 DTSAF added to thermostat of CCLADB and HCLADB test.

HCLADB=

HCLAW=

110.0 110.0

0.0115

0.0118

Now, calculate the heating coil and cooling coil leaving air

temperature = HCLASP and CCLASP respectively Test to see if PHLADB+DTSAF < CCLADB or if PHLADB+DTSAF > HCLADB CCLADB= 55.0 55.0

and HCLA	AW = MA	W

[Step 8]:-----

Calculate the air flow in the hot ducts HCCFM1 & HCCFM2, and

in the cold ducts CCCFM1 & CCCFM2. First, set Mmix#1 = m1

	Mmix#1=		2734.2	2621.1	
NOTE: 7/99 In the nex	t equations (CP) replaced	with (C	P+.444W)		
in the terminal box equ	ation to determine air flo	ws for #	1 and #2		
Mh(cp+.444Wh)Th +]	Mc(cp+.444Wc)Tc = Mm	(cp+.444	łWm)Tm		
Solve for $Mh = [Mm(c)]$	p+.444Wm)Tm - Mc(cp+.	444Wc)	Tc]/[(cp+.444W	h)Th]	
First, calculat Vcold					
Vcold = Ra x Tccladb (1 + 1.6078 x CCLAW) / (7	0.7262 x	CCLABP)		
	Vcold=		13.0 13.2		
	1 = CCCFM1 x 60 / Vcolo MZD1 for first passthe		e using CCCFM	11 below	
NOTE: 7/19/99chang	ge this to be Mcold#1 = M	mix#1 -	Mhot#1 for 2nd	,3rd,4th	
1st iteration uses CFM	IZD1/2				
	Mcold#1=		1385.06	1682.10	
Now calculate Mhot#1 using 0.001 for CCLAW first passthen interate					
Now calculate	Mhot#1=		939.04	731.49	
Next, calculate Vhot using					
Vhot = Ra x Thcladb $(1 + 1.6078 \text{ x HCLAW}) / (70.7262 \text{ x Phclabp})$					

Assuming P=atmospheric pressure

Now, calculate HCCFM	M1 = Mhot#1 x Vhot/60			
	HCCFM1=	229	0.0 178.3	
NOTE: 7/99 CCCFM1=	=Mcold#1 x Vcold/60			
	CCFM1=	300	0.0 369.1	
Now, repeat for zone#	2			
First, set Mmix#2 = m2				
	Mmix#2=	318	9.8	3058.0
First, set Mmix#2 = m2				
Mhot#2 = [Mm2(cp+.4 Mc2(cp+.444xCCLAW	44xZSAW)ZSADB2-)CCLADB]/[(cp+.444xHC	LAW)HCLA	ADB]	
,	#2 = CCCFM2 x 60 / Vcold FMZD2 for first passthe		ng CCCFM	12 below
NOTE: 7/19/99chang	e this Mcold#2=Mmix#2	- Mhot#2 for	2nd,3,4	
1st iteration uses CFM	IZD2/2			
	Mcold#2=	161	5.90	1984.60
Now calculate Mhot#2	using CCLAW=0.01 for	first and iter	ate	
	Mhot#2=	107	3.39	817.08
and therefore the Mho	t for the heating coil is			
Mhot = Mhot #1 + Mh	ot#2			
	Mhot=	2012.43	1548.57	
And finally calculate this just copies down f	he total mass flow from calculations at zonal	level		
Mmix(total) = Mmix1 +	Mmix2			
	Mmix=	592	4.0	5679.1
Now, calculate HCCFM	$M2 = Mhot#2 \times Vhot/60$			
	HCCFM2=	261	.8 199.2	

NOTE: CCFM1(new#2) uses CCCFM1=Mcold#1 x Vcold/60

CCCFM	M2=		350.0	435.5		
[Step 9]:						
Now, calculate the HCCFM and	d CCCFM					
HCCFM = HCCFM1 + HCCFM	12					
HCCFI	M=		490.8	377.5		
CCCFM = CCCFM1 + CCCFM	2					
CCCFN [Step 10]:	M=		650.0	804.6		
Calculate the cooling coil sens	ible cooling load	(Qcs)				
First, calculate the Mcooling co	M = Mm1x - Mhe	ating co	11			
NOTE: 7/99 Mcool = Mcool#1	+ Mcool#2					
Mcool(#	1+#2)=				3001.0	3666.7
Now, calculate the cooling coil using p.21.15 of ASHRAE S&E Qsensible = Qs+Qw=mair[(hin	E, 1996.,	ıt)(hfg,T	dew,in	+hw,Tdev	w,in)]	
First, calculate (pw) using P x V where P = total pressure of P W = humidity ratio = MAW	moist air					
	pw = 0.2728	0.2675				
	ln(pw)=	-1.30	-1.32			
Then, calculate Tdew, in = CCE using p.6.14, HOF, 1997, Tdew(>		+C16a^2	+C17a^	-3+C18(pv	w)^.1984	
Tdew(<32F)=90.12+26.412a-	+0.8927a^2					
Then choose Tdew based of	32 <t=sadb<3< td=""><td>2.</td><td></td><td></td><td></td><td></td></t=sadb<3<>	2.				
Tdew(>	>32)=		61.79	61.24		
Tdew(<	<32)=		57.32	56.84		
Now choose Tdew based on 32	2 <tdew<32< td=""><td></td><td></td><td></td><td></td><td></td></tdew<32<>					
	Tdew =	61.79	61.24			

Next, calculate (hfg,Tdew,in) using 1075.15-(T-32)*.56506

NOTE: This expression is only valid for T>32 F...which is o.k. since no

cooling loads are expected at MADB=32.

hfg= 1058.32 1058.63

Now, calculate (hw,Tdew,in) using hw=.02 + 1.000845*(T-32)

hw= 29.83 29.28

Now, calculate the enthalpy using p. 6.13, 1997 HOF where h = 0.24T + W(1061+.444T)

h(CCEADB)=	31.16	30.87
h(CCLADB)=	23.19	23.19

Finally, calculate the sensible load on the coil using an estimate for the CCLAW=ZSAW for the first calculation...then use

CCLAW list further down for 2nd calculation....

Now, test to see if PHLADB<(CCLADB-DTSAF If so then QCS=0.

QCS = 15522.1 18849.0	QCS =	15522.1	18849.0
-----------------------	-------	---------	---------

[Step 11a]:-----

Now, calculate the latent loads..

QZL= 5000.0 5000.0

Qlatent(#1+#2) = QZL1 + QZL2

The latent heat of vapor hfg is calculated from

hfg = 1061 + (.444 x RADB) $hfg = 1094.5 \ 1094.5$

First, calculate the saturation vapor pressure at (Pws(CCLASP))

CCLASP(F)=		55.0	55.0
CCLASP(R)=		514.7	514.7
Pws,dew(<32)=	0.2	0.2	
Pws,dew(>32)=	0.2	0.2	

Now, calculate the (CCLAW = Ws = at T = CCLASP).

For wet coil... $CCLAW = Ws = 0.0092 \quad 0.0092$

Now, test to see whether or not the coil is dry or wet

If coil is wet (CCLAW<MAW) then "coil wet" = 0 and CCLAW=CCLAW

if coil is dry (CCLAW>MAW) and "coil wet"=1, then CCLAW=MAW.

Coi	l wet?		0.0	0.0		
	CCLAW =			0.0092 0.009		
[Step 12]:						
Calculate the cooling coil l	atent load QCL dep	ending u	pon wh	ether or		
not the coil is wet or dry. U	se the switch "coil	wet?" for	this.			
Wet coil:						
QCL = Mcooling x (CCEA)	W - CCLAW) * Hfg,	Tdew,CC	EADB			
	QCLwet=		8156.7	7	9065.3	
Dry coil:	QCLdry=		0.0	0.0		
Now, select the wet or dry	answer according to	o "coil we	et" abo	ve.		
	QCL=			3		
[Step 13]:						
Now, calculate the total coo	ling load = $QCT = QCT$	QCL + QO	CS			
	QCS=	15522.1	1	18849.0		
	QCT=	23678.7	7	27914.3		
[Step 14]:						
NOTE: 7/99 The (CP) chan	ged to (CP+.444T)	to accour	nt for se	ensible he	ating	
of the moisture in the moist	air.					

Calc. total heating load = QHC = Mheating coil x (CP+.444W) x (HCLADB - HCEADB)

QHC = 16741.1 12930.1 [Step 15]:------Calculate the total heating load = QHT = QHC + QPHC QPHC= 0.0 0.0QHT = 16741.1 12930.1 [Step 16]:-----Calculate the convergence... Heating -29.474%

Cooling

15.173%

DOE-2 LISTING FOR DDVAV ACCURACY TEST (DDCAV)

This input file for the DOE-2 simulation program is the file that was used to produce the "DOE-2" results that are shown in the results tables for the DDCAV system. It is intended to represent a reasonable effort to simulate the equivalent 865-RP system using the DOE-2 program. As indicated, no attempt was made to create special DOE-2 function commands to manipulate the program to perform tasks that would not be available to the average user.

INPUT LOADS .. TITLE LINE-1 *2 ZONE PARAMETRIC RUN, START WITH RUN 1* LINE-2 *RP865 CV, DD, WITH ECONOMIZER * LINE-3 *TEXAS A&M UNIVERSITY * . . \$ ---- #EADING---- \$ ABORT ERRORS .. DIAGNOSTIC CAUTIONS NARROW BUILDING-LOCATION LATITUDE=42 LONGITUDE=88 ALTITUDE=0 GROSS-AREA=200 HOLIDAY=NO DAYLIGHT-SAVINGS=NO TIME - ZONE = 6AZIMUTH=0 ... \$LOADS-REPORT SUMMARY= (ALL-SUMMARY) RUN-PERIOD JAN 5 1991 THRU JAN 5 1991 .. \$ ---- INPUT FOR PARAMETRIC RUN ---- \$ \$ PARAMETERS FOR: DRYBULB-HI AND DRYBULB-LO = OADB \$ DEWPT-HI AND DEWPT-LO OADP = \$ ROOF-1 U-VALUE = ROOF-U1 \$ ROOF-2 U-VALUE = ROOF-U2 \$ ZONE-1 EQUIPMENT-W/SQFT = EQ-LOAD1 \$ ZONE-1 EQUIP-SENSIBLE = EQ-SEN1 \$ ZONE-1 EQUIP-LATENT = EQ-LAT1 \$ ZONE-1 TEMPERATURE TEMP1 = = EQ-LOAD2 \$ ZONE-2 EQUIPMENT-W/SQFT \$ ZONE-2 EQUIP-SENSIBLE = EQ-SEN2 \$ ZONE-2 EQUIP-LATENT = EQ-LAT2 \$ ZONE-2 TEMPERATURE = TEMP2 PARAMETER OADB = -20OADP = -20ROOF-U1 = 1.35ROOF-U2 = 1.01

```
EQ-LOAD1 = 5.86
                                      EQ-SEN1 = 0
                                      EQ-LAT1 = 1
                                      TEMP1 = 70
                                      EQ-LOAD2 = 8.79
                                      EQ-SEN2 = 0
                                      EQ-LAT2 = 1
                                      TEMP2 = 72
                                                  . .
HEATING-DESIGN=DESIGN-DAY
                             DRYBULB-HI=OADB
                                              DRYBULB-LO=OADB
                             HOUR-HI=16
                                              HOUR-LO=2
                             DEWPT-HI=OADP
                                              DEWPT-LO=OADP
                             DHOUR-HI=16
                                              DHOUR-LO=2
                             WIND-SPEED=30
                                              WIND-DIR=14
                             CLOUD-AMOUNT=10 CLOUD-TYPE=1
                                            GROUND-T=-20 ...
                             CLEARNESS=1
                       $ ----- $
          = CONSTRUCTION U=ROOF-U1 ..
ROOF-1
ROOF-2
         = CONSTRUCTION U=ROOF-U2 ..
SLAB-1
         = CONSTRUCTION U=.0001 ...
ADIABWALL = CONSTRUCTION U=.0001
                                  . .
                         $ ----- $ $
SCH-1
          =SCHEDULE
                             THRU DEC 31 (ALL) (1,24) (1) ..
INT-LDS-1 =SCHEDULE
                             THRU DEC 31 (ALL) (1,24) (1) ..
             $ ----- $ SPACE DESCRIPTION----- $
COND-1
         =SPACE-CONDITIONS
                             EQUIP-SCHEDULE=INT-LDS-1
                             EQUIPMENT-W/SOFT=EQ-LOAD1
                             EQUIP-SENSIBLE=EQ-SEN1
                             EQUIP-LATENT=EQ-LAT1
                             FLOOR-WEIGHT = 70
                             TEMPERATURE = (TEMP1) ...
ZONE-1 =SPACE
                             A=100
                             V=1000
                             S-C=COND-1 ...
FRONT-WL-1=E-W
                             H=10 W=10
                             AZ=180
                             X=0
                                 Y = 0
                             CONS=ADIABWALL ..
INT-WL-1-2=E-W
                            H=10 W=10
                             AZ=90
                             X=10 Y=0
                             CONS=ADIABWALL ..
LEFT-WL-1 = E-W
                             H=10 W=10
                             AZ=270
                             X=0 Y=10
                             CONS=ADIABWALL ..
```

ROOF-ZN1=ROOF	X=0 Y=0 Z=10 H=10 W=10 AZ=180 TILT=0 CONS=ROOF-1
FLOOR-1 =U-F	AREA=100 CONS=SLAB-1 U-EFFECTIVE=.0001 TILT=180
\$ZONE-2	SPACE DESCRIPTION \$
COND-2 =SPACE-CONDITIONS	EQUIPMENT-W/SQFT=EQ-LOAD2 EQUIP-SENSIBLE=EQ-SEN2 EQUIP-LATENT=EQ-LAT2 EQUIP-SCHEDULE=INT-LDS-1 FLOOR-WEIGHT = 70 TEMPERATURE = (TEMP2)
ZONE-2 =SPACE	A=100 V=1000 S-C=COND-2
FRONT-WL-2=E-W	H=10 W=10 AZ=180 X=10 Y=0 CONS=ADIABWALL
RIGHT-WL-2=E-W	H=10 W=10 AZ=90 X=20 Y=0 CONS=ADIABWALL
ROOF-ZN2=ROOF	X=10 Y=0 Z=10 H=10 W=10 AZ=180 TILT=0 CONS=ROOF-2
FLOOR-2 =U-F	AREA=100 CONS=SLAB-1 U-EFFECTIVE=.0001 TILT=180
END	
COMPUTE LOADS	
INPUT SYSTEMS	
\$ SYSTEMS-REPORT \$	<pre>VERIFICATION=(ALL-VERIFICATION) SUMMARY=(SS-A,SS-B,SS-C,SS-F,SS-H)</pre>
\$	INPUT FOR PARAMETRIC RUN \$
\$ PARAMETERS FOR	R: ZONE-1 TEMPERATURE = ZDB1

ZONE-2 TEMPERATURE = ZDB2 \$ \$ ZONE-1 DESIGN-HEAT-T = DHT1 \$ \$ ZONE-1 DESIGN-COOL-T = DCT1 ZONE-2 DESIGN-HEAT-T = DHT2 \$ ZONE-2 DESIGN-COOL-T = DCT2 \$ COOLING-CAPACITY = CCAP \$ HEATING-CAPACITY = HCAP PARAMETER ZDB1 = 70 ZDB2 = 72DHT1 = 70DCT1 = 70DHT2 = 72DCT2 = 72CCAP = 95000HCAP = -95000 .. \$ ----- \$ SCHEDULES----- \$ HEAT-1A =SCHEDULE THRU DEC 31 (ALL) (1,24) (ZDB1) .. COOL-1A =SCHEDULE THRU DEC 31 (ALL) (1,24) (ZDB1) .. \$ ----- SCHEDULES----- \$ HEAT-2A =SCHEDULE THRU DEC 31 (ALL) (1,24) (ZDB2) . . COOL-2A =SCHEDULE THRU DEC 31 (ALL) (1,24) (ZDB2) .. \$ -----\$ DESCRIPTIONS ----\$ ZN-CONT-1 = ZONE-CONTROLDESIGN-HEAT-T=DHT1 HEAT-TEMP-SCH=HEAT-1A DESIGN-COOL-T=DCT1 COOL-TEMP-SCH=COOL-1A THERMOSTAT-TYPE=TWO-POSITION THROTTLING-RANGE=.1 .. ZN-AIR-1 = ZONE-AIRASSIGNED-CFM=600 EXHAUST-CFM=200 EXHAUST-EFF=.7 EXHAUST-STATIC=0 ... ZONE - 1 = ZONEZONE-CONTROL=ZN-CONT-1 ZONE-AIR=ZN-AIR-1 ZONE-TYPE=CONDITIONED MIN-CFM-RATIO=1 ... ZN-CONT-2 = ZONE-CONTROLDESIGN-HEAT-T=DHT2 HEAT-TEMP-SCH=HEAT-2A DESIGN-COOL-T=DCT2 COOL-TEMP-SCH=COOL-2A THERMOSTAT-TYPE=TWO-POSITION THROTTLING-RANGE=.1 ... ZN-AIR-2 = ZONE-AIRASSIGNED-CFM=700 EXHAUST-CFM=300 EXHAUST-EFF=.7 EXHAUST-STATIC=0 ...

ZONE-2 =ZONE	ZONE-CONTROL=ZN-CONT-2 ZONE-AIR=ZN-AIR-2 ZONE-TYPE=CONDITIONED MIN-CFM-RATIO=1
\$COOLING AN	ID HEATING PARAMETERS \$
COOL-1 = SCHEDULE HEAT-1 = SCHEDULE	THRU DEC 31 (ALL) (1,24) (1) THRU DEC 31 (ALL) (1,24) (1)
\$SYS	TEM CHARACTERISTICS \$
S-CONT=SYSTEM-CONTROL	MAX-SUPPLY-T=110 HEAT-CONTROL=CONSTANT HEAT-SET-T=110 HEATING-SCHEDULE=HEAT-1 MIN-SUPPLY-T=55 COOL-CONTROL=CONSTANT COOL-SET-T=55 COOLING-SCHEDULE=COOL-1 PREHEAT-T=45
S-AIR=SYSTEM-AIR	SUPPLY-CFM=1300 RETURN-CFM=1300 MIN-OUTSIDE-AIR=.385 OA-CONTROL=TEMP DUCT-DELTA-T=0
SYSFAN=SYSTEM-FANS	SUPPLY-STATIC=2 SUPPLY-EFF=.7 SUPPLY-MECH-EFF=.7 RETURN-STATIC=0 RETURN-EFF=.7 RETURN-DELTA-T=0 FAN-CONTROL=CONSTANT-VOLUME
\$	FAN-PLACEMENT=DRAW-THROUGH MOTOR-PLACEMENT=OUTSIDE-AIRFLOW
SYSEQ = SYSTEM-EQUIPMENT	COOLING-CAPACITY=CCAP HEATING-CAPACITY=HCAP COIL-BF=.001
SYS =SYSTEM	SYSTEM-CONTROL=S-CONT SYSTEM-AIR=S-AIR SYSTEM-FANS=SYSFAN SYSTEM-EQUIPMENT=SYSEQ SYSTEM-TYPE=DDS ZONE-NAMES=(ZONE-1,ZONE-2) PREHEAT-SOURCE=ELECTRIC HEAT-SOURCE=ELECTRIC RETURN-AIR-PATH=DUCT
\$HOUR	LY REPORT\$
RP-2 = SCHEDULE THRU JAN 5 (ALL) (1,24) (1)

```
BLOCK-2-1 = REPORT-BLOCK
                   VARIABLE-TYPE = SYS
                   VARIABLE-LIST = (1,2,3,4,5,6,10,20,21) ..
 BLOCK-2-2 = REPORT-BLOCK
                   VARIABLE-TYPE = ZONE-1
                   VARIABLE-LIST = (1, 2, 11, 31) ...
 BLOCK-2-3 = REPORT-BLOCK
                   VARIABLE-TYPE = ZONE-2
                   VARIABLE-LIST = (1, 2, 11, 31) ...
HR-2
          = HOURLY-REPORT
                   REPORT-SCHEDULE = RP-2
            REPORT-BLOCK=(BLOCK-2-1,BLOCK-2-2,BLOCK-2-3) ...
HVAC=PLANT-ASSIGNMENT
                              SYSTEM-NAMES=(SYS) ...
END ..
COMPUTE SYSTEMS ...
INPUT PLANT ..
      $----- PLANT INPUT WITH ONE PIECE OF EQUIPMENT -----$
          $----- IS REQUIRED TO GET BEPS REPORT -----$
$
           PLANT-REPORT
                               SUMMARY=(BEPS,PS-A,PS-G) ..
HVAC=PLANT-ASSIGNMENT ...
     FURN-1 =PLANT-EQUIPMENT
             TYPE=FURNACE
             SIZE=.6 ..
     A-C-1 =PLANT-EQUIPMENT
             TYPE=HERM-CENT-CHLR
             SIZE=.6 ..
     P-H-1 =PLANT-EQUIPMENT
             TYPE=FURNACE
             SIZE=.6 ..
END ..
COMPUTE PLANT ..
$ RUN 2
PARAMETRIC-INPUT LOADS ..
PARAMETER OADB = 30
          OADP = -20
          ROOF-U1 = 0.505
          ROOF-U2 = 0.0001
          EQ-LOAD1 = 5.86
          EQ-SEN1 = 0
          EQ-LAT1 = 1
          TEMP1 = 71
          EQ-LOAD2 = 11.72
```

```
EQ-SEN2 = 0.25
          EQ-LAT2 = 0.75
          TEMP2 = 73 ...
END
    . .
COMPUTE LOADS ..
PARAMETRIC-INPUT SYSTEMS
                          . .
PARAMETER ZDB1 = 71
          ZDB2 = 73
          DHT1 = 110
          DCT1 = 71
          DHT2 = 110
          DCT2 = 73
          CCAP = 80000
          HCAP = -80000 ..
END ..
COMPUTE SYSTEMS
                . .
COMPUTE PLANT ..
$ RUN 3
PARAMETRIC-INPUT LOADS
                       . .
PARAMETER OADB = 60
          OADP = 26.2
          ROOF-U1 = 0.0001
          ROOF-U2 = 0.0001
          EQ-LOAD1 = 20.52
          EQ-SEN1 = 0.714
          EQ-LAT1 = 0.286
          TEMP1 = 74
          EQ-LOAD2 = 32.24
          EQ-SEN2 = 0.727
          EQ-LAT2 = 0.273
          TEMP2 = 76 ...
END
    . .
COMPUTE LOADS ..
PARAMETRIC-INPUT SYSTEMS
                          . .
PARAMETER ZDB1 = 74
          ZDB2 = 76
          DHT1 = 74
          DCT1 = 74
          DHT2 = 110
          DCT2 = 76
          CCAP = 80000
          HCAP = -80000 ..
END ..
COMPUTE SYSTEMS ..
COMPUTE PLANT
              . .
$ RUN 4
PARAMETRIC-INPUT LOADS
                       . .
PARAMETER OADB = 80
          OADP = 73.1
          ROOF-U1 = 0.0001
          ROOF-U2 = 0.0001
```

```
EQ-LOAD1 = 35.17
          EQ-SEN1 = 0.833
          EQ-LAT1 = 0.167
          TEMP1 = 75
          EQ-LOAD2 = 43.96
          EQ-SEN2 = 0.8
          EQ-LAT2 = 0.2
          TEMP2 = 77 ...
END
    . .
COMPUTE LOADS
              . .
PARAMETRIC-INPUT SYSTEMS
                          . .
PARAMETER ZDB1 = 75
          ZDB2 = 77
          DHT1 = 110
          DCT1 = 75
          DHT2 = 110
          DCT2 = 77
          CCAP = 95000
          HCAP = -95000 ..
    . .
END
COMPUTE SYSTEMS ..
COMPUTE PLANT
              . .
$ RUN 5
PARAMETRIC-INPUT LOADS
                        . .
PARAMETER OADB = 77
          OADP = 34.7
          ROOF-U1 = 0.0001
          ROOF-U2 = 0.0001
          EQ-LOAD1 = 20.52
          EQ-SEN1 = 0.714
          EQ-LAT1 = 0.286
          TEMP1 = 74
          EQ-LOAD2 = 32.24
          EQ-SEN2 = 0.727
          EQ-LAT2 = 0.273
          TEMP2 = 76 ...
END
    . .
COMPUTE LOADS ..
PARAMETRIC-INPUT SYSTEMS
                          . .
PARAMETER ZDB1 = 74
          ZDB2 = 76
          DHT1 = 74
          DCT1 = 74
          DHT2 = 76
          DCT2 = 76
          CCAP = 95000
          HCAP = -95000 ..
END
    . .
COMPUTE SYSTEMS
                . .
COMPUTE PLANT ..
$ RUN 6
```

```
PARAMETRIC-INPUT LOADS ..
PARAMETER OADB = 74
          OADP = 60.2
          ROOF-U1 = 0.0001
          ROOF-U2 = 0.0001
          EQ-LOAD1 = 20.52
          EQ-SEN1 = 0.714
          EQ-LAT1 = 0.286
          TEMP1 = 74
          EQ-LOAD2 = 32.24
          EQ-SEN2 = 0.727
          EQ-LAT2 = 0.273
          TEMP2 = 76 ...
END ..
COMPUTE LOADS ..
PARAMETRIC-INPUT SYSTEMS ..
PARAMETER ZDB1 = 74
         ZDB2 = 76
          DHT1 = 74
          DCT1 = 74
          DHT2 = 76
          DCT2 = 76
          CCAP = 95000
         HCAP = -95000 ..
END ..
COMPUTE SYSTEMS ..
COMPUTE PLANT ..
STOP ..
```

4.2 DUAL DUCT VARIABLE VOLUME (DDVAV).

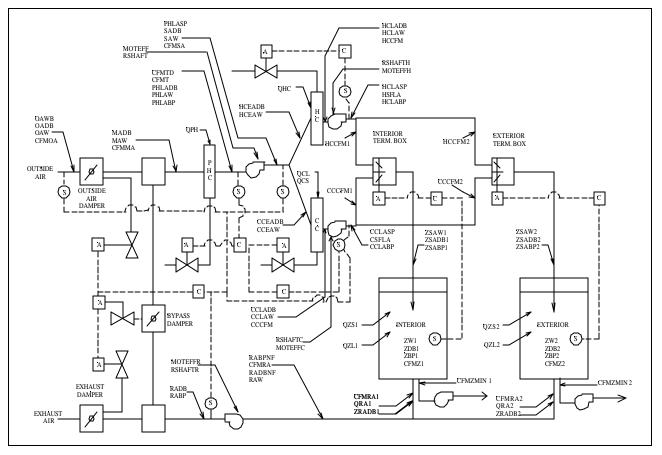


Figure 6: Dual Duct Variable Air Volume System Schematic (DDVAV)

The input values for the DDVAV spreadsheet are as follows:

TEST # (1.7) -	7 This switch is used for cosmetic purposes only. It is used
TEST # (17)=	to change the label that appears directly to the right of the
	input cell and creates a set of "canned" labels used for
	one of the tests that the spreadsheet was developed for.
ECON(0,1=T,2=E)	2 This switch turns the economizer "on" or "off". It is also
ECON(0,1-1,2-E)	used to select whether the temperature (T) or enthalpy (E)
	economizer is used.
AIR CRLR(1,2,3,4)=	3 This switch is used to control the type of variable flow fan
7 mr Cruzr(1,2,3,+)-	that is being used: 1=Inlet Vanes, 2=Discharge Dampers,
	3=Var.Speed Drive, 4=Constant
CCLASP(F) =	55.00 This variable is the cooling coil leaving air setpoint
	temperature (F).
CCLABP(psia)=	14.696 This variable is the cooling coil leaving air barometric
	pressure (PSIA).
EXHAUST(0=sys,1=zone)	1 This switch is used to calculate 'zone air exhaust' or
	'system air exhaust'. This will cause a difference in the
	mass flow rates returning from the zone, and heat gain
	from the return fan.
CFMZD1 (CFM) =	600.00 This is the design air flow for zone 1 (CFM).
CFMZD2 (CFM) =	700.00 This is the design air flow for zone 2 (CFM).
CFMFANH (%) =	100% This variable is used in the fan calculations when the fan
	is a draw-through fan placed down stream of the heating
	coil.
CFMFANC (%) =	100% This variable is used in the fan calculations when the fan
	is a draw-through fan placed downstream of the cooling
	coil.
CFMZMIN1=	200.00 This is the exhaust air for zone 1 (CFM)
CFMZMIN2=	300.00 This is the exhaust air for zone 2 (CFM)
CPAIR(Btu/lbF)=	0.2402 This is the constant that is used for the specific heat of air
	(80F).
CPh20(Btu/lbF)=	1.0019 This is the constant that is used for the specific heat of
	water (55F).
FTP(in-H20) =	0.00 This is the total fan pressure across the supply fan (in-
	H20). NOTE: this is set = 0 when a two draw-through
	fans are being used.
RFTP(in-H20)=	1.00 This is the total fan pressure across the return fan (in-
	H20).
CFTP(in-H20)=	2.00 This is the total fan pressure across the cold deck supply
	fan (in-H20). NOTE: this is set = 0 when one blow-
	through fan is being used.
HFTP(in-H20)=	2.00 This is the total fan pressure across the hot deck supply
	fan (in-H20). NOTE: this is set $= 0$ when one blow-
	through fan is being used.
FRACT(0,1)=	0 This is the switch that is used to place the supply fan in
	the air stream (1) or outside of the air stream (0).
FRACTr(0,1)=	0 This is the switch that is used to place the return fan in the
	air stream (1) or outside of the air stream (0).
FRACTc(0,1)=	0 This is the switch that is used to place the cold deck
	supply fan in the air stream (1) or outside of the air
	stream (0).
FRACTh(0,1)=	0 This is the switch that is used to place the hot deck supply
	fan in the air stream (1) or outside of the air stream (0).
FAN EFFICIENCY=	0.70 This is the constant fan efficiency for the single supply

	fan (%).	
RFAN EFFICIENCY=	0.70 This is the constant fan efficiency for the return fan (%	%).
CFAN EFFICIENCY=	0.70 This is the constant fan efficiency for the cold deck fa	ın
HFAN EFFICIENCY=	0.70 This is the constant fan efficiency for the hot deck far (%).	n
HCLASP(F) =	110.00 This is the heating coil leaving air setpoint temperatur (F).	e
HCLABP(psia)=	14.696 This variable is the heating coil leaving air barometric pressure (PSIA).	
MOTEFF=	0.90 This variable is the constant motor efficiency of the supply fan (%).	
MOTEFFR=	0.90 This variable is the constant motor efficiency of the refan (%).	eturr
MOTEFFC=	0.90 This variable is the constant motor efficiency of the condeck fan (%).	old
MOTEFFH=	0.90 This variable is the constant motor efficiency of the h deck fan (%).	ot
OADB(F) =	74.00 This variable is the outside air dry bulb temperature (F	⁷).
OAWB(F)=	70.00 This variable is the outside air wet bulb temperature (F	
PHLABP (PSIA) =	14.70 This variable is the preheat coil leaving air barometric pressure (PSIA).	
PHLASP(F)=	45.00 This variable is the setpoint temperature of the prehea coil (F).	at
QZL1(Btuh)=	2000 This variable is the latent load of zone 1 (BTUH).	
QZL2(Btuh)=	3000 This variable is the latent load of zone 2 (BTUH).	
QZS1(Btuh)=	5000 This variable is the sensible load of zone 1 (BTUH).	
QZS2 =	8000 This variable is the sensible load of zone 2 (BTUH).	
R =	1545 This variable is the gas constant for dry air (currently used).	not
Ra =	53.35 This variable is the gas constant for dry air (ft-lbf/R-lb)).
RABPNF=	14.70 This variable is the barometric pressure at a point in from of the return fan (PSIA).	
RABP=	14.70 This variable is the barometric pressures at point in ba of the return fan (PSIA).	ıck
ZDB1(F)=	74.00 This variable is the zone temperature for zone 1 (F).	
QRA1(F)=	0.00 This variable is the heat gain of the ducts returning fro zone 1 (F).	m
ZDB2(F)=	76.00 This variable is the zone temperature for zone 2 (F).	
QRA2(F)=	0.00 This variable is the heat gain of the ducts returning fro zone 2 (F).	om
ZSABP1(Psia)=	14.696 This variable is the barometric pressure of the supply for zone 1 (PSIA).	air
ZSABP2(Psia)=	14.696 This variable is the barometric pressure of the supply for zone 2 (PSIA).	air
ZBP1(Psia)	14.696 This variable is the barometric pressure of the air in zo 1 (PSIA).	one
ZBP2(Psia)	14.696 This variable is the barometric pressure of the air in zo 2 (PSIA).	one

The output from the DDVAV is listed in two tables to the left of the input table in a similar fashion as the DDCAV system.

DDVAV system	OA	MA	PCLA	CCLA	CSFLA	HCLA	HSFLA	ZSA1	ZSA2	Z1	Z2	MRA	RFEA	RFLA
Case 1 - all AMS	_		-											
DB (F)	-20.0000	-14.5132	45.0000	45.0000	45.0039	109.8134	110.0000	110.0000	96.8802	70.0000	72.0000	70.0000	70.0000	70.0019
W (lb/lbda)	0.00026	0.00038	0.00038	0.00038	0.00038	0.00038	0.00038	0.00038	0.00038	0.00214	0.00243	0.00214	0.00214	0.00214
V (ft3/lbda)			12.7305			14.3702		14.3615	14.0392			13.3990	13.3990	
i (BTU/lbda)	-4.5284			11.2153										19.1478
δm/δt (lbda/min)	37.2216	39.6297	39.6297	4.5004	4.5004	35.1294	35.1294	17.3346	22.2951	2.4081	0.0000	2.4081	2.4081	2.4081
Case 2 - all AMS														
DB (F)	30.0000	30.0000	45.0000	45.0000	45.0470	109.9555	110.0000	80.3133	69.8838	71.0000	73.0000	72.1975	72.1975	72.1983
W (lb/lbda)	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00205	0.00205	0.00205	0.00205	0.00205
V (ft3/lbda)			12.7229			14.3615		13.6131	13.3502			13.4527	13.4527	
i (BTU/lbda)	7.2061			10.8091										19.5843
δm/δt (lbda/min)	37.1671	37.1671	37.1671	20.5625	20.5625	16.6046	16.6046	14.9005	22.2666	0.0000	0.0000	0.0000	0.0000	0.0000
Case 3 - NE														
DB (F)	60.0000	62.6080	62.6080	54.7803	55.0000	109.9983	110.0000	55.0000	55.0000	74.0000	76.0000	75.1093	75.1093	75.1203
W (lb/lbda)	0.00292	0.00327	0.00327	0.00327	0.00327	0.00327	0.00327	0.00327	0.00327	0.00495	0.00501	0.00498	0.00498	0.00498
V (ft3/lbda)			13.2360			14.4371		12.9750	13.0432			13.5899	13.5899	
i (BTU/lbda)	17.5840			16.7093										23.4979
δm/δt (lbda/min)	36.7856	44.4240	44.4240	44.4240	44.4240	0.0000	0.0000	18.1499	26.2741	3.4017	4.2366	7.6383	7.6383	7.6383
Case 3 - RAEE, RATE														
DB (F)	60.0000	60.0000	60.0000	54.7803	55.0000	109.9983	110.0000	55.0000	55.0000	74.0000	76.0000	75.1093	75.1093	75.1204
W (lb/lbda)	0.00292	0.00292	0.00292	0.00292	0.00292	0.00292	0.00292	0.00292	0.00292	0.00459	0.00465	0.00463	0.00463	0.00463
V (ft3/lbda)			13.1624			14.4289		12.9750	13.0358			13.5822	13.5822	
i (BTU/lbda)	17.5840			16.3234										23.1077
δm/δt (lbda/min)	44.4530	44.4530	44.4530	44.4530	44.4530	0.0000	0.0000	18.1617	26.2913	3.4052	4.2412	7.6464	7.6464	7.6464
Case 4 - all AMS														
DB (F)	80.0000	78.0964	78.0964	54.4468	55.0000	109.9982	110.0000	55.0000	55.0000	75.0000	77.0000	75.8824	75.8824	76.0846
W (lb/lbda)	0.01757	0.01389	0.01389	0.00901	0.00901	0.01389	0.01389	0.00901	0.00901	0.00990	0.01024	0.01005	0.01005	0.01005
V (ft3/lbda)			13.8600			14.6822		12.9750	13.1629			13.7196	13.7196	
i (BTU/lbda)	38.4833			22.8546										29.2770
δm/δt (lbda/min)	36.4198	71.3523	71.3523	71.3523	71.3523	0.0000	0.0000	34.1250	37.2273	19.5198	15.4127	34.9325	34.9325	34.9325
Case 5 - RAEE														
DB (F)	77.0000	77.0000	77.0000	54.7805	55.0000	109.9983	110.0000	55.0000	55.0000	74.0000	76.0000	75.1092	75.1092	75.1202
W (lb/lbda)	0.00418	0.00418	0.00418	0.00418	0.00418	0.00418	0.00418	0.00418	0.00418	0.00586	0.00592	0.00590	0.00590	0.00590
V (ft3/lbda)			13.6206			14.4581		12.9750	13.0622			13.6098	13.6098	
i (BTU/lbda)	23.0766			17.6981										24.4981
δm/δt (lbda/min)	44.3497	44.3497	44.3497	44.3497	44.3497	0.0000	0.0000	18.1195	26.2302	3.3929	4.2248	7.6176	7.6176	7.6176
Case 6 - RAEE														
DB (F)	74.0000	74.1901	74.1901	54.7812	55.0000	109.9982	110.0000	55.0000	55.0000	74.0000	76.0000	75.1087	75.1087	75.1196
W (lb/lbda)	0.01483	0.01415	0.01415	0.00912	0.00912	0.01415	0.01415	0.00912	0.00912	0.01082	0.01088	0.01085	0.01085	0.01085
V (ft3/lbda)			13.7649			14.6882		12.9750	13.1652			13.7171	13.7171	
i (BTU/lbda)	33.9947			23.0580										29.9192
δm/δt (lbda/min)	36.4445	43.9516	43.9516	43.9516	43.9516	0.0000	0.0000	17.9569	25.9947	3.3455	4.1616	7.5071	7.5071	7.5071

Table 5: Variable Volume Dual Duct System Conditions for 865-RP Accuracy Tests (DDVAV)

DDVAV system	Preheat Coil	Cooling Coil (sens)	Cooling Coil (latent)	Cooling Coil (total)	Heating Coil	Total Heat
Case 1 - all AMS						
PSU1	33,980.00				32,837.00	66,817.00
PSU2	39,561.00				27,217.00	66,778.00
TAMU	34,014.23				32,836.80	66,851.03
BLAST	39,629.00				27,229.00	66,858.00
DOE II						68,449.00
Case 2 - all AMS						
PSU1	8,028.00				15,535.00	3,563.00
PSU2	13,315.00				10,219.00	23,533.00
TAMU	8,034.79				15,544.20	23,578.99
BLAST	13,336.00				10,244.00	23,580.00
DOE II						24,670.00
Case 3 - NE						
PSU1		5,039.00		5,039.00		
PSU2		5,001.00		5,001.00		
TAMU		5,041.89		5,041.89		
BLAST		5,026.00		5,082.00		
DOE II				4,404.00		54.00
Case 3 - RAEE, RATE						
PSU1		3,353.00		3,353.00		
PSU2		3,368.00		3,368.00		
TAMU		3,362.09		3,362.09		
BLAST		3,371.00		3,406.00		
DOE II				4,230.00		
Case 4 - all AMS						
PSU1		25,195.00	21,808.00	47,003.00		
PSU2		24,762.00	22,990.00	47,753.00		
TAMU		24,839.34	22,052.87	46,892.21		
BLAST		24,921.00	24,335.00	49,255.00		
DOE II				38,908.00		
Case 5 - RAEE						
PSU1		14,303.00		14,303.00		
PSU2		14,318.00		14,318.00		
TAMU		14,311.84		14,311.84		
BLAST		14,157.00	192.00	14,349.00		
DOE II				14,289.00		
Case 6 - RAEE						
PSU1		12,593.00	5,389.00			
PSU2		12,750.00	13,938.00			
TAMU		12,548.33	13,992.96			
BLAST		12,373.00	6,171.00	18,544.00		
DOE II				13,697.00		

Table 6: Variable Volume Dual Duct System Results for 865-RP Accuracy Tests (DDVAV)

4.3 CONSTANT VOLUME WITH REHEAT (CAVRH).

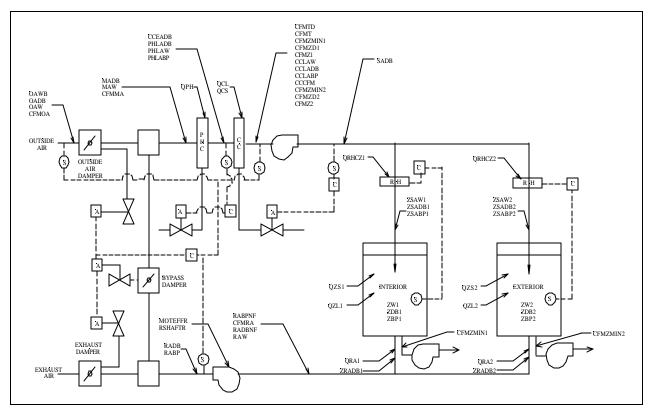


Figure 7: Constant Air Volume with Reheat System Schematic (CAVRH)

The input values for the CAVRH spreadsheet are as follows:

TEST # (18)=	1	This switch is used for cosmetic purposes only. It is used to change the label that appears directly to the
		right of the input cell and creates a set of "canned"
		labels used for one of the tests that the spreadsheet
$ECON(0 = 1 \pm 2 \pm 1)$	0	was developed for. This switch turns the economizer "on" or "off". It is
ECON(0=n,1=T,2=E)=	0	
		also used to select whether the temperature (T) or
	55.00	enthalpy (E) economizer is used.
CCLASP(F) =	55.00	This variable is the cooling coil leaving air setpoint
	14 (0)	temperature (F). This variable is the cooling coil leaving air barometric
CCLABP(psia)=	14.090	
	1	pressure (PSIA). This switch is used to calculate 'zone air exhaust' or
EXHAUST(0=sys,1=zone)=	1	
		'system air exhaust'. This will cause a difference in the mass flow rates returning from the zone, and heat
		gain from the return fan.
CFMZD1 (CFM) =	600.00	0
, ,		This is the design air flow for zone 1 (CFM).
CFMZD2 (CFM) =		This is the design air flow for zone 2 (CFM).
CFMZMIN1=		This is the exhaust air for zone 1 (CFM)
CFMZMIN2=	300.00	This is the exhaust air for zone 2 (CFM)
CPAIR(Btu/lbF)=	0.2402	This is the constant that is used for the specific heat of air (80F).
CPh20(Btu/lbF)=	1.0019	This is the constant that is used for the specific heat of water (55F).
FTP(in-H20) =	2.00	This is the total fan pressure across the supply fan (in-
(H20).
FRACT(0,1)=	0.00	This is the switch that is used to place the supply fan
		in the air stream (1) or outside of the air stream (0).
FRACTR(0,1)=	0.00	This is the switch that is used to place the return fan in
		the air stream (1) or outside of the air stream (0) .
FAN EFFICIENCY=	0.70	This is the constant fan efficiency (%).
HCLASP(F) =	110.00	This is the heating coil leaving air setpoint
		temperature (F).
HCLABP(psia)=	14.696	This variable is the heating coil leaving air barometric
		pressure (PSIA).

MOTEFF=	0.00	This variable is the constant motor efficiency of the
	0.90	supply fan (%).
MOTEFFR=	0.90	This variable is the constant motor efficiency of the
	0.90	return fan (%).
OADB(F) =	-20.00	This variable is the outside air dry bulb temperature
- ()		(F).
OAWB(F)=	-20.00	This variable is the outside air wet bulb temperature
		(F).
PHLABP (PSIA) =	14.696	This variable is the preheat coil leaving air barometric
		pressure (PSIA).
PHLASP(F)=	45.00	This variable is the setpoint temperature of the preheat
071.1(0(-1))	2000	coil (F).
QZL1(Btuh)=		This variable is the latent load of zone 1 (BTUH).
QZL2(Btuh)=		This variable is the latent load of zone 2 (BTUH).
QZS1(Btuh)=		This variable is the sensible load of zone 1 (BTUH).
QZS2 =	-8000	This variable is the sensible load of zone 2 (BTUH).
RFAN EFFICIENCY=	0.70	This variable is the constant fan efficiency of the
		return fan (%).
R =	1545.32	This variable is the gas constant for dry air (currently
~		not used).
Ra =	53.35	This variable is the gas constant for dry air (ft-lbf/R-
RABPNF=	14 (0)	lb).
KABPNF=	14.090	This variable is the barometric pressure at a point in front of the return fan (PSIA).
RABP=	14 696	This variable is the barometric pressures at point in
	14.090	back of the return fan (PSIA).
RFTP(in-H20)=	1.00	This is the total fan pressure across the supply fan (in-
``´´		H20).
ZDB1(F)=	70.00	This variable is the zone temperature for zone 1 (F).
QRA1(F)=	0.00	This variable is the heat gain of the ducts returning
		from zone 1 (F).
ZDB2(F)=	72.00	This variable is the zone temperature for zone 2 (F).
QRA2(F)=	0.00	This variable is the heat gain of the ducts returning
		from zone 2 (F).
ZSABP1(Psia)=	14.696	This variable is the barometric pressure of the supply
		air for zone 1 (PSIA).
ZSABP2(Psia)=	14.696	This variable is the barometric pressure of the supply
	14.000	air for zone 2 (PSIA).
ZBP1(Psia)	14.696	This variable is the barometric pressure of the air in
$7DD2(D_{sig})$	14.000	zone 1 (PSIA).
ZBP2(Psia)	14.696	This variable is the barometric pressure of the air in zone 2 (PSIA).

The output from the CAVRH is listed in two tables to the left of the input table in a similar fashion as the DDCAV system.

DDCV system	OA	МА	PCLA	CCLA	SFLA	ZSA1	ZSA2	Z1	Z2	MRA	RFEA	RFLA
Case 1 - all AMS												
DB (F)	-20.0000	38.1894	45.0000	45.0000	46.0093	84.7077	82.0853	70.0000	72.0000	71.0072	71.0072	71.5378
W (lb/lbda)	0.00026		0.00157	0.00157	0.00157	0.00158	0.00158	0.00222	0.00241	0.00232	0.00232	0.00232
V (ft3/lbda)	0.00020	0.00107	0.00107	12.7551	0.00157	13.7587	13.6924	0.00222	0.00211	13.4285	13.4285	0.00252
i (BTU/lbda)	-4.5284		12.5074	12.5126		15.7567	15.0724			15.4205	15.4205	19.7233
$\delta_{\rm m}/\delta_{\rm t}$ (lbda/min)	37.2202	101.9201	101.9201		101.9201	47.0400	54.8800	47.0400	54.8800	64.6999	64.6999	64.6999
Case 2 - NE	Ī											
	30.0000	56.7941	56.7941	53.9727	55.0000	73.9940	71.7168	71.0000	73.0000	72.0055	72.0055	72.5371
DB (F)		0.00130				0.00130	0.00130					0.00206
W (lb/lbda)	0.00000	0.00130	0.00130		0.00130			0.00196	0.00215	0.00206	0.00206	0.00206
V (ft3/lbda)	7.0000		15.0510	12.9762		13.4820	13.4245			13.4481	13.4481	10 (700
i (BTU/lbda) δm/δt (lbda/min)	7.2060	100 1026	15.0519		100 1026	46.0006	52.0450	16.0006	52.0450	(2.0170	(2.0170	19.6792
om/ot (lbda/min)	37.1657	100.1836	100.1836	100.1836	100.1836	46.2386	53.9450	46.2386	53.9450	63.0179	63.0179	63.0179
Case 2 - RAEE, RATE												
DB (F)	30.0000	53.9233	53.9233	53.9233	54.9505	73.9939	71.7169	71.0000	73.0000	72.0055	72.0055	72.5371
W (lb/lbda)	0.00000	0.00102	0.00102	0.00102	0.00102	0.00102	0.00102	0.00168	0.00187	0.00178	0.00178	0.00178
V (ft3/lbda)				12.9691		13.4760	13.4185			13.4421	13.4421	
i (BTU/lbda)	7.2060		14.0619	14.0635								19.3745
δ _m /δ _{t (lbda/min)}	41.2973	100.2380	100.2380	100.2380	100.2380	46.2637	53.9743	46.2637	53.9743	63.0557	63.0557	63.0557
Case 3 - NE												
DB (F)	60.0000	69.8210	69.8210	53.9734	55.0000	66.5201	65.7419	74.0000	76.0000	75.0061	75.0061	75.5403
W (lb/lbda)	0.00292	0.00423	0.00423	0.00423	0.00423	0.00423	0.00423	0.00489	0.00508	0.00499	0.00499	0.00499
V (ft3/lbda)				13.0372		13.3556	13.3359			13.5876	13.5876	
i (BTU/lbda)	17.5840		21.3878	17,5547								23.6114
$\delta_{\rm m}/\delta_{\rm t}$ (lbda/min)	36.7845	99.7149			99.7149	46.0223	53.6927	46.0223	53.6927	62.9305	62.9305	62.9305
Case 3 - RAEE. RATE												
DB (F)	60.0000	60.0000	60.0000	53.9731	55.0000	66.5178	65,7387	74.0000	76.0000	75.0061	75.0061	75.5405
W (lb/lbda)	0.00292	0.00292	0.00292		0.00292	0.00292	0.00292	0.00358		0.00368	0.00368	0.00368
V (ft3/lbda)	0.00292	0.00292	0.00292	13.0098	0.00292	13.3275	13.3078	0.00558	0.00377	13.5590	13.5590	0.00508
i (BTU/lbda)	17.5840		17.5840	16.1285		13.3275	15.5078			13.3390	13.3390	22.1710
$\delta_{\rm m}/\delta_{\rm t}$ (lbda/min)	99.9248	99.9248	99.9248	99.9248	99.9248	46.1191	53.8056	46.1191	53.8056	63.0629	63.0629	63.0629
			77.7210	77.7210	77.7210	-10.1171	55.0050	-10.1171	55.6656	05.0027	05.0027	05.0027
Case 4 - all AMS												
DB (F)	80.0000	77.8262	77.8262	53.9745	55.0000	60.0565		75.0000	77.0000	76.0063	76.0063	76.5410
W (lb/lbda)	0.01757	0.01255	0.01255		0.00885	0.00885	0.00885	0.00952	0.00971	0.00962	0.00962	0.00962
V (ft3/lbda)				13.1334		13.2889	13.3292			13.7134	13.7134	
i (BTU/lbda)	38.4833	00.0044	32.4418	22.5697	00.00.11	15 6050	53 3 001	15 (0.50	50 0001	<i>(2,5272)</i>		28.9208
δ _m /δ _t (lbda/min)	36.4468	98.9841	98.9841	98.9841	98.9841	45.6850	53.2991	45.6850	53.2991	62.5373	62.5373	62.5373
Case 5 - RAEE												
DB (F)	77.0000	77.0000	77.0000	53.9734	55.0000	66.5200	65.7418	74.0000	76.0000	75.0061	75.0061	75.5403
W (lb/lbda)	0.00418	0.00418	0.00418	0.00418	0.00418	0.00418	0.00418	0.00485	0.00503	0.00495	0.00495	0.00495
V (ft3/lbda)				13.0362		13.3546	13.3348			13.5865	13.5865	-
i (BTU/lbda)	23.0766		23.0766	17.5028							62.9353	23.5590
δ _m /δ _t (lbda/min)	99.7226	99.7226	99.7226	99.7226	99.7226	46.0258	53.6968	46.0258	53.6968	62.9353	62.9353	62.9353
Case 6 - RAEE												
DB (F)	74.0000	74.9684	74.9684	53.9745	55.0000	66.5282	65.7530	74.0000	76.0000	75.0061	75.0061	75.5398
W (lb/lbda)	0.01483	0.01154	0.01154	0.00885	0.00885	0.00885	0.00885	0.00952	0.00971	0.00962	0.00962	0.00962
V (ft3/lbda)				13.1334		13.4544	13.4346			13.6878	13.6878	
i (BTU/lbda)	33.9947		30.6383	22,5697								28.6764
$\delta_{\rm m}/\delta_{\rm t~(lbda/min)}$	36.5150	98,9841	98,9841	98,9841	98.9841	45.6850	53,2991	45.6850	53.2991	62,4692	62.4692	62.4692

Table 7: Constant Volume Reheat System Conditions for 865-RP Accuracy Tests (CAVRH)

DDCV system	Preheat Coil	Cooling Coil (sens)	Cooling Coil (latent)	Cooling Coil (total)	Zone 1 reheat	Zone 2 reheat	Total Heat
Case 1 - all AMS							
PSU1	9,934.00				26,295.00	28,596.00	64,825.00
PSU2	24,528.00				19,648.00	20,756.00	64,932.00
TAMU	10,032.94				26,311.65	28,616.73	64,961.32
BLAST	24,578.00				19,671.00	20,790.00	65,039.00
DOE II							60,995.00
Case 2 - NE							
PSU1		4,146.00		4,146.00	12,679.00		25,693.00
PSU2		3,129.00		3,129.00	12,291.00		24,797.00
TAMU		4,083.14		4,083.14	12,687.91	13,027.88	25,715.79
BLAST		3,139.00	23.00	3,162.00	12,319.00	12,543.00	24,862.00
DOE II				3,676.00			28,047.00
Case 2 - RAEE, RATE							
PSU1					12,678.00		25,693.00
PSU2					12,291.00		24,797.00
TAMU					12,721.26	13,066.83	25,788.09
BLAST					12,319.00	12,543.00	24,862.00
DOE II							28,633.00
Case 3 - NE							
PSU1		23,010.00		23,010.00	7,690.00		16,053.00
PSU2		21,780.00		21,780.00	7,220.00	7,758.00	14,978.00
TAMU		22,952.37		22,952.37	7,700.74	8,377.27	16,078.01
BLAST		21,832.00	280.00	22,112.00	7,256.00	7,813.00	15,069.00
DOE II				21,344.00			15,569.00
Case 3 - RAEE, RATE							
PSU1		8,724.00		8,724.00	7,686.00	8,353.00	16,044.00
PSU2		8,458.00		8,458.00	7,220.00	7,758.00	14,978.00
TAMU		8,726.24		8,726.24	7,696.78	8,372.17	16,068.95
BLAST		8,474.00	88.00	/	7,256.00	7,813.00	15,069.00
DOE II				10,162.00			15,569.00
Case 4 - all AMS							
PSU1		35,158.00	22,612.00		3,372.00	5,161.00	8,534.00
PSU2		33,357.00			2,863.00		7,371.00
TAMU		34,727.80		57,936.56	3,383.72	5,175.78	8,559.50
BLAST		33,434.00	26,113.00	59,547.00	2,906.00	4,570.00	7,476.00
DOE II				57,090.00			6,611.00
Case 5 - RAEE							
PSU1		33,327.00		33,327.00	7,690.00		16,053.00
PSU2	1	32,148.00		32,148.00	7,220.00		14,978.00
TAMU		33,349.76		33,349.76	7,700.60		16,077.69
BLAST		30,963.00	474.00	31,437.00	7,256.00	7,813.00	15,069.00
DOE II	1		ļ	30,648.00			15,115.00
Case 6 - RAEE							
PSU1		30,490.00	17,108.00		7,704.00	8,381.00	16,085.00
PSU2		29,284.00			7,220.00		14,978.00
TAMU		30,540.61	16,911.09		7,714.54	8,395.06	16,109.60
BLAST		29,352.00	9,645.00	38,997.00	7,256.00	7,813.00	15,069.00
DOE II							15,075.00

Table 8: Constant Volume Reheat System Results for 865-RP Accuracy Tests (CAVRH)

VARIABLE VOLUME WITH REHEAT (VAVRH).

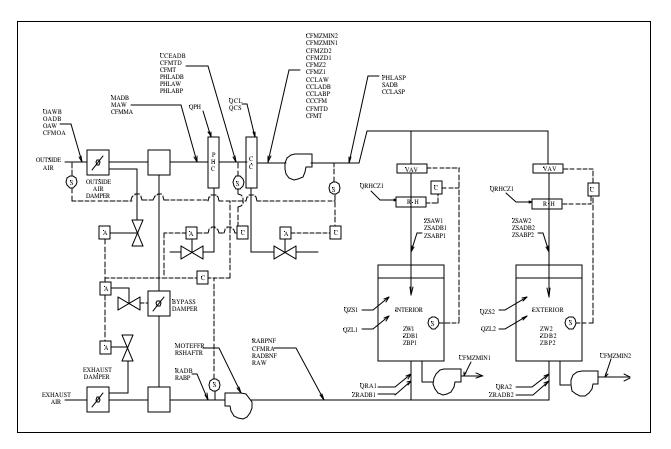


Figure 8: Variable Air Volume Reheat System Schematic (VAVRH)

The input values for the VAVRH spreadsheet are:

TEST # (17)=	7	This switch is used for cosmetic purposes only. It is used to
		change the label that appears directly to the right of the input
		cell and creates a set of "canned" labels used for one of the
		tests that the spreadsheet was developed for.
ECON(no=0,T=1,E=2)	2	This switch turns the economizer "on" or "off". It is also used
		to select whether the temp erature (T) or enthalpy (E)
		economizer is used.
AIR CRLR $(1,2,3,4)$ =	3	This switch is used to control the type of variable flow fan that
		is being used: 1=Inlet Vanes, 2=Discharge Dampers,
		3=Var.Speed Drive, 4=Constant
CCLASP(F) =	55.00	This variable is the cooling coil leaving air barometric pressure
		(PSIA).
CCLABP(psia)=	14.696	This variable is the cooling coil leaving air barometric pressure
		(PSIA).
EXHAUST(0=sys,1=zone)=	1	This switch is used to calculate 'zone air exhaust' or 'system
		air exhaust'. This will cause a difference in the mass flow rates
		returning from the zone, and heat gain from the return fan.
CFMZD1 (CFM) =		This is the design air flow for zone 1 (CFM).
CFMZD2 (CFM) =	700.00	This is the design air flow for zone 2 (CFM).
CFMZMIN1=	200.00	This is the exhaust air for zone 1 (CFM)
CFMZMIN2=	300.00	This is the exhaust air for zone 2 (CFM)
CPAIR(Btu/lbF)=	0.2402	This is the constant that is used for the specific heat of air
		(80F).
CPh20(Btu/lbF)=	1.0019	This is the constant that is used for the specific heat of water
		(55F).
FTP(in-H20) =	2.00	This is the total fan pressure across the supply fan (in-H20).
FRACT(0,1)=	0	This is the switch that is used to place the supply fan in the air
		stream (1) or outside of the air stream (0).
FRACTR(0,1)=	0	This is the switch that is used to place the return fan in the air
		stream (1) or outside of the air stream (0).
FAN EFFICIENCY=	0.70	This is the constant fan efficiency (%).
MOTEFF=	0.90	This variable is the constant motor efficiency of the supply fan
		(%).
MOTEFFR=	0.90	This variable is the constant motor efficiency of the return fan
		(%).

OADB(F) =		This variable is the outside air dry bulb temperature (F).
OAWB(F)=	70.00	This variable is the outside air wet bulb temperature (F).
PHLABP (PSIA) =	14.70	This variable is the preheat coil leaving air barometric pressure (PSIA).
PHLASP(F)=	45.00	This variable is the setpoint temperature of the preheat coil (F).
QZL1(Btuh)=	2000	This variable is the latent load of zone 1 (BTUH).
QZL2(Btuh)=	3000	This variable is the latent load of zone 2 (BTUH).
QZS1(Btuh)=	5000	This variable is the sensible load of zone 1 (BTUH).
QZS2 =	8000	This variable is the sensible load of zone 2 (BTUH).
RFAN EFFICIENCY=	0.70	This variable is the constant fan efficiency of the return fan (%).
RHCZ1SP=	120.00	This is the maximum temperature of the reheat coil leaving air for zone 1 (F).
RHCZ2SP=		This is the maximum temperature of the reheat coil leaving air for zone 2 (F).
R =		This variable is the gas constant for dry air (currently not used).
Ra =	53.35	This variable is the gas constant for dry air (ft-lbf/R-lb).
RABPNF=	14.696	This variable is the barometric pressure at a point in front of the return fan (PSIA).
RABP=	14.696	This variable is the barometric pressures at point in back of the return fan (PSIA).
RFTP(in-H20)=	1.00	This is the total fan pressure across the supply fan (in-H20).
ZDB1(F)=	74.00	This variable is the zone temperature for zone 1 (F).
QRA1(F)=	0.00	This variable is the heat gain of the ducts returning from zone 1 (F).
ZDB2(F)=	76.00	This variable is the zone temperature for zone 2 (F).
QRA2(F)=	0.00	This variable is the heat gain of the ducts returning from zone 2 (F).
ZSABP1(Psia)=	14.696	This variable is the barometric pressure of the supply air for zone 1 (PSIA).
ZSABP2(Psia)=	14.696	This variable is the barometric pressure of the supply air for zone 2 (PSIA).
ZBP1(Psia)	14.696	This variable is the barometric pressure of the air in zone 1 (PSIA).
ZBP2(Psia)	14.696	This variable is the barometric pressure of the air in zone 2 (PSIA).

VAV vohoot quotom		MA	PCLA	CCLA	SFLA	ZSA1	ZSA2	71	Z2	MRA	RFEA	RFLA
VAV reheat system	OA	MA	FCLA	CCLA	SFLA	ZSAI	Z5A2	Z1	L2	MKA	KFEA	KFLA
Case 1 - all AMS	20.0000	20.0000	15 0000	15 0000	10.1111		0.5.0000	=0.0000	52 0000			51.0 (55
DB (F)	-20.0000		45.0000	45.0000		116.4757	96.8809	70.0000	72.0000	71.0667	71.0667	71.0675
W (lb/lbda)	0.00026	0.00026	0.00026	0.00026	0.00026	0.00026	0.00026	0.00231	0.00231	0.00231	0.00231	0.00231
V (ft3/lbda)	4.520.4		11.0001	11.0021						13.4297	13.4297	10 50 40
i (BTU/lbda) δ _m /δ _t (lbda/min)	-4.5284 37.2216	37.2216	11.0921	11.0921 37.2216	37.2216	14.9224	22.2992	14.9224	22.2992	0.0000	0.0000	19.5949
om/ot (Ibda/min)	37.2216	37.2216	37.2216	37.2216	37.2216	14.9224	22.2992	14.9224	22.2992	0.0000	0.0000	0.0000
Case 2 - all AMS												
DB (F)	30.0000	30.0000	45.0000	45.0000	45.1459	80.3133	69.8838	71.0000	73.0000	72.6471	72.6471	72.6479
W (lb/lbda)	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00205	0.00205	0.00205	0.00205	0.00205
V (ft3/lbda)										13.4641	13.4641	
i (BTU/lbda)	7.2061		10.8091	10.8091								19.6942
δ _m /δ _{t (lbda/min)}	37.1671	37.1671	37.1671	37.1671	37.1671	14.9005	22.2666	14.9005	22.2666	0.0000	0.0000	0.0000
Case 3 - NE												
DB (F)	60.0000	62.6080	62.6080	54.7803	55.0000	55.0000	55.0000	74.0000	76.0000	75.1093	75.1093	75.1203
W (lb/lbda)	0.00292	0.00327	0.00327	0.00327	0.00327	0.00327	0.00327	0.00495	0.00501	0.00498	0.00498	0.00498
V (ft3/lbda)										13.5899	13.5899	
i (BTU/lbda)	17.5840		18.6008	16.7093								23.4979
δ _m /δ _{t (lbda/min)}	36.7856	44.4240	44.4240	44.4240	44.4240	18.1499	26.4721	18.1499	26.2741	7.6383	7.6383	7.6383
Case 3 - RAEE. RATE												
DB (F)	60.0000	60.0000	60.0000	54.7803	55.0000	55.0000	55.0000	74.0000	76.0000	75.1093	75,1093	75.1204
W (lb/lbda)	0.00292	0.00292	0.00292	0.00292	0.00292	0.00292	0.00292	0.00459	0.00465	0.00463	0.00463	0.00463
V (ft3/lbda)										13.5822	13.5822	
i (BTU/lbda)	17.5840		17.5840	16.3234								23.1077
δ _m /δ _{t (lbda/min)}	44.4530	44.4530	44.4530	44.4530	44.4530	18.1617	26.2913	18.1617	26.2913	7.6464	7.6464	7.6464
Case 4 - all AMS												
DB (F)	80.0000	78.0964	78.0964	54,4468	55.0000	55.0000	55.0000	75.0000	77.0000	75.8824	75.8824	76.0846
W (lb/lbda)	0.01757		0.01389	0.00901	0.00901		0.00901	0.00990		0.01005	0.01005	0.01005
V (ft3/lbda)	0.01757	0.01389	0.01369	0.00901	0.00901	0.00901	0.00901	0.00990	0.01024	13.7196	13.7196	0.01005
i (BTU/lbda)	38.4833		33.9761	22.8546						15.7170	15.7170	29.2770
$\delta_{m}/\delta_{t (lbda/min)}$	36.4198	71.3523	71.3523	71.3523	71.3523	34,1250	37.2273	34,1250	37.2273	34.9325	34,9325	34.9325
-												
Case 5 - RAEE	77.0000	77.0000	77.0000	54 7005	55 0000	55 0000	55 0000	74.0000	76 0000	75 1000	75 1000	75 1000
DB (F)	77.0000	77.0000	77.0000	54.7805	55.0000	55.0000	55.0000	74.0000	76.0000	75.1092	75.1092	75.1202
W (lb/lbda)	0.00418	0.00418	0.00418	0.00418	0.00418	0.00418	0.00418	0.00586	0.00592	0.00590	0.00590	0.00590
V (ft3/lbda)	22.0766		22.0766	17 6091						13.6098	13.6098	24.4981
i (BTU/lbda) δ _m /δ _t (lbda/min)	23.0766 44.3497		23.0766 44.3497		11 3497	18.1195	26 2302	18 1195	26.2302	7.6176	7.6176	7.6176
	44.3497	44.3497	44.3497	44.3497	44.3497	18.1195	20.2302	18.1195	20.2302	7.0170	7.0170	7.0170
Case 6 - RAEE												
DB (F)	74.0000		74.1901	54.7812		55.0000				75.1087		75.1196
W (lb/lbda)	0.01483	0.01415		0.00912	0.00912	0.00912	0.00912	0.01082	0.01088		0.01085	0.01085
V (ft3/lbda)			13.7000				1			13.7171	13.7171	
i (BTU/lbda)	33.9947		33.2986				1			1		29.9192
δ _m /δ _{t (lbda/min)}	36.4445	43.9516	43.9516	43.9516	43.9516	17.9569	25.9947	17.9569	25.9947	7.5071	7.5071	7.5071

Table 9: Variable Volume Reheat System Conditions for 865-RP Accuracy Tests (VAVRH)

VAVreheat system	Preheat Coil	Cooling Coil (sens)	Cooling Coil (latent)	Cooling Coil (total)	Zone 1 Reheat	Zone 2 Reheat	Total Heat
Case 1 - all AMS		(sens)	(latelit)	(total)			
PSU1							
PSU2							
TAMU	34,885.36				15,347.65	16,634.28	66,867.29
BLAST	51,005.50				15,517.05	10,05 1.20	00,007.27
DOE II	36,806				13,744	14,406	64,956
	50,000				15,711	11,100	01,900
Case 2 - all AMS							
PSU1							
PSU2							
TAMU	8,034.79				7,552.06	7,938.56	23,525.41
BLAST							
DOE II	8,494				6,043	5,785	20,322
Case 3 - NE							
PSU1							
PSU2							
TAMU		5,041.89		5,041.89			
BLAST		2,011105		0,011107			
DOE II				4,731			
Case 2 DAFE DATE							
Case 3 - RAEE, RATE PSU1							
PSU2							
TAMU		3,362.09		3,362.09			
BLAST		3,302.07		5,302.07			
DOE II				4,562			
				.,			
Case 4 - all AMS							
PSU1							
PSU2		24.020.24	22.052.05	46.000.01			
TAMU		24,839.34	22,052.87	46,892.21			
BLAST	-			44.244			
DOE II				44,344		L	
Case 5 - RAEE							
PSU1							
PSU2							
TAMU		14,311.84		14,311.84			
BLAST							
DOE II				14,648			
Case 6 - RAEE							
PSU1							
PSU2							
TAMU	1	12,548.33	13,992.96	26,541.29			
BLAST		12,540.55	13,772.70	20,541.27			
DOE II	1			16,053			

Table 10: Variable Volume Reheat System Results for 865-RP Accuracy Tests (VAVRH)

4.4 FOUR PIPE FAN COIL UNIT (FC)

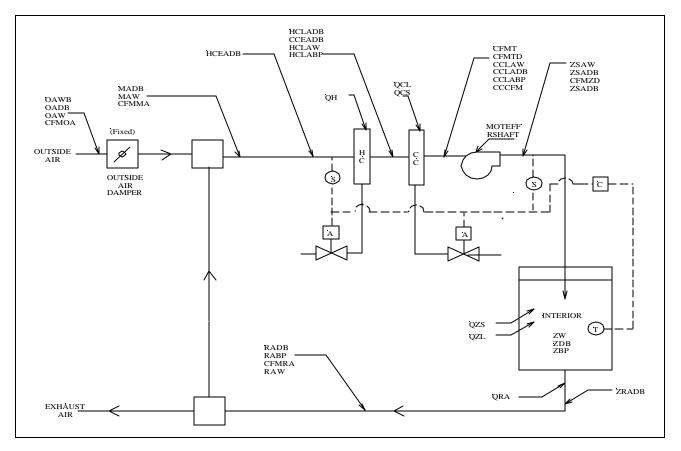


Figure 9: Four Pipe Fan Coil System Schematic (FC)

The input values for the FC spreadsheet are:

CCLAMIN(F) =		This variable is the cooling coil leaving air minimum
		temperature (F).
CCLABP(psia)=		This variable is the cooling coil leaving air barometric pressure (PSIA).
CFMZD(CFM) =	600.00	This is the design air flow for the zone (CFM).
CFMZMIN(CFM)=	200.00	This is the exhaust air for the zone (CFM).
CPAIR(Btu/lbF)=	0.2402	This is the constant that is used for the specific heat of air (80F).
CPh20(Btu/lbF)=		This is the constant that is used for the specific heat of water (55F).
FTP(in-H20) =		This is the total fan pressure across the supply fan (in-H20). NOTE: this is set $= 0$ when a two draw-through fans are being used.
FRACT(0,1)=		This is the switch that is used to place the supply fan in the air stream (1) or outside of the air stream (0).
FAN EFFICIENCY=		This is the constant fan efficiency for the single supply fan (%).
HCLAMAX (F) =		This is the heating coil leaving air maximum temperature (F).
HCLABP(psia)=		This variable is the heating coil leaving air barometric pressure (PSIA).
MOTEFF=		This variable is the constant motor efficiency of the supply fan (%).
OADB(F) =		This variable is the outside air dry bulb temperature
OAWB (F) =	75.00	This variable is the outside air wet bulb temperature (F).
QZL(Btuh)=	2000	This variable is the latent load of the zone (BTUH).
QZS(Btuh)=	10000	This variable is the sensible load of zone 1 (BTUH).
R =		This variable is the gas constant for dry air (currently
Ra =		This variable is the gas constant for dry air (ft-lbf/R-
RABPNF=		This variable is the barometric pressure at a point in front of the return fan (PSIA).
RABP=		This variable is the barometric pressures at point in back of the return fan (PSIA).
ZDB(F)=		This variable is the zone temperature for the (F).
QRA(F) =		This variable is the heat gain of the ducts returning from the zone (F).
ZSABP(Psia)=		This variable is the barometric pressure of the supply air for the zone (PSIA).
ZBP(Psia)=		This variable is the barometric pressure of the air in the zone (PSIA).

FC system			ZON	NE 1			ZONE 2					
	OA	MA	HCLA	CCLA	ZSA1	Z1	OA	MA	HCLA	CCLA	ZSA2	Z2
Case 1												
DB (F)	-20.0000	39.2754	84.7570	84.7570	85.8457	70.0000	-20.0000	31.9938	81.7189	81.7189	82.8017	72.0000
W (lb/lbda)	0.00026	0.00161	0.00161	0.00161	0.00162	0.00231	0.00026	0.00142	0.00142	0.00142	0.00142	0.00231
V (ft3/lbda)				13.7607	13.7882					13.6797	13.7071	
i (BTU/lbda)	-4.5284		22.1113	22.1132			-4.5284		27.1702	21.1704		
δm/δt(lbda/min)	14.9223	43.6024	43.6024	43.6024	43.6024	43.6024	22.2992	51.1707	51.1707	51.1707	51.1707	51.1707
Case 2												
DB (F)	30.0000	57.3306	73.0357	73.0357	74.1011	71.0000	30.0000	54.7194	70.6168	70.6168	71.6774	73.0000
W (lb/lbda)	0.00010	0.00147	0.00147	0.00147	0.00147	0.00215	0.00010	0.00128	0.00128	0.00128	0.00128	0.00215
V (ft3/lbda)				13.4613	13.4883					13.3962	13.4230	
i (BTU/lbda)	7.3134		19.1336	19.1360			7.3134		18.3453	18.3455		
δm/δt(lbda/min)	14.8979	44.5719	44.5719	44.5719	44.5719	44.5719	22.2630	52.2538	52.2538	52.2538	52.2538	52.2538
Case 3												
DB (F)	60.0000	69.4260	69.4260	65.3154	66.3646	74.0000	60.0000	69.3142	69.3142	64.5004	65.5480	76.0000
W (lb/lbda)	0.00292	0.00431	0.00431	0.00431	0.00432	0.00499	0.00292	0.00412	0.00412	0.00412	0.00412	0.00499
V (ft3/lbda)				13.3268	13.3535					13.3021	13.3287	
i (BTU/lbda)	17.5870		21.3719	20.3801			17.5870		21.1379	19.9740		
δm/δt(lbda/min)	14.7471	45.0219	45.0219	45.0219	45.0219	45.0219	22.0381	52.6233	52.6233	52.6233	52.6233	52.6233
Case 4												
DB (F)	80.0000	76.6272	76.6272	58.9028	59.9377	75.0000	80.0000	78.2515	78.2515	60.4315	61.4693	77.0000
W (lb/lbda)	0.01757	0.01332	0.01332	0.01061	0.01061	0.01129	0.01757	0.01436	0.01436	0.01122	0.01122	0.01209
V (ft3/lbda)				13.2964	13.3229					13.3483	13.3750	
i (BTU/lbda)	38.4843	-	32.9716	25.6718	-	-	38.4843		34.5172	26.7046		
δm/δt(lbda/min)	14.5733	45.1251	45.1251	45.1251	45.1251	45.1251	21.7510	52.4410	52.4410	52.4410	52.4410	52.4410

Table 11: Four pipe Fan Coil Unit Conditions for 865-RP Accuracy Tests (FC)

FC system		ZO	NE 1			ZO	NE 2	
	Heating Coil	Cooling Coil (sens)	Cooling Coil (latent)	Cooling Coil (total)	Heating Coil	Cooling Coil (sens)	Cooling Coil (latent)	Cooling Coil (total)
Case 1								
PSU1	28,660				36,753			
PSU2	28,607				36,783			
TAMU	28.666	0	0	0	36.767	0	0	0
BLAST	28.648				36.849			
DOE II	32,720	0	0	0	38,325	0	0	0
Case 2								
PSU1	10.109				11.984			
PSU2	10.102				12.025			
TAMU	10,116	0	0	0	12,000	0	0	0
BLAST	10.123				12.058			
DOE II	11.782	0	0	0	12,492	0	0	0
Case 3								
PSU1		2.699		2.699		3.698		3.698
PSU2		2,687		2,687		3.657		3,657
TAMU	0	2,686	0	2,686	0	3,676	0	3,676
BLAST		2,675		2,675		3,698		3,698
DOE II	0	n/a	n/a	2,163	0	n/a	n/a	3,569
Case 4								
PSU1		12.016	8.035			14.112	10.872	24,984
PSU2		11.760	8.377			13,767	11.392	25,160
TAMU	0	11,783	7,738	19,520	0	13,787	10,445	24,232
BLAST		11,752	5,714			13,747	6.092	19.839
DOE II	0	n/a	n/a	14,814	0	n/a	n/a	17,549

Table 12: Four pipe Fan Coil Unit Results for 865-RP Accuracy Tests (FC)

4.5 FOUR PIPE INDUCTION UNIT (FI)

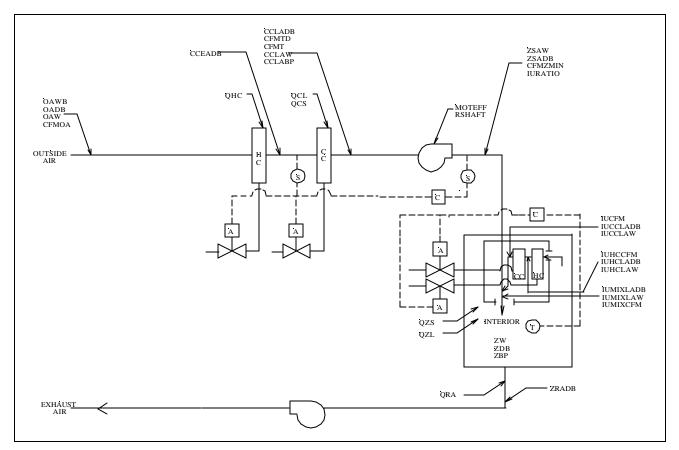


Figure 10: Four Pipe Induction System Schematic (FI)

The input values for the FI spreadsheet are:

	Т	
TEST# (14) =		This switch is used for cosmetic purposes only. It is
		used to change the label that appears directly to the
		right of the input cell and creates a set of "canned"
		labels used for one of the tests that the spreadsheet
	2	was developed for.
CCLASP(F) =		This variable is the cooling coil leaving air minimum
	55.00	temperature (F).
IULAMIN(F)=		This variable is the induction box leaving air
,	55.00	minimum temperature (F).
CCLABP(psia)=		This variable is the cooling coil leaving air
CCLADF (PSIA) -	14 696	barometric pressure (PSIA).
	14.000	
CFMZD(CFM) =	700.00	This is the design air flow for the zone (CFM).
	700.00	
IURATIO(%)=		This calculated variable describes
		the ratio of induction air to main
	calc'd	air (%).
CFMZMIN(CFM) =		This is the exhaust air for the zone (CFM).
	300.00	
CPAIR(Btu/lbF)=		This is the constant that is used for the specific heat
	0.2402	of air (80F).
CPh20(Btu/lbF)=		This is the constant that is used for the specific heat
	1.0019	of water (55F).
FTP(in-H20) =		This is the total fan pressure across the supply fan
		(in-H20). NOTE: this is set $= 0$ when a two draw-
	2.00	through fans are being used.
FRACT(0,1) =		This is the switch that is used to place the supply fan
	0	in the air stream (1) or outside of the air stream (0) .
FAN EFFICIENCY=		This is the constant fan efficiency for the single
	0.70	supply fan (%).
HCLASP (F) =		This is the heating coil leaving air setpoint
	45 00	temperature (F).
IULAMAX(F)=	15.00	This is the leaving air maximum temperature for the
IULAMAX(F)-	120 00	induction unit (F).
	120.00	
HCLABP(psia)=	14 606	This variable is the heating coil leaving air
	14.696	barometric pressure (PSIA).
MOTEFF=		This variable is the constant motor efficiency of the
	0.90	supply fan (%).
OADB(F) =		This variable is the outside air dry bulb temperature
	80.00	
OAWB(F) =		This variable is the outside air wet bulb temperature
	75.00	(F).
OABP(Psia)=		This variable is the outside air dry bulb temperature
	14.70	
QZL(Btuh)=		This variable is the latent load of the zone (BTUH).
	3000	
QZS(Btuh)=		This variable is the sensible load of zone 1 (BTUH).
	12000	
R =	12000	
	1 5 / 5	This variable is the gas constant for dry air (currently not used).
	1045	
Ra =		This variable is the gas constant for dry air (ft-lbf/R-

		lb).
ZDB(F)=	77.00	This variable is the zone temperature for the zone (F).
QRA(F) =		This variable is the heat gain of the ducts returning from t he zone (F).
ZSABP(Psia)=		This variable is the barometric pressure of the supply air entering the zone (PSIA).
ZBP(Psia)=		This variable is the barometric pressure of the air in the zone (PSIA).
PHLASP(F)=		This variable is the setpoint temperature of the preheat coil (F).

FC system		PRIM	IARY			ZO	NE 1			ZONE 2				
	Heating Coil	Cooling Coil (sens)	Cooling Coil (lat)	Cooling Coil (total)	Heating Coil	Cooling Coil (sens)	Cooling Coil (lat)	Cooling Coil (total)	Heating Coil	Cooling Coil (sens)	Cooling Coil (latent)	Cooling Coil (total)		
Case 1														
PSU1	34,855	0	0	0	15,179		C	0 0	16,382	0	0	0		
PSU2	39,625	0	0	0	13,216	0	C	0 0	13,467	0	0	0		
TAMU	34,885	0	0	0	15,162	0	C	0 0	16,357	0	0	0		
BLAST	39,712	0	0	0	13,194	0	C	0 0	13,469	0	0	0		
DOE II														
Case 2				r										
PSU1	8,028	0	0	0	7,384	0	0	0 0	7,687	0	0	0		
PSU2	12,826	0	0	0	5,430	0	0	0 0	4,789	0	0	0		
TAMU	8,035	0	0	0	7,367	0	0	0 0	7,662	0	0	0		
BLAST	12,855	0	0	0	5,437	0	0	0 0	4,804	0	0	0		
DOE II														
Case 3														
PSU1	0	3,166	0	3,166	0	943	0	943	0	1,300	0	1,300		
PSU2	0	3,253	0	3,253	0	927	C	927	0	1,247	0	1,247		
TAMU	0	3,207	0	3,207	0	939	C	939	0	1,293	0	1,293		
BLAST	0	3,259	34	3,293	0	913	0	913	0	1,215	0	1,215		
DOE II														
Case 4														
PSU1	0	13,808	20,796	34,604	0	5,732	C	5,732	0	4,984	0	4,984		
PSU2	0	13,973			0	5,712	0	5,712	0	4,925	0	4,925		
TAMU	0	13,912			0	5,723	0	5,723	0	4,973	0	4,973		
BLAST	0	14,002	22,529		0	5,692	0	5,692	0	4,887	0	4,887		
DOE II														

Table 13: Four pipe Induction Unit Conditions for 865-RP Accuracy Tests (FI)

FC system		PRIN	MARY		ZONE 1					ZONE 2					
	OA	PCLA	CCLA	SFLA	PA	ZSA1	Z1	HCLA	CCLA	PA	ZSA1	Z1	HCLA	CCLA	
Case 1															
DB (F)	-20.0000	45.0000	45.0000	46.0092	46.0092	86.1681	70.0000	107.5915	107.5915	46.0092	83.0941	72.0000	112.9363	112.9363	
W (lb/lbda)	0.00026	0.00026	0.00026	0.00026	0.00026	0.00160	0.00231	0.00231	0.00231	0.00026	0.00140	0.00231	0.00231	0.00231	
V (ft3/lbda)															
i (BTU/lbda)		11.0831	11.0831												
δ _m /δ _{t (lbda/min)}	37.2215	37.2215	37.2215	37.2215	14.9252	42.7892		27.8669	27.8669	22.2992	49.9059		27.6067	27.6067	
Case 2															
DB (F)	30.0000	45.0000	45.0000	46.0095	46.0095	74.1646	71.0000	88.6554	88.6554	46.0095	71.6414	73.0000	91.4561	91.4561	
W (lb/lbda)	0.00010	0.00010	0.00010	0.00010	0.00010	0.00145	0.00215	0.00215	0.00215	0.00010	0.00126	0.00215	0.00215	0.00215	
V (ft3/lbda)															
i (BTU/lbda)		10.9081	10.9081												
δ _m /δ _{t (lbda/min)}	37.1610	37.1610	37.1610	37.1610	14.8980	43.7345		29.8366	29.8366	22.2630	50.9530		28.6900	28.6900	
Case 3															
DB (F)	60.0000	60.0000	53.9779	55.0000	55.0000	66.2413	74.0000	74.0000	71.8178	55.0000	65.3210	76.0000	76.0000	72.9891	
W (lb/lbda)	0.00292	0.00292	0.00292	0.00292	0.00292	0.00430	0.00499	0.00499	0.00499	0.00292	0.00411	0.00499	0.00499	0.00499	
V (ft3/lbda)															
i (BTU/lbda)		17.5750	16.1219												
δ _m /δ _{t (lbda/min)}	36.7853	36.7853	36.7853	36.7853	14.7472	44.3627		29.6155	29.6155	22.0381	51.5884		29.5503	29.5503	
Case 4															
DB (F)	80.0000	80.0000	53.9895	55.0000	55.0000	59.6884	75.0000	75.0000	63.6275	55.0000	61.1208	77.0000	77.0000	65.5967	
W (lb/lbda)	0.01757	0.01757	0.00920	0.00920	0.00920	0.01035	0.01104	0.01104	0.01092	0.00920	0.01040	0.01129	0.01129	0.01129	
V (ft3/lbda)															
i (BTU/lbda)		38.4683	22.9342												
δ_{m}/δ_{t} (lbda/min)	36.3572	36.3572	36.3572	36.3572	14.5790	44.4654		29.8864	29.8864	21.7782	51.4463		29.6681	29.6681	

Table 14: Four pipe Induction Unit Results for 865-RP Accuracy Tests (FI)

4.6 SINGLE ZONE (SZ)

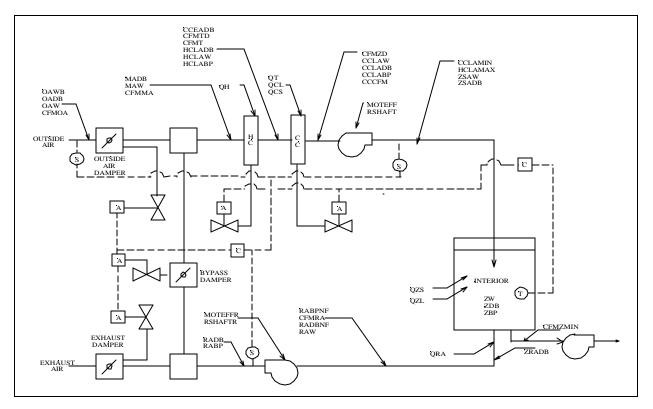


Figure 11: Single Zone System Schematic (SZ)

The input values for the SZ spreadsheet are:

TEST # (17)=		This switch is used for cosmetic purposes only. It is used to change the label that appears directly to the right of the input call and creates a set of "compad" labels used for
	7	input cell and creates a set of "canned" labels used for one of the tests that the spreadsheet was developed for.
ECON(0=n,1=T,2=E)=		This switch turns the economizer "on" or "off". It is also used to select whether the temperature (T) or enthalpy (E)
	2	economizer is used.
CCLAMIN(F) =	55.00	This variable is the cooling coil leaving air minimum temperature (F).
		This variable is the cooling coil leaving air barometric
CCLABP(psia)=	14.696	pressure (PSIA).
		This switch is used to calculate 'zone air exhaust' or
		'system air exhaust'. This will cause a difference in the
EXHAUST(0=sys,1=zone)	1	mass flow rates returning from the zone, and heat gain from the return fan.
CFMZD(CFM) =		This is the design air flow for zone 1 (CFM).
CFMZMIN(CFM)=		This is the exhaust air for zone 1 (CFM)
		This is the constant that is used for the specific heat of air
CPAIR(Btu/lbF)=	0.2402	(80F).
		This is the constant that is used for the specific heat of
CPh20(Btu/lbF)=	1.002	water (55F).
FTP(in-H20) =	2.00	
EDACT(0, 1) =	0	This is the switch that is used to place the supply fan in
FRACT(0,1)=	0	the air stream (1) or outside of the air stream (0).
FRACTR(0,1) =	0	This is the switch that is used to place the return fan in the air stream (1) or outside of the air stream (0) .
FAN EFFICIENCY=		This is the constant fan efficiency (%).
		This is the heating coil leaving air maximum temperature
HCLAMAX (F) =	110.00	(F).
HCLAMIN (F)=	45.00	
		This variable is the heating coil leaving air barometric
HCLABP(psia)=	14.696	pressure (PSIA).
MOTEFF=	0 90	This variable is the constant motor efficiency of the supply fan (%).
	0.90	This variable is the constant motor efficiency of the return
MOTEFFR=	0.90	fan (%).
OADB(F) =		This variable is the outside air dry bulb temperature (F).
OAWB(F)=		This variable is the outside air wet bulb temperature (F).
QZL(Btuh)=		This variable is the latent load of zone 1 (BTUH).
QZS(Btuh)=	8000	This variable is the sensible load of zone 1 (BTUH).
		This variable is the constant fan efficiency of the return
RFAN EFFICIENCY=	0.70	fan (%).
	1 - 4 - 00	This variable is the gas constant for dry air (currently not
R =	1545.32	
Ra =	53.35	This variable is the gas constant for dry air (ft-lbf/R-lb).
RABPNF=	14.696	This variable is the barometric pressure at a point in front of the return fan (PSIA).

RABP=	This variable is the barometric pressures at point in back of the return fan (PSIA).
RFTP(in-H20)=	This is the return fan pressure across the supply fan (in- H20). NOTE: this is set = 0 when a two draw-through fans are being used.
ZDB(F)=	This variable is the zone temperature for the (F).
QRA(F)=	This variable is the heat gain of the ducts returning from the zone (F).
ZSABP(Psia)=	This variable is the barometric pressure of the supply air for the zone (PSIA).
ZBP(Psia)	This variable is the barometric pressure of the air in the zone (PSIA).

SZ system		ZONE 1							ZONE 2							
52 system	OA	MA	HCLA	CCLA	ZSA1	Z1	RFEA	RFLA								
	UA	MA	HCLA	UULA	ZSAI	ZI	RFEA	RFLA	UA	MA	HCLA	UULA	ZSA2	L2	RFEA	RFLA
Case 1 - all AMS			018144				-				04 60 60					
DB (F)	-20.0000	39.7090	84.7166	84.7166	85.8025	70.0000	70.0000	70.5296	-20.0000	32.3880	81.6963	81.6963	82.7765	72.0000	72.0000	72.5316
W (lb/lbda) V (ft3/lbda)	0.00026	0.00163	0.00163	0.00163	0.00163	0.00234	0.00234	0.00234	0.00026	0.00142	0.00142	0.00142	0.00142	0.00232	0.00232	0.00232
			22 1207				13.4033	10.4020			21.1.00				13.4535	10.0546
i (BTU/lbda)	-4.5284	-4.5284	22.1207	22.1314	12 2102	20 7070	20 2020	19.4929	-4.5284	-4.5284	21.1689	21.1704	51 2007	28,9906	20.0007	19.9546
ðm/ðt (lbda/min)	14.9217	43.7187	43.7187	43.7187	43.7187	28.7970	28.7970	28.7970	22.2991	51.2897	51.2897	51.2897	51.2897	28.9906	28.9906	28.9906
Case 2 - all AMS																
DB (F)	30.0000	57.7184	73.0307	73.0307	74.0935	71.0000	71.0000	71.5306	30.0000	55.0637	70.6217	70.6217	71.6801	73.0000	73.0000	73.5326
W (lb/lbda)	0.00010	0.00149	0.00149	0.00149	0.00149	0.00218	0.00218	0.00218	0.00010	0.00128	0.00128	0.00128	0.00128	0.00216	0.00216	0.00216
V (ft3/lbda)	12.3432	13.0747		13.4295			13.4253		12.3432	13.0033		13.3688			13.4753	
i (BTU/lbda)	7.3134	7.3134	19.1552	19.1681				19.5676	7.3134	7.3134	18.3508	18.3528				20.0229
δm/δt (lbda/min)	14.8973	44.6777	44.6777	44.6777	46.6777	29.7805	29.7805	29.7805	22.2629	52.3608	52.3608	52.3608	52.3608	30.0979	30.0979	30.0979
Case 3 - NE																
DB (F)	60.0000	69.8177	69.8177	65.3750	66.4170	74.0000	74.0000	74.5332	60.0000	69.6704	69.6704	64.5747	65.6156	76.0000	76.0000	76.5352
W (lb/lbda)	0.00292	0.00434	0.00434	0.00434	0.00434	0.00502	0.00502	0.00502	0.00292	0.00413	0.00413	0.00413	0.00413	0.00500	0.00500	0.00500
V (ft3/lbda)	13.1625	13.4417		13.2365			13.5626		13.1625	13.4335		13.2163			13.6129	
i (BTU/lbda)	17.5870	17.5870	21.4951	30.4340				23.4001	17.5870	17.5870	21.2330	20.0029				23.8549
δm/δt (lbda/min)	14.7464	45.3291	45.3291	45.3291	45.3291	30.5827	30.5827	30.5827	22.0380	52.9647	52.9647	52.9647	52.9647	30.9267	30.9267	30.9267
Case 3 - RAEE, RATE																
DB (F)	60.0000	65.3619	65.3619	65.3619	66.4055	74.0000	74.0000	74.5333	60.0000	64.5600	64.5600	64.5600	65.6022	76.0000	76.0000	76.5353
W (lb/lbda)	0.00292	0.00352	0.00352	0.00352	0.00352	0.00420	0.00420	0.00420	0.00292	0.00342	0.00342	0.00342	0.00342	0.00428	0.00428	0.00428
V (ft3/lbda)	13.1625	13.3111		13.2362			13.5447	0100.20	13.1625	13.2886		13.2160			13.5974	
i (BTU/lbda)	17.5870	17.5870	19.5250	19.5275				22.4934	17.5870	17.5870	19.2206	19.2210				23.0728
δm/δt (lbda/min)	17.3948	45.3303	45.3303	45.3303	45.3303	30.5644	30.5644	30.5644	25.0394	52.9662	52.9662	52.9662	52.9662	30.9031	30.9031	30.9031
Case 4 - all AMS																
DB (F)	80.0000	76.9614	76.9614	59.1787	60.1958	75.0000	75.0000	75.5334	80.0000	78.5445	78.5445	60.7313	61.7503	77.0000	77.0000	77.5353
W (lb/lbda)	0.01757	0.01362	0.01362	0.01112	0.01112	0.01178	0.01178	0.01178	0.01757	0.01464	0.01464	0.01176	0.01176	0.01262	0.01262	0.01262
V (ft3/lbda)	13.9896	13.8249	0.01302	13.0803	0.01112	0.01178	13.7346	0.01178	13.9896	13.8878	0.01404	13.1194	0.01170	0.01202	13.8041	0.01202
i (BTU/lbda)	38.4843	38.4843	33.3891	26.2940			15.7540	31.0418	38.4843	38.4843	34.8902	27.3732			15.8041	32.4467
δm/δt (lbda/min)	14.5618	45.8705	45.8705	45.8705	45.8705	31.3087	31.3087	31.3087	21.7327	53.3559	53.3559	53.3559	53,3559	31.6232	31.6232	31.6232
· · · · /	11.5010	15.0705	1510705	15.0705	1510705	51.5007	51.5007	51.5007	21.1321	55.5557	55.5557	00.0007	55.5557	5110252	51:0252	51.0252
Case 5 - RAEE																
DB (F)	77.0000	77.0000	77.0000	65.3722	66.4145	74.0000	74.0000	74.5332	77.0000	77.0000	77.0000	64.5757	65.6165	76.0000	76.0000	76.5352
W (lb/lbda)	0.00419	0.00419	0.00419	0.00419	0.00419	0.00486	0.00486	0.00486	0.00419	0.00419	0.00419	0.00419	0.00419	0.00505	0.00505	0.00505
V (ft3/lbda)	13.6207	13.6207		13.2364			13.5591		13.6207	13.6207		13.2164			13.6140	
i (BTU/lbda)	23.0810	23.0810	23.0656	20.2533	15.0001			23.2195	23.0810	23.0810	23.0656	20.0607				23.9128
ðm/ðt (lbda/min)	45.3294	45.3294	45.3294	45.3294	45.3294	30.5791	30.5791	30.5791	52.9646	52.9646	52.9646	52.9646	52.9646	30.9285	30.9285	30.9285
Case 6 - RAEE																
DB (F)	74.0000	74.3615	74.3615	65.5215	66.5458	74.0000	74.0000	74.5320	74.0000	74.0000	74.0000	64.7651	65.7889	76.0000	76.0000	76.5340
W (lb/lbda)	0.01483	0.01470	0.01470	0.01396	0.01396	0.01463	0.01463	0.01463	0.01483	0.01483	0.01483	0.01359	0.01359	0.01445	0.01445	0.01445
V (ft3/lbda)	13.7747	13.7812		13.2402			13.7705		13.7747	13.7747		13.2211			13.8182	
i (BTU/lbda)	33.9956	33.9956	33.9239	30.9430				33.9120	33.9956	33.9956	33.9808	30.3538				34.2092
δm/δt (lbda/min)	14.5238	45.3165	45.3165	45.3165	45.3165	30.7927	30.7927	30.7927	52.9455	52.9455	52.9455	52.9455	52.9455	31.2350	31.2350	31.2350

Table 15: Single Zone System Conditions for 865-RP Accuracy Tests (SZ)

SZ system		ZO	NE 1		ZONE 2						
	Heating Coil	Cooling Coil (sens)	Cooling Coil (latent)	Cooling Coil (total)	Heating Coil	Cooling Coil (sens)	Cooling Coil (latent)	Cooling Coil (total)			
Case 1 - all AMS											
PSU1											
PSU2											
TAMU	28.443.66	0	0	0	36.543.89	0	0				
BLAST											
DOE II	26,140	0	0	0	28,479	0	0				
Case 2 - all AMS											
PSU1											
PSU2											
TAMU	9,886.69	0	0	0	11,768.25	0	0				
BLAST											
DOE II	11.806	0	0	0	12,523	0	0)			
Case 3 - NE											
PSU1											
PSU2											
TAMU	0	2.922.65	0	2,922.65	0	3.916.10	0	3.916.1			
BLAST											
DOE II	0	0	0	2,156	0	0	0	3,55			
Case 3 - RAEE, RATE											
PSU1											
PSU2											
TAMU	0	0	0	0	0	0	0				
BLAST											
DOE II	0	0	0	0	0	0	0)			
Case 4 - all AMS											
PSU1											
PSU2											
TAMU	0	7.269.88	12.023.77	19.293.65	0	14.030.61	9,703,28	23.733.8			
BLAST											
DOE II	0	0	0	16,590	0	0	0	20,21			
Case 5 - RAEE											
PSU1											
PSU2											
TAMU	0	7.648.78	0	7.648.78	0	9.549.31	0	9.549.3			
BLAST	1										

6.369

8.032.89

6,185

7.229.1

4.149.78

9.034

378.90 11

8,105

Table 16: Single Zone System Results for 865-RP Accuracy Tests (SZ)

5.923.8

2.109.0

PSU1 PSU2 TAMU BLAST DOE II

BLAST DOE II

Case 6 - RAEE PSU1 PSU2 TAMU