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ABSTRACT

Oral cancer is one of the most common types of cancer in the US, killing around 8,000 people

each year. Patients diagnosed at advanced stages have only a 40% chance of survival and com-

monly require painful and highly invasive surgery to remove parts of the oral cavity. In contrast,

patients diagnosed early usually require minor surgery and have an 84% chance of survival. There-

fore, early detection holds great promise for improving both the survival rate and quality of life

of these patients. Unfortunately, only three in ten patients are diagnosed at early stages since be-

nign oral lesions are often difficult to distinguish from early stage cancer. Moreover, tissue from

a biopsy may register as benign, but the surrounding tissue that was not biopsied can be cancer-

ous and remain undiagnosed, resulting in increased odds of local recurrence and lower survival

rates. Hence, there is an urgent need for technologies for accurate, fast, and reliable screening

of oral cancer. This dissertation addresses these challenges in the diagnosis of oral cancer and

precancer by making use of an optical technology called Fluorescence Lifetime Imaging (FLIM)

endoscopy for the non-invasive imaging of clinically suspicious oral lesions in patients. Multispec-

tral autofluorescence lifetime images of benign, precancerous, and cancerous oral lesions from 125

patients were acquired in vivo using a novel multispectral FLIM endoscope. These images were

processed to generate widefield maps of biochemical and metabolic autofluorescence biomarkers

of oral cancer and precancer. Statistical analyses applied to the quantified multispectral autofluo-

rescence biomarkers indicated their potential to provide contrast between precancerous/cancerous

vs. healthy oral tissue and precancerous/cancerous vs. benign oral tissue. Machine learning al-

gorithms based on the most promising autofluorescence biomarkers of oral cancer and precancer

were designed to discriminate precancerous/cancerous oral lesions vs. healthy oral tissue, and

precancerous/cancerous vs. benign oral lesions. The results of this innovative study demonstrate

the potentials of a computer-aided detection system based on endogenous multispectral autofluo-

rescence endoscopy as a novel non-invasive clinical tool for oral cancer and precancer screening.

ii



DEDICATION

To my lovely wife Pilar, my daughters Jimena and Madeleine, and my parents Elvis and Silvia

iii



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professors Javier Jo (chair),

Vladislav Yakovlev (co-chair), and Kristen Maitland of the Department of Biomedical Engineering

and Professor Zenon Medina of the Department of Civil Engineering.

The data acquired for this project was provided by Dr. Rodrigo Cuenca-Martinez, Dr. Shuna

Cheng, and Dr. Bilal Malik . Data analysis and interpretation were conducted by the student and

by Dr. Javier Jo.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by a fellowship from Consejo Nacional de Ciencia y Tec-

nologia (CONACYT). This project was supported by the National Institutes of Health (grants

R01CA138653, 1R01CA218739). This work was also made possible by the grant NPRP8-1606-

3-322 from the Qatar National Research Fund (a member of Qatar Foundation).

iv



NOMENCLATURE

FLIM Fluorescence Lifetime Imaging
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IRF Instrument Response Function

MSE Mean Squared Error

CAD Computer Aided Detection

LDA Linear Discriminant Analysis

DLDA Diagonal Linear Discriminant Analysis

QDA Quadratic Discriminant Analysis

DQDA Diagonal Quadratic Discriminant Analysis

SVM Support Vector Machines

LOGREG Logistic Regression

ANN Artificial Neural Network

CNN Convolutional Neural Network

LOOCV Leave One Out Cross Validation

ROC Receiver Operating Characteristic

AUC Area Under Curve

PPV Positive Predictive Value

NPV Negative Predictive Value
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1. INTRODUCTION

This dissertation addresses two big challenges in the clinical diagnosis of oral cancer: Incom-

plete tumor resection (Sections 2 and 3) and early detection of oral cancer (Sections 4 and 5).

In Section 2, we report the first demonstration of biochemical and metabolic clinical imag-

ing of precancerous and cancerous oral lesions using widefield multispectral fluorescence lifetime

imaging (FLIM) endoscopy. In vivo FLIM images of precancerous and cancerous oral lesions

from patients were acquired. Maps of biochemical and metabolic autofluorescence biomarkers of

oral cancer and precancer were generated. Statistical analyses applied to them demonstrated their

potential to discriminate precancerous/cancerous lesions from healthy oral epithelial tissue.

Section 3 investigates a computational framework for a computer aided detection (CAD) sys-

tem designed for the classification of precancerous/cancerous lesions vs. healthy oral tissue. Mul-

tispectral autofluorescence feature maps of precancerous, cancerous, and healthy oral tissues were

computed and used within machine learning algorithms. The proposed CAD system successfully

differentiated precancerous and cancerous oral lesions from healthy oral tissue with competent

levels of sensitivity and specificity.

In Section 4, we report a subsequent analysis derived from Section 2 in benign, precancerous,

and cancerous oral lesions. As in Section 2, multiparametric FLIM feature maps were generated

for each of the imaged benign, precancerous and cancerous oral lesions from patients. Statistical

analyses performed on the computed FLIM feature maps demonstrated their potential to discrimi-

nate precancerous/cancerous from benign oral lesions.

Finally, Section 5 reports a computational framework for a CAD system designed for the clas-

sification of precancerous/cancerous vs. benign oral lesions. Multispectral autofluorescence fea-

ture maps of precancerous, cancerous, and benign oral lesions were generated and used within

machine learning algorithms. The proposed CAD system successfully distinguished precancer-

ous/cancerous from benign oral lesions with decent levels of sensitivity and specificity.
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2. CLINICAL LABEL-FREE BIOCHEMICAL AND METABOLIC FLUORESCENCE

LIFETIME ENDOSCOPIC IMAGING OF PRECANCEROUS AND CANCEROUS ORAL

LESIONS ∗

2.1 Introduction

About 53,260 new cases of cancer of the oral cavity and pharynx will be diagnosed in the US in

2020, and an estimate of 10,750 people will die of these cancers during the same year [1]. Current

standard treatments for oral cancer are surgical resection with or without radiation or chemotherapy

[1, 2]. During tumor surgical resection, however, surgeons typically rely on visual inspection

and palpation to demarcate the subtle interface at the margin between malignant and normal oral

tissue [3]. As a result, incomplete tumor resections occur in up to 85% of cases [4, 5], leading

to increased odds of local recurrences and regional neck metastases, as well as lower survival

rates [6]. The standard technique to overcome this limitation is intraoperative histopathological

evaluation of frozen sections from random tissue biopsies, which is not only labor-intensive and

time-consuming, but also prone to sampling error and has limited specificity [7, 8].

The human oral mucosa consists of two major layers: Stratified squamous epithelium and

lamina propria or connective tissue. The development of squamous cell carcinoma (SCC) causes

morphological, functional, and biochemical alterations within these tissue layers, which can mod-

ulate the autofluorescence properties of the oral epithelial tissue. Specifically, the levels of two

metabolic cofactors and endogenous fluorophores, the reduced-form nicotinamide adenine din-

ucleotide (NADH) and flavin adenine dinucleotide (FAD), can change as oral cancer develops

[9, 10, 11]. The optical redox ratio, typically defined as the ratio of fluorescence intensity of

NADH to FAD, is sensitive to changes in the cellular metabolic rate [12, 13, 14, 15]. Increased

cellular metabolic activity, a hallmark of neoplastic cell transformation, is usually attributed to a

decrease in the optical redox ratio [16]. In addition, the fluorescence lifetime of these metabolic

∗Reprinted with permission from “Clinical label-free biochemical and metabolic fluorescence lifetime endoscopic
imaging of precancerous and cancerous oral lesions” by Elvis Duran-Sierra, et al. 2020. Oral Oncology, Volume 105,
104635, Copyright [2020] by Elsevier Ltd.
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cofactors are sensitive to protein binding, thus to cellular metabolic pathways involving NADH and

FAD [17]. As a result, the carcinogenesis process causes changes in both NADH and FAD fluores-

cence lifetimes [18]. Finally, oral cancer development also leads to extracellular matrix remodeling

occurring within the lamina propria, which together with concurring epithelium thickening, result

in a decrease in connective tissue autofluorescence that can be measured [19]. Therefore, inter-

rogation of NADH, FAD and collagen autofluorescence could provide optical biomarkers of oral

epithelial cancer.

Several studies have explored the use of autofluorescence spectroscopy and imaging to iden-

tify biomarkers of oral SCC. Gillenwater et al. observed increased epithelial autofluorescence and

decreased connective tissue autofluorescence in dysplastic vs. normal oral tissue upon ultraviolet

excitation [20]. Rosin et al. used fluorescence visualization (FV) in an in vivo study in 20 patients

with oral SCC and carcinoma in situ (CIS) to collect the autofluorescence at an >475 nm emission

spectral band, and found that all SCC and CIS tumors showed FV loss relative to normal tissue;

moreover, in 19 cases the loss in autofluorescence signal extended 4-25 mm in at least one direc-

tion beyond the clinically visible tumor [21]. In an in vivo study, Huang et al., using a two-channel

autofluorescence device targeting NADH and FAD autofluorescence, reported discrimination of

precancerous and cancerous lesions vs. healthy oral mucosa with levels of sensitivity and speci-

ficity of ∼92% and ∼75%, respectively [22].

Time-resolved fluorescence spectroscopy (TRFS) and fluorescence lifetime imaging microscopy

(FLIM), which allows measuring the fluorescence lifetime of samples, can provide additional sam-

ple characterization. Singaravelu et al. performed an ex vivo TRFS study in 15 premalignant and

15 normal oral tissue samples from patients, and reported a significantly shorter lifetime associated

to free NADH in premalignant vs. normal oral tissue [23]. In an ex vivo multiphoton FLIM study

using human oral tissue samples, Skala et al. reported shorter NADH and FAD average fluores-

cence lifetimes, and a lower redox ratio in SCC relative to normal oral tissue [24]. Farwell et al.

performed an in vivo TRFS study in nine patients with suspected HNSCC and found lower fluo-

rescence intensity across all wavelengths between 360 nm and 610 nm and a shorter lifetime at the
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440-470 nm band in head and neck squamous cell carcinoma (HNSCC) vs. normal [25]. In an in

vivo FLIM study performed in 10 patients with HNSCC, Marcu et al. reported lower fluorescence

intensity and shorter average lifetime associated to NADH in HNSCC compared to healthy oral

tissue [2].

Encouraged by these pioneering studies and taking advantage of novel multispectral FLIM

endoscopy systems recently developed for imaging the oral mucosa [26], we demonstrate in this

in vivo human study the capabilities of endogenous wide-field multispectral FLIM endoscopy in

differentiating oral SCC/epithelial dysplasia from normal oral tissue; and provide the basis for

using autofluorescence biomarkers in the future for rapid and accurate determination of margin

involvement in the operation room.

2.2 Methods

A schematic summarizing the methodology used in this study is presented in Figure 2.1 and

described in the following sections.

2.2.1 Clinical Endoscopic Multispectral FLIM Imaging of Oral Lesions

In vivo clinical endogenous multispectral FLIM images of dysplastic and cancerous oral le-

sions were acquired following an imaging protocol approved by the Institutional Review Board at

Texas A&M University. For this study, 39 patients, scheduled for tissue biopsy examination of

suspicious oral epithelial precancerous or cancerous lesions, were recruited. Following clinical ex-

amination of the patient’s oral cavity by an experienced oral pathologist (Y.S. Lisa Cheng and John

Wright, Texas A&M College of Dentistry, Dallas, TX, USA), endogenous FLIM images were ac-

quired from the suspicious oral lesion and a clinically normal-appearing area in the corresponding

contralateral anatomical side, using a FLIM endoscope prototype previously reported [26]. With

this multispectral FLIM endoscope prototype, tissue autofluorescence induced with a pulsed laser

(355 nm, 1 ns pulse width, ∼1µJ/pulse at the tissue) was imaged at the emission spectral bands

of 390 ± 20 nm, 452 ± 22.5 nm, and > 500 nm, which were selected to preferentially measure

collagen, NADH, and FAD autofluorescence, respectively [26]. In order to perform in vivo imag-
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Figure 2.1: Schematic depicting the methodology of this study. First, multispectral FLIM endo-
scopic imaging of oral lesions is performed in a clinical setting. Second, the data is processed yield-
ing multi-parametric FLIM feature images. Finally, statistical analysis is performed on the feature
image median value to assess difference in their distributions between precancerous/cancerous and
normal groups.

ing in a safe manner, the total energy deposited into the patient’s oral mucosa was set to at least

an order of magnitude lower than the maximum permissible exposure provided by the American

National Standards Institute (ANSI) [27]. The time-resolved autofluorescence signal at each pixel

of the FLIM images were acquired with a temporal resolution of 160 ps (sampling rate of 6.25

GS/s). Endoscopic multispectral FLIM images were acquired with a circular field-of-view (FOV)

of 10 mm in diameter, lateral resolution of∼100µm, and acquisition time of <3 s (total acquisition

time for the three emission spectral bands). After acquiring all the multispectral FLIM images

from the patient’s oral cavity, the tissue biopsy examination procedure was performed following

standard clinical protocols and blinded to the FLIM imaging. Each imaged lesion was annotated

based on its tissue biopsy histopathological diagnosis. In one case, two images were acquired from

a patient who presented two cancerous lesions that were biopsied, resulting in a total of 40 imaged

oral lesions. Unfortunately, since the FLIM endoscope system was handled by different users in
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Lesion Location Histopathology Diagnosis Total NumberMOD-DYS HG-DYS SCC
Buccal Mucosa 2 1 11 14

Tongue 1 0 12 13
Gingiva 0 1 7 8

Lip 0 0 2 2
Mandible 0 0 1 1
Maxilla 0 0 1 1

Floor of Mouth 0 0 1 1
Total Number 3 2 35 40

Table 2.1: Distribution of the 40 imaged oral lesions based in both anatomical location and
histopathological diagnosis (MOD-DYS: Moderate Dysplasia; HG-DYS: High-Grade Dysplasia;
SCC: Squamous Cell Carcinoma)

the clinic, the photodetector gain, which allows to compare the multispectral absolute fluorescence

intensity values, was only recorded in 32/40 cases.

The distribution of the 40 imaged oral lesions, based in both anatomical location and histopatho-

logical diagnosis, is provided in Table 2.1.

2.2.2 Data Processing and Feature Computation

The multispectral FLIM data is composed of fluorescence intensity temporal decay signals,

yλ(x, y, t), measured at each emission spectral band (λ) and each spatial location or image pixel

(x, y). Multispectral absolute and normalized fluorescence intensity values were first computed

for each pixel as follows. The multispectral absolute fluorescence intensity Iλ(x, y) was computed

by numerically integrating the fluorescence intensity temporal decay signal:

Iλ(x, y) =

∫
yλ(x, y, t)dt (2.1)

The multispectral normalized fluorescence intensity Iλ,n(x, y) was computed from the multi-

spectral absolute fluorescence intensities Iλ(x, y) as follows:

Iλ,n(x, y) =
Iλ(x, y)∑
λ Iλ(x, y)

(2.2)

6



In addition, the multispectral fluorescence intensity values enable estimating a parameter re-

lated to the tissue metabolic redox-ratio similar to the one originally proposed by Chance [15]:

RedoxRatio(x, y) =
I −NADH
I − FAD

=
I452(x, y)

I500(x, y)
(2.3)

In the context of time-domain FLIM data analysis, the fluorescence decay yλ(x, y, t) measured

at each spatial location (x, y) can be modeled as the convolution of the fluorescence impulse re-

sponse (FIR) hλ(x, y, t) of the sample and the measured instrument response function (IRF) uλ(t):

yλ(x, y, t) = uλ(t) ∗ hλ(x, y, t) (2.4)

Therefore, to estimate the sample FIR hλ(x, y, t), the measured IRF uλ(t) needs to be tempo-

rally deconvolved from the measured fluorescence decay yλ(x, y, t). In this work, temporal decon-

volution was performed using a nonlinear least squares iterative reconvolution algorithm [28], in

which the FIR was modeled as a bi-exponential function:

hλ(x, y, t) = αfast,λ(x, y)e
−t/τfast,λ(x,y) + αslow,λ(x, y)e

−t/τslow,λ(x,y) (2.5)

Here, τfast,λ(x, y) and τslow,λ(x, y) represent the time-constant (lifetime) of the fast and slow

decay components, respectively. αfast,λ(x, y) and αslow,λ(x, y) represent the relative contribution

of the fast and slow decay components, respectively. The model order (number of exponential com-

ponents) was determined based on the model-fitting mean squares error (MSE); since the addition

of a third component did not reduce the MSE, a model order of two was selected. Finally, the av-

erage fluorescence lifetime (τavg,λ(x, y)) for each pixel and emission spectral band were estimated

from the FIR hλ(x, y, t) as follows [28]:

τavg,λ(x, y) =

∫
thλ(x, y, t)dt∫
hλ(x, y, t)dt

(2.6)
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390 ± 20 nm 452 ± 22.5 nm >500 nm
I390,n(x, y) I452,n(x, y) I500,n(x, y)
τavg,390(x, y) τavg,452(x, y) τavg,500(x, y)
τfast,390(x, y) τfast,452(x, y) τfast,500(x, y)
τslow,390(x, y) τslow,452(x, y) τslow,500(x, y)
αfast,390(x, y) αfast,452(x, y) αfast,500(x, y)

Redox-Ratio (x, y): I452(x,y)/I500(x,y)

Table 2.2: Summary of FLIM-derived features computed per pixel for each spectral channel.

In summary, a total of 16 FLIM-derived features were computed per pixel as summarized in

Table 2.2, thus enabling the generation of multi-parametric FLIM feature maps.

2.2.3 Statistical Analysis

As summarized in Table 2.1, the 40 imaged oral lesions corresponded to 5 precancerous (3

MOD-DYS, 2 HG-DYS) and 35 cancerous (SCC) lesions, and each imaged oral lesion region was

paired with a corresponding clinically healthy or normal oral tissue region. In order to identify

statistical differences in the distribution of image median values of each of the 16 FLIM features

from normal (healthy) vs. precancerous or cancerous oral tissue, the following statistical analysis

was performed. For each imaged oral tissue region, multi-parametric FLIM maps were generated,

in which the 16 FLIM features were computed at each image pixel (as in Figure 2.4). Then, for

each FLIM feature map, the median feature value from all pixels was computed; thus, each imaged

oral tissue region was represented by a single feature vector composed of the median values of each

of the 16 FLIM feature maps. Finally, a two-tailed Wilcoxon signed-rank test was applied to the

paired precancerous/cancerous vs. normal median values of each of the 16 FLIM features, with a

type-1 error probability of p<0.05 for all tests.

2.3 Results

The statistical analysis comparing the feature image median values in MOD-DYS/HG-DYS/SCC

vs. the corresponding contralateral normal tissue indicated that 13 FLIM-derived features showed

statistically different distributions between the precancerous/cancerous vs. normal oral tissue
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groups (P < 0.05). Box plots of the feature image median value distributions for each oral tis-

sue group are shown in Figure 2.2.

Figure 2.2: Box plots of multispectral FLIM feature image median values of moderate dysplastic
(MOD-DYS), high grade dysplastic (HG-DYS), and squamous cell carcinoma (SCC) oral lesions
(n=40; red boxes) and their paired contralateral normal tissue (blue boxes). Feature distributions
for each population are also shown. P-values resulting from Wilcoxon signed-rank tests are shown
on top of each plot.

For a subset of oral lesion samples (n = 32) for which the gain of the photodetector was known,

statistical analysis was also performed on the absolute intensity values for each of the three spectral

channels comparing MOD-DYS/HG-DYS/SCC vs. normal. Results from these analyses are shown

9



in Figure 2.3.

Figure 2.3: Box plots of image median value distributions of absolute fluorescence intensity values
for each emission spectral band comparing moderate dysplastic (MOD-DYS), high grade dysplas-
tic (HG-DYS), and squamous cell carcinoma (SCC) oral lesions (n=32; red boxes) to their paired
normal references (blue boxes). A statistically significant loss in autofluorescence was observed in
precancerous/cancerous oral lesions relative to normal in all spectral channels. P-values resulting
from Wilcoxon signed-rank tests are shown on top of each plot.

Multispectral FLIM feature images from a representative lesion corresponding to a SCC of the

tongue and its corresponding contralateral normal looking area from the same patient are presented

in Figure 2.4. The pixel distributions of each paired FLIM feature map reflected the statistical

differences in the image median distribution of each FLIM feature from precancerous/cancerous

vs. normal oral tissue.

2.4 Discussion

Using a novel multispectral FLIM endoscope [26], it was possible to image the oral cavity of 39

patients presenting precancerous or cancerous oral lesions. The relatively large field-of-view (∼80

10
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mm2) and short acquisition time (<3 s per multispectral image) offered by our multispectral FLIM

endoscopy system enabled quick and easy in-vivo imaging of oral lesions at the dental clinic. The

multispectral FLIM endoscopic images were processed to generate widefield maps of biochemical

and metabolic autofluorescence biomarkers of oral precancer and cancer. To the best of our knowl-

edge, this study represents the first demonstration of label-free biochemical and metabolic clinical

imaging of precancerous and cancerous oral lesions through widefield multispectral autofluores-

cence lifetime endoscopy.

Processing of the multispectral FLIM images acquired with our endoscope resulted in widefield

maps of different autofluorescence spectral and lifetime features. The statistical analysis applied to

each of these autofluorescence features identified several ones (Figure 2.2 and Figure 2.3) that dis-

played statistically significant differences between precancerous/cancerous vs. healthy oral tissue.

In Table 2.3, the statistical trends of the autofluorescence spectral and lifetime features observed in

this study are summarized and compared with previously reported observations.

The autofluorescence in oral mucosa induced by an excitation wavelength of 355 nm and mea-

sured at the emission spectral band of 390 ± 20 nm is expected to be predominantly originated

from collagen in the lamina propria. Our findings indicated a significant decrease in the normal-

ized autofluorescence intensity at this spectral band in cancerous and precancerous oral lesions

relative to healthy oral tissue (I390,n, Figure 2.2A), which can be attributed to the breakdown of

collagen crosslinks in the connective tissue [19, 29] and the increase in both epithelial thickness

and tissue optical scattering accompanying dysplastic or cancerous change [30] and is very much

in agreement with previous observations from animal and human studies [20, 25, 31, 32, 33].

Moreover, our findings indicated significantly shorter average (τavg,390, Figure 2.2B), fast-

component (τfast,390, Figure 2.2D), and slow-component (τslow,390, Figure 2.2E) lifetimes at the

390 ± 20 nm emission spectral band in cancerous and precancerous oral lesions compared to

healthy oral tissue. To the best of our knowledge, this is the first observation of a faster autofluores-

cence temporal response at the collagen emission spectral peak in cancerous and precancerous oral

lesions. This observation is likely due to the overlap in the emission spectra of collagen and NADH
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Emission Channel Associated Fluorophore FLIM-Derived Autofluorescence Features Moderate and High-Grade Dysplasia / SCC vs. Normal
Observed Trend Previous Studies [Ref.]

↓ In Vivo AFS: Hamsters [33]
↓ Ex Vivo CFM: Patients [20]

I390 ↓ ↓ Ex Vivo SLS: Patients [31]
I390,n ↓ ↓ In Vivo FLIM: Hamsters [32]

390 ± 20 nm Collagen ↓ In Vivo TRFS: Patients [25]
τavg,390 ↓ Not Reported
αfast,390 ↑ Not Reported
τfast,390 ↓ Not Reported
τslow,390 ↓ Not Reported

↓ In Vivo FLIM: Patients [2]
I452 ↓ ↓ In Vivo AFS: Hamsters [33]
I452,n No Change ↓ Ex Vivo SLS: Patients [31]

↓ In Vivo TRFS: Patients [25]
↓ In Vivo FLIM: Patients [2]

452 ± 22.5 nm NADH τavg,452 ↓ ↓ In Vivo FLIM: Hamsters [32]
↓ Ex Vivo FLIM: Patients [24]
↓ In Vivo TRFS: Patients [25]

αfast,452 ↑ Not Reported
τfast,452 ↓ ↓ In Vivo MPM-FLIM: Hamsters [18]

↓ Ex Vivo TRFS: Patients [23]
τslow,452 No Change ↓ In Vivo MPM-FLIM: Hamsters [18]

↑ In Vivo AFS: Hamsters [33]
I500 ↓ ↑ Ex Vivo CFM: Patients [20]
I500,n ↑ ↑ Ex Vivo SLS: Patients [31]

↑ In Vivo TRFS: Patients [25]
>500 nm FAD τavg,500 ↑ ↓ Ex Vivo FLIM: Patients [24]

αfast,500 ↑ ↓ In Vivo MPM-FLIM: Hamsters [18]
τfast,500 No Change ↑ In Vivo MPM-FLIM: Hamsters [18]
τslow,500 ↑ Not Reported

452 / 500 nm Redox-Ratio = NADH / FAD I452/I500 ↓ ↓ In Vivo AFS: Hamsters [33]
↓ Ex Vivo FLIM: Patients [24]

Table 2.3: Summary of statistical trends of FLIM-derived features in Moderate and High-Grade
Dysplasia/SCC vs. Normal. TRFS: Time-Resolved Fluorescence Spectroscopy; FLIM: Fluores-
cence Lifetime Imaging; MPM-FLIM: Multiphoton FLIM; AFS: Autofluorescence Spectroscopy;
CFM: Confocal Fluorescence Microscopy; SLS: Synchronous Luminescence Spectroscopy

13



at this band, as a decrease in the slower-decaying collagen signal in precancerous and cancerous

epithelial tissue would result in overall faster tissue autofluorescence temporal response mainly

modulated by NADH; however, further studies are needed to understand these observations. The

observed significantly larger relative contribution of the fast-component (αfast,390, Figure 2.2C) is

likely due to increased contribution of NADH fluorescence to the acquired signal at this spectral

band.

The oral epithelial tissue autofluorescence induced with an excitation wavelength of 355 nm

and measured at the emission spectral band of 452 ± 22.5 nm is expected to be predominantly

originated from NADH within oral epithelial cells. Our results indicated significantly shorter av-

erage lifetime at the 452 ± 22.5 nm emission spectral band in cancerous and precancerous oral

lesions compared to healthy oral tissue (τavg,452, Figure 2.2F), consistent with previous observa-

tions [2, 24, 25, 32]. Because of the overlap in the emission spectra of collagen and NADH at this

spectral band, a decrease in the slower-decaying collagen signal in precancerous and cancerous

epithelial tissue would result in overall faster tissue autofluorescence temporal response associated

to NADH signal.

Previous studies on animal models of oral cancer using multiphoton FLIM microscopy at∼800

nm two-photon excitation have linked the fast and slow component lifetimes of the epithelial tis-

sue autofluorescence at ∼450 nm to intracellular free and bound NADH, respectively [18]. Fast

(τfast,452) and slow (τslow,452) component lifetimes of the tissue autofluorescence at ∼450 nm were

also quantified from our widefield FLIM endoscopy images; however, due to the lack of axial

resolution of the FLIM endoscope, it is more likely that they reflect epithelial NADH (τfast,452)

and connective tissue collagen (τslow,452) instead of free/bound NADH. The observed significantly

shorter lifetime (τfast,452, Figure 2.2H) in cancerous and precancerous oral lesions compared to

healthy oral tissue might be explained by the increased use of glycolysis in addition to oxida-

tive phosphorylation as complementary metabolic pathways in neoplastic cells [34], as glycoly-

sis requires the reduction of NAD+ into NADH, resulting in increased NADH/NAD+ ratio and

quenched NADH fluorescence [35]. The observed significantly larger relative contribution of the
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fast-component (αfast,452, Figure 2.2G) is likely caused by the decrease in collagen fluorescence

associated to the slow component (τslow,452).

The oral epithelial tissue autofluorescence induced with an excitation wavelength of 355 nm

and measured at the emission spectral band > 500 nm is expected to be predominantly origi-

nated from FAD within oral epithelial cells. Our findings indicated a significant increase in the

normalized autofluorescence intensity at this spectral band (I500,n, Figure 2.2I) in cancerous and

precancerous oral lesions relative to healthy oral tissue, consistent with previous observations

[20, 25, 31, 33]. Oxidative phosphorylation, the most efficient cellular metabolic pathway, re-

quires the oxidation of FADH2 into FAD; thus, the higher metabolic rate of malignant cells would

result in higher concentration of mitochondrial FAD, which might explain this observation [35].

Previous studies using multiphoton FLIM microscopy at ∼900 nm two-photon excitation have

linked the average lifetime of oral tissue autofluorescence imaged at ∼500-600 nm to the lifetime

of oral epithelial FAD autofluorescence [24], and the fast and slow component lifetimes of oral tis-

sue autofluorescence imaged at a similar emission band to the lifetimes of oral intracellular bound

and free FAD autofluorescence, respectively [18]. Average (τavg,500), fast-component (τfast,500) and

slow-component (τslow,500) lifetimes of oral tissue autofluorescence at > 500 nm were also quanti-

fied from our widefield FLIM endoscopy images. Due to the single-photon 355 nm excitation and

broad emission spectral band used in the FLIM endoscope, it is quite possible that the tissue aut-

ofluorescence imaged at the > 500 nm spectral band could come not only from FAD but also from

NADH and/or porphyrin; thus, it is unlikely that τavg,500, τfast,500 and τslow,500 would only reflect

total or free/bound FAD. Nevertheless, although further studies are needed to understand the ob-

served longer τavg,500 (Figure 2.2J), larger αfast,500 (Figure 2.2K) and slower τslow,500(Figure 2.2L)

in cancerous and precancerous oral lesions relative to healthy oral tissue, these results suggest that

these endoscopic FLIM features could potentially represent novel autofluorescence biomarkers of

oral epithelial dysplasia and cancer.

Since the oral epithelial tissue autofluorescence induced with 355 nm excitation and measured

at the emission spectral bands of 452 ± 22.5 nm and > 500 nm are expected to be predomi-
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nantly originated from epithelial NADH and FAD, respectively, the autofluorescence intensity ra-

tio I452/I500 can be associated to the optical redox-ratio [15]. Our findings indicated a significant

decrease in I452/I500 in cancerous and precancerous oral lesions relative to healthy oral tissue (Fig-

ure 2.2M), consistent with previous observations [24, 33]. Oxidative phosphorylation requires the

oxidation of both NADH and FADH2 molecules, resulting in decreased NADH/FAD redox-ratio

[35]. Thus, the observed decreased I452/I500 in cancerous and precancerous oral lesions could

reflect increased cellular metabolic activity, a hallmark of epithelial cell malignant transformation

[16]. Finally, our findings also indicated significantly reduced absolute autofluorescence intensities

at all three spectral bands in cancerous and precancerous oral lesions relative to healthy oral tissue

(I390,I452,I500, Figure 2.3), also consistent with previous observations [2, 20, 25, 32, 33].

Three out of 16 FLIM-derived features were not statistically different in precancerous/cancerous

lesions vs. normal oral tissue as indicated in Table 2.3. The normalized autofluorescence intensity

in channel 452 ± 22.5 nm (I452,n) was not significantly different between premalignant/malignant

oral lesions and healthy tissue. As I390,n decreased and I500,n increased in cancerous and pre-

cancerous oral lesions, and the three normalized intensities have to add to one, little change in

I452,n is expected. The slow component lifetime imaged at this spectral channel (τslow,452) was not

significantly different between premalignant/malignant oral lesions and healthy tissue. The much

stronger contribution of NADH in this emission channel might explain the limited effect of the

slow-decaying collagen fluorescence associated with τslow,452. Finally, the fast component lifetime

in channel > 500 nm (τfast,500) was not significantly different in precancerous/cancerous lesions.

The much stronger contribution of FAD in this emission channel might explain the limited effect

of the fast-decaying NADH fluorescence associated with τfast,500.

2.4.1 Study Limitations

Although this study demonstrates the capabilities of endogenous multispectral FLIM endoscopy

to enable label-free biochemical and metabolic clinical imaging of precancerous and cancerous oral

lesions, some important limitations of the study warrant discussion.The multispectral FLIM endo-

scope used in this study was designed to preferentially interrogate the contributions of collagen,

16



NADH and FAD in the oral tissue autofluorescence by selecting three spectral channels targeting

the emission peak of each of these fluorophores. However, due to 1) the overlap of the emission

spectra of these fluorophores, 2) the use of relatively broad spectral emission bands to warranty

adequate image quality, 3) the use of a single excitation wavelength, and 4) the lack of axial resolu-

tion of the FLIM endoscope, which prevents cellular resolution imaging of the oral epithelial layer

independently from the submucosa, specific interrogation of collagen, NADH and FAD was not

possible, and it is expected that the fluorescence emission measured at any of the selected emission

bands was the combined emission from more than one fluorophore. Current efforts by our group

to further develop the multispectral FLIM endoscopy design include: the use of dual wavelength

excitation and narrower emission spectral bands to enable more specific interrogation of collagen,

NADH, FAD and porphyrin autofluorescence; the adoption of a novel frequency-domain FLIM

implementation to significantly reduce endoscopy instrumentation complexity and cost [36]; and

the addition of structured illumination based optical sectioning to enable more specific epithelial

interrogation [37]. The statistical analyses applied to the quantified multispectral FLIM endoscopy

based autofluorescence biomarkers showed their promising potential to differentiate between pre-

cancerous/cancerous from healthy oral epithelial tissue. However, these encouraging preliminary

results need to be further validated. Current efforts by our group aim to thoroughly assess the

capabilities of endogenous multispectral FLIM endoscopy as an image-guided surgical tool for

detecting positive margins during head and neck cancer resection surgery.

2.5 Conclusions

This study represents, to the best of our knowledge, the first demonstration of label-free bio-

chemical and metabolic clinical imaging of precancerous and cancerous oral lesions by means

of widefield multispectral autofluorescence lifetime endoscopy. Moreover, a number of both es-

tablished and potentially new autofluorescence biochemical and metabolic biomarkers of oral ep-

ithelial dysplasia and SCC were successfully imaged and quantified. This first-of-a-kind study

has demonstrated the capabilities of endogenous multispectral FLIM endoscopy in differentiating

precancerous/cancerous oral lesions from healthy oral tissue. Future studies will assess the capa-
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bilities of endogenous multispectral FLIM endoscopy as an image-guided surgical tool for rapidly

and accurately determining margin involvement during head and neck cancer resection surgery.
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3. CAD SYSTEM FOR AUTOMATED DETECTION OF PRE-CANCEROUS AND

CANCEROUS ORAL LESIONS VS. HEALTHY ORAL TISSUE BASED ON

MULTISPECTRAL AUTOFLUORESCENCE ENDOSCOPY

3.1 Introduction

Several optical imaging technologies have been evaluated for the identification of positive sur-

gical margins. Grillone et al. performed an in vivo study on 34 patients, in which elastic scattering

spectroscopy (ESS) and a machine learning diagnostic algorithm were used to distinguish normal

from abnormal oral tissue (mild/moderate/severe dysplasia, carcinoma in situ, and invasive can-

cer). This method achieved levels of sensitivity ranging from 84% to100% and specificity ranging

from 71% to 89%, depending on how the cutoff between normal and abnormal tissue was defined

(i.e., mild, moderate, or severe dysplasia) [38]. In an ex vivo study, Hamdoon et al. used opti-

cal coherence tomography (OCT) to scan tumor margins from 28 oral squamous cell carcinoma

(OSCC) patients following resection, and differentiated tumor-free from tumor-involved margins

with levels of sensitivity and specificity of 81.5% and 87%, respectively [39]. Jeng et al. used Ra-

man spectroscopy (RS) in an ex vivo study to image 44 tumor and 36 normal oral tissue samples

from patients and implemented a quadratic discriminant analysis (QDA) classifier to distinguish

tumor from normal oral tissue, resulting in levels of sensitivity and specificity of∼91% and∼83%,

respectively [40]. Fei et al. performed ex vivo hyperspectral imaging (HSI) on 20 patients and dis-

criminated SCC margins from normal oral tissue with 84% sensitivity and 74% specificity using

a convolutional neural network (CNN) classifier. Nayak et al. performed ex vivo autofluores-

cence spectroscopy (AFS) of normal, premalignant, and malignant oral tissues from patients and

designed an artificial neural network (ANN) that displayed levels of sensitivity and specificity of

96.5% and 100%, respectively [41]. In an in vivo study, Huang et al. used a two-channel autoflu-

orescence device targeting NADH and FAD autofluorescence to classify 49 cancerous lesions, 34

precancerous lesions, and 77 healthy oral mucosa from patients. They reported that precancerous
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and cancerous lesions were differentiated from healthy oral mucosa with a sensitivity of ∼92%

and specificity of ∼75% [22].

The encouraging results reported in these studies demonstrate capability in discriminating pre-

cancerous and cancerous oral lesions from healthy oral tissue. However, further studies are needed

to translate these optical technologies to the clinic. In this study, we hypothesized that widefield

multispectral autofluorescence-derived features quantified with our autofluorescence endoscopy

system [26] can be used to develop a computational framework for a computer aided detection

(CAD) system for the automated discrimination of cancerous and precancerous oral lesions from

healthy oral tissue.

3.2 Methods

3.2.1 Multispectral Autofluorescence Image Database

The database used in this study included in vivo clinical endogenous multispectral autofluo-

rescence images of 35 cancerous (SCC) and 5 precancerous (3 moderate dysplastic, MOD-DYS;

2 high-grade dysplastic, HG-DYS) oral lesions from 39 patients previously acquired following the

imaging protocol described in subsection 2.2.1. These images were used to design and validate a

computational framework for automated cancerous/precancerous vs. normal classification.

In a second autofluorescence endoscopic imaging phase, nine oral lesions (8 SCC; 1 HG-DYS)

and corresponding contralateral normal oral tissues from nine patients were imaged and used ex-

clusively to test the proposed computational framework

3.2.2 Multispectral Autofluorescence Feature Computation

For each pixel within the FOV of the lesion’s autofluorescence image, nine multispectral fea-

tures were computed as follows. The absolute fluorescence intensity measured at each emission

band Iλ(x, y) was computed per pixel (x, y) using Equation 2.1. The multispectral normalized

fluorescence intensity Iλ,n(x, y) was computed from the multispectral absolute fluorescence inten-

sities Iλ(x, y) using Equation 2.2. Finally, six ratios between multispectral absolute fluorescence

intensities were computed, resulting in a total of nine autofluorescence-derived features computed

20



Autofluorescence Feature

Multispectral Normalized Fluorescence Intensity
I390,n(x, y)
I452,n(x, y)
I500,n(x, y)

Multispectral Absolute Fluorescence Intensity Ratio

I390,n(x, y)/I452,n(x, y)
I390,n(x, y)/I500,n(x, y)
I452,n(x, y)/I500,n(x, y)

[I452,n(x, y) + I500,n(x, y)]/I390,n(x, y)
[I390,n(x, y) + I500,n(x, y)]/I452,n(x, y)
[I390,n(x, y) + I452,n(x, y)]/I500,n(x, y)

Total Number 9

Table 3.1: Summary of multispectral autofluorescence features computed per pixel.

per image pixel, as summarized in Table 3.1.

3.2.3 Image Classification and Performance Estimation

In order to identify an optimal computational framework for the CAD system, the dataset of 40

multiparametric spectral autofluorescence images of oral lesions and 40 paired contralateral nor-

mal images was analyzed following the computational workflow summarized in Figure 3.1. First,

the dataset was divided in training and validation sets following a leave-one-out-cross-validation

(LOOCV) strategy, and the number of features was reduced using a correlation-based feature se-

lection approach [42]. Second, the training samples (n = 79) entered a sequential forward search

feature selection (up to 3 features) and classifier training stage using a second LOOCV method.

Within this feature selection stage, a threshold of 50% on the pixel-level classifier posterior proba-

bility was applied to generate binary classification maps. Receiver Operating Characteristic (ROC)

analysis was performed on the image-level percentage of positive pixels within each classification

map and the optimal feature set was identified based on the ROC area under the curve (AUC).

Third, the classifier was retrained using all training samples and binary classification maps were

generated after applying a 50% threshold on the pixel-level posterior probability. To classify each

complete classification map as either POSITIVE or NEGATIVE, an image-level threshold on the

percentage of positive pixels was optimized by selecting the closest point to the upper left corner on
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the ROC curve. The trained classifier was then applied, together with the 50% pixel-level thresh-

old and the image-level threshold, to the testing sample. Finally, the whole process was repeated

within the main LOOCV loop until every image in the dataset was used as a testing sample.

Six classifiers were evaluated in the computational framework shown in Figure 3.1: Linear

(LDA), Diagonal-Linear (DLDA), Quadratic (QDA), Diagonal-Quadratic (DQDA) Discriminants,

Support Vector Machines (SVM), and Logistic Regression (LOGREG).

Figure 3.1: Computational framework for the CAD system.

3.3 Results

The classification performance on the training dataset obtained for each of the six classifiers

evaluated is presented in Figure 3.2. The DQDA classifier yielded the highest accuracy (∼84%)

and levels of sensitivity and specificity of 85% and 83%, respectively.

The most frequently selected feature set identified in the workflow from Figure 3.1 consisted

in the following autofluorescence spectral features:

1. The normalized fluorescence intensity in channel > 500 nm, I500,n(x, y), manily associated

to FAD autofluorescence.

2. The absolute fluorescence intensity of channels 452 ± 22.5 nm and > 500 nm, relative to

390 ± 20 nm, [I452(x, y) + I500(x, y)]/I390(x, y), which quantifies the autofluorescence of

NADH and FAD relative to collagen, respectively.
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Figure 3.2: Classifier training performance. SEN: Sensitivity; SPE: Specificity; ACC: Accuracy.

The DQDA classifier was retrained using the complete training dataset (n = 80) and most

relevant spectral features (I500,n, [I452 + I500]/I390), yielding an optimal decision boundary that

successfully discriminated SCC/HG-DYS/MOD-DYS from normal (Figure 3.3). An optimized

image-level threshold of 28% on the percentage of positive pixels was selected based on the closest

point to the upper left corner on the ROC curve. The optimal DQDA classifier, together with the

50% pixel-level and 28% image-level thresholds, was applied to the independent testing dataset (n

= 18). The resulting DQDA posterior probability maps of the nine oral lesions and paired normal

oral tissues used for testing are presented in Figure 3.4A. In these maps, each pixel represents a

probability of belonging to the cancer/precancer (SCC/HG-DYS/MOD-DYS) class. The predicted

image-level binary classification (POSITIVE/NEGATIVE) was obtained by first applying the 50%

pixel-level probability threshold, yielding the classification maps presented in Figure 3.4B, and

then applying the 28% image-level threshold on the percentage of positive pixels.

The confusion matrix resulting from the testing dataset classification is presented in Table 3.2.
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Figure 3.3: Optimal DQDA decision boundary obtained with the training dataset.

The image-level classification predicted by the optimized DQDA classifier is compared against the

histopathological classification (gold standard). The DQDA classifier displayed levels of sensitiv-

ity and specificity of 78% and 100%, respectively; positive and negative predictive values (PPV,

NPV) of 100% and 82%, respectively; and overall accuracy of 89%.

3.4 Discussion

In vivo multispectral autofluorescence endoscopy using a single 355 nm excitation wavelength

was performed in this study for the clinical imaging of cancerous and precancerous oral lesions

from 48 patients. The acquired endoscopic autofluorescence images were processed to generate

multiparametric spectral autofluorescence images that were introduced into a computational frame-

work for automated classification. In this computational framework, 40 oral lesion images paired

with normal oral tissues were used for classifier training, and a systematic selection of the best

spectral feature combination was performed to optimize a DQDA classifier for the discrimination
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Figure 3.4: Posterior probability maps of nine cancerous/precancerous oral lesions and paired
normal oral tissues (A). Patient identification numbers are shown on the left of each map and color-
coded red if positive and blue if negative according to the predicted image-level classification.
Corresponding classification maps of these oral lesions and normal tissues are also presented (B).
Percentages of positive pixels are shown on the left of each classification map.

of cancerous/precancerous vs. normal oral tissue. The optimized DQDA classifier was tested on

an independent dataset consisting of nine oral lesion images and the classification performance

displayed levels of sensitivity and specificity of 78% and 100%, respectively.

The DQDA posterior probability maps of the nine imaged oral lesions used for testing (Figure

3.4A) indicate the pixel-level likelihood of malignancy and display evident contrast between can-

cerous/precancerous and normal oral tissues. The application of a threshold at 50% on the pixel

posterior probabilities enabled the generation of binary classification maps (Figure 3.4B) from

which the classification of the whole image was predicted based on the optimized image-level

threshold at 28% applied on the percentage of positive pixels. The optimized DQDA classifier was

able to successfully predict 9/9 normal, 6/8 cancerous (SCC), and 1/1 precancerous (HG-DYS) oral

tissue images as indicated in Table 3.2. The two misclassified cancerous (SCC) cases are likely due

to the small size of the imaged oral lesion relative to its FOV, since small regions of red-colored pix-
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Predicted
Normal HG-DYS/SCC Total

Normal 9 0 9
HG-DYS 0 1 1True

SCC 2 6 8
Total 11 7 18

Table 3.2: Confusion matrix of the testing dataset classification. HG-DYS: High-Grade Dysplasia,
SCC: Squamous Cell Carcinoma.

Optical Modality Number of Patients Classification Task Classification Performance Reference
AFI (VELscope R©) 58 CAN vs. PRE vs. NOR ROC-AUC = 0.87-0.95 [43]

AFI 141
CAN vs. NOR SEN/SPE = 71%-98%/91%-100%

[44]
PRE vs. NOR SEN/SPE = 92%-94%/86%-100%

AFI 160 PRE/CAN vs. NOR SEN/SPE = 92%/75% [22]

AFI (VELscope R©) 140
CAN vs. NOR SEN/SPE = 98%/92%

[45]
PRE/CAN vs. NOR SEN/SPE = 97%/92%

AFS 251 CAN vs. NOR ROC-AUC = 0.97 [46]

Table 3.3: Summary of in vivo autofluorescence spectroscopy and imaging studies. AFI: Autoflu-
orescence Imaging, AFS: Autofluorescence Spectroscopy, CAN: Cancer, PRE: Precancer, NOR:
Normal, SEN: Sensitivity, SPE: Specificity, ROC-AUC: Receiver Operating Characteristic Area
Under Curve.

els are observed in the posterior probability maps (Figure 3.4A) of the missed positive cases (Q066

and Q074), resulting in percentages of positive pixels below the selected image-level threshold of

28%, as indicated in the classification maps (Figure 3.4B). Nevertheless, these classification maps

can be clinically relevant for a more accurate demarcation of the extension of the malignant oral

lesion, since the observed red-colored area clearly indicate its potential location within the imaged

FOV. Therefore, this novel autofluorescence-based CAD tool results promising for aiding doctors

during the surgical resection of cancerous and precancerous oral epithelial lesions from patients.

Several in vivo autofluorescence spectroscopy (AFS) and imaging (AFI) human studies have

investigated the systematic discrimination of cancerous and precancerous oral lesions from normal

oral tissue. The most relevant studies reported to date are summarized in Table 3.3.

Jeng et al. performed AFI in 58 patients using the VELscope R©, which is a commercially

available autofluorescence tool for oral cancer screening developed by Apteryx Imaging. They
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reported the successful discrimination between cancerous, precancerous, and normal oral tissue

with a ROC-AUC ranging from 0.87 to 0.95 [43]. Nevertheless, their study only classified tongue

and buccal mucosa lesions independently and no optimal ROC threshold was reported to enable

comparison of the levels of sensitivity and specificity. Our study has the advantage of combin-

ing cancerous and precancerous oral lesions from different anatomical sites as indicated in Table

2.1, resulting in a more clinically relevant classification approach that is robust to oral tissue aut-

ofluorescence variability due to lesion anatomical location. In another study, Kumar et al. used

AFI in 141 patients and reported sensitivity and specificity of 71%-98% and 91%-100%, respec-

tively in cancerous vs. normal oral tissue classification, and 92%-94% sensitivity and 86%-100%

specificity in precancerous vs. normal oral tissue classification [44]. However, these promis-

ing classification results were obtained by separately classifying buccal mucosa, lateral border of

tongue, and dorsal surface of tongue tissues, which likely facilitated the discrimination between

cancerous/precancerous and normal oral tissue due to the homogeneity of the imaged lesion sites.

In addition, their imaging system only interrogated the endogenous autofluorescence of FAD and

porphyrins. Our system not only interrogated the autofluorescence of FAD, but also that of con-

nective tissue collagen and NADH. In particular, the spectral information obtained at the collagen

(390 ± 20 nm) and FAD (> 500 nm) emission channels was relevant to successfully discriminate

cancerous/precancerous lesions from healthy oral tissue, since the ratio [I452 + I500]/I390, which

quantifies the autofluorescence of NADH (I452) and FAD (I500) relative to collagen (I390), and the

normalized intensity in channel > 500 nm (I500,n) resulted in the most powerful features for clas-

sification (Figure 3.3). Therefore, the simultaneous autofluorescence imaging of collagen, NADH,

and FAD performed with our multispectral endoscopy system provided relevant morphological

and metabolic information that enabled contrast between malignant and normal oral tissue. Huang

et al. performed AFI in 160 patients using a two-channel autofluorescence device to differentiate

precancerous and cancerous lesions from normal oral tissue with sensitivity of 92% and specificity

of 75% [22]. Nonetheless, the classification performance reported in their study was based on

randomly selected samples from a training dataset used to design a QDA classifier; thus, not per-
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forming any validation on an independent pool of data. In contrast, our optimized DQDA classifier

was validated using a dataset of nine oral lesions and contralateral normal oral tissues completely

blinded to the classifier training and optimization stage, resulting in an unbiased and more accurate

estimation of the classification performance. In another related study, Huang et al. performed AFI

in 140 patients using the VELscope R© and reported sensitivity and specificity of 98% and 92%,

respectively in cancerous vs. normal oral tissue, and 98% sensitivity and 92% specificity in can-

cerous/precancerous vs. normal oral tissue [45]. However, the classification performance reported

in their study was based solely on training data and no classifier validation was performed on an

independent dataset, which would have more clinical relevance. Finally, de Veld et al. performed

AFS in 251 patients and reported a ROC-AUC of 0.97 in cancerous vs. normal oral tissue [46]. Un-

fortunately, a comparison in terms of sensitivity and specificity cannot be made since they did not

report the selection of a specific ROC threshold for classification. Moreover, six excitation wave-

lengths in the range of 365 nm – 450 nm were used in their study to record the autofluorescence

spectra of oral lesions. Here we performed multispectral autofluorescence endoscopy imaging of

oral lesions using a single 355 nm excitation wavelength, which results in a much simpler and less

costly clinically compatible system.

3.4.1 Study Limitations

The application of a fixed image-level threshold on the percentage of positive pixels to predict

the image classification label could result in misclassification of small oral epithelial lesions as

observed in the classification maps of two positive cases (Q066 and Q074, Figure 3.4B). Therefore,

a more diverse training dataset with a variety of oral lesions of different sizes should be included in

further studies to perform a better systematic selection of the image-level threshold, which could

potentially reduce the number of missed positive cases. Moreover, the limited sample size of

the testing dataset used in this study results in >10% reduction in the levels of sensitivity and/or

specificity for each missed positive and/or negative case. Hence, a larger validation dataset is

needed to obtain a better estimation of the classification performance.

In summary, this in vivo study in humans demonstrates the capabilities of widefield multispec-
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tral autofluorescence endoscopy in providing contrast between cancerous/precancerous oral lesions

and normal oral tissue with clinically relevant levels of sensitivity and specificity. The limited sam-

ple size used in this study, however, raises the need to further develop and clinically validate the

proposed computational framework for the CAD system. Once fully developed and validated, this

novel diagnostic tool could potentially aid oral pathologists during the clinical identification of

surgical resection margins.

3.5 Conclusions

In vivo widefield multispectral autofluorescence endoscopy was used for the clinical imaging

of cancerous and precancerous oral lesions from patients. The outcomes of this study demonstrate

the potentials of a CAD system based on multispectral autofluorescence endoscopy as a clinical

tool for automated, non-invasive and in situ identification of cancerous/precancerous oral lesions

from healthy oral tissue. Once fully validated clinically, this tool will facilitate the identification

of positive surgical margins during conventional clinical examination of oral epithelial lesions.
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4. MULTISPECTRAL FLUORESCENCE LIFETIME ENDOSCOPIC IMAGING OF

BENIGN, DYSPLASTIC, AND CANCEROUS ORAL LESIONS

4.1 Introduction

Oral cancer patients who are diagnosed at advanced stages commonly require complex and

highly invasive surgery and have a five-year survival rate of only 39%, while patients who are

diagnosed at early stages usually require minor surgery and have an 84% chance of survival [1].

Unfortunately, benign oral lesions are often difficult to distinguish from dysplastic lesions and oral

squamous cell carcinoma (OSCC) [47, 48]. As a result, only three in ten patients are diagnosed at

early stages [1]. The current gold standard for the diagnosis of OSCC and dysplasia is conventional

oral examination followed by tissue biopsy and histopathological analysis of clinically suspicious

oral lesions [49]. However, this procedure has several limitations, such as underdiagnosis or mis-

diagnosis resulting from sampling bias, training of both a clinician and pathologist, lengthy time

to diagnosis, subjective grading of dysplastic lesions, and patient morbidity and discomfort due to

invasive surgery [49]. Therefore, fast and accurate tools for oral cancer and precancer screening

are urgently needed to improve the survival rate and quality of life of these patients, while reducing

the number of unnecessary tissue biopsies of benign oral lesions.

Several commercially available diagnostic adjuncts have been developed to assist with the clin-

ical evaluation of potentially malignant and premalignant oral lesions: Toluidine blue, brush cytol-

ogy, acetowhitening with chemiluminescence (ViziLite), and autofluorescence imaging (VELscope,

Identafi, and OralID). Nevertheless, these diagnostic adjuncts have low specificity and are not gen-

erally recommended for the assessment of clinically suspicious oral lesions [49, 50].

Several studies have explored the use of autofluorescence spectroscopy (AFS), time-resolved

fluorescence spectroscopy (TRFS), confocal fluorescence microscopy (CFM), and fluorescence

lifetime imaging microscopy (FLIM) to identify optical biomarkers of oral SCC and dysplasia. In

an in vivo study in 38 patients, Wang et al. used TRFS at the 633 nm wavelength to differentiate
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dysplastic vs. benign (verrucous hyperplasia and epithelial hyperplasia) lesions with a sensitiv-

ity of 93% and specificity of 75% [51]. In an ex vivo study using CFM in human oral biopsies,

Gillenwater et al. reported increased epithelial and decreased connective tissue autofluorescence

in dysplasia relative to benign inflammation upon ultraviolet excitation [20]. Krishnakumar et al.

performed ex vivo AFS in hamsters and reported decreased autofluorescence intensity at the 380

nm emission wavelength and decreased redox ratio in dysplasia and well-differentiated squamous

cell carcinoma (WDSCC) relative to benign (hyperplasia) [33]. Our group previously performed in

vivo multispectral FLIM in hamsters and reported lower normalized intensity and shorter average

lifetime at the 390 ± 20 nm band, shorter average lifetime at the 450 ± 22.5 nm band, and higher

normalized intensity at the >500 nm band in high-grade dysplastic/carcinoma vs. benign oral le-

sions [52]. Even though these studies have provided promising results, none of these imaging tools

have been translated yet to the clinic for aiding in the discrimination of cancerous/precancerous

from benign oral lesions.

In this study, we hypothesized that widefield multispectral FLIM endoscopy imaging of clini-

cally suspicious oral lesions can provide novel autofluorescence biomarkers of oral dysplasia and

SCC useful for the discrimination of cancerous and precancerous oral lesions from benign oral

tissue.

4.2 Methods

4.2.1 FLIM Instrumentation and Clinical Imaging of Oral Lesions

Clinical endogenous multispectral FLIM images of benign, dysplastic and cancerous oral le-

sions from 118 patients were acquired in vivo following the study protocol described in subsec-

tion 2.2.1. The distribution of the 124 imaged oral lesions, based in both anatomical location and

histopathological diagnosis, is provided in Table 4.1

4.2.2 Multispectral FLIM Feature Computation

The acquired multispectral endoscopic FLIM images were processed following the methodol-

ogy described in subsection 2.2.2, yielding 16 FLIM-derived features per image pixel. In addition,
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Lesion Location Histopathology Diagnosis Total NumberBenign MOD-DYS HG-DYS SCC
Buccal Mucosa 29 2 1 11 43

Tongue 21 1 0 12 34
Gingiva 17 0 1 7 25

Lip 5 0 0 2 7
Mandible 4 0 0 1 5

Palate 4 0 0 0 4
Floor of Mouth 3 0 0 1 4

Maxilla 1 0 0 1 2
Total Number 84 3 2 35 124

Table 4.1: Distribution of the 124 imaged oral lesions based in both anatomical location and
histopathological diagnosis (MOD-DYS: Moderate Dysplasia; HG-DYS: High-Grade Dysplasia;
SCC: Squamous Cell Carcinoma).

feature relative values ∆f(x, y) were computed per pixel by taking the difference between each

pixel feature value f(x, y) within the FOV of the lesion’s autofluorescence image and the median

feature value of the FOV of the paired contralateral (Normal) image µf,Normal for each of the 16

FLIM-derived parameters:

∆f(x, y) = f(x, y)− µf,Normal (4.1)

Therefore, a total of 32 multispectral FLIM-derived features were computed at each spatial

location (x, y) within the FOV of the oral lesion’s autofluorescence image. These features are

categorized as follows: 1) Normalized autofluorescence intensities, 2) Bi-exponential decay pa-

rameters, 3) Average fluorescence lifetimes, 4) Redox Ratio, and 5) Relative values. A list of the

FLIM-derived features included within these categories is presented in Table 4.2.

4.2.3 Statistical Analysis of Multispectral FLIM Features

As summarized in Table 4.1, the 124 imaged oral lesions corresponded to 84 benign, 5 precan-

cerous (3 MOD-DYS, 2 HG-DYS), and 35 cancerous (SCC) lesions. In order to identify statistical

differences in the distribution mean of each of the 32 FLIM features presented in Table 4.2 from

precancerous or cancerous oral tissue versus benign oral tissue, the following statistical analysis

was performed. For each imaged oral tissue region, multi-parametric FLIM maps were generated,
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Feature Category Spectral Band Total Number390 ± 20 nm 452 ± 22.5 nm >500 nm
Normalized Autofluorescence Intensity I390,n(x, y) I452,n(x, y) I500,n(x, y) 3

τfast,390(x, y) τfast,452(x, y) τfast,500(x, y)
Bi-Exponential Decay Parameters τslow,390(x, y) τslow,452(x, y) τslow,500(x, y) 9

αfast,390(x, y) αfast,452(x, y) αfast,500(x, y)
Average Fluorescence Lifetime τavg,390(x, y) τavg,452(x, y) τavg,500(x, y) 3

Redox Ratio I452(x, y)/I500(x, y) 1
Relative Values ∆f(x, y) 16

Total Number 32

Table 4.2: Summary of FLIM-derived features computed per pixel for each spectral band.

in which the 32 FLIM features were computed at each image pixel. Then, for each FLIM fea-

ture map, the median feature value from all pixels was computed; thus, each imaged oral tissue

region was represented by a single feature vector composed of the median values of each of the

32 FLIM feature maps. Finally, a two-tailed Mann-Whitney U test was applied to the precan-

cerous/cancerous vs. benign median values of each of the 32 FLIM features, with a type-1 error

probability of p<0.05 for all tests.

4.3 Results

The statistical analysis performed on the autofluorescence feature median value distributions

revealed that the distribution means of 13 FLIM features were statistically significantly different

(P < 0.05) in moderate and high-grade dysplastic/SCC (n = 40) vs. benign (n = 84) oral lesions.

Box plots of the feature median value distributions from each group are shown in Figure 4.1

Representative FLIM feature maps comparing cancerous (SCC) floor of mouth tissue and be-

nign tongue tissue from two patients are presented in Figure 4.2, and FLIM feature maps comparing

precancerous (HG-DYS) and benign buccal mucosal tissue from two patients are shown in Figure

4.3. In both representative cases, the pixel distributions of each FLIM feature map were consistent

with the observed trends in the distribution mean of each of the 13 statistically different FLIM

features from moderate and high-grade dysplastic/cancerous versus benign oral lesions.
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Figure 4.1: Box plots of FLIM-derived feature median value distributions of benign (n=84; green
boxes), moderate dysplastic (MOD-DYS), high-grade dysplastic (HG-DYS), and cancerous (SCC)
oral lesions (n=40; red boxes). Feature median value distributions for each group are also shown.
P-values resulting from two-tailed Mann-Whitney U tests are presented on top of each plot. ∆:
Relative values.

4.4 Discussion

In this study, in vivo multispectral FLIM endoscopic clinical imaging of benign, precancer-

ous, and cancerous oral lesions from 118 patients was performed quickly (<3 s per image) and

non-invasively. The acquired multispectral FLIM endoscopic images were processed to generate

widefield maps of absolute and relative autofluorescence spectral and lifetime features of benign

and precancerous/cancerous oral lesions. The statistical analysis applied to each of these autoflu-

orescence feature maps identified several ones (Figure 4.1) that displayed statistically significant
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Emission Channel Associated Fluorophore FLIM-Derived Autofluorescence Features Moderate and High-Grade Dysplasia / SCC vs. Benign
Observed Trend Previous Studies [Ref.]

390 ± 20 nm Collagen

I390,n ↓
↓ Ex Vivo CFM: Humans [20]
↓ Ex Vivo AFS: Animals [33]
↓ In Vivo FLIM: Animals [49]

∆I390,n ↓ Not Reported
∆τavg,390 ↓ Not Reported
∆τfast,390 ↓ Not Reported
∆τslow,390 ↓ Not Reported

452 ± 22.5 nm NADH I452,n ↓ Not Reported

>500 nm FAD

I500,n ↑ ↑ Ex Vivo CFM: Humans [20]
↑ In Vivo FLIM: Animals [49]

∆I500,n ↑ Not Reported
τavg,500 ↑ Not Reported
τslow,500 ↑ Not Reported
αfast,500 ↑ Not Reported

452 / 500 nm Redox-Ratio = NADH / FAD I452/I500 ↓ ↓ Ex Vivo AFS: Animals [33]
∆I452/I500 ↓ Not Reported

Table 4.3: Summary of trends in statistically different FLIM-derived features in Moderate and
High-Grade Dysplasia/SCC vs. Benign. FLIM: Fluorescence Lifetime Imaging; AFS: Autofluo-
rescence Spectroscopy; CFM: Confocal Fluorescence Microscopy.

differences between precancerous/cancerous vs. benign oral tissue. In Table 4.3, the statistical

trends of the autofluorescence spectral and lifetime features observed in this study are summarized

and compared to previously reported observations.

Significantly lower absolute (I390,n, Figure 4.1A) and relative (∆I390,n, Figure 4.1H) normalized

autofluorescence intensities at the 390 ± 20 nm band in cancerous and precancerous oral lesions

with respect to benign oral tissue were observed in this study. Because collagen in lamina propria

is expected to be the main contributor to the oral epithelial tissue autofluorescence measured at

this spectral band upon 355 nm excitation, the lower I390,n is likely due to the breakdown of

collagen crosslinks in the connective tissue [19, 29] and the increase in both epithelial thickness

and tissue optical scattering accompanying dysplastic or cancerous change [30]. Our finding is in

agreement with previous observations [20, 33, 52]. In addition, we report what is, to the best of

our knowledge, the first observation of a lower ∆I390,n, which indicates that the normalized oral

tissue autofluorescence at the 390 ± 20 nm band relative to the corresponding healthy oral tissue

decreases more in precancerous/cancerous than in benign oral lesions. This endoscopic FLIM-

derived feature could potentially represent a novel autofluorescence biomarker of oral cancer and

dysplasia.
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Our findings also indicated significantly shorter relative average (∆τavg,390, Figure 4.1I), fast-

component (∆τfast,390, Figure 4.1J), and slow-component (∆τslow,390, Figure 4.1K) lifetimes at the

390 ± 20 nm emission spectral band in cancerous and precancerous oral lesions compared to be-

nign oral tissue. To the best of our knowledge, this is the first observation of larger differences

in autofluorescence lifetimes with the corresponding healthy oral tissue at the collagen emission

peak in cancerous and precancerous oral lesions. Because of the overlap in the emission spectra

of collagen and NADH at this spectral band, these observations are likely due to a larger decrease

in the slower-decaying collagen signal in precancerous and cancerous oral lesions, resulting in

overall faster tissue autofluorescence temporal response. Even though these FLIM-derived fea-

tures could potentially become relevant autofluorescence biomarkers of oral cancer and dysplasia,

further studies are needed to understand these observations.

Significantly lower absolute normalized autofluorescence intensity (I452,n, Figure 4.1B) at the

452 ± 22.5 nm band was observed in cancerous and precancerous oral lesions with respect to

benign oral tissue. To the best of our knowledge, this is the first observation of decreased oral

epithelial autofluorescence at the NADH emission peak upon 355 nm excitation in precancer-

ous/cancerous relative to benign oral lesions. Because of the overlap in the emission spectra of

collagen and NADH at this spectral band, the much stronger decrease in collagen autofluorescence

signal in cancerous/precancerous oral tissue might explain the observed lower I452,n.

Significantly higher absolute (I500,n, Figure 4.1C) and relative (∆I500,n, Figure 4.1L) normal-

ized autofluorescence intensities at the > 500 nm band in cancerous and precancerous oral lesions

compared to benign oral tissue were observed. The main contributor to the oral tissue autofluo-

rescence measured at this spectral band upon 355 nm excitation is expected to be FAD within oral

epithelial cells. Hence, the higher I500,n, consistent with previous observations [20, 52], is likely

due to oxidative phosphorylation, the most efficient cellular metabolic pathway that requires the

oxidation of FADH2 into FAD. Hence, the higher metabolic rate of malignant cells would result

in increased levels of mitochondrial FAD [35]. The higher ∆I500,n, which has not been previously

observed, indicates that the normalized oral tissue autofluorescence at the > 500 nm band relative
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to the corresponding healthy oral tissue increases more in precancerous/cancerous oral lesions than

in benign oral tissue.

Our findings also indicated significantly longer average (τavg,500, Figure 4.1D) and slow-component

(τslow,500, Figure 4.1F) lifetimes, and larger relative contribution of the fast-component lifetime

(αfast,500, Figure 4.1E) at the > 500 nm spectral band in cancerous/precancerous relative to benign

oral lesions. To the best of our knowledge, these observations have not been previously reported

in cancerous/precancerous vs. benign human oral epithelial tissue. The larger τavg,500 might be

explained by a stronger contribution of FAD to the autofluorescence collected at this spectral chan-

nel, and the larger τslow,500, associated to FAD lifetime, is likely to reflect increased levels of FAD

in malignant oral epithelial cells [21]. Due to the single-photon 355 nm excitation and broad emis-

sion spectral band used in the FLIM endoscope, the tissue autofluorescence imaged at the > 500

nm spectral band could come not only from FAD but also from NADH. Therefore, the observed

larger αfast,500 is likely due to increased contribution of NADH autofluorescence at this spectral

band associated to the fast-component lifetime (τfast,500).

Significantly lower absolute (I452/I500, Figure 4.1G) and relative (∆I452/I500, Figure 4.1M)

redox ratio were observed in precancerous and cancerous oral lesions with respect to benign oral

tissue. Oxidative phosphorylation requires the oxidation of both NADH and FADH2 molecules,

resulting in a decreased NADH/FAD redox ratio [35]. Therefore, the observed lower I452/I500 in

cancerous and precancerous oral lesions, consistent with previous observations [33], could reflect

increased cellular metabolic activity, a hallmark of epithelial cell malignant transformation [16].

The lower ∆I452/I500, which has not been previously observed, indicates that the redox ratio rela-

tive to the corresponding healthy oral tissue decreases more in precancerous/cancerous oral lesions

compared to benign oral tissue.

Our three-channel multispectral FLIM endoscope, which acquired the autofluorescence mainly

attributed to collagen, NADH, and FAD in oral epithelial tissue, enabled the computation of 13

FLIM-derived features that demonstrated contrast between cancerous/precancerous vs. benign oral

lesions and were in agreement with previous observations from animals and humans. The relative
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FLIM feature values, which contemplate the autofluorescence properties of the normal oral tissue,

were relevant for the discrimination between malignant and benign oral lesions, suggesting that

these types of lesions present unique autofluorescence signatures modulated by morphological and

metabolic alterations relative to healthy oral tissue.

The statistically different trends in FLIM-derived features observed in this study have the po-

tential to be relevant for the application of statistical classifiers for automated discrimination of

cancerous/precancerous vs. benign oral lesions in a similar way performed by Wang et al. [51].

Their study reported the successful discrimination of precancerous vs. benign oral lesions from

patients based on time-resolved autofluorescence of the endogenous fluorophore protoporphyrin

IX (PpIX) acquired at 633 nm under 410 nm excitation. Encouraged by this study, subsequent

research will focus on the use of machine learning strategies to systematically distinguish malig-

nant/premalignant from benign oral lesions based on multispectral FLIM endoscopy. Moreover,

the addition of a fourth spectral channel targeting PpIX to our current FLIM endoscopy system

could potentially complement the acquired morphological and metabolic information due to col-

lagen, NADH, and FAD autofluorescence, resulting in a more robust system for oral cancer and

precancer screening.

4.4.1 Study Limitations

The multispectral FLIM endoscope used in this study was designed to preferentially interrogate

the contributions of collagen, NADH and FAD in the oral tissue autofluorescence; however, it

did not enable their specific interrogation due to the use of a single excitation wavelength and

relatively broad emission spectral bands. Current efforts by our group to overcome this limitation

include: the use of dual wavelength excitation and narrower emission spectral bands to enable

more specific interrogation of collagen, NADH, FAD and porphyrin autofluorescence; and the

adoption of a novel frequency-domain FLIM implementation to significantly reduce endoscopy

instrumentation complexity and cost [36]. Moreover, the limited lateral resolution and lack of

optical axial sectioning capabilities of the multispectral FLIM endoscope did not allow cellular

resolution imaging of the epithelial layer independently from the submucosa. To overcome this
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limitation, our group is currently evaluating the addition of structured illumination based optical

sectioning to enable more specific epithelial interrogation [37].

The statistical analyses applied to the quantified multispectral FLIM endoscopy based autofluo-

rescence biomarkers showed their promising potential to differentiate between cancerous/precancerous

from benign oral epithelial tissue. However, these encouraging preliminary results need to be fur-

ther validated. Current efforts by our group aim to thoroughly assess the capabilities of endogenous

multispectral FLIM endoscopy as a CAD tool for discriminating cancerous/precancerous from be-

nign oral tissue during clinical examination of potentially malignant oral lesions.

4.5 Conclusions

In this study, we performed label-free biochemical and metabolic clinical imaging of benign,

precancerous and cancerous oral lesions by means of widefield multispectral autofluorescence life-

time endoscopy. Several potentially novel autofluorescence biomarkers of oral epithelial dysplasia

and SCC useful for the discrimination of precancerous/cancerous oral lesions from benign oral tis-

sue were identified. Future studies will assess the capabilities of endogenous multispectral FLIM

endoscopy as a CAD tool for the fast and accurate discrimination of precancerous/cancerous from

benign oral lesions during conventional oral examination.
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5. CAD SYSTEM FOR AUTOMATED DETECTION OF PRE-CANCEROUS AND

CANCEROUS ORAL LESIONS VS. BENIGN ORAL TISSUE BASED ON

MULTISPECTRAL AUTOFLUORESCENCE IMAGING ENDOSCOPY

5.1 Introduction

Computational classification algorithms based on optical imaging technologies have been ex-

plored for the discrimination of precancerous and cancerous oral lesions vs. benign oral tissue.

Guze et al. performed in vivo Raman spectroscopy (RS) in 18 patients to distinguish precancerous

and cancerous oral lesions from benign and normal oral tissue [53]. This study reported levels

of sensitivity and specificity of 100% and 77%, respectively. Ni et al. performed in vivo narrow

band imaging (NBI) in 120 patients to discriminate between precancerous/cancerous and benign

vocal cord tissue and reported sensitivity of 83% and specificity of 93% [54]. Finally, Chen et al.

differentiated precancerous vs. benign oral lesions from 38 patients with 68% sensitivity and 95%

specificity using in vivo time-resolved fluorescence spectroscopy (TRFS) [51]. Encouraged by

these preceding studies, we hypothesized that widefield multispectral autofluorescence endoscopy

imaging can enable new autofluorescence-derived features that can be used within a CAD system

to automatically discriminate precancerous and cancerous oral lesions from benign oral epithelial

tissue.

5.2 Methods

5.2.1 Multispectral Autofluorescence Image Database

The database used in this study included in vivo clinical endogenous multispectral autofluores-

cence images of 84 benign, 13 dysplastic (8 mild, 3 moderate, and 2 high-grade) and 35 cancerous

(SCC) oral lesions from 125 patients previously acquired following the imaging protocol described

in subsection 2.2.1.
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5.2.2 Multispectral Autofluorescence Feature Computation

A total of 18 multispectral autofluorescence features were computed per image pixel, consisting

in the multispectral intensity features described in subsection 3.2.2 and their corresponding relative

values obtained with Equation 4.1.

5.2.3 Image Classification and Performance Estimation

The multiparametric autofluorescence image dataset of 132 oral lesions was introduced into a

classifier training and optimization process described in subsection 3.2.3 and depicted in Figure

3.1.

5.3 Results

The classifier training performance for each of the six classifiers evaluated is presented in

Figure 5.1. Because the LDA, QDA, DLDA, and DQDA classifiers yielded the same performance

(sensitivity = 84%; specificity = 81%; accuracy = 82% ), the LDA classifier was selected. The most

frequently selected feature within the LOOCV process (Figure 3.1) was the normalized intensity

in channel > 500 nm relative to Normal (∆I500,n). The optimized LDA posterior probability maps

of the 132 oral lesions included in the dataset are presented in Figure 5.2. In these maps, each pixel

represents a probability of belonging to the MALIGNANT class (SCC/HG-DYS).

The average image-level threshold on the percentage of positive pixels optimized within the

LOOCV process and used to label each complete classification map as either BENIGN or MA-

LIGNANT was∼6%± 0.3% as shown in Figure 5.3. The image-level classification obtained with

the optimized LDA classifier versus the histopathological classification (gold standard) are com-

pared in Table 5.1. The LDA classifier displayed levels of NPV of 93%, sensitivity and specificity

of 84% and 81%, respectively, and overall accuracy of 82%.

5.4 Discussion

We designed and validated a computational framework for the classification of precancerous

and cancerous vs. benign oral lesions based on multispectral autofluorescence endoscopy. In
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Figure 5.1: Classifier training performance. SEN: Sensitivity; SPE: Specificity; ACC: Accuracy.

this computational framework, a systematic selection of the best autofluorescence-derived feature

(∆I500,n) was performed to optimize an LDA classifier that successfully discriminated SCC/HG-

DYS oral lesions from Benign/MILD-DYS/MOD-DYS oral lesions.

The optimized LDA posterior probability maps of the 132 imaged oral lesions presented in

Figure 5.2, indicate the pixel-level likelihood of malignancy and display evident contrast between

high-grade dysplastic/SCC and benign oral tissues. The application of a threshold at 50% on the

pixel-level posterior probabilities enabled the generation of binary classification maps from which

the final label of the whole image was predicted using an optimized image-level threshold applied

to the percentage of positive pixels. Cross-validated results from this image-level classification are

summarized in Table 5.1. The optimized LDA classifier was able to correctly predict 77/95 benign

oral lesions (67 Benign, 7 MILD-DYS, 3 MOD-DYS), and 31/37 malignant oral lesions (29 SCC,

2 HG-DYS). Nevertheless, 18 benign and 6 malignant oral lesions were misclassified. It can be

noticed from Figure 5.2 that the missed positive cases present very small regions of red-colored
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Figure 5.2: Posterior probability maps of 37 cancerous and precancerous oral lesions (SCC and
High-Grade Dysplasia; right panels) and 95 benign oral lesions (Benign, Mild Dysplasia, and
Moderate Dysplasia; left panels), obtained from an optimized cross-validated LDA classifier. Each
pixel within these maps indicates a probability of MALIGNANT. Oral lesion identification num-
bers are shown on the left side of each probability map and color-coded red if MALIGNANT and
green if BENIGN according to the predicted image-level classification.

pixels within their posterior probability maps, resulting in percentages of positive pixels below the

optimized image-level threshold. In contrast, large red-colored regions were observed within the

probability maps of the 6 missed negative cases. These regions are likely to indicate the presence

of a highly-fluorescent superficial keratin layer that prevented the direct interrogation of the oral

epithelium and affected its autofluorescence properties [20]. Another plausible explanation for this

finding is that the autofluorescence properties of oral lesions can change based on their histologic

diagnosis [49]. Therefore, combining different types of benign and dysplastic oral lesions in a

single group, as performed in this study, might cause significant overlap with the autofluorescence

features of the cancerous/high-grade dysplastic group, yielding false positives.

Recent in vivo autofluorescence imaging (AFI) and spectroscopy (AFS) studies in humans

have reported promising findings in the discrimination of cancerous/precancerous vs. benign oral
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Figure 5.3: Distribution of optimal threshold on the percentage of positive pixels.

lesions as summarized in Table 5.2.

Kozakai et al. performed AFI in 50 patients using the Illumiscan R© (SHOFU, Kyoto, Japan) flu-

orescence visualization device and reported levels of sensitivity and specificity of 85% and 93%,

respectively in cancerous vs. benign oral lesions [55]. This study, however, did not include pre-

cancerous lesions in their classification problem and only investigated the discrimination of oral

lichen planus from cancerous lesions, which might limit its clinical usefulness for the screening of

other common types of benign oral lesions identified in patients. In our study, different categories

of benign oral conditions were included in our classification task in addition to oral lichen planus,

such as hyperplasia, hyperparakeratosis, fibroma, chronic mucositis, and mild/moderate dyspla-

sia. As a result, the discriminatory capabilities of our computational framework could be more

clinically relevant as they can be generalized on different types of benign oral lesions. In another

study, Shi et al. performed AFI in 517 patients using the VELscope R© and reported sensitivity

and specificity of 72% and 39%, respectively in precancerous/cancerous vs. benign oral lesions

[56]. Significantly higher levels of sensitivity and specificity of 84% and 81%, respectively for the
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Predicted
Benign/

MILD-DYS/MOD-DYS SCC/HG-DYS Total
Benign 67 17 84

MILD-DYS 7 1 8
MOD-DYS 3 0 3
HG-DYS 0 2 2

True

SCC 6 29 35
Total 83 49 132

Table 5.1: Confusion matrix resulting from the LOOCV process. MILD-DYS: Mild Dysplasia,
MOD-DYS: Moderate Dysplasia, HG-DYS: High-Grade Dysplasia, SCC: Squamous Cell Carci-
noma.

Optical Modality Number of Patients Classification Task Classification Performance Reference
AFI (Illumiscan R©) 50 CAN vs. BEN SEN/SPE = 85%/93% [55]
AFI (VELscope R©) 517 PRE/CAN vs. BEN SEN/SPE = 72%/39% [56]

AFS 97 PRE/CAN vs. BEN/NOR SEN/SPE = 81%/96% [57]

Table 5.2: Summary of in vivo autofluorescence spectroscopy and imaging studies. AFI: Autoflu-
orescence Imaging, AFS: Autofluorescence Spectroscopy, CAN: Cancer, PRE: Precancer, BEN:
Benign, NOR: Normal, SEN: Sensitivity, SPE: Specificity.

same classification task were achieved with our multispectral autofluorescence endoscopy system

coupled with an LDA classifier. The main advantages of our CAD system over the VELscope R©

are 1) the objective classification of the imaged oral lesions contrary to the subjective classification

provided by the oral pathologist using the VELscope R©, and 2) the integration of three spectral

emission channels targeting the autofluorescence of collagen (390 ± 20 nm), NADH (452 ± 22.5

nm), and FAD (> 500 nm) for a more complete interrogation of the oral tissue autofluorescence,

compared to the single broad spectral emission band (> 460 nm) used by the VELscope R©. Finally,

Wang et al. performed AFS in 97 patients and reported 81% sensitivity and 96% specificity in

precancerous/cancerous vs. benign/normal oral tissues [57]. One limitation of this study is that

all the imaged oral tissues belonged to the buccal mucosa, which might have facilitated the dis-

crimination between cancerous/precancerous and benign/normal tissues due to the homogeneity

of the dataset. Second, the relatively high specificity reported in this study could have benefited
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from the combination of benign and normal oral tissues. Unfortunately, the classification of can-

cerous/precancerous vs. benign oral lesions alone was not investigated, which could have been

relevant to enable a fair comparison with the levels of sensitivity and specificity achieved in our

study.

5.4.1 Study Limitations

The classification results obtained in this study indicated that the optimized image-level thresh-

old on the percentage of positive pixels is highly dependent on the size or extension of the imaged

oral lesions. Even though the average optimal image-level threshold was very small (∼6%), six

cancerous lesions were misclassified as noticed in the LDA posterior probability maps from Figure

5.2. This limitation raises the need of an experienced oral pathologist to complement the discrim-

inatory information provided by our CAD system and help determine if the imaged oral lesion

warrants a biopsy. Another important limitation of this study is that the number of negative cases

(n=95) included in our image database is more than twice the number of positive cases (n=37).

This class imbalance might introduce a bias in the classifier towards the negative class, which has

the largest number of samples. Future studies will focus on 1) assessing this class imbalance by

imaging a larger number of positive cases and 2) further validating our computational framework

on a testing dataset blinded to the classifier training and optimization stage.

In summary, this in vivo study in humans demonstrates the potential of widefield multispectral

autofluorescence endoscopy for the automated classification of precancerous/cancerous vs. benign

oral epithelial lesions. The cross-validated results reported in this study displayed clinically rel-

evant levels of sensitivity and specificity. Nevertheless, the proposed computational framework

needs to undergo further validation on a completely independent testing dataset to obtain a more

accurate estimation of the lesion image classification performance. Once fully developed and val-

idated, this innovative computational tool could aid in the clinical and non-invasive discrimination

of malignant and premalignant oral lesions from benign oral tissue.
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5.5 Conclusions

A computational framework was designed and developed for the classification of precancerous

and cancerous vs. benign oral lesions based on multispectral autofluorescence endoscopy. The

proposed framework successfully differentiated between benign/mild/moderate dysplastic lesions

and oral high-grade dysplasia/SCC. Once fully validated clinically, this novel computational tool

will serve as an optical diagnostic adjunct for the automated and in situ discrimination of cancer-

ous/precancerous from benign oral lesions.
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6. SUMMARY AND CONCLUSIONS

Two main challenges in the clinical diagnosis of oral epithelial cancer were addressed in this

dissertation: The identification of positive resection margins and the early detection of cancerous

oral lesions in patients.

Section 2 demonstrated the imaging and quantification of both established and potentially

new biochemical and metabolic biomarkers of oral cancer through multispectral FLIM endoscopy.

These autofluorescence biomarkers displayed contrast in precancerous and cancerous oral lesions

vs. normal oral tissue. Subsequently, Section 3 reported the successful discrimination of precan-

cerous/cancerous lesions from normal oral tissue by means of a computational framework based

on multispectral autofluorescence endoscopy.

In Section 4, novel multispectral FLIM-derived autofluorescence biomarkers of oral cancer

useful to distinguish cancerous and precancerous from benign oral lesions were clinically imaged

and quantified. Afterwards, in Section 5, a multispectral autofluorescence endoscopy based com-

putational framework was able to successfully distinguish precancerous/cancerous from benign

oral lesions.

The findings reported in this work provide the basis for the use of widefield multispectral aut-

ofluorescence endoscopy as a novel non-invasive clinical tool for oral cancer screening. Once fully

developed and validated, this tool will facilitate early detection and surgical margin demarcation,

while reducing the number of unnecessary and painful oral tissue biopsy examinations.
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