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ABSTRACT 

 

In the past, electricity thefts were committed through physical means like tapping a line 

or bypassing the energy meter. However, the advent of smart meters has added another possible 

means of committing electricity theft that is through cyber-attacks. Existing research in this area 

focuses on detection of cyber-attacks that are aimed at reducing electricity bills by sending lower 

consumption readings to the utilities. This thesis describes artificial intelligence-based methods 

to identify cyber-attacks in Solar Photovoltaics (PV) distributed generation smart meters 

installed in houses that generate solar power for self-consumption as well as for sending excess 

power to the grid in exchange for incentives. In this work, we propose Deep Learning models: 

Feed Forward, Gated Recurrent Unit (GRU) and Convolutional Neural Network - Gated 

Recurrent Unit (CNN-GRU) to detect electricity theft cyber-attacks aimed at falsifying the 

generated energy readings for unlawful gains. A unique deep learning-based detector that trains 

on multiple datasets is also introduced herein thesis. It is found that such a detector presents a 

higher predictive performance.  Hyperparametric-tuning of the models using cross-validated 

random-search for enhanced performance is also carried out in this thesis.  
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CHAPTER I 

INTRODUCTION 

 

I.1 Motivation 

The Power and Energy Sector has always been an integral part of a nation’s economy and 

plays an important role in shaping its future. The expansion of the Power Grid infrastructure is 

today a crucial component of a nation’s development and growth model.  This is because all 

economic activities require energy, whether to run machines and appliances, electrify homes and 

offices, provide transportation, or manufacture goods. However, a pressing problem that this 

sector faces is electricity theft. Electricity theft is known to have brought enormous losses to 

utility companies around the world, both in terms of power and revenue. In the African 

continent, many countries lose a significant portion of electricity to theft itself. South Africa 

alone is facing six forms of electricity theft resulting in an average loss of 1.5 billion dollars per 

annum [1]. According to local reports, bypassing of electricity meters and illegal connectivity to 

the grid are the two most common ways of committing electricity theft.  In India, after 

transmission and distribution (T&D) losses, a major chunk of energy is lost to electricity theft. 

According to a World Bank data, power theft reduces India’s GDP by over 1.5%. Therefore, 

electricity theft is a grave problem that needs to be tackled not only by good policy-making but 

also by developing technologies that can help detect its presence and mitigate its effects.  

I.2 Commercial Losses in Electric Power Systems 

Commercial losses attributed to electricity theft are referred to as non-technical losses 

(NTL), and the other kind is referred to as technical losses (TL).  Non-technical losses affect 

quality of supply, increase load on the generating station, and affect the tariff imposed on honest 
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customers. Technical losses are the losses inherent to the operations of an electrical network and 

occur as power flows through equipment such as cables, overhead lines and transformers. The 

two kinds of electric power losses will be briefly described in the following sections. 

I.2.1 Technical Losses 

Technical losses occur when power is dissipated by equipment and conductors during the 

transmission and distribution stages. In fact, losses accompany the generated power right from 

the beginning, i.e., the generation phase. The power generated in power stations passes through 

large and complex networks like transformers, overhead lines, cables and other equipment and 

then reaches the end users.  The difference between the generated and distributed power is called 

transmission and distribution loss. A major component of this loss occurs over the transmission 

lines also referred to as line loss.  Hence, to reduce this excess loss, the generated power is 

stepped-up to a very high voltage (11 kV/ 33 kV) and then transmitted via the transmission lines. 

This is followed by a step-down procedure to bring the voltage to a lower ready-to-use value. A 

higher voltage across transmission lines causes a drop in the current which in turn reduces the 

ohmic loss or copper loss (I2R) associated with the conductors. The other losses that form the 

technical losses are corona loss, leakage current loss, dielectric loss, etc. Ideally, technical losses 

should not exceed beyond 20% of the generated power; however, in many countries it accounts 

for over 23% to 25% of the generated power.  

I.2.2 Non-Technical Losses – Electricity Thefts 

Non-technical losses are mainly attributed to electricity thefts. Electricity thefts are 

committed using many different methods. The most common yet dangerous method is tapping 

the electricity from a distribution line. This method carries deadly risks. Many offenders pay for 

the power they steal with their lives.  Besides, stealing electricity by this method overloads the 



3 
 

system which often causes the power connection to trip or fail and can also cause fire. The 

second most prominent way of power theft is through the meter which records electricity 

consumption. The meter could be compromised in many ways: 

• Bypassing the energy meter: In this method [2], the input and output terminal of the energy 

meter are short-circuited, preventing the consumption from registering in the meter. 

• A strong magnet is sometimes placed very close to electromagnetic meters slowing down its 

rotating disc. A slow rotating disk records less energy consumption. 

• Strong magnetic fields could also be used to wipe out the memory in meters. 

• Neutral current reverse method: In this method, the neutral is externally grounded, and the 

meter is externally grounded, so voltage cannot be measured and hence the phase angle 

cannot be measured. So, the power cannot be determined, and the meter does not show any 

power utilized. 

• Resetting the meter reading. 

• Damaging the pressure coil of the meter. 

• Physically impacting the meter 

Non-technical losses, caused mainly due to electricity theft, adversely affect all entities such 

as power plants, utilities and customers that are part of the electric power network. In the 

reference [3], the effect of electricity theft on the quality of power supply has been explained in 

detail. It talks about how electricity theft leads to steady state voltage drop across the distribution 

buses which in turn results in the poor quality of power supply. This reference describes the 

desirable voltage range to be from 202 V to 231 V for rated voltage of 220 V and from 117 V to 

133 V for rated voltage of 110 V. Without electricity theft while also considering technical losses 

(TL), the voltage on the system buses remains within the ideal steady state voltage limits. 
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However, with addition of load due to electricity theft, the voltage on the bus bars enters the 

undesirable range which is indicative of a poor power supply quality. The work [4] gives an 

overview of the effects of electricity theft on utilities and consumers. Power theft adds additional 

unaccounted load on the system about which the utilities have no estimates. Hence, it becomes 

unclear as to how much power needs to be supplied from the generation unit. This causes the 

generation unit to trip affecting the power supply to all customers. Besides, electricity theft is not 

a victimless crime as it ultimately increases the cost of electricity to every paying customer. In 

the energy sector, the utility companies earn revenue from the supply of power and the service 

they offer to the customers. But, a considerable portion of this revenue is lost due to the NTL 

losses. Hence, to protect themselves from running into losses, utilities are forced to increase the 

tariff on electricity. This burdens honest customers with higher electricity bills.  

The adverse effects of electricity-theft discussed above clearly indicate that power theft is 

a serious problem with significant economic implications.  With this view and in perspective, 

extensive research is being conducted in the area of electricity theft detection. More information 

about the research work done in this area can be found in the literature review section. However, 

it is observed that the focus of research in this area has always been on theft in power 

consumption where the objective basically is to reduce electricity bills.  In this thesis, the critical 

problem of power theft is being dealt with but in the scenario of energy generation. Novel state-

of-the-art detection mechanisms based on Neural Networks have been devised to detect 

electricity thefts in a Distributed Generation System. Distributed Generation System is an 

integrated system that enables local units to become self-sufficient in power as well as become 

contributors of power for the benefit of all. It allows local units to have power generating 

installations for self-consumption. Besides, it also offers them the opportunity to sell the excess 
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power to the utilities.  More discussions on Distributed Generation will be presented in the 

coming sections.  Like in case of consumption, smart meters are employed to report generated 

power readings to the utilities accurately and efficiently. Being smart devices, these might be 

hacked by malicious agents to report false readings to the utility companies for illegal gains. The 

aim of this research is to detect such cyber-attacks by understanding the patterns in data 

transmitted by these meters.  

I.3 Electricity Theft in AMI Networks 

I.3.1 AMI Networks 

Advanced metering infrastructure (AMI) is an architecture for automated, two-way 

communication between a smart utility meter and the utility company [5].  It is an integrated 

system of smart meters, communication networks and data-management systems. The 

installation of advanced metering infrastructure networks has facilitated the adoption of smart 

meters around the world. This has made reporting and communication of metering information 

much easier as the data is now transmitted over wireless channels. The AMI system also presents 

other unique features and services to offer. Not only does it provide utility companies with real-

time data about power consumption but also allows customers to make informed decisions about 

energy usage. Combined with appliances like in-home displays and communicating thermostats, 

AMI offers customers time-based pricing programs and incentives that encourage customers to 

reduce peak demand and manage costs and consumption. Equally significant is its contribution 

towards outage management and service restoration.  The report [6] issued by the Office of 

Electricity Delivery and Energy Reliability, U.S. Department of Energy, lists out the benefits 

from the 70 SGIG (Smart Grid Investment Grants) projects implementing AMI and also gives 

insights on theft detection. The key findings in this report indicate that Operations and 



6 
 

Maintenance (O&M) cost savings from remote metering services for e.g., remote billing is the 

major benefit of AMI networks. Remote meter reading does away with the need of manually 

taking down meter readings and helps generate more timely and accurate bills. Besides 

generating bills, many customer complaints and concerns are addressed remotely, which 

improves customer service and satisfaction.   Additionally, the report talks about electricity theft 

in AMI and the importance of cyber security in smart meters which is the focus of this research.   

It also talks about AMIs being used today in conjunction with the Meter Data Management 

system (MDMS) to detect electricity theft. Many utilities have systems that issue alarms when 

irregularities in consumption activity are identified. However, these irregularities are not always 

due to electricity theft. Hence, apart from hardware and software solutions, utilities are now 

working to develop better data analytics to differentiate actual theft incidents from the many 

different events that can trigger alarms. Data analytics can be utilized to reduce the number of 

such false alarms. This thesis focuses on how to leverage patterns in data to accurately predict 

electricity thefts with minimum false alarms or false positives.  

I.3.2 Electricity Theft Cyber Attacks   

Smart meters are not safe from hackers. Several security and privacy issues arise in 

deploying the smart grids, especially because of wireless communications [7]. For instance, 

wireless communications can be intercepted by malicious observers if the data exchanged is 

plaintext and lacks proper encryption. Sensitive information like personal data or energy usage 

pattern of customers could be extracted by observers along the network exposing the customers 

to privacy invasion.   

This research lays emphasis on electricity theft cyber-attacks in utility smart meters and 

its implications. Wireless communications provide the opportunity to carry out electricity theft 
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without physically tampering with the meter.  Such attempts may easily go unnoticed by utilities; 

thus, further adding to the already high non -technical losses.  Once compromised, these devices 

could be programmed/ configured to transmit lower energy readings than actual in order to get 

reduced bills.  However, in case of energy generation, smart meters could be programmed to 

amplify energy values for unlawful gains. This research is aimed at understanding cyber-attacks 

in Distributed PV Generation smart meters and finding novel ways to efficiently detect those 

attacks.   

Noteworthy research has been conducted in electricity theft detection in power 

consumption. Recently, machine learning techniques were employed to detect electricity thefts. 

Chapter 3 discusses in detail, machine learning and deep learning-based detection of electricity 

theft cyber-attacks in AMI networks monitoring power consumption.  
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CHAPTER II 

ELECTRICITY THEFT IN DISTRIBUTED PV GENERATION 

 

II.1 Distributed Generation 

Distributed generation (DG) is an approach that employs small-scale technologies to 

produce electricity close to the end users of power. As illustrated in Figure 1, DG technologies 

consist of renewable energy generators. They offer a number of potential benefits.  They can 

provide lower-cost electricity and higher power reliability and security with fewer environmental 

consequences relative to traditional power generators. In the present scenario, electricity 

generation and distribution in the United States is dominated by centralized power plants. The 

power in these plants is typically due to combustion (coal, oil, and natural) or nuclear generated. 

Although, a significant portion of today’s commercial energy requirement is met by centralized 

power plants, this system has its own set of disadvantages. In addition to power loss over lengthy 

transmission lines, these systems contribute to greenhouse gas emission, the production of 

nuclear waste, inefficiencies due to long distance transmission, environmental problems at the 

sites where the power lines are manufactured and deployed, and security related issues. These 

problems can be avoided by the adoption of a distributed generation system. Distributed 

generation is often implemented via small units like solar panels. These units can be standalone 

or integrated into the existing energy grids. Consumers who have installed solar panels can 

utilize the generated electricity and transfer the surplus power to the utilities for remuneration or 

incentives. In this way, they will contribute more to the grid than they can take out resulting in a 

win-win situation for both the power grid and the end-user. Currently, we have distributed 

generators owned by customers and they can sell electricity to the utility for financial gains. 
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However, malicious customers can manipulate the readings from their DG units in order to fool 

the utility with falsely higher generation power that is sold to the utility to achieve financial gain.  

The aim of this research is to identify such DG units that transmit malicious data to the utilities. 

 

 
 

Figure 1. A distributed generation system 

 
 

II.2 Cyber Attacks in Distributed Generation Smart Meters 

Like smart meters monitoring power consumption, distribution generation smart meters 

can also be compromised with the intent of making illegal gains. These compromised smart 

meters can be programmed to report amplified generation readings to the utilities for unlawful 

financial gains. As mentioned before, Solar PV distributed generation can include both 

standalone or integrated DG units. Customers with standalone DG units will use them as 

auxiliary power supply units to supplement their energy demands which, for most part, are met 

by the grid supply. On the other hand, customers with integrated DG units will consume as well 

as supply excess power to the utilities in return for incentives. The latter is a true realization of a 

Distributed Generation system as it brings distantly located power stations and local generating 

units (DG units), which are also the end users, under one roof.  Hence, an efficient detector is 
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required that trains on valid data that considers all aspects of Solar PV Distributed generation to 

identify electricity theft. 

II.3 Problem Statement 

In this thesis, novel deep learning techniques have been used to detect electricity theft 

cyber-attacks in Distributed PV generation.  No existing literature talks about electricity theft in 

power generation.  In this work the neural networks: Feed Forward, Gated Recurrent Unit (GRU) 

and Convolutional Gated Recurrent Unit (CNN-GRU) are proposed for creating the detectors.  A 

unique deep learning-based detector that trains on multiple datasets simultaneously is also 

proposed. Such a detector is said to offer a higher predictive performance.  Subsequently, the 

performance of the detectors is analyzed and the one that offers the best Detection rate and False 

Alarm rate is identified. The datasets have been prepared using irradiance measurements and 

practical PV panel data. 

Also, the proposed detector is a generalized detector, i.e., it is trained to detect electricity 

theft cyber-attacks for all the customers of a utility. Hence, the detector is modeled on datasets 

pertaining to all the customers rather than a single customer. Only customer specific detectors 

would require datasets of single customers. There are two reasons behind going for a general 

detector rather than a single customer specific detector. Firstly, a general detector can cover new 

connections or new customers who would not have any historical data to share. Secondly, for 

training customer specific detectors, a customer might send false generation data to the utilities. 

A general detector overcomes both these issues. In the second case, even if a customer manages 

to send false data to the utility, the data might not significantly affect the performance of the 

detector as it has already been trained on a very large dataset. 
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In this thesis, we have assumed that the consumer units are DG units integrated with the 

power grid. The energy generated is immediately consumed and there are no storage cells 

available with the customers. The excess power is sent to the grid for which the customer is paid 

by the utilities.   

II.4 Contributions  

1. To model an unbiased detector, which trains on a dataset containing equal proportion of 

honest and malicious profiles, we devised a set of attack functions which will manipulate 

honest data in a manner that reflects possible actual ways of misrepresenting the generated 

energy data.  

2. We propose the following deep learning-based models to detect electricity theft cyber-attacks: 

Deep Feed Forward, Gated Recurrent Unit (GRU) and Convolutional Gated Recurrent Unit 

(CNN-GRU) neural networks. These networks were trained, tested and validated on honest 

and malicious smart meter data. 

3. We performed Hyperparametric Optimization (HPO) using Random Search (a parameter 

optimizing technique) to enhance the detector’s performance. Depending on the type of data 

and the neural network model, hyperparametric optimization needs to be carried out to find 

the model’s optimal hyperparameters that help in getting a better predictive performance.   

4. We simulated the IEEE 123-bus test system to generate honest and malicious data sets for the 

DG units using practical load and irradiance data of a certain year with readings obtained 

every 60 minutes. More information about the datasets will be presented in the next sections. 

The honest and malicious datasets were then modeled with the Feed Forward (FF), Gated 

Recurrent Unit (GRU) and Convolutional Gated Recurrent Unit (CNN-GRU) neural 

networks to produce classifiers that can classify meter data readings as honest or malicious.   
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5. A unique deep learning-based detector is proposed that combines honest and malicious PV 

generation data with irradiance data to capture the correlation between these data streams. 

This approach is known to yield a better detection performance. 
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CHAPTER III 

LITERATURE REVIEW AND RELATED WORK 

In the past, several solutions and approaches were proposed to detect electricity theft 

cyber-attacks in the power consumption area. Some approaches are based on game theory [8] – 

[10], while another approach used computations involving entropy [11].  In [12], a pattern 

recognition approach based on optimum path forest was used and found to yield an accuracy of 

89% for power theft detection. Another technique [13] was proposed, which involves a two-stage 

detector based on C-means fuzzy clustering and fuzzy classification and achieves an accuracy of 

83% in terms of detection.   

  Data driven solutions have been more popular because of the vast streams of data that are 

obtained from utility smart meters. Many of these works use commonly used data-driven 

machine learning techniques that classify data into different classes like honest, malicious, etc. 

For instance, in [14], an electricity theft detector has been designed using a Support Vector 

Machine (SVM), which is a commonly used machine learning algorithm. In this work, historical 

consumption data of customers containing honest and fraudulent cases was first cleaned and pre-

processed using data-mining techniques. Thereafter, feature selection and extraction were 

performed that resulted in 24 features representing 24 daily average kilowatt- hour consumption 

values of the customers.  These 24 values, referred to as the load profiles of the customers, were 

then fed into the SVM based model for training and an accuracy of 86.43% was achieved for this 

electricity theft detector.  This approach used SVM to classify honest and fraud cases by 

correlating abnormal patterns in data corresponding to electricity theft.  Besides, this work used 

feature selection to obtain daily load profile of each customer. This was not exclusively needed 

in this thesis because the original data contained hourly kilowatt values recorded for (365 x 24) 
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hours for all the customers.  In another research work in this area [15], decision trees (DT) were 

used along with SVM in a two-step approach.   Herein work, the data processed by the decision 

tree is given as an input to the SVM for classification of honest and malicious data. The decision 

tree model is created based on input variables representing household attributes like number of 

appliances, number of members, etc., to predict the energy consumption. Subsequently, the 

predicted energy consumption along with the actual energy consumption and other customer 

features is fed to the SVM classifier. The SVM classifier then classifies the observations as 

malicious or honest based on the target label. An accuracy of 92.5 percent is achieved by this 

classification scheme. This work essentially adds another feature (predicted energy consumption) 

to the set of features that model the classifier. As a result, an improved detection performance is 

achieved, however, the paper could not explain how the addition of the feature – predicted 

energy consumption produces a strong correlation between the features. 

  Ideally, the accuracy of detection in the case of power-thefts should be high because 

many fraudulent cases may go undetected and also the probability of getting false alarms will be 

high. The aforementioned works use shallow machine learning techniques like SVM [14], [15] 

and thus cannot really capture the different patterns observed in complex data such as power 

metering data. This might result into detectors having low efficiency and accuracy. In such a 

scenario, deep learning holds a better promise as it is able to learn efficiently from the massive 

amounts of data provided by smart meters. In the paper [16], deep learning techniques are 

employed to determine the behavior features of FDI (False Data Injection) attacks in historical 

measurements data.  The captured features are then utilized to detect the FDI attacks in real-time.  

Through feature selection, the devised model reduces the dependence on potential attack 

scenarios and achieves high accuracy. Often, the data obtained from smart meters exhibits a 
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time-series/sequential relationship. Traditional machine learning techniques cannot really exploit 

the information contained in this temporal correlation. In the reference [17], the time series 

nature of power consumption readings has been utilized using feedforward neural networks. The 

hourly consumption data of a household over a fixed period is used to train Deep Neural 

Networks for predicting the next/future value in the sequence which is already known. 

Thereafter, the root mean square (RMS) error between the actual value and the predicted value is 

observed. If the RMS error values for successive predictions go beyond a permissible limit, an 

alarm is raised, and the smart meter is adjudged malicious. 

To model an unbiased detector, one must have a balanced dataset containing equal 

proportion of both honest and malicious data.  The procurement of honest metering data can be 

managed; however, malicious data may not be easily available. To generate malicious data, one 

way is to create functions that manipulate honest meter readings by taking honest data as input 

and giving malicious data as output. This malicious data will represent a set of possible ways of 

manipulating honest data to carry out electricity-thefts. Previous works [18], [19] used a set of 

such functions called attack functions to generate malicious data. This malicious data was used 

to train Deep Neural Networks (DNNs) and Gated Recurrent Units (GRUs) against honest data. 

The proposed DNN and GRU based detectors in the aforementioned works achieved detection 

rates of 94% and 93%, respectively, and false alarm rates as low as 2.3% and 5%, respectively. 
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CHAPTER IV 

DATA PREPARATION AND MODELING 

 

IV.1 Honest Energy Generation Data 

The IEEE 123-bus test system was used to generate the modeling datasets.  Figure 2 

depicts the IEEE 123-bus test feeder with inter-connected buses connected at different phases. 

The net power consumed/ produced by a bus in a phase is the sum of all the power that flows 

into/out of the bus in that phase. For instance, the consumption at bus 2 Phase c can be obtained 

by calculating the sum of the power flows from buses 1, 4 and 8 at phase c. 

 

 
 

Figure 2. IEEE 123-bus system [21] 
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The active power demand (in kW) on the 122 buses and 3 phases of an actual IEEE 123- 

bus test feeder system was utilized to obtain the number of residential units connected to them. 

The active power demand on each phase of the buses was divided by 5 kW in order to obtain the 

number of residential units connected to it. This was done based on an assumption that the 

electrical load of a house is approximately 5 kW.  The said computation resulted in a total of 514 

residential customers, 200 in phase 1, 151 in phase 2 and 163 in phase 3. Table 1 shows the 

number of residential customers connected to the buses. All the residential customers are found 

between buses 51 and 122. The Buses 0 to 50 are for non- residential customers. The fields with 

the value ‘0’ indicate no connected load. 

 

Buses Phase1 Phase2 Phase3   Buses Phase1 Phase2 Phase3 

51 4 0 0   87 0 0 0 

52 7 7 7   88 8 0 0 

53 14 14 14   89 0 0 4 

54 7 14 7   90 0 0 4 

55 0 0 8   91 0 0 8 

56 4 0 0   92 0 4 0 

57 8 0 0   93 0 8 0 

58 8 0 0   94 8 0 0 

59 0 0 0   95 0 0 0 

60 4 0 0   96 0 8 0 

61 0 4 0   97 0 0 0 

62 0 0 0   98 0 0 8 

63 0 4 0   99 0 0 0 

64 0 4 0   100 8 0 0 

65 4 0 0   101 0 4 0 

66 4 0 0   102 0 4 0 

67 0 0 0   103 0 0 0 

68 0 0 0   104 8 0 0 

69 0 0 8   105 0 8 0 

70 8 0 0   106 0 0 8 

Table 1. Connections of residential customers in IEEE 123-bus system 
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Buses Phase1 Phase2 Phase3   Buses Phase1 Phase2 Phase3 

71 0 15 0   107 0 0 0 

72 7 7 14   108 0 0 4 

73 0 0 15   109 0 0 8 

74 4 0 0   110 0 0 8 

75 8 0 0   111 0 0 0 

76 4 0 0   112 0 8 0 

77 8 0 0   113 0 8 0 

78 0 0 0   114 0 0 0 

79 0 0 8   115 8 0 0 

80 0 0 8   116 0 0 0 

81 0 0 8   117 4 0 0 

82 21 14 14   118 4 0 0 

83 0 8 0   119 8 0 0 

84 0 0 0   120 8 0 0 

85 8 0 0   121 4 0 0 

86 0 8 0   122 0 0 0 

 Table 1. Continued 

 

IV.1.1 Preparation of Honest Energy Generation Data 

The generated energy data of the above households was calculated/ simulated using the 

Random functions in MATLAB and the result was commensurate with practical generation 

profiles. Below are the steps involved in the preparation of Honest Energy Generation data: 

• The Irradiance data containing solar irradiance readings (in W) recorded at intervals of 60 

minutes for a year was used to simulate the generated energy data of the households. A total 

of 8760 readings for 8760 (365 x 24) hours were observed. Table 2 shows the irradiance 

profile for the first 11 days of a year. 



19 
 

 

Table 2. Daily Irradiance profile recorded per hour (in W) 

 

• 5 types of PV panels were chosen for this research and each household was assigned one type 

of panel. The assignment of panels to the households was done using the Random function in 

MATLAB.  However, the number of panels of a particular type installed in each house 

depends on the PV capacity of that household. The PV Capacity of each household was 

randomly chosen between 0.5 kW and 1.5 kW. This range was decided based on information 

regarding standard installations. The characteristic parameters of each panel type can be 

found in Table 3. 

 

Panel type 1 2 3 4 5 

V_MPP (in V) 72.9 30.2 49.2 40.2 47 

I_MPP 5.97 8.11 1.78 6 2.88 

V_OC 85.6 37.8 61 50.7 61.3 

I_SC 6.43 8.63 1.98 6.7 3.41 

K_v -0.0027 -0.0033 -0.0027 -0.003 -0.003 

K_i 0.05 0.06 0.04 0 0.07 

NOCT 45 46 45 47 45 

PV_capacity(in kW) 0.435 0.245 0.0875 0.23 0.135 

Table 3. Parametric information of 5 PV panel types 

 

V_MPP is the ‘Maximum Power Point Voltage’ and it is the voltage at which PV module can 

produce maximum power. Similarly, I_MPP is the current at which a PV module can 
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produce maximum power. VOC or ‘Voltage at Maximum Power’ is the voltage that occurs 

when the module is connected to a load and is operating at its peak performance under 

standard test conditions (STC). Similarly, IOC is the corresponding current. NOCT stands for 

Nominal Operating Cell Temperature. It is the temperature reached by solar cells under 

standard conditions.   

• These parameters specific to each panel type are combined with the hourly irradiance data 

(recorded per hour for a period of 1 year) to compute the solar power generated per hour per 

panel for each of the above panel types in one year. Table 4 shows the power generated by 

each panel type for the first 24 hours out of the 8760 hours (1 year) for which the data was 

generated.    

 
Panel 
Type 1 2 3 4 5 

1 0 0 0 0 0 

2 0 0 0 0 0 

3 0 0 0 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 

6 0 0 0 0 0 

7 0 0 0 0 0 

8 0 0 0 0 0 

9 17.87638 10.22595 3.61099 10.19831 5.573812 

10 47.33172 27.05009 9.558958 26.95064 14.75685 

11 79.33119 45.29048 16.0179 45.076 24.73135 

12 98.21561 56.03646 19.82827 55.736 30.61685 

13 100.512 57.34221 20.29154 57.03038 31.33248 

14 96.37749 54.99111 19.45743 54.69962 30.04402 

15 74.71054 42.65903 15.08542 42.46355 23.29117 

16 45.0023 25.72075 9.088662 25.62817 14.03067 

17 15.52893 8.883782 3.136861 8.860457 4.841911 

18 0.471486 0.269855 0.095251 0.26928 0.147014 

19 0 0 0 0 0 

Table 4. Energy generated per hour by each panel 
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Panel 
Type 1 2 3 4 5 

20 0 0 0 0 0 

21 0 0 0 0 0 

22 0 0 0 0 0 

23 0 0 0 0 0 

24 0 0 0 0 0 

Table 4 Continued 

 

Note that zero values are attributed to the hours when there was no generation. These hours 

are basically the ones for which there was no irradiance or sunlight.  

• As mentioned before, the PV capacity (in kW) of each household shall be in the range 0.5kW 

and 1.5 kW. Each household unit will install PV panels of a single type out of the 5 types 

discussed before. Therefore, the number of PV panels allocated to each house can be 

calculated by dividing the household PV capacity with the PV capacity of each panel. PV 

Capacity of each panel can be obtained from Table 3. 

  

No. of PV Panels = Installed PV Capacity / PV Capacity of each Panel 

 

• Once, the number of PV panels installed in each household is calculated, the yearly 

generation profile of a household can be obtained by multiplying the number of PV panels 

with the yearly generation profile of the installed panel-type provided in Table 4. 

   

Generation profile of a house (year) = No. of PV Panels × Generation profile of a panel (year) 

 

• By combining the generation profiles of all households (514), we get the PV generation 

profile of all households. The size of this dataset is 8760 × 514. The rows attribute to 
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readings taken in 1-hour interval for 8760 hours of a year whereas the columns represent the 

household numbers (514 in total).  

These readings are recorded and transmitted by the smart meters of the individual DG 

units to the utilities for the purpose of billing and analysis. Since, the only way the utilities can 

obtain the generated power readings is through smart meters, there is a possibility that the smart 

meters could be compromised through cyber-attacks to send false readings to the utilities. 

IV.2 Malicious Data 

Distributed PV generation smart meter data transmitted to the utility is the key to 

deciding the remuneration being offered to the customers. The information sent by the DG unit 

smart meters is the only source of information that could be used to determine the amount of 

solar power generated and the remuneration to be offered to the customers. However, it is 

possible that malicious customers would tamper with the smart meter and send amplified 

generated power readings to the utilities.  These amplified readings are malicious readings and 

the focus of this research is to identify such malicious readings.  

To create an unbiased detector, we required equal proportion of both honest and 

malicious data. Lack of malicious data for training may not provide us with an efficient detector. 

This motivated us to prepare the malicious data by creating certain functions that will manipulate 

the honest PV generation profile and generate a malicious profile for the households. These 

functions are referred to as attack functions. In the context of this research, the PV generation 

profile represents the honest customer smart meter data. This data will be fed to the attack 

functions to generate malicious data that will be used along with honest data to train the 

detectors.   
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The PV generation profile obtained for each household is originally an array A of size 

8760 × 1 where each successive value is the hourly generated power recorded over a period of 

one year (8760 hours). This profile is reorganized/reshaped to yield a daily profile of the 

households over a period of 24 hours. This results in a matrix of size 365 x 24 (see Table 5).  

Each row in this matrix represents the daily generated energy profile of a household (DG unit). 

 

 

Table 5. Daily generation profile of a household (in Wh) 

 

From the above table, it can be observed that the time is split into a set of periods T = {1, 

. . ., T} with equal duration. The periods T cover the 24 hours of the day. The  energy generation 

profile for each customer covers a set of days D = {1,...,D}. The value of D here is 365. Let the 

matrix in the above table, representing the actual energy generation values for a specific 

customer, be referred to as E where the rows represent days in D and columns represent the time 

periods in T. Let us denote the reported energy generation value by the customer to the utility 

company at time t and day d by R(d, t). An honest customer reports the actual energy generation 

value, and hence, R(d, t) = E(d, t). On the other hand, a malicious customer launches a cyber-

attack on the smart meter to manipulate the reported energy generation value to the utility 

company in order to receive a higher payment for the transferred energy. Hence, for a malicious 

customer R(d, t) =  m(E(d, t)), and the function m(·) is defined in a way that results in a higher 

Days T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24

1 0 0 0 0 0 0 0 0 54 142 238 295 302 289 224 135 47 1 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 134 329 399 377 366 290 257 193 117 4 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 94 194 159 231 289 267 189 100 34 1 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 22 119 254 316 376 363 237 158 54 3 0 0 0 0 0 0

5 0 0 0 0 0 0 0 1 22 117 268 426 624 442 243 139 49 5 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 47 182 304 339 481 551 484 295 127 4 0 0 0 0 0 0

7 0 0 0 0 0 1 1 1 42 149 213 285 398 347 256 169 55 3 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 34 146 325 426 494 582 505 328 130 6 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 102 338 526 629 618 622 526 369 160 9 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 63 248 432 567 633 614 505 328 135 8 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 63 250 422 554 588 550 366 299 140 6 0 0 0 0 0 0

365 rows
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payment to the malicious customer. In practice, the function m (·) can be extracted based on a 

study of different electricity theft scenarios. The attack functions m (·) for various scenarios are 

described next.  

IV.2.1 Attack Functions 

The scenarios and the attack functions are described below. 

1.  The first attack function is given by m1(E(d,t)) = (1+ α) × E(d,t). The parameter α represents 

the customer specific increment percentage. Each malicious customer will have a specific 

value for α. The customer will increase the actual hourly generated data by a percentage α 

which is kept constant throughout the year. Here, the value of α is randomly generated 

between 0 and 1 using a random number generator.   

 
 

Figure 3. Malicious profile corresponding to attack function 1 

 

2. The second attack function is given by m2(E(d,t)) = (1+ α(d,t)) × E(d,t).  In this scenario, α is 

not a constant value. It is variable with respect to date d and time t. Thus, α is a customer 

specific function of d and t that generates the increment percentages to increase the actual 

energy values. 
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Figure 4. Malicious profile corresponding to attack function 2 

 

3. The third attack function is given by m3(E(d,t)) = α(d,t) + E(d,t). Here, α generates an integer 

value comparable to the actual energy values. α is basically a function of date d and time t 

that generates integer values which are then added to the actual energy values represented by 

E(d,t).   

 
 

Figure 5. Malicious profile corresponding to attack function 3 

4. The fourth attack function is a malicious algorithm placed in the smart meter through 

malware attacks. This algorithm will record the maximum hourly generated value recorded 

between early hours and noon and then replicate it for the hours after noon till the evening. 
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                   Figure 6. Malicious profile corresponding to attack function 4 

 

  Figures 3-6 depict each attack function graphically. Combined graphical representation of 

all attack functions is depicted in Figure 7. 

     
 

               Figure 7. Malicious profiles of all attack functions 

 

In this thesis, a generalized detector is proposed that trains on honest and malicious 

datasets of all customers. Hence, a combined dataset (Honest + Malicious) covering all 

customers will be used to model the deep-learning based detectors. But before that, the datasets 

(Honest + Malicious) for each of the customers must be collected. In order to generate the 

combined dataset for each customer, we apply the above listed cyber-attack functions on the 

honest energy generation matrix Ec which is the hourly generation data of a customer recorded 
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for 365 x 24 hours. Hence, we obtain four matrices Mc,i , each representing an attack function 

mi(_). We combine Ec and each Mc,i where i spans{1,4}, to obtain the complete data set for a 

customer c, namely, Xc. Each row Xc(d, :) is labeled with 0 or 1 to indicate an honest or a 

malicious day sample, respectively. Unfortunately, Xc represents an imbalanced data set since the 

ratio of the honest to malicious samples is 1:4. As a result, the detector modeled using this data 

set will be a biased one. To overcome this drawback, the minor (honest) class is over-sampled 

using the adaptive synthetic sampling approach (ADASYN). This results in a balanced dataset 

Dc of each customer c with equal proportion of both the classes 0 and 1. The balanced datasets 

Dc  of all customers are finally concatenated one-after-the-other to obtain the training dataset. It 

contains approximately 1.5×106 samples.  This training dataset, to be referred to as D, will be 

used to model the Deep Neural Network based detectors.    
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CHAPTER V 

DEEP LEARNING BASED DETECTORS 

 

The electricity theft detectors are created using Neural Networks. The neural nets that we 

have considered for this project are – Feed Forward Neural Networks, GRU (Gated Recurrent 

Unit) and Convolutional Gated Recurrent Unit (CNN-GRU).  

V.1 Motivation Behind Using Neural Networks 

1. Data – The dataset D that will be used to train the detector is on the order of 10^6 and is quite 

large.  A large data enables neural networks to really show their potential since they give 

better performance as more data is fed into them. In contrast, traditional machine learning 

algorithms will certainly reach a level, where more data does not really improve their 

performance. Figure 8 explains this perfectly.  

 

 
 

Figure 8. Plot showing performance of deep neural networks and older machine learning algorithms 

 

2. Computational Power – Another important reason behind going for Neural Networks is the 

remarkable computational power available nowadays which is increasing exponentially 

allowing to process more data.  
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3. Advances in Deep Learning – A lot of research has been taking place in the area of deep 

learning especially around development of different algorithms like Convolutional Neural 

Networks (CNNs), Recurrent Neural Networks (RNNs), etc. These neural network 

architectures are known for their efficiency and good performance for certain specific 

applications. For example, RNNs are used for producing predictive results for sequential data 

or time-series data while CNNs yield the best performance in Computer Vision.    

V.2 Brief Description of the Modeled Neural Networks 

Below is a brief description about the three types of Neural Networks used to create the 

electricity theft detectors. The network that yields the best performance was taken up for further 

study and analysis.     

V.2.1 Feed Forward Neural Network 

Feed-forward neural networks or Deep Neural Networks (DNN), also known as multi-

layered perceptron (MLP), are the basic and simplest type of neural networks. They are called 

feed-forward because information travels only in the forward direction, i.e., from the initial layer 

of neurons, through the hidden layers and finally to the output layer. A neuron is the building 

block of a neural network and also its basic functional unit.   It is a system of inputs, weights, an 

activation function and outputs. Inputs to a neuron are multiplied by weights and then added to 

be fed to the activation function. The activation function produces the output by mapping the 

result to a desired range for example, between 0 and 1 or -1 and 1. This system is also referred to 

as a perceptron. As shown in Figure 9, it is a fundamental neural network with just two layers: 

the input layer and the output layer. It works according to the following simple steps. Let us 

assume there are m+1 inputs to the perceptron with signals x0 through xm and weights w0 through 

wm. Usually, the x0 input is assigned the value +1, which makes it a bias input with wk0 = bk. 
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Hence, effectively, there are m actual inputs to the neuron, i.e., from x1 to xm. All these inputs are 

added, and the result is input to the activation function. 

 

 
 

Figure 9. Perceptron 

 

The output signal of the perceptron depends on the type of activation function used. For 

example, the use of the sigmoid activation function would map all inputs in the real number 

domain into the range of 0 to 1 or alternatively, -1 to 1.  

The feed forward neural network consists of many layers: the input layer, the hidden 

layer and the output layer. Each layer of a feed forward neural network consists of neurons. The 

output of each neuron in a layer is used as input to all the neurons in the next layer. However, 

there is no connection between the neurons of the same layer.  Thus, every neuron depends on 

the outputs of all the neurons in the previous layer.  

 

V.2.2 Gated Recurrent Unit 

Gated Recurrent unit (GRU) is a variant of another class of neural networks called 

Recurrent Neural Networks (RNNs).  Recurrent Neural Networks are unique in the sense they 
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remember their inputs due to internal memory, which makes them perfectly suited for producing 

predictive results for sequential or time series data. In this research, the datasets used are time-

series in nature, and therefore, RNNs are best suited for the purpose of making predictions for 

such data. In feed forward neural networks, there is no memory of the inputs received previously. 

Hence, feed forward networks exhibit poor performance in predicting the output if a sequential 

or time-series relationship exists in the data. However, in RNNs, information persists because of 

looping of the outputs. Therefore, when it makes a decision, it combines the current input and the 

previous output. This process allows the network to remember all the inputs it had learnt back in 

time and subsequently use them to make accurate predictions.   

RNN’s often run into a problem called vanishing gradient problem. This problem 

especially occurs in RNNs when the input is a large time series dataset. As more and more layers 

using certain activation functions are added to neural networks, the gradient of the loss function 

approaches zero, making the network difficult to train. For example, the sigmoid activation 

function maps large input values to small values between 0 and 1. Therefore, a large change in 

the input of the sigmoid function will result in a small change in the output. Hence, the derivative 

becomes small. When n hidden layers use an activation like the sigmoid function, n small 

derivatives are multiplied together. Thus, the gradient decreases exponentially as we move 

backward in the network to the front layers. A very small gradient means that the weights and 

biases of the initial layers cannot be updated effectively with each training session. Since these 

initial layers are often critical for identifying patterns in the input data, it can lead to overall 

inaccuracy of the whole network.  

To overcome the above problem, a Gated Recurrent Unit (GRU) based detector is 

proposed in this thesis. GRU is an improved version of the standard Recurrent Neural Networks. 
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It uses two vectors called update gate and reset gate to solve the vanishing gradient problem. 

These two vectors basically decide which information should be passed to the output. The update 

gate is used to help the model decide how much of the past information needs to be passed to the 

future while the research gate is used to decide how much of the past information to forget.    

V.2.3 Convolutional Gated Recurrent Unit 

Convolutional Gated Recurrent Unit is a hybrid network of Convolutional Neural 

Network and Gated Recurrent Unit. It consists of a 1-dimensional CNN layer over a stack of 

GRU layers. Though this architecture is usually designed for sequence prediction problems with 

spatial inputs, like images and videos, it is being used here for time series data using a 1-D CNN 

layer rather than a 2-D CNN layer which otherwise would have been used for spatial inputs.  

Theoretically, CNN’s are good at feature selection in spatial data and GRU’s are good with 

temporal sequences. In this research, the 1-dimensional CNN acts like a trainable feature 

extractor for the 1-D input sequences while the GRU receives sequences of high-level features 

from the CNN layer to learn the temporal relationship in the data.      

V.3 Modeling the Electricity Theft Detectors  

This section walks through the steps involved in modeling and testing the detectors based on 

the three neural network types. 

1. Loading Data: As such, this is a binary classification problem with an output label 

containing the two classes to which the input sequences are mapped to. The class 

corresponding to the malicious data/ profile is represented by 0 whereas the class 

corresponding to honest data/ profile is represented by 1. Each input to the model will be a 

vector X(24,:) containing 24 values which is the energy generated during each hour of the 
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day.   Likewise, there will be 15×105 vectors forming a ‘balanced dataset’ with equal 

proportion of honest and malicious vectors.   

2. Create Network:  We create a sequential model and add layers until we get the optimal 

number of layers which is obtained through hyperparametric optimization.  The detector 

architecture consists of NL hidden layers and NN neurons within each layer. The output layer 

consists of one neuron to predict the class (malicious or honest).  The important thing here is 

to ensure that the input layer has enough neurons equal to the size of the input vector, i.e., 24.  

This was specified while creating the first layer with the input_dim argument and setting it to 

24 for 24 input features. 

3. Hyperparametric Optimization: Hyperparameters are properties specific to a model that 

are set even before the model is trained and tested on the data. Hyperparametric optimization 

is a technique used to find the right set of hyperparameters or the optimal hyperparameters 

that will yield a high testing accuracy and precision for a given model.  In this research, the 

following hyperparameters of a neural network were optimized: number of hidden layers 

(NL), number of neurons in each hidden layer (NN), the Optimizer and the Activation 

Function. For this research, Random Search technique was used to perform hyperparametric 

optimization which is a commonly used parameter optimizing technique. This method creates 

random combinations of hyperparameters from a preset list of hyperparameters. These 

combinations are then embedded in the model to be trained and tested with data. Finally, the 

parameter combination that yields the best accuracy score is chosen for training the model. 

For training and testing the model, the PV generation profile dataset D was divided into two 

parts: Train dataset and Test dataset (see Figure 10). The train dataset was used for 

hyperparametric optimization and for fitting the model. The test dataset was used for 
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validating the fitted model. Random Search was implemented using the Scikit-learn function 

RandomizedSearchCV. Here random search is performed in conjunction with k- fold Cross 

Validation. In k-fold cross validation, the train data is divided into k equal sized subsets or k-

folds. Out of the k folds, k-1 sets are used for training the model and the remaining single set 

is used for validating the trained model. This process is repeated until each of the k sets is 

validated exactly once. The result of this procedure is the mean of the k results obtained on 

validating the k sets. Finally, the results obtained for each parameter combination are 

compared to get the optimal hyperparameters.   

 
 

                                                     Figure 10. Partitioning of the dataset 

  

In Random Search, the number of hyperparameter combinations to be tested for accuracy has 

to be explicitly provided. ‘Random’ refers to the random selection of parameters under each 

key in the parameter list. The parameter list used in this research is given as follows: { 

'nb_neurons': [64,128,256], 'nb_layers': [2,3,4], 'activation': ['relu', 'elu', 'tanh', 'sigmoid'], 

'optimizer': ['rmsprop', 'adam', 'sgd', 'adagrad', 'adadelta', 'adamax', 'nadam'] } . 

4. Model training:  The ideal hyperparameters obtained through Hyperparametric optimization 

are used to build the neural network followed by training it with the training dataset.   
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5. Testing model: The trained model is evaluated on the test data using the confusion matrix 

which is a table used to describe the performance of a classification model. 

V.4 Architecture of the Detectors 

V.4.1 Feed Forward Neural Network (DNN) Based Detector 

A sequential model was created using the Keras Sequential API that allows layer-by-

layer creation of neural networks. The initial layer or the input layer consists of 24 neurons 

which matches the size of the input vector.   Each input vector represents daily energy generation 

profile of a DG unit. The elements of the input vector X(,24) are generated energy values per 

hour recorded for a period of 24 hours. The optimal number of subsequent layers and neurons in 

each layer is obtained through hyperparametric optimization (HPO). The Random search 

algorithm chooses between 4, 6 and 8 layers and 64, 126, 256 and 512 neurons (per layer).  The 

optimal parameter set so obtained in case of Feed Forward Neural Networks is listed in Table 6. 

  

No. of layers 8 

No. of neurons 128 

Activation fn.  Sigmoid 

Optimizer Nadam 

Table 6. Hyperparametric set for Feed-forward neural network 

 

The output layer consists of a single neuron to predict the output class (malicious or 

honest). Table 7 shows the network summary of the Feed Forward neural network generated 

after including the optimal parameters. 
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Table 7. Network summary of Feed-forward neural network model 

 

V.4.2 Gated Recurrent Unit (GRU) Based Detector 

The GRU based neural network detector was created using the Keras sequential model. In 

GRU, the input to every layer, including the initial layer, must be 3 dimensional. Hence, the 

input vector X(,24) is reshaped into a 3D tensor X(1,24,1). This 3D tensor represents one sample 

with only one feature and 24 observations. Likewise, there will be N such samples equal to the 

length of PV generation profile (honest + malicious) dataset.  

The dimensions of the 3D tensor were decided based on the input layer of the network. 

For this project, a one-to-many GRU network was chosen as shown in Figure 11. 
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Figure 11. One-to-many gated recurrent unit model 

 

As there is only one feature, each sample is input to the network, one observation at a 

time. This is done for 24 observations until the complete sample is input to the network. The 

optimal parameters, including the number of subsequent layers and the number of neurons per 

layer is obtained via hyperparameter optimization (HPO). Similar to the feed forward (FF) 

network, the Random search (HPO) algorithm here chooses between 4, 6 and 8 layers and 64, 

126, 256 and 512 neurons (per layer). The output layer consists of a single neuron to predict the 

output class (malicious or honest). The optimal hyperparameter set for the GRU network is 

shown in Table 8. 

 

No. of layers 4 

No. of neurons 64 

Activation fn.  Sigmoid 

Optimizer Adagrad 

Table 8. Hyperparametric set for GRU model 

The network summary of the GRU model generated after hyperparametric tuning is 

shown in Table 9. 
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Table 9. Network summary of gated recurrent unit model 

 

V.4.3 Convolutional Neural Network – Gated Recurrent Unit (CNN-GRU) Based Detector 

The CNN-GRU network was realized by a layer of 1-dimensional Convolutional Neural 

Network (CNN) over Gated Recurrent Unit (GRU) layers. The CNN layer was used here for 

feature extraction and the GRU layers for interpretation of the extracted features. This 

arrangement is said to improve the performance of the detector significantly. The input to this 

network is also a 3D tensor X(1,24,1). Like GRU, the input CNN layer accepts the sample, one 

observation at a time. Hyperparameter optimization (HPO) was performed to generate the 

optimal hyperparameters. They are listed in Table 10. 

 

  CNN GRU 

No. of layers 1 4 

No. of neurons 64 64 

Activation fn. Relu  Sigmoid 

Optimizer   Rmsprop 

Table 10. Hyperparametric set for CNN-GRU model 

 

These parameters were embedded in the arrangement to provide the network topology 

shown in Table 11. 
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Table 11. Network summary of CNN-GRU model 

 

V.5 Performance of The Detectors 

The three-deep learning-based detectors were evaluated based on two performance 

metrics: Detection Rate and False Alarm Rate, respectively. The detection rate (DR) measures 

the fraction of correctly detected malicious samples, while the false alarm (FA) measures the 

fraction of honest samples that are falsely identified as malicious. Both these metrics are derived 

from the confusion matrix. As shown in Table 12, Confusion matrix is a specific table layout that 

describes the performance of a classification model on a test data for which the class value is 

already known. In this research, the Scikit-learn library has been used to generate the confusion 

matrix. 

 

  Predicted: Negative Predicted: Positive 

Actual: Negative True Negatives (TN) False Positives (FP) 

Actual:Positive False Negatives (FN) True Positives (TP) 

Table 12. Confusion matrix 
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The negative class is represented by 0 and the positive class is represented by 1.  From 

the confusion matrix, the DR and FA rates can be calculated using the following formulas:  

Detection Rate = TP/ (TP + FN) and False Alarm Rate = FP/ (TN + FP). 

An efficient detector should ideally have a high DR and a low FA rate. The DR and FA 

rates of the 3 detectors are listed in Table 13. 

 

S. No. Network  Data 

Parameters 
Test Results (on test 

data) 

NN NL Optimizer Activation DR FA 

1 DNN 
Meter 
Data 128 8 Nadam Sigmoid 90 2 

                  

2 GRU 
Meter 
Data 64 4 Adagrad Sigmoid 91 2.6 

                  

3 
CNN + 
GRU 

Meter 
Data 

CNN:64, 
GRU:64 

CNN: 
1, 
GRU:4 Rmsprop 

CNN: relu, 
GRU:sigmoid 94.6 1.7 

Table 13. Detection and false alarm rates of the detectors 

 

V.5.1 Remarks 

It is perceived from the above table that out of the three detectors, the CNN-GRU based 

detector is the most effective as its detection rate is the highest (94.6%) and its false alarm rate 

(1.7%) is sufficiently low. Therefore, it is inferred that the hybrid network of Convolutional 

Neural Network and Gated Recurrent Unit provides greater efficiency and accuracy in 

prediction. The enhanced performance is attributed to the combined roles of CNN and GRU in 

this network. The raw data is represented by different features which are selected by CNN and 

the same data also has temporal properties for which GRU is used.   
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CHAPTER VI 

TEST OF HYPOTHESIS 

 

VI.1 Hypothesis 

The neural network-based detectors modeled above were trained on honest and malicious 

distributed PV generation smart meter data, also referred to as PV generation profile of the 

households. This data is received from smart meters, which is the only source of this data.  The 

detectors learned the different patterns observed in this data, correlated normal and abnormal 

patterns and created efficient two-class classifiers. Their performance was observed to be 

satisfactory and also met the expectation of this research. Thereafter, it was inferred that the 

CNN-GRU model is the most effective one as it provided the best detection and false alarm 

rates. But, even with such good detection and false alarm rates, the possibility of a false alarm or 

a malicious profile going undetected still exists as the ideal detection (100%) and false alarm 

(0%) rates could not be achieved. However, these rates can be further improved by involving 

other relevant data. In this research, it is hypothesized that utilities can also make use of data 

other than the received PV Generation data to detect electricity thefts.  For instance, the solar 

irradiation data recorded at the utilities can be correlated with the generated power data coming 

from DG units for a more accurate detection of electricity thefts. It is naturally expected that PV 

generation profile of DG units follows the solar irradiation profile. Hence, there should exist a 

relationship between these two temporal sequences which can be captured. In this research, this 

relationship has been utilized to detect thefts using Keras functional API which is discussed in 

detail in the following section.  
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Most models take a single data type as input. However, it is expected that a model that 

combines multiple data streams can provide a better predictive performance. In this view, a 

detector that combines multiple data for achieving improved detection is envisaged.  The CNN-

GRU detector which provided the best detection performance will further add Irradiation Data 

for an improved theft detection. The idea behind this proposed model is illustrated in Figure 12.  

  

Honest PV Data  
Solar Irradiance (honest 
from utility) Target Label (Honest) 

    0 

    0 

    0 

    0 

Malicious PV Data 
Solar Irradiance (honest 
from utility) Target Label (Malicious) 

    1 

    1 

    1 

    1 

Figure 12. Improved theft detection using multiple datasets 

 

Description: The proposed network will be trained on honest and malicious PV 

generation profiles of the households while utilizing corresponding irradiation data as metadata. 

This metadata supplements the detector with additional information about the primary data. The 

irradiation data is honest because it is recorded by the AWS (Automatic Weather Station) at the 

utility and is not received from the smart meters. The correlation between honest generation data 

and honest irradiation data as well as between malicious generation data and honest irradiation 

data will be learned by the proposed network. This will yield a better performance.  
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VI.2 Keras Functional API 

The proposed arrangement was realized using the Keras Functional API. Keras functional 

API is another way of creating classification models that offers a lot more flexibility than the 

commonly used Keras sequential API. Keras sequential API is restricted in a way that it only 

allows you to create networks layer-by-layer.  On the other hand, Keras functional API allows to 

build complex models with shared layers as well as multi-input and multi-output models. Models 

are defined by creating instances of layers and connecting them directly to each other in pairs 

followed by defining the specific layers that will act as the inputs and outputs to the model. This 

has made it really possible to reuse the already trained models which is a very useful feature of 

this API. A sample multi-input multi-output neural network created using the functional API is 

shown in Figure 13.  

 

 

Figure 13. Network topology of a multi-input multi-output model 



44 
 

VI.3 Modeling an Improved Detector Based on Multiple Datasets 

After having identified the prospect of including additional information that is, irradiation 

data, a new detection architecture based on the CNN-GRU detector was designed using the 

Keras functional API. The proposed detector was designed using the CNN-GRU detector 

because it gave the best detection and false alarm rates. This model adds Irradiation data (as 

auxiliary input) as depicted in the Figure 14. 

The main input to the model will be the PV generation data itself. This data is modeled 

by the subsequent layers which are similar to the original CNN-GRU based detector. Like the 

CNN-GRU detector, the input layer is a CNN layer followed by GRU layers.  At the end of the 

sixth GRU layer, the network receives an auxiliary input which is the Irradiance data. Here the 

irradiance data is merged with the output of the CNN-GRU hybrid layers and the resultant is 

modeled by a stack of dense layers. Dense layers are regular layers of neurons in a network. The 

last layer of this network is the main output layer which is another dense layer containing only 

one neuron which is the output neuron. This output neuron predicts the output class (malicious or 

honest). 
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Figure 14. Network topology of the proposed CNN-

GRU based detector adding Irradiance data 
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Like the CNN-GRU detector, this network also accepts a 3D tensor as input which is 

referred to as a sample. The optimal number of GRU layers and the number of neurons in each 

layer is obtained by Hyperparameter optimization (HPO) using Random Search. Table 14 shows 

the hyperparameter set of this architecture. 

 

  CNN GRU 

No. of layers 1 6 

No. of neurons 64 64 

Activation fn. Relu  Sigmoid 

Optimizer   Rmsprop 

Table 14. Hyperparametric set of the proposed CNN-GRU based detector adding Irradiance data 

 

V.3.1 Performance of The Proposed Detector 

The revised CNN-GRU detector that adds Irradiance data was tested and validated using 

the confusion matrix. Detection Rate and False Alarm rates were used to determine its 

performance. The results are described in the Table 15. 

 

 

Table 15. Results of the revised CNN-GRU model 

 

VI.3.2 Remarks 

It is observed that the Detection rate (main) and False alarm rate (main) of the proposed 

detector is highest (99.1 %) and lowest (0.9 %), respectively. Please note in Figure 14 that the 

proposed architecture first trains on the honest and malicious data before adding the irradiance 

data.  The output of this part of the complete architecture is shown as aux_out in Figure 14. This 

NN NL Optimizer Activation DR(Main) FA(main) DR(Aux) FA(Aux)

CNN + GRU 

(using 

function 

API)

Meter 

Data + 

Irradiance

CNN:64, 

GRU:64

CNN: 1, 

GRU:6 rmsprop

CNN: relu 

GRU:Sigmoid 99.1 0.9 94.08 1.3

Network  Data

Parameters Test Results



47 
 

part of the complete architecture is nothing but the CNN-GRU detector discussed previously that 

trained on a single dataset. The detection and false alarm rates for this part represented by 

DR(Aux.) and FA(Aux.) in Table 15 are 94.08% and 1.3%, respectively. These values are 

approximately the same as the detection and false alarm rates of the CNN-GRU detector 

modeled previously.  
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CHAPTER VII 

CONCLUSION 

 

VII.1 Summary 

In the hypothesis, we envisaged that the performance of a classifier trained to predict two 

or more classes in a dataset can be significantly improved if we supplement the training data 

(containing the two classes) with metadata. The metadata should not only be relevant but should 

also give additional information about the training data. In this thesis, we identified solar 

irradiance data as the metadata and that it should have some correlation with the generation 

profiles (honest) of the DG units. This was inferred from the fact that the daily generation profile 

of the households in an area must follow the solar irradiation profile of that area. This 

assumption was also confirmed through observation of the honest generation dataset and 

irradiance data.   This correlation was used to identify the irregularities in the combined Honest 

and Malicious PV dataset which ultimately helped achieve a classifier that classifies honest and 

malicious generation profiles with greater accuracy.  

  The research began with cleaning and processing the honest energy generation dataset. 

Then, the dataset was subjected to certain attack functions for manipulating honest data thus, 

creating a malicious dataset. This malicious data was assumed to be similar to the actual 

malicious data generated by malicious customers. Then, the honest and the malicious data were 

mixed together, normalized and subsequently used to train three neural networks, namely Feed 

forward (FF), Gated Recurrent Unit (GRU) and a hybrid network of CNN and GRU called 

Convolutional Gated Recurrent Unit (CNN-GRU). A detailed analysis of these neural networks 

and their performance on the detection was presented. Thereafter, a unique detector that 
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correlates multiple datasets was created using Keras Functional API. For this thesis, the two 

datasets used to train the proposed detector are the PV generation data (honest + malicious) and 

Irradiance data (metadata). The process map in Figure 15 shows the steps undertaken to obtain 

the ideal detector offering the best electricity-theft detection performance. 

   

 

Figure 15. Ideal detector for electricity-theft detection 

 

The convolutional-GRU detector that trained on PV Generation data and subsequently 

added Irradiance data delivered the best performance with a high detection rate and low false 

alarm rate.  

VII.2 Possible Future Research Directions 

The concept of combining multiple datasets for improving electricity-theft detection can 

be further extended to include other relevant datasets. In this research, we supplemented the PV 

generation profiles with corresponding irradiance profiles to make use of the relationship 

between them which was inferred based on facts (the energy generated by panels must follow 

irradiance) as well as analysis of the available datasets. Let us assume a scenario where the 

households/ DG units immediately consume the generated PV energy and transfer the excess to 

the grid. This is based on the presumption that there is no provision for storage of energy in the 

individual DG units. Since the energy generated by the households is immediately consumed, 
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there must be a correlation between the excess PV energy that they collectively transfer to the 

utilities and the generation data reported by the DG units. This correlation can be captured to 

obtain an improved detection performance. The utilities receive the SCADA readings from the 

buses. These bus SCADA readings measure the net energy generated by the households (DG 

units) connected to the buses.  Hence, there must be a relationship between the bus SCADA 

readings, reflecting the excess generated power received by the utilities and the reported smart 

meter readings. This relationship can be further explored. The detector trained on honest and 

malicious smart meter data can also combine the bus SCADA readings in order to obtain a 

further enhanced performance on detection. It should capture the correlation between the three 

quantities namely- Honest and Malicious PV generation Data (Primary data), Irradiance Data 

and the bus Scada readings.   
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