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 ABSTRACT 

 

Like mechanical gears, magnetic gears convert power between low-speed, high-

torque rotation and high-speed, low-torque rotation.  This work compares various 

magnetic gear designs and topologies, introduces an approach for evaluating their 

dynamic behavior, and describes a prototype’s design, fabrication, and test results.  

Significant differences are illustrated between the designs minimizing cost and those 

minimizing volume, especially regarding the usage of permanent magnet material.  Axial 

flux coaxial magnetic gears can outperform their radial flux counterparts at form factors 

with outer radii much larger than the axial length, but axial flux gears suffer from large 

forces on the rotors.  Cycloidal magnetic gears achieve higher torque densities at high 

gear ratios than coaxial magnetic gears, but cycloidal magnetic gears perform worse at 

low gear ratios and suffer from increased mechanical complexity and large forces on the 

bearings.  For coaxial magnetic gears, the torque density and efficiency of a single-stage 

reduce significantly as the gear ratio increases; however, a high gear ratio can be 

achieved with less reduction in torque density if magnetic gears are connected in series 

to form a multistage magnetic gearbox.  Alternatively, a compound differential coaxial 

magnetic gear can be formed from two single-stage coaxial magnetic gears and can 

achieve a very high gear ratio, but it suffers from circulating power, which results in 

poor efficiencies.  The gear ratio significantly impacts the dynamic behavior of 

magnetically geared systems.  This dynamic behavior can be evaluated by separating the 

system’s motion into rigid body motion and fixed center motion and by applying the 
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conservation of energy principle to the torque angle reference frame.  Halbach arrays 

and air cores can significantly increase a magnetic gear’s torque density with respect to 

mass, when used together.  To further explore this concept, a prototype magnetic gear 

with Halbach arrays and air cores was designed, fabricated, and tested.  The prototype 

showed good agreement with simulation regarding slip torque and gear ratio.  The 

prototype achieved a mass competitive with some similarly rated commercially available 

mechanical gears and also achieved a favorable projected efficiency compared to these 

mechanical gears. 
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1. INTRODUCTION  

 

1.1. The Motivation for Magnetic Gears 

The size, weight, and cost of an electric machine, whether a motor or a generator, 

are often more strongly correlated to its rated torque than to its rated power.  Thus, a 

high-speed, low-torque machine will generally be smaller, lighter, and less expensive 

than a low-speed, high-torque machine with the same power rating.  However, the 

electric machine must often interact with a physical system operating at a certain speed.  

For example, in a wind turbine, the power that is fed into the generator comes from the 

wind turning the blades at a relatively low speed, often in the range of 10 to 20 rpm.  

There are two conventional approaches to connecting an electric machine to a physical 

system.  First, a direct drive electric machine can operate at the same speed as the 

physical system.  Second, a mechanical gearbox can be used to couple the physical 

system to the electric machine, which allows the electric machine to operate at a higher 

speed and lower torque than the physical system.   

Because the mechanically geared approach uses a higher speed machine, it often 

yields a smaller, lighter, and less expensive drivetrain than the direct drive approach.  

However, the use of a mechanical gearbox introduces additional issues.  Mechanical 

gears require regular maintenance, especially lubrication.  Additionally, mechanical 

gears experience wear during operation, especially if contaminants, such as sand or dirt, 

get into the gear.  On the other hand, lubricant may leak from the gear, which can be an 
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issue in clean environments, such as food processing.  Furthermore, mechanical gears 

produce acoustic noise.  These issues result from the mechanical contact between 

interlocking teeth, which is used to transform mechanical power between high-speed, 

low-torque rotation and low-speed, high-torque rotation. 

One solution that has been proposed for mitigating or eliminating these issues 

with mechanical gears is to use magnetic gears, which transform power using magnetic 

fields instead of mechanical contact.  This also provides some additional benefits over 

mechanical gears.  Magnetic gears have inherent overload protection; if too much torque 

is applied to one of the shafts, the magnets can slip past each other without causing any 

permanent damage.  Also, mechanical power can be transferred through a physical 

barrier; this potentially allows mechanical power to be provided to a sealed environment. 

Therefore, magnetic gears have been proposed for use in many applications.  

Wind turbine blades spin at relatively low speeds with very large torques.  Thus, direct 

drive generators for wind turbines are quite large, heavy, and expensive.  However, 

mechanical gearboxes are a significant source of downtime and maintenance and 

operations expenses in wind turbines [1].  Due to magnetic gears’ potential benefits 

regarding reliability and maintenance, they have been proposed as a hybrid solution for 

wind turbines, which offers some of the size, weight, and cost advantages of 

mechanically geared systems without the problems associated with using physical 

contact to transform mechanical power [2], [3].  Wave energy converters face similar 

challenges to wind turbines regarding the size of direct drive solutions.  However, 

maintenance and replacement costs can be even higher for wave energy converters due 
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to their location.  Additionally, wave energy converters must be able to withstand the 

extreme conditions presented by storms.  Thus, magnetically geared solutions have been 

proposed for wave energy converters for the same reasons as for wind turbines and 

because the inherent overload protection of magnetic gears can help withstand storms 

[4], [5].  Magnetic gears have also been proposed for ship propulsion, as a hybrid 

solution combining some of the benefits of direct drive systems, reduced maintenance 

and improved reliability, with benefits associated with mechanically geared systems, 

reduced size, cost, and weight [6], [7], [8].  Similarly, magnetic gears have been 

proposed for electric vehicle [9], downhole [10], and aerospace [11] applications.  Each 

of these different applications places different priorities on reducing size, reducing 

weight, reducing cost, increasing efficiency, and minimizing torque ripple. 

1.2. Early Magnetic Gears 

Due to the benefits of noncontact power transfer, magnetic gears began to receive 

attention in the early 1900’s in the form of several patents.  These patents proposed 

various magnetic gear topologies, two of which are illustrated in Figure 1.1 [12], [13].  

However, a few challenges prevented these early magnetic gears from achieving 

widespread commercial success.  First, many of these early topologies, including the 

ones shown in Figure 1.1, were created by simply replacing the teeth in mechanical 

gears with permanent magnets (PMs), electromagnets, or reluctance poles.  This resulted 

in poor magnet utilization, because only a small percentage of the magnetic fields were 

contributing to producing torque at any given instant.  Second, the PM materials 

available at that time were relatively weak.  While electromagnets could be used, they 
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were limited by copper losses and thermal constraints.  Third, these early innovators 

lacked the computational power to optimize their designs to achieve the best 

performance possible. 

 

 

(a) 

 

(b) 

Figure 1.1 Early magnetic gear patent drawings by (a) Armstrong in 1901 and (b) 

Faus in 1941.  Reprinted from [12] and [13]. 

 

Each of these issues was addressed over the course of the 20th century.  First, 

new topologies were proposed, which could achieve better magnet utilization.  As early 

as 1916, Neuland patented a topology where the flux from electromagnets was 

modulated by steel poles to produce different harmonics in concentric air gaps [14], as 

shown in Figure 1.2.  This flux modulation principle enables more of the magnetic field 

to contribute to producing torque at any given instant.  More patents were filed on 

similar flux modulating topologies over the course of the 20th century as the concept of 

flux modulation continued to be refined [15], [16].  Second, the development of rare 

earth magnets, such as SmCo and NdFeB magnets, significantly improved the strength 
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of magnetic fields that could be generated using PMs.  This resulted in the potential for a 

significant reduction in magnetic gear size and weight.  Third, the development of 

computers and finite element analysis (FEA) significantly improved designers’ ability to 

improve and optimize designs.  FEA was especially important for flux modulated 

designs, which contain numerous spatial flux harmonics and significant leakage flux.  

This makes evaluation with traditional analytical models less accurate. 

 

 

Figure 1.2 Early flux modulated magnetic gear proposed by Neuland in 1916.  

Reprinted from [14]. 

 

1.3. Modern Magnetic Gears 

In 2001, Atallah published an influential paper using FEA to show that a radial 

flux coaxial magnetic gear, such as the one illustrated in Figure 1.3, could achieve 

volumetric torque densities (VTDs) in excess of 100 kN∙m/m3 using rare earth magnets 
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[17].  VTD is defined as the low speed rotor slip torque divided by the active volume, as 

shown in (1), where the active volume is the volume of the magnetically active materials 

(not including the space occupied by the structural materials).  The axial flux coaxial 

magnetic gear, which is illustrated in Figure 1.4, has also been proposed [18].  Both of 

these coaxial topologies are based on the flux modulation principles that had been 

proposed and refined in the 20th century. 

Volumetric Torque Density = 
Low Speed Rotor Slip Torque

Active Volume
 (1) 

 

 

Figure 1.3 Radial flux coaxial magnetic gear. 
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Figure 1.4 Axial flux coaxial magnetic gear. 

 

Both coaxial magnetic gear topologies have two rotors with PMs and a set of 

ferromagnetic modulators in between the two PM rotors.  The ferromagnetic modulators 

create a varying air gap permeance, which modulates the spatial flux harmonics 

produced by the PMs on Rotor 1 and Rotor 3.  If the number of modulators, Q2, is 

related to the number of pole pairs on the two PM rotors, P1 and P3, according to (2), 

where k, m, and n are integers, the two PM rotors will produce some of the same spatial 

flux harmonics and can create a non-zero average torque, as described in [17].  However, 

the best performance is generally achieved if the number of modulators is the sum of the 

number of pole pairs on the two rotors, as in (3) [17].  If (3) holds, then the steady-state 

speeds of the three rotors, ω1, ω2, and ω3, respectively, will be related by (4).  While (4) 

indicates that a continuously variable transmission can be achieved if one of the rotors is 

used as a control rotor, often one rotor, either Rotor 2 or Rotor 3, is held stationary to 

create a fixed gear ratio between the other two rotors, as shown in (5) and (6).  A 

comparison of (5) and (6) shows that, if Rotor 3 is fixed, the gear ratio will be larger in 
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magnitude by 1 than with Rotor 2 fixed.  This increase in gear ratio will be accompanied 

by a proportional increase in the low speed rotor slip torque. 

k∙Q
2
 = m∙P1± n∙P3 (2) 

Q
2
 = P1+ P3 (3) 

P1∙ω1 - Q
2
∙ω2 + P3∙ω3 = 0 (4) 

Gear Ratio |
ω2=0

=
ω1

ω3

=
-P3

P1

 (5) 

Gear Ratio |
ω3=0

=
ω1

ω2

=
Q

2

P1

 (6) 

While coaxial magnetic gears have attracted most of the recent magnetic gear 

research, several other topologies have been proposed and have demonstrated potential 

benefits.  Cycloidal [19] and harmonic [20] magnetic gears have been proposed for 

applications requiring high torque densities at high gear ratios.  Cross-sections of the 

radial flux versions of these two topologies are illustrated in Figure 1.5.   
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          (a) 

 

                              (b) 

Figure 1.5 Cross-sections of radial flux (a) cycloidal and (b) harmonic magnetic 

gears. 

 

As with the coaxial magnetic gear, in the cycloidal and harmonic magnetic gears, 

the gearing effect is created by the interaction of PMs with different pole counts across a 

nonuniform air gap.  In the case of the cycloidal magnetic gear, this nonuniform air gap 

is created by having an offset between the axes of the inner and outer rotors.  During 

operation, the inner rotor’s axis orbits around the outer rotor’s axis, which rotates the air 

gap permeance function.  Because the fundamental spatial frequency of the air gap 

permeance function is unity, the number of pole pairs on the outer rotor, POut, should be 

one more than the number of pole pairs on the inner rotor, PIn, as given in (7).  For 

example, the cycloidal magnetic gear illustrated in Figure 1.5(a) has 15 pole pairs on the 

inner rotor and 16 pole pairs on the outer rotor.  As shown in [19], if the outer rotor is 

fixed, this produces the gear ratio in (8), which relates the angular velocity of the inner 

rotor’s rotation about its own axis, ωIn, to the angular velocity of the orbital motion of 
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the inner rotors axis about the axis of the outer rotor, ωOrb; alternatively, if the inner rotor 

does not rotate about its own axis, the gear ratio in (9) relates ωOrb to the angular velocity 

of the outer rotor’s rotation about its own axis, ωOut.   

POut = PIn+ 1 (7) 

Gear Ratio |
ωOut=0

=
ωOrb

ωIn

= -PIn (8) 

Gear Ratio |
ωIn=0

=
ωOrb

ωOut

= POut (9) 

In the case of the harmonic magnetic gear, the inner rotor is not cylindrical, 

which produces an air gap permeance function with a fundamental spatial frequency of 

QAG.  Therefore, the inner and outer pole pair counts, PIn and POut, respectively, are 

related by (10).  For example, the air gap permeance function of the harmonic magnetic 

gear illustrated in Figure 1.5(b) has a fundamental spatial frequency of two, and the gear 

has 16 pole pairs on the inner rotor and 18 pole pairs on the outer rotor.  As shown in 

[20], if the outer rotor is fixed, this produces the gear ratio in (11), which relates the 

angular velocity of the air gap deformation, ωAG, to the angular velocity of the magnets 

on the inner rotor, ωIn.  Alternatively, if the magnets on the inner rotor do not rotate 

about the inner rotor’s axis, the gear ratio is given by (12), which relates ωAG to the 

angular velocity of the outer rotor.  Thus, the cycloidal magnetic gear’s operating 

principle is the same as that of a harmonic magnetic gear with QAG equal to unity. 

POut = PIn+ Q
AG

 (10) 

Gear Ratio |
ωOut=0

=
ωAG

ωIn

=
-PIn

Q
AG

 (11) 
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Gear Ratio |
ωIn=0

=
ωAG

ωOut

=
POut

Q
AG

 (12) 

These gear ratios enable the cycloidal and harmonic magnetic gears to achieve 

high gear ratios without having to use very different PM pole pair counts on the rotors.  

However, both of these topologies suffer from mechanical challenges, which mitigate 

some of the benefits from noncontact power transfer.  In the case of the cycloidal 

magnetic gear, the orbital motion of the inner rotor about the axis of the outer rotor must 

be decoupled from its rotation about its own axis.  Additionally, the orbital motion 

causes the gear’s center of mass to move, which can cause significant vibrations if 

measures are not take to counteract this effect.  For the harmonic magnetic gear, the 

magnets must be attached to a flexible spline.  While prototype results have been 

published for cycloidal magnetic gears [19], [21], [22], no experimental results have 

been published for harmonic magnetic gear prototypes.   

In addition to rotary magnetic gears, a linear-to-linear version of the coaxial 

magnetic gear has been proposed [23], and two linear-to-rotary magnetic gear topologies 

have been proposed [24], [25]. 

1.4. Magnetically Geared Machines 

Either the radial flux or axial flux coaxial magnetic gear can be integrated 

directly with an electric machine to form a magnetically geared machine (MGM).  This 

MGM provides a relatively compact device capable of interfacing directly with a high-

torque, low-speed physical system.  An MGM can function as either a motor or a 
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generator.  There are a few different types of MGMs based on how the machine is 

integrated with the magnetic gear. 

The inner stator radial flux MGM (IS-RFMGM) places an electric machine in the 

bore of a radial flux coaxial magnetic gear, as illustrated in Figure 1.6.  The low speed 

shaft is connected to either Rotor 2 or Rotor 3, which is geared down to a lower speed 

than Rotor 1.  Rotor 1 also serves as the rotor for the electric machine.  The machine and 

the gear in an IS-RFMGM can be either magnetically coupled or decoupled.  If they are 

magnetically coupled, both the magnetic gear and the electric machine are constrained to 

use the same pole counts on Rotor 1.  However, if they are decoupled, as in Figure 1.6, 

then Rotor 1 must have an adequately thick back iron to accommodate the fluxes from 

both the magnetic gear and the electric machine.  The IS-RFMGM has been 

experimentally shown to achieve a VTD of almost 100 kN∙m/m3 [9].  However, the IS-

RFMGM has significant mechanical design complexity because three concentric air gaps 

must be maintained. 
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Figure 1.6 Magnetically decoupled inner stator radial flux magnetically geared 

machine cross-section. 

 

In the outer stator radial flux MGM (OS-RFMGM), the electric machine’s stator 

is integrated with a radial flux magnetic gear’s Rotor 3, as illustrated in Figure 1.7.  This 

means that the Rotor 3 PMs are physically mounted on the stator teeth.  The low speed 

shaft is connected to Rotor 2, while the stator windings interact with Rotor 1.  The OS-

RFMGM results in an inherently magnetically coupled design as both the magnetic gear 

and the electric machine employ the same Rotor 1 PMs.  However, since the stator is 

placed on the outside, it contributes to the overall size of the MGM, which reduces the 

torque density.  Nonetheless, OS-RFMGMs have been shown to achieve VTDs in excess 

of 60 kN∙m/m3 [26].  Since the OS-RFMGM only has two concentric air gaps, it is 

mechanically simpler than the IS-RFMGM. 
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Figure 1.7 Exploded view of an outer stator radial flux magnetically geared 

machine. 

 

A series connected axial flux MGM (SC-AFMGM) can be formed by placing an 

electric machine directly beyond an axial flux magnetic gear and using it to drive Rotor 

1, as illustrated in Figure 1.8.  This effectively eliminates the shaft between the MGM 

and the electric machine and allows them to share the same package; however, the 

electric machine still contributes to the overall volume of the SC-AFMGM.  A SC-

AFMGM can be either magnetically coupled or magnetically decoupled, as with the IS-

RFMGM.  A prototype SC-AFMGM demonstrated a VTD over 100 kN∙m/m3 in the gear 

portion; however, this VTD was approximately halved when the additional volume of 

the machine was considered [27].  The SC-AFMGM does present some significant 
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mechanical design challenges because three air gaps must be maintained despite the 

presence of strong axial forces on each body. 

 

 

Figure 1.8 Exploded view of a series connected axial flux magnetically geared 

machine. 

 

Alternatively, a compact axial flux MGM (C-AFMGM) can be formed by 

placing an electric machine in the bore of an axial flux magnetic gear, as illustrated in 

Figure 1.9.  Thus, the electric machine does not add to the overall package volume.  

Additionally, this can result in a more appropriate sizing ratio between the gear and the 

machine because the gear’s low speed rotor slip torque is several times larger than the 

rated torque of the machine.  A quite conservative prototype C-AFMGM demonstrated a 

VTD of about 8 kN∙m/m3, but simulations illustrated that a less conservative design 

could achieve a VTD of 60 kN∙m/m3 [28]. 
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Figure 1.9 Exploded view of a compact axial flux magnetically geared machine. 

 

1.5. A Comparison of Magnetic Gears and Conventional Alternatives 

Magnetically geared systems must compete against two conventional 

alternatives.  For magnetic gears to gain widespread commercial adoption, they must 

demonstrate advantages over both mechanical gears and direct-drive solutions.  Relative 

to mechanical gears, magnetic gears have the potential benefits inherent to non-contact 

power transfer, including reduced acoustic noise, higher reliability, reduced 

maintenance, and inherent overload protection; however, in many applications, these 

benefits will be inadequate to replace mechanical gears if magnetic gears are 

significantly larger than the mechanical gears they are replacing.  One paper providing a 

preliminary comparison between magnetic gears and mechanical gears produced the 
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graphs in Figure 1.10, Figure 1.11, and Figure 1.12 for mechanical planetary gears with 

a high safety factor, mechanical planetary gears with a low safety factor, and radial flux 

coaxial magnetic gears, respectively [29].  These graphs show that magnetic gears may 

achieve a size competitive with mechanical gears.  However, it is important to note that 

the performances of both mechanical and magnetic gears depend on numerous factors, 

such as the torque ratings, the safety factor, the gear ratio, the materials employed, and 

the aggressiveness of the design. 

 

 

Figure 1.10 Volumetric torque density trends for high safety factor mechanical 

planetary gears.  Reprinted with permission from [29] © 2011 IEEE. 
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Figure 1.11 Volumetric torque density trends for low safety factor mechanical 

planetary gears.  Reprinted with permission from [29] © 2011 IEEE. 

 

 

Figure 1.12 Volumetric torque density trends for radial flux coaxial magnetic gears.  

Reprinted with permission from [29] © 2011 IEEE. 
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Additionally, magnetic gears must be able to outperform direct-drive machines.  

The use of a magnetic gear adds more complexity and moving parts to the system 

relative to a direct-drive solution.  Therefore, magnetic gears must significantly reduce 

the system size in order to be beneficial.  Radial flux PM machines often achieve VTDs 

of 10-20 kN∙m/m3 with natural air cooling, 20-30 kN∙m/m3 with forced air cooling, and 

30-60 kN∙m/m3 when liquid cooled [17].  While transverse flux machines can achieve 

even higher VTDs than radial flux PM machines, they suffer from poor power factors, 

which results in a large power converter, reducing the overall system benefits.  As with 

gears, the VTDs of electric machines depend on numerous factors, including ratings, 

topology, cooling, and materials.  Nonetheless, Figure 1.12 illustrates that magnetic 

gears can achieve significantly higher VTDs than those typically achieved by electric 

machines.  Thus, magnetic gears have significant potential to reduce the system size. 



____________________ 
© 2018 IEEE.  Part of this section is reprinted with permission from M. C. Gardner, B. E. Jack, M. 

Johnson, and H. A. Toliyat, "Comparison of Coaxial Radial Flux Magnetic Gears Independently 

Optimized for Volume, Cost, and Mass," IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 2237-2245, May-Jun. 

2018. 
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2. OPTIMIZATION FOR DIFFERENT METRICS* 

 

While most magnetic gear literature focuses on maximizing magnetic gears’ 

volumetric torque densities (VTDs) to make their sizes competitive with those of 

mechanical gears [30], [31], improvements in other areas, such as material cost, mass, 

and efficiency, are also critical for this technology to achieve commercial success.  

However, the importance of each objective varies significantly between applications, 

and the optimal design parameters depend on the relative weight of each objective [32].  

This section compares the designs of magnetic gears independently optimized to 

maximize VTD, torque per dollar (TPD), or gravimetric torque density (GTD).  This 

section also illustrates the impacts of different design parameters on the achievable 

performance of a magnetic gear.  Furthermore, it investigates the impact of end-effects 

on the optimal design parameters and performance metrics.  The optimal designs were 

determined using a genetic algorithm (GA) to independently optimize VTD, TPD, or 

GTD based on 2D and 3D FEA simulations.  Furthermore, a multi-objective GA 

optimization was used to find the Pareto optimal front for the three metrics.  The results 

of all simulations performed in this analysis are examined to discern the performance 

tradeoffs, the design trends, the interactions between the optimal values of different 

parameters, and the impacts of end-effects.  This work also introduces a metric to 

account for an axial buffer for the leakage flux, leakage adjusted VTD (LA VTD). 
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2.1. Design Study Methodology 

This section focuses on the coaxial radial flux magnetic gear topology with 

surface mounted permanent magnets, which is shown in Figure 1.3.  In this section, 

Rotor 1 serves as the high speed rotor (HSR), Rotor 2 is the low speed rotor (LSR), and 

Rotor 3 is fixed, yielding the gear ratio in (6).  While fixing Rotor 2 and using Rotor 3 as 

the LSR would reduce the magnitude of the gear ratio and reduce the slip torque of the 

LSR proportionally to the reduction in gear ratio magnitude, this would not have a 

significant impact on the optimization trends. 

A GA was used to independently optimize three different coaxial radial flux 

magnetic gear designs, one for each of the three aforementioned metrics, VTD, TPD, 

and GTD.  Although each of the different designs was optimized to separately maximize 

its corresponding performance metric, every gear analyzed in the section is rated for a 

consistent LSR slip torque of 500 N∙m with a nearest integer gear ratio of 5 and uses the 

same two active materials specified in Table 2.1.  The magnets are made of NdFeB N42, 

and the back irons and modulators are made from M47 steel.  Furthermore, the analysis 

was first conducted using 2D finite element analysis simulations, and then it was 

repeated to find the designs optimizing each of the three metrics based on 3D FEA 

simulations in order to characterize the impact of end effects.  Also, a fourth metric, 

leakage adjusted VTD (LA VTD) was considered and independently optimized based on 

3D simulations.  Additionally, a multi-objective GA was used to characterize the Pareto 

optimal fronts for VTD, TPD, and GTD based on both 2D FEA results and 3D FEA 

results.   
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Table 2.1 Magnetic Gear Active Material Properties. 

Material Density Br Cost Rate 
NdFeB N42 7400 kg/m3 1.3 T $50/kg 

M47 Steel (26 Gauge) 7870 kg/m3 N/A $3/kg 

 

For these gears, VTD is defined as the LSR slip torque divided by the volume of 

the smallest cylinder that encloses all of the active material, as shown in (13).  GTD is 

defined as the LSR slip torque divided by the total mass of the PMs and steel, as shown 

in (14).  TPD is defined as the LSR slip torque divided by the active material cost of the 

design, assuming the cost of each material is proportional to the mass of that material 

used in the design, as shown in (15).  While the TPD value is heavily dependent on the 

assumed cost rates listed in Table 2.1, the optimal design parameters and trends are 

relatively independent of these settings, as long as the magnet cost rate is significantly 

greater than that of the steel, which comprises the back irons and modulators [32].  To 

calculate LA VTD, the cylinder is extended axially to the distance at which the rms 

magnetic flux density axially beyond the modulators is 50 mT.  This is the same as 

adding a buffer to the stack length in (13) to accommodate this flux density on both ends 

of the gear.  It is critical to consider the extent of the axial leakage flux because this flux 

can cause eddy current losses in nearby structural material, as has been the case with 

previous magnetic gear prototypes [33], [34].  While these losses depend on numerous 

factors, such as the magnetic gear pole counts, rotational speeds, and conductivity of the 

structural material, this analysis uses the 50 mT limit as a simple way to quantify the 

extent of this leakage flux.  The axial leakage flux is evaluated on a circular path axially 
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beyond the modulators, which is where it is generally the strongest [35].  These 

calculations neglect all structural materials and only consider the permanent magnets, 

modulators, and back irons.  Also, they ignore any manufacturing or material cost 

penalties associated with the quantities or dimensions of individual pieces. 

VTD = 
Low Speed Rotor Slip Torque

π ∙ (Outer Radius)2∙(Stack Length)
 (13) 

GTD = 
Low Speed Rotor Slip Torque

(PM Mass)+(Back Irons Mass)+(Modulators Mass)
 (14) 

TPD = 
Low Speed Rotor Slip Torque

(PM Mass)∙(PM Cost Rate)+(Steel Mass)∙(Steel Cost Rate)
 (15) 

GAa are frequently employed for the design and optimization of electric 

machines [36], [37], [38], and this section employs the GOSET GA described in [39] to 

optimize the gear designs.  GAs use the survival of the fittest concept to optimize design 

functions.  The algorithm produces a generation of design cases, retains the “fittest” 

(highest performing) cases, produces a new generation similar to the previous 

generation’s best cases, and then repeats the process.  Each case consists of a set of 

specific gene values representing the parameter values of the design.  Each case’s VTD, 

TPD, GTD, or LA VTD determines its fitness, depending on the optimization objective.  

Aside from selecting values similar to the previous generation’s most fit individuals 

(cases), the GOSET algorithm incorporates more advanced optimization techniques to 

introduce diversity into the population, thus ensuring that no single solution dominates 

the final solution too early in the optimization process.  For example, it evaluates the 

proximity of each design case to similar cases and penalizes less diverse cases. 
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Table 2.2 provides the range of values considered for each design parameter.  

Each case is evaluated by magnetostatic 2D FEA to determine the stack length necessary 

to achieve the 500 N∙m LSR slip torque.  For the optimizations based on 3D simulations, 

a magnetostatic 3D FEA simulation is performed at the stack length predicted by the 2D 

simulation of the same cross-sectional design and, based on the result, the stack length is 

linearly rescaled to achieve the 500 N∙m slip torque.  However, one exception to this 

procedure is that designs requiring stack lengths greater than 150 mm are assumed to be 

suboptimal and to experience only a minimal impact on torque from end-effects; 

therefore, these designs were not simulated using 3D FEA models.  For each case, the 

values of the cross-sectional design parameters summarized in Table 2.2 and the 

required stack length, in conjunction with the material properties in Table 2.1, determine 

the associated VTD, TPD, and GTD. 

 

Table 2.2 Magnetic Gear Design Parameter Ranges. 

Name Description Range Units 
GInt Integer portion of the gear ratio 5  

P1 Rotor 1 pole pair count 3 – 30  

ROut Outer back iron outer radius 75 – 150 mm 

TBI1 Rotor 1 back iron thickness 5 – 25 mm 

TPM1 Rotor 1 permanent magnet thickness 2.5 – 12.5 mm 

TAG Air gap thicknesses 1 mm 

TMods Modulator thickness 5 – 20 mm 

kPM Magnet thickness ratio 0.5 – 1  

TBI3 Rotor 3 back iron thickness 5 – 25 mm 

αPM1 Rotor 1 permanent magnet tangential fill factor 0.01 – 1  

αMods Modulators tangential fill factor 0.01 – 0.99  

αPM3 Rotor 3 permanent magnet tangential fill factor 0.01 – 1  

 



 

25 

 

Due to strong interdependencies between the effects of different dimensions, the 

values of certain variables are coupled through derived parameters, which are included 

in Table 2.2.  First, GInt, which represents the integer portion of the gear ratio, was used 

with P1 to determine the number of pole pairs on Rotor 3 (P3), as shown in (16).  This 

equation ensures that the number of modulators is even, which causes a symmetrical 

cancellation of the net forces on each rotor.  Additionally, this approach maintains a 

relatively high least common multiple (LCM) between P1 and P3, which reduces the 

gear’s torque ripple [3].  Second, kPM controls the relationship between the radial 

thicknesses of the outer magnets (TPM3) and the inner magnets (TPM1) according to (17).  

This is advantageous because there is significantly greater flux leakage between adjacent 

poles on Rotor 3 than there is on Rotor 1, due to the higher number of poles on Rotor 3.  

Therefore, it is generally most effective to concentrate more of the permanent magnet 

material on Rotor 1, especially with high gear ratios.  However, if kPM is too low, the 

Rotor 1 magnets may demagnetize the Rotor 3 magnets.  The use of both GInt and kPM 

was derived from [32]. 

P3 = {
(GInt-1)∙P1+1     for GInt∙P1 odd  

(GInt-1)∙P1+2     for GInt∙P1 even
 (16) 

TPM3 = TPM1∙kPM (17) 

2.2. Results 

During the course of the analysis, over 61,000 unique 2D simulations and 24,000 

unique 3D simulations were run.  Figure 2.1 and Figure 2.2 show the performances 

achieved by all of the evaluated designs based on 2D and 3D simulations, respectively, 

while Figure 2.3 illustrates the leakage adjusted VTD results for the same 3D 
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simulations.  Figure 2.4 illustrates the Pareto optimal fronts for maximizing all three 

metrics for each of the data sets shown in Figure 2.1, Figure 2.2, and Figure 2.3.   

 

 

Figure 2.1 Performances of designs based on 2D FEA simulations. 

 



 

27 

 

 

Figure 2.2 Performances of designs based on 3D FEA simulations. 

 

 

Figure 2.3 Performances of designs based on 3D FEA simulations with an axial 

buffer. 
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Figure 2.4 The Pareto optimal fronts maximizing VTD (or LA VTD), TPD, and 

GTD. 

 

These figures show a significant tradeoff between VTD and TPD.  In the 

evaluated design space, the highest VTD designs cost approximately twice as much as 

the highest TPD designs, while the highest TPD designs require about twice as much 

volume as the highest VTD designs.  If the cost and weight of structural materials were 

considered, it would likely reduce the magnitude of this tradeoff because the larger size 

of the highest TPD designs would result in larger structural material costs than those of 

the highest VTD designs.  The maximum GTD designs represent a compromise, as they 

achieve higher VTD values than the maximum TPD designs and higher TPD values than 

the maximum VTD designs.  Additionally, these figures show that the end-effects 

quantified by the 3D simulations have the most significant impact on the maximum VTD 

designs and much less impact on the maximum TPD designs.  Similarly, the axial buffer 
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for leakage flux has a greater impact on the volumes required by the maximum VTD 

designs than on those required by the maximum TPD designs.  Both of these phenomena 

are strongly related to the stack lengths of the designs, as designs with larger stack 

lengths often experience less significant end-effects [32], [35].  Thus, the extent to which 

end-effects will impact the results is determined by the range of the design space relative 

to the target slip torque.  For example, if the design space includes relatively larger outer 

radii, those designs will generally require shorter stack lengths to achieve the target 

torque and suffer a more significant reduction in torque from end-effects.  Also, for a 

given parametric design space, lowering the target slip torque will reduce the required 

stack lengths, which will make the impact of end-effects more significant. 

Table 2.3 and Table 2.4 summarize the design parameters and performances of 

the seven different optimal designs generated by the GA to independently maximize 

VTD or LA VTD, TPD, and GTD, based on either 2D or 3D simulations.  Figure 2.5, 

Figure 2.6, and Figure 2.7 illustrate the diverging evolutions of the VTDs, TPDs, and 

GTDs achieved by the three different optimum designs, throughout the 2D simulation 

GA generations. These results neglect the additional size, mass, and cost of structural 

material.  The maximum TPD designs would likely require the most structural material 

due to their large stack lengths and diameters.  However, due to the maximum VTD 

designs’ small volumes, any structural material would likely reduce the maximum VTDs 

significantly, especially when including a buffer for the axial leakage flux. 
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Table 2.3 Optimal Design Parameters. 

Parameter 
Maximum VTD Maximum TPD Maximum GTD 

2D 3D LA 2D 3D 2D 3D 
GInt 5 5 5 5 5 5 5 

P1 9 7 5 17 20 13 15 

ROut (mm) 150 106 75 150 150 150 150 

TBI1 (mm) 20.9 6.0 5.0 5.0 5.0 5.0 5.0 

TPM1 (mm) 12.5 12.5 12.0 3.1 2.5 7.2 6.9 

TAG (mm) 1 1 1 1 1 1 1 

TMods (mm) 5.6 5.3 5.0 5.0 5.1 5.0 5.0 

kPM 0.65 0.57 0.51 0.55 0.53 0.57 0.51 

TBI3 (mm) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

αPM1 0.99 0.99 0.98 0.75 0.75 0.80 0.88 

αMods 0.55 0.53 0.55 0.47 0.41 0.49 0.41 

αPM3 0.98 0.97 0.99 0.84 0.85 0.90 1.0 

Stack Length (mm) 25.9 67.6 146.9 58.5 74.2 33.9 40.6 

Axial Buffer (mm) N/A 14.4 13.6 N/A 5.7 N/A 9.7 

 

Table 2.4 Optimal Design Performances. 

Parameter 
Maximum VTD Maximum TPD Maximum GTD 

2D 3D LA 2D 3D 2D 3D 
VTD (kN∙m/m3) 274 210 193 121 95 209 174 

LA VTD (kN∙m/m3) N/A 147 162 N/A 83 N/A 118 

TPD (N∙m/$) 2.89 1.83 1.39 5.86 5.47 4.57 3.76 

GTD (N∙m/kg) 66.5 54.2 40.8 78.3 65.5 102.8 86.8 
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Figure 2.5 GA driven evolution of the VTD of the three optimal designs based on 

2D simulations. 

 

 

 

 

Figure 2.6 GA driven evolution of the TPD of the three optimal designs based on 

2D simulations. 
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Figure 2.7 GA driven evolution of the GTD of the three optimal designs based on 

2D simulations. 

 

Figure 2.8, Figure 2.9, and Figure 2.10 show the variations in the optimal design 

performances as the outer radius varies.  Based on 2D FEA, increasing the outer radius 

improves all three metrics, but the percentage improvement of the VTD is less than that 

of the TPD and GTD.  Increasing the outer radius linearly raises the air gap area and the 

torque arm, which quadratically improves a design’s 2D slip torque.  However, it also 

quadratically increases the cross-sectional area, so the VTD increases sub-linearly with 

outer radius [28].  Alternatively, the magnet and steel cross-sectional areas only increase 

linearly with the radius, so the TPD and GTD increase linearly with the outer radius.  

End-effects further complicate these trends because increasing the radius decreases the 

stack length (for a fixed torque), which increases the impact of axial leakage flux and 

reduces the advantages gained by increasing the radius.  This decreases the optimal outer 

radius for VTD and LA VTD, but not for TPD and GTD (within the ranges considered in 

this section).  Additionally, for a given outer radius, the maximum TPD and GTD 
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designs have longer stack lengths than the maximum VTD design, so they suffer less 

from end-effects at that radius.  This also resulted in the optimal TPD designs for small 

outer radii not being simulated in 3D, due to the 150 mm stack length constraint. 

 

 

Figure 2.8 Variation of maximum VTD and LA VTD with outer radius. 

 

 

Figure 2.9 Variation of maximum TPD with outer radius. 
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Figure 2.10 Variation of maximum GTD with outer radius. 

 

Figure 2.11, Figure 2.12, and Figure 2.13 show the envelopes illustrating the 

optimal performances achieved as the Rotor 1 PM thickness varies.  Magnet volume is a 

major aspect of the tradeoff between VTD and TPD, and magnet thickness is one of the 

dominant factors in determining the magnet volume.  Accordingly, these figures 

illustrate significantly different trends for optimizing VTD, TPD, and GTD.  Because 

increasing the magnet thickness increases the effective air gap, the torque returns 

diminish as magnet thickness continues to increase.  Therefore, while high VTD designs 

generally have very thick magnets, high TPD designs often have much thinner magnets 

to use the expensive magnet material more cost-effectively.  Optimal GTD designs 

usually have intermediate magnet thicknesses.  At some optimal thickness, the additional 

torque produced by increasing the magnet thickness does not outweigh the added mass 

of the magnets.  Additionally, Figure 2.11, Figure 2.12, and Figure 2.13 indicate that 
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increasing the magnet thickness tends to increase the impact of end-effects.  This occurs 

because increasing the magnet thickness generally reduces the stack length required to 

achieve the target torque.  Thus, when end-effects are considered, the torque returns 

gained by increasing the magnet thickness diminish even faster. 

 

 

Figure 2.11 Variation of maximum VTD and LA VTD with Rotor 1 PM thickness. 
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Figure 2.12 Variation of maximum TPD with Rotor 1 PM thickness. 

 

 

Figure 2.13 Variation of maximum GTD with Rotor 1 PM thickness. 

 

Figure 2.14, Figure 2.15, and Figure 2.16 show the envelopes illustrating the 

optimal performances achieved as the Rotor 1 pole pair count varies.  There are a few 

different factors that affect the optimal pole count.  First, the magnet thicknesses impact 
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the effective air gap, which significantly influences the optimal pole arc.  Larger 

effective air gaps result in increased leakage flux between adjacent poles, which tends to 

favor larger optimal pole arcs.  Larger pole arcs are achieved by reducing the pole pair 

count.  Thus, the thicker magnets in the optimal VTD designs usually favor lower pole 

pair counts than the thinner magnets in the optimal TPD designs.  Because the magnets 

in the optimal GTD designs have intermediate thicknesses, the optimal GTD designs 

have optimal pole pair counts between those of the optimal VTD and optimal TPD 

designs.  Conversely, selecting a fixed pole pair count affects the performance trends as 

magnet thickness is varied.  The pole arcs are also affected by the air gap radii, which 

are determined by the different radial thickness parameters and the outer radius.  

Therefore, because the outer radii of the optimal 3D VTD design and the optimal LA 

VTD design are lower than that of the optimal 2D VTD design, the optimal 3D VTD and 

LA VTD designs favor lower pole pair counts. 

 

 

Figure 2.14 Variation of maximum VTD and LA VTD with Rotor 1 pole pair count. 
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Figure 2.15 Variation of maximum TPD with Rotor 1 pole pair count. 

 

 

Figure 2.16 Variation of maximum GTD with Rotor 1 pole pair count. 

 

Figure 2.17, Figure 2.18, and Figure 2.19 show the envelopes of the optimal 

performances achieved as the back iron thicknesses vary.  Increasing the thickness of the 

Rotor 3 back iron significantly decreases the torque because it reduces the air gap radii, 
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which are where the torque is produced.  Thus, all three metrics favor designs with very 

thin Rotor 3 back irons.  While saturation of the Rotor 3 back iron can reduce the torque, 

the impact of iron saturation is relatively small compared to the large linear reluctances 

of the two air gaps and two sets of permanent magnets.  Generally, mechanical 

considerations, rather than excessive iron saturation, will determine the minimum Rotor 

3 back iron thickness.  On the other hand, the thickness of the Rotor 1 back iron has a 

very small impact on torque because it does not affect the air gap radii (based on the 

independent design parameters used in this section).  However, the Rotor 1 back iron 

thickness impacts the material cost and mass of the gear, so the optimal TPD and GTD 

designs favor very thin Rotor 1 back irons.  Another major consideration for sizing the 

back irons is magnetic flux containment.  If the back irons are too thin, magnetic flux 

will leak beyond them, which could cause eddy current losses in structural material or 

create a hazard.  However, this analysis neglects the issue of flux containment. 

 

 

Figure 2.17 Variation of maximum VTD and LA VTD with back iron thicknesses. 
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Figure 2.18 Variation of maximum TPD with back iron thicknesses. 

 

 

Figure 2.19 Variation of maximum GTD with back iron thicknesses. 

 

Figure 2.20, Figure 2.21, and Figure 2.22 show the envelopes of the optimal 

performances as the modulator fill factor varies.  While a modulator fill factor slightly 

greater than 0.5 can provide the most torque for the optimal VTD designs, increasing the 
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fill factor adds material cost and mass to the design. Additionally, the optimal pole pair 

count affects the optimal modulator fill factor.  With a higher pole pair count, the 

modulators and the slots between adjacent modulators become tangentially narrower, 

which results in increased flux leakage between adjacent modulators.  However, this 

increased flux leakage can be counteracted by slightly lowering the modulator fill factor.  

Accordingly, the optimal TPD and optimal GTD designs favor fill factors slightly below 

0.5.  Another interesting finding is that the 3D simulations tend to favor slightly lower 

modulator fill factors than the 2D simulations.  This occurs in part because a significant 

portion of the axial flux at the ends of the magnetic gear passes through the modulators 

[35].  Therefore, reducing the fill factor of the modulators increases the reluctance 

“seen” by axially escaping leakage flux and generally reduces the impact of end-effects 

on the magnetic gear torque rating.  Ultimately, in most cases, a modulator fill factor of 

0.5 is fairly close to optimal for all three metrics. 

 

 

Figure 2.20 Variation of maximum VTD and LA VTD with modulator fill factor. 
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Figure 2.21 Variation of maximum TPD with modulator fill factor. 

 

 

Figure 2.22 Variation of maximum GTD with modulator fill factor. 

 

Figure 2.23, Figure 2.24, and Figure 2.25 show the envelopes of the optimal 

performances as the magnet fill factors vary.  Generally, increasing either of the magnet 

fill factors results in increased torque due to an increase in the magnitude of the 
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fundamental spatial harmonic of the magnetomotive force (MMF) from that set of 

magnets.  However, the torque returns diminish as the magnet fill factors continue to 

increase towards 1.  Additionally, increasing the magnet fill factors increases the magnet 

volume, which significantly increases the material cost of the magnetic gear; therefore, 

the optimal TPD designs favor lower magnet fill factors than those required for the 

optimal VTD designs.  Furthermore, because increasing the magnet fill factors tends to 

reduce the stack length required to achieve the target slip torque, the designs with higher 

magnet fill factors also generally experience more significant end-effects.  Nonetheless, 

all three metrics converge to optimal designs with relatively high magnet fill factors of at 

least 0.75 on both Rotor 1 and Rotor 3.  This analysis considered ideal arc shaped 

magnets; however, in addition to creating a non-uniform air gap, using rectangular 

magnets would also place practical limits on the maximum achievable magnet fill 

factors. 

 

 

Figure 2.23 Variation of maximum VTD and LA VTD with PM fill factors. 
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Figure 2.24 Variation of maximum TPD with PM fill factors. 

 

 

Figure 2.25 Variation of maximum GTD with PM fill factors. 

 

Figure 2.26, Figure 2.27, and Figure 2.28 show the envelopes of the optimal 

performances as the modulator thickness varies.  Increasing the modulator thickness 

reduces the inner air gap radius for a given outer radius, so it generally reduces a gear’s 
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slip torque.  Additionally, increasing the modulator thickness increases the leakage flux 

both in the modulators and in the slots between adjacent modulators, which can further 

decrease the torque.  Therefore, the optimal designs for each of the three metrics have 

relatively thin modulators.  Nonetheless, the modulator layer must be thick enough that 

the reluctance of the slots between adjacent modulators is large enough that the flux is 

modulated by the alternating reluctances of the modulators and the slots.  However, in 

most cases, mechanical concerns will dictate that the modulators must be appreciably 

thicker than the magnetically optimal value [40].  In particular, the modulators must be 

thick enough to mechanically withstand the significant attractive forces from the inner 

and outer magnets and to transfer the torque to the LSR shaft.  Additionally, the forces 

on individual modulators change as the gear operates, and the modulators should be stiff 

enough to minimize vibrations from these varying forces. 

 

 

Figure 2.26 Variation of maximum VTD and LA VTD with modulator thickness. 
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Figure 2.27 Variation of maximum TPD with modulator thickness. 

 

 

Figure 2.28 Variation of maximum GTD with modulator thickness. 

 

Figure 2.29, Figure 2.30, and Figure 2.31 show the envelopes of the optimal 

performances as the magnet thickness ratio varies.  While increasing the magnet 

thickness ratio increases the amount of magnet present in the gear, it also reduces the air 
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gap radii (for a fixed outer radius).  Additionally, because the Rotor 3 magnets have a 

much higher pole count, there is significantly more leakage flux between adjacent poles 

when the Rotor 3 magnet thickness is increased.  Accordingly, increasing the magnet 

thickness ratio does not have a large overall impact on the VTD of the design.  However, 

because adding magnet material on the outer cylinder increases the cost and mass of the 

magnetic gear, the optimal TPD and GTD designs converge to lower optimal magnet 

thickness ratios.  The minimum Rotor 3 magnet thickness may often be limited by 

manufacturing considerations, such as the minimum practical magnet thickness.  

Additionally, if the magnet thickness ratio is too low, the flux from the inner magnets 

may demagnetize the outer magnets, especially if the gear is operated at high 

temperatures.  While this analysis only considers a single gear ratio, a past study [32] 

shows that the gear ratio affects the extent of these magnet thickness ratio design trends. 

 

 

Figure 2.29 Variation of maximum VTD and LA VTD with magnet thickness ratio. 
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Figure 2.30 Variation of maximum TPD with magnet thickness ratio. 

 

 

Figure 2.31 Variation of maximum GTD with magnet thickness ratio. 

 

2.3. Conclusion 

A genetic algorithm was used to independently optimize different coaxial radial 

flux magnetic gear designs for maximum volumetric torque density (VTD), maximum 
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torque per dollar (TPD), and maximum gravimetric torque density (GTD) based on both 

2D simulations and 3D simulations within a parametric design space.  The maximum 

VTD obtained was 274 kN∙m/m3 based on 2D simulations and 210 kN∙m/m3 based on 

3D simulations; the maximum leakage adjusted VTD obtained was 162 kN∙m/m3.  The 

maximum TPD obtained was 5.86 N∙m/$ based on 2D simulations and 5.47 N∙m/$ based 

on 3D simulations.  The maximum GTD obtained was 102.8 N∙m/kg based on 2D 

simulations and 86.8 N∙m/kg based on 3D simulations.  The difference between 2D and 

3D results is dependent on the magnetic gear’s form factor, which is determined by the 

design space (especially the maximum permissible outer radius) and the target torque.  

Larger torques require longer stack lengths, which reduce the relative impact of end-

effects.  In this analysis, the design space and required torque favored form factors 

characterized by relatively short stack lengths and relatively wide diameters. This led to 

significant end-effects, especially for the optimal VTD designs.  Thus, when 3D effects 

were considered, the optimal VTD designs had a smaller outer radius and a larger stack 

length than most of the other optimal designs. 

There are stark differences between the optimal VTD, TPD, and GTD designs.  

The optimal VTD designs favor significantly thicker magnets and higher magnet 

volumes than the optimal TPD designs.  The difference in optimal magnet thicknesses 

also results in a difference in the optimal pole pair counts required for the optimal VTD 

and optimal TPD designs, with the optimal VTD designs having much lower pole counts 

than the optimal TPD designs.  The optimal GTD designs tend to have optimal 

parameter values between those of the maximum VTD and maximum TPD designs.  
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These differences resulted in the VTDs of the maximum TPD designs being much lower 

than those of the maximum VTD designs and the TPDs of the maximum VTD designs 

being much lower than those of the maximum TPD designs.  However, the maximum 

GTD designs achieved a good compromise in performance between VTD and TPD.  

Nonetheless, all of the optimal designs have very thin Rotor 3 back irons, modulators 

that are very thin radially, and modulator fill factors near 0.5. 

Considering end-effects significantly impacted both optimal design performance 

predictions and optimal parameter value selections.  Many designs experienced a 

significant reduction in torque transmission capabilities, which necessitated a 

corresponding increase in stack length to maintain the target torque rating.  Furthermore, 

because several design parameters influence the significance of end-effects, the optimal 

design parameters also changed once this important phenomenon was considered in the 

analysis.  Notably, considering 3D effects significantly reduced the optimal outer radius 

for the maximum VTD designs.  This resulted in a reduction in the optimal pole pair 

counts.  If the VTD is adjusted to provide an axial buffer for the leakage flux so that it 

does not cause losses in nearby conductive materials, the optimal radius and optimal 

pole pair count are reduced even further.  Additionally, consideration of end-effects 

slightly decreased the optimal modulator fill factor required to maximize each metric.  

These results clearly demonstrate that 3D end-effects can dramatically reduce the torque 

ratings of certain magnetic gear designs, and they should be considered in studies of 

magnetic gears with relatively short stack lengths and wide diameters in order to ensure 

the correct selection of proper optimal design parameters.



____________________ 
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3. COMPARISON OF AXIAL FLUX AND RADIAL FLUX COAXIAL MAGNETIC 

GEARS* 

 

The previous section illustrates the impact of various design parameters on the 

performance of a radial flux coaxial magnetic gear with surface mounted PMs.  

Selecting the appropriate magnetic gear topology is another major decision that affects a 

magnetic gear’s performance.  Most of the existing magnetic gear literature focuses on 

the radial flux coaxial magnetic gear, which is shown with surface-mounted PMs in 

Figure 1.3.  However, the axial dual of this topology, which is shown in Figure 1.4 has 

also received some attention [18], [31], [41], [42].  Although magnetic gears of either 

topology can be used as standalone gears, several magnetically geared machine (MGM) 

topologies integrate a radial or axial flux coaxial magnetic gear with an electric machine 

to form a single compact device [2], [26], [28], [43].  Information about prototype 

designs and experimental results can be found in [2], [5], [9], [33], [44], [45], [46] for 

radial flux magnetic gears and MGMs and in [28], [43], [47] for axial flux magnetic 

gears and MGMs.  Throughout this section, Rotor 3 is held stationary and Rotor 2 is 

used as the LSR, yielding the gear ratio in (6). 

Although the fundamental operating principles of both topologies are similar, 

there are some important design, performance, and scaling differences.  First, for radial 

flux gears, the radial magnetic forces on each rotor can be canceled out with symmetry 
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[5], [48], [49].  On the other hand, in axial flux gears, symmetry cancels out the off-axis 

torques, but there are still unbalanced net axial magnetic forces on the rotors [28].  

Second, the two topologies’ performances scale differently, as summarized by [28] and 

in Table 3.1, which is a simplistic but useful idealistic analysis based on the assumption 

of a fixed air gap shear stress, σ.  Whereas the lever arm (the perpendicular distance 

between the axis of rotation and the location where the force is produced) is proportional 

to the radius for both topologies, the air gap area of the radial flux gear is approximately 

proportional to the product of its outer radius (ROut) and axial height (H), but the air gap 

area of the axial flux gear is proportional to the outer radius squared.  Thus, the 

volumetric torque density (VTD), which is the Rotor 2 slip torque (τ2) divided by the 

active volume, as given by (18), scales differently for the two topologies.  The axial flux 

gear’s VTD ideally grows linearly with the outer radius, but the radial flux gear’s VTD 

is ideally invariant with outer radius.  Therefore, the axial flux gear favors a form factor 

with a large outer radius and short axial height, but the radial flux gear’s VTD is ideally 

much less dependent on form factor. 

VTD = 
τ2

π ∙ ROut
2  ∙ H

 (18) 

 

Table 3.1 Comparison of Ideal Geometrical Scaling Trends for Radial Flux and 

Axial Flux Magnetic Gears. 

Parameter Radial Flux Gear Axial Flux Gear 
Air Gap Area  ROut∙H  ROut

2  

Lever Arm  ROut  ROut 

Torque  σ∙ROut
2 ∙H  σ∙ROut

3  

Volume  ROut
2 ∙H  ROut

2 ∙H 

VTD  σ  σ∙ROut / H 
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Although this qualitative finding is unsurprising given that it is a generally 

accepted pattern for other more conventional axial and radial flux electric machines, it is 

also of limited value without a more detailed numeric characterization of these trends.  

However, to this point, only a single limited direct comparison has been made between 

axial flux and radial flux magnetic gears. Furthermore, because that study only compares 

designs at a single outer radius and axial length, it draws conclusions that contradict the 

aforementioned theoretically predicted and conventionally accepted form factor trends 

[50].  This section provides a thorough quantitative comparison of radial flux and axial 

flux coaxial magnetic gears with surface PMs by comparing optimal designs for 

different operating points and performance metrics.  Additionally, this section evaluates 

and characterizes the scaling behaviors of both radial flux and axial flux coaxial 

magnetic gears.  As with any design study, the exact numerical results presented in this 

section depend on its assumptions, such as the use of a fixed air gap regardless of the 

design’s radius or topology, but, due to the breadth of the parametric designs considered, 

the results still provide useful general indications of the two topologies’ relative merits 

and design trend differences, which can be used to draw general conclusions and provide 

guidance at the outset of design specific studies. 

3.1. Design Study Methodology 

To compare the two topologies, a broad parametric simulation sweep was 

performed for both topologies using nonlinear finite element analysis (FEA).  Table 3.2, 

Table 3.3, and Table 3.4 specify the parametric design combinations considered in this 

section, which were selected based on the results of past studies reported in [28], [32], 



 

54 

 

[51], in order to include a reasonable range and resolution for the values of the most 

significant and interesting parameters.  Table 3.2 provides the common ranges of values 

considered for each parameter used in both gear topologies, while Table 3.3 provides the 

ranges considered for each parameter unique to either of the two topologies.  In addition 

to the parameters shown in Table 3.2 and Table 3.3, Table 3.4 summarizes the various P1 

values evaluated for each GInt, ROut, and topology combination to ensure that the optimal 

P1 value for each performance metric is within the range considered for each scenario, 

without including unnecessary sub-optimal cases. 

 

Table 3.2 Common Cross-Sectional Parameter Sweep Values. 

Parameter Values Units 
Integer part of gear ratio (GInt) 4, 9, 16  

Outer radius (ROut) 50, 75, 100, 150, 200 mm 

Rotor 1 back iron thickness (TBI1) 5, 10, 20 mm 

Rotor 3 back iron thickness (TBI3) 

For TBI1 = 5 mm 

For TBI1 = 10 mm 

For TBI1 = 20 mm 

 

5 

5, 10 

5, 10, 20 

 

mm 

mm 

mm 

Rotor 1 PM thickness (TPM1) 3, 6, 9, 12, 15 mm 

PM thickness ratio (kPM) 0.5, 0.625, 0.75  

Air gap thicknesses (TAG) 1 mm 

Modulator thickness (TMods) 10 mm 

 

Table 3.3 Topology Specific Parameter Sweep Values. 

Parameter Radial Flux Gears Axial Flux Gears Units 

Radii ratio (kR) N/A 
0.25, 0.375, 0.5, 

0.625, 0.75, 0.875 
 

Stack length (H) 
5, 10, 15, 20, 25, 30, 

40, 50, 60, 80, 100 
N/A mm 
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Table 3.4 Rotor 1 Pole Pair Count Sweep Values. 

ROut 

(mm) 

GInt = 4 

Radial 

GInt = 4 

Axial 

GInt = 9 

Radial 

GInt = 9 

Axial 

GInt = 16 

Radial 

GInt = 16 

Axial 
50 3, 5, 7 3, 5, 7 3, 5, 7 3, 5, 7 3, 5 3, 5 

75 3, 5, 7, 9 3, 5, 7, 9 3, 5, 7, 9 3, 5, 7 3, 5 3, 5 

100 3, 5, … 11 3, 5, … 11 3, 5, … 11 3, 5, 7, 9 3, 5 3, 5 

150 3, 5, … 19 3, 5, … 17 3, 5, … 13 3, 5, … 11 3, 5, 7 3, 5, 7 

200 3, 5, … 23 3, 5, … 21 3, 5, … 15 3, 5, … 13 3, 5, 7, 9 3, 5, 7, 9 

 

As in [28], [32], [51], a few derived parameters were used to facilitate the 

parametric sweep.  As in the previous section, GInt represents the integer part of the gear 

ratio and determines the Rotor 3 pole pair count, P3, in terms of the Rotor 1 pole pair 

count, P1, according to (16).  Likewise, kPM gives the ratio between the PM thicknesses 

on Rotor 1 and Rotor 3 according to (17).  The third derived parameter, kR, determines 

the radii ratio of the axial flux gears according to (19), where RIn is the inner radius of 

the gear and ROut is the outer radius of the gear.  As indicated in Table 3.3, this 

relationship is only used for the axial flux gears because the radii ratio for each radial 

flux gear is determined by ROut and the radial thicknesses of the radial layers.  Similarly, 

the axial height of each axial flux gear is determined by the various axial layer axial 

thicknesses, instead of an additional stack length parameter. 

RIn = kPM ∙ ROut (19) 

As GInt is increased, the ratio of P3 to P1 increases according to (4).  Thus, for 

higher values of GInt, the optimal P1 values are lower to prevent excessively short Rotor 

3 pole arcs, which result in high leakage flux between adjacent poles.  Similarly, larger 
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ROut values increase the pole arcs for a given pole count and lead to higher optimal P1 

values.  Even values of P1 were excluded solely to reduce the case count. 

Magnetic performance is generally optimized by simply minimizing the air gap, 

so only a single air gap value was used in this study.  In practice, the minimum viable air 

gap (from a mechanical design and manufacturing cost standpoint) should generally be 

used; however, this value may change depending on the outer radius and topology.  

Similarly, the results of past studies consistently indicate that the magnetically optimal 

modulator thicknesses tend to be smaller than the minimum mechanically practical 

thicknesses [40], [51], so only a single modulator thickness was considered in this study.  

In practice, the minimum mechanically acceptable modulator thickness should generally 

be used in most designs.  Furthermore, as in the gear illustrated in Figure 1.3, all PM 

tangential fill factors were set to 1, and the modulator tangential fill factors were set to 

0.5.  More information about the generally less complex effects of these parameters can 

be found in [51].  Finally, some parameter value combinations from Table 3.2 would 

result in radial flux gears with negative inner radii, so these combinations were discarded 

from the radial flux gear design set. 

Each design case was simulated using nonlinear FEA.  For both the radial flux 

and axial flux designs, the PMs are made of NdFeB N42 with a remanent flux density of 

1.3 T, the back irons are made of isotropic M47 magnetic steel, and the modulators are 

made of a soft magnetic composite, Somaloy 700 3P.  All 5928 of the radial flux designs 

were simulated using 2D FEA, then 2481 of the best designs were simulated at each of 

the 11 different stack lengths specified in Table 3.3 using 3D FEA.  All of the radial flux 
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gear results presented in this section are based on 3D FEA unless specifically indicated 

otherwise.  All 34,560 of the axial flux designs were simulated using 3D FEA 

exclusively. 

The designs are evaluated primarily based on four metrics: volumetric torque 

density (VTD), gravimetric torque density (GTD), PM gravimetric torque density (PM 

GTD), and average air gap shear stress in the low speed air gap between Rotor 2 and 

Rotor 3 (σLSAG).  VTD normalizes the torque of the magnetic gear based on its size as 

shown in (1), and GTD normalizes the torque of the magnetic gear based on its mass, as 

shown in (14).  PM GTD is the Rotor 2 slip torque divided by the total mass of the PMs 

in the gear, as given by (20), where mPM is the total mass of the PMs in the gear.  PM 

GTD provides a normalized measure of how effectively each design uses the magnet 

material, which is the dominant source of active material cost in gears using NdFeB 

magnets [32].  Shear stress is a useful, but slightly more abstract, metric that 

characterizes the average tangential (torque producing) force per unit of air gap area 

yielded by a given design, without considering the lever arm (radius) at which that force 

is generated [52], [53].  This is useful for comparing the effects of design parameters 

besides outer radius on the performances of designs at different outer radius values.  For 

radial flux designs, σLSAG,Rad is given by (21), where RLSAG is the radius of the low speed 

air gap and τ3 is the Rotor 3 slip torque.  Similarly, for axial flux designs, σLSAG,Ax is 

given by (22). 

PM GTD = 
τ2

mPM

 (20) 
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σLSAG,Rad = 
τ3

2π∙RLSAG
2 ∙H

 (21) 

σLSAG,Ax = 
τ3

2π
3

∙(ROut
3 -RIn

3 )
 

(22) 

3.2. Results 

3.2.1. 2D Cross-Sectional Design Parameters 

The following figures illustrate several important design trends based on the 

parametric FEA results.  Figure 3.1, Figure 3.2, and Figure 3.3 depict the variation of the 

maximum achievable VTD, GTD and PM GTD with the Rotor 1 PM thickness for the 

various ROut value and topology combinations.   

 

 

 

Figure 3.1 Variation of maximum VTD with Rotor 1 PM thickness for radial flux 

designs with a stack length of 50 mm and axial designs, both based on 3D FEA and 

having GInt = 4. 
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Figure 3.2 Variation of maximum GTD with Rotor 1 PM thickness for radial flux 

designs with a stack length of 50 mm and axial designs, both based on 3D FEA and 

having GInt = 4. 
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Figure 3.3 Variation of maximum PM GTD with Rotor 1 PM thickness for radial 

flux designs with a stack length of 50 mm and axial designs, both based on 3D FEA 

and having GInt = 4. 

 

The results in Figure 3.1 demonstrate that, for most radial flux gears, the VTD is 

maximized by simply using the thickest magnets considered in the study, which is 

consistent with findings from previous studies [32], [51].  The lone exception to this 

trend in Figure 3.1 is the 50 mm outer radius design set, where the decreased radial 

space limits the amount of magnet material that can be used effectively.  If even thicker 

magnets were considered in this study, the finite radial space would eventually limit the 

optimal magnet thicknesses for radial flux gears with larger outer radii.  When the 

available radial space is not an issue, the trend of increased PM thicknesses increasing 

the VTD occurs because increasing the radial thickness of the magnets does not increase 



 

61 

 

the volume of the radial flux gears (for a fixed outer radius).  However, because 

increasing the magnet thickness increases the effective air gap, the torque density returns 

diminish as magnet thickness continues to increase.  As a result, the axial flux gear’s 

behavior is more complicated.  Increasing the axial thickness of the magnets in an axial 

flux gear is not a very effective means of increasing a design’s torque rating, because it 

also increases the effective air gap.  Furthermore, increasing the axial thickness of the 

magnets in the axial flux gear also increases the gear’s axial height and overall volume; 

therefore, the VTD of the axial flux gears is maximized by choosing the appropriate 

intermediate PM thickness instead of simply using the largest permissible value.  

Similarly, Figure 3.3 reveals that the PM GTD is maximized for each topology and outer 

radius combination by choosing the minimum magnet thickness considered in the study 

to minimize the effective air gap and use the magnet material as effectively as possible.  

The theoretically optimal magnet thicknesses for maximizing PM GTD would likely be 

impractically thin for manufacturing and handling.  As in [51], the magnet thicknesses 

that maximize GTD tend to be between the thicknesses that are optimal for VTD and PM 

GTD. 

It is important to note that because magnetic gears have large linear reluctances 

from the two air gaps and two sets of PMs, their design often favors a higher degree of 

saturation than typical electric machines, which typically have much smaller linear 

reluctances.  For some of the highest VTD designs, flux densities reached peak levels of 

almost 2.5 T in the Rotor 1 back iron, approximately 1.75 T in the modulators, and 

nearly 2.5 T in the Rotor 3 back iron.  For some of the highest PM GTD designs, flux 
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densities reached peak levels of almost 1.75 T in the Rotor 1 back iron, approximately 

1.15 T in the modulators, and nearly 2.25 T in the Rotor 3 back iron.  Despite these high 

flux densities, magnetic gears can achieve high efficiencies, especially under high 

torque, low speed operating conditions [32].  While these high iron flux densities do 

cause some core losses, the eddy current losses in the PMs often account for the majority 

of the total losses in a magnetic gear, especially as the operating speed increases [5], 

[32], and laminated PMs can be used to improve the efficiency if necessary. 

Figure 3.4, Figure 3.5, and Figure 3.6 demonstrate that the Rotor 1 pole pair 

sweep ranges summarized in Table 3.4 contain the optimum values for VTD, GTD, and 

PM GTD at each of the design outer radius and gear ratio combinations, except for the 

50 mm outer radius maximum VTD and maximum GTD design sets.  The VTD and 

GTD for this design space could be maximized by using a Rotor 1 pole pair count of less 

than 3; however, as indicated in Table 3.4, Rotor 1 pole pair counts below 3 were not 

considered in the study because they generally lead to high torque ripple unless 

additional measures, such as magnet skewing, are employed [3].  In general, the results 

in Figure 3.4, Figure 3.5, and Figure 3.6 suggest the fairly obvious conclusion that the 

larger outer radius designs favor higher pole pair counts than the lower outer radius 

designs. 
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Figure 3.4 Variation of maximum VTD with Rotor 1 pole pair count for radial flux 

designs with a stack length of 50 mm and axial designs, both based on 3D FEA and 

having GInt = 4. 
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Figure 3.5 Variation of maximum GTD with Rotor 1 pole pair count for radial flux 

designs with a stack length of 50 mm and axial designs, both based on 3D FEA and 

having GInt = 4. 
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Figure 3.6 Variation of maximum PM GTD with Rotor 1 pole pair count for radial 

flux designs with a stack length of 50 mm and axial designs, both based on 3D FEA 

and having GInt = 4. 

 

A comparison of the graphs in Figure 3.4, Figure 3.5, and Figure 3.6 also 

indicates that the maximum PM GTD designs use higher Rotor 1 pole pair counts than 

the maximum VTD designs, while the maximum GTD designs favor intermediate pole 

counts.  This is because the thicker magnets used in the maximum VTD designs increase 

the effective air gaps, which results in increased leakage flux between adjacent poles.  

This must be counteracted by using lower pole pair counts to achieve larger pole arcs 

[51].  Figure 3.7 and Figure 3.8 illustrate this principle by depicting the impact of the 

Rotor 1 magnet thickness on the optimal Rotor 1 pole pair count that maximizes the 
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average low speed air gap shear stress (indicated by the dashed line) in axial flux gears 

and 50 mm stack length radial flux gears, both with 200 mm outer radii and GInt = 4. 

 

 

Figure 3.7 Variation of maximum average low speed air gap shear stress with 

Rotor 1 PM thickness and pole pair count for axial flux gears with 200 mm outer 

radii and GInt = 4.  The dashed line indicates the optimal Rotor 1 pole pair count 

for each Rotor 1 PM thickness. 
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Figure 3.8 Variation of maximum average low speed air gap shear stress with 

Rotor 1 PM thickness and pole pair count for radial flux gears with 50 mm stack 

lengths, 200 mm outer radii, and GInt = 4.  The dashed line indicates the optimal 

Rotor 1 pole pair count for each Rotor 1 PM thickness. 

 

The results in Figure 3.9, Figure 3.10, and Figure 3.11 reveal that increasing the 

gear ratio yields lower maximum VTDs, GTDs, and PM GTDs for both the axial and 

radial flux topologies.  This is primarily because the larger gear ratio increases the 

disparity between the pole pair counts on the different rotors, which makes it more 

difficult to simultaneously optimize the pole pair counts on each rotor.  As illustrated by 

the curves in Figure 3.9(b), Figure 3.10(b), and Figure 3.11(b), higher gear ratio designs 

favor lower Rotor 1 pole pair counts in order to decrease the Rotor 3 pole pair and 

modulator counts and decrease leakage flux in those regions; however, that leads to 

decreased coenergy derivatives with respect to rotor positions.  Consequently, VTD, 

GTD, and PM GTD tend to decrease as the gear ratio increases (within the evaluated 

range), and the resulting optimums (maximum torque densities) depicted in Figure 3.9, 
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Figure 3.10, and Figure 3.11 represent compromises between these competing influences 

at each design point.   

 

 

 

             (a) 

 

           (b) 

Figure 3.9 Variation of (a) maximum VTD and (b) the corresponding optimum 

Rotor 1 pole pair count for maximizing VTD with GInt at different outer radius 

values for both axial flux gears and 50 mm stack length radial flux gears. 
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             (a) 

 

           (b) 

Figure 3.10 Variation of (a) maximum GTD and (b) the corresponding optimum 

Rotor 1 pole pair count for maximizing GTD with GInt at different outer radius 

values for both axial flux gears and 50 mm stack length radial flux gears. 
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             (a) 

 

           (b) 

Figure 3.11 Variation of (a) maximum PM GTD and (b) the corresponding 

optimum Rotor 1 pole pair count for maximizing PM GTD with GInt at different 

outer radius values for both axial flux gears and 50 mm stack length radial flux 

gears. 

 

Additionally, Figure 3.11 illustrates that for the maximum PM GTD designs, the 

optimal radial flux designs tend to have higher pole counts than the optimal axial flux 

designs.  This likely occurs because torque is produced across a much wider range of 

radii in an axial flux design than a radial flux design with the same outer radius.  Thus, 

the pole counts of the axial flux design must optimize torque production across a wider 

range of radii.  However, as illustrated in Figure 3.9, for the maximum VTD designs, the 

optimal radial flux designs tend to have similar or slightly lower pole counts than the 

optimal axial flux designs.  This likely occurs because the optimal axial flux designs 
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have thinner PMs than the optimal radial flux designs, which tends to increase the 

optimal pole count, as previously discussed. 

3.2.2. 3D Design Scaling Parameters 

Figure 3.12, Figure 3.13, and Figure 3.14 show how the maximum torque density 

values scale with the gear’s outer radius, which is one of the most noteworthy 

differences between the axial flux and radial flux topologies.  As predicted by the 

analysis summarized in Table 3.1, the VTD of the axial flux gears grows almost linearly 

with the outer radius.  On the other hand, while Table 3.1 suggests that the VTD of 

radial flux gears is ideally invariant with the outer radius, the results in Figure 3.12 

demonstrate that it actually increases at a diminishingly sublinear rate with the outer 

radius (due to several considerations not accounted for in Table 3.1).  One basic major 

factor causing this growth is that the ratio of the air gap radius to the outer radius 

increases as the outer radius increases.  Another important consideration for both radial 

flux and axial flux gears is that higher outer radius designs favor larger pole counts, as 

previously indicated in Figure 3.4, Figure 3.5, and Figure 3.6, which means that there is 

finer resolution (on a percent change basis) for better optimization between consecutive 

discrete pole pair count values.  Furthermore, as previously noted, the lowest pole pair 

count considered, 3, is sub-optimal for maximizing VTD at an outer radius of 50 mm.  

Regardless, axial flux magnetic gears are able to achieve significantly higher VTDs than 

radial flux gears at relatively larger outer radii but achieve lower VTDs than radial flux 

gears at lower outer radii.  However, the GTDs and PM GTDs tend to scale 

approximately linearly with outer radius for each topology.  Since the PM mass, back 
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iron mass, and modulator mass are approximately proportional to the air gap area, this is 

consistent with behavior predicted by the analysis in Table 3.1.  Additionally, Figure 

3.12, Figure 3.13, and Figure 3.14 reinforce the observation that the designs with larger 

gear ratios tend to perform worse (within the evaluated range of gear ratios). 

 

 

 

Figure 3.12 Variation of maximum VTD with outer radius for both axial flux gears 

and 50 mm stack length radial flux gears at different GInt values. 
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Figure 3.13 Variation of maximum GTD with outer radius for both axial flux gears 

and 50 mm stack length radial flux gears at different GInt values. 
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Figure 3.14 Variation of maximum PM GTD with outer radius for both axial flux 

gears and 50 mm stack length radial flux gears at different GInt values. 

 

Figure 3.12, Figure 3.13, and Figure 3.14 also show that the 3D FEA predicts a 

lower torque for the radial flux designs than the 2D FEA, which is due to the magnetic 

gears’ end-effects [35].  Figure 3.15, Figure 3.16, and Figure 3.17 compare the 

difference between the 2D FEA results and the 3D FEA results at different stack lengths, 

outer radii, and gear ratios, which leads to a few conclusions.  First, the relative impact 

of the end-effects decreases as the stack length increases, with the 2D FEA VTD, GTD, 

and PM GTD representing the ideal limits for the 3D FEA results as the stack length is 

increased indefinitely.  This means that, for a given outer radius, designs with higher 

torque ratings (and, thus, longer stack lengths) will tend to have higher VTDs, GTDs, 
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and PM GTDs than designs with lower torque ratings.  Second, the end-effects tend to 

have a more significant impact on the maximum VTD designs than on the maximum PM 

GTD designs.  This is likely due to the aforementioned facts that the maximum VTD 

designs have much thicker magnets, which increases both the effective air gap and the 

impact of the escaping flux, and lower pole pair counts, which leads to longer flux paths 

and more axially escaping leakage flux [35].  Finally, the stack length has a much 

stronger influence on the impact of end-effects than the outer radius (assuming that the 

other parameters, such as pole counts are optimized independently for each radius). 

 

 

 

             (a) 

 

           (b) 

Figure 3.15 Variation of maximum VTD (a) at a 50 mm outer radius and (b) at a 

200 mm outer radius with stack length for radial flux gears at different GInt values 

(based on 2D and 3D FEA). 
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             (a) 

 

           (b) 

Figure 3.16 Variation of maximum GTD (a) at a 50 mm outer radius and (b) at a 

200 mm outer radius with stack length for radial flux gears at different GInt values 

(based on 2D and 3D FEA). 
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             (a) 

 

           (b) 

Figure 3.17 Variation of maximum PM GTD (a) at a 50 mm outer radius and (b) at 

a 200 mm outer radius with stack length for radial flux gears at different GInt 

values (based on 2D and 3D FEA). 

 

The impact of the radii ratio on an axial flux gear’s performance, which is 

depicted in Figure 3.18, Figure 3.19, and Figure 3.20, is more complex than the impact 

of the stack length on a radial flux gear’s performance.  Figure 3.18, Figure 3.19, and 

Figure 3.20 illustrate that relatively low radii ratios produce higher VTDs, whereas 

relatively high radii ratios produce higher GTDs and PM GTDs, especially at larger 

outer radii.   
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             (a) 

 

           (b) 

Figure 3.18 Variation of maximum VTD (a) at a 50 mm outer radius and (b) at a 

200 mm outer radius with radii ratio for axial flux gears at different GInt values. 
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             (a) 

 

           (b) 

Figure 3.19 Variation of maximum GTD (a) at a 50 mm outer radius and (b) at a 

200 mm outer radius with radii ratio for axial flux gears at different GInt values. 
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             (a) 

 

           (b) 

Figure 3.20 Variation of maximum PM GTD (a) at a 50 mm outer radius and (b) at 

a 200 mm outer radius with radii ratio for axial flux gears at different GInt values. 

 

Reducing the radii ratio increases the portion of the total volume of the gear that 

is being used to produce torque.  However, Figure 3.18 shows that the VTD returns 

diminish as the radii ratio is reduced.  There are a few reasons for this.  First, as the radii 

ratio is reduced, the increase in the active air gap area diminishes, because the new 

active material is added at a diminishingly smaller radius (assuming a fixed outer 

radius).  Additionally, because the added material is placed at a lower radius, it has a 

smaller lever arm.  Finally, a single P1 value is only optimal for a small range of radii.  

Thus, a single P1 value cannot be simultaneously optimal at the gear’s outer and inner 

radii.  As the radii ratio decreases, the degree of this sub-optimality increases.  For these 
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reasons, the maximum GTD and PM GTD designs tend to have higher radii ratios to 

optimize the use of the active material.  Nonetheless, the GTD and PM GTD are not 

simply maximized by raising the radii ratio to unity because the impact of end-effects 

(radial leakage flux) increases as the radii ratio increases and the active material 

becomes radially thinner.  However, as illustrated by Figure 3.19 and Figure 3.20, the 

radii ratio that maximizes GTD and PM GTD increases slightly as the outer radius 

increases. 

Changing the radial flux gear stack length scales the 2-D r-θ cross-section along 

the axial dimension.  This has minimal impact on the optimal parameter values, except 

for a minor change in the optimal magnet thicknesses when optimizing for some metrics 

[51].  However, changing the axial flux gear radii ratio scales the 2-D θ-z cross-section 

along the radial dimension, which has a more significant impact on the optimal 

parameter values because it fundamentally impacts the flux path lengths.  Figure 3.21, 

Figure 3.22, and Figure 3.23 illustrate the impact of the radii ratio on the optimal Rotor 1 

pole pair counts (indicated by the dashed line) for axial flux designs with an outer radius 

of 200 mm and GInt = 4.  As indicated by Figure 3.21, Figure 3.22, and Figure 3.23, the 

optimal pole counts tend to decrease as the radii ratio decreases (for a fixed outer radius) 

because the effective average radius of the air gap decreases, which makes lower pole 

counts more optimal (as previously shown in Figure 3.4, Figure 3.5, and Figure 3.6).  

Similar trends are present for other outer radius and gear ratio combinations, but they are 

less pronounced because lower outer radii or higher gear ratios tend to already favor 

lower Rotor 1 pole pair counts. 
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Figure 3.21 Variation of maximum VTD with radii ratio and Rotor 1 pole pair 

count for axial flux gears (with a 200 mm outer radius and GInt = 4).  The dashed 

line indicates the optimal Rotor 1 pole pair count for each radii ratio. 

 

 

Figure 3.22 Variation of maximum GTD with radii ratio and Rotor 1 pole pair 

count for axial flux gears (with a 200 mm outer radius and GInt = 4).  The dashed 

line indicates the optimal Rotor 1 pole pair count for each radii ratio. 
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Figure 3.23 Variation of maximum PM GTD with radii ratio and Rotor 1 pole pair 

count for axial flux gears (with a 200 mm outer radius and GInt = 4).  The dashed 

line indicates the optimal Rotor 1 pole pair count for each radii ratio. 

 

Figure 3.24 and Figure 3.25 illustrate the maximum average shear stress in the 

low speed air gaps for both radial and axial flux designs with GInt = 4.  Figure 3.24 

shows that, for radial flux designs, shear stress increases with both stack length and outer 

radius.  As the stack length increases, the impact of end-effects becomes less significant, 

resulting in higher average shear stress.  The increase in shear stress with outer radius 

contributes to the sublinear increase in VTD with outer radius previously shown for 

radial flux gears in Figure 3.12.  For axial flux gears, Figure 3.25 shows that shear stress 

increases with outer radius but is maximized at an intermediate radii ratio slightly below 

0.5.  If the radii ratio is too low, the best P1 value will be suboptimal for a significant 

portion of the air gap area, but, if the radii ratio is too high, the impact of end effects on 

the slip torque will be very significant.  For both topologies, the shear stress tends to 

increase with the outer radius because, as previously noted, the designs can use more 
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optimal pole counts at higher outer radii.  Figure 3.24 and Figure 3.25 also show that 

both topologies are able to achieve approximately the same shear stresses. 

 

 

Figure 3.24 Variation of maximum average low speed air gap shear stress for radial 

flux gears with GInt = 4. 

 

 

Figure 3.25 Variation of maximum average low speed air gap shear stress for axial 

flux gears with GInt = 4. 

 



 

85 

 

Figure 3.26 and Figure 3.27 show the Rotor 2 slip torques for the design points 

used to create Figure 3.24 and Figure 3.25, respectively.  For both topologies, shear 

stress tends to increase with outer radius, but the Rotor 2 slip torque tends to increase 

even faster with outer radius.  Thus, the achievable shear stress tends to increase as the 

torque rating increases, but with diminishing returns.  For the radial flux gears, a similar 

trend is present as stack length increases.  Thus, based on these figures, applications 

requiring larger torques will generally be able to achieve higher shear stresses, VTDs, 

GTDs, and PM GTDs than applications where the rated torque is much smaller. 

 

 

Figure 3.26 Rotor 2 slip torques corresponding to the radial flux gear design points 

in Figure 3.24. 
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Figure 3.27 Rotor 2 slip torques corresponding to the axial flux gear design points 

in Figure 3.25. 

 

Another major difference between radial flux and axial flux gears is the magnetic 

forces upon the rotors.  While symmetry can ideally be used to cancel out the net radial 

magnetic forces on a radial flux gear rotor, each rotor in an axial flux gear will still 

experience unbalanced net axial magnetic forces.  Figure 3.28 and Figure 3.29 illustrate 

the corresponding axial magnetic forces on Rotor 1 and Rotor 3 for each of the axial flux 

gear design points used to create Figure 3.25.  The axial magnetic forces shown in 

Figure 3.28 and Figure 3.29 are those at the slip torque points (orientations).  While the 

slip torque points are not necessarily the maximum axial force points, they do give an 

indication of the axial forces experienced by the rotors in the different designs [28].  A 

comparison of Figure 3.27, Figure 3.28, and Figure 3.29 indicates that the designs with 

higher torques generally experience larger axial forces.  However, the axial forces grow 

faster than the slip torque as the radii ratio decreases because, unlike the slip torque, the 
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axial force created by a differential area of the air gap is independent of the lever arm of 

that differential area.  Thus, the same slip torque can often be achieved with smaller 

axial forces by increasing both the outer radius and the radii ratio.  While not shown in 

Figure 3.28 and Figure 3.29, the net axial force on Rotor 2 in a given design is simply 

the difference between the axial forces on Rotor 1 and Rotor 3 (in accordance with 

Newton’s third law).  This means that the net axial force on Rotor 2 is generally much 

smaller than the net axial forces on Rotor 1 and Rotor 3. 

 

 

Figure 3.28 Rotor 1 axial magnetic forces corresponding to the slip torque 

alignments of the axial flux gear design points in Figure 3.25. 
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Figure 3.29 Rotor 3 axial magnetic forces corresponding to the slip torque 

alignments of the axial flux gear design points in Figure 3.25. 

 

3.3. Conclusion 

Radial flux and axial flux coaxial magnetic gears both provide gearing action 

without mechanical contact between rotors.  Additionally, there are some significant 

similarities between their performances.  Both topologies achieve higher VTDs, GTDs, 

and PM GTDs at higher torques and lower gear ratios (within the range of gear ratios 

evaluated).  Also, the two topologies can achieve similar air gap shear stresses.  

However, there are some key performance differences. 

First, while the achievable VTDs of both topologies tend to increase with outer 

radius, the achievable VTDs of axial flux gears grow faster than those of radial flux 

gears.  Thus, the axial flux gear favors large outer radii with small axial lengths.  

However, the GTDs and PM GTDs of the two topologies tend to increase at similar rates 

as the outer radius increases. 
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Furthermore, the impact of end-effects on the two topologies is different.  For 

radial flux gears, the axial end-effects become less significant as the stack length 

increases, which raises VTD, GTD, and PM GTD, as well as torque.  For axial flux 

gears, shear stress is maximized with an intermediate radii ratio, but VTD is maximized 

with a lower radii ratio.  On the other hand, GTD and PM GTD are maximized at a 

higher radii ratio. 

Finally, whereas the net radial magnetic forces on each rotor of a radial flux gear 

can ideally be eliminated, the net axial forces on the rotors of an axial flux gear cannot 

be eliminated.  This presents a significant challenge for the construction of axial flux 

gears. 

While the conclusions presented above will generally hold true, it is important to 

recognize that the exact numbers and the extent of the trends presented in this study 

depend on the assumptions made in setting up these simulations, as is the case for all 

design studies.  First, all of the results presented in this study are based on the 

assumption of consistent 1 mm air gaps for both the axial flux and radial flux gears.  In 

practice, the unbalanced axial forces on the rotors in axial flux gears may necessitate the 

use of larger air gaps in this topology, which would shift the results in favor of radial 

flux gears.  On the other hand, radial flux gears may require a larger effective inner air 

gap to accommodate a retention sleeve for the Rotor 1 PMs, especially if the gear is 

designed for high Rotor 1 speeds.  However, to retain the Rotor 1 PMs in axial flux 

gears, a ring or lip can be placed radially beyond these PMs, which does not contribute 

to the effective air gap.  Furthermore, this study maintained a constant air gap size (1 
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mm) regardless of other design settings.  In practice, the air gap will likely need to 

increase as the outer radius increases, which would reduce (but not eliminate) the VTD 

and PM GTD gains achieved by going to a larger outer radius.  The exact scaling of this 

air gap increase will depend on design specific mechanical and manufacturing 

considerations.  Additionally, the simulation models employed in this study used a soft 

magnetic composite for the modulators in both topologies, and switching to traditional 

laminated steel modulators could slightly raise the torque ratings of the best designs due 

to its higher saturation flux density.  However, while laminated steel modulators are 

perfectly feasible for radial flux gears, they are less practical for axial flux gears.  Thus, 

if axial flux gears are constructed using soft magnetic composite modulators and radial 

flux gears are constructed using laminated steel modulators, this would also shift the 

findings a little further in favor of radial flux gears.  Even if these factors are not 

considered, based on the results of this study, radial flux gears will likely be superior to 

axial flux gears in most applications due to their simpler construction and higher 

performance at most physical form factors.  However, axial flux gears have a significant 

potential advantage in applications where a large outer radius and a small axial length 

are permissible or where mechanical power needs to be transmitted across a flat barrier.



____________________ 
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4. COMPARISON OF SURFACE PERMANENT MAGNET COAXIAL AND 

CYCLOIDAL RADIAL FLUX MAGNETIC GEARS* 

 

The previous section compared axial flux and radial flux coaxial magnetic gears.  

However, another promising magnetic gear topology is the cycloidal magnetic gear, the 

radial flux version of which is illustrated in Figure 1.5(a).  Cycloidal magnetic gears 

have been the subject of a few studies, which tout their ability to achieve high torque 

densities and high gear ratios [19], [20], [21], [54]. 

For this section, the modulators are used as the low speed rotor of the coaxial 

magnetic gear and Rotor 3 is fixed, which yields the gear ratio in (6).  For the cycloidal 

magnetic gear, the rotation of the inner rotor about its own axis is connected to the low 

speed shaft, and the outer rotor is fixed, which yields the gear ratio in (8).  A comparison 

of these gear ratios suggests that it is generally more practical to achieve a higher gear 

ratio with the cycloidal gear than with the coaxial gear because there are practical 

limitations to the maximum number of modulators or poles that can be used on a rotor.  

While relatively high gear ratios can be achieved by using coaxial magnetic gears with 

PIn = 1, this generally results in relatively high torque ripple [3].  Additionally, a few 

papers state that cycloidal magnetic gears can achieve higher torque densities than 

coaxial magnetic gears [19], [20], [21].  Furthermore, one paper also claims that 
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cycloidal magnetic gears can achieve better magnet utilization than coaxial magnetic 

gears [19]. 

While these foundational cycloidal magnetic gear studies do an excellent job of 

introducing the cycloidal magnetic gear topology, explaining its operating principle, 

demonstrating its potential for high torque densities at high gear ratios, and even 

describing working prototypes, their comparisons of coaxial and cycloidal magnetic 

gears’ torque density capabilities are based on theoretical observations and anecdotal 

comparisons of individual designs or extremely limited optimizations, rather than 

thorough numerical comparisons of the topologies [19], [20], [21], [54].  As an example, 

[19] describes an un-optimized radial flux cycloidal magnetic gear prototype design 

constructed using the same number of outer rotor pole pairs and approximately the same 

air gap radius as the un-optimized coaxial magnetic gear described in [33].  While the 

cycloidal magnetic gear design in [19] achieves approximately double the torque density 

of the coaxial gear design in [33], this comparison is of limited value without some 

measure of the relative optimality of the two designs, especially since they use the same 

outer rotor pole pair count, which is unlikely to be equally optimal for both of the 

different topologies.  If one design is very sub-optimal while the other is nearly optimal, 

this can bias the comparison heavily in favor of the more optimal design.  Furthermore, 

[19] also describes a very limited cycloidal magnetic gear optimization study using an 

analytical model which achieves a volumetric torque density of 183 kN∙m/m3 and states 

that this is almost twice the commonly cited typical radial flux coaxial magnetic gear 

volumetric torque density of 100 kN∙m/m3 provided in [17].  However, [19] only 
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considers a single pole pair combination for the cycloidal gear (pole pair counts are an 

extremely important design parameter, as demonstrated in this section), and multiple 

more recent studies have demonstrated that the radial flux coaxial magnetic can achieve 

significantly higher torque densities than the 100 kN∙m/m3 figure, depending on the 

design constraints [5], [30], [32], [51].  This section builds upon these studies, which 

clearly demonstrate the radial flux cycloidal magnetic gear’s tremendous potential for 

high torque densities at high gear ratios, by providing the first extensive parametric 2D 

and 3D finite element analysis (FEA) design study comparing the optimum magnetic 

performance potentials of the radial flux versions of the two topologies to produce 

thorough quantitative assessments of their relative capabilities and characterizations of 

their respective design trends. 

4.1. Design Study Methodology 

The two primary metrics considered in this study are volumetric torque density 

(VTD) and PM gravimetric torque density (PM GTD), which normalize the low speed 

rotor torque in terms of the active volume and the permanent magnet mass, respectively.  

Thus, PM GTD provides a practical quantitative measure of each design’s magnet 

utilization. 

Both topologies were simulated using FEA.  For both topologies, the back irons 

are made from M47 steel, and the PMs are made from NdFeB N42 with a remanence of 

1.3 T.  The modulators in the coaxial magnetic gear are also made from M47 steel.  

Table 4.1 shows the design parameter values considered for each of the two topologies, 

excluding the inner pole pair counts, and Table 4.2 and Table 4.3 show the inner pole 
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pair counts evaluated for the two topologies.  The inner pole pair counts specified in 

Table 4.2 and Table 4.3 for the coaxial gear were selected to ensure that that the optimal 

values for both VTD and PM GTD were always inside the range considered, since the 

outer radius, air gap size, and gear ratio can significantly affect these values.  The same 

set of inner pole pair counts was always considered for the cycloidal designs, since the 

inner pole pair count directly determines a cycloidal design’s gear ratio according to (8).  

This range also includes the optimal inner pole pair count with respect to both VTD and 

PM GTD for all evaluated cycloidal gear designs.   

 

Table 4.1 Coaxial and Cycloidal Gear Parameter Sweep Values. 

Parameter Coaxial Cycloidal 
Integer part of gear ratio (GInt) 4, 9, 16 N/A 

Outer radius (ROut) 50, 75, 100, 150 mm 

Inner back iron thickness (TBI1) 5, 10, 20 mm 

Outer back iron thickness (TBI3) 

For TBI1 = 5 mm 

For TBI1 = 10 mm 

For TBI1 = 20 mm 

 

5 mm 

5, 10 mm 

5, 10, 20 mm 

Inner PM thickness (TPM1) 3, 6, 9, 12, 15 mm 

PM thickness ratio (kPM) 0.5, 0.625, 0.75 0.5, 0.625, 0.75, 0.875, 1 

Minimum air gap thicknesses (TAG) 1 mm, ROut/50 

Axis Offset (TOff) N/A 1, 2, 3, 4, 5, 7, 10 mm 

Modulator thickness (TMods) 10 mm N/A 

Stack Length (LStack) 5, 10, 20, 30, 50 mm 
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Table 4.2 Inner Pole Pair Count (P1) Values with TAG = 1 mm. 

ROut 

(mm) 

Coaxial 

GInt = 4 

Coaxial 

GInt = 9 

Coaxial 

GInt = 16 
Cycloidal 

50 3, 5, 7 3, 5, 7 3, 5 5, 9, 13, … 89 

75 3, 5, 7, 9 3, 5, 7 3, 5 5, 9, 13, … 89 

100 3, 5, 7, … 17 3, 5, 7, 9, 11 3, 5, 7 5, 9, 13, … 89 

150 3, 5, 7, … 21 3, 5, 7, … 13 3, 5, 7, 9 5, 9, 13, … 89 

 

Table 4.3 Inner Pole Pair Count (P1) Values with TAG = ROut/50. 

ROut 

(mm) 

Coaxial 

GInt = 4 

Coaxial 

GInt = 9 

Coaxial 

GInt = 16 
Cycloidal 

50 3, 5, 7 3, 5, 7 3, 5 5, 9, 13, … 89 

75 3, 5, 7, 9 3, 5, 7 3, 5 5, 9, 13, … 89 

100 3, 5, 7, 9 3, 5, 7 3, 5 5, 9, 13, … 89 

150 3, 5, 7, 9, 11 3, 5, 7 3, 5 5, 9, 13, … 89 

 

A derived parameter, kPM, is used to control the ratio between the PM thicknesses 

on the two rotors, as given by (17), where TPM3 is the outer magnet thickness for the 

cycloidal magnetic gears.  The kPM range given for the coaxial topology in Table 4.1 is 

based on the optimal values indicated by the studies in [32], [51].  For the coaxial gear, 

GInt is a derived parameter which represents the integer part of the desired gear ratio and 

is used to maintain an approximately constant target gear ratio while varying the inner 

rotor pole count, as shown in (16).  For the cycloidal gear, the outer pole pair count is 

determined according to (7).  For each coaxial design, the inner and outer air gap each 

have the same thickness, TAG.  All possible combinations of the parameter values listed 

in Table 4.1, Table 4.2, and Table 4.3 were evaluated using 2D FEA, except for cases 

which would result in a negative inner radius.  Based on the 2D FEA simulation results, 
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the best 906 coaxial designs and 6678 cycloidal designs were evaluated at each of the 

stack lengths specified in Table 4.1 using 3D FEA.  The results presented in the rest of 

this section are based on 3D FEA for designs with stack lengths of 50 mm, except where 

specified otherwise. 

4.2. Results 

Figure 4.1, Figure 4.2, and Figure 4.3 illustrate several design trends for the 

coaxial and cycloidal magnetic gears.  Figure 4.1 and Figure 4.2 compare the maximum 

VTDs and PM GTDs that both topologies achieve at different outer radii, and Figure 4.3 

shows the impacts of PM thickness.  With a fixed air gap, the VTD and PM GTD both 

increase with the outer radius for both topologies (assuming that the cycloidal gear ratio 

is allowed to vary, as in the black curves in Figure 4.1, Figure 4.2, and Figure 4.3).  

However, when the air gap increases proportionally with the outer radius, both VTD and 

PM GTD vary much less with the outer radius for both topologies, but there is more 

variation for the cycloidal topology than for the coaxial topology, due in part to the fact 

that cycloidal gears only have a single air gap.  Figure 4.1 and Figure 4.2 also illustrate 

that at lower gear ratios, optimal coaxial gears tend to achieve higher VTDs and PM 

GTDs than optimal cycloidal gears, and this advantage increases as the permissible outer 

radius increases.  This is because a range of inner rotor pole pair counts can be used to 

achieve similar gear ratios for the coaxial gear, thus, providing the freedom to optimize 

this important design parameter, but a given inner rotor pole pair value directly 

determines a cycloidal design’s gear ratio.  However, the coaxial topology’s achievable 

VTD and PM GTD tend to decrease significantly as the gear ratio is increased (due to 
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the increased discrepancy between the inner and outer rotor magnet pole counts and pole 

arcs).  Accordingly, at medium to high gear ratios, unless the magnets are very thick and 

the air gaps relatively small, optimal coaxial designs tend to achieve lower VTDs and 

PM GTDs than optimal cycloidal designs.  Furthermore, if any cycloidal gear ratio is 

permissible (corresponding to the black curves in Figure 4.1, Figure 4.2, and Figure 4.3), 

then the cycloidal topology can generally achieve higher torque densities than the 

coaxial topology at most design points in this study. 

 

 

 

           (a) 

 

             (b) 

Figure 4.1 Variation of the maximum VTD with outer radius for designs with (a) 

TAG = 1 mm and (b) TAG = ROut/50. 
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        (a) 

 

         (b) 

Figure 4.2 Variation of the maximum PM GTD with outer radius for designs with 

(a) TAG = 1 mm and (b) TAG = ROut/50. 
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           (a) 

 

             (b) 

Figure 4.3 Variation of the maximum (a) VTD and (b) PM GTD with the inner 

rotor PM thickness for designs with ROut = 150 mm and TAG = 1 mm. 

 

Figure 4.3 illustrates the impact of the inner rotor magnet thickness on VTD and 

PM GTD.  For both topologies, within the evaluated range of thicknesses, VTD 

increases as the inner PM thickness is increased, whereas PM GTD decreases as the 

inner PM thickness is increased.  However, as the PM thickness increases, the coaxial 

topology tends to benefit more in terms of VTD and suffer less in terms of PM GTD 

than the cycloidal topology. 
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For the coaxial topology, the optimal gear performance is generally achieved 

with a relatively low gear ratio [5].  However, for the cycloidal topology, the optimal 

gear ratio varies significantly based on the other design criterion.  Figure 4.4 and Figure 

4.5 illustrate how the optimal gear ratio changes with outer radius.  The gear ratio for 

maximizing PM GTD is generally higher than the gear ratio for maximizing VTD.  This 

is because maximum PM GTD designs favor thinner magnets (and, thus, smaller 

effective air gaps), which can tolerate higher pole counts and shorter pole arcs without 

suffering from reduced torque densities due to increased tangential leakage flux [5], 

[32], [51].  Additionally, the optimal gear ratio tends to increase with the outer radius but 

decrease as the air gap increases.  This is because the increased air gap leads to increased 

leakage flux per pole, which can be counteracted by lower pole counts and longer pole 

arcs.  Another important parameter that affects both the achievable performance and the 

optimal gear ratio of the cycloidal magnetic gear is the offset between the axes of the 

inner and outer rotors.  As shown in Figure 4.6, the optimal gear ratio tends to decrease 

significantly as the axis offset increases.  Again, this is partially because a larger axis 

offset leads to a larger average effective air gap, which leads to more leakage flux per 

pole if the pole arc lengths are not increased. 
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        (a) 

 

        (b) 

Figure 4.4 Variation of the maximum VTD with outer radius and gear ratio for 

cycloidal designs with (a) TAG = 1 mm and (b) TAG = ROut /50.  The dotted line 

indicates the gear ratio that maximizes VTD for each outer radius. 

 

 

        (a) 

 

        (b) 

Figure 4.5 Variation of the maximum PM GTD with outer radius and gear ratio for 

cycloidal designs with (a) TAG = 1 mm and (b) TAG = ROut /50.  The dotted line 

indicates the gear ratio that maximizes PM GTD for each outer radius. 
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           (a) 

 

             (b) 

Figure 4.6 Variation of the maximum (a) VTD and (b) PM GTD with axis offset 

and gear ratio for cycloidal designs with ROut 150 mm and TAG = 1 mm.  The dotted 

line indicates the gear ratio that maximizes VTD or PM GTD for each axis offset. 

 

Another important factor that impacts magnetic gear performance is end-effects.  

Figure 4.7, Figure 4.8, Figure 4.9, and Figure 4.10 compare the maximum achievable 

VTDs and PM GTDs for designs with different stack lengths based on both 2D and 3D 

FEA.  These figures show a greater discrepancy between 2D and 3D FEA for the coaxial 

designs than for the cycloidal designs, which means that the coaxial designs suffer more 

from end-effects, likely due to the phenomenon of escaping flux in coaxial magnetic 

gears, which is facilitated by the modulators [35], [51].  Additionally, the higher pole 

counts favored by cycloidal designs inherently lead to shorter flux paths and reduced 

end-effects, as demonstrated by the graphs in Figure 4.11 and Figure 4.12 which indicate 

that cycloidal designs suffer smaller torque reductions due to end-effects at higher gear 
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ratios (and, thus, higher pole counts).  This difference in end-effects also means that the 

VTD and PM GTD advantages of the cycloidal topology over the coaxial topology will 

become more significant in applications requiring a smaller stack length, but these 

advantages will be reduced for applications requiring a larger stack length. 

 

 

 

           (a) 

 

             (b) 

Figure 4.7 Variation of the maximum VTD with the stack length for (a) coaxial 

designs with TAG = 1 mm and (b) coaxial designs with TAG = ROut /50 based on both 

2D and 3D FEA. 
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           (a) 

 

             (b) 

Figure 4.8 Variation of the maximum VTD with the stack length for (a) cycloidal 

designs with TAG = 1 mm and (b) cycloidal designs with TAG = ROut /50 based on 

both 2D and 3D FEA. 
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           (a) 

 

             (b) 

Figure 4.9 Variation of the maximum PM GTD with the stack length for (a) coaxial 

designs with TAG = 1 mm and (b) coaxial designs with TAG = ROut /50 based on both 

2D and 3D FEA. 
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           (a) 

 

             (b) 

Figure 4.10 Variation of the maximum PM GTD with the stack length for (a) 

cycloidal designs with TAG = 1 mm and (b) cycloidal designs with TAG = ROut /50 

based on both 2D and 3D FEA. 
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           (a) 

 

             (b) 

Figure 4.11 Variation of 3D end-effects on the maximum VTD designs of Figure 

4.4, but at a stack length of 20 mm, with outer radius and gear ratio for cycloidal 

designs with (a) TAG = 1 mm and (b) TAG = ROut /50. 

 

 

           (a) 

 

             (b) 

Figure 4.12 Variation of 3D end-effects on the maximum PM GTD designs of 

Figure 4.5, but at a stack length of 20 mm, with outer radius and gear ratio for 

cycloidal designs with (a) TAG = 1 mm and (b) TAG = ROut /50. 
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4.3. The Spatial Distribution of Torque Production 

The previous section numerically illustrates differences in design trends between 

the two topologies.  Some of these differences can be explained by considering an 

approximate analysis of the spatial distribution of torque production in the cycloidal 

topology.  This analysis is based on a couple of simplifying assumptions, which make its 

implications more intuitive but prevent it from being used for exact analysis.  First, only 

the fundamental harmonics from the PMs on the inner and outer rotors are considered, 

and other spatial magnetomotive force (mmf) harmonics are neglected.  Second, the 

torque distribution at any angle, θ, from the axis of the outer rotor is assumed to be 

proportional to the sine of the difference between the electromagnetic angles of the two 

rotors, kτ, as given by (23), where θEM1 and θEM2 are the electromagnetic angles of the 

inner and outer rotors at θ = 0.  Note that θ' represents the angle from the axis of the 

inner rotor, which will be slightly different than θ due to the cycloidal gear’s axis offset.  

Figure 4.13 plots both kτ and the inverse effective air gap function, g–1, as functions of θ 

for an example cycloidal magnetic gear, and Figure 4.14 illustrates kτ as the color in the 

air gap of the example cycloidal magnetic gear.  (Note that the thicknesses of the PMs on 

the two rotors are included in the effective air gap.) 

kτ = sin(PIn ∙ θ' – POut ∙ θ + θEM1 – θEM2) (23) 
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Figure 4.13 Variation of kτ and the inverse effective air gap function (both in per 

unit values) with spatial position in an example cycloidal magnetic gear. 

 

 

Figure 4.14 kτ plotted as the color in the air gap of the same cycloidal magnetic gear 

from Figure 4.13. 
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When a cycloidal magnetic gear is at its maximum torque orientation, as shown 

in Figure 4.13 and Figure 4.14, positive torque is being produced in the area with the 

smallest air gap, and negative torque is being produced in the area with the largest air 

gap.  Additionally, as illustrated by Figure 4.13 and Figure 4.14, the axis offset and the 

difference in pole counts result in positive torque being produced over a wider range of 

angles than the range of angles where negative torque is produced.  Thus, significantly 

more positive torque is produced than negative torque.  However, as the PM thicknesses 

increase, the effective air gap increases.  To maintain the same ratio between the 

maximum and minimum values of the effective air gap, the axis offset must increase, as 

demonstrated in Figure 4.15.  While increasing the axis offset reduces the negative 

torque produced in the region where kτ is negative, it also increases the air gap in much 

of the region where kτ is positive, which reduces the positive torque produced.  On the 

other hand, in the coaxial magnetic gear, the modulators allow discrete steps in the 

effective air gap function.  This contrast explains why increasing the PM thickness is 

more beneficial to the coaxial topology in terms of VTD and less detrimental to the 

coaxial topology in terms of PM GTD. 

 



 

111 

 

 

           (a) 

 

             (b) 

Figure 4.15 Variation of the maximum (a) VTD and (b) PM GTD with the inner 

PM thickness and axis offset for cycloidal designs with ROut = 150 mm and TAG = 1 

mm.  The dotted line indicates the axis offset that maximizes VTD or PM GTD for 

each inner PM thickness. 

 

This analysis also provides a partial explanation for why higher pole counts favor 

smaller axis offsets for the cycloidal gear.  As the pole count increases, the flux paths 

become shorter.  These shorter flux paths reduce the amount of flux crossing the air gap.  

Thus, the axis offset must be reduced to maintain the same torque production in the 

regions where kτ is positive; furthermore, because of these shorter flux paths, this 

reduction of the axis offset will not result in a large increase in the negative torque 

produced in regions where kτ is negative.  Another factor driving the optimal axis offset 

is that the axis offset affects the geometric transformation between θ and θ', which 

determines how much of the gear is producing positive torque. 
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4.4. Rotor Forces and Torque Ripples 

Another significant difference between the two topologies is the presence of net 

magnetic forces on the rotors of the cycloidal topology.  Figure 4.16 shows the net 

magnetic forces on the inner rotors of the designs with the highest VTDs and PM GTDs 

for each outer radius, which correspond to points in Figure 4.1(a) and Figure 4.2(a).  

While the cycloidal magnetic gear designs experience significant net magnetic forces, 

the coaxial designs experience negligible (ideally zero if there are no manufacturing 

tolerances) net magnetic forces on the rotors due to the symmetry imposed by (16).  

Figure 4.16 also illustrates that the net magnetic forces tend to increase as the outer 

radius increases, which is largely due to the increase in air gap area.  Furthermore, 

Figure 4.16 indicates that the maximum VTD designs have larger net magnetic forces 

than the maximum PM GTD designs, which is largely due to the thicker PMs of the 

maximum VTD designs. 
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           (a) 

 

             (b) 

Figure 4.16 The net forces on the inner rotor at the maximum torque points of (a) 

the maximum VTD designs corresponding to the points in Figure 4.1(a) and of (b) 

the maximum PM GTD designs corresponding to the points in Figure 4.2(a) based 

on 3D FEA for designs with 50 mm stack lengths. 

 

Figure 4.16 illustrates the net magnetic forces at the maximum torque points for 

the designs, but the magnetic forces do vary significantly with the operating point.  

Figure 4.17 and Figure 4.18 illustrate the variation of torques and forces based on 2D 

FEA as the torque angle changes for the cycloidal designs with the absolute maximum 

VTD and PM GTD.  The torque angle is defined as the difference between the 

electromagnetic angles of the two rotors at the point where the air gap is minimal.  

Figure 4.17 shows that the maximum force occurs at the operating point where the 

torque angle is 0 and there is no torque.  Figure 4.18 illustrates that the angle of the net 



 

114 

 

magnetic force varies with the torque angle.  If too much torque was applied to either 

shaft and the gear began to slip, the forces on the inner rotor would trace the paths 

shown in Figure 4.18.  The bearings on the inner rotor must be able to withstand these 

magnetic forces, which are significantly larger than the active weight of the inner rotor.  

For reference, the total combined masses of the back irons and PMs on the inner rotor 

are about 7.1 kg and 4.2 kg for the maximum VTD and maximum PM GTD designs, 

respectively. 

 

 

           (a) 

 

             (b) 

Figure 4.17 The 2D FEA variation of (a) low speed shaft torque and (b) net 

magnetic forces on the inner rotor as the torque angle is varied for the maximum 

VTD and PM GTD cycloidal designs from the entire simulation study. 
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Figure 4.18 The variation of the forces in the direction of the axis offset and in the 

direction perpendicular to the axis offset based on 2D FEA as the torque angle is 

varied for the maximum VTD and PM GTD cycloidal designs from the entire 

simulation study. 

 

Figure 4.19 illustrates the torque and force ripple characteristics for the same 

optimal designs used in Figure 4.17 and Figure 4.18 during steady-state operation at the 

maximum torque angle based on 2D FEA.  The rotation angle is defined as the 

electromagnetic angle which the inner rotor has both simultaneously rotated and orbited 

in opposite directions.  Figure 4.19 shows that both designs exhibited negligible torque 

and force ripples.  Additionally, when either gear is operating in steady-state at a 
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constant torque, the angle of net magnetic force is fixed with respect to the axis offset.  

Alternatively, for a coaxial magnetic gear, the net magnetic forces on the rotors and the 

rotor torque ripples are heavily dependent on the pole pair count selections.  Coaxial 

gears designed with proper symmetry ideally experience zero net magnetic forces on 

their rotors.  Furthermore, coaxial gear designs with relatively high lowest common 

multiples between P1, P3, and Q2 and non-integer gear ratios can also achieve very low 

torque ripples.  Both of these conditions can generally be simultaneously achieved by 

using (16).  For example, the coaxial magnetic gear described in [5] uses a P1 = 6, P3 = 

68 and Q2 = 74 design, resulting in simulated peak-to-peak high speed rotor and low 

speed rotor torque ripples of 2.2% and 0.02% relative to the slip torques of the high 

speed rotor and low speed rotor, respectively.  However, a nearly identical variation of 

the design which only changes the pole pair count combinations to P1 = 6, P3 = 66 and 

Q2 = 72, resulting in an integer gear ratio, exhibits significantly larger high speed rotor 

and low speed rotor torque ripples of 134.5% and 1.88% relative to the slip torques of 

the high speed rotor and low speed rotor, respectively.  However, for smaller coaxial 

designs, it may be impractical to choose pole counts with a large lowest common 

multiple in order to minimize torque ripple. 
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           (a) 

 

             (b) 

Figure 4.19 The variation of the (a) low speed shaft torque and (b) net magnetic 

forces on the inner rotor based on 2D FEA during steady-state operation at the 

maximum torque angle for the maximum VTD and PM GTD cycloidal designs 

from the entire simulation study. 

 

4.5. Conclusion 

This study employs an extensive parametric evaluation to quantitatively compare 

the optimal achievable performances of coaxial magnetic gears and cycloidal magnetic 

gears in terms of volumetric torque density (VTD) and magnet utilization (PM GTD).  

Each topology has its own benefits and drawbacks with respect to gear ratio, torque, and 

mechanical design. 

Regarding gear ratio, the cycloidal magnetic gear can realistically achieve 

significantly higher gear ratios than the coaxial magnetic gear.  The coaxial gear 

generally favors relatively low gear ratios with the performance (torque density) getting 

significantly worse as the gear ratio increases.  However, the optimal gear ratio for a 
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cycloidal magnetic gear varies significantly with other design parameters, especially the 

outer radius, because the magnitude of the gear ratio is equivalent to the pole pair count 

on the inner rotor.  Additionally, the cycloidal gear actually performs relatively poorly at 

low gear ratios, especially at larger outer radii.  On the other hand, the coaxial gear 

consistently performs best at low gear ratios, regardless of outer radius, because both 

sets of pole counts can be varied with the outer radius without significantly changing the 

gear ratio. 

Regarding torque, the cycloidal magnetic gear can generally outperform the 

coaxial magnetic gear in terms of both VTD and PM GTD, assuming that the optimal 

gear ratio is used for the cycloidal magnetic gear.  However, if the gear ratio is restricted 

to a relatively low value, the coaxial topology can generally achieve higher VTD and 

PM GTD values.  Furthermore, the coaxial magnetic gear benefits more in terms of VTD 

and suffers less in terms of PM GTD when the magnet thicknesses are increased.  Thus, 

a coaxial magnetic gear may be more compact if relatively thick PMs can be used, which 

may be advantageous when size and mass are more important than material cost, but, 

when the PM thickness is constrained to limit the material cost, the cycloidal magnetic 

gear will generally be able to achieve higher VTDs and PM GTDs than the coaxial 

magnetic gear.  For the coaxial magnetic gear, torque ripple can be kept small simply by 

choosing pole count combinations with a large lowest common multiple.  The cycloidal 

topology itself ensures that the torque ripple in a cycloidal magnetic gear will be 

minimal, regardless of the pole counts. 
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Finally, there are significant differences regarding construction.  The modulators 

present a challenge to the fabrication of coaxial magnetic gears because they must be 

held between the two sets of PMs and withstand strong magnetic forces, which can make 

it mechanically challenging to maintain small air gaps.  The cycloidal magnetic gear also 

presents a couple of fabrication challenges.  First, the axis of the inner rotor revolves 

around the axis of the outer rotor.  This requires that the movement of the inner rotor be 

separated into two components, its orbital revolution about the axis of the outer rotor and 

its rotation about its own axis.  (The dual-stage solution proposed in [20] does partially 

simplify this challenge at the expense of reduced VTD and PM GTD.)  Additionally, the 

revolution of the inner rotor moves the gear’s center of mass, which must be 

counterbalanced to avoid creating vibrations.  Second, the rotors in a cycloidal magnetic 

gear experience strong magnetic forces, which must be supported by the bearings, 

whereas the net magnetic forces on the rotors of a coaxial magnetic gear can be canceled 

out using symmetry.  The additional stress placed on the bearings of a cycloidal 

magnetic gear by these magnetic forces and the challenges of the inner rotor’s revolution 

may reduce the reliability, maintenance, and acoustic noise benefits inherent in the 

noncontact power transmission of magnetic gears and mitigate some of the topology’s 

advantages relative to coaxial gears with respect to achieving high torque densities at 

high gear ratios. 
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5. ANALYSIS OF HIGH GEAR RATIO CAPABILITIES FOR SINGLE-STAGE, 

SERIES MULTISTAGE, AND COMPOUND DIFFERENTIAL COAXIAL 

MAGNETIC GEARS* 

 

One of the conclusions in the previous section is that cycloidal magnetic gears 

are better able to achieve practical designs with high gear ratios than coaxial magnetic 

gears.  However, the high gear ratio capability of cycloidal magnetic gears comes with 

an undesirable increase in the mechanical complexity of the gear relative to coaxial 

magnetic gears.  Therefore, this section investigates and compares different means of 

achieving a high gear ratio with coaxial magnetic gears. 

One of the primary advantages of using gears in high-torque, low-speed energy 

conversion applications is that it allows the electric machine to be much smaller than a 

direct-drive machine for the same application.  The larger the gear ratio, the more the 

size of the electric machine can be reduced.  However, most of the literature on coaxial 

magnetic gears focuses on designs with gear ratios less than 15:1, including several of 

the designs with the highest reported torque densities [3], [4], [5], [8], [9], [17], [30], 

[33], [55], [56].  This section uses 2D and 3D finite element analysis (FEA) to 

investigate three different means to achieve higher gear ratios using radial flux coaxial 

magnetic gears with surface mounted permanent magnets, such as the example shown in 

Figure 1.3.  First, single-stage magnetic gears with higher gear ratios are evaluated.  
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Second, single-stage magnetic gears are connected in series to form multistage magnetic 

gears.  Finally, two single-stage magnetic gears are interconnected to form the 

Compound Differential Coaxial Magnetic Gear (CDCMG).  Although this study is 

limited to radial flux coaxial magnetic gears, many of the general trends analyzed in this 

work also apply to other coaxial flux magnetic gear variations (such as radial flux gears 

with flux focusing or Halbach array magnet configurations and axial and transverse flux 

coaxial magnetic gears of similar magnet configurations). 

5.1. Single-Stage Coaxial Magnetic Gears 

A multi-objective genetic algorithm was used to determine the Pareto optimal 

front maximizing both gear ratio and gravimetric torque density (GTD) in single-stage 

radial flux magnetic gears based on 2D FEA.  Table 5.1 shows the range of values over 

which each design parameter was swept by the genetic algorithm, and the same materials 

are used for the gears as those described in Table 2.1.  The optimization was performed 

separately at each of the outer radii listed in Table 5.2.  As described in the previous 

sections, GInt represents the integer part of the gear ratio and relates the pole pair counts 

according to (16), which eliminates unbalanced magnetic forces on the rotors and keeps 

the torque ripple relatively low.  Also, kPM determines the ratio of the magnet 

thicknesses on Rotor 1 and on Rotor 3 according to (17).  In general, a gear’s slip torque 

is theoretically magnetically maximized by using the smallest possible air gap, but 

mechanical concerns, such as machining tolerances, limit the minimum air gap that can 

be achieved.  Thus, as indicated in Table 5.1, the air gaps are each fixed at 1 mm in this 

study as a compromise between these considerations.  For other parameters, the ranges 
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used in Table 5.1 are informed by the results presented in [51].  For example, the PM 

and modulator fill factors are not swept all the way from 0 to 1 but across smaller 

regions around the optimal values presented in [51]. 

 

Table 5.1 Magnetic Gear Single-State Design Parameter Ranges. 

Name Description Range Units 
GInt Integer portion of the gear ratio 3 – 31  

P1 Rotor 1 pole pair count 3 – 25  

TBI1 Rotor 1 back iron thickness 5 – 20 mm 

TPM1 Rotor 1 permanent magnet thickness 3 – 12 mm 

TAG Air gap thicknesses 1 mm 

TMods Modulator thickness 5 – 15 mm 

kPM Magnet thickness ratio 0.5 – 1  

TBI3 Rotor 3 back iron thickness 5 – 20 mm 

αPM1 Rotor 1 permanent magnet tangential fill factor 0.75 – 1  

αMods Modulators tangential fill factor 0.35 – 0.65  

αPM3 Rotor 3 permanent magnet tangential fill factor 0.75 – 1  

 

Table 5.2 Magnetic Gear Single-Stage Design Discrete Parameter Values. 

Name Description Values Units 
ROut Magnetic gear outer radius 50, 75, 100, 150 mm 

LStack Stack length 
5, 10, 15, 20, 25, 30, 

40, 50, 60, 80, 100 
mm 

 

Because end-effects can have a significant impact on the torque of coaxial 

magnetic gears [35], each of the optimal cross-sectional designs selected based on the 

2D FEA simulation results was simulated at each of the stack lengths in Table 5.2 using 

3D FEA.  Then, for each of these optimal cross-sectional designs, the correct stack 

length necessary to achieve a low speed rotor slip torque of 1000 N∙m was interpolated 
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from the 3D FEA simulation results.  For some of the smaller radii cases, the necessary 

stack length was beyond 100 mm and had to be extrapolated based on the torques at 

stack lengths of 80 mm and 100 mm.  However, these stack lengths will still be fairly 

accurate since the torque becomes approximately linear with stack length at such high 

aspect ratios [35]. 

The GTD is calculated by dividing the low speed rotor slip torque by the total 

active mass, which is the sum of the masses of the back irons (made of M47 steel), the 

modulators (made of M47 steel), and the permanent magnets (made of NdFeB N42), as 

given by (14).  GTD is chosen for this study because, in addition to minimizing a 

design’s active mass, optimizing for GTD tends to achieve a reasonable compromise 

between minimizing volume and minimizing active material cost [51].  As in [51], [57], 

this study uses the GOSET genetic algorithm [39]. 

Figure 5.1 shows the Pareto optimal fronts maximizing both gear ratio and GTD 

based on the design parameter value ranges provided in Table 5.1 at each of the outer 

radii in Table 5.2.  These Pareto optimal fronts indicate that, as the gear ratio increases, 

the maximum achievable gear GTD decreases.  This presents the system designer with a 

fundamental tradeoff; as the gear ratio increases, the size of the electric machine 

decreases, but the size of the magnetic gear increases [5], [28].  The GTD of a system 

composed of a magnetic gear and an electric machine, GTDSys, is the magnetic gear’s 

low speed rotor slip torque, TGear, divided by the total active mass of the system, as given 

by (24), where MGear and MMachine are the active masses of the magnetic gear and the 

electric machine, respectively.  If the rated torque of the electric machine matches the 
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slip torque of the gear’s high speed rotor, which is TGear/G (where G is the gear ratio), 

GTDSys can be rewritten by expressing the masses of the magnetic gear and electric 

machine in terms of their respective GTDs, GTDGear and GTDMachine, and factoring out 

TGear from both the numerator and denominator, which yields (25). 

GTDSys = 
TGear

MGear + MMachine

 (24) 

GTDSys = (
1

GTDGear

+
1

G ∙ GTDGear

)
-1

 (25) 

 

 

Figure 5.1 Pareto optimal fronts maximizing the gear’s GTD over a range of gear 

ratios and outer radii for a single-stage magnetic gear with a low speed rotor slip 

torque of 1000 N∙m. 
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Figure 5.1 displays a significantly different trend than Figure 1.12 regarding how 

the torque density of coaxial magnetic gears varies with gear ratio.  In Figure 5.1, 

increasing the gear ratio more significantly harms the torque density than in Figure 1.12.  

This is likely because the analysis presented in [29] only considers a single pole pair 

count for Rotor 1.  Thus, it fails to optimize the torque density for low gear ratio designs. 

Figure 5.2 illustrates the maximum system GTDs that can be achieved using the 

optimal 150 mm outer radius points in Figure 5.1 and electric machines with different 

GTDs.  The dashed line in Figure 5.2 indicates the gear ratio that maximizes the system 

GTD for each machine GTD.  Thus, a design with a relatively low gear ratio and a high 

torque density, such as those described in most of the literature on coaxial magnetic 

gears may be less desirable from a system optimization standpoint than a gear with 

lower torque density, but a higher gear ratio.  This is especially true for systems where 

the electric machine has a relatively low torque density.  However, as the gear ratio 

increases, the number of modulators and Rotor 3 pole pairs increases; this increases 

manufacturing complexity and cost and may eventually result in components that are 

impractically thin in the tangential direction.  Accordingly, the designer must evaluate 

several considerations in conjunction with the relevant electric machine scaling 

characteristics to select the appropriate design point which results in the optimal system 

configuration. 
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Figure 5.2 Variation of the maximum achievable system GTD with gear ratio and 

machine GTD for systems with a low speed slip torque of 1000 N∙m.  The dashed 

line traces the maximum achievable system GTD and the corresponding gear ratio 

for each machine GTD. 

 

As the gear ratio changes, the optimal design parameters also change.  The most 

significant change occurs in the number of Rotor 1 pole pairs, as shown in Figure 5.3.  

Specifically, as the gear ratio increases, the optimal number of Rotor 1 pole pairs 

decreases to limit the increase in the number of Rotor 3 pole pairs and modulators 

because large numbers of Rotor 3 pole pairs or modulators result in excessive leakage 

flux.  This reduction in the Rotor 1 pole count also reduces the flux leakage between 

adjacent magnets on Rotor 1, which leads to an increase in the optimal Rotor 1 magnet 

thickness, as illustrated in Figure 5.4. 
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Figure 5.3 Variation of the maximum achievable gear GTD at various GInt values 

with the Rotor 1 pole pair count for designs with an outer radius of 150 mm based 

on 2D FEA. 
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Figure 5.4 Variation of the maximum achievable gear GTD at various GInt values 

with the Rotor 1 magnet thickness for designs with an outer radius of 150 mm 

based on 2D FEA. 

 

Additionally, the gear ratio affects the gear’s efficiency.  Figure 5.5 illustrates the 

variation of the full load electromagnetic efficiency with gear ratio and the low speed 

shaft speed for the 150 mm outer radius design points included in Figure 5.1.  Note that 

the electromagnetic efficiency calculations only account for the core losses (hysteresis 

and eddy current losses) in the back iron and modulator laminations and the eddy current 

losses in the magnets.  These losses are calculated using 2D FEA and then scaled to the 

appropriate stack lengths based on the 3D FEA results.  Efficiency decreases as speed 

increases because the eddy current losses increase with the square of the magnetic 

frequency, but the power rating only increases linearly with the speed.  Additionally, 

efficiency decreases as the gear ratio increases, despite the fact that the optimal Rotor 1 
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pole count gradually decreases, which tends to lower the frequencies of the magnetic 

field harmonics.  This efficiency reduction is partially due to the fact that for the same 

low speed shaft speed, a higher gear ratio yields a proportional increase in the high speed 

rotor speed, which results in a net increase in the magnetic frequencies.  Furthermore, as 

illustrated by Figure 5.1, higher gear ratio designs require more active material (both 

magnets and steel) to transmit the same torque, which results in higher losses. 

 

 

Figure 5.5 Full load electromagnetic efficiencies of the optimal 150 mm outer radius 

points shown in Figure 5.1 over a wide range of speeds. 
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5.2. Series Multistage Coaxial Magnetic Gears 

Multiple single-stage coaxial magnetic gears can be connected in series to 

achieve a higher gear ratio than that which is practical with a single-stage coaxial 

magnetic gear [58], [59], [60].  If the high speed rotor of each stage is connected to the 

low speed rotor of the next stage, the net gear ratio is the product of the gear ratios of all 

the stages.  Because each stage interacts with less torque than the previous stages 

(moving from the lowest speed rotor to the highest speed rotor), each subsequent stage 

can potentially be significantly smaller than the previous stages.  (This study uses the 

convention that the low speed rotor of the first stage is connected to the low speed shaft 

of the multistage gearbox and the high speed rotor of the last stage is connected to the 

high speed shaft of the multistage gearbox.)  Thus, as suggested in [58], successive 

stages could potentially be nested in the bore(s) of the preceding stage(s), which would 

result in a compact design.  Although [58] only considers radial flux topologies, this idea 

could potentially be applied to other topologies, such as axial flux or transverse flux 

gears, or even with multiple different topologies used for different stages in the same 

gearbox. 

The ratio between the torques needed for successive stages is ideally (assuming 

negligible losses) given by the gear ratio of the first (lowest speed) of the two stages; 

thus, the overall GTD of a multistage gear with n stages, GTDNET, is given by (26), 

where GTDi is the GTD of the ith stage and Gj is the gear ratio of the jth stage, based on 

the convention that the first stage is the stage rated for the lowest speed and the highest 

torque, while the nth stage is rated for the lowest torque and the highest speed.  Based on 
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(26), the cross-sectional designs along the Pareto optimal fronts in Figure 5.1 can be 

connected in series to form the Pareto optimal fronts illustrated in Figure 5.6 and Figure 

5.7 for multistage gearboxes with 2, 3, or 4 series-connected stages, which are shown in 

addition to the single-stage designs.  As with the single-stage designs, the slip torque of 

the low speed shaft of each magnetic gearbox is 1000 N∙m.  The optimal design for each 

individual stage in each of these multistage gear designs was selected by interpolating 

between the 3D FEA results at the stack lengths in Table 5.2 to determine the correct 

stack length required for each of the optimal 2D cross-sectional designs to achieve the 

necessary torque for a given individual stage.  For the later stages, which have lower 

torques and, therefore, shorter stack lengths, end-effects become more significant, 

especially at the larger outer radii.  Thus, even though the largest outer radius designs are 

optimal for the first stage, as in Figure 5.1, designs with smaller outer radii become 

optimal for the later stages with smaller torques, as shown in Figure 5.6.  This choice 

between smaller outer radii or more significant end-effects means that the later stages 

tend to have lower GTDs than the first stage; however, since these later stages are rated 

for lower torques, they contribute less to the overall mass of the gearbox and have a less 

significant effect on the overall gearbox GTD. 

GTDNet = (
1

GTD1

+ ∑
1

GTDi ∙ ∏ Gj
i-1
j=1

n

i=2

)

-1

 (26) 
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Figure 5.6 Pareto optimal fronts maximizing gearbox GTD over a range of gear 

ratios for single-stage magnetic gearboxes and multistage magnetic gearboxes with 

2, 3, or 4 series-connected stages and their last stage outer radii. 

 

 

Figure 5.7 Pareto optimal fronts maximizing gearbox GTD over a range of gear 

ratios for single-stage magnetic gearboxes and multistage magnetic gearboxes with 

2, 3, or 4 series-connected stages and their first stage gear ratios. 
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Figure 5.6 and Figure 5.7 show that designs with more series-connected stages 

can achieve significantly higher net gear ratios and higher GTDs for a given net gear 

ratio, as compared to single-stage designs and multistage design with fewer stages.  The 

colors of the points along the curves in Figure 5.7 indicate the gear ratios used in the first 

(highest torque, lowest speed) stages of these optimal multistage gear designs.  Because 

subsequent stages are rated for much smaller torques than the first stage, the mass of the 

first stage has the largest impact on the net GTD.  Thus, it is advantageous to use a 

magnetic gear with a very high GTD for the first stage in order to minimize the total 

gearbox mass, even though that means that the first stage has a relatively low gear ratio.  

Based on (26) and Figure 5.6 and Figure 5.7, it is apparent that the net gear ratio can 

theoretically be raised to a very large value with a minimal impact on net GTD by 

connecting a large number of high GTD, low gear ratio stages in series.  However, this 

analysis neglects structural material and bearings.  As the number of stages increases, 

more structural material and bearings are required, which increases the overall size, 

mass, and cost.  Additionally, increasing the number of stages increases the gearbox 

complexity. 

Figure 5.8 and Figure 5.9 illustrate the electromagnetic efficiencies of some of 

the maximum GTD 2-stage and 3-stage designs included in Figure 5.6 and Figure 5.7.  

Since the efficiency of each single-stage design has already been determined for a range 

of speeds, as shown in Figure 5.5, the efficiency of each stage in the multistage design 

can be interpolated for its operating speed.  The net efficiency of a series multistage 

design is simply the product of the efficiencies of each of its stages.  Thus, as with the 
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single-stage designs, the efficiencies of the multistage designs tend to decrease as the 

gear ratio or low speed shaft speed increases.  Magnetically, the number of stages only 

has a small impact on the efficiency because the compounding effect of using more 

stages approximately cancels out the benefits of using lower gear ratio, higher efficiency 

designs for each stage. 

 

 

Figure 5.8 Full load electromagnetic efficiencies of the optimal 2-stage coaxial 

magnetic gearboxes shown in Figure 5.6 and Figure 5.7. 
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Figure 5.9 Full load electromagnetic efficiencies of the optimal 3-stage coaxial 

magnetic gearboxes shown in Figure 5.6 and Figure 5.7. 

 

5.3. Compound Differential Coaxial Magnetic Gears 

The single-stage coaxial magnetic gearbox can provide a high GTD at very low 

gear ratios, but the GTD decreases significantly as the gear ratio increases.  

Alternatively, a multistage magnetic gearbox can achieve much higher net gear ratios 

without as significant a reduction in GTD, especially with numerous stages; however, 

the multistage gearbox’s complexity increases with the number of stages.  The CDCMG 

provides an alternative that can combine two single-stage coaxial magnetic gears to 

achieve a net gear ratio much greater than the product of the individual stage gear ratios.  

Similarly to the connection of two cycloidal magnetic gears proposed in [20], the 

CDCMG is formed by connecting two single-stage coaxial magnetic gears, as illustrated 

in the θ-z transverse-sections of a radial flux CDCMG in Figure 5.10. 
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(a) 

 

(b) 

Figure 5.10 θ-z transverse-sections of a radial flux CDCMG connected in the (a) 

Free Spinning Rotor 3 (FSR3) and (b) Free Spinning Rotor 2 (FSR2) 

configurations. 

 

Although Figure 5.10 only illustrates CDCMGs formed from radial flux coaxial 

gears, the CDCMG can be implemented with other coaxial topologies, such as axial or 

transverse flux gears, or even with a combination of two stages of different topologies.  

Additionally, there are multiple different ways to connect the two stages in a CDCMG, 

but the Free Spinning Rotor 3 (FSR3) configuration shown in Figure 5.10(a) and the 

Free Spinning Rotor 2 (FSR2) configuration shown in Figure 5.10(b) will generally 

provide the highest gear ratio.  In the FSR3 configuration, the high speed shaft is 

connected to Rotor 1 in both stages, the Rotor 3s of the two stages are connected 

together and allowed to rotate freely, the Rotor 2 of Stage A is fixed in place, and the 

Rotor 2 of Stage B is connected to the low speed shaft.  Similarly, in the FSR2 

configuration, the high speed shaft is connected to Rotor 1 in both stages, the Rotor 2s of 
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the two stages are connected together and allowed to rotate freely, the Rotor 3 of Stage 

A is fixed in place, and the Rotor 3 of Stage B is connected to the low speed shaft.  For 

the FSR3 configuration, applying (4) to Stage A results in (27), which relates the angular 

velocity of both Rotor 3s (ω3) to the angular velocity of the high speed shaft (ωHS).  

Applying (4) and (27) to Stage B yields (28), which relates the the angular velocity of 

the low speed shaft (ωLS) to that of the high speed shaft.  Thus, the net gear ratio of the 

FSR3 configuration is given by (29).  Alternatively, the net gear ratio can be expressed 

as (30), where GA and GB are the gear ratios of Stage A and Stage B, as defined by (6).  

Thus, the net gear ratio of the CDCMG is essentially related to the product of the two 

single-stage gear ratios (GA – 1 is the single-stage gear ratio of Stage A if the modulators 

are held stationary and Rotor 3 is allowed to rotated), divided by the difference between 

the two single-stage gear ratios. 

ω3 = 
-P1A

P3A

 ∙ ωHS (27) 

ωLS = (
P1B

Q
2B

 - 
P3B ∙ P1A

Q
2B

 ∙ P3A

)  ∙ ωHS (28) 

FSR3 Gear Ratio = 
ωHS

ωLS

 = (
P1B

Q
2B

 - 
P3B ∙ P1A

Q
2B

 ∙ P3A

)

-1

 (29) 

FSR3 Gear Ratio = 
ωHS

ωLS

 = 
(GA - 1) ∙ GB

GA - GB

 (30) 

A similar analysis for the FSR2 configuration yields (31).  The FSR2 

configuration’s gear ratio can also be expressed as (32). 
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FSR2 Gear Ratio = 
ωHS

ωLS

 = (
Q

2B
 ∙ P1A

Q
2A

 ∙ P3B

 - 
P1B

P3B

)

-1

 (31) 

FSR2 Gear Ratio = 
ωHS

ωLS

 = 
(GB - 1) ∙ GA

GB - GA

 (32) 

From (30) and (32), it is evident that the CDCMG’s net gear ratio can be 

increased by increasing the gear ratios of the two stages and by decreasing the difference 

between the gear ratios of the two stages.  However, increasing the gear ratio of each 

stage reduces the GTD of each stage.  On the other hand, as shown in Figure 5.3, lower 

gear ratios favor higher Rotor 1 pole counts, and, as indicated by (6), higher Rotor 1 pole 

counts allow for smaller increments of change in the gear ratio, which makes it possible 

to achieve smaller differences between the gear ratios of the two stages.  Additionally, 

from (30) and (32), it is evident that the gear ratio of the FSR2 configuration is the same 

as that of the FSR3 configuration with Stages A and B interchanged; this means that 

both configurations can achieve the same gear ratios.  However, the FSR3 configuration 

has an advantage with respect to GTD because the low speed shaft is connected to Rotor 

2B, which has a higher slip torque than Rotor 3B.  The ratio of the slip torques for these 

two configurations is RB/(RB-1), which is especially significant if RB is relatively small.  

Finally, (30) and (32) both indicate that if the gear ratios of the two stages are the same, 

then the CDCMG will ideally have an infinite gear ratio.  In this case, the low speed 

shaft will have non-zero steady-state velocity only when slipping, and the high speed 

shaft will rotate freely, decoupled from the low speed shaft. 

To illustrate the ability of the CDCMG to simultaneously achieve a high gear 

ratio and a relatively high GTD, an example radial flux CDCMG with a very aggressive 
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gear ratio is presented, with the two stages connected in the FSR3 configuration.  The 

parameters of Stages A and B are given as Design 1 in Table 5.3.  Additionally, Design 

2 is given as a design example with a less aggressive gear ratio.  Both design examples 

are rated for a low speed slip torque of 1000 N∙m.  As in the previous sections, each 

design was optimized for the specified pole counts in Table 5.3 using 2D FEA; then, 

each stage was evaluated at the stack lengths in Table 5.2 using 3D FEA, and the correct 

stack lengths were interpolated from the torques at the simulated stack lengths. 

 

Table 5.3 CDCMG Design Examples. 

Name 
Design 1 Design 2 Units 

Stage A Stage B Stage A Stage B  
P1 17 19 8 9  

Q2 52 58 58 64  

P3 35 39 50 55  

G 3.059 3.053 7.25 7.11  

ROut 150 150 150 150 mm 

TBI1 5.0 5.0 6.9 6.0 mm 

TPM1 6.7 5.4 9.4 8.4 mm 

TAG 1 1 1 1 mm 

TMods 5.0 5.0 5.2 5.0 mm 

kPM 0.80 0.78 0.51 0.52  

TBI3 5.0 5.0 5.0 5.0 mm 

αPM1 0.86 0.94 0.79 0.75  

αMods 0.55 0.54 0.50 0.46  

αPM3 0.92 0.95 0.93 0.84  

LStack 63.1 66.8 78.4 84.4 mm 

GTD 103.4 104.3 75.6 78.5 N∙m/kg 

Net Gear Ratio 1015 320  

Net GTD 52.0 38.6 N∙m/kg 
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Design 1 combines two single-stage coaxial magnetic gears with gear ratios of 

3.059 and 3.053 to achieve a net gear ratio of 1015 with a net GTD of 52.0 N∙m/kg.  For 

comparison, as indicated by the information in Figure 5.1 and Figure 5.6, a single-stage 

gear and a two stage series connected gear are generally incapable of practically 

achieving this high of a gear ratio with realistic magnet and modulator pole piece sizes 

and acceptable torque ripple characteristics.  The largest gear ratio achieved by a two 

stage series connected gear considered in this study is 981.8 and that design only 

exhibits a GTD of 33.8 N∙m/kg (with extremely high and relatively impractical single-

stage gear ratios of 31.333 for both stages).  Three and four stage series connected gears 

can achieve comparably high gear ratios over 1000, while maintaining high GTDs of 

66.7 N∙m/kg and 68.2 N∙m/kg, respectively, but they require the added complexity 

associated with the additional gearing stages.  Thus, the CDCMG is capable of achieving 

a very large net gear ratio with just two stages of relatively low gear ratios, while 

simultaneously maintaining a reasonable GTD.  Alternatively, Design 2 combines two 

stages with gear ratios of 7.25 and 7.11 to achieve a much lower net gear ratio of 320 

with a net GTD of 38.6 N∙m/kg.  This performance is quite achievable with a two stage 

series connected gear, but the CDCMG does have a slight advantage in the fact that each 

of its stages uses a lower gear ratio than what would be required in the stages of a series 

multistage solution. 

However, the CDCMG suffers from poor efficiency.  As shown in Figure 5.11, at 

speeds above 1 rpm, Design 1 is less than 10% efficient and Design 2 is less than 50% 

efficient.  This poor efficiency occurs because power circulates between the two stages, 
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which means that each stage handles significantly more power than the amount 

transferred from the input shaft to the output shaft.  Thus, even though the individual 

stages may have high efficiencies at their operating points, the net efficiency may be 

much lower than the product of the efficiencies of the two stages. 

 

 

Figure 5.11 Full load electromagnetic efficiencies for CDCMG Designs 1 and 2 in 

Table 5.3. 

 

The circulating power travels through the magnetic fields of Stage A, through the 

mechanical connection of the free spinning rotor between the two stages, through the 

magnetic fields of Stage B, and then through the mechanical connection of the high 

speed shaft between the stages.  The power transferred between the stages through the 

free spinning rotor, PFSR, is given by (33), where τ1A is the torque on the high speed shaft 

from Stage A (assuming negligible electromagnetic losses in Stage A).  In the FSR3 
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configuration, for there to be no steady-state net torque on the free spinning rotor, the 

torque on the high speed shaft from Stage B, τ1B, must be given by (34), assuming that 

the ratio of the torques between two rotors is given by the gear ratio between them.  

(This assumption is correct in the case of lossless transmission in each stage.)  Thus, the 

net power on the high speed shaft, PHS, is given by (35).  If GA < GB, the circulating 

power, Pcirc, is the difference between PFSR and PHS and is given by (36).  However, if GA 

> GB, the circulating power is simply PFSR, which is given by (37). 

PFSR = ωHS ∙ τ1A (33) 

τ1B = 
GA - 1

GB - 1
 ∙ τ1A (34) 

PHS = ωHS ∙ (τ1A+τ1B) = (1 - 
GA - 1

GB - 1
)  ∙ PFSR (35) 

Pcirc = PFSR - PHS = (
GA - 1

GB - GA

)  ∙ PHS (36) 

Pcirc = PFSR = (
GB - 1

GB - GA

)  ∙ PHS (37) 

A similar analysis can be performed for the FSR2 configuration where GA – 1 

and GB – 1 would be replaced with GA and GB, respectively.  This analysis reveals a 

tradeoff involved in the selection of the gear ratios; as the difference between GA and GB 

decreases, the net gear ratio increases, but the efficiency also tends to decrease.  As an 

example, Design 1 uses a smaller difference between GA and GB than Design 2 to 

achieve a higher net gear ratio, despite employing stages with smaller individual gear 

ratios, but Design 1 suffers from much higher losses.  Additionally, if the difference 

between GA and GB is small, torque ripple may become a significant concern because the 
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average net torque on the high speed shaft will be much smaller than the torques from 

each of the two stages. 

The low efficiency caused by this circulating power makes the CDCMG 

impractical for most applications.  However, at very low speeds, the efficiency is not as 

abysmal, so the CDCMG might be a reasonable solution for applications with very low 

speeds where efficiency is not one of the most important performance metrics, such as a 

solar tracking system or a system to raise a drawbridge.  Additionally, the CDCMG’s 

use of lower single-stage gear ratios eliminates the need for an excessive number of 

modulators or Rotor 3 pole pairs.  This provides more flexibility to pursue strategies to 

improve efficiency or reduce torque ripple, such as using a Halbach array on Rotor 3. 

5.4. Conclusion 

This study evaluates three different options for achieving a high gear ratio using 

coaxial radial flux magnetic gears with surface permanent magnets.  First, the gear ratio 

of a single-stage magnetic gear can be increased by increasing the ratio of the number of 

modulators to the number of pole pairs on the high speed rotor.  However, as the gear 

ratio increases, both gravimetric torque density (GTD) and efficiency tend to decrease.  

Additionally, practical constraints limit the number of modulators and pole pairs that can 

be used, which limits the maximum gear ratio that can realistically be achieved.  Second, 

multistage magnetic gearboxes can be formed by connecting single-stage designs in 

series.  Connecting more gear stages in series allows a design to achieve very high gear 

ratios with a smaller reduction in GTD at the expense of increased complexity.  To 

achieve a high GTD in a multistage gearbox, it is optimal to use a design with a 
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relatively low gear ratio and a high GTD for the first stage connected directly to the low 

speed shaft.  Because the other stages operate at much lower torques, they are much 

smaller and have less impact on the net GTD of the design.  Third, the CDCMG can be 

formed by interconnecting two single-stage coaxial magnetic gears as shown in Figure 

5.10.  This allows the CDCMG to achieve a much higher net gear ratio than the product 

of the gear ratios of the two stages.  However, a significant amount of power circulates 

between these two stages, which results in a very low efficiency except at extremely low 

operating speeds. 

This study provides an initial analysis of these three different means of achieving 

a high gear ratio.  There are significant opportunities for further analysis in this area.  

This study only considers coaxial radial flux magnetic gears with surface permanent 

magnets.  Although the trends presented in this section will generally apply to other 

types of coaxial magnetic gears, future work could evaluate these trends more precisely 

for other types of coaxial magnetic gears.  Furthermore, the fabrication and testing of 

prototype multistage magnetic gearboxes or CDCMGs would be a significant 

contribution.  Finally, a CDCMG could be designed to achieve a higher efficiency using 

techniques to reduce losses, such as using Halbach arrays. 
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6. NONLINEAR ANALYSIS OF MAGNETIC GEAR DYNAMICS USING 

SUPERPOSITION AND CONSERVATION OF ENERGY* 

 

The previous sections have considered magnetic gears in terms of their slip 

torques and gear ratios.  However, the dynamic behavior of a magnetic gear is also 

important in many applications, and this behavior is influenced by various design 

parameters. 

The noncontact nature of magnetic gearing is responsible for many of magnetic 

gears’ potential benefits, such as reduced maintenance requirements, improved 

reliability, reduced acoustic noise, and inherent overload protection, but it also 

introduces some challenges.  First, if torque is applied too suddenly or if too much 

torque is applied, the magnetic gear can slip, decoupling the rotation of the two shafts.  

While slipping is often better than the permanent damage that can occur if too much 

torque is applied to a mechanical gear, it is still desirable to avoid slipping when 

possible.  Second, the magnetic coupling between the two rotors is not as stiff as the 

coupling in a mechanical gear.  This can result in a quite underdamped system, 

especially if the magnetic gear is very efficient [61], [62], [63].  Third, the torque on 

both rotors is a nonlinear function of their positions [61], [62], [63], [64].  Many papers 

on the dynamics or control of magnetic gears linearize the system around an operating 

point [61], [63].  However, this becomes inaccurate when there is a significant change in 



 

146 

 

torques [64].  Other papers employ numerical time-stepping models to accurately model 

the nonlinearity [62], but this provides less intuition and insight into the dynamic 

behavior of magnetic gears.  This section provides a nonlinear analytical model for the 

dynamic behavior of magnetically geared systems and presents relevant insights into 

parameters affecting this behavior. 

6.1. Magnetic Gear Dynamic Model 

As in [61], [63], [64], a magnetic gear can be dynamically modeled as two 

inertias separated by two ideal gearboxes and a nonlinear torsional spring, as shown in 

Figure 6.1 and described by (38) and (39), where Jh, ωh, Bh, ph, and θh are the moment of 

inertia, angular velocity, viscous friction coefficient, pole pair count, and angular 

position of the high speed side, Jl, ωl, Bl, pl, and θl are the same quantities for the low 

speed side, TM is the torque provided by the machine connected to the high speed rotor 

(HSR), TL is the torque of the load connected to the low speed rotor (LSR), and TC is the 

gear’s characteristic torque, which is defined as the slip torque on either rotor divided by 

the number of pole pairs on that rotor.  The torque angle, θT, is defined by (40) and 

determines the magnetic torque produced by the gear.  These equations can describe 

several different types of magnetic gears, including coaxial, spur, and cycloidal 

topologies, with the appropriate choices of ph and pl, which should result in a gear ratio, 

G = pl/ph.  One of the pole pair counts may be the number of modulators for a coaxial 

gear [3], [56] or simply 1 in the case of a cycloidal gear [19].  Additionally, in cases 

where the rotors rotate in opposite directions, ph or pl should be negative [3], [17]. 
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Jh

dωh

dt
 = TM - Bhωh - p

h
TC sin(p

h
θh - p

l
θl) (38) 

Jl

dωl

dt
 = TL - Blωl + p

l
TC sin(p

h
θh - p

l
θl) (39) 

θT = p
h
θh - p

l
θl (40) 

 

 

Figure 6.1 Magnetic gear dynamic model. 

 

As in [65], the system can be transformed by referring the HSR and LSR 

quantities through the ideal gearboxes.  This produces the model described by (41) and 

(42), where the HSR and LSR side quantities have been referred through the ideal 

gearboxes, according to (43), (44), (45), (46), (47), (48), (49), (50), (51), and (52).  This 

model is effectively analogous to a magnetic coupling or a magnetic gear with a 1:1 gear 

ratio, and is illustrated in Figure 6.2. 

Jh
' dωh

'

dt
 = TM

'  - Bh
' ωh

'  - TC sin(θh
'
 - θl

' ) (41) 

Jl
' dωl

'

dt
 = TL

'  - Bl
' ωl

'  + TC sin(θh
'
 - θl

' ) (42) 

Jh
'  = 

Jh

p
h
2
 (43) 

TM
'  = 

TM

p
h

 (44) 
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Bh
'  = 

Bh

p
h
2

 (45) 

ωh
'  = ωhp

h
 (46) 

θh
'
 = θhp

h
 (47) 

Jl
'  = 

Jl

p
l
2
 (48) 

TL
'  = 

TL

p
l

 (49) 

Bl
'  = 

Bl

p
l
2
 (50) 

ωl
'  = ωlpl

 (51) 

θl
'
 = θlpl

 (52) 

 

 

Figure 6.2 Magnetic gear dynamic model transformed to 1:1 gear ratio. 

 

6.1.1. Superposition of Rigid Body and Fixed Center Motion 

It is assumed that the viscous friction on each rotor is proportional to its inertia, 

as described by (53), (or that the design is relatively efficient and the friction on each 

rotor can be neglected).  Then, using superposition, the motion of the gear can be 

decomposed into the sum of the motions of the two systems shown in Figure 6.3 and 

Figure 6.4, with the torques given by (54), (55), and (56). 
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Bh
'

Jh
'

 = 
Bl

'

Jl
'
 (53) 

Th
RB = 

(TM
'  + TL

' )Jh
'

Jh
'  + Jl

'
 (54) 

Tl
RB = 

(TM
'  + TL

' )Jl
'

Jh
'  + Jl

'
 (55) 

TFC = 
TM

' Jl
'  - TL

' Jh
'

Jh
'  + Jl

'
 (56) 

 

 

Figure 6.3 Rigid body motion component of the magnetic gear dynamic model. 

 

 

Figure 6.4 Fixed center motion component of the magnetic gear dynamic model. 

 

This superposition satisfies the conditions given in (57), (58), (59), (60), (61), 

and (62). 

TM
'  = Th

RB + TFC (57) 

TL
'  = Tl

RB - TFC (58) 

ωh
'  = ωRB + ωh

FC (59) 
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ωl
'  = ωRB - ωl

FC (60) 

θh
'
 = θh

RB
 + θh

FC (61) 

θl
'
 = θl

RB
 - θl

FC (62) 

Since both rotors in Figure 6.3 have the same acceleration, which is given by 

(63), and the initial conditions presume that both rotors in Figure 6.3 have the same 

initial speeds and angles, both inertias in Figure 6.3 have the same speeds and angles as 

each other at all times.  Thus, the rigid body torque angle, θh
RB

 - θl
RB

, is always zero, and 

the nonlinear spring torque in Figure 6.3 is always zero.  Since this rigid body motion 

does not affect the system’s torque angle, superposition can isolate the rigid body motion 

of Figure 6.3 from the torque angle changes occurring in Figure 6.4 without violating the 

system’s nonlinearity. 

αRB = 
Th

RB - Bh
' ωRB

Jh
'

 = 
Tl

RB - Bl
' ωRB

Jl
'

 (63) 

Since equal and opposite torques are applied to the two shafts in Figure 6.4, the 

net torque is always zero.  Thus, the system can be represented as the motion of each 

rotor relative to a fixed point, as shown in Figure 6.5.  This is analogous to the fixed 

center of mass in a system with zero net force.  As the same torque is applied to Jh
'  and 

Jl
' , their accelerations, αh

FC and αl
FC, are inversely proportional to their respective inertias, 

as described by (64).  Thus, the condition given by (65) will hold true at all times if it is 

valid at the initial time.  Therefore, each side of Figure 6.5 can be transformed to the 

torque angle reference frame in Figure 6.6 with the new quantities in the torque angle 

reference frame defined by (66), (67), (68), and (69).  Thus, the behavior of the torque 
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angle, which is critical to the analysis of both slipping and the gear’s oscillations, can be 

evaluated in terms of the dynamics of a single inertia connected to a fixed point by a 

nonlinear spring. 

αh
FC

αl
FC

 = 
Jl

'

Jh
'
 (64) 

ωh
FC

ωl
FC

 = 
θh

FC

θl
FC

 = 
Jl

'

Jh
'
 (65) 

θT = θh
FC

∙ (1 + 
Jh

'

Jl
'
)  = 

θh
FC

∙(Jh
'  + Jl

' )

Jl
'

 = θl
FC

∙ (1 + 
Jl

'

Jh
'
)  = 

θl
FC

∙(Jh
'  + Jl

' )

Jh
'

 (66) 

ωT = ωh
FC∙ (1 + 

Jh
'

Jl
'
)  = 

ωh
FC∙(Jh

' +Jl
' )

Jl
'

 = ωl
FC∙ (1 + 

Jl
'

Jh
'
)  = 

ωl
FC ∙(Jh

'  + Jl
' )

Jh
'

 (67) 

JT = 
Jh

' Jl
'

Jh
'  + Jl

'
 (68) 

BT = 
Bh

' Bl
'

Bh
'  + Bl

'
 (69) 

 

 

Figure 6.5 Both the HSR and the LSR represented as moving relative to a fixed 

center of inertia. 
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Figure 6.6 Both the HSR and the LSR transformed to the torque angle reference 

frame. 

 

6.1.2. Conservation of Energy 

This system could be evaluated by linearizing the spring about an operating point 

and solving in the frequency domain, but, if the losses are assumed to be negligible, the 

conservation of energy principle yields an approach that preserves the nonlinearity.  For 

the torque angle reference frame of Figure 6.6, energy enters or leaves the system as TFC 

is applied and the inertia rotates.  Energy is also converted between the rotational kinetic 

energy of the inertia and the potential energy of the spring.  If TFC is known as a function 

of the torque angle, the kinetic energy can be determined as a function of the torque 

angle.  Figure 6.7 illustrates this for the case where the gear is initially in steady-state at 

a torque angle of θT
i
, and TFC suddenly increases.  In Figure 6.7, the rotational kinetic 

energy at a torque angle of θ can be found by subtracting the area under the nonlinear 

torque curve (the spring’s potential energy) from the area under the step torque curve 

(the input energy).  This can be used to calculate the angular velocity of the rotating 

inertia in Figure 6.6 at any torque angle.  The system will oscillate as energy from the 

external torque enters or leaves the system and is transformed between potential energy 

and kinetic energy.  Any losses in the system will dissipate the energy, and, if it does not 
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slip, it will eventually reach steady-state at the torque angle where the nonlinear spring’s 

torque equals TFC. 

 

 

Figure 6.7 The energy input into the Figure 6.6 system is the area under the step 

torque curve, and the energy stored in the nonlinear spring is the area under the 

nonlinear torque curve.  The kinetic energy of the inertia is the difference between 

these two energies (assuming negligible losses). 

 

6.2. Design Implications 

6.2.1. Effective Inertia Ratio 

Figure 6.4 and (56) indicate that the ratio between Jh
'  and Jl

'  directly determines 

the extent to which the torques on the two sides of the gear impact the torque angle.  To 

quantify these trends, the effective inertia ratio, kJ, is defined by (70).  If the machine 

and the physical load are stiffly connected to the HSR and LSR, respectively, then, Jh 

and Jl should include their respective inertias, in addition to the inertias of the gear’s 
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rotors.  Figure 6.8 shows what portions of the per unit external torques contribute to the 

changes in the torque angle for a given effective inertia ratio.  (The per unit torque on 

each rotor is defined relative to the slip torque of that rotor.)  Thus, kJ significantly 

affects the system’s dynamic performance.  A large kJ means that disturbances in the 

load torque will have less effect on the torque angle, which is advantageous if the load 

torque may change suddenly, but disturbances in the machine torque will cause larger 

torque angle oscillations.  Additionally, with a large kJ, a transient load torque much 

larger than the LSR slip torque may not necessarily cause the gear to slip, if it is not 

opposed by a corresponding torque from the machine.  Alternatively, a small kJ will 

make the gear’s oscillatory and slipping behavior more susceptible to the load torque and 

less susceptible to the machine torque, which could be advantageous if the machine has a 

high torque ripple and the load changes relatively slowly.  Furthermore, kJ determines 

how much of the oscillations appear in θh
FC

 and θl
FC

.  Increasing kJ will increase the 

extent of oscillations on the HSR while reducing the extent of oscillations on the LSR.  

Thus, when selecting the gear ratio, the designer must consider both the gear ratio’s 

impact on the overall size of the system [5], [66] and its impact on the system’s dynamic 

behavior. 

kJ = 
Jl

JhG
2

 = 
Jl

'

Jh
'
 (70) 
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Figure 6.8 The impact of kJ on how much the per unit (relative to the slip torques of 

their respective rotors) machine torque and load torque contribute to TFC. 

 

6.2.2. Responses to Step Changes in Torque 

The conservation of energy approach has two significant limitations.  First, the 

torques must be known as a function of position, rather than time, and, second, it 

assumes that the losses are negligible.  However, this approach can still address one 

significant issue: whether a given step change in torque on either side of the gear will 

cause it to slip.  With a step change in torque, the torque is known with respect to 

position.  Also, magnetic gears are often quite underdamped, so very little energy is lost 

by the time the gear reaches the maximum extent of its torque angle oscillation for the 

first time after the step change [61], [62].  The maximum torque angle reached, θT
m

, is the 

angle at which the kinetic energy of the rotating inertia reaches 0, which is where the 

energy input into the Figure 6.6 system equals the change in the energy stored in the 

nonlinear spring, as given by (71), where the torque angle was initially in steady-state at 

θT
i
.  In the case of a step change in torque, (71) becomes (72), where TFC is the torque in 
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Figure 6.6 after the step change.  This is equivalent to finding the angle where the areas 

under the step torque and the nonlinear torque curves in Figure 6.7 are equal.  The trivial 

solution, θT
m

 = θT
i
, is the minimum boundary of the oscillation, which is the initial torque 

angle.  The nontrivial solution of (72) gives the maximum boundary of the oscillation.  If 

no nontrivial solution exists, the gear will slip.  To check this, the kinetic energy can be 

evaluated at the torque angle between π/2 and 3π/2 where TFC is equal to the nonlinear 

spring torque, defined as θT
slip

 in (73).  For the gear not to slip, TFC must be less than TC, 

and the condition given in (74) must also be true. 

∫ TFCdθT

θT
m

θT
i

 = ∫ TC sin(θT) dθT

θT
m

θT
i

 (71) 

TFC∙(θT
m

 - θT
i ) = TC∙(cos(θT

i )  - cos(θT
m)) (72) 

θT
slip

 = π - sin
-1 (

TFC

TC

) (73) 

(θT
slip

 - θT
i ) < 

TC

TFC
∙(cos(θT

i )  - cos(θT
slip

)) (74) 

The angular velocity of the inertia in the torque angle reference frame can be 

determined as a function of the torque angle from the inertia’s kinetic energy, according 

to (75), assuming that losses are negligible.  The angular velocity in the torque angle 

reference frame can be transformed back to the Figure 6.1 model to determine the 

angular velocities of the oscillations on each rotor.  If the step change in torque does not 

cause the gear to slip, the maximum angular velocity in the torque angle reference frame, 

ωT
max, occurs at the torque angle between -π/2 and π/2 where the torque from the 
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nonlinear spring is equal to TFC.  This angle is given as θT
eq

 in (76).  The maximum 

angular velocity in the torque angle reference frame is given by (77). 

ωT(θT) = ±√
2

JT

∫ (TFC - TC sin(θ))dθ

θT

θT
i

 (75) 

θT
eq

 = sin
-1 (

TFC

TC

) (76) 

ωT
max = √

2∙ (TFC∙(θT
eq

 - θT
i ) - TC∙(cos(θT

i )  - cos(θT
eq

)))

JT

 (77) 

With the velocity known as a function of the torque angle, the frequency of 

oscillation can be calculated as fo in (78), using the positive sign in (75).  Similar 

equations can be derived for cases where changing TFC decreases the torque angle. 

fo = (2 ∫
1

ωT(θT)
dθT

θT
m

θT
i

)

-1

 (78) 

6.3. Model Validation 

The proposed nonlinear model is used to evaluate a scenario where the external 

torque applied to the HSR is suddenly changed to various per unit values starting from 

different initial steady-state torque angles.  The external torque on the LSR is kept at its 

initial value.  The magnitude of the torque angle oscillation, the maximum angular 

velocity of the inertia in the torque angle reference frame, and the oscillation frequency 

are calculated using (72), (77), and (78), respectively.  Three values of kJ are considered.  

In each case, JT is set to 1 pu where, in the torque angle reference frame, the base torque, 

base time, and base angle are TC, 1 s, and 1 rad, respectively.  The base torque for each 
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rotor is the slip torque of that rotor.  The results are compared against those produced by 

a Simulink model with the same parameters, which is shown in Figure 6.9.  The 

proposed model and the Simulink model both assume that the torque is a sinusoidal 

function of the torque angle, but, in an actual magnetic gear, harmonics produce torque 

ripples on the rotors.  Thus, transient finite element analysis (FEA) is used to evaluate 

three different coaxial magnetic gear designs, FEA 1, FEA 2, and FEA 3, with gear 

ratios of -2.053:1, -12.33:1, and -12:1, respectively, which have their cross-sections 

depicted in Figure 6.10.  Figure 6.11, Figure 6.12, and Figure 6.13 show the torque angle 

curves of these designs.  FEA 1’s torque angle curves are very sinusoidal due to the high 

least common multiple of the pole counts [3].  However, due to its integer gear ratio, 

FEA 3’s HSR torque angle curve is more distorted.  FEA 2’s torque angle curve is more 

distorted than that of FEA 1 but less distorted than that of FEA 3.  For the FEA, eddy 

effects in the NdFeB N42 magnets and core losses in the M47 modulators and back irons 

also affect the torques on the two rotors.  In each case, both rotors are assumed to be 

initially stationary.  A model linearized about the initial torque angle is also used to 

evaluate the designs. 
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Figure 6.9 The Simulink model used for comparison in this study. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 6.10 Cross-sections of the (a) FEA 1, (b) FEA 2, and (c) FEA 3 coaxial 

magnetic gear designs. 
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Figure 6.11 Torque angle curves of the FEA 1 design. 

 

 

Figure 6.12 Torque angle curves of the FEA 2 design. 
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Figure 6.13 Torque angle curves of the FEA 3 design. 

 

Table 6.1 and Table 6.2 compare the results for each of the different analysis 

methods with kJ = 0.25, Table 6.3 and Table 6.4 compare the results with kJ = 1, and 

Table 6.5 and Table 6.6 compare the results with kJ = 4.  In these tables the red areas 

indicate cases that cause the gear to slip.  These tables also show the percentages of the 

cases in which the proposed model agrees with each of the other models about whether 

the gear will slip.  For the cases that both models agree will not slip, the tables provide 

the average value of the absolute difference between the quantities predicted by the two 

models.  For the linearized model, the gear is assumed to slip if it reaches the same 

torque angle as would cause slipping in the nonlinear model (π - sin
-1

(TFC/TC)). 
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Table 6.1 Analysis Methods Oscillation Comparison with kJ = 0.25 and BT = 0. 
Model Slip Prediction Agreement Torque Angle Oscillation (deg) 

Proposed N/A 

 

Simulink 100.0% 

 
Average Discrepancy = 0.0 deg 

FEA 1 99.7% 

 
Average Discrepancy = 0.5 deg 

FEA 2 98.8% 

 
Average Discrepancy = 4.0 deg 

FEA 3 98.7% 

 
Average Discrepancy = 4.4 deg 

Linearized 85.3% 

 
Average Discrepancy = 12.4 deg 
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Table 6.2 Analysis Methods Frequency and Velocity Comparison with kJ = 0.25 and 

BT = 0. 
Model Maximum Angular Velocity (pu) Oscillation Frequency (pu) 

Proposed 

  

Simulink 

  
Average Discrepancy = 0.000 pu Average Discrepancy = 0.000 pu 

FEA 1 

  
Average Discrepancy = 0.004 pu Average Discrepancy = 0.000 pu 

FEA 2 

  
Average Discrepancy = 0.024 pu Average Discrepancy = 0.008 pu 

FEA 3 

  
Average Discrepancy = 0.032 pu Average Discrepancy = 0.010 pu 

Linearized 

  
Average Discrepancy = 0.032 pu Average Discrepancy = 0.015 pu 
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Table 6.3 Analysis Methods Oscillation Comparison with kJ = 1 and BT = 0. 
Model Slip Prediction Agreement Torque Angle Oscillation (deg) 

Proposed N/A 

 

Simulink 100.0% 

 
Average Discrepancy = 0.0 deg 

FEA 1 99.8% 

 
Average Discrepancy = 0.4 deg 

FEA 2 99.2% 

 
Average Discrepancy = 4.0 deg 

FEA 3 98.5% 

 
Average Discrepancy = 4.1 deg 

Linearized 82.4% 

 
Average Discrepancy = 12.4 deg 
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Table 6.4 Analysis Methods Frequency and Velocity Comparison with kJ = 1 and 

BT = 0. 
Model Maximum Angular Velocity (pu) Oscillation Frequency (pu) 

Proposed 

  

Simulink 

  
Average Discrepancy = 0.000 pu Average Discrepancy = 0.000 pu 

FEA 1 

  
Average Discrepancy = 0.004 pu Average Discrepancy = 0.001 pu 

FEA 2 

  
Average Discrepancy = 0.028 pu Average Discrepancy = 0.005 pu 

FEA 3 

  
Average Discrepancy = 0.033 pu Average Discrepancy = 0.021 pu 

Linearized 

  
Average Discrepancy = 0.032 pu Average Discrepancy = 0.015 pu 
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Table 6.5 Analysis Methods Oscillation Comparison with kJ = 4 and BT = 0. 
Model Slip Prediction Agreement Torque Angle Oscillation (deg) 

Proposed N/A 

 

Simulink 100.0% 

 
Average Discrepancy = 0.0 deg 

FEA 1 100.0% 

 
Average Discrepancy = 0.4 deg 

FEA 2 98.8% 

 
Average Discrepancy = 3.7 deg 

FEA 3 98.6% 

 
Average Discrepancy = 5.1 deg 

Linearized 86.6% 

 
Average Discrepancy = 12.4 deg 
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Table 6.6 Analysis Methods Frequency and Velocity Comparison with kJ = 4 and 

BT = 0. 
Model Maximum Angular Velocity (pu) Oscillation Frequency (pu) 

Proposed 

  

Simulink 

  
Average Discrepancy = 0.000 pu Average Discrepancy = 0.000 pu 

FEA 1 

  
Average Discrepancy = 0.006 pu Average Discrepancy = 0.001 pu 

FEA 2 

  
Average Discrepancy = 0.036 pu Average Discrepancy = 0.004 pu 

FEA 3 

  
Average Discrepancy = 0.054 pu Average Discrepancy = 0.037 pu 

Linearized 

  
Average Discrepancy = 0.032 pu Average Discrepancy = 0.015 pu 
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Table 6.1, Table 6.2, Table 6.3, Table 6.4, Table 6.5, and Table 6.6 show that the 

proposed model agrees very well with the Simulink model and with the FEA 1 model.  

However, for the FEA 2 and FEA 3 models, the torque ripple in the torque angle curves 

produces some discrepancies in the oscillation frequency and maximum angular velocity 

in the torque angle reference frame, especially when the applied torque does not change 

very much and the behavior of the system is dominated by the torque ripple, rather than 

the change in applied torque.  Both the proposed model and the Simulink model fail to 

accurately capture the behavior for these cases because the discrepancies result from the 

assumption that the torques are a perfectly sinusoidal function of the torque angle.  

Therefore, the only way to accurately account for this behavior is to incorporate the 

torque ripples into the model.  Nonetheless, the proposed model still achieves very good 

agreement with FEA 2 and FEA 3 about which cases will cause the gear to slip.  The 

linearized model correlates fairly well with the Simulink model and FEA 1 when the 

change in applied torque is small.  However, the linearized model becomes quite 

inaccurate for larges changes in applied torque and incorrectly predicts whether the gear 

will slip for over 13% of the cases. 

Table 6.1, Table 6.2, Table 6.3, Table 6.4, Table 6.5, and Table 6.6 also illustrate 

that with small kJ values, much larger torques can be applied to the HSR without 

slipping the gear.  If the gear is driven by a motor on the HSR, this would allow the 

motor to rapidly accelerate the gear by applying torques larger than the HSR slip torque 

while the gear is accelerating.  The tables also illustrate that the oscillation frequency 

depends on both the starting torque angle and the change in applied torque.  Because the 
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nonlinear spring is stiffest at a torque angle of 0, the oscillation frequency is highest 

when the torque angle oscillates near 0, but the oscillation frequency becomes lower 

when the gear is close to slipping.  However, for designs with large torque ripples, such 

as FEA 2 and FEA 3, the torque ripple significantly affects the oscillation frequency if 

the change in applied torque is small.  This torque ripple is the reason that there is a 

diagonal band of higher frequencies around the line where the HSR torque equals the 

initial torque on the oscillation frequency plots for the FEA 3 model 

In Table 6.1, Table 6.2, Table 6.3, Table 6.4, Table 6.5, and Table 6.6, the FEA 

models incorporate the effects of eddy currents and core losses, but viscous friction is 

assumed to be negligible in all cases.  To illustrate the impact of viscous friction on the 

proposed model’s accuracy, Table 6.7, Table 6.8, Table 6.9, Table 6.10, Table 6.11, and 

Table 6.12 compare the proposed model, which assumes the losses are negligible, 

against the Simulink and FEA models with BT = 0.1 pu.  Eddy current losses and core 

losses are again included in the FEA models. 
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Table 6.7 Analysis Methods Oscillation Comparison with kJ = 0.25 and BT = 0.1 pu. 
Model Slip Prediction Agreement Torque Angle Oscillation (deg) 

Proposed N/A 

 

Simulink 95.9% 

 
Average Discrepancy = 6.3 deg 

FEA 1 95.6% 

 
Average Discrepancy = 6.3 deg 

FEA 2 96.5% 

 
Average Discrepancy = 6.1 deg 

FEA 3 96.5% 

 
Average Discrepancy = 6.4 deg 
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Table 6.8 Analysis Methods Frequency and Velocity Comparison with kJ = 0.25 and 

BT = 0.1 pu. 
Model Maximum Angular Velocity (pu) Oscillation Frequency (pu) 

Proposed 

  

Simulink 

  
Average Discrepancy = 0.039 pu Average Discrepancy = 0.003 pu 

FEA 1 

  
Average Discrepancy = 0.039 pu Average Discrepancy = 0.003 pu 

FEA 2 

  
Average Discrepancy = 0.052 pu Average Discrepancy = 0.007 pu 

FEA 3 

  
Average Discrepancy = 0.055 pu Average Discrepancy = 0.010 pu 
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Table 6.9 Analysis Methods Oscillation Comparison with kJ = 1 and BT = 0.1 pu. 
Model Slip Prediction Agreement Torque Angle Oscillation (deg) 

Proposed N/A 

 

Simulink 94.8% 

 
Average Discrepancy = 6.2 deg 

FEA 1 94.9% 

 
Average Discrepancy = 6.2 deg 

FEA 2 95.5% 

 
Average Discrepancy = 6.1 deg 

FEA 3 95.2% 

 
Average Discrepancy = 6.5 deg 
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Table 6.10 Analysis Methods Frequency and Velocity Comparison with kJ = 1 and 

BT = 0.1 pu. 
Model Maximum Angular Velocity (pu) Oscillation Frequency (pu) 

Proposed 

  

Simulink 

  
Average Discrepancy = 0.038 pu Average Discrepancy = 0.003 pu 

FEA 1 

  
Average Discrepancy = 0.037 pu Average Discrepancy = 0.003 pu 

FEA 2 

  
Average Discrepancy = 0.053 pu Average Discrepancy = 0.006 pu 

FEA 3 

  
Average Discrepancy = 0.057 pu Average Discrepancy = 0.021 pu 
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Table 6.11 Analysis Methods Oscillation Comparison with kJ = 4 and BT = 0.1 pu. 
Model Slip Prediction Agreement Torque Angle Oscillation (deg) 

Proposed N/A 

 

Simulink 93.6% 

 
Average Discrepancy = 6.2 deg 

FEA 1 93.5% 

 
Average Discrepancy = 6.0 deg 

FEA 2 94.5% 

 
Average Discrepancy = 6.0 deg 

FEA 3 93.7% 

 
Average Discrepancy = 6.9 deg 
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Table 6.12 Analysis Methods Frequency and Velocity Comparison with kJ = 4 and 

BT = 0.1 pu. 
Model Maximum Angular Velocity (pu) Oscillation Frequency (pu) 

Proposed 

  

Simulink 

  
Average Discrepancy = 0.039 pu Average Discrepancy = 0.003 pu 

FEA 1 

  
Average Discrepancy = 0.036 pu Average Discrepancy = 0.003 pu 

FEA 2 

  
Average Discrepancy = 0.054 pu Average Discrepancy = 0.005 pu 

FEA 3 

  
Average Discrepancy = 0.063 pu Average Discrepancy = 0.037 pu 
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Table 6.7, Table 6.8, Table 6.9, Table 6.10, Table 6.11, and Table 6.12 show that 

the viscous friction does prevent a few cases from slipping.  Thus, the proposed model 

predicts that some cases would slip where the other models predict that those cases 

would not slip.  Nonetheless, the proposed model still agrees with the each of the other 

models for at least 93.5% of the cases.  Thus, even with BT as high as 0.1 pu, the viscous 

friction has a limited impact on the transient performance of the system immediately 

after the change in applied torque.  Even though the proposed model neglects the viscous 

friction, it can still predict the dynamic response of the system for the first torque angle 

oscillation after a step change in applied torque with reasonable accuracy.  After this first 

oscillation, the losses in the system will gradually damp out the energy in the later 

oscillations.  Therefore, if this first oscillation does not cause the gear to slip, the later 

oscillations will not cause it to slip, unless there is another change in the applied torque. 

6.4. Conclusion 

This section presents a nonlinear approach for evaluating the dynamics of 

magnetic gears.  First, superposition is applied to separate the rigid body motion of the 

two rotors from the motion about a fixed center.  Second, this motion about a fixed 

center is transformed into the torque angle reference frame, which contains a single 

inertia and a single nonlinear torsional spring.  Third, the extent of the torque angle 

oscillations, the maximum angular velocity, and the oscillation frequency are evaluated 

in the torque angle reference frame using the conservation of energy principle for the 

system (assuming losses are negligible).  This approach is verified through comparison 

with Simulink and FEA results.  The proposed model agrees extremely well with the 
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Simulink model and a FEA model with very little torque ripple.  However, for the FEA 

models with larger torque ripples, there are discrepancies between the velocities and 

oscillation frequencies predicted by the proposed approach and those predicted by the 

FEA when the system experiences only a small change in torque.  These discrepancies 

result from the deviation from the assumed perfectly sinusoidal torque angle curves, so 

the only way to eliminate these discrepancies is to include the torque ripple in the model.  

Nonetheless, the proposed model agrees with each FEA model about whether the gear 

will slip for over 98.5% of the cases, and the proposed model is able to analyze cases 

significantly faster than FEA.  On the other hand, a linearized model is shown to be 

inaccurate when there is a significant change in the torque applied to the gear.  Thus, the 

linearized model incorrectly predicts whether the gear will slip for over 13% of the 

cases.  A case with a viscous friction coefficient of 0.1 pu is also evaluated using 

Simulink and FEA, but the viscous friction in this case makes a limited impact on the 

dynamic behavior of the system immediately following a change in the applied torque.  

Even though the proposed model does not consider losses, it still agrees with each FEA 

model for at least 93.5% of the cases when the FEA model considers viscous friction. 

This analysis also reveals that the effective inertia ratio, which depends on the 

gear ratio and the inertias of the two rotors, has a significant impact on the dynamic 

performance of the system.  It determines the extent to which torques applied to each 

rotor affect the torque angle of the gear and the extent to which oscillations of the torque 

angle cause oscillations on each rotor.  A small effective inertia ratio means that the 

torques applied to the LSR will affect the torque angle much more than torques applied 
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to the HSR and that torque angle oscillations will cause more oscillations on the LSR 

than on the HSR, whereas a large effective inertia ratio will have the opposite effects. 
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7. ANALYSIS OF RADIAL FLUX COAXIAL MAGNETIC GEARS WITH 

HALBACH ARRAYS 

 

The previous sections focused on magnetic gears with surface mounted magnets 

magnetized radially for radial flux gears or axially for axial flux gears.  However, other 

strategies have been proposed for magnetic gears, including interior permanent magnets 

[55], flux focusing magnet arrangements [4], [30], [33], [42], [54], [60], and reluctance 

poles [67].  This section focuses on evaluating magnetic gears with Halbach arrays. 

Halbach arrays involve magnets with a tangential magnetization component, in 

addition to the radially or axially magnetized magnets, as illustrated in Figure 7.1, Figure 

7.2, and Figure 7.3 for Halbach arrays with different number of discrete magnetizations.  

A Halbach array can be used to increase the magnetic field strength on one side of the 

array while decreasing the magnetic field strength on the other side of the array [68].  

For a discrete Halbach array, the effectiveness of the magnetic flux strengthening on one 

side and the flux shielding on the other side increases with the number of segments per 

pole.  Thus, the conventional magnetization pattern in Figure 7.1 will tend to produce the 

same flux pattern on both sides of the array, but the discrete Halbach array with two 

segments per pole depicted in Figure 7.2 will have more flux above the array and less 

flux below it.  This effect will be even more significant for the discrete Halbach array 

with four segments per pole depicted in Figure 7.3.  Additionally, Halbach arrays may 

result in a more sinusoidal flux distribution than conventional surface mounted magnet 

arrangements with purely axial, radial, or parallel magnetizations [68]. 
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Figure 7.1 Conventional surface permanent magnet magnetization arrangement, 

which is equivalent to a discrete Halbach array with one segment per pole. 

 

 

Figure 7.2 Discrete Halbach array with two segments per pole. 

 

 

Figure 7.3 Discrete Halbach array with four segments per pole. 

 

Therefore, Halbach arrays have been proposed for use in electric machines [68], 

[69], [70], [71], [72].  The stronger field on one side of the Halbach array can be used to 

increase the air gap flux density to provide more torque [72].  Additionally, the flux 

shielding effect on the other side of the array can be used to reduce the need for a rotor 

back iron, which can reduce the weight and the rotor inertia [73], [74], [75], [76].  

Halbach arrays have also been shown to have the potential to improve the efficiency of 

electric machines [69], [72].  Furthermore, the more sinusoidal flux density distribution 

created by the Halbach array can reduce the cogging torque and torque ripple of the 

design [68], [71]. 

Similarly, Halbach arrays have been shown to increase torque density, improve 

efficiency, and reduce torque ripple in magnetic gears [31], [49], [77], [78].  Based on 

the flux shielding effect, it has been proposed that Halbach arrays can reduce the amount 
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of flux in the back irons of radial flux coaxial magnetic gears, allowing smaller back 

irons to be used, which reduces the weight and rotor inertias [78].  Additionally, the flux 

shielding effect of Halbach arrays has been shown to reduce the need for back irons in 

axial flux coaxial magnetic gears [31].  If the back irons are removed completely from 

an electric machine, the design is called “coreless” or described as having an “air core,” 

even though the magnets must be mounted on something, often a lightweight, 

nonmetallic material, such as plastic.  Figure 7.4 compares the cross-section of a 

conventional radial flux coaxial magnetic gear with magnets mounted on the surfaces of 

conventional back irons with the cross-section of an air core radial flux coaxial magnetic 

gear with Halbach arrays on Rotor 1 and Rotor 3.  The design presented in Figure 7.4(b) 

has three segments per pole on Rotor 1 and two segments per pole on Rotor 3.  This 

study uses a parametric simulation study to evaluate radial flux coaxial magnetic gears 

with Halbach arrays either with or without back irons for applications where minimizing 

weight is critical. 
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(a) 

 

(b) 

Figure 7.4 Magnetically active cross-sections of radial flux coaxial magnetic gears 

with (a) permanent magnets mounted on back irons and (b) Halbach arrays 

mounted on air cores. 

 

7.1. Design Study Methodology 

Since the most significant advantage of Halbach air core designs is their low 

mass, the primary metric considered in this study is gravimetric torque density (GTD), as 

defined in (14), which normalizes the design’s slip torque in terms of its active mass.  

Both 2D and 3D finite element analysis (FEA) were used to evaluate the designs.  The 

modulators are made from M47 steel, and the permanent magnets (PMs) are made from 

NdFeB N42, which has a remanence of 1.3 T.  For designs with back irons, the back 

irons are made from M47 steel. 

The design parameters for this study are specified in Table 7.1.  The Rotor 1 pole 

pair counts are specified in Table 7.2.  These pole counts are selected to ensure that the 

optimal values for maximizing GTD are not higher than the largest pole count 
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considered for each outer radius and nearest integer gear ratio combination.  All of the 

cases specified in Table 7.1 and Table 7.2 were evaluated using 2D FEA, except for 

those cases which would have a negative inner radius.  Based on the results of the 2D 

simulations, 2600 of the best cross-sectional designs were evaluated using 3D FEA at 

each of the stack lengths specified in Table 7.1.  The PM tangential fill factors were set 

at 100% for each case and modulator fill factors of 50% were used.  For the discrete 

Halbach arrays, all the segments on each rotor were assumed to have the same tangential 

widths. 

 

Table 7.1 Parameter Sweep Values. 

Parameter Values 
Integer part of gear ratio (GInt) 4, 9, 16 

Outer radius (ROut) 50, 75, 100, 150 mm 

Rotor 1 segments per pole (N1) 1, 2, 3, 4 

Rotor 3 segments per pole (N3) 1, 2, 3, 4 

Rotor 1 back iron thickness (TBI1) 0, 5, 10, 20 mm 

Rotor 3 back iron thickness (TBI3) 

For TBI1 = 0 mm 

For TBI1 = 5 mm 

For TBI1 = 10 mm 

For TBI1 = 20 mm 

 

0, 5, 10, 20 mm 

0, 5 mm 

0, 5, 10 mm 

0, 5, 10, 20 mm 

Rotor 1 PM thickness (TPM1) 3, 6, 9, 12, 15 mm 

PM thickness ratio (kPM) 0.5, 0.625, 0.75 

Air gap thicknesses (TAG) 1 mm 

Modulator thickness (TMods) 10 mm 

Stack Length (LStack) 5, 10, 20, 30, 50 mm 
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Table 7.2 Rotor 1 Pole Pair Counts for Each Outer Radius and Nearest Integer 

Gear Ratio Combination. 

ROut GInt = 4 GInt = 9 GInt = 16 

50 mm 3, 5, 7 3, 5, 7 3, 5 

75 mm 3, 5, 7, 9 3, 5, 7 3, 5 

100 mm 3, 5, 7, … 17 3, 5, 7, 9, 11 3, 5, 7 

150 mm 3, 5, 7, … 21 3, 5, 7, … 13 3, 5, 7, 9 

 

As in the previous sections, kPM and GInt are used to determine the ratios of PM 

thicknesses and pole pair counts on the two rotors according to (17) and (16), 

respectively.  For the rest of this section, the results shown are based on 3D FEA for 

designs with 50 mm stack lengths, except where specified otherwise. 

7.2. Results 

Figure 7.5, Figure 7.6, and Figure 7.7 illustrate the impact of the number of 

segments per pole on Rotor 1 and Rotor 3 on the maximum achievable GTD for each of 

the different nearest integer gear ratios.  These figures show that using a Halbach array 

can significantly increase the achievable GTD.  These figures also show that the number 

increasing the number of segments per pole on Rotor 3 can yield larger gains in GTD 

than increasing the number of segments per pole on Rotor 1, especially for designs with 

higher gear ratios, such as those in Figure 7.7.  However, in practice, it is generally 

easier to implement a high number of segments per pole on Rotor 1 than on Rotor 3 

because Rotor 3 has more poles. 

 



 

185 

 

 

         (a) 

 

            (b) 

Figure 7.5 Variation of the maximum achievable GTD with the numbers of 

segments per pole on Rotor 1 and Rotor 3 for designs with GInt = 4 and 50 mm 

stack lengths, based on 3D FEA, depicted as a (a) contour plot and (b) line plot. 
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         (a) 

 

            (b) 

Figure 7.6 Variation of the maximum achievable GTD with the numbers of 

segments per pole on Rotor 1 and Rotor 3 for designs with GInt = 9 and 50 mm 

stack lengths, based on 3D FEA, depicted as a (a) contour plot and (b) line plot. 
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         (a) 

 

            (b) 

Figure 7.7 Variation of the maximum achievable GTD with the numbers of 

segments per pole on Rotor 1 and Rotor 3 for designs with GInt = 16 and 50 mm 

stack lengths, based on 3D FEA, depicted as a (a) contour plot and (b) line plot. 

 

Figure 7.5, Figure 7.6, and Figure 7.7 depict designs with and without back irons.  

To clarify the interrelationships between the Halbach arrays and the back irons, Figure 

7.8, Figure 7.9, and Figure 7.10 depict the impact of the number of segments per pole on 

each rotor for designs with or without a back iron on that rotor.  These figures show that 

using a Halbach array helps the designs without a back iron much more than the designs 

with a back iron.  These figures show that without a Halbach array on Rotor 1, it is 

generally desirable to have a back iron on Rotor 1, especially for the higher gear ratios.  

However, it is still desirable to eliminate the Rotor 3 back iron, even if there is no 

Halbach array on Rotor 3.  There are two major reasons for this pattern.  First, Rotor 1 
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has much lower pole counts than Rotor 3, so the flux from the Rotor 1 PMs has to travel 

much farther radially inside the Rotor 1 PMs than the flux from the Rotor 3 PMs has to 

travel outside the Rotor 3 PMs.  Thus, with this larger flux path inside Rotor 1, the effect 

of a Rotor 1 back iron on the overall reluctance of the Rotor 1 PM flux paths are more 

significant than the effect of a Rotor 3 back iron on the overall reluctance of the much 

shorter Rotor 3 flux paths.  Since the larger gear ratios result in a larger difference 

between the pole pair counts on the two rotors, the difference in the impact of the back 

irons on Rotor 1 and Rotor 3 becomes more pronounced for the designs with larger gear 

ratios.  Second, using a thick Rotor 3 back iron reduces the air gap radii, which reduces 

the torque.  However, using a back iron on Rotor 1 simply takes up space that would 

otherwise be empty.  These figures also show that going from one segment per pole to 

two segments per pole provides a much more significant boost in GTD than subsequent 

increases in the number of segments per pole.  This is important because using a large 

number of segments per pole may result in magnets that are impractically thin in the 

tangential direction; however, these results show that much of the GTD gains from using 

Halbach arrays can be achieved can be achieved with just two segments per pole. 

 



 

189 

 

 

          (a) 

 

            (b) 

Figure 7.8 Variation of the maximum achievable GTD with (a) the number of 

segments per pole on Rotor 1 with and without Rotor 1 back irons and (b) the 

number of segments per pole on Rotor 3 with and without Rotor 3 back irons for 

designs with GInt = 4 and 50 mm stack lengths, based on 3D FEA. 
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         (a) 

 

            (b) 

Figure 7.9 Variation of the maximum achievable GTD with (a) the number of 

segments per pole on Rotor 1 with and without Rotor 1 back irons and (b) the 

number of segments per pole on Rotor 3 with and without Rotor 3 back irons for 

designs with GInt = 9 and 50 mm stack lengths, based on 3D FEA. 
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         (a) 

 

            (b) 

Figure 7.10 Variation of the maximum achievable GTD with (a) the number of 

segments per pole on Rotor 1 with and without Rotor 1 back irons and (b) the 

number of segments per pole on Rotor 3 with and without Rotor 3 back irons for 

designs with GInt = 16 and 50 mm stack lengths, based on 3D FEA. 

 

The flux shielding effect of Halbach arrays is the result of the flux being able to 

travel tangentially through the magnets instead of the back irons.  This reduces the need 

for back irons, which can significantly improve a design’s GTD.  However, since the 

flux is traveling tangentially through the magnets instead of through a back iron, thicker 

magnets are often required to accommodate this flux path.  Using thicker magnets will 

tend to lower the PM GTD, meaning that more PM material is required to produce the 

same torque.  Figure 7.11, Figure 7.12, Figure 7.13, Figure 7.14, Figure 7.15, and Figure 

7.16 depict the Pareto optimal fronts showing the tradeoffs between maximizing GTD 

and maximizing PM GTD.   
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Figure 7.11 Pareto optimal front indicating the tradeoff between maximizing GTD 

and maximizing PM GTD with and without Halbach arrays on Rotor 1 and with 

and without Rotor 1 back irons for designs with GInt = 4, based on 3D FEA. 
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Figure 7.12 Pareto optimal front indicating the tradeoff between maximizing GTD 

and maximizing PM GTD with and without Halbach arrays on Rotor 3 and with 

and without Rotor 3 back irons for designs with GInt = 4, based on 3D FEA. 
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Figure 7.13 Pareto optimal front indicating the tradeoff between maximizing GTD 

and maximizing PM GTD with and without Halbach arrays on Rotor 1 and with 

and without Rotor 1 back irons for designs with GInt = 9, based on 3D FEA. 
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Figure 7.14 Pareto optimal front indicating the tradeoff between maximizing GTD 

and maximizing PM GTD with and without Halbach arrays on Rotor 3 and with 

and without Rotor 3 back irons for designs with GInt = 9, based on 3D FEA. 
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Figure 7.15 Pareto optimal front indicating the tradeoff between maximizing GTD 

and maximizing PM GTD with and without Halbach arrays on Rotor 1 and with 

and without Rotor 1 back irons for designs with GInt = 16, based on 3D FEA. 
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Figure 7.16 Pareto optimal front indicating the tradeoff between maximizing GTD 

and maximizing PM GTD with and without Halbach arrays on Rotor 3 and with 

and without Rotor 3 back irons for designs with GInt = 16, based on 3D FEA. 

 

For the Rotor 1 PM arrangement, Figure 7.11, Figure 7.13, and Figure 7.15 show 

that the maximum PM GTD is obtained with a back iron and conventionally magnetized 

magnets, but the maximum GTD is obtained with a Halbach array mounted on an air 

core.  A Halbach array mounted on a back iron can result in intermediate performance 

between having a Halbach array on an air core and having conventionally magnetized 

magnets on a back iron.  However, having conventionally magnetized magnets on an air 

core provides no benefits.  For the Rotor 3 PM arrangement, Figure 7.12, Figure 7.14, 

and Figure 7.16 show that the maximum PM GTD is obtained with a Halbach array on a 

back iron, but the maximum GTD is obtained with a Halbach array on an air core.  The 

difference in behaviors between Rotor 1 and Rotor 3 is the result of the difference in 
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their respective pole counts.  The low pole counts of Rotor 1 result in long flux paths, 

which requires Halbach arrays to have thick magnets to provide any benefit.  However, 

with the higher pole counts of Rotor 3, the shorter flux paths do not require the magnets 

to be very thick.  The relationship between PM thickness and the benefits of Halbach 

arrays is further illustrated by Figure 7.17, Figure 7.18, and Figure 7.19.  These figures 

show that going from one segment per pole to two segments per pole actually decreases 

the GTD for designs with a back iron and thin PMs.  For these designs, most of the flux 

passes through the back irons, instead of through the tangentially magnetized PMs.  

Thus, the tangentially magnetized PMs do not significantly contribute to the air gap flux 

density, but using two segments per pole decreases the tangential widths of the radially 

magnetized PMs, which does reduce the air gap flux density.  However, in designs 

without back irons or with thicker PMs, enough flux travels through the tangentially 

magnetized PMs that the Halbach array does increase the GTD. 
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         (a) 

 

            (b) 

Figure 7.17 Variation of the maximum achievable GTD with the number of 

segments per pole on Rotor 1 and the Rotor 1 PM thickness for designs (a) with 

Rotor 1 back irons and (b) without Rotor 1 back irons for designs with GInt = 4, 

based on 2D FEA. 
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         (a) 

 

            (b) 

Figure 7.18 Variation of the maximum achievable GTD with the number of 

segments per pole on Rotor 1 and the Rotor 1 PM thickness for designs (a) with 

Rotor 1 back irons and (b) without Rotor 1 back irons for designs with GInt = 9, 

based on 2D FEA. 
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         (a) 

 

            (b) 

Figure 7.19 Variation of the maximum achievable GTD with the number of 

segments per pole on Rotor 1 and the Rotor 1 PM thickness for designs (a) with 

Rotor 1 back irons and (b) without Rotor 1 back irons for designs with GInt = 16, 

based on 2D FEA. 

 

Another significant concern for magnetic gears is the impact of end effects, 

which can have a significant impact on the torque of a design [35].  Figure 7.20, Figure 

7.21, Figure 7.22, Figure 7.23, Figure 7.24, and Figure 7.25 show how the GTD varies 

with stack length.  As in the previous sections, the 2D FEA provides a limit for the GTD 

attainable as the stack length approaches infinity, based on 3D FEA.  These figures do 

not show a significant difference between the impacts of end effects on designs with 
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Halbach arrays and designs without Halbach arrays or between the impacts of end 

effects on designs with air cores and designs with back irons. 

 

 

Figure 7.20 Impact of stack length on the maximum achievable GTD for designs 

with and without Halbach arrays on Rotor 1 and with and without Rotor 1 back 

irons for designs with GInt = 4, based on 2D and 3D FEA. 
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Figure 7.21 Impact of stack length on the maximum achievable GTD for designs 

with and without Halbach arrays on Rotor 1 and with and without Rotor 1 back 

irons for designs with GInt = 9, based on 2D and 3D FEA. 
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Figure 7.22 Impact of stack length on the maximum achievable GTD for designs 

with and without Halbach arrays on Rotor 1 and with and without Rotor 1 back 

irons for designs with GInt = 16, based on 2D and 3D FEA. 
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Figure 7.23 Impact of stack length on the maximum achievable GTD for designs 

with and without Halbach arrays on Rotor 3 and with and without Rotor 3 back 

irons for designs with GInt = 4, based on 2D and 3D FEA. 
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Figure 7.24 Impact of stack length on the maximum achievable GTD for designs 

with and without Halbach arrays on Rotor 3 and with and without Rotor 3 back 

irons for designs with GInt = 9, based on 2D and 3D FEA. 
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Figure 7.25 Impact of stack length on the maximum achievable GTD for designs 

with and without Halbach arrays on Rotor 3 and with and without Rotor 3 back 

irons for designs with GInt = 16, based on 2D and 3D FEA. 

 

7.3. Conclusion 

A parametric analysis was performed using 2D FEA and 3D FEA to evaluate the 

benefits of using Halbach arrays and air cores in radial flux coaxial magnetic gears.  

Using Halbach arrays with air cores can significantly increase the GTD achievable by 

radial flux coaxial magnetic gears.  However, using air cores without Halbach arrays 
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provides significantly less benefit and may even reduce the GTD relative to designs with 

radially magnetized magnets mounted on back irons.  Additionally, using a Halbach 

array for designs with back irons and relatively thin magnets may also reduce GTD 

relative to using only radially magnetized magnets.  Therefore, the GTD improvement 

from using Halbach arrays and air cores often comes at the expense of reduced PM 

GTD, which can entail a larger material cost.  Using Halbach arrays and air cores did not 

significantly impact the extent of end effects. 
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8. PROTOTYPE RADIAL FLUX COAXIAL MAGNETIC GEAR WITH HALBACH 

ARRAYS AND AIR CORES 

 

The previous section provides a numerical analysis illustrating the potential 

performance benefits achieved by using Halbach arrays and air cores in magnetic gears.  

In this section, a prototype is designed, fabricated, and tested to explore the challenges 

associated with using Halbach arrays and air cores in a magnetic gear and to validate the 

numerical models used in the previous section.  While many magnetic gear prototypes 

have been fabricated and tested, the use of Halbach arrays and air cores increases the 

complexity of fabricating a magnetic gear.  First, there are strong magnetic forces on 

each of the pieces in a discrete Halbach array, which makes assembly and PM retention 

more challenging.  This is exacerbated by the fact that the PMs do not experience any 

magnetic attraction to the air cores (as they would to back irons).  Additionally, due to 

the lack of magnetic containment provided by the back irons, the flux from Rotor 1 may 

extend beyond Rotor 3 [79].  This may cause losses in nearby conductive objects and 

attract nearby magnetic objects. 

8.1. Magnetic and Mechanical Tradeoff Analysis 

A cross-sectional view of the magnetically active portions of the prototype 

design is shown in Figure 8.1.  The basic design parameters of the prototype are given in 

Table 8.1.  The modulators are made from 26 gauge M19 laminations, and the PMs are 

made from NdFeB N52.  For this prototype, Rotor 2 serves as the low speed rotor and 

Rotor 3 is fixed, which yields a gear ratio of 4.67:1.  The design parameters in Table 8.1 
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were selected to achieve a design that would be feasible to assemble with the limited 

tools available in the lab and to have a slip torque that would be compatible with the 

lab’s existing equipment.  Additionally, the selection of several parameters involved 

tradeoffs between mechanical and magnetic objectives.  The simulation results 

illustrating these tradeoffs were produced by sweeping only one or two of the design 

parameters from their base values, which are provided in Table 8.1, at a time. 

 

 

Figure 8.1 Cross-section of the magnetically active portions of the prototype. 
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Table 8.1 Prototype Design Parameter Values. 

Symbol Description Values 
P1 Number of Rotor 1 pole pairs 3 

Q2 Number of modulators 14 

P3 Number of Rotor 3 pole pairs 11 

N1 Number of pieces per Rotor 1 pole 2 

N3 Number of pieces per Rotor 3 pole 2 

ROut Outer radius of Rotor 3 PMs 50.8 mm 

TPM3 Radial thickness of Rotor 3 PMs 5 mm 

TOAG Outer air gap thickness 1 mm 

TMods Radial thickness or Rotor 2 7.5 mm 

TBridge Radial thickness of bridge 1.5 mm 

TIAG Inner magnetic air gap thickness 2.5 mm 

TPM1 Radial thickness of Rotor 1 PMs 8 mm 

wR3,Out 
Tangential width between Rotor 3 

PMs at their outer radius 
1.5 mm 

wR3,In 
Tangential width between Rotor 3 

PMs at their inner radius 
2 mm 

wR1 
Tangential width between Rotor 1 

PMs  
1.5 mm 

αMods,Out 
Modulators fill factor at the Rotor 

2 outer radius 
0.5 

αMods,In 
Modulators fill factor at the Rotor 

2 inner radius 
0.7 

RHole Radius of modulator holes 1.2 mm 

LPM3 Axial length of Rotor 3 PMs 51.8 mm 

LMods Axial length of modulators 37.8 mm 

LPM1 Axial length of Rotor 1 PMs 47.8 mm 

 

8.1.1. Modulators Support 

To simplify handling and fabrication, the modulator stack is bonded.  However, 

additional modulator support is required.  One means of support is to place rods through 

their axial length, as in [5], [80].  For this design, these rods are made of glass-filled 

epoxy to provide high strength with high electrical resistivity.  Additionally, the slots 
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between adjacent modulators are filled with glass filled nylon spacers.  Circular arc 

shaped holes are cut out of the modulators’ inner corners to allow the spacers to 

interlock well with the modulators.  Both the circular holes for the rods and the arc 

shaped holes remove magnetically permeable material from the flux paths in the 

modulators, as depicted in Figure 8.1.  Figure 8.2 illustrates how the radii of these holes 

impact the design’s slip torque and electromagnetic efficiency at the rated Rotor 2 speed 

of 400 rpm, based on 2D finite element analysis (FEA).  Generally, these holes do not 

have much effect on the performance unless they become large enough that the area 

between them is thoroughly saturated, worsening gear performance.  For this design, the 

holes have radii of 1.2 mm.  Figure 8.2(b) also indicates that this design has a very high 

electromagnetic efficiency (neglecting mechanical losses), which mitigates thermal 

concerns.  A Halbach array produces more sinusoidal fields than a conventional SPM 

configuration, which reduces both torque ripple and losses due to unwanted harmonics.  

Additionally, the PMs are segmented into multiple pieces per pole to form the discrete 

Halbach arrays, which reduces eddy current losses. 
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              (a) 

 

            (b) 

Figure 8.2 Impact of the modulator holes radii (varied together) on (a) Rotor 2 slip 

torque, based on 3D FEA simulations, and (b) electromagnetic efficiency at rated 

speed and maximum torque, based on 2D FEA simulations. 

 

Another way to support the modulators is to connect adjacent modulators with 

one or more thin bridges [5].  This also allows all of the modulators to be formed from a 

single lamination stack.  Figure 8.3 illustrates the impacts of the bridge thickness and 

position based on 2D FEA.  The bridge position (BP) indicates the radial location of the 

bridge, with 0 and 1 being on the inner and outer edges of Rotor 2, respectively.  The 

bridge provides a flux leakage path, so increasing its thickness reduces the slip torque.  

This is exacerbated if the bridge is placed near the outer air gap because Rotor 3’s higher 

pole count produces shorter leakage paths and more leakage flux.  Nonetheless, the 

impact of the bridge position is less significant for this design than it is in [5] because 

this design has a lower gear ratio, so there is less difference between the pole counts on 

Rotors 1 and 3.  The reduction in slip torque as the bridge gets thicker reduces the 

efficiency when operating at maximum torque.  The loss distribution is also affected.  As 
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the bridge thickness increases, the losses in both sets of PMs decrease for two reasons.  

The bridge reduces the spatial harmonics in the modulators’ permeance function and 

short-circuits some of the flux, especially higher spatial harmonics, preventing it from 

crossing both air gaps.  However, a thicker bridge increases core losses in Rotor 2 due to 

the losses in the heavily saturated bridge.  This design has a 1.5 mm thick bridge on the 

inside edge (BP = 0). 

 

 

 

 

 
            (a) 

 
         (b) 

 
         (c) 

Figure 8.3 Impact of the bridge position (BP) and thickness on (a) Rotor 2 slip 

torque, based on 3D FEA simulations, and (b) electromagnetic efficiency at rated 

speed and maximum torque and (c) impact of bridge thickness with BP = 0 on the 

loss distribution at rated speed, as in (b), both based on 2D FEA simulations. 
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8.1.2. Magnet Retention 

Retaining the PMs is another critical mechanical challenge.  One conventional 

solution for electric machines is to fit a sleeve over the PMs, but this increases the 

effective air gaps.  Figure 8.4 and Figure 8.5 illustrate the impacts of the effective air 

gaps on the performance of the design.  As the air gaps increase, the slip torque 

decreases.  The outer air gap has a larger impact on slip torque than the inner air gap 

because Rotor 3 has a higher pole count than Rotor 1, which leads to more leakage flux 

in the outer air gap.  Increasing either air gap within the considered range tends to reduce 

the losses, with the inner air gap having a larger impact on the Rotor 1 PM losses and the 

outer air gap having a larger impact on the Rotor 3 PM losses.  This occurs because the 

larger air gap attenuates the spatial flux harmonics.  This effect is most pronounced for 

the inner air gap and the Rotor 1 PM losses because the permeance harmonics and Rotor 

3 PM flux harmonics, which cause losses in the Rotor 1 PMs, have higher spatial 

frequencies than the Rotor 1 PM flux harmonics, and a larger air gap has more effect on 

higher frequency spatial harmonics.  While increasing the inner air gap within this range 

does slightly increase the electromagnetic efficiency, increasing the outer air gap does 

not increase the electromagnetic efficiency because this also significantly reduces the 

slip torque and, thus, the transmitted power.  Similarly, the reduction of these spatial 

harmonics with an increasing air gap decreases the torque ripple as the inner air gap 

increases.  The non-integer gear ratio [3] and Halbach arrays [31], [78] also keep the 

torque ripple relatively small.  This design has an outer air gap of 1 mm and an effective 

inner air gap of 2.5 mm, including a 1.5 mm thick plastic sleeve. 
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                (a) 

 

             (b) 

 

             (c) 

Figure 8.4 Impact of the effective air gap thicknesses on (a) Rotor 2 slip torque, 

based on 3D FEA simulations, (b) electromagnetic efficiency at rated speed and 

maximum torque, based on 2D FEA simulations, and (c) Rotor 1 peak-to-peak 

torque ripple as a percentage of Rotor 1 slip torque, based on 2D FEA simulations. 
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Figure 8.5 Impact of the effective air gap thicknesses on loss distribution at rated 

speed and maximum torque as the inner air gap is varied with the outer air gap 

fixed at 1 mm, based on 2D FEA simulations. 

 

In a conventional magnetic gear without Halbach arrays and with back irons, the 

Rotor 3 PMs are attracted to the Rotor 3 back iron.  However, the Halbach array results 

in forces pushing the radially magnetized PMs inward towards Rotor 2.  Thus, it is 

necessary to retain the Rotor 3 PMs, but it is highly undesirable to do this in a way that 

increases the effective magnetic air gap.  One alternative is to reduce the PM fill factor 

and use nonmagnetic walls between the PMs to hold them in place, particularly if the 

walls are thicker at the inside than they are at the outside, as in Figure 8.1.  Figure 8.6 

illustrates the impact of changing the thickness of the walls between adjacent Rotor 3 

PMs.  Comparing Figure 8.4(a) and Figure 8.6 reveals that reducing the Rotor 3 PM fill 

factors to accommodate this retention strategy lowers the slip torque less than increasing 

the effective outer air gap to insert a PM retention sleeve.  Furthermore, this has a 
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negligible impact on the electromagnetic efficiency.  This design uses Rotor 3 PM 

nonmagnetic walls that are 1.5 mm and 2 mm thick at their outer and inner radii, 

respectively.  Additionally, 1.5 mm thick nonmagnetic walls between the Rotor 1 PMs 

connect the Rotor 1 plastic core with the Rotor 1 PM retention sleeve, so that it can be 

formed as a single piece.  Figure 8.7 illustrates the impact of the thicknesses of these 

walls between the Rotor 1 PMs on the Rotor 2 slip torque.  Because the Rotor 1 PMs are 

tangentially wider than the Rotor 3 PMs, the walls between the Rotor 1 PMs have a 

smaller impact on the Rotor 2 slip torque than the walls between the Rotor 3 PMs.  The 

thicknesses chosen for this design are limited by minimum wall thicknesses that the 

additive manufacturing processes can achieve. 

 

 

Figure 8.6 Impact of the thickness of the nonmagnetic walls between adjacent 

Rotor 3 PMs on the Rotor 2 slip torque, based on 3D FEA simulations. 
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Figure 8.7 Impact of the thickness of the nonmagnetic walls between adjacent 

Rotor 1 PMs on the Rotor 2 slip torque, based on 2D FEA simulations. 

 

In addition to the walls retaining the Rotor 3 PMs, the Rotor 3 PMs can be 

extended axially beyond the modulators, which allows the Rotor 3 PMs to be retained by 

material axially beyond the modulators.  Beyond providing space for additional support, 

extending the PMs axially beyond the modulators can increase the slip torque, as 

suggested in [35].  Figure 8.8 illustrates how extending each set of PMs axially beyond 

the modulators affects the Rotor 2 slip torque, with the modulators’ stack length fixed at 

37.8 mm.  For the prototype design, the Rotor 1 PMs are extended 5 mm axially past the 

modulators on both sides and the Rotor 3 PMs are extended 7 mm axially past the 

modulators on both sides.  This raises the Rotor 2 slip torque from 22.0 N∙m (with the 

PMs having the same axial length as the modulators) to 31.1 N∙m.  Extending the Rotor 

1 PMs axially beyond the modulators does increase the volume of the design when 

structural material is included because the end caps for Rotor 2 and Rotor 3 must extend 
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past the Rotor 1 PMs.  However, the Rotor 3 PMs can be extended several millimeters 

axially beyond the Rotor 1 PMs without impacting the overall volume of the design 

when structural material is included because the Rotor 3 end caps must extend farther 

than the Rotor 1 PMs by at least the axial length of a bearing. 

 

 

Figure 8.8 Impact of the difference between the PM axial lengths and the 

modulators axial length with the modulator’s stack length fixed at 37.8 mm, based 

on 3D FEA simulations. 

 

8.1.3. Impact of Back Irons 

The prototype base design was also simulated with 5 mm thick back irons on 

both Rotors 1 and 3.  Replacing the plastic with steel increases the design’s magnetically 

active mass from 1.2 kg to 2.2 kg, but, based on 3D FEA, it only increases the Rotor 2 

slip torque by 9%, resulting in a net 40% decrease in active gravimetric torque density.  

However, based on 3D FEA, the addition of back irons reduces the radial forces pulling 
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the radially magnetized PMs into the adjacent air gaps from 330 N on the Rotor 1 PMs 

and from 170 N on the Rotor 3 PMs to the point where the forces on both sets of PMs 

pull them away from the air gaps and towards the back irons.  Additionally, while the 

use of back irons does not appreciably affect the design’s electromagnetic efficiency, it 

does improve its flux containment, as shown in Figure 8.9.  Although Halbach arrays 

focus most of the flux on one side, in this case, there are only two pieces per pole, which 

limits the impact of this flux shielding effect.  For larger designs, where it is more 

practical to use more pieces per pole, there will be more flux shielding.  Nonetheless, 

most of the flux on the outside of the gear is from the Rotor 1 PMs, which will not be 

significantly affected by using more pieces per pole on Rotor 3 [79]. 

 

 

             (a) 

 

             (b) 

Figure 8.9 Flux density at different radial distances (a) beyond the 5 mm back iron 

or Rotor 3 plastic core and (b) inside the 5 mm back iron or Rotor 1 plastic core. 

 

 



 

222 

 

8.2. Prototype Fabrication 

8.2.1. Structural Material Selection 

To achieve a rapid fabrication time for the structural portions of the prototype, 

many components of the prototype were created using additive manufacturing.  To 

evaluate the effectiveness of each manufacturing method and material, the Rotor 1 

plastic core was fabricated, its dimensions measured and the Rotor 1 PMs inserted.  

Table 8.2 provides a summary of the materials evaluated. 

 

Table 8.2 Additive Manufacturing Material Properties Comparison. 

Material 
Ultem 

9085 

Glass-filled 

Nylon 

Accura 

Bluestone 

Accura 

48HTR 

Accura 

60 

Process FDM SLS SLA SLA SLA 

Tensile  

Strength (MPA) 
71.6 38.1 66-68 64-67 58-68 

Tensile  

Modulus (MPA) 
2200 5910 

7600-

11700 

2800-

3980 

2690-

3100 

Elongation  

at Break (%) 
6 2 1.4-2.4 4-7 5-13 

Flexural  

Strength (MPA) 
115.1 

Not 

Provided 
124-154 105-118 87-101 

Flexural  

Modulus (MPA) 
2500 3300 

8300-

9800 

2760-

3400 

2700-

3000 

Impact  

Strength (J/m) 
106 96 13-17 22-29 15-25 

Heat Deflection Temp  

@ 66 PSI (C)  
Not 

Provided 
175 65-66 130 53-55 

Heat Deflection Temp  

@ 264 PSI (C)  
153 110 65 110 48-50 

Density (g/cm3) 1.34 1.4 1.78 1.23 1.21 
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First, Ultem 9085, a high-strength thermoplastic, was selected due to its high 

tensile and flexural strengths and its high heat deflection temperature.  The Rotor 1 

plastic core was fabricated using fused deposition modeling (FDM).  The Rotor 1 PMs 

could be inserted into the holes when some force was exerted.  However, the outer 

diameter of the part was too small by about 0.5%.  This tolerance was deemed to be too 

significant, especially for parts where such an error would significantly reduce the air 

gap. 

Second, a glass-filled nylon part was fabricated using selective laser sintering 

(SLS).  Again, the Rotor 1 PMs could be inserted into the holes with the exertion of 

some force.  However, the outer diameter for the part was about 1% too small, which 

was again deemed unacceptable.  Additionally, spacers for the slots between the 

modulators were fabricated from glass filled nylon using SLS.  These spacers could be 

inserted between the modulators with significant effort.  As a very tight fit for these 

spacers is desirable, these spacers were used in the prototype. 

Third, the Rotor 1 plastic core was fabricated from Accura Bluestone, a 

composite material similar to a ceramic, using stereolithography (SLA).  This part 

achieved acceptable dimensional tolerances.  However, when force was applied to insert 

the Rotor 1 PMs into the appropriate holes, the part broke, instead of expanding slightly 

to accommodate the PMs. 

Fourth, the Rotor 1 plastic core was produced from Accura 48HTR, a stiff, 

polycarbonate-like, high temperature plastic, using SLA.  This part achieved acceptable 
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dimensional tolerances.  However, when tapping threads into holes in the part, the part 

cracked, and pieces fell off. 

Finally, the Rotor 1 plastic core was produced from Accura 60, a translucent, 

polycarbonate-like plastic, using SLA.  This part achieved acceptable dimensional 

tolerances, could have threads tapped into its holes, and accommodated the insertion of 

the Rotor 1 PMs without significant force being applied.   

Thus, the SLA process was the only process evaluated that achieved acceptable 

dimensional tolerances for this prototype, and Accura 60 was selected for the material to 

be used in most of the prototype structural parts.  One major concern with the use of 

Accura 60 is its relatively low heat deflection temperature.  As previously illustrated, the 

simulated losses in the prototype are very low, so it should not generate much heat, and, 

in a controlled laboratory environment, the prototype will not be exposed to high 

external temperatures.  Nonetheless, outside of a laboratory setting, a magnetic gear 

would probably be exposed to temperatures that might cause the Accura 60 parts to 

deform.  Therefore, it may be reasonable to use Accura 60 for rapid and inexpensive 

prototyping.  However, it would probably be beneficial to use another process, such as 

injection molding or subtractive manufacturing using a computer numerically controlled 

(CNC) machine, for fabricating production parts. 

Additionally, a few tool parts were manufactured for purposes such as 

positioning and inserting the PMs and pressing bearings into place on the shafts.  For the 

tool parts that did not need to achieve strict dimensional tolerances, the SLS process was 
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used to make nylon parts.  The tool parts that required very accurate dimensions were 

fabricated from Accura 60 using SLA. 

8.2.2. Assembly 

The Rotor 1 PMs were inserted into the Rotor 1 plastic core, as shown in Figure 

8.10.  However, the Halbach array results in strong outward forces on the radially 

magnetized magnets.  These forces caused Rotor 1 to bulge into the air gap in a few 

places by as much as 0.5 mm.  To counteract this bulging, the radially magnetized Rotor 

1 PMs were moved inward by 0.5 mm.  Additionally, the height of the core was reduced 

by 5 mm, and the Rotor 1 end cap was designed to interlock with the PMs.  This 

provided additional support for the PMs near their axial end.  This revised Rotor 1 is 

shown in Figure 8.11 with the PMs inserted into the air core and the end cap attached.  

Simulations using 3D FEA predicted that moving the radially magnetized Rotor 1 PMs 

inward by 0.5 mm would reduce the Rotor 2 slip torque from 31.1 N∙m to 30.4 N∙m, 

which was deemed acceptable. 
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Figure 8.10 Rotor 1 PMs placed in the original Rotor 1 plastic core, which was 

attached to the high speed shaft. 

 

 

Figure 8.11 Rotor 1 PMs placed in the revised Rotor 1 plastic core with the revised 

Rotor 1 end cap attached. 

 

The modulator stack was fabricated from 26 gauge M19 steel and was bonded 

together to form a single piece.  Glass-filled nylon spacers were used to provide support 

for the modulators.  These spacers were intentionally designed to be slightly shorter than 
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the modulator stack length so that they would not prevent axial compression of the 

modulator stack.  These spacers were forced into the slots between the modulators using 

a mallet.  Additionally, garolite G10 rods were inserted through the circular holes in the 

modulators.  The modulator end caps were connected to the modulators with screws 

going into the spacers and by fitting the G10 rods into holes in the end caps.  Figure 8.12 

shows the modulator stack with all of the spacers and rods inserted and with one of the 

modulator end caps attached. 

 

 

Figure 8.12 Modulator stack with all of the spacers and rods inserted and with one 

of the end caps attached with a penny shown to provide a reference for size. 

 

The modulators end cap that was not attached to the modulators was affixed to 

the low speed shaft, which was then inserted into a bearing seated in the Rotor 1 plastic 

core.  Then, a bearing was seated in the modulators end cap that was attached to the 
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modulators.  This end cap and the modulators were then lowered along the high speed 

shaft into position, and the modulators were attached to the other modulators end cap.  

The resulting assembly is shown in Figure 8.13. 

 

 

Figure 8.13 Rotor 2 placed around Rotor 1 with a penny provided for a size 

reference. 

 

Next, the Rotor 3 magnets were inserted into the Rotor 3 plastic core.  Figure 

8.14 shows the Rotor 3 plastic core, and Figure 8.15 shows one of the Rotor 3 PMs.  

However, without the Rotor 3 end cap supporting one of the axial ends of the PMs, the 

radially magnetized PMs tended to lean into the air gap slightly at the top.  Fortunately, 

this leaning was not large enough to prevent the modulators from fitting inside of Rotor 

3. 
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Figure 8.14 Rotor 3 plastic core with a bearing inserted with a penny provided for a 

size reference. 

 

 

Figure 8.15 Rotor 3 PM with a penny provided for a size reference. 

 

Then, a bearing was inserted into the Rotor 3 end cap, and the Rotor 3 end cap 

was moved into position on the high speed shaft.  Next, the Rotor 3 plastic core with its 

PMs and bearing was slid along the low speed shaft into position.  This process is shown 

in Figure 8.16.  Because some of the Rotor 3 PMs were leaning inward, significant force 

was required to press them into their holes in the Rotor 3 end cap.  Figure 8.17 shows the 

prototype with all three rotors assembled. 



 

230 

 

 

 

Figure 8.16 The Rotor 3 plastic core with its PMs and bearings being slid along the 

low speed shaft into position. 
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Figure 8.17 Prototype with all three rotors assembled. 

 

Finally, supports were added to the axial ends of the prototype to mount it on the 

testbed.  The prototype is shown with these axial end supports in Figure 8.18.  With the 

end supports, the prototype’s mass was 4.4 kg.  Without the end supports the mass was 

3.6 kg.  Table 8.3 provides a breakdown of the masses of the various types of 

components in the prototype.  Out of the total 4.4 kg (or 3.6 kg without the end 

supports), the total mass of the PMs and modulators was less than 1.3 kg. 
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Figure 8.18 Fully assembled prototype with end supports. 

 

Table 8.3 Prototype Mass Breakdown. 
 Mass (g) 

Magnets 920 

Modulators 318 

Additive Manufacturing Parts 2093 

Shafts 612 

Bearings 182 

Fasteners 240 

Miscellaneous 14 

 

8.3. Experimental Results 

The slip torque on Rotor 2 was measured to be 31.2 N∙m, which is about 2.6% 

higher than the simulated slip torque of 30.4 N∙m with the revised Rotor 1 design where 

the radially magnetized PMs were moved radially inward by 0.5 mm.  The slip torque on 
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Rotor 1 was 6.4 N∙m, which is about 3% lower than the simulated slip torque of 6.6 N∙m.  

Thus, both the Rotor 1 and Rotor 2 slip torques show good agreement with simulation.  

This yields a GTD of 25.2 N∙m/kg considering only the active materials (PMs and 

modulators), a GTD of 8.7 N∙m/kg considering the mass of the prototype without the end 

supports, and a GTD of 7.1 N∙m/kg considering the total mass of the prototype with the 

end supports included. 

To measure the no load losses, the high speed shaft was connected to an 

induction motor, which was run at different speeds.  The speeds of the high speed shaft 

and low speed shaft were measured.  Additionally, the torque was measured on the high 

speed shaft to determine how much torque is required to overcome the no load losses.  

Figure 8.19 compares the measured speeds with the ideal gear ratio, and shows that the 

gear does produce a 4.67:1 gear ratio.  Figure 8.20 compares the simulated 

electromagnetic losses with the measured no load losses.  Because the losses are so 

small, it is difficult to measure them precisely with the torque meter, which is rated for 

the torques seen in normal operation of the gear, so there is some noise in the 

experimental loss measurements.  Nonetheless, the experimental losses are significantly 

higher than the simulated electromagnetic losses, likely due to mechanical losses in the 

bearings.  As shown in Figure 8.20(a) and [5], [48], the losses in a magnetic gear vary 

very little with torque.  Based on the assumption that losses do not change with torque, 

the efficiency of the magnetic gear is projected in Figure 8.21 based on the measured no 

load losses in Figure 8.20(b). 
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Figure 8.19 Measured speeds on both rotors compared with the ideal gear ratio. 
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           (a) 

 

        (b) 

Figure 8.20 (a) Simulated electromagnetic losses for the prototype and (b) 

measured no load losses in the prototype. 

 

 

Figure 8.21 Projected prototype efficiency. 
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8.4. Comparison with Mechanical Gears 

Table 8.4 provides a list of the specifications of a few commercially available 

mechanical gears rated for roughly similar values to the prototype described in this 

section.  Table 8.4 shows a significant variation in the masses and efficiencies achieved 

by these different mechanical gears.  The magnetic gear prototype’s projected efficiency 

compares very favorably with the nominal efficiencies listed for these mechanical gears, 

and the prototype’s mass is comparable to some of these commercially available 

mechanical gears. 

 

Table 8.4 Mechanical Gear Comparison. 

Model Number 
B518-

7-L-12 

EL-B8 

13-5-L 

EPL-SA-

064-5 

HERA4 

5AS8.02 

RS-RT 

40 

CHC 20 

PB 4,6 

Manufacturer 
Grove 

Gear 

Grove 

Gear 
Eisele Hub City Varvel Chiaravalli 

Gear Type Worm Worm Planetary Hypoid Worm Helical 

Gear Ratio 7:1 5:1 5:1 8.02:1 5:1 4.6:1 

Rated Output 

Torque (N∙m) 
31.4 23.6 26.0 41.1 32.0 33.0 

Rated Output 

Speed (rpm) 
250 350 700 312 720 302 

Nominal 

Efficiency 
80% 93% 94% 90% 89% 95% 

Mass (kg) 2.7 5.0 1.0 13.6 2.5 4.7 

GTD (N∙m/kg) 11.6 4.7 26.0 3.0 12.8 7.0 

Reference [81] [82] [83] [84] [85] [86] 
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9. CONCLUSIONS 

 

This work has provided the results of several extensive parametric simulation 

studies of different topologies of magnetic gears.  Additionally, a novel approach to 

evaluating magnetic gear dynamics has been described.  Finally, the design and 

fabrication of a prototype have been described and its experimental test results provided. 

First, radial flux coaxial magnetic gear designs optimized to maximize 

volumetric torque density (VTD), gravimetric torque density (GTD), and torque per 

dollar (TPD) were compared.  There were significant differences between the designs 

optimizing VTD and those optimizing TPD, especially when end effects were 

considered.  The designs optimizing GTD tended to have performances intermediate 

between those of the designs optimizing VTD and the designs optimizing TPD.  Most of 

these differences focused on stuffing as much permanent magnet (PM) material into a 

small volume for the designs optimizing VTD versus using the PM material as cost 

effectively as possible for the designs optimizing TPD.  End effects were shown to 

significantly reduce the achievable performances in terms of VTD, GTD, and TPD.  

Additionally, the designs optimizing VTD were optimized to a smaller outer radius when 

end effects were considered.  The optimal pole counts for each design depended on other 

parameters, especially the PM thicknesses and the outer radius. 

Second, radial flux coaxial magnetic gears were compared against axial flux 

coaxial magnetic gears.  Similar trends between the performances of the two topologies 

included achieving higher VTDs, GTDs, and PM GTDs at higher torques and lower gear 
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ratios.  Additionally, both topologies achieved similar average air gap shear stresses.  

However, the axial flux designs tended to achieve better VTDs than the radial flux 

designs for form factors with large outer radii and short stack lengths.  Additionally, end 

effects cause the VTD, GTD, and PM GTD to increase with stack length in radial flux 

magnetic gears, whereas the radii ratio maximizing VTD is much lower than the radii 

ratio maximizing GTD or PM GTD for an axial flux magnetic gear.  Furthermore, the 

radial forces on the bearings of a radial flux coaxial magnetic gear can be significantly 

mitigated through the use of symmetry, but the axial forces on the bearings of an axial 

flux magnetic gear cannot be mitigated by simply using a design with an even number of 

modulators.  Overall, radial flux magnetic gears seemed to have an advantage over 

magnetic gears in terms of performance and manufacturability, except in applications 

with a large outer radius and a small axial length. 

Third, radial flux coaxial and cycloidal magnetic gears were compared.  The 

cycloidal designs were shown to be able to achieve higher torque densities at high gear 

ratios.  While the coaxial designs favor low gear ratios, regardless of the outer radius, the 

optimal gear ratio for the cycloidal designs increases with the outer radius.  The coaxial 

gears benefit more from using thicker PMs than the cycloidal gears benefit.  However, 

the coaxial gears suffer a larger reduction in torque from end effects than the cycloidal 

gears.  Both topologies can achieve very low torque ripple, but the cycloidal topology 

suffers from large forces on the bearings.  The cycloidal topology eliminates the 

complexity of having to support the modulators, but it requires the orbital motion of the 
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inner rotor’s axis about the outer rotor’s axis to be separated from the inner rotor’s 

rotation about its own axis. 

Fourth, alternative approaches to achieving high gear ratios with coaxial 

magnetic gears were evaluated.  The torque density and efficiency achievable with a 

single-stage coaxial magnetic gear decrease as the gear ratio increases.  Using a 

multistage magnetic gearbox allows much higher gear ratios to be achieved without as 

much of a reduction in torque density, but this increases the complexity of the gearbox.  

For multistage gearboxes, it is generally optimal for the gear ratio of the first stage to be 

relatively small so that the first stage, which interacts with the largest torque, has a high 

torque density.  Furthermore, the compound differential coaxial magnetic gear was 

proposed.  It is able to achieve very large gear ratios with just two coaxial magnetic gear 

stages, but this comes from having circulating power, which significantly harms the 

efficiency. 

Next, a nonlinear analytical approach to evaluating magnetic gear dynamics was 

presented.  First, the motion of the magnetic gear is described as the superposition of 

rigid body motion and fixed center motion, without violating the nonlinearity of the 

system.  Then, the fixed center motion can be referred into the torque angle reference 

frame, where the conservation of energy principle can be used to evaluate the oscillation 

of the magnetic gear’s torque angle in response to changes in the torques applied to the 

magnetic gear (assuming that losses are negligible).  This analysis reveals that the 

effective inertia ratio is a critical design parameter, determining the magnetic gears’ 

response to torques applied to each rotor.  The proposed nonlinear model was shown to 
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agree very well with a Simulink model and with an FEA model for a coaxial magnetic 

gear with very little torque ripple.  However, there were some small discrepancies 

compared to FEA models with larger torque ripples.  Nonetheless, the proposed model 

was much more consistent with the Simulink and FEA models than a linearized model.  

Additionally, even a significant amount of viscous friction was shown to have only a 

limited impact on the dynamic behavior of the magnetic gear immediately following a 

step change in torque. 

Then, Halbach arrays and air cores were evaluated for use in coaxial radial flux 

magnetic gears.  Together, Halbach arrays and air cores can significantly increase the 

achievable GTDs of magnetic gears relative to more conventional designs with radially 

magnetized PMs mounted on back irons.  However, without Halbach arrays, removing 

the back irons actually reduces the GTDs of many designs.  On the other hand, if a back 

iron is present, using a Halbach array only benefits the design if the PMs are relatively 

thick.  Thus, the GTD benefits of using Halbach arrays and air cores are often 

accompanied by a reduction in PM GTD. 

Finally, to validate the models and explore the challenges associated with using 

Halbach arrays and air cores in magnetic gears, a prototype was designed, fabricated, 

and tested.  Various tradeoffs between magnetic performance and mechanical design 

considerations were evaluated.  The modulators were supported using a bridge and 

circular cutouts to accommodate rods and spacers.  The Rotor 1 PMs were retained with 

a nonmagnetic sleeve, while the Rotor 3 PMs were retained with tapered walls between 

adjacent PMs and by material axially beyond the modulators.  The assembly was 
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facilitated by making tools using additive manufacturing to simplify tasks such as 

inserting the PMs into place and pressing the bearings into place.  The prototype showed 

good agreement with the simulation results regarding its slip torque, which was 

measured to be 31.2 N∙m.  This results in a GTD of 25.2 N∙m/kg considering only the 

active materials (PMs and modulators), a GTD of 8.7 N∙m/kg considering the total mass 

of the prototype without the end supports, and a GTD of 7.1 N∙m/kg considering the 

total mass of the prototype with the end supports included.  However, the prototype’s 

losses were higher than those predicted by electromagnetic analysis, likely due to 

bearing losses.  Nonetheless, the prototype’s projected 99% efficiency based on the 

measured no load losses compares very favorably against a few commercially available 

mechanical gears with roughly similar ratings.  The prototype’s mass is within the range 

of the masses of similarly rated commercially available mechanical gears. 



 

242 

 

REFERENCES 

 

[1] S. Sheng, "Report on Wind Turbine Subsystem Reliability – A Survey of Various 

Databases," Nat. Renewable Energy Lab., Golden, CO, Jun. 2013. 

[2] L. Jian, K. T. Chau, and J. Z. Jiang, "A Magnetic-Geared Outer-Rotor 

Permanent-Magnet Brushless Machine for Wind Power Generation," IEEE 

Trans. Ind. Appl., vol. 45, no. 3, pp. 954-962, May-Jun. 2009. 

[3] N. W. Frank and H. A. Toliyat, "Gearing Ratios of a Magnetic Gear for Wind 

Turbines," in Proc. IEEE Int. Elect. Mach. and Drives Conf., 2009, pp. 1224-

1230. 

[4] K. K. Uppalapati, J. Z. Bird, D. Jia, J. Garner, and A. Zhou, "Performance of a 

Magnetic Gear Using Ferrite Magnets for Low Speed Ocean Power Generation," 

in Proc. IEEE Energy Convers. Congr. and Expo., 2012, pp. 3348-3355. 

[5] M. Johnson, M. C. Gardner, H. A. Toliyat, S. Englebretson, W. Ouyang, and C. 

Tschida, "Design, Construction, and Analysis of a Large Scale Inner Stator 

Radial Flux Magnetically Geared Generator for Wave Energy Conversion," IEEE 

Trans. Ind. Appl., vol. 54, no. 4, pp. 3305-3314, Jul.-Aug 2018. 

[6] N. W. Frank and H. A. Toliyat, "Gearing Ratios of a Magnetic Gear for Marine 

Applications," in Proc. IEEE Electr. Ship Technol. Symp., 2009, pp. 477-481. 

[7] D. J. Powell, S. D. Calverley, F. de Wildt, and K. Daffey, "Design and Analysis 

of a Pseudo Direct-Drive Propulsion Motor," in Proc. IET Int. Conf. Power 

Electron., Mach. and Drives, 2010, pp. 1-2. 

[8] L. MacNeil, B. Claus, and R. Bachmayer, "Design and Evaluation of a 

Magnetically-Geared Underwater Propulsion System for Autonomous 

Underwater and Surface Craft," in Proc. Int. Conf. IEEE Oceans, 2014, pp. 1-8. 

[9] T. V. Frandsen, L. Mathe, N. I. Berg, R. K. Holm, T. N. Matzen, P. O. 

Rasmussen, and K. K. Jensen, "Motor Integrated Permanent Magnet Gear in a 

Battery Electrical Vehicle," IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1516-

1525, Mar.-Apr. 2015. 

[10] W. J. McDonald, T. F. Price, and G. P. Hatch, "Wellbore Motor Having 

Magnetic Gear Drive," U.S. Patent 7 481 283 B2, Jan. 27, 2009. 



 

243 

 

[11] J. J. Scheidler, V. M. Asnani and T. F. Tallerico, "NASA's Magnetic Gearing 

Research for Electrified Aircraft Propulsion," in Proc. AIAA/IEEE Elect. Aircraft 

Technol. Symp., 2018, pp. 1-12. 

[12] C. G. Armstrong, "Power Transmitting Device," U.S. Patent 687 292, Nov. 26, 

1901. 

[13] H. T. Faus, "Magnetic Gearing," U.S. Patent 2 243 555, May 27, 1941. 

[14] A. H. Neuland, "Apparatus for Transmitting Power," U.S. Patent 1 171 351, Feb. 

8, 1916. 

[15] G. A. Reese, "Magnetic Gearing Arrangement," U.S. Patent 3 301 091, Jan. 31, 

1967. 

[16] T. B. Martin Jr., "Magnetic Transmission," U.S. Patent 3 378 710, Apr. 16, 1968. 

[17] K. Atallah and D. Howe, "A Novel High-Performance Magnetic Gear," IEEE 

Trans. Magn., vol. 37, no. 4, pp. 2844-2846, Jul. 2001. 

[18] S. Mezani, K. Atallah, and D. Howe, "A High-Performance Axial-Field 

Magnetic Gear," J. Appl. Phys., vol. 99, no. 8, pp. 1-3, Apr. 2006. 

[19] F. T. Jorgensen, T. O. Andersen, and P. O. Rasmussen, "The Cycloid Permanent 

Magnetic Gear," IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1659-1665, Nov.-

Dec. 2008. 

[20] J. Rens, K. Atallah, S. D. Calverley, and D. Howe, "A Novel Magnetic Harmonic 

Gear," IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 206-212, Jan.-Feb. 2010. 

[21] K. Davey, T. Hutson, L. McDonald and G. Hutson, "The Design and 

Construction of Cycloidal Magnetic Gears," in Proc. IEEE Int. Elect. Mach. And 

Drives Conf., 2017, pp. 1-6. 

[22] K. Davey, L. McDonald, and T. Hutson, "Axial Flux Cycloidal Magnetic Gears," 

IEEE Trans. Magn., vol. 50, no. 4, pp. 1-7, Apr. 2014. 

[23] K. Atallah, J. Wang, and D. Howe, "A High-Performance Linear Magnetic 

Gear," J. Appl. Phys., vol. 97, no. 10, pp. 1-3, 2004. 

[24] R. K. Holm, N. I. Berg, M. Walkusch, P. O. Rasmussen, and R. H. Hansen, 

"Design of a Magnetic Lead Screw for Wave Energy Conversion," IEEE Trans. 

Ind. Appl., vol. 49, no. 6, pp. 2699-2708, Nov.-Dec. 2013. 

[25] M. B. Kouhshahi and J. Z. Bird, "Analysis of a Magnetically Geared Lead 

Screw," in Proc. IEEE Energy Convers. Congr. and Expo., pp. 1-5, 2016. 



 

244 

 

[26] K. Atallah, J. Rens, S. Mezani, and D. Howe, "A Novel 'Pseudo' Direct-Drive 

Brushless Permanent Magnet Machine," IEEE Trans. Magn., vol. 44, no. 11, pp. 

4349-4352, Nov. 2008. 

[27] L. Brönn, "Design and Performance Evaluation of a Magnetically Geared Axial-

Flux Permanent Magnet Generator," M.S. thesis, Dept. Elect. Eng., Stellenbosch 

Univ., Stellenbosch, South Africa, 2012. 

[28] M. Johnson, M. C. Gardner, and H. A. Toliyat, "Design and Analysis of an Axial 

Flux Magnetically Geared Generator," IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 

97-105, Jan.-Feb. 2017. 

[29] E. Gouda, S. Mezani, L. Baghli, and A. Rezzoug, "Comparative Study between 

Mechanical and Magnetic Planetary Gears," IEEE Trans. Magn., vol. 47, no. 2, 

pp. 439-450, Feb. 2011. 

[30] K. K. Uppalapati, J. Z. Bird, J. Wright, J. Pitchard, M. Calvin, and W. Williams, 

"A Magnetic Gearbox with an Active Region Torque Density of 239Nm/L," in 

Proc. IEEE Energy Convers. Congr. and Expo., 2014, pp. 1422-1428. 

[31] M. Johnson, M. C. Gardner, and H. A. Toliyat, "Analysis of Axial Field 

Magnetic Gears with Halbach Arrays," in Proc. IEEE Int. Elect. Mach. and 

Drives Conf., 2015, pp. 108-114. 

[32] M. Johnson, M. C. Gardner, and H. A. Toliyat, "Design Comparison of NdFeB 

and Ferrite Radial Flux Magnetic Gears," in Proc. IEEE Energy Convers. Congr. 

and Expo., 2016, pp. 1-8. 

[33] P. O. Rasmussen, T. O. Andersen, F. T. Jorgensen, and O. Nielsen, 

"Development of a High-Performance Magnetic Gear," IEEE Trans. Ind. Appl., 

vol. 41, no. 3, pp. 764-770, May-Jun. 2005. 

[34] S. Gerber and R. J. Wang, "Evaluation of a Prototype Magnetic Gear," in Proc. 

IEEE Int. Conf. Ind. Technol., 2013, pp. 319-324. 

[35] S. Gerber and R. J. Wang, "Analysis of the End-Effects in Magnetic Gears and 

Magnetically Geared Machines," in Proc. Int. Conf. Elect. Mach., 2014, pp. 396-

402. 

[36] T. D. Nguyen, V. Lanfranchi, C. Doc and J. P. Vilain, "Comparison of 

Optimization Algorithms for the Design of a Brushless DC Machine with Travel-

Time Minimization," in Proc. Electromotion, 2009, pp. 1-6. 



 

245 

 

[37] S. Stipetic, W. Miebach and D. Zarko, "Optimization in Design of Electric 

Machines: Methodology and Workflow," in Proc. Acemp – Optim – 

Electromotion, 2015, pp. 441-448. 

[38] A. Krishnamoorthy and K. Dharmalingam, "Application of Genetic Algorithms 

in the Design Optimization of Three Phase Induction Motor," J. Comput. 

Applicat., vol. 2, no. 4, pp. 1 – 5, Oct – Dec. 2009. 

[39] S. D. Sudhoff and Y. Lee, "Energy Systems Analysis Consortium (ESAC) 

Genetic Optimization System Engineering Tool (GOSET) Version Manual," 

School Electr. Comput. Eng., Purdue Univ., West Lafayette, IN, 2003. 

[40] D. J. Evans and Z. Q. Zhu, "Influence of Design Parameters on Magnetic Gear's 

Torque Capability," in Proc. IEEE Int. Elect. Mach. and Drives Conf., 2011, pp. 

1403-1408. 

[41] T. Lubin, S. Mezani, and A. Rezzoug, "Development of a 2-D Analytical Model 

for the Electromagnetic Computation of Axial-Field Magnetic Gears," IEEE 

Trans. Magn., vol. 49, no. 11, pp. 5507-5521, Nov. 2013. 

[42] V. M. Acharya, J. Z. Bird, and M. Calvin, "A Flux Focusing Axial Magnetic 

Gear," IEEE Trans. Magn., vol. 49, no. 7, pp. 4092-4095, Jul. 2013. 

[43] R.-J. Wang, L. Brönn, S. Gerber, and P. M. Tlali, "Design and Evaluation of a 

Disc-Type Magnetically Geared PM Wind Generator," in Proc. Int. Conf. Power 

Eng., Energy and Electr. Drives, 2013, pp. 1259-1264. 

[44] K. Atallah, S. D. Calverley, and D. Howe, "Design, Analysis and Realisation of a 

High-Performance Magnetic Gear," IEE Proc. Elec. Power Appl., vol. 151, no. 2, 

pp. 135-143, Mar. 2004. 

[45] S. Gerber and R. J. Wang, "Design and Evaluation of a Magnetically Geared PM 

Machine," IEEE Trans. Magn., vol. 51, no. 8, pp. 1-10, Aug. 2015. 

[46] T. V. Frandsen, P. O. Rasmussen and K. K. Jensen, "Improved Motor Intergrated 

Permanent Magnet Gear for Traction Applications" in Proc. IEEE Energy 

Convers. Congr. and Expo., 2012, pp. 3332-3339. 

[47] M. Johnson, A. Shapoury, P. Boghrat, M. Post, and H. A. Toliyat, "Analysis and 

Development of an Axial Flux Magnetic Gear," in Proc. IEEE Energy Convers. 

Congr. and Expo., 2014, pp. 5893-5900. 

[48] G. Jungmayr, J. Loeffler, B. Winter, F. Jeske, and W. Amrhein, "Magnetic Gear: 

Radial Force, Cogging Torque, Skewing, and Optimization," IEEE Trans. Ind. 

Appl., vol. 52, no. 5, pp. 3822-3830, Sep.-Oct. 2016. 



 

246 

 

[49] A. Rahideh, A. A. Vahaj, M. Mardaneh, and T. Lubin, "Two-Dimensional 

Analytical Investigation of the Parameters and the Effects of Magnetisation 

Patterns on the Performance of Coaxial Magnetic Gears," IET Elec. Syst. 

Transp., vol. 7, no. 3, pp. 230-245, Aug. 2017. 

[50] Y. Chen, W. N. Fu, S. L. Ho, H. Liu, "A Quantitative Comparison Analysis of 

Radial-Flux, Transverse-Flux, and Axial-Flux Magnetic Gears," IEEE Trans. 

Magn., vol. 50, no. 11, pp. 1-4, Nov. 2014. 

[51] M. C. Gardner, B. E. Jack, M. Johnson, and H. A. Toliyat, "Comparison of 

Coaxial Radial Flux Magnetic Gears Independently Optimized for Volume, Cost, 

and Mass," IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 2237-2245, May-Jun. 

2018. 

[52] D. J. Patterson, J. L. Colton, B. Mularcik, B. J. Kennedy, S. Camilleri, and R. 

Rohoza, "A Comparison of Radial and Axial Flux Structures in Electrical 

Machines," in Proc. IEEE Int. Elect. Mach. and Drives Conf., 2009, pp. 1029-

1035. 

[53] A. Penzkofer and K. Atallah, "Scaling of Pseudo Direct Drives for Wind Turbine 

Application," IEEE Trans. Magn., vol. 52, no. 7, pp. 1-5, Jul. 2016. 

[54] K. Li, J. Bird, J. Kadel and W. Williams, "A Flux-Focusing Cycloidal Magnetic 

Gearbox," IEEE Trans. Magn., vol. 51, no. 11, pp. 1-4, Nov. 2015. 

[55] N. W. Frank and H. A. Toliyat, "Analysis of the Concentric Planetary Magnetic 

Gear with Strengthened Stator and Interior Permanent Magnet Inner Rotor," 

IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1652-1660, Jul.-Aug. 2011. 

[56] P. M. Tlali, R.-J. Wang, and S. Gerber, "Magnetic Gear Technologies: A 

Review," in Proc. Int. Conf. Elect. Mach., 2014, pp. 544-550. 

[57] J. M. Crider, and S. D. Sudhoff, "An Inner Rotor Flux-Modulated Permanent 

Magnet Synchronous Machine for Low-Speed High-Torque Applications," IEEE 

Trans. Energy Convers., vol. 30, no. 3, pp. 1247-1254, Sep. 2015. 

[58] M. Filippini and P. Alotto, "Coaxial Magnetic Gears Design and Optimization," 

IEEE Trans. Ind. Elect., vol. 64, no. 12, pp. 9934-9942, Dec. 2017. 

[59] M. Desvaux, B. Multon, H. B. Ahmed, S. Sire, A. Fasquelle, and D. Laloy, "Gear 

Ratio Optimization of a Full Magnetic Indirect Drive Chain for Wind Turbine 

Applications," in Proc. Twelfth Int. Conf. Ecological Veh. Renewable Energies, 

2017, pp. 1-9. 



 

247 

 

[60] K. Li, J. Wright, S. Modaresahmadi, D. Som, W. Williams and J. Z. Bird, 

"Designing the First Stage of a Series Connected Multistage Coaxial Magnetic 

Gearbox for a Wind Turbine Demonstrator," in Proc. IEEE Energy Convers. 

Congr. and Expo., 2017, pp. 1247-1254. 

[61] S. Pakdelian, M. Moosavi, H. A. Hussain, and H. A. Toliyat, "Control of an 

Electric Machine Integrated With the Trans-Rotary Magnetic Gear in a Motor 

Drive Train," IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 106–114, Jan.-Feb. 

2017. 

[62] M. Desvaux, R. Le Goff Latimier, B. Multon, S. Sire, and H. Ben Ahmed, 

"Analysis of the Dynamic Behaviour of Magnetic Gear with Nonlinear 

Modelling for Large Wind Turbines," in Proc. Int. Conf. Elect. Mach., 2016, pp. 

1332–1138. 

[63] R. G. Montague, C. M. Bingham, and K. Atallah, "Magnetic Gear Dynamics for 

Servo Control," in Proc. IEEE Mediterranean Electrotechnical Conf., 2010, pp. 

1192–1197. 

[64] M. Bouheraoua, J. Wang, and K. Atallah, "A Complex Frequency Domain 

Analysis of a Closed Loop Controlled Pseudo Direct Drive," in Proc. Int. Conf. 

Elect. Mach., 2012, pp. 2428–2434. 

[65] R. G. Montague, C. M. Bingham, and K. Atallah, "Dual-Observer-Based 

Position-Servo Control of a Magnetic Gear," IET Elect. Power. Appl., vol. 5, no. 

9, pp. 708–714, Nov. 2011. 

[66] M. C. Gardner, M. Johnson, and H. A. Toliyat, "Analysis of High Gear Ratio 

Capabilities for Single-Stage, Series Multistage, and Compound Differential 

Coaxial Magnetic Gears," IEEE Trans. Energy Convers., vol. pp, no. 99, pp. 1-8, 

2018. 

[67] K. Aiso, K. Akatsu, and Y. Aoyama, "A Novel Reluctance Magnetic Gear for 

High-Speed Motor," IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2690-2699, May-

Jun. 2019. 

[68] Z. Q. Zhu and D. Howe, "Halbach Permanent Magnet Machines and 

Applications: A Review," IEE Proc. Elect. Power. Appl., vol. 148, no. 4, pp. 

299-308, Jul. 2001. 

[69] Z. Q. Zhu, "Recent Development of Halbach Permanent Magnet Machines and 

Applications," in Proc. Power Convers. Conf., 2007, pp. 9-16. 



 

248 

 

[70] S. Sadeghi and L. Parsa, "Multiobjective Design Optimization of Five-Phase 

Halbach Array Permanent-Magnet Machine," IEEE Trans. Magn., vol. 47, no. 6, 

pp. 1658-1666, Jun. 2011. 

[71] L. Yang, S. L. Ho, W. N. Fu, and W. Li, "Design Optimization of a Permanent 

Magnet Motor Derived From a General Magnetization Pattern," IEEE Trans. 

Magn., vol. 51, no. 11, pp. 1-4, Nov. 2015. 

[72] K. Bastiaens, J. W. Jansen, S. Jumayev, and E. A. Lomonova, "Design of an 

Axial-Flux Permanent Magnet Machine for an In-Wheel Direct Drive 

Application," in Proc. IEEE Int. Elect. Mach. and Drives Conf., 2017, pp. 1-7. 

[73] Z. P. Xia, Z. Q. Zhu and D. Howe, "Analytical Magnetic Field Analysis of 

Halbach Magnetized Permanent-Magnet Machines," IEEE Trans. Magn., vol. 40, 

no. 4, pp. 1864-1872, Jul. 2004. 

[74] M. Markovic and Y. Perriard, "Optimization Design of a Segmented Halbach 

Permanent-Magnet Motor Using an Analytical Model," IEEE Trans. Magn., vol. 

45, no. 7, pp. 2955-2960, Jul. 2009. 

[75] G. I. Oosthuizen and P. J. Randewijk, "Design of an Ironless Double-Rotor 

Radial Flux Permanent Magnet Machine," in Proc. IEEE Int. Elect. Mach. and 

Drives Conf., 2015, pp. 683-688. 

[76] M. Munaro, N. Bianchi and G. Meneghetti, "High Torque Density PM Motor for 

Racing Applications," in Proc. IEEE Energy Convers. Congr. and Expo., 2017, 

pp. 5826-5833. 

[77] L. Jian, K. T. Chau, Y. Gong, J. Z. Jiang, C. Yu and W. Li, "Comparison of 

Coaxial Magnetic Gears With Different Topologies," IEEE Trans. Magn., vol. 

45, no. 10, pp. 4526-4529, Oct. 2009. 

[78] L. Jian and K. T. Chau, "A Coaxial Magnetic Gear With Halbach Permanent-

Magnet Arrays," IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 319-328, Jun. 

2010. 

[79] M. C. Gardner, D. A. Janak and H. A. Toliyat, "A Parameterized Linear 

Magnetic Equivalent Circuit for Air Core Radial Flux Coaxial Magnetic Gears 

with Halbach Arrays," in Proc. IEEE Energy Convers. Congr. and Expo., 2018, 

pp. 2351-2358. 

[80] H. Baninajar, J. Z. Bird, S. Modaresahmadi and W. Williams, "Electromagnetic 

and Mechanical Design of a Hermetically Sealed Magnetic Gear for a Marine 

Hydrokinetic Generator," in Proc. IEEE Energy Convers. Congr. and Expo., 

2018, pp. 4987-4993. 



 

249 

 

[81] Grove Gear, "BRAVO Series eCatalog," Accessed: May 13, 2019, 

http://grovegear.smartcats.com/ecatalog/BRAVO-Single-Solid/en/B518-7-L-12. 

[82] Grove Gear, "Electra-Gear EL Series eCatalog," Accessed: May 13, 2019, 

http://grovegear.smartcats.com/ecatalog/Electragear-EL-Single-Solid/en/EL-

B813-5-L. 

[83] Eisele Getriebe, "Eisele Katalog Planetengetriebe," Accessed: May 13, 2019, 

http://eisele-getriebe.com/wordpress/wp-content/uploads/2017/03/Eisele-

Katalog_Planetengetriebe_20170312.pdf. 

[84] Hub City, "HERA Catalog Section," Accessed: May 19, 2019, 

https://www.hubcityinc.com/documents/7H-HubCityHERAgearDrives.pdf. 

[85] Varvel, "RS RT Catalog," Accessed: May 19, 2019, 

http://www.varvel.com/varvel-download/3248. 

[86] Chiaravalli, "Gear Boxes and Motors Catalog," Accessed: May 21, 2019, 

https://feyc.eu/download/catalogos/transmision/chiaravalli/Gear%20Boxes%20a

nd%20Motors%20%20(1).pdf. 

 

 

 


