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ABSTRACT 

 

Minimum Ignition Energy (MIE) is a critical dust hazard parameter guiding elimination of 

ignition sources in solids handling facilities. Partial inerting is an important but underutilized 

mitigation technique in which MIE of a dust cloud is increased through inerting, reducing the risk 

of an accidental dust explosion or more accurately, a dust deflagration. This dissertation has 

reported advances in MIE testing and prediction to prevent and mitigate dust explosions.  

In this work, a novel purge add-on device to the standard MIE test apparatus was designed 

which facilitated purging the Hartmann tube before MIE testing. Through experimentation and 

CFD modeling, this dissertation has attempted to refine the existing MIE testing standard for 

partial inerting applications by introducing purge time as an essential parameter. The effective 

experimental purge time required for partial inerting testing in the MIE apparatus was determined 

to be > 40 s and validated through the ANSYS Fluent CFD purging model. In addition, this work 

has demonstrated that purging the MIE apparatus Hartmann tube before experimentation 

significantly affected the measured values in partially inerted atmospheres (O2 < 21 vol. %). It is 

recommended through this research that purging should be an essential step while MIE testing and 

reporting. Using this improved methodology, an accurate MIE with changing oxygen 

concentrations for the combustible dusts Niacin, Anthraquinone, Lycopodium clavatum and 

Calcium Stearate was obtained and a mathematical equation for MIE-O2 was proposed. 

Furthermore, Quantitative-Structure Property (QSPR) models for MIE prediction using 

machine learning algorithms such as Random Forests (RF) and Decision Trees (DT) were 

developed. A binary classification model was developed for predicting the MIE category of the 
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combustible dusts. The results indicated good MIE predictability through the RF algorithm 

indicated by the Receiver Operating Characteristic – Area Under Curve (ROC-AUC) of 0.95. 

Additionally, RF algorithm was used to identify the molecular descriptors which most significantly 

affected the MIE prediction accuracy.  

Thus, through experimentation and modeling, this study aims to provide a scientific 

foundation for a partial inerting MIE test method to supplement existing testing standards (such as 

ASTM E2019-03) and provides a solid framework for MIE prediction of combustible dusts.  
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1 INTRODUCTION* 

 

1.1. Dust explosions 

Dust explosions have been a major safety concern in powder manufacturing and handling 

facilities resulting in catastrophic loss of life and property [1-5]. Combustible dust is present in 

industries as a raw material, byproduct or final product. Dust explosions result in tremendous 

overpressures, high temperatures and generate toxic gases due to combustion reaction [1-5].  

In the United States, from 1980-2005, 281 combustible dust explosions have resulted in 

119 fatalities and 718 injuries resulting in extensively damaging facilities [5-8]. Thus, in the period 

from 1980 – 2005, the 3 workers per month are affected in the U.S by dust explosions, which is a 

significant consequence. Dust explosions are a problem not only in United States but also in 

facilities around the world. Some of the major dust explosions incidents in recent years are 

observed in Table 1.  Despite recurring incidents, there is still a lack of general awareness of dust 

hazards [6]. 

 

 

 

 
_____________________________________________________________________________________ 
*Parts of this section have been reprinted with permission from: P. Chaudhari, B. Ravi, P. Bagaria, C. Mashuga, 
"Improved partial inerting MIE test method for combustible dusts and its CFD validation", Process Safety and 
Environmental Protection 2019, vol. 122, pp. 192-199, 2019, Copyright 2019 by Chaudhari et al.[33] and P. 
Chaudhari, and C. Mashuga, "Partial inerting of dust clouds using a modified standard minimum ignition energy 
device", Journal of Loss Prevention in the Process Industries, vol. 48, pp. 145-150, 2017, Copyright 2019 by Chaudhari 
and Mashuga [38]. 
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Table 1 Major dust explosion incidents worldwide and their consequences [5] 

  

Incident Location  
and Year Material Consequence 

AL Solutions U.S., 2010 
Titanium-
Zirconium 

Powder 
3 fatalities 

Foxconn Plant 
Explosion China., 2011 Aluminum Dust 4 fatalities,    

18 injuries 

U.S. Ink Fire U.S., 2012 

Gilsonite, Carbon 
Black and 
Petroleum 

Distillate Powder 
Mixture 

7 injuries 

Kunshan Explosion China, 2014 Metal Powder 146 fatalities 

Formosa Fun Coast Taiwan, 2015 Colored 
Cornstarch 

15 fatalities, 
500 injuries 

 

 

The five key elements required for a dust explosion are the fuel (combustible dust), 

confinement of combustible dusts, the oxygen content in the confined atmosphere, dust dispersion 

and presence of an ignition source [9]. These elements can be represented in the form of a dust 

pentagon (see Figure 1).  
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Figure 1 : Dust explosion pentagon 

 

Further, each side of this pentagon can be associated with some critical parameters 

affecting dust explosion. The fuel (combustible dust) can be associated with parameters such as 

the dust shape, morphology, polydispersity, composition and its dispersibility. The confinement 

aspect of the pentagon can be associated with Minimum Explosible Concentration (MEC) while 

the dispersion side can be associated with dust turbulence during its dispersion. The oxygen 

content can be associated with the parameter Limiting Oxygen Content (LOC) which is the 

minimum oxygen concentration required for the dust to ignite. Finally, the ignition aspect of the 

pentagon is associated with parameters such as the Minimum Ignition Energy (MIE) which is the 

smallest amount of energy required to ignite the combustible dust and the Auto-Ignition 

Temperature (AIT) which is the lowest temperature at which the dust spontaneously ignites. The 

severity or the consequence of a dust explosion can be measured through the over pressure 
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generated during the explosion. The explosion severity is measured by the parameters Pmax and 

Kst.  The Pmax indicates the maximum explosion overpressure generated during the dust explosion 

while the Kst determines the rate of pressure rise during a dust explosion. The main focus of this 

research has been the MIE, a critical dust explosion parameter which has been discussed in detail 

below. 

1.2. Minimum Ignition Energy (MIE) 

One of the critical parameters to be considered during dust explosion risk assessment is 

MIE. MIE is the smallest amount of energy required to ignite a dust cloud at a given temperature 

and pressure, and it quantifies the ignition probability of the dust [3, 10]. As MIE of a dust is an 

important dust explosion parameter, this aspect has been the focus of this research. 

Figure 2 shows the contribution of different types of ignition sources present in process 

industries. Flame and direct heat account for the most common ignition sources in industry. Impact 

sparks, friction sparks, static electricity and electrical sparks account for ~ 46 % of the ignition 

sources present in the process industries [4]. Spark ignition can be associated with the measured 

MIE and therefore elimination of spark generating sources is an important dust explosion 

prevention method. 
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Figure 2 : Ignition sources present in process industries [4] 

 

In the case of sparks as ignition sources, dust explosion preventive measures such as 

elimination of various ignition sources, grounding conductive parts of equipment and grounding 

personnel are implemented in combustible dust handling facilities. Dust MIE measurements have 

been traditionally conducted in the Hartmann explosion tube where ignition is provided by 

capacitive sparks [3]. A number of factors affect MIE measurements such as the dust particle size, 

shape, its polydispersity, oxygen content, ignition delay time between the dust dispersion and spark 

discharge and the presence of an inductance in the circuit. The effect of these factors on MIE has 

been extensively studied in literature. However, there still exist certain gaps in understanding the 

effect of certain factors on MIE measurement. Dust MIE measurement and testing has been 

discussed in the sections below. 
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1.3. Dust explosion research overview 

1.3.1. Dust explosion prevention and mitigation 

As dust explosion is a prevalent problem, dust explosion prevention and mitigation 

becomes important. Table 2 summarizes the commonly used dust explosion prevention and 

mitigation methods in industries. These methods can be categorized into passive and active 

explosion prevention [11].  

 

Table 2 Dust explosion prevention and mitigation methods (redrawn from [12, 13]) 

 

 Explosion Prevention 
Explosion Mitigation Preventing ignition 

sources 
Prevention of explosive dust 

clouds 
 

a) Hot surfaces 
b) Open flames 
c) Burning 

metal 
particles 

d) Electrostatic 
discharges 

e) Electric 
sparks and 
arcs 

 
a) Process design to prevent 

dust cloud generation and 
particle size breakage 
(inherently safer design) 

b) Inerting dust cloud by inert 
dust 

c) Inerting dust cloud by inert 
gas 

d) Keeping dust concentration 
outside explosible range 

 
a) Explosion pressure 

resistant equipment 
b) Explosion isolation 
c) Explosion venting 
d) Automatic 

explosion 
suppression 

e) Partial inerting of 
dust cloud using 
inert gas 

f) Good housekeeping 
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Passive engineered safety 

Passive engineered safety devices perform their function simply by their presence and do 

not require any actuation after the initiating event of the dust explosion. Some examples of passive 

devices for dust explosion mitigation are explosion relief venting, physical barriers isolating plant 

sections in order to prevent secondary dust explosions [11]. 

Active engineered safety 

Active engineered safety devices require activation for explosion mitigation. Maintenance 

and testing are of further importance when operating these devices. Some examples of active 

devices for dust explosion include automatic dust explosion suppression system, mechanical 

isolation valves, inerting using an inert gas or partial inerting. 

Additionally, some other procedural dust explosion prevention techniques include addition 

of inert solids to the dust to render it noncombustible, good housekeeping and removal of ignition 

sources in the facility. However, these methods are not always practical and their applicability 

depends on the nature of the facility [11]. 

1.3.2. Partial inerting 

There are numerous dust explosion mitigation methods practiced in industries. To 

minimize the risk of a dust explosion, a common industrial practice is to inert combustible dust 

processes with a non-reactive gas [3, 14]. Inerting is a common practice in the chemical industry 

for reactors, grinding, mixing processes, vessels, silos, mills, filling facilities, and dryers [2, 14]. 

For combustible dust processes, often designers and operators fully inert the process or use no 

inerting at all (all-or-nothing approach). This decision is influenced by the value of the MIE and 

the equipment's ability to be effectively inerted. The decision to completely inert the process 

(100% nitrogen atmosphere) can be hazardous and comes with the risk of asphyxiation and proper 
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precautions must be taken during its implementation. It is a myth, assumed by many that complete 

oxygen removal is essential to prevent dust explosions [15-16]. 

Partial inerting can be used as an intermediate inerting technique, where, rather than 

complete oxygen removal, the oxygen levels are reduced by substitution with an inert gas (e.g. 

nitrogen, carbon dioxide, argon) such that the MIE of the dust is significantly raised, thereby 

substantially reducing the probability of ignition [17]. Some of the many advantages of partial 

inerting are: cost effectiveness, improved safety with regard to the asphyxiation hazard posed by 

complete inerting, improved product quality for products requiring oxygen, and reduced explosion 

vent area [17-18]. 

Following this, a few studies have explored the concept of partial inerting [19-21]. Hoppe 

and Jaeger have used the term partial inerting and discussed its implementation on an industrial 

scale [14]. Eckhoff has emphasized on partial inerting as an important dust explosion mitigation 

consideration [17]. Studies conducted by Glarner [22] and Glor and Schwenzfeuer [19] have 

experimentally confirmed that a slight reduction in oxygen can markedly change the Minimum 

Ignition Energy (MIE) of combustible dust clouds. Devlikanov et al. observed that the rate of 

pressure rise of a dust cloud explosion (Kst) varied linearly with the oxygen content [23]. The slight 

reduction in the oxygen content in many studies has been observed to significantly decrease 

ignition sensitivity and combustion rate of dust cloud. Thus, partial inerting is a relatively newer 

concept for dust explosion mitigation and has a wide application potential in industry. While there 

is literature on partial inerting, comprehensive understanding of the effect of partial inerting on the 

dust explosion parameters is required. 
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1.3.3.  Partial inerting MIE testing 

In order to understand the influence of oxygen content on MIE of dusts, it is important to 

understand the dust explosion mechanism. Heat from ignition source melts and vaporizes the dust 

particle. The vaporized dust particles undergo the combustion reaction with the oxygen present in 

the atmosphere. When oxygen content in atmosphere or surrounding is reduced, more energy is 

required for vaporization and reaction of the dust particles [24]. The MIE required to ignite 

combustible dust increases with reduction in oxygen content, making it more difficult for the dust 

to undergo combustion reaction. 

The earliest record of effect of inert gas (nitrogen) on MIE was reported by Glarner [22]. 

Glor and Schwenzfeuer experimentally investigated the effect of changing the oxygen content on 

the MIE for a number of common combustible substances [19]. Additionally, they proposed a 

model to describe the MIE behavior of any dust as a function of the oxygen concentration.  

Precise measurement of the MIE is critical in determining the likelihood of a dust explosion. 

Several partial inerting studies have experimentally investigated the effect of oxygen content on 

MIE for various dusts [19, 22, 25-26]. The nature of the MIE-oxygen relationship is dependent on 

the type of dust. While some dusts have an almost linear MIE-oxygen relationship, others seem to 

vary nonlinearly.  

MIE measurement of combustible dusts is conducted by following standard test procedure 

ASTM E2019-03 [27]. A number of commercially available devices for MIE testing through 

different manufacturers follow this test method for MIE testing. The MIKE3 device is one of the 

standard devices used by experts worldwide for decades to conduct MIE testing of dust clouds [19, 

25-26, 28-32]. If partial inerting tests are conducted in MIKE3 device employing standard test 

method, the composition of the gas used for dispersion differs from the atmospheric air present in 
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the tube. This difference in composition, result in MIE measurements at a different oxygen 

composition than desired. However, if we deviate from the standard test method, the MIE tube is 

purged with the gas composition which is similar to that used for dispersion. This change in test 

procedure, though minor, can significantly affect the measurement of MIE values depending on 

the atmosphere in which MIE measurements are conducted (see Figure 3). To date, investigations 

in the area of partial inerting have mainly focused on the impact of nitrogen on MIE values rather 

than the experimental method used. 

 

 

 

Figure 3 : Importance of tube purging in MIE testing [33] 
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Several partial inerting studies have been conducted where tube pre-purging has not been 

mentioned while testing. Some researchers have only briefly mentioned maintaining oxygen-

nitrogen compositions in the Hartman tube consistent with the gas used for dust dispersion [25-

26]. Ackroyd et al. filled the tube near the electrodes before testing [25], while Choi et al. reported 

the implementation of a purge through a small opening in the lid assembly at the top of the device 

[26]. However, the experimental details and specifications of the employed purging techniques 

and their effectiveness have not been discussed in previous works and needs to be investigated. 

This improved MIE test method of purging the tube before testing can further be extended 

to hybrid dust-combustible gas system. While, MIE is a parameter associated with combustible 

dust in oxygen- nitrogen atmospheres, for hybrid explosions, the hybrid MIE can be described as 

the lowest energy required to ignite a combustible dust-flammable gas cloud [34]. In literature, 

several hybrid dust explosion explosion studies with various different combinations of 

combustible dust and flammable gas [35-37]. While these studies investigated hybrid MIE testing, 

none of these have conducted testing by pre-purging the Hartmann tube before the dust dispersion 

and ignition, which is an important step in obtaining accurate MIE results [38]. It can be estimated 

that pre-purging the tube for hybrid systems can result in relatively more conservative MIE values. 

Therefore, it is important to investigate the influence of the effect of purging the tube before MIE 

experimentation in order to obtain precise MIE data for combustible dust systems in inerted 

atmospheres and hybrid dust systems which are often encountered in solids handling and 

processing industries.  

1.4. MIE prediction 

Experimental testing of ignition characteristics of combustible dusts can be an expensive 

and time consuming process. In process industries, when designing a process for any particular 
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material, it is essential to know the MIE - the minimum amount of energy which can result in 

ignition of that material. Prediction of MIE of combustible powders can hasten this process where 

testing of such dusts can be circumvented and decisions can be made solely based on the prediction 

results. Accurate prediction of MIE will be very useful in simulating real situations in industries 

and help in avoiding ignition sources above a certain energy range in the facility. Therefore, there 

is a need for development of models which can accurately predict the ignition behavior of 

combustible dusts.  

One of the earliest mathematical equations relating the MIE of dusts to various dust 

parameters has been reported by Jost (1950) [39]. This equation is based on several assumptions 

some of them being, spherical shape of dust particles and flame temperature > 1000oC. Based on 

this equation, Kalkert and Schecker conducted a comparison between experimental and theoretical 

MIE variation with particle diameter for some dusts which indicated good agreement [40]. Thus 

they have emphasized in their work the dependency of MIE with the cube of particle diameter for 

any dust. This observation has been used in literature but is known to hold true only for certain 

dusts.  Gubin and Dik have modeled the spark ignition of combustible dusts. The MIE of dusts due 

to spark ignition was found to be a function of thermal effects of reaction, mass concentration of 

dust, particle diameter, specific heat of gas and dust [41]. Bidabadi et al. have developed a thermal 

model to estimate the flame propagation speed in various oxidizer concentrations [42]. They have 

investigated flame speed as a function of particle diameter and minimum ignition energy as a 

function of dust concentrations for various particle diameters.  

MIE being a probabilistic parameter, a number of statistical studies have been conducted 

[3, 43-44]. Wähner et al. have used liner regression for MIE determination of hydrogen, ethane 

and propane [44]. Bernard et al. in their work, have used Langlie test method for MIE 



 

13 

 

determination for different dust and gas systems [43].  

It was observed that while some of these models have been developed from fundamental 

considerations, most models have used substantial amount of experimental data for their 

development. Moreover, the existing fundamental mathematical models have made numerous 

assumptions to come to a single equation that can predict the MIE of any dust as a function of its 

parameters. Thus, a number of fundamental and empirical MIE prediction models for dusts have 

been proposed in literature [17, 19-22]. 

1.4.1. Quantitative Structure-Property Relationship (QSPR) for MIE prediction 

An extensively utilized mathematical tool for correlating material properties to its 

molecular structures is Quantitative-Structure Property Relationship (QSPR) [51-53]. Several 

studies have explored Quantitative Structure-Property Relationship (QSPR) models relating 

molecular structures to the physical properties of compounds such as boiling point [54-55], flash 

point temperature [56] and auto-ignition temperature [57-58]. Further, QSPR has also been 

employed to investigate the reactive properties such as onset temperature and energy of reaction 

[59]. 

MIE prediction models for combustible dusts giving consideration to the molecular 

structure of compounds need to be investigated in detail. For dusts, an alternative approach using 

QSPR by Reyes et al. predicted explosion severity parameters (Kst and Pmax), but did not 

investigate MIE [45]. While, Wang et al. have developed a QSPR model which considers 

molecular structure for MIE prediction of gaseous and liquid hydrocarbon fuels, this model does 

not predict MIE for combustible dusts [46,50]. The combustion mechanism and the modeling 

efforts required for dusts are much more complex than gases and liquids. For gases and liquids, 

individual molecule models can often sufficiently explain bulk properties. However, for dusts, the 
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interaction energies between individual molecules must also be considered [47-49], which is 

absent from previous studies. In 2016, Baati has developed local and global MIE prediction models 

of dusts, liquids and gases [60]. Their most robust prediction equation for dusts in this study 

consisted of 27 parameters, making it infeasible due to the large number of input parameters 

required in the model. In addition, in their study they have mentioned that there could be no 

conclusive outcome whether molecular structures influence material MIE and have not explained 

the logical correlation of the descriptors to MIE.  

While MIE point values are important, most often the range of MIE is reported in literature 

(For example, MIE of a certain compound is reported to be in a range from 300 mJ – 1000 mJ). 

The MIE measurement devices available generally allow MIE testing only for certain energy 

ranges. In solids handling facilities, dust MIE range instead of point MIE value are taken into 

account while planning dust explosion prevention and protection measures. Therefore, it would be 

useful to develop a classification model instead of a regression model for MIE prediction of 

combustible dusts which can inform about the MIE range the dust will lie in based on the dust’s 

molecular structure information. Such classification model for dusts is currently not explored in 

literature. Thus, MIE prediction for combustible dusts with consideration of their molecular 

structure and properties needs to be thoroughly investigated further. 

1.4.2. Machine learning methods for material property prediction 

Machine learning has been implemented to identify trends and correlations in data for 

predictions in finance, pharmaceutical and chemical industry [61-63]. Machine learning 

algorithms such as Random Forests (RF), Decision Trees (DT), Artificial Neural Networks (ANN), 

Support Vector Machines (SVM) and k-Nearest Neighbors (KNN) have been used to develop 

QSPR models [64-74]. In this research, QSPR has been combined with machine learning to 
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develop MIE prediction models. While there are many machine learning algorithms available, this 

section discusses only those few that were implemented in this research. Decision tree is a 

supervised machine learning algorithm which allow a top-down visual representation and easy 

interpretability of the dataset [75-76]. It enables classification of dataset into a flow chart like 

representation (see Figure 4). A decision tree starts at the tree root and splits the data into initial 

node of the decision tree enables decision making to move to the next node until eventually a final 

pure leaf is reached.  At each step the attributes and the values that the decision tree selects are 

made by reduction of entropy which is the measure of uncertainty in a random variable. The 

samples at each node belong to the same class. A collection of several decision trees is included 

in the Random Forest algorithm which makes the RF algorithm more robust for model 

development. Decision Trees and Random Forests can be used for both regression and 

classification problems. 
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Figure 4 : Example of decision tree representation of data observed through a telescope 
 

Another machine learning algorithm implemented in this research is the Artificial Neural 

Networks (ANN) which consists of a different layers and nodes (see Figure 5) [76]. Each node has 

one or more inputs and a single output. Each input has a weight associated with it and all the 

weights are summed and sent to an activation function that determines the output. Thus, the 

contributions from each starting node is considered in the final output.  
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Figure 5 : The input-output representation in Artificial Neural Networks (ANN) 
 

Combustible dust MIE prediction using QSPR through RF, DT and ANN models has not 

been successfully implemented in literature before. Therefore, exploration of RF and DT 

algorithms for QSPR model development can help in identifying the most important parameters 

that influence MIE and assist in graphically represent this information to make it more 

interpretable.  

1.5. Problem statement and objectives 

Based on the above literature review, it is evident that there are several gaps that need to be 

addressed in dust explosion testing and prediction. Precise combustible dust MIE measurement 

and prediction will assist in comprehensive understanding of the risks involved with dust 

explosions and eventually aid in prevention of such incidents. Therefore, the primary objective of 

this research will be to tackle the problem of more accurate MIE measurement by designing an 

add-on device to the existing testing device and advancing the exiting test procedure used for MIE 

testing. Thereafter, the MIE prediction models employing molecular modeling will be developed. 
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The following are the main objectives of this research: 

1) Develop equipment and technique for accurate partial inerting MIE testing 

As observed from literature, although MIE testing has been conducted by researchers in 

Hartmann tube for a long time, the partial inerting MIE testing standard is not yet defined and 

lacks accuracy in testing. An add-on purge device to the existing MIKE3 device has been designed 

to enable more precise partial inerting testing. The standard experimental test procedure for partial 

inerting MIE testing has been improved to include purging the MIE tube before dust dispersion 

and ignition. Purge time, a parameter which has not been defined in MIE testing previously has 

been investigated in this research. 

2) Effect of partial inerting test method on MIE measurement 

MIE-O2 relationships obtained experimentally through ASTM E2019-03 test method and 

improved test method have been compared. The importance of employing top purge in MIKE3 

device tube before MIE testing which results in precise determination of MIE values has been 

demonstrated. A similar methodology was extended to exhibit the importance of improved test 

method on hybrid dust MIE measurements. 

3) Molecular structure based model development for MIE prediction  

As per above literature review, limited fundamental and empirical equations for MIE 

prediction exist in literature which have been observed to deviate significantly from experimental 

MIE values. Applying machine learning algorithms for QSPR modeling of MIE of combustible 

dusts needs to be explored further. Thus, a molecular structure based model using machine learning 

techniques have been developed for MIE prediction through this objective. 

This research focuses on accurate MIE measurement in partially inerted atmospheres. A purge 

add-on device has been designed and an improved MIE test method has been proposed in this 
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work. Thereafter, this work goes on to demonstrate the effect of improved test method on the 

measured MIE. The partial inerting curves of several combustible dusts were generated and an 

equation for predicting MIE with changing oxygen concentration has been developed. In addition 

to experimental MIE testing and measurement, this research has also focused on MIE prediction 

through molecular structure information. Thus, this research has employed both experimental and 

modeling approaches to address some of the concerns involved with MIE testing and MIE 

prediction of combustible dusts. 
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2 IMPROVED PARTIAL INERTING TEST METHOD FOR COMBUSTIBLE 

DUSTS AND ITS CFD VALIDATION* 

 

2.1 Introduction 

For certain combustible dusts, MIE testing can be very expensive due to limited availability 

of dusts or not feasible due to limited and discrete range of MIE testing devices. In such cases, 

consistently collected and accurate data sets for determining the MIE-oxygen relationship are 

necessary for predicting the dust MIE at any desired oxygen concentration without the need for 

actual testing. This section has used a modified MIKE3 device to develop and refine the 

fundamental understanding of the test method for partial inerting MIE testing. The goal of this 

study was to examine the purge time required to produce partial inerting MIE measurements at 

known oxygen concentrations. In addition, an ANSYS Fluent CFD model was developed to help 

guide the experimental efforts and provide a validation of the modifications and method used. The 

CFD simulation of the purge flow is an important step as it allows for an estimated purge time 

required at any oxygen concentration, ensuring that the desired oxygen content is achieved in the 

Hartmann tube with minimal consumption of specialty gases.  

 

_____________________________________________________________________________________________ 
*Parts of this section have been reprinted with permission from: P. Chaudhari, B. Ravi, P. Bagaria, C. Mashuga, 
"Improved partial inerting MIE test method for combustible dusts and its CFD validation", Process Safety and 
Environmental Protection 2019, vol. 122, pp. 192-199, 2019, Copyright 2019 by Chaudhari et al.[33] and P. 
Chaudhari, and C. Mashuga, "Partial inerting of dust clouds using a modified standard minimum ignition energy 
device", Journal of Loss Prevention in the Process Industries, vol. 48, pp. 145-150, 2017, Copyright 2019 by Chaudhari 
and Mashuga [38]. 
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Additionally, the experimentally verified CFD model in this study would assist in 

extending this experimental test method (including purge time) to other combustible dust gas 

systems such as hybrid systems (flammable gas-air-combustible dust mixtures). 

2.2 Materials 

The importance of the variability in oxygen content used for MIE measurements is 

observed in Figure 6. The vertical red dotted lines show the narrow oxygen variability of Ultra 

High Purity (UHP) air, and the vertical green dashed lines show the potential variability in zero 

grade air. For dust C, the change in the MIE with oxygen concentration around 21% oxygen is 

insignificant. Therefore, the selection of gas used in testing will not dramatically affect the 

measured MIE values. However, the MIE for dust A and dust B can vary significantly with small 

changes in oxygen concentration and have a steep slope in the range of composition of zero grade 

air in Figure 6. Therefore, a high gas composition variability is deemed undesirable for testing, 

since the MIE values may change significantly for certain substances whose MIE is highly 

sensitive to oxygen content. The gas compositions used in this study were accurate to within 1% 

of the oxygen composition, ensuring the gas compositional variability was negligible for this study. 

Additionally, the gas strictly adhered to the standards of < 0.1 ppm carbon dioxide and < 0.36 ppm 

moisture. The gas compositions used in this study were oxygen: 12.03 %, 13.00%, 14.00%, 

15.00%, 16.11%, 17.98%, and 21.05 %, with nitrogen making up the balance.  
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Figure 6 : Influence of variability in oxygen concentration of dispersion gas on dust MIE [33] 
 

 

2.3 Methodology 

2.3.1 MIKE3 device modification 

The MIKE3 MIE device observed in Figure 7 is one of the devices used worldwide for 

testing the ignition sensitivity of combustible dust clouds. In the MIE device, at the bottom of the 

glass Hartmann tube there is a dust dispersion nozzle around which the dust is placed for testing. 

1

10

100

1000

10000

16 17 18 19 20 21 22 23 24 25 26

M
IE

 [m
J]

Oxygen [vol %] 

UHP air

Zero Grade air

Dust A

Dust B

Dust C



 

23 

 

A dust dispersion in the tube is formed by the release of air from a 7 barg reservoir which flows 

through the nozzle. After dispersion, an adjustable delay occurs, followed by the delivery of an 

ignition energy by a capacitive spark between the two tungsten electrodes. The device allows MIE 

measurement at energy levels of 1, 3, 10, 30, 100, 300, and 1000 mJ. The ignition time delay can 

be adjusted manually in the device at 90, 120, 150 and 180 ms. The inductance in the spark gap 

circuit can be adjusted to either 0 mH or 1 mH. Despite having these variables, the current MIKE3 

MIE device has not been designed with a provision to purge the tube prior to dust dispersion for 

partial inerting MIE testing. 
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Figure 7 : Minimum Ignition Energy Device (MIKE3) [33] 
 

To overcome this limitation, an innovative modification of the device was made which 

utilizes a single gas source of desired composition to purge the tube and then drive the dispersion. 

Figure 8 shows a schematic of the MIE device and highlighted modifications. Gas from a cylinder 

is split with one segment providing purging of the 1.2 L Hartman tube from the top through a purge 

device and the other segment connects in the standard way to the MIE device for dispersion. A 

needle valve on the flowmeter is used to regulate the purge gas flow to the Hartman tube. Figure 



 

25 

 

8 shows the placement of the purge device in the MIKE3 device. It is placed between the lid 

components of the original MIKE3 device. 

 

 

 

Figure 8 : Purge device and modification to a Minimum Ignition Energy apparatus [38] 
 

The purge device seen in Figure 9 essentially consists of two plates, sandwiched between 

the two lid parts. The lower plate has a gas inlet which opens into a flow channel running along its 
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circumference with small openings. These openings/ holes facilitate gas flow into the Hartmann 

tube.  

 

 

Figure 9 : MIE purge device insertion between original Kühner parts [38] 
 

The purge device is fabricated from corrosion resistant 316 stainless steel. A seal surface 

was added to the MIKE3 lid to prevent any atmospheric oxygen from entering the tube. The 

importance of the seal is discussed further in the results section. A provisional patent for the purge 

device described in this work has been filed [77].  

A criterion for proper design is reduced amount of leakage out of the add-on device, 

uniform flow of gas mixture into the Hartmann tube and uniform mixing of oxygen in the tube 
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during the purge flow. Uniform distribution of oxygen in the tube is an important design aspect 

determining the number of openings required for purging. Further, convergence of the 

experimental oxygen concentration with the simulated oxygen concentration would also reinforce 

validity of the purge device design.  

In general, partial inerting testing in the MIKE3 MIE device can follow standards such as 

ASTM E2019-03 (ASTM E2019-03, 2013)[27] or the European Standard (EN ISO/IEC 80079-

20-2) [78]. In this work, partial inerting testing by purging the MIE tube with test gas prior to 

experimentation for niacin, lycopodium, calcium stearate and anthraquinone was conducted to 

determine the MIE-O2 correlation for dusts.  

The purge flow rate of 10 L/min was maintained for 1 minute in order to ensure the 1.2 L 

Hartmann tube is completely purged prior to dust dispersion and ignition. Purge time has been 

discussed in detail in section 2.3.2. Even though the preignition atmosphere in the tube was 

controlled, the lab temperature and humidity were monitored during every test and were 

maintained at 70 +/- 5 oF, and 50 +/- 5 % relative humidity. 

2.3.2 Oxygen concentration and purge time measurements 

Before experimentation, the Hartmann tube initially contains ambient atmospheric air with 

variable oxygen and humidity levels which are known to influence the MIE measurement. Because 

of this the tube is purged from the top at 10 L/min to obtain the desired oxygen-nitrogen mixture. 

It is important to determine the time required for the desired gas purge mixture to displace the 

initial ambient atmosphere in the tube, as this determines the purge time that is required for every 

MIE test. In the range of oxygen levels used in this study (12.03 - 21.05 %), the maximum purge 

time will occur when the purge gas containing 12.03 % oxygen displaces the initial ambient air, 

since this is the largest difference in the oxygen concentrations. 
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In order to determine the purge time, a polycarbonate tube was fabricated with the same 

dimensions as the Hartmann tube, including openings for the oxygen sensor. While the purge gas 

filled the tube from the top at 10 L/min, an ammeter was used to measure the current output from 

the oxygen sensor at the lowest opening (point 1) in the tube (see the oxygen sensor measurement 

setup in Figure 10). This current corresponded to the oxygen content present at that time at point 

1. Therefore, the time required to reach the desired oxygen content of 12.03% at point 1 was 

determined, which is the maximum purge time required for testing. Similarly, the oxygen sensor 

setup was used to determine oxygen concentration as a function of time at varying heights (points 

1, 2, 3) in the tube during the 12.03 % oxygen purge. 

 

 

Figure 10 : Oxygen sensor measurement setup [33] 
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2.4 ANSYS Fluent CFD simulations of purging 

The purge gas (12.03% O2, 87.97% N2) flow into the 1.2 L Hartman tube was modeled 

using ANSYS Fluent version 18.2, utilizing the Fluent solver for simulating the fluid flow and 

species mixing [79]. 

2.4.1 Model geometry 

The tube was built in the Design Modeler representing the actual geometry. The 8 openings 

at the top of the tube serve as inlets for the purge gas and a circular slit aligning with the 

circumference of the upper wall served as an outlet that represented the flap valve hardware to 

maintain atmospheric pressure inside the tube during purging (see Figure 11). 

2.4.2 Grid and mesh independence 

The meshing was carried out to maximize the polyhedral cells inside the tube domain 

which are suitable for modeling computational fluid dynamics for the compressible flow with 

improved volume occupancy, solver convergence and accuracy over other types of cells. A three-

dimensional structured and unstructured portion of grid was generated (see Figure 11). The purge 

gas entry points and the electrode positions were unstructured grid. Different meshes were 

evaluated for mesh sensitivity analysis by monitoring the oxygen concentration at different mesh 

sizes. The mesh (as shown in Figure 11) had four zones divided into three portions for monitoring 

purposes viz. upper, middle and lower portions.  
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Figure 11 : Computational grid with electrodes developed in ANSYS Fluent [33] 
 

Monitor points were set to obtain a volume average of the oxygen mole fraction in each of 

these portions. A coarse mesh with ∼1.0 million nodes, a fine mesh with ∼1.5 million nodes and 

a finer mesh with ∼2.2 million nodes were generated and solved to monitor the oxygen mole 

fraction as part of the mesh independence study. 

The mesh shown in Figure 11 was finalized through rigorous trial and error by checking 

mesh independence, convergence and stability of the solution. The fine mesh was found to be a 
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valid point to stop refining since the error percentage in volume average of oxygen concentration 

inside the tube was less than 0.2% with respect to all the time steps when compared with a finer 

mesh and thus reaching mesh independence to obtain the actual solution. This mesh comprised of 

1,523,492 (∼1.5 million) mesh nodes where the equations were solved. 

2.4.3 Boundary conditions 

A species transport model was used to simulate the mixing of the oxygen-nitrogen purge 

gas mixture flowing through the inlets into the ambient atmosphere inside the tube. The 

inlet boundary condition was a mass flow inlet type (0.2 g/s at each hole), and the outlet boundary 

condition was a pressure outlet type (to maintain atmospheric pressure inside the tube). 

2.4.4 Solution methodology 

The fluid flow equations were discretized for the Hartmann tube using the finite-volume 

method. The spatial discretization of mass, momentum, species transport and energy 

equations were third order with Monotonic Upwind Scheme for Conservation Laws (Third-order 

MUSCL) providing the maximum accuracy possible. A real gas Redlich-Kwong equation of 

state was used for the gas mixture since it best represents the oxygen-nitrogen system. A second 

order implicit scheme was used for transient formulation with a time step of 0.1 s. 

The simulated purge time found by the CFD model to obtain 12.03% oxygen was compared to the 

experimentally determined time using an oxygen sensor (discussed in section 2.5). 

2.4.5 Flow model 

The purge gas underwent a sudden expansion as it passed through the 8 inlet holes at the 

top of the Hartman tube. At the inlets, the compressible gas initially had a higher velocity, and 

then loses kinetic energy during the sudden expansion process immediately after entrance into the 

tube. The maximum Reynolds number (Re = 1591) reached by the flowing air mixture was at the 
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inlets. The flow was considered to be laminar if Reynolds number, Re < 2000. The expansion leads 

to a lower Reynolds number which justifies the use of the laminar viscous model for the fluid flow 

throughout the computational domain. 

2.5 Results 

2.5.1 Experimental purge time required for different O2 concentrations 

The setup discussed in section 2.3.2 was used for flowing the oxygen-nitrogen mixtures 

through the Hartmann tube. The time required to reach a uniform oxygen concentration in the tube 

i.e the time required at the lowest point to reach the desired oxygen content was measured at each 

different oxygen-nitrogen mixture. The purge time required for different oxygen concentrations 

are observed in Table 3. The time required at the lowest point in the tube to reach the desired flow 

oxygen content is more for 12% O2, balance N2 than that required for 21% O2, balance N2. This is 

understandable as the Hartmann tube already contains atmospheric oxygen content ~ 20.8 vol. % 

O2 requiring longer purge times the further the flow concentration is from this value. Thus, the 

experimental time required to reach the oxygen was observed to decrease with increasing oxygen 

content. 
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Table 3 Experimental purge time required at different O2 concentrations in purge 

 

 

 

 

 

 

 

 

2.5.2 Experimental and simulated oxygen drop in tube during purging 

The decrease in the oxygen concentration in the Hartmann tube during purging was 

monitored using an oxygen sensor at points 1, 2 and 3 in the tube and is observed in Figure 12. 

Experimentally, the time required to reach the desired oxygen concentration of 12.03% was 

observed to be 39 ± 3 seconds. Thus, the experimental measurements (Figure 12) confirm that the 

purge time of ~ 21 seconds [38] is not sufficient and can result in higher oxygen concentrations 

than desired. 

 

 

 

 

 

O2 % in the purge Experimental time required to 
reach O2 % 

(s) 
12 39 

15 38 

16 34 

18 31 

21 15 
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Figure 12 : Oxygen concentration during purge (12.03 % O2, 87.97 % N2), ANSYS Fluent 
simulations showing average oxygen concentration and the sweep purge model [33] 
 

An average of the oxygen concentration simulated by the CFD at the points 1, 2 and 3 in 

the tube was calculated. The CFD model in Figure 12 shows this averaged oxygen concentration 

as a function of time. The oxygen concentration drops from 20.9 to 12.05 volume percent in 39 

seconds when purged with 12.03 volume percent oxygen. Thus, the oxygen concentration obtained 

through the CFD model agrees with the experimentally measured oxygen content. Figure 12 shows 

CFD concentration distributions in the MIE tube as a function of time. There is considerable 

mixing of purge gas in the tube due to the purge system design and flow rate for up to 5 seconds. 
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After this time the gas composition becomes uniform with a gradual change in oxygen 

concentration throughout the tube. 

The sweep through purge equation [80] was used to calculate the oxygen concentration in 

the Hartmann tube as a function of time: 

                                            t = V
Qv

 ln (C1- C0)
(C2 - C0)

                                                                   (1) 
 

where, t is time (s), V is Hartmann tube volume (m3), Qv is the purge volumetric flow rate 

(m3/s), C1 is the initial oxidant concentration in the tube (mol/m3), C0 is the purge gas oxidant 

concentration tube (mol/m3), C2 is the desired oxidant concentration after purging (mol/m3). 

The assumptions for sweep through purge equation are: (i) the volumetric flow rate of the 

inlet and outlet streams are equal into the tube; (ii) the purge gas always remains at atmospheric 

pressure and (iii) perfect mixing inside the vessel.  

Ideally, sweep through purging should be conducted with the purge gas and the exit 

location located as far apart as possible to avoid short circuiting the purge. In this work the entrance 

and exit are near the top of the tube. The results agree well with the CFD model and the 

experimental measurements. However, both the CFD and sweep equation predict lower oxygen 

concentration in the first 15 seconds of purging. This difference is likely due to the fact that the 

sweep through purge model and the CFD equations assume the system to be perfectly mixed, while 

in reality it is less than perfect. More importantly, after 15 seconds the CFD, sweep equation, and 

the experimental measurements have strong agreement. 

The close agreement between the CFD model and the experimental oxygen measurements 

also suggest that the add-on purging device used in this study and described by Chaudhari and 

Mashuga (2017) is properly designed and operated [38].   
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An important conclusion can be made from the modeling and oxygen measurements. For the 

oxygen concentrations in this study, the tube needs to be purged for at least 40 seconds before MIE 

testing. It is important to know the minimum purge time required while conducting experiments 

as the purge time defines the oxygen content in the tube. Thus, for the range of oxygen 

concentrations used in this study (12 - 21.05 vol. %), the purge time for all the MIE tests was 

maintained at 60 seconds, which ensured the tube reached the desired oxygen content. 

2.6 Summary 

In this section, the first research objective of designing a device and defining a method for 

MIE measurements has been addressed. A novel add-on purge device to the MIKE3 MIE testing 

apparatus has been designed and patented. The purge time for partial inerting testing has been 

defined and experimentally determined for the range of oxygen concentrations used in this 

research.  The experimentally determined purge time was compared with the sweep through purge 

flow equation used in literature and was found to be in good agreement with it. CFD modeling of 

the gas flow (O2-N2 mixture) in Hartmann tube was conducted which agreed well with the 

experimentally determined time and the sweep through purge equation.  

The effective purge time for partial inerting to an oxygen concentration of 12 % was 

determined to be at least 40 seconds through both CFD and experiments. Therefore, to be on a 

more conservative side, the partial inerting tests in this research were conducted after purging the 

tube for 1 minute. Thus, these findings provide a basis for conducting partial inerting MIE testing 

for combustible dusts.  
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3 PARTIAL INERTING OF COMBUSTIBLE DUSTS USING A MODIFIED 

STANDARD MINIMUM IGNITION ENERGY DEVICE* 

 

3.1 Introduction 

Partial inerting is an important but underutilized mitigation technique in which minimum 

ignition energy (MIE) of a dust cloud is increased through inerting, reducing the risk of an 

accidental dust explosion or more accurately, a dust deflagration. This technique has wide 

application potential in numerous chemical and general manufacturing industries. The Kühner 

MIKE3 is the predominant apparatus for measurement of the minimum ignition energy (MIE) of 

combustible dusts worldwide. The current version of the MIKE3 device is not specifically 

designed to measure partial inerting minimum ignition energies. The purpose of this work is to 

demonstrate that a properly designed add on purge device and technique can accurately produce 

partial inerting MIE results with an existing MIE device. 

 

 

 

_____________________________________________________________________________________________ 
*Parts of this section have been reprinted with permission from: P. Chaudhari, B. Ravi, P. Bagaria, C. Mashuga, 
"Improved partial inerting MIE test method for combustible dusts and its CFD validation", Process Safety and 
Environmental Protection 2019, vol. 122, pp. 192-199, 2019, Copyright 2019 by Chaudhari et al.[33] and P. 
Chaudhari, and C. Mashuga, "Partial inerting of dust clouds using a modified standard minimum ignition energy 
device", Journal of Loss Prevention in the Process Industries, vol. 48, pp. 145-150, 2017, Copyright 2019 by Chaudhari 
and Mashuga [38]. 
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The purge device ensures complete purging of the Hartman dust dispersion tube with the 

desired gas concentration before experimentation. The same gas is then pulsed into the dispersion 

tube producing the dust dispersion for ignition testing. This approach leads to uniform testing 

conditions in the tube with respect to gas concentration which is essential for producing proper 

measurements. Additionally, experiments show the turbulence generated by the purging technique 

did not significantly affect the MIE measurements. Therefore, an important finding of this work is 

that purging the tube before partial inerting MIE testing results in a proper characterization of the 

relationship between the MIE and oxygen for the dust. The findings therefore demonstrate the need 

to amend existing or develop new standards for this type of dust testing. The effect of these 

modifications and techniques are demonstrated by the experimental determination of the partial 

inerting curve for Niacin (CaRo15) using the MIKE3 apparatus. This test method of purging before 

MIE experimentation was first implemented for conducting partial inerting tests for Niacin dust to 

demonstrate the difference in MIE values with and without purging method. Further, this test 

method was extended to conduct partial inerting testing for lycopodium, calcium stearate and 

anthraquinone. 

3.2 Materials  

Combustible dust Niacin (CaRo15), a material used for participation in the international 

round robin comparing minimum ignition energy devices has been used to demonstrate the effect 

of MIE test method on MIE values. Niacin is also commonly known as Vitamin B3 or Nicotinic 

acid (C6H5NO2) and is a favorable calibration material due to its pharmaceutical level of chemical 

purity, low moisture absorbance, consistent particle size, and its low MIE (∼1.7 mJ) at atmospheric 

conditions [81-82]. The Niacin dust was obtained from Kühner AG pre-milled, homogenized and 
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stored in an airtight package. The dust was tested as received, as is recommended in the Kühner 

international round robin. 

For this work, Niacin (CaRo15) dust was tested as received from Kühner in accordance 

with the ASTM E2019-03 standard testing procedures (ASTM E-2019-03, 2013). Before MIE 

testing, niacin dust was characterized for its particle size in the Beckmann Coulter Particle Size 

Analyzer LS 13320 device (see Figure 13), where the d50 was observed to be 22.21 µm as shown 

in Figure 14. 

 

 

Figure 13 : Beckman Coulter LS 13 320 Particle Size Analyzer 

 

In order to capture the MIE–oxygen behavior of different dust types, lycopodium clavatum, 

calcium stearate and anthraquinone were tested in this study. Lycopodium clavatum is a naturally 

occurring plant spore and has been used by researchers as a reference material due to its 

dispersibility, flowability, combustibility, and monodispersity. Its naturally occurring 

monodisperse size distribution (narrow range of particle size distribution) results in consistent 
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explosion characteristics [83-85]. Industrially relevant dusts such as calcium Stearate and 

anthraquinone were chosen not only because of the concerns associated with safe handling and 

processing, but also because their MIE values in air (O2 = 21%) are < 10 mJ which makes them 

suitable for partial inerting MIE testing in the energy range of 1–1000 mJ provided by the MIKE3 

device. 

 

 

Figure 14 : Particle size distribution for Niacin d50 = 22.2 µm, Calcium stearate d50 = 6.6 
µm, Lycopodium d50 = 30 µm and Anthraquinone d50 = 21 µm [38] 
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3.3 Methodology 

3.3.1 MIE testing 

This partial inerting study was conducted using the MIKE3 MIE device discussed in detail 

in section 2. The device consists of a Hartmann explosion tube and electrodes which generate spark 

in the explosion tube. The 1.2 L Hartmann tube was purged from the top at a flow rate of 10 L/min 

for 1 minute to control the pre-ignition atmosphere in the tube. The dust was dispersed for ignition 

immediately (≤ 1 second) after the stopping the purge flow. Any residual turbulence when shutting 

off the purge gas flow was observed to have no impact on the dust MIE [33]. The lab temperature 

and humidity were monitored during every test and were maintained at 70 ± 5 oF, and 50 ± 5 % 

relative humidity. 

One of the parameters that can be adjusted in the MIKE3 device is the inductance (can be 

set at ≤ 0.025 mH or 1mH).  The presence of an inductance while testing is known to result in 

lower measured MIE values. The MIE testing for calcium stearate, lycopodium and anthraquinone 

was conducted at an inductance of L = 1 mH to enable better comparison with data available in 

literature. The electrode gap was maintained at 6 mm for all the tests. A 120 ms ignition time delay 

was selected for this study as it corresponds to a turbulence level at which there is limited influence 

on the MIE [22]. Ignition delay times > 100 ms are known to result in more conservative (lower) 

MIE values for various dusts [22, 81]. In this study, for a given gas composition (N2-O2 mixture), 

the dust concentration was varied from 125 to 3000 g/m3 and the energy levels varied from 1 to 

1000 mJ. A visual confirmation of ignition or no ignition was noted for 10 consecutive tests at a 

particular energy level. If an ignition was observed at an energy level, tests were conducted at the 

next lower energy at varying concentrations. Thus, testing was shifted to lower energy levels until 

an energy level was reached where no ignition is observed for all concentrations.  
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Figure 15 shows the typical ignition energy and dust concentration relationship for a dust.                     

In Figure 15, each test point corresponds to a given energy level and concentration. Each no 

ignition point (blue circle) consists of 10 consecutive no ignition tests. The ignition points (red 

square) are indicated at different concentrations. The MIE of the dust is between the ignition 

energy level and the no ignition level. Therefore, determination of MIE requires extensive testing 

over a wide range of energy levels and concentrations. 

 

 

 

Figure 15 : Typical MIE data observed during testing in the MIKE3 device. E2 = 300 mJ 
and E1= 100 mJ [33] 
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For every energy level, tests were conducted at different dust concentrations until the 

energy level was bracketed with no ignition points on both sides as is typical experimental practice. 

For example, in Figure 15 at 300 mJ, no-ignition tests were conducted at 300 and 1500 g/m3 to 

close off the energy level. After every dispersion, a polyester brush was used to clean the Hartman 

tube wall and the electrodes, returning the dust to the bottom for re-dispersion. In this study, the 

sample was replaced after 3 consecutive dispersions with no ignition observed. The dust MIE was 

calculated using the following equation [81]: 

                                  𝐌𝐈𝐄 = 	𝟏𝟎
(𝐥𝐨𝐠𝐄𝟐.𝐈 𝐄𝟐 .(𝐥𝐨𝐠 𝐄𝟐.𝐥𝐨𝐠 𝐄𝟏)

( 𝐍𝐈2𝐈 𝐄𝟐 2𝟏)                                                                  (2) 
   

where E2 is the energy level at which ignition is observed and E1 is the energy level below 

E2 where no ignition was observed after 10 tests. I[E2] corresponds to the number of tests having 

ignition at the energy E2 and (NI+I)[E2] represents the total number of tests at E2. For MIE 

calculations, (NI+I)[E2] ≥ 5. 

3.3.2 Particle size reduction of combustible dust  

To capture the MIE-oxygen behavior for different particle sizes, acetaminophen was 

selected for this study. Acetaminophen is a common pharmaceutical dust used to make over-the-

counter medicines for pain and fever relief (Food and Drug Administration, 2017). Since it is 

processed in capsule or tablet form, concerns associated with safe handling and processing can 

arise. Acetaminophen possesses low MIE values, which makes it particularly suitable for partial 

inerting MIE testing in the MIKE3 device. Since different particle size samples are necessary for 

this study, acetaminophen’s high breakability index score indicated it would be an excellent 

candidate for rotary milling to obtain additional particle sizes [86]. 
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Three different particle sizes of Acetaminophen dust were generated to study the effect of 

particle size on partial inerting characteristic of dust MIE. The particle sizes of the three samples 

were made different while ensuring that the samples had near similar polydispersities for each 

particle size through rigorous milling, sieving and back blending processes. Dust polydispersity is 

an important parameter that is known to affect the explosive properties of dust [87]. Dust 

polydispersity (σ) can be defined as: 

                                                          σ =  𝐝𝟗𝟎	5	𝐝𝟏𝟎
𝐝𝟓𝟎

                                                                        (3) 
 

where,   

σ is the polydispersity, d90 is the diameter below which 90% of the dust mass can pass through, d10 

is the diameter below which 10% of the dust mass can pass through, d50 is the diameter below 

which 50% of the dust mass can pass through.  

The Acetaminophen dust as received from the supplier had a d50 of 55 µm, a polydisperisity 

of 3.4. To obtain a d50 of 4.5µm, the 55 µm dust was milled using the Retsch rotary mill (sieve 

ring size of 0.08 mm at 12,000 rpm) and then sieved through the Retsch sieve shaker. The mill and 

the sieve shaker used for particle size reduction in this study are observed in Figure 16 and Figure 

17 respectively. Milling resulted in changing the particle size distribution of the dust and sieving 

ensured its polydispersity was relatively similar. Acetaminophen with d50 = 125 µm dust was 

obtained and milled and sieved to obtain d50 of 99 µm and a polydisperity of 4.6.  
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Figure 16 : Retsch ZM 200 rotary mill 
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Figure 17 : Retsch AS 300 sieve shaker 
 

The particle size distributions (PSD) of the acetaminophen dust samples were characterized 

using the Beckman Coulter Particle Size Analyzer LS 13320 which operates on the principle of 

laser diffraction. The particle size distributions of the three samples are seen in Figure 18. The 

polydispersity of the samples is observed in Table 4. 
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Figure 18 : Particle size distribution of acetaminophen samples of different sizes used in 
this study 
 

Table 4 Particle size and polydispersity of acetaminophen samples used in this study 
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Polydispersity 
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Before MIE testing the three particle size samples were dried at 60 oC in the nitrogen 

atmosphere, where moisture content was monitored with time. After drying, it was observed that 

there was no significant loss in weight (+/- 1%), no change in PSD, and no impact on 

polydispersity. 

3.4 Results 

3.4.1 Effect of improved test method on MIE  

As discussed above, two different methods for partial inerting have been investigated to 

underscore the importance of test method employed. Method (a) Not purging the tube before dust 

dispersion and ignition. Method b) Purging the tube from top before dust dispersion and ignition. 

Figure 19 shows the MIE values of Niacin (CaRo15) for various experimental approaches to partial 

inerting in the Kühner MIKE3. In Figure 19, curve (a) was obtained without purging the Hartman 

tube, while inerted air was used to disperse the dust. The gas composition used for dust dispersion 

was different from the composition present in the tube which is atmospheric. Curve (b) was 

obtained by using the purge device at the top of the Hartman tube, purged for 21 s at 10 L/min. A 

1 s delay (tpurge – ign.) was allowed between shutting off the purge flow and attempting ignition. In 

experiment (b) no modifications were made to seal the flapper vent valve at the top of the tube. 

Once the delay time lapsed, the same inerted air used for purging was used to disperse the dust 

into the tube. In experiment (b) the diffusion of atmospheric oxygen into the tube is mitigated by 

purging, resulting in higher MIE values for lower oxygen levels. The change in the MIE values 

between experiments (a) and (b) demonstrates the necessity of tube purging and the purge device. 
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The experiment shown in Figure 19, curve (c) is the same experiment as curve (b) with the addition 

of a seal around the flapper valve at the top of the tube, intended to maintain the desired tube gas 

composition. Comparison of experiments (b) and (c) show at lower oxygen concentrations the 

sealed tube has slightly higher MIE values. This indicates that the purging was slightly improved 

by the seal, preventing atmospheric oxygen from diffusing into the tube. At higher oxygen 

concentrations (21% O2) the MIE value lowered, indicating the seal helped hold the oxygen level 

in the tube, which is higher than the atmosphere. 

 

 

Figure 19 : MIE (L = 0 mH) and oxygen concentration for various experimental 
approaches to the purging of Niacin dust (CaRo15): (a) Without purging, (b) With purge 
device, w/o seal, tpurge-ign. = 1 s (c) With purge device, w/seal, tpurge-ign. = 1 s (d) With purge 
device, w/o seal, tpurge-ign. = 120 s (e) With purge device, w/o seal, purging during ignition. 
[38] 
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For tests in air (i.e. 21% O2, 79% N2), the MIE values with the purge device in case (b) are 

slightly lower than case (a). This is because the purge gas, which is also the dispersion gas, has 

slightly higher oxygen content than atmospheric air. For case (a), the dispersion gas is diluted by 

atmospheric oxygen present in the tube, resulting in lower than 21% oxygen leading to higher MIE 

values. For case (b), the tube is purged with the dispersion gas before testing resulting in 21% 

oxygen, which leads to slightly lower MIE values than case (a). This effect is more pronounced 

for case (c) where the seal further prevents any atmospheric oxygen from diffusing into the tube 

and maintains the testing conditions at 21% oxygen. These results justify the need for purging and 

maintaining the desired gas composition with respect to the external atmosphere. 

In Figure 19, the greatest difference in MIE values occurs at 14% oxygen for a non-purged 

(a) and purged experiment (c). At this composition the concentration driving force is the highest 

for oxygen to diffuse into and nitrogen to diffuse out of the dispersion tube. It is believed if 

turbulence from purging has an impact on the MIE values, then the maximum effect should be 

found where the concentration driving force is largest, that is, at low oxygen concentration. 

Therefore, the potential turbulence effect was analyzed only at this particular composition. Figure 

19 shows experimental point (d) in which the delay between stopping the purge and attempting 

ignition was 120 s. This time delay was chosen to determine if a longer delay time allowed purging 

induced turbulence to dissipate, resulting in a change in the MIE value. The results of this test at 

14% oxygen show no significant difference between experiments (c) and (d) with delay times of 

1 and 120 s respectively. This indicates that turbulence 1 s after purging ceases does not 

significantly affect the MIE and that the dispersion tube can maintain the desired gas concentration 

over this period of time. Experimental point (e) in Figure 19 shows the MIE value at 14% oxygen 

with purge gas flowing during an ignition attempt. The influence of the continuous purging 
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turbulence increases the MIE value. These results are in accordance with literature where it is 

observed that turbulence makes ignition more difficult and therefore raises the MIE [88-90]. 

From these experiments and the above discussion, it is believed that experiment (c) is an 

acceptable way to conduct partial inerting MIE tests. Experiment (c) consists of a purging device, 

a seal around the flapper valve, and a 1 s delay between purging shut off and an ignition attempt. 

With this approach, the slope of the partial inerted MIE curve is much steeper, resulting in a proper 

representation of the impact of inert on the MIE values. At higher inerting levels, the resulting 

MIE is higher and the dust becomes less hazardous. Hence, without tube purging and the purging 

device, the characteristic partial inerting curve for dusts can lead to overestimation of the hazards 

posed in manufacturing facilities.  

It is important to keep in mind that the recommended relationship for Niacin dust observed 

in case (c) represents the worst case scenario near atmospheric oxygen concentrations (from O2 ∼ 

19% - 21% O2), but does not represent the worst case scenario at lower oxygen concentrations 

(O2 < 19%). However, at lower oxygen concentrations, it signifies a true MIE measurement, which 

can differ significantly from those reported in literature, if there is no purging. In an industrial 

application of partial inerting, accurate knowledge of MIE values at lower oxygen concentrations 

are of particular interest. If not determined accurately, an overestimation of the risks involved can 

occur leading to improper design. 
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 3.4.2 Effect of inerting on dust MIE for different combustible dusts 

After the purge time was determined experimentally and validated through CFD, partial 

inerting measurements of the dusts (lycopodium clavatum, calcium stearate and anthraquinone) 

were conducted in the modified MIKE3 device using the improved test method with a purge time 

of 1 minute.  

The partial inerting curve measured for calcium stearate is observed in Figure 20. The MIE 

value of 3.7 mJ obtained in air for calcium stearate is in agreement with reported values (3-10 mJ) 

in literature for this material [91]. 

 

 

Figure 20 : MIE-O2 for calcium stearate obtained in the MIKE3 device [33] 
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 For lycopodium, this work is compared with the existing literature and is shown in Figure 

21. The MIE-oxygen relationship for lycopodium in this work is in close agreement to that reported 

by Choi et al. [26] and Glor and Schwenzfeuer [19]. These two studies have pre-purged the tube 

before experimentation and conducted testing with the presence of inductance in the circuit (L = 1 

mH).  

 

 

Figure 21 : MIE-O2 for lycopodium in MIKE3 device compared with literature [33] 
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rate and time have not been mentioned. This can result in not knowing the exact oxygen 

concentration while MIE testing. It is highly possible that the above two studies were conservative 

and purged for more than the required time.  However, the purge flow rate and time should be 

stated (along with parameters such as ignition delay time, inductance) when reporting partial 

inerting MIE values as this would make the reported literature more useful for future reference. 

 

 

Figure 22 : MIE-O2 anthraquinone in MIKE3 device compared with literature [33] 
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3.4.3 Mathematical variation of MIE with changing O2 content 

Schwenzfeuer et al. have qualitatively stated that the MIE-O2 relationship for any dust can 

be defined by a curve with the oxygen content on the X-axis and the Minimum Ignition Energy 

(MIE) on the Y-axis [92]. The curve has two asymptotes – the Limiting Oxygen Concentration 

(LOC) and the Lowest Minimum Ignition Energy (LMIE), which is the MIE in pure oxygen.  

Where the x = LOC is the asymptote parallel to the Y-axis and the y = LMIE will be a line parallel 

to X-axis where LMIE is the Lowest Minimum Ignition Energy of dust in pure oxygen (see Figure 

23).  
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Figure 23 : MIE–oxygen relationship for typical dust displaying two asymptotes - Limiting 
oxygen concentration (LOC) and the lowest minimum ignition energy (LMIE) as 
qualitatively proposed by Schwenzfeuer et al. (2001)[33] 
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Equation (3) can be further simplified and described as: 

                                     y =	 A'

x-LOC B'                                                        (5) 

 

Solving for A’ (at O2 = 21 %, y = MIE21 (MIE of dust in air), can be expressed in the following 

way: 

                        	𝐌𝐈𝐄 𝐎𝟐 = 	𝐌𝐈𝐄𝟐𝟏(	
𝟐𝟏5𝐋𝐎𝐂
𝐎𝟐5𝐋𝐎𝐂

	)𝐁;                                       (6) 
 

where 

MIE (O2) = MIE of dust at a given oxygen concentration (mJ),  

MIE21 = MIE of dust in air (mJ),  

LOC = Limiting Oxygen Concentration (vol. %),  

O2 = oxygen concentration (vol. %),  

B’ > 0 and is a coefficient varying with the dust type. 

The LOC for anthraquinone, calcium stearate and lycopodium were obtained from 

literature [1, 3, 92-93] and are given in Table 5. The MIE of these three dusts in air (O2 = 21 %) 

was obtained experimentally in this study. The B’ coefficient which resulted in the best fit for the 

experimental MIE data at O2 = 21% was calculated for each dust (see Table 5). 
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Table 5 LOC values and the calculated best fit coefficient B’ values for the dusts 
 

Dust LOC Coefficient B’ 

Calcium Stearate 12 5.28 

Lycopodium 6 6.72 

Anthraquinone 11 5.66 

 

Although, B’ for these dusts is observed to vary only between 5 to 6, this coefficient being 

an exponent (See equation 6), slight variation in its values can significantly change the predicted 

MIE values. A similar prediction equation form was developed by Ackroyd et al. (see equation 7 

below), where they have used a single coefficient (B’ = 3.75) which gave a best fit to all their 

experimental data [25].  

                                	𝐌𝐈𝐄 𝐎𝟐 = 𝐌𝐈𝐄𝟐𝟏(	
𝟐𝟏5𝐋𝐎𝐂
𝐎𝟐5𝐋𝐎𝐂

	)𝟑.𝟕𝟓                                                  (7) 
                        

Figures 24-26 show a comparison of the experimental MIE values (lycopodium clavatum, 

anthraquinone, calcium stearate) found in this study to the proposed MIE prediction equation 

(equation 6) with dust specific coefficients and with the fixed coefficient (B’ = 3.75) as proposed 

by Ackroyd et al. [25]. Additionally, a comparison of the experimental MIE has been made with 

the prediction equation proposed by Glor and Schwenzfeuer [19]: 

 

                               𝐌𝐈𝐄 𝐎𝟐 = 𝐌𝐈𝐄𝟐𝟏𝐞𝐱𝐩
𝟐𝟑.𝟐5	𝟐𝟑.𝟐𝟐𝟏 𝐎𝟐                                                      

(8) 
 



 

59 

 

From Figures 24-26, a fixed coefficient for any dust (B’ = 3.75) proposed by Ackroyd et 

al. deviated significantly from the experimental data [25]. Thus a fixed value of coefficient B’ 

does not satisfactorily describe all the experimental MIE behavior of all dusts but the value B’ can 

be dependent on the type of dust. Similarly, equation 8 was observed to deviate significantly from 

experimental values in this study and over-predicted the MIE values (See Figures 24 - 26). A 

similar observation has been reported by Ackroyd et al. [25], where equation 8 failed to agree with 

experimental MIE values for the dusts tested in their study. 

  

 

Figure 24 : Comparison of experimental MIE values of calcium stearate with MIE 
prediction equations adapted from Glor and Schwenzfeuer [19] and Ackroyd et al. [25] and 
the prediction equation (6) with B’ = 5.28 in this work [33] 
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Figure 25 : Comparison of experimental MIE values of lycopodium with MIE prediction 
equations adapted from Glor and Schwenzfeuer [19], Ackroyd et al. [25] prediction 
equations and the prediction equation (6) with B’ = 6.72 in this work [33] 
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Figure 26 : Comparison of experimental MIE values of anthraquinone with MIE prediction 
equations adapted from Glor and Schwenzfeuer [19], Ackroyd et al. [25] prediction 
equations and the prediction equation (6) with B’ = 5.66 in this work [33] 
 

Therefore, it is observed that the MIE-O2 relationship is well described by an equation of 

the form in equation 6, rather than the exponential form proposed in equation 8. This is an 

important observation and supports the observations of Ackroyd et al. about the mathematical 

nature of the MIE-O2 relationship [25]. Moreover, a generic equation describing the MIE-O2 

relationship for all dusts cannot be described without considering specific dust parameters 

exclusive to that dust (B’ = 3.75 does not describe dust behavior well). However, determination of 

B’ is complex and it can depend on some of the fundamental and physical properties of dust such 
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experimental investigation and modeling is required to further explore the effect of dust properties 

on the coefficient B’. 

3.4.4 Effect of particle size on partial inerting MIE characteristic of combustible dust 

While, the effect of particle size on dust MIE is known [39], the effect of particle size on 

partial inerting characteristic curve of the dust remains unexplored. The three acetaminophen 

samples having different particle sizes were tested at a range of different oxygen concentrations to 

obtain their partial inerting characteristic curves. The effect of particle size on partial inerting MIE-

O2 behavior for acetaminophen (paracetamol) dust is observed in Figure 27. As there is little 

resolution in the MIE values for oxygen concentrations of 18 % and 21 %, that zone is zoomed in 

further in the Figure 27. 
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Figure 27 : Experimental partial inerting characteristics of acetaminophen (paracetamol) 
dust at different diameters (d50 = 4.5 µm, d50 = 55 µm and d50 = 99 µm) 
 

It can be observed from Figure 27 that the particle size has an effect on the partial inerting 

characteristic of acetaminophen dust. As expected from literature and also observed in Figure 27, 

the MIE raises with increasing particle diameter. At each oxygen concentration where MIE testing 

was conducted (O2 = 15 vol. %, 18 vol. % and 21 vol.%), it can be observed that the MIE of the 

dust with bigger particle size is higher. This effect becomes more significant at lower oxygen 

concentrations where MIE significantly rises with increase in particle size. At O2 = 15 % the MIE 

rise was so high that the dust did not ignite at the highest testing energy level of 1000 mJ provided 

by the MIKE3 device. The sudden rise in the MIE at lower oxygen concentrations for high particle 
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size can be explained by the fact that for a bigger particle diameter the surface area available for 

reaction at lower oxygen concentrations is much less as compared to smaller particle diameter. 

This lower availability of surface area for reaction is further compounded by the fact that much 

less oxygen is available for reaction, raising the dust MIE.  

This information can be very valuable in combustible dust handling facilities where the 

partial inerting of the processes can be determined based on the particle size of the dust. For 

example, a facility that handles large particle sizes of acetaminophen can determine the amount of 

partial inerting in processes (the percent O2 that can be maintained which raises the dust MIE 

significantly. While these results present a compelling case that the partial inerting characteristics 

are affected by the particle diameter this aspect needs further investigation for other combustible 

dusts.  

3.5 Summary 

In summary, the improved test method proposed earlier was successfully implemented to 

develop partial inerting data and equation. The improved test method significantly influenced the 

measured partial inerting MIE values (displayed through Niacin dust) resulting in more accurate 

MIE measurements. Thereafter, this test method was used to generate MIE-O2 data for various 

different combustible dusts.  The MIE equation which predicted the MIE with changing oxygen 

content agreed with the empirical MIE-O2 relationship available in literature.  Additionally, the 

effect of particle size on MIE-O2 of acetaminophen dust was investigated to observe that particle 

size affects MIE more significantly at lower oxygen concentrations. 
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4 MIE PREDICTION USING QSPR AND MACHINE LEARNING 

 

4.1 Introduction 

Gas and dust explosions pose a serious hazard to process industries, resulting in loss of life, 

property and resources[3, 10, 94-95].Experimental determination of MIE can be costly, risky, 

tedious (time intensive) and resource limiting process [96-97]. Therefore, prediction of MIE of 

compounds provides an alternative to experimental testing and there is a need to explore this 

prospect further. Based on the accuracy of the prediction models, important risk assessment 

decisions can be made.  

Several studies in literature have employed Quantitative Structure-Property Relationship 

(QSPR) models relating molecular structures to the physical properties of compounds such as 

boiling point [53,54],  flash point temperature [55] and auto-ignition temperature [56,57-58]. 

Recent QSPR studies have employed a variety of algorithms for MIE, Kst, Pmax and UFL 

predictions [44-45, 49, 98-99]. QSPR models using machine learning algorithms have been 

developed extensively in literature [45, 49, 69-74, 98, 100]. Yuan et al. have utilized machine 

learning algorithms support vector machine (SVM), k-Nearest-Neighbors (KNN), and random 

forest (RF) to predict the upper flammability limit (UFL) of pure organic compounds [98]. For 

combustible dusts, Reyes et al. predicted explosion severity parameters (Kst and Pmax) through 

QSPR using Genetic Function Approximation (GFA) algorithm [44]. 

Baati (2016) has developed MIE prediction models of dusts, liquids and gases. Their most 

robust prediction model for dusts in this study consisted of 27 parameters, making it unfeasible 

due to large input parameters [60]. However, they did not have any conclusive outcome whether 

molecular structures influence material MIE. Wang et al.44,49 have developed robust QSPR models 



 

66 

 

for MIE prediction of liquid and gas hydrocarbon fuels employing Multiple Linear Regression 

(MLR) and Support Vector Machine (SVM) methods [44,49]. Owolabi et al. [99] have estimated 

the MIE of chemical compounds using hybrid model of Support Vector Regression (SVR) and 

Gravitational Search Algorithms (GSA), stating that their hybrid GSA-SVR model outperforms 

the prediction model developed by Wang et al. [44,49]. 

Based on the existing literature, machine learning techniques employing Artificial Neural 

Networks (ANN), Random Forests (RF), Decision Tree (DT) algorithms for MIE prediction need 

to be investigated further. Additionally, as Genetic Function Approximation (GFA) algorithm was 

observed to be promising for explosive property prediction (Kst and Pmax) by Reyes et al., it was 

deemed worthwhile to investigate this algorithm for MIE prediction of compounds [44]. 

In this research, machine learning algorithms were employed to develop QSPR models for 

MIE prediction of 60 flammable compounds. The molecular descriptors are obtained through the 

QSPR module in the BIOVIA Materials Studio software [101]. Machine learning models were 

developed on this dataset using Scikit learn [102] for RF, DT and TensorFlow [103] for Artificial 

Neural Networks (ANN) respectively. Random Forests (RF) has been used to determine the 10 

most important molecular descriptors influencing MIE prediction accuracy adding more 

deterministic value to the machine learning model developed. Additionally, GFA algorithm in 

Materials Studio was used to develop a 10 parameter MIE prediction equation.  

Once the model was validated on the first dataset, the RF and DT models were implemented on 

another dataset consisting of 64 pharmaceutically relevant combustible dusts.  
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4.2 Methodology - MIE prediction for liquid and gas hydrocarbons 

4.2.1 MIE dataset 

The first dataset used in this study consisted of 60 flammable liquid and gas fuels obtained 

from Calcote et al. study of spark ignition of stoichiometric fuel-air mixtures (Appendix A) [104]. 

The dataset was divided into training set (80%) for model development and test set (20%) for 

model validation. 

4.2.2 Geometry optimization and determination of molecular descriptors 

The molecular structures of the compounds used in this study were obtained through 

PubChem database [105]. Energy minimization of molecular structures is an important step in 

QSPR, dictating the quality of the model developed. Geometry optimization of the molecular 

structures was conducted using Gaussian 09 [106] at the B3LYP (Becke, 3-paramater, Lee, Yang, 

Parr) density functional theory method and the 6-31(d) basis set. B3LYP at 6-31(d) was selected 

based on its consistently successful performance in literature for a number of different systems 

[107-109]. Vibrational frequency calculations were performed to ensure optimization to minimum 

energy level (i.e. no imaginary modes) and the convergence of the optimization was checked to 

determine successful completion of the optimization. 
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After conducting geometry optimization, the molecular descriptors for each of these 

compounds were calculated from the QSPR models available in the Materials Studio software. 

The descriptors used in this study are quantum chemical, fast descriptors, atomistic descriptors and 

topological descriptors. Molecular descriptor reduction was conducted first by removing the null 

values and then by removal of descriptors having high degree of correlation. A reduced set of 

descriptors were used as input parameters for model development for the RF (see Table 6). The 

RF algorithm was used to identify the top descriptors amongst the list in Table 6 (those affecting 

MIE prediction accuracy > 1%) which were used as an input in the DT, ANN and GFA algorithms. 
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Table 6 List of descriptors used for RF model development 
 

Molecular descriptor Type of 

descriptor 

Description 

Total molecular mass Atomistic  Molecular weight  

Dipole Moment Electronic  Dipole moment 

HOMO  Electronic  Energy of the highest occupied molecular orbital 

LUMO Electronic  Energy of the lowest unoccupied molecular 

orbital 

Chemical Potential (µ2) Electronic  HOMO + LUMO
2

 

Electrophilicity Index (η) Electronic    HOMO - LUMO 

Hardness (ω) Electronic µI

2η
 

# of C atoms  Atomistic   Number of C atoms in the molecule 

# H atoms Atomistic  Number of H atoms in the molecule 

# of O atoms Atomistic Number of O atoms in the molecule 

# of N atoms  Atomistic Number of N atoms in the molecule 

# of S atoms Atomistic Number of S atoms in the molecule 

# of halogen atoms Atomistic Number of X atoms in the molecule 

E-state keys (counts): N_sCH3   Fast Number of C bonded to 3 H and 1 single bond 

E-state keys (counts): N_ssCH2 Fast  Number of C bonded to 2 H and 2 single bonds 

E-state keys (counts): N_tCH  Fast Number of C bonded to 1 H and 1 triple bond 

E-state keys (counts): N_sNH2  Fast Number of N bonded to 2 H and 1 single bond 
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4.2.3 Model development and validation 

QSPR models for this dataset were developed employing RF, DT, ANN and GFA 

algorithms. Machine learning methods such as RF and ANN have employed regression for model 

development. A decision tree (DT) gives a visual representation and categorization of the 

compounds based on the important descriptors values [75-76]. RF has used multiple such decision 

trees for model development [75-76]. A shortcoming of machine learning algorithms is that an 

explicit prediction equation is generally not obtained which can limit understanding and 

interpretation of the parameters affecting the material properties. Therefore, in this study, the RF 

algorithm was used to determine 10 most important molecular descriptors influencing MIE 

prediction. The 10 descriptors obtained through RF were further used for model development in 

ANN and GFA methods to see the effect of initial selection on model prediction. The RF and DT 

models were developed using the programming language Python employing the module Scikit-

learn [102]. The ANN model was developed in Python using TensorFlow [103]. 

Additionally, a separate MIE prediction equation through GFA algorithm available through 

Materials Studio software [101] was developed. GFA was used in this study because it has been 

proven to be an effective method for large parameter spaces and small datasets [109-113].  

The developed models were validated using the following: 

Coefficient of determination RI = 𝒚𝒊5𝒚 𝟐𝒏
𝒊O𝟏

𝒚𝒊5𝒚 𝟐𝒏
𝒊O𝟏

                                                                              (9) 
 

Root-Mean-Square Error RMSE = 𝒚𝒊5𝒚𝒊 𝟐𝒏
𝒊O𝟏

𝒏
                                                                        (10)       

 

where 𝑦S is the predicted value, 𝑦S is the observed value in the data set, 𝑦 is the mean of the        

observed values, and 𝑛 is the number of observations in the data set. 
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Leave-One-Out cross-validation QVWWI = 1 − 𝒚𝒊5𝒚𝒊 𝟐
𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈
𝒊O𝟏

𝒚𝒊5𝒚 𝟐𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈
𝒊O𝟏

                                                   (11) 

 

where 𝑦S, 𝑦S, and 𝑦 are the observed, predicted and mean experimental values of the training set, 

respectively. 

 

Co-relation coefficient of external validation predictive ability 
 

                                                    Q^_`I = 1 − 𝐲𝐢5𝐲𝐢 𝟐𝐭𝐞𝐬𝐭
𝐢O𝟏

𝐲𝐢5𝐲𝐭𝐫 𝟐𝐭𝐞𝐬𝐭
𝐢O𝟏

                                                        (12)                                                 

 

where 𝑦Sand 𝑦S are the observed and predicted MIE values in the test set and 𝑦fg is the mean 

observed MIE values of data in the training set. 

4.3 Results - MIE prediction of liquid and gas hydrocarbons 

4.3.1 Random Forest (RF) algorithm 

Random Forest regression was conducted through the Python Scikit-Learn module using 

the Random Forest Regressor [102]. The number of decision trees used in the random forest 

algorithm were 1000. Figure 28 shows the comparison between the predicted and experimental 

MIE values for this algorithm for the training and test set. The Random Forest based QSPR model 

has the following values: R2 = 0.84, RMSE = 2.15, AAE = 1.92 for the test set displaying an 

excellent goodness of fit through Q2
LOO = 0.89 and Q2

ext = 0.84. Figure 29 shows the residual plots 

of the training and test set.  
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Figure 28 : Experimental versus predicted MIE values through Random Forest (RF) 
algorithm for training and test set 
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Figure 29 : Experimental MIE versus residuals through Random Forest (RF) algorithm for 
training and test set 
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Figure 30 below shows a training set plot of the list of the molecular descriptors having the 

most effect on MIE prediction accuracy. Thus, the Figure 30 represents the decrease in 

mathematical performance of the RF algorithm prediction on removal of the specific descriptor. 

For example, removal of the descriptor ‘Total molecular mass’ affects MIE prediction the 

maximum by 27.21 %.  

 

 

Figure 30 : Relevance of descriptors based on mean decrease in MIE prediction accuracy 
determined from RF algorithm for liquids and gases 
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model development. The % contribution by descriptors to MIE (>1%) is observed in Table 7 

below. 

 

Table 7 List of descriptors having > 1% effect on MIE prediction accuracy 
 

Molecular Descriptors %  decrease in MIE 
prediction  

Total molecular mass  27.21 

# H atoms 15.58 

HOMO 12.05 

Chemical Potential 6.72 

Dipole Moment 6.39 

E-state keys (counts): N_sCH3 6.04 

Electrophilicity Index 5.77 

Hardness 5.47 

E-state keys (counts): N_sNH2  3.39 

LUMO 3.13 

# of N atoms 2.97 

# of C atoms 1.85 

E-state keys (counts): N_ssCH2 1.63 
 

It was observed that the molecular mass contributes the greatest amongst all the descriptors 

(27.21 %) to the MIE and is a key factor determining the MIE. This can be explained by the fact 

that higher molecular mass makes it more difficult to ignite the compound thereby increasing its 

MIE.  The quantum chemical parameters such as HOMO, LUMO, chemical potential, hardness, 

electrophilicity index and dipole moment were observed to be importance factors in MIE 
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determination. This can also be confirmed from previous works on MIE where quantum chemical 

parameters and molecular mass have surfaced as important descriptors determining MIE [45, 49]. 

Another important factor influencing MIE was observed to be the # of H atoms. This can be 

explained by the fact that the number of hydrogens in the compound influence the accessibility of 

the molecule for ignition. The more the stearic hindrance provided by H atoms, the difficult it 

becomes to access the molecule, thereby raising its MIE.  

The E-state keys (counts) are an important parameter which are related to the electrostatics 

of the compounds. From the data set it can be deduced that compounds having methyl and amine 

groups have higher electrostatic properties which influences the MIE values.  

4.3.2 Decision Tree (DT) algorithm 

DT regression was employed on the hydrocarbon dataset to develop a more interpretable 

visual model. The 13 descriptors identified through RF were used as the input parameters for the 

decision tree algorithm. Often, DT having high predictability are extremely complex to interpret. 

In this work, a DT with a max depth = 3 was developed for ease of interpretation. The DT based 

QSPR model had the following test set values: R2 = 0.85, RMSE = 2.59, AAE = 1.95 along with 

excellent internal robustness displayed by Q2
LOO = 0.63 and external validation Q2

ext = 0.85. Figure 

31 shows the comparison between the predicted and experimental MIE values for this algorithm 

for the training and test set and Figure 32 shows the residual plots of the same.  
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Figure 31 : Experimental versus predicted MIE values through Decision Tree (DT) 
algorithm for training and test set 
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Figure 32 : Experimental MIE versus residuals through Decision Tree (DT) algorithm for 
training and test set 
 

Figure 33 depicts the decision tree representation for the dataset. The molecular descriptors 

used in the decision tree are E-state keys (counts): # of CH3 (X8), Total molecular mass (X0) ,# of 

C atoms (X12) and dipole moment (X1). The ‘mse’ represents the mean square error, samples 

represents the number of compounds and the value represents the MIE value. The first level allows 

for a True/False decision based on the value of descriptor X8, followed by the second level which 

allows decision making based on descriptors X0 and X12. While, the third level minimizes the error 

and enables making decisions based on value of descriptors X8, X1 and X0, thereby dividing the 

total training set into different MIE categories. A drawback of the decision tree can be the black-
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box nature of the descriptor and their magnitudes used for the nodes of the tree. However, for quick 

data representation and understanding it can prove to be a useful method. 

 

 

Figure 33 : Decision tree representation of training set, where X8, X0, X12 and X1 are          
E-state keys (counts) # of CH3, Total molecular mass, # of C atoms and dipole moment 
respectively 
 

4.3.3 Artificial Neural Networks (ANN) algorithm 

ANN regression was conducted through Python library keras, TensorFlow [103]. The ANN 

used the sequential model with 5 dense layers, activation relu function and the AdamOptimizer. 

The first ANN model was developed using the 13 molecular descriptors in Table 8 resulting in test 

set R2 = 0.52, RMSE = 0.26 and Q2
ext = 0.57 displaying bad predictability.  

An additional input parameter namely Structure Parameter (SP) for the model was 

introduced which resulted in significantly improved predictability of the model. The concept of 

structure parameter has been introduced by Calcote et al., where they have assigned a numerical 

value for each functional group [104]. Further, this parameter was also successfully by Wang et 
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al. to develop QSPR MIE prediction models [45,49]. The Structure Parameter (SP) is a numerical 

number assigned to different functional groups and discussed in literature [102, 45, 49]. The SP 

for different functional groups is observed in Table 8. 

 

Table 8 Structure parameter for different functional groups 
 

Functional group SP Functional group SP 

alkane 2.0 tertiary amine 2.0 

alkene -0.3 aldehyde 2.0 

alkyne -3.0 ketone 2.6 

alcohol 2.1 ester 5.0 

sulfur alcohol 1.0 ether 2.1 

chloride 3.0 sulfur ether 1.5 

primary amine 5.0 cyclic compound 0.5 

secondary amine 3.0 inorganic substance 0 

 

The second ANN model was developed using the molecular descriptors selected through 

the random forest algorithm and the additional input parameter-SP. This resulted in test set R2 = 

0.75, RMSE = 0.2, AAE = 0.17 and Q2
ext = 0.75 with excellent internal robustness of Q2

LOO = 0.67. 

From this, it can be deduced that addition of the structure parameter significantly improved the 

model predictability, making it an important parameter to be considered during model 

development. Figure 34 shows the predicted and experimental MIE values for training and test set 
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using the ANN model using the 13 input descriptors identified through RF and the structure 

parameter. The residual plots for the training and test set are observed in Figure 35.  

 

Figure 34 : Experimental versus predicted MIE values through ANN algorithm for training 
and test set 
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Figure 35 : Experimental MIE versus residuals through ANN algorithm for training and 
test set 
 

4.3.4 Genetic Function Approximation (GFA) algorithm  
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the second case, GFA model was developed with the 13 descriptors with the addition of the SP 

parameter. In this case, the model displayed very good predictive ability and external and internal 

robustness through test set: R2= 0.72, RMSE = 0.25, AAE = 0.19 and Q2
LOO = 0.82 and Q2ext = 

0.70. QSPR models were considered acceptable if they satisfied the following conditions: for the 

training set, Q2
LOO > 0.5; for the test set, R2 > 0.6 [114]. Therefore, similar to the ANN model, 

addition of structure parameter to the parameters, resulted in significantly better model 

predictability. Figure 36 shows the predicted and experimental MIE values for training and test set 

and Figure 37 displays the residual plots for the case including SP as a parameter. 

The MIE prediction equation including SP determined through GFA is: 

Y = 0.003 (X1) + 0.112 (X2) - 8.347 (X3) + 23.097 (X4) + 0.121 (X5) +  

       0.0836 (X6)  + 0.066 (X7) + 0.298 (X8) - 0.173 (X9) - 0.097 (X10) - 0.785                      (13) 

 

where,  

X1: Total molecular mass, X2: Dipole moment,  

X3: Chemical Potential, X4: Electrophilicity Index,  

X5: SP, X6: # of C atoms,  

X7: # H atoms, X8: # of N atom,  

X9: E-state keys (counts): N_sCH3, X10: E-state keys (counts): N_ssCH2 
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Figure 36 : Experimental versus predicted MIE values through GFA algorithm for training 
and test set 
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Figure 37 : Experimental MIE versus residuals through GFA algorithm for training and 
test set 
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has been used as a parameter in model development as particle diameter is known to have a 

significant effect on MIE values. While the first dataset consisting of liquid and gaseous 

compounds has used point MIE values for model development, the second dataset has used MIE 

ranges for model development. In the second dataset, the MIE values for the combustible dusts 

have been classified as MIE < 10 mJ and MIE > 10 mJ. The < 10 mJ has been assigned the classifier 

‘0’ and the compounds having MIE >10 mJ have been assigned the classifier ‘1’ (Appendix A) 

4.4.2 Geometry optimization and molecular descriptors 

The molecular structures of the compounds used in this study were obtained through 

PubChem database [105]. Energy minimization of molecular structures is an important step in 

QSPR, dictating the quality of the model developed. Geometry optimization of the molecular 

structures was conducted using the Gaussian [106] at the B3LYP (Becke, 3-paramater, Lee, Yang, 

Parr) density functional theory method and the 6-31(d) basis set. Vibrational frequency 

calculations were performed to ensure optimization to minimum energy level (i.e. no imaginary 

modes) and the convergence of the optimization was checked to determine successful completion 

of the optimization. 

After conducting geometry optimization, the molecular descriptors for each of these 

compounds were calculated from the QSPR models available in the Materials Studio software. 

The descriptors used in this study are quantum chemical, fast descriptors, atomistic descriptors and 

topological descriptors. In addition to the regular quantum chemical descriptors, the experimental 

mean diameter (d50) of the dusts obtained through the GESTIS DUST-EX database was also 

included as a descriptor for model development. Molecular descriptor reduction was conducted 

first by removing the null values and then by removal of descriptors having high degree of 

correlation.  
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4.4.3 Model development and validation 

The RF and DT algorithms were observed to give good predictability for the liquid and gas 

hydrocarbon databases and therefore, have been implemented for model development for the dusts. 

As the dusts have been classified into two different categories on the basis of their MIE ranges, 

the RF and DT have used the binary classification for model development. The Random Forest 

algorithm was used to rank the descriptors in their order of importance for MIE prediction. This 

reduced set of descriptors were used as an input to develop the decision tree. 

For binary classification problems, confusion matrix and the Receiver Operator Characteristic 

(ROC) curve is used to evaluate the model performance [116,117]. A typical confusion matrix is 

seen below in Figure 38. 

 

  Actual values 

 

 
Predicted 

values 

 Positive (1) Negative (0) 

Positive (1) True Positive (TP) False Positive (FP) 

Negative (0) False Negative (FN) True Negative (TN) 

 

Figure 38 : Confusion matrix - actual and predicted positives and negatives 
 

 

Based on the confusion matrix above, the ROC curve is the plot of True Positive Rate 

(TPR) versus the False Positive Rate (FPR) at different threshold probabilities. The threshold 

probability is defined as the probability of separation of the positive and negative categories of the 

dataset.   
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The True Positive Rate (TPR) is represented by: 

TPR =    
hi

hijkl
                                                                                                                           (14) 

 

The False Positive Rate (FPR) can be represented by: 

FPR =    
ki

hljki
                                                                                                                           (15) 

 

An ROC curve for a random model will be a diagonal TPR versus FPR curve (having 50% 

probability of correct prediction) [116,117]. While, a better performing model’s ROC curve will 

be on the upper side of the random diagonal curve indicating a better prediction of true positive 

values as compared to false positive values. A defining metric of the ROC curve which signifies 

model performance is the area under the ROC curve also termed as Area Under Curve (AUC). The 

AUC can also be interpreted as the measure of seperability between the positive and negative 

values in predictability of the dataset. The AUC value for the binary classification model falls 

between the range 0 to 1, where AUC = 0 indicates bad model predictability and AUC of 1 or 

closer to 1 indicates good model predictability and separation between the positive and negative 

categories. 

4.5 Results - MIE prediction of combustible dusts 

4.5.1 Random Forests (RF) algorithm 

Random Forest binary classification model was developed through the Python Scikit-Learn 

module using the RandomForestClassifier [102]. The number of decision trees used to develop 

this random forest algorithm were 1000. The model displayed excellent predictability indicated by 

the AUC of 0.94 as seen in Figure 39. Thus, the model shows remarkable performance and much 

better predictability than a random 50 % chance. 
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Figure 39 : ROC-AUC curve with AUC of 0.94 for RF model for combustible dusts 
 

Figure 40 below shows a training set plot of the list of the top 13 molecular descriptors 

having the most influence on MIE. In order to discern the effect of those descriptors which impact 

the MIE most, the molecular descriptors having < 3% contribution to MIE accuracy were 

considered to be negligent. Thus, the DT algorithm described in the following section utilized the 

13 descriptors (influencing MIE >3%), reducing the parameter space used for model development.  
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Figure 40 : Relevance of descriptors based on mean decrease in MIE prediction accuracy 
determined through RF algorithm for combustible dusts 
 

The % contribution by descriptors to MIE (>3%) is observed in Table 9 below. It was 

observed that the molecular density has the greatest impact on MIE amongst all the descriptors 

(~11 %). This can be explained by the fact that dense packing of the molecule which is the 

molecular density makes it difficult to ignite increasing the MIE. 
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Table 9 List of descriptors having > 3% effect on MIE prediction accuracy 
 

Molecular Descriptors 
% effect on MIE 

prediction 

Molecular density 10.95 

AlogP 7.92 

Wiener index 6.53 

Total molecular mass 5.86 

HOMO 5.61 

Chemical Potential 5.45 

Electrophilicity index 5.13 

Molecular flexibility 5.13 

LUMO 4.88 

Diameter d50 
4.65 

Balaban index 4.41 

E-state keys (counts): N_aaCH 3.99 

Hardness 3.30 

 

The second most influential descriptor for MIE was the AlogP (~8%) which is a 

thermodynamic parameter. AlogP is the n-octanol /water partition co-efficient for a molecule 

which depicts its hydrophobicity. In context of the dusts, AlogP would have a significant effect on 

the polarity of the molecules which can affect MIE. The Wiener index (~ 6 % effect on MIE 

prediction) is the sum contribution of the connecting bonds in a molecule and is defined by [52]:  
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W =  m
I
	 δopl

pqm
l
oqm                                                                                                                     (16) 

 

where N is the number of vertices or atoms and 𝛿ij is the distance matrix of the shortest 

possible path between vertices i and j. 

For dusts, the Weiner index can be indicative of the branching in the molecule and can 

have an effect on MIE. The total molecular mass of the molecule can also understandably affect 

the MIE as molecules having higher molecular weight can be difficult to ignite and can have high 

MIE values. The quantum chemical descriptors such as the Highest Occupied Molecular Orbital 

(HOMO), chemical potential, electrophilicity index, Lowest Unoccupied Molecular Orbital 

(LUMO) and Hardness were observed to be importance factors influencing MIE prediction 

accuracy. As the HOMO and LUMO contain the molecular orbital energies, these descriptors are 

closely related to reactivity of the molecule and therefore can be strongly co-related with the MIE 

of combustible dusts. The quantum chemical descriptors such as HOMO, LUMO and their 

combinations have resurfaced in the MIE model developed by Wang et al. (2017), thus 

reconfirming their importance for MIE prediction.  

Another interesting descriptor was observed to be the Balaban index (known to affect MIE 

~ 4 %). Balaban index can be described by the following [52]:  

J = s
tjm

	 (δo	δp)5u.vwxx	^yz^{                                                                                                         (17) 
 

where M is the number of edges, µ represents the cyclomatic number, 𝛿I and 𝛿j are the vertex-

distance degrees of adjacent vertices and 𝛿i is defined as 𝛿i = δop|
}qm .    

For dusts, the Balaban index can be indicative of the edges which can be correlated to the 

surface of the molecule and the cyclic rings in the molecule thereby influencing reactivity and 
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MIE.  The E-state keys (counts) # of aaCH (indicates the number of times CH is attached to 

aromatic bonds in the molecule) was observed to affect MIE ~ 4 %. This observation is well in 

line as the dataset consists of only aromatic / cyclic compounds, therefore the aromatic rings in 

molecules can influence the reactivity of the compound eventually influencing its MIE.  

The experimental mean diameter (d50) values of the particle, which was also included as a 

parameter in the dataset was considered as an input parameter along with other parameters. It was 

observed that the particle diameter did surface in the top 13 parameters that influence MIE having 

an effect of ~ 4% on MIE. Thus, an interesting observation of is that while, macroscopic properties 

of combustible dusts are known to influence MIE significantly, from this work the particle 

diameter was observed to not have a significant effect on MIE as compared to other descriptors 

determined through molecular structure information. From literature dp is known to increase MIE 

cubically [39]. Thus it can be deduced that the descriptors above dust diameter in this list can have 

a pronounced effect on dust MIE. While such an effect can only be deduced through this work, an 

experimental verification is necessary.  

4.5.2 Decision Tree (DT) algorithm 

A binary classification model was employed to develop a Decision Tree through the 

DecisionTreeClassifier available through the Python Scikit learn [102]. The decision tree was 

developed to obtain a more visually interpretable model for dusts. The top 13 descriptors identified 

through RF algorithm were used as the input parameters for the decision tree algorithm. Often, 

decision trees can be very complex due to the branching. In this work, a DT with a max depth = 5 

was developed and required for complete resolution of the dataset into either of the two categories. 

Figure 41 shows the decision tree representation for the dataset. The molecular descriptors used in 

decision making in Figure 41 are the dust diameter d50 (X0), Lowest Unoccupied Molecular Orbital 
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(X2) = LUMO, Electrophilicity index (X4), Molecular mass (X6), Wiener index (X10), E-state keys 

(counts) : N_aaCH (X11) and Molecular density (X12). These descriptors are also amongst the top 

few descriptors that significantly influence dust MIE predictability as identified through the RF 

algorithm.  The Decision Tree algorithm identifies the most important descriptors and their values 

which reduce the error. Each node of the decision tree enables making a decision based on the 

descriptor value and helps in categorizing the MIE values of compounds.  The ‘gini’ in each node 

represents the entropy at each level which represents the chaos in the optimization and the samples 

represents the number of compounds and the value represents the MIE value. The numbers in value 

[x,y] in each node are represented by: x - the number of compounds classified under the MIE 

category of ‘0’ (MIE <10 mJ),  y - the number of compounds classified under MIE category ‘1’ 

(MIE > 10mJ). The first level allows for a True/False decision based on the value of descriptor 

X12, followed by the second level which allows decision making based on descriptors X10 and X4 

and so on. The second level minimizes the ‘gini’ to 0 thereby dividing the total training set into 

the two different MIE categories. The decision tree can be a useful graphical representation for 

categorizing the data by just using the information from certain molecular descriptor values. 
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Figure 41 : Decision tree representation of training set, where X0 = d50, X2 = LUMO, X4 = 
Electrophilicity index, X6 = Molecular mass, X10 = Wiener index, X11 = E-state keys (counts) 
: N_aaCH and X12 = Molecular density 
 

The DT showed excellent predictability for the test set displayed through AUC of 0.95 seen 

in Figure 42. This essentially means that the probability of correctly predicting the MIE category 

in the test set is 95%. 
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Figure 42 : ROC-AUC curve with AUC of 0.95 for DT model for combustible dusts 
 

4.6 Summary 

  To summarize, QSPR models for a liquid and gas hydrocarbon dataset were developed 

using RF, DT, ANN and GFA algorithms. The machine learning algorithms such as RF and DT 

were observed to give a better predictability over the ANN and GFA algorithms. A similar 

framework was extended to a combustible dust dataset and RF and DT models were developed. 

The models displayed excellent predictability for the combustible dusts and helped in 

identification of the parameters most influencing the dust MIE prediction. 
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5 CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

Through a series of experiments and modeling, this study has quantified several approaches 

to partial inerting Minimum Ignition Energy (MIE) measurement and MIE prediction. 

Section 1 has discussed dust explosions and provided a comprehensive literature review of 

MIE testing and prediction for combustible dusts, underscoring the unexplored areas and defining 

the objectives of this research.  

In section 2, an improved MIE test method and its CFD validation have been discussed in 

detail. This research on partial inerting has demonstrated a proven approach and provided a 

detailed experimental validation which has not been realized previously in literature. This section 

has discussed purge turbulence as a parameter that can influence MIE of dust. However, the effect 

of controlling parameters (such as dust particle size, shape, and conductivity) on the dust MIE 

needs to be further investigated. Currently, MIE device manufacturers worldwide such as TUV-

SUD, Chilworth, and ANKO do not have such purging capability integrated into their instruments. 

This study provides the ground work for proper measurement of partially inerted MIE values. It is 

recommended that the work presented here be incorporated into a best practice approach to 

accompany ASTM E2019-03 (2013) or as a standalone ASTM standard.  

In this section, Hartmann tube purging was conducted prior to partial inerting MIE 

experimentation. The purge time required was determined experimentally and simulated using 

CFD. For consistency in literature and to facilitate easy comparison amongst different studies, it 

is recommended from this research that partial inerting studies employ pre-purging and mention 

the purge flow rate and time along with other relevant testing parameters. Based on this study, for 
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12–21 volume % oxygen the minimum purge time was determined to be 40 s through CFD which 

was further validated experimentally.  

In section 3, the improved test method was used to demonstrate the effect of MIE test 

method on its measurement. The partial inerting MIE curves for an international round robin 

material (Niacin, CaRo15) were presented to demonstrate the effectiveness of the purging device 

and the various approaches. The experiments demonstrate that pre-purging of the minimum 

ignition energy dispersion tube is essential for maintaining a controlled concentration of inerted 

air for the ignition energy measurements. In addition, the importance of sealing the flapper value 

at the top of the Hartman tube proved necessary in order to produce the most accurate results at 

higher oxygen concentrations. 

It is important to note that for a valid MIE comparison of a given dust at a specific oxygen-

nitrogen composition, the parameters of particle size, size distribution, dust moisture, ignition 

delay time, test temperature, gas humidity, and turbulence must remain consistent. In this work, 

the only parameter changing between purging and non-purging cases is the purge-induced 

turbulence. The potential influence of purging turbulence on the MIE measurements was 

examined. The MIE values were found to be nearly identical for experiments in which the ignition 

was attempted 1 s and 120 s after the purging was stopped. This validates the time saving method 

of halting the tube purging followed by an immediate ignition attempt. Experiments were also 

conducted in which an ignition attempt was made while purge gas was flowing. This experiment 

produced a higher MIE value as expected due to turbulence in the ignition zone. 

Finally, partial inerting data (MIE-O2) was generated for different combustible dusts. A 

MIE-O2 equation was developed and verified through experimental partial inerting studies. While 

previous studies have used a single coefficient in the MIE-O2 equation for all dusts, this work has 
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proposed the coefficient be dust dependent. The last part of this section included the investigation 

of particle size on partial inerting characteristic of Acetaminophen (Paracetamol) dust. The 

preliminary finding from this work that the particle size had a more significant impact on dust MIE 

at lower oxygen concentrations would prove to be useful for facilities handling combustible dusts. 

Thus, the sections 2 and 3 have provided a scientific basis for inclusion of purging and 

purge parameters into partial inerting MIE testing. This work through affecting combustible dust 

MIE measurements can influence handling of processes in partially inerted atmospheres and 

hybrid systems (combustible dust-flammable gas-air) in industries. Currently, the MIE testing 

standards do not mention purging (or its specifications) which can result in inconsistency in 

comparison of partial inerting MIE values in literature. Thus, based on the test method in this work, 

it is recommended that the ASTM E2019-03 standard include these provisions. 

In section 3, MIE prediction models were developed using QSPR and machine learning 

algorithms. Two different datasets - liquids/gas hydrocarbons and combustible dusts have been 

used for model development. For the liquids and gases, the QSPR models were developed using 

Random Forests (RF), Decision Trees (DT), Artificial Neural Networks (ANN) and Genetic 

Function Approximation (GFA) regression algorithms. RF algorithm was used to identify the most 

important descriptors affecting MIE which were used as input parameters in the DT, ANN and 

GFA algorithms. The RF and DT algorithms were observed to yield excellent predictability as 

compared to the ANN and GFA algorithms. The molecular mass of the hydrocarbons and the 

quantum chemical descriptors such as Highest Occupied Molecular Orbital (HOMO), Chemical 

potential, Electrophilicity index were identified to affect the MIE values the most. An interesting 

observation from this work has been that the Structure Parameter which has been discussed in 
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literature before was observed to significantly improve MIE predictability when ANN and GFA 

algorithms were used for model development. 

The framework for model development used for the hydrocarbon dataset, was extended to 

the combustible dust dataset which consisted of compounds containing aromatic rings. For 

combustible dusts, a binary classification model was developed with the classifiers ‘0’ indicating 

MIE <10 mJ and ‘1’ indication MIE > 10 mJ. The RF and DT classification algorithms for the 

combustible dust dataset showed excellent predictability. The top few descriptors that affected the 

combustible dust MIE were molecular density, AlogP (octanol/ water partition co-efficient), 

Wiener index, Molecular mass of the dust, quantum chemical descriptors such as Homo, LUMO, 

Chemical Potential, Electrophilicity index and Hardness, Molecular flexibility, Balaban index, E–

state key counts and dust diameter. An interesting observation from this work has been that the 

dust diameter (d50) which is a macroscopic property did not affect the MIE as significantly as other 

descriptors. Thus based on this study, the machine learning algorithms RF and DT provided better 

predictability. The GFA has traditionally been used for prediction of datasets with large parameters 

and small datasets but in this work was observed to result in less robust models as compared to the 

machine learning algorithms RF and DT. 

Based on this work, QSPR models using DT and RF can be successfully applied for 

combustible dust MIE prediction. Knowledge of the exact descriptors influencing dust MIE can 

facilitate quick risk assessment in solids handling facilities through molecular structure 

information of the dust. Thus, MIE predictions conducted in this way can result in lowering testing 

costs, time and any hazards involved in the process. 
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5.2 Future work 

While this research has attempted to address some of the existing gaps in literature, there are 

some ideas for future work resulting from this work that have been elucidated below: 

1) A preliminary investigation of the effect of particle size on partial inerting characteristics 

has been demonstrated through the study on acetaminophen dust. It would be interesting 

to extend this to a number of different combustible dusts. Further, quantification of this 

effect in a single mathematical equation which consists of MIE, oxygen concentration and 

particle size would be very beneficial to industry and help in navigation of safe conditions 

to be maintained in processes. 

2) The Hartmann tube used for MIE testing can also influence the measured MIE values. 

Conventionally, MIE testing has been conducted in the glass tube or steel tubes by device 

manufacturers. The existing device manufacturers recommend that the test sample be 

changed after every 4 dispersions. Each combustible dust has a different sticking ability 

which can further change depending on the explosion tube material. The effect of explosion 

tube material, the electrostatics between the combustible dust and the tube on measured 

MIE is worth investigating. 

3) In this work, CFD modeling of the purge flow for N2-O2 mixture in the Hartmann tube has 

been conducted to determine the purge time for partial inerting case. This can be extended 

to hybrid dust-gas systems where CFD modeling of the flow of flammable gas-air mixture 

in Hartmann tube can be simulated and the purge time required can be determined. This 

information will be useful when testing hybrid systems MIE.  

4) In this work, the MIE prediction of combustible dusts has been conducted on a dataset 

consisting of 65 compounds. This dataset has also used the particle diameter d50 as one of 
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the parameters for model development. Dust diameter (d50) has been used in this work due 

to easy availability of data. However, a more holistic representation of particle diameter is 

D (3,2) which represents the volume to surface area ratio for any particle. Inclusion of a 

more inclusive parameter such as D (3,2) on the MIE prediction would be a useful addition 

to the model. Thus QSPR and machine learning model development with a more 

comprehensive dust dataset which can include a wide range of MIE values (rather than just 

two MIE categories) and D(3,2) as one of the parameters would be valuable. 

5) Reactivity of the dusts can have a large influence on its MIE. To study this, the correlation 

between onset temperatures and heat of combustion to MIE needs to be investigated in 

detail. This endeavor will require rigorous literature search of combustible dusts for their 

reaction onset temperature, heat of combustion along with MIE values or it can also include 

generation of such a dataset including these properties. Therefore, such an experimental 

and modeling study of developing trends between onset temperature Tonset behaviors to 

MIE would be beneficial for fundamental understanding of dust MIE. 

6)  This work has developed models for dusts that have a common functional characteristic 

of aromatic ring in their molecular structure. The effect of different functional groups on 

MIE prediction and the descriptors can be important. It is highly possible that different 

functional groups require different molecular descriptors for MIE prediction. Thus MIE 

prediction models for each different function group should be developed and compared for 

better understanding. This knowledge can be useful to understand which parameters affect 

dust MIE the most based on their functional groups. 



 

103 

 

 REFERENCES 

[1] W. Bartknecht and G. Zwahlen, Dust-explosions. Berlin: Springer-Verlag, 1989.  

[2] K. Cashdollar and M. Hertzberg, Industrial dust explosions. Philadelphia, Pa: American 

Society for Testing and Materials, 1987. 

[3] R. Eckhoff, Dust explosions in the process industries (3rd ed.). Boston, USA: Gulf 

Professional Publishing/Elsevier, 2003. 

[4] Z. Yuan, N. Khakzad, F. Khan, P. Amyotte, "Dust explosions: A threat to the process 

industries", Process Safety and Environmental Protection, vol. 98, pp. 57-71, 2015.  

[5] P. Bagaria, J. Zhang, C. Mashuga, "Effect of dust dispersion on particle breakage and 

size distribution in the minimum ignition energy apparatus", Journal of Loss Prevention 

in the Process Industries, vol. 56, pp. 518-523, 2018.  

[6] Combustible Dust: Safety and Injury Prevention, Awareness Training Program, 

Instructors Manual. Kirkwood Community College Community Training and Response 

Center. Susan Harwood Grant Number SH-17797-08-60-F-19.  

[7] U.S Chemical Safety and Hazard Investigation Board (USCSB). Sugar Dust Explosion 

and Fire. Report 2008-05-I-GA, 2009. 

[8] U.S Chemical Safety and Hazard Investigation Board (USCSB). West Pharmaceutical 

Services Dust Explosion and Fire, 2004. 

[9] P.R. Amyotte, M.P. Clouthier, F.I. Khan, "Dust explosions: An overview", Methods in 

Chemical Process Safety, In press, 2019.  



 

104 

 

[10] T. Abbasi, and S.A. Abbasi, "Dust explosions-Cases, causes, consequences, and control", 

Journal of Hazardous Materials, vol. 140, pp. 7-44, 2007. 

[11] P. Amyotte, and R. Eckhoff, "Dust explosion causation, prevention and mitigation: An 

overview", Journal of Chemical Health and Safety, vol. 17, pp. 15-28, 2010. 

[12] R. Eckhoff, "Understanding Dust Explosions. The Role of Powder Science and 

Technology", KONA Powder and Particle Journal, vol. 15, pp. 54-67, 1997. 

[13] R. Eckhoff, "Prevention and mitigation of dust explosions in the process industries: A 

survey of recent research and development", Journal of Loss Prevention in the Process 

Industries, vol. 9, pp. 3-20, 1996. 

[14] T. Hoppe and N. Jaeger, "Reliable and effective inerting methods to prevent explosions", 

Process Safety Progress, vol. 24, pp. 266–272, 2005  

[15] P. Amyotte, "Some myths and realities about dust explosions", Process Safety and 

Environmental Protection, vol. 92, pp. 292–299, 2014. 

[16] P. Amyotte, An Introduction to Dust Explosions: Understanding the Myths and Realities 

of Dust Explosions for a Safer Workplace. Boston: Butterworth-Heinemann, 2013. 

[17] R. Eckhoff, "Partial inerting-an additional degree of freedom in dust explosion 

protection", Journal of Loss Prevention in the Process Industries, vol. 17, pp. 187–193, 

2004.  



 

105 

 

[18] R. Eckhoff, "Dust Explosion Prevention and Mitigation, Status and Developments in 

Basic Knowledge and in Practical Application", International Journal of Chemical 

Engineering, pp. 1-12, 2009. 

[19] M. Glor and K. Schwenzfeuer, "Einfluss der Sauerstoffkonzentration auf die 

Mindestzündenergie von Staüben", VDI. Berichte, vol. 1272, pp. 119–134, 1996. 

[20] J. P. Zeeuwen, "Dust explosion protection of grinding installations", Proceedings of 2nd 

World Seminar on the Explosion. Phenomenon and on the Application of Explosion 

Protection. Techniques in Practice, Gent, Belgium Kontich, Belgium: EuropEx., 1996. 

[21] CREDIT, "Dust explosions: protecting people, equipment, buildings and environment", 

Proceedings of Conference in London, October 11–12, 1995, IBC Technical Services, 

London, UK, 1995. 

[22] T. Glarner, "Mindestzundenergie - Einfluss der Temperatur", VDI. Berichte, vol. 494, 

pp. 109–118, 1984. 

[23] M. Devlikanov, D. Kuzmenko, N. Poletaev, "Nitrogen dilution for explosion of nutrient 

yeast dust-air mixture", Fire Safety Journal, vol. 25, pp. 373, 1995. 

[24] R. A. Ogle, "Dust Explosion Dynamics", Boston: Butterworth-Heinemann, 2017. 

[25] G. Ackroyd, M. Bailey and R. Mullins, "The effect of reduced oxygen levels on the 

electrostatic ignition sensitivity of dusts", Journal of Physics: Conference Series, vol. 

301, pp. 12034, 2011. 



 

106 

 

[26] K. Choi, K. Choi, K. Nishimura, "Experimental study on the influence of the nitrogen 

concentration in the air on the minimum ignition energies of combustible powders due 

to electrostatic discharges", Journal of Loss Prevention in the Process Industries, vol. 

34, pp. 163-166, 2015. 

[27] ASTM E2019-03: Standard Test Method for Minimum Ignition Energy of a Dust Cloud 

in Air; ASTM: West Conshohocken, 2013. 

[28] K. Choi, H. Sakasai, H. Nishimura, "Minimum ignition energies of pure magnesium 

powders due to electrostatic discharges and nitrogen's effect", Journal of Loss Prevention 

in the Process Industries, vol. 41, pp. 144-146, 2016. 

[29] Y. Chunmiao, P. Amyotte, M.N. Hossain, C. Li, "Minimum ignition energy of nano and 

micro Ti powder in the presence of inert nano TiO2 powder", Journal of Hazardous 

Materials, vol. 274, pp. 322-330, 2014. 

[30] I. Iarossi, P. Amyotte, F.I. Khan, L. Marmo, A.G. Dastidar, R. Eckhoff, "Explosibility of 

polyamide and polyester fibers", Journal of Loss Prevention in the Process Industries, 

vol. 26, pp. 1627-1633, 2013. 

[31] L. Marmo and D. Cavallero, "Minimum ignition energy of nylon fibers", Journal of Loss 

Prevention in the Process Industries, vol. 21, pp. 512-517, 2008. 

[32] H. C. Wu, R. C. Chang, H. C. Hsiao, "Research of minimum ignition energy for nano 

Titanium powder and nano Iron powder", Journal of Loss Prevention in the Process 

Industries, vol. 22 , pp. 21-24, 2009. 



 

107 

 

[33] P. Chaudhari, B. Ravi, P. Bagaria, C. Mashuga, "Improved partial inerting MIE test 

method for combustible dusts and its CFD validation", Process Safety and Environmental 

Protection 2019, vol. 122, pp. 192-199, 2019. 

[34] E. Randeberg and R. Eckhoff, "Measurement of minimum ignition energies of dust 

clouds in the < 1mJ region", Journal of Hazardous Materials, vol. 140, pp. 237-244, 

2007. 

[35] E.K. Addai, D. Gabel, M. Kamal, U. Krause, "Minimum ignition energy of hybrid 

mixtures of combustible dusts and gases", Process Safety and Environmental Protection, 

vol. 102, pp. 503-512, 2016. 

[36] G. Pellmont, "Minimum ignition energy of combustible dusts and explosion behavior of 

hybrid mixtures", 3rd International Symposium on Loss Prevention and Safety 

Promotion in the Process Industries, vol. 3, pp. 851-862, 1980. 

[37] H. Franke, "Determination of the minimum ignition energy of coal dust-methane-air 

mixtures (hybrid mixtures)", Erdöl und Kohle, Erdgas. Petrochem, vol. 33, pp. 283, 

1980. 

[38] P. Chaudhari, and C. Mashuga, "Partial inerting of dust clouds using a modified standard 

minimum ignition energy device", Journal of Loss Prevention in the Process Industries, 

vol. 48, pp. 145-150, 2017. 

[39] W. Jost, "Theory of flame velocity, III. Elementary considerations on spark ignition", 

Zeitschrift für physikalische Chemie, 1950. 



 

108 

 

[40] N. Kalkert and H. Schecker, "Theoretische Überlegungen zum Einfluß der Teilchengröße 

auf die Mindestzündenergie von Stäuben", Chemie Ingenieur Technik, vol. 51, pp. 1248–

1249, 1979. 

[41] E. I. Gubin and I.G. Dik, "Ignition of a Dust Cloud by a Spark", Combustion, Explosion 

and Shock Waves, vol. 22, pp. 135-141, 1986. 

[42] M. Bidabadi, M. Mohammadi, A.K. Poorfar, S. Mollazadeh, S. Zadsirjan. "Modeling 

combustion of aluminum dust cloud in media with spatially discrete sources", Heat and 

Mass Transfer, vol. 51, pp. 837–845, 2015. 

[43] S. Bernard, K. Lebecki, P. Gillard, L. Youinou, G. Baudry, "Statistical method for the 

determination of the ignition energy of dust cloud-experimental validation", Journal of 

Loss Prevention in the Process Industries, vol. 23, pp. 404–411, 2010. 

[44] A. Wähner, G. Gramse, T. Langer, M. Beyer, "Determination of the minimum ignition 

energy on the basis of a statistical approach", Journal of Loss Prevention in the Process 

Industries, vol. 26, pp. 1655–1660, 2013. 

[45] O.J. Reyes, S. J. Patel, M.S. Mannan, "Quantitative Structure Property Relationship 

Studies for Predicting Dust Explosibility Characteristics (Kst, Pmax) of Organic 

Chemical Dusts", Industrial & Engineering Chemistry Research, vol. 50, pp. 2373–2379, 

2011. 



 

109 

 

[46] B. Wang, L. Zhou, K. Xu, Q. Wang, "Prediction of Minimum Ignition Energy from 

Molecular Structure Using Quantitative Structure–Property Relationship (QSPR) 

Models", Industrial & Engineering Chemistry Research, vol. 56, pp. 47–51, 2017. 

[47] D. Frenkel, B. Smit and M. Ratner, "Understanding Molecular Simulation: From 

Algorithms to Applications", Physics Today, vol. 50, pp. 66-66, 1997.  

[48]  J.N. Israelachvili, Intermolecular and Surface Forces. London: Elsevier Academic 

Press, 2015. 

[49] D. Tabor, Gases, Liquids and Solids: And Other States of Matter. Cambridge: University 

Press, 1991. 

[50] B. Wang, L.  Zhou, K. Xu, Q. Wang, "Fast prediction of minimum ignition energy from 

molecular structure using simple QSPR model", Journal of Loss Prevention in the 

Process Industries, vol. 50, pp. 290-294, 2017. 

[51] A. Katritzky, V. Lobanov, M. Karelson, "QSPR: the correlation and quantitative 

prediction of chemical and physical properties from structure", Chemical Society 

Reviews, vol. 24, pp. 279, 1995. 

[52] M. Dehmer, K. Varmuza, D. Bonchev, Statistical modelling of molecular descriptors in 

QSAR/QSPR. Weinheim: Wiley-Blackwell, 2012.  

[53] K. Roy, S. Kar, R. Das, Understanding the basics of QSAR for applications in 

pharmaceutical sciences and risk assessment. Amsterdam: Academic Press, an imprint 

of Elsevier, 2015. 



 

110 

 

[54] A. Katritzky, I. Stoyanova-Slavova, K. Tämm, T. Tamm, M. Karelson, "Application of 

the QSPR Approach to the Boiling Points of Azeotropes", The Journal of Physical 

Chemistry A, vol. 115, pp. 3475-3479, 2011. 

[55] V. Zare-Shahabadi, M. Lotfizadeh, A. Gandomani, M. Papari, "Determination of boiling 

points of azeotropic mixtures using quantitative structure–property relationship (QSPR) 

strategy", Journal of Molecular Liquids, vol. 188, pp. 222-229, 2013. 

[56] F. Gharagheizi and R. Alamdari, "Prediction of Flash Point Temperature of Pure 

Components Using a Quantitative Structure–Property Relationship Model", QSAR & 

Combinatorial Science, vol. 27, pp. 679-683, 2008. 

[57] Y. Pan, J. Jiang, R. Wang, H. Cao, J. Zhao, "Prediction of auto-ignition temperatures of 

hydrocarbons by neural network based on atom-type electrotopological-state indices", 

Journal of Hazardous Materials, vol. 157, pp. 510-517, 2008. 

[58] T. Borhani, A. Afzali, M. Bagheri, "QSPR estimation of the auto-ignition temperature 

for pure hydrocarbons", Process Safety and Environmental Protection, vol. 103, pp. 115-

125, 2016. 

[59] S. Saraf, W. Rogers, M.S. Mannan, "Prediction of reactive hazards based on molecular 

structure", Journal of Hazardous Materials, vol.  98, pp. 15-29, 2003. 

[60] N. Baati, "Predictive Models for Thermal Stability and Explosive Properties of Chemicals 
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APPENDIX A                                                                                                                        

DATABASES USED FOR MIE PREDICTION                                                                                         

Table A1 Liquid and gas MIE (Dataset 1 - taken from Calcote et al. [104]) 

Liquids and gases  MIE (10-4 J) 
Ethane 2.85 
Propane 3.05 
Methane 4.7 
n-Pentane 4.9 
Isobutane 5.2 
Isopentane 7 
n-Heptane 7 
Triptane 10 
Isooctane 13.5 
2,2-Dimethylpropane 15.7 
2,2-Dimethylbutane 16.4 
Acetylene 0.2 
Vinylacetylene 0.822 
Ethylene 0.96 
Methylacetylene 1.52 
1,3-Butadiene 1.75 
Propylene 2.82 
1-Heptyne 5.6 
2-Pentene 4.7 
Diisobutylene 9.6 
Methanol 2.15 
Isopropylmercaptan 5.3 
Isopropylalcohol 6.5 
Allylchloride 7.75 
n-Propylchloride 10.8 
Triethylamine 11.5 
n-Butylchloride 12.4 
Isopropylchloride 15.5 
Isopropylamine 20 
Ethylamine 24 
Acrolein 1.37 
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Table A1 Continued 

Propionaldehyde 3.25 
Acetaldehyde 3.76 
Methylethylketone 5.3 
Acetone 11.5 
Methylformate 4 
Vinylacetate 7 
Ethylacetate 14.2 
Dimethylether 2.9 
Dimethoxymethane 4.2 
Diethylether 4.9 
Diisopropylether 11.4 
Dimethylsulfide 4.8 
Di-tert-butylperoxide 4.1 
Furan 2.25 
Thiophene 3.9 
Benzene 5.5 
Ethyleneoxide 0.87 
Propyleneoxide 1.9 
Cyclopropane 2.4 
Dihydropyran 3.65 
Ethylenimine 4.8 
Cyclohexene 5.25 
Cyclopentane 5.4 
Tetrahydrofuran 5.4 
Cyclopentadiene 6.7 
Tetrahydropyran 12.1 
Cyclohexane 13.8 
Carbondisulfide 0.15 
Hydrogensulfide 0.68 

 

 

 

 

 



 

122 

 

Table A2 Combustible dust MIE (Dataset 2 compounds from GESTIS DUST-EX [115]) 

Combustible dust Dust 
diameter 

d50 

MIE 
range 
(mJ) 

MIE     
category 

Naphthalene 95 <1 0 
1,1'-Binaphthalene-2,2'-diol 16 3/10 0 
1,4-cyclohexanedicarboxylic acid 29 10/30 1 
1-Phenyl-3-(1,2,3-thiadiazol-5-yl)-urea 17 1/3 0 
Povidone 65.2 300/1000 1 
2,2-Methylene-bis-(4-methyl-6-tert-butyl-p-phenol) 23 <10 0 
2,6-Dichlorobenzonitrile 70 >1000 1 
2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-
phenylethyl)phenol 15.5 <1 0 
2-Amino-4-methoxy-6-methyl-s-triazine 10 10/100 1 
2-Anilino-4,6-dimethyl pyridine 150 <1 0 
2-Ethoxy-4,6-dihydroxy pyrimidine 25 <10 0 
2-Naphthol 10 >5 1 
2-phenyl-2-imidazoline 10 1/3 0 
4-Morpholinepropanesulfonic acid 10 30/100 1 
4,4´,4"-(Ethane-1,1,1-triyl)triphenol 34 10/30 1 
4-Aminobenzamidin-dihydrochlorine 21 >1000 1 
4-Pyridylethansulfonicacid 38 30/100 1 
Acetanilide 31 3/10 0 
Acetoguanamine 10 >1000 1 
Acetylsalicylic acid 39 <10 0 
Aminotriazole 22 <10 0 
Anthracene 102 4/8 0 
Antioxidant (1-(2-hydroxy-3-sulfopropyl)-pyridinium-betaine) 35 100/1000 1 
Antioxidant (2,2'-(2-methylpropylidene)-bis-(4,6-di-
methylphenol)) 10 <10 0 
Antioxidant (2,5-di-tert.-amyl hydroquinone) 13 <10 0 
Antioxidant (3-(3,5-di-tert.-butyl-4-hydroxyphenyl)-propionic-
acid methyl ester) 40 <10 0 
4,4'-Thiobis(6-tert-butyl-m-cresol) 30 <10 0 
Antioxidant (octadecyl-3-(3,5-di-tert.-butyl-4-hydroxy-phenyl)-
propionate) 33 <10 0 
1,2-Bis(3,5-di-tert-butyl-4-hydroxyhydrocinnamoyl)hydrazine 10 1/3 0 
Antioxidantie Tris(4-tert-butyl-3-hydroxy-2,6-
dimethylbenzyl)isocyanurat 22 1/3 0 
Azacycloheptane-2,2-diphosphonic acid 10 10^5 1 
Benzoguanamine 18 <10 0 
Benzoic acid 22 1/3 0 
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Table A2 Continued 

Bis(2,6-Diisopropylphenyl)carbodiimide 32.4 1/3 0 
Bisphenol A 63 <4 0 
Caprinoguanamine 33 <10 0 
Carbamazepine 15 2/5 0 
Cinnamic acid 36 <10 0 
Dextrose 132 >1000 1 
Benzenesulfonic acid, 4,4'-oxybis-, 1,1'-dihydrazide 10 3/10 0 
Dibenzo[b,k][1,4,7,10,13,16]hexaoxacyclooctadecin 10 1/3 0 
Carbazole 150 <   3 0 
Sodium diclofenac 28 >10000 1 
Dimethyl terephthalate 27 >2 1 
Estradiol valerianate 10 < 1 0 
Enalapril 100 300/1000 1 
Ethinyl estradiol 10 1/3 0 
Felodipine 80 30/100 1 
Guanine 22 300/1000 1 
Isophthalic acid 32 1/3 0 
Naphthalic acid anhydride 16 > 3 1 
Nicotinic acid 15 1/3 0 
Nifedipine 24 <10 0 
Pentoxifylline 14 <10 0 
Phenytoin 26 <10 0 
Quinine benzoate 33 1/3 0 
Salicylic acid 36 3/10 0 
Sucrose  34 10/30 1 
Terephthalic acid 40 10/30 1 
Tetramethylpiperidine  21 1/3 0 
Theophylline 35 30/100 1 
Trimellitic acid anhydride 1250 >1000 1 
Tryptophan 53 >3 1 
4-Tert-Butylphenol 53 2/5 0 
Quinic acid 26 100/300 1 

 

Classifier 1: MIE > 10 mJ,   Classifier 2: MIE < 10 mJ 

 

 




