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ABSTRACT 

 

The electrical grid is among the most critical of infrastructures, as it both assures high 

quality of life and promotes economic growth. Loss of power leads to major economic, social, and 

environmental impacts. Annual impacts in the U.S. from weather-related outages in the electrical 

network result in more than $150 billion in lost revenue.  

Due to the high level of environmental exposure of the electric utility overhead 

infrastructure, the most dominant cause of electricity outages is weather impact. About 75% of 

power outages are either directly caused by weather-inflicted faults (e.g., lightning), or indirectly 

due to weather-caused increases in equipment deterioration rates (e.g. insulation) leading to 

subsequent failures. While it is not feasible to prevent severe weather conditions, the impact of 

severe weather can be significantly reduced, and in some cases even eliminated, by accurate 

prediction of where faults may occur and what equipment may be vulnerable so that adequate 

maintenance or replacement mitigation approaches can be deployed.  

The assessment of weather impact on electrical grids falls into a group of problems referred 

as "the Big Data problems". The electric power industry has been deploying a smart grid 

infrastructure containing anywhere from thousands to millions of measurement points throughout 

the network. In addition, comprehensive analysis of data not coming from utility infrastructure, 

such as weather, lightning, vegetation, and geographical base data, which also comes in great 

volumes, is necessary. This brings out new challenges in dealing with extremely large data sets 

and using them to improve decision-making. Efficient, predictive, condition-based asset 

management and outage mitigation requires real-time processing of large volumes of multi-domain 

data. 
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The goal of this research is to provide a comprehensive framework for the use of Big Data 

to assess weather impacts on utility assets. This is accomplished in four primary steps: 1) 

identifying the relevant weather parameters in relation to the electric power outages and asset 

deterioration; 2) evaluating electrical grid vulnerability to hazardous weather conditions using 

advanced data analytics; 3) predicting the risk imposed on the electrical grid by severe weather 

based on weather forecasts and network vulnerability estimates; and 4) developing optimal 

mitigation strategies that minimize the risk of weather-related power outages. 

In this study a unified data framework is developed that enables collection and 

spatiotemporal correlation of variety of data sets. The Gaussian Conditional Random Fields 

(GCRF) algorithm is used for predicting the probability of future outages in the network, given 

weather forecast data. The temporal and spatial interdependencies between components and events 

in the network are leveraged for the improvement of prediction algorithm accuracy, and its 

capability to deal with bad and missing data. The algorithm shows high accuracy of prediction by 

predicting risk of 64% or higher for all the cases of outages in distribution, and over 74% for all 

cases in transmission. The prediction results are presented on a geographical map in the form of 

the Risk Maps. A dynamic asset management system based on optimization is built to reduce the 

predicted risk of outages and component failure while maintaining predetermined economic 

investment in periodic asset maintenance. The study approach is tested on real utility data for 

multiple applications. Two scenarios are observed in this dissertation to demonstrate the benefits 

of this approach: 1) lightning strikes on or in the vicinity of power lines; 2) the combination of 

high-speed wind and heavy precipitation causing lines to come in contact with surrounding 

vegetation.  
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CHAPTER I 

INTRODUCTION: PROBLEM STATEMENT* 

1.1 Introduction 

Power system outages have significant impacts on both the economy and the quality of 

human life. Large blackouts can cause major economic losses, as well as losses in human lives and 

severe injuries. Compared to large blackouts, smaller outages can cause more cumulative 

economic losses over periods of several years, due to their high frequency of occurrence. Results 

of various outage cause surveys conducted in recent years are presented in Fig. 1 and Fig. 2, [1, 

2]. Based on these studies we can conclude that the majority of power outages (55% in Fig. 1 and 

76% in Fig. 2) are caused by a) severe weather, which can lead to trees touching the conductors, 

or lightning and other environmental hazards causing a temporary loss of insulation properties, 

and b) permanent equipment failure caused by deterioration and eventual breakdown of the 

equipment electrical insulation strength. Due to the high level of exposure of the network overhead 

equipment to environmental impacts, equipment failure rates are highly correlated with weather 

impacts [3].  

1.2 Weather Impacts 

If we observe the cause of the power system outages, we can identify two main types of 

environmental impacts [4]:  

1. Instantaneous impact to utility assets: All outages that are directly caused by 

environmental impact are placed in this group. Some examples of this type of outage 

                                                 

* This section is in part a reprint with permission of the material in the following paper: M. Kezunovic, T. Dokic, 

“Predictive Asset Management Under Weather Impacts Using Big Data, Spatiotemporal Data Analytics and Risk 

Based Decision-Making,” 10th Bulk Power Systems Dynamics and Control Symposium – IREP’2017, Espinho, 

Portugal, August 2017. 
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are lightning strikes causing an insulator backflashover, severe storms breaking or 

moving the conductors against each other, and tree branches growing into the lines and 

causing short circuit. When post-fault analysis is performed, such types of outages are 

 

Figure 1 Power Outages by Cause in the USA in 2017 by Eaton, adapted from [1] 

 

Figure 2 Power Outages by Cause by We Energies, reprinted from [2] 
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marked as being caused by a specific type of weather event such as lightning, ice, wind, 

or in general as weather induced.  

2. Cumulative impact on utility assets: In this group we include outages that occurred due 

to equipment insulation deterioration caused by prolonged exposure of utility assets to 

weather impacts. Sustained weather impact on equipment can accelerate component 

deterioration. Some of the examples are an increase in demand caused by hot weather 

conditions that lead to overloading of utility equipment, or an exposure to multiple 

lightning strikes over time that cause the performance of lightning protection 

equipment (insulators, surge arresters) to deteriorate quicker. During the post-fault 

analysis such types of outages are typically marked as equipment failure, and 

sometimes it is not possible to directly correlate the outage with its cause. However, 

with statistical analysis it is possible to analyze how exposure to different weather 

conditions over time impacts the component’s reliability.  

We use three terms to describe different levels of weather impact: severe, catastrophic, and 

extreme. Severe weather impact describes situations where there is a chance that the weather 

conditions will cause some damage to the infrastructure, or endanger human life [5]. Examples of 

severe weather are thunderstorms, tornadoes, hail, storms, etc. A special case of severe weather is 

catastrophic weather, characterized by the extremely high potential for causing damage, serious 

social disruptions, and potential loss of human life [6]. Examples of catastrophic weather are 

tornadoes, hurricanes, earthquakes, tsunamis. Extreme weather describes the event where one or 

multiple weather parameters has reached an extreme value compared to its historical distribution. 

Examples are extreme wind speed and/or gust, extreme temperature, extreme cold waves, etc. [7]. 
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This research emphasizes the prediction of severe weather impacts on the transmission and 

distribution system, since these events cause the largest overall economic impact on utility 

operation and management. Catastrophic weather accounts for only 7% of large blackouts [8], 

while more than 50% are due to frequent storms and severe weather. As presented in Fig. 3 [9], 

the number of power outages due to weather impacts has been dramatically increasing in recent 

years, and storms and severe weather impacts are characterized by the fastest increase. This 

increase in severe weather events is resulting in huge economic, social, and environmental risks to 

power systems and its customers [10].  

The US economy loses $104-$164 billion a year to outages and another $15-$24 billion to 

power quality impacts associated with loss-of-power surges [11]. The Northeast Blackout that 

 

Figure 3 Trends of Weather-Related Power Outages by Climate Central for major events 

including at least 50,000 customers affected, reprinted from [9] 
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occurred in August 2003 was caused by multiple trees making contact with transmission lines 

resulting in an erroneous line tripping [12]. The associated economic losses are estimated to be 

between $4 and $10 billion [13]. Another example of a large blackout occurred on December 2008 

in New Hampshire, which started with ice-damaged tree falling on the lines during the ice storm. 

More than 800,000 people were affected [14].  

A common weather impact that contributes to faults is the combination of high wind 

activity and trees being blown into the lines [15, 16]. Thus, it is of great interest for utilities to 

minimize the risk of vegetation-related outages in power system [17]. Tree trimming is the largest 

expense associated with distribution system management. Utilities spend millions of dollars on 

tree trimming every year [18].  

Lightning is yet another common cause of outages [19]. Lightning strikes generate 

overvoltages that travel along the transmission lines affecting insulators. While they will not 

always cause the failure of equipment, their intensity and frequency of occurrence will affect the 

rate of insulation deterioration [20]. Evaluating the impact of lightning-caused overvoltages on the 

insulators along the transmission lines is of utmost importance. The insulators play an important 

role in power transmission system as the integrity of an overhead transmission line is directly 

governed by the electrical and mechanical performance of such equipment. While the insulators 

account for only 5% to 8% of the direct capital cost of the transmission line, more than 70% of the 

line outages and up to 50% of line maintenance costs are being caused by the insulator-induced 

outages [21].  

1.3 Big Data 

The measurements from the physical network and weather data exhibit various aspects of 

Big Data (BD). For efficient condition-based asset and outage management, and preventive real-
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time operation, fast processing and spatiotemporal correlation of large volumes of data is required. 

Table 1 lists characteristics of several BD sources that are of interest. The volume and velocity 

with which the data is generated can be overwhelming for both on-request and real-time 

applications. The heterogeneity of data sources and accuracy creates additional challenges.  

Asset and outage management have relied heavily on model-based solutions in the past 

[22-27]. The inability of such methods to reflect the dynamically changing weather impacts over 

time makes it difficult to assess the deterioration of power grid infrastructure, anticipate locate 

faults, and predict operating conditions [19]. The advancements in smart grid measurement 

technologies have enabled the necessary conditions for the development of new data-driven 

solutions. While the new sensors can provide abundant information about the power system state, 

there is a lack of data analytics to extract knowledge needed to draw causal inferences between 

evolving power system events and the weather elements causing emergencies. The sufficient 

condition to derive such knowledge is to use adequate model-based approaches that directly 

incorporate Big Data. Thus, it is necessary to build a hybrid system that utilizes both physical 

model- and data-driven solutions as two complementary parts required to observe the evolving 

weather impacts on the power system. Data helps calibrate the models and defines necessary causal 

relations, while models help reduce the impact of missing or low-quality data.  

1.4 Conclusion  

We can conclude that assessing weather impacts on power systems and reducing the 

number of weather-related outages can lead to a substantial improvement of power system 

performance, from both economic and reliability perspectives. Recently, both utilities and outside 

agancies are collecting an excessive amount of data that can be used to analyze various aspects of 

weather relate outages. With the development of smart automatic data analytic tools, great value 
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can be extracted from these data sources, allowing outage prediction and mitigation. However, 

there are many challenges that need to be addressed when using Big Data and associated data 

analytics for prediction and assessment of weather related outages.  

Chapter II will address some of the existing solutions related to various aspects of weather 

related outages and Big Data applications in power systems. Then, beginning with Chapter III and 

Table 1 Challenges of Big Data for a typical utility 

 Data Class 
Data Source 

(Measurements) 

VOLUME 

(Data file size) 

VELOCITY 

(Rate of use) 

VERACITY 

(Accuracy) 

 

 

 

V 

 

 

A 

 

 

R 

 

 

I 

 

 

E 

 

 

T 

 

 

Y 

Utility 

measurements 

SM 
120GB per 

day/ device 

Every 5-15 

min 
error <2.5% 

PMU 
30GB per 

day/device 

240 

samples/sec 
error <1% 

ICM 
5GB per 

day/device 

250 

samples/sec 
error <1% 

DFR 
10MB per 

fault/device 

1600 

samples/sec 
error <0.2% 

Weather data 

Radar [28] 
612 MB/day 

per radar 

Every 4-10 

min  
1-2 dB; m s-1 

Satellite [29] 
At least 10 GB 

per day 

Every 1-15 

min  

VIS<2%;  

IR<1-2K 

ASOS [30] 
10 MB/day per 

station  
Every 1 min 

T-1.8F, P<1%, 

Wind speed - 

5%, RR - 4% 

NLDN [31] 40 MB/day 
During 

lightning 

SE < 200m, PCE 

<15% 

NDFD [32] 
5-10 GB/day 

per model 
1 - 12 hours 

Varies by 

parameter 

Vegetation 

and 

Topography 

TPWD EMST [33] 
2.7 GB for 

Texas 
static SE < 10 m 

TNRIS [34] 
300 GB for 

Texas 
static SE < 1 m 

LIDAR [35] 
7 GB for 

Harris Co. 
static 

HE < 1m,  

VE < 150 cm 
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continuing into the subsequent chapters, we will propose a data analytics framework that can be 

used to assess weather-related events in power systems for many different applications. 
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CHAPTER II 

CURRENT PRACTICES AND LITERATURE REVIEW* 

2.1 Introduction 

In this chapter, we survey various literature sources to assess the existing analytics 

capabilities for using Big Data to predict outages in power systems. We need to analyze the 

solutions in different fields of study. First, we want to analyze the current state of the art in the 

area of asset management, which will provide a background for us to compare our methodology 

in Chapter IV. Then, to understand impacts of different types of outages, we are separating 

solutions related to two main causes of outages, vegetation and lightning, as well as general 

weather impact studies.  

2.2 Asset Management 

The traditional approach to asset condition monitoring is to perform laboratory tests to 

assess initial properties of the asset and its performance breakdown point [19]. Subsequently, the 

test results are used as a reference for periodic field assessments [36]. The frequency of field 

examination varies based on the device type and operating conditions. A different approach to 

assets management is “run-to-failure”, where the components are never being inspected and 

actions are taken only after the component breaks [37]. In recent decades, technological advances 

have made it possible to closely monitor an asset’s states and characteristics using periodic or 

continuous measurements from various sensors [38]. Today, these sensors are typically integrated 

                                                 

* This section is in part a reprint with permission of the material in the following papers: (1) M. Kezunovic, T. Dokic, 

“Predictive Asset Management Under Weather Impacts Using Big Data, Spatiotemporal Data Analytics and Risk 

Based Decision-Making,” 10th Bulk Power Systems Dynamics and Control Symposium – IREP’2017, Espinho, 

Portugal, August 2017. (2) T. Dokic, M. Kezunovic, “Predictive Risk Management for Dynamic Tree Trimming 

Scheduling for Distribution Networks,” IEEE Transactions on Smart Grid, September 2018. Copyright 2018, IEEE. 
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with intelligent electronic devices (IEDs) and provide a continuous on-line condition-based 

monitoring of equipment [39].  

Another approach is a risk-based maintenance scheduling, illustrated by several recent 

studies [19]. In [40] the risk-based allocation of maintenance resources to various distribution 

system assets is described. The method uses linear optimization to balance risk reduction and 

economic losses. Research in [41] uses decoupled risk factors and a mixed-integer linear 

formulation for optimization of maintenance tasks. Work in [42, 43] demonstrates the application 

of a risk assessment analysis of a structured asset model with a function-oriented business process 

model. In [44] a nonparametric regression method is used to develop a failure rate model based on 

proportional hazards modeling. The study in [45] develops a risk assessment framework for 

extreme events caused by simultaneous or cascading faults.  

We identify the following shortcomings in the mentioned works, which this dissertation 

has addressed: 

 There is a lack of capability to process, utilize, and visualize larger amounts of diverse 

data in real-time. While there are a number of solutions for offline analysis of asset 

states [36,37], and asset diagnostics [38,39], there is a limited capability to process and 

utilize the large amount of data for asset condition prediction.  

 Implementation of predictive analytics using spatiotemporal data is not considered. In 

most studies, the assets were analyzed as individual components, or the impacts were 

averaged over multiple devices of the same kind [40-43]. However, none of these 

studies take spatial configuration of assets as a factor for predicting the future state of 

the asset. 
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 Dynamic maintenance scheduling based on real-time observations of network 

components’ states and the surrounding conditions is not enabled. Some studies do 

implement optimization based on risk reduction [40,41]. However, the risk in these 

studies was calculated statistically, where various impacts were averaged over multiple 

components, without taking into account the variety of measurements.  

2.3 Weather Impacts 

There have been some efforts to develop a weather impact assessment in recent years as 

reported in [19]. Time-varying weight factors were introduced as a measure of weather impact to 

component failure rates and restoration times [46]. Historical weather data were correlated with 

historical outage data to develop a damage forecast model for restoration [47]. A variety of studies 

have addressed the impact of extreme [48-50] and catastrophic [51, 52] weather on power system 

infrastructure. The impacts of large-scale storms and hurricanes have been evaluated [48], while 

risk analysis has been performed for evaluating wind storm impacts [49]. The impacts of Hurricane 

Sandy have been evaluated as suggested in [50].  

A probabilistic framework for assessment of extreme weather conditions’ impact on the 

grid [50], and system restoration after the extreme weather events [52] have been studied. There 

are two limitations of the existing weather impact methods that this research would like to address:  

 Although existing solutions have good performance for improving the post-outage 

restoration process, the predictive capabilities that would enable proactive preventive 

maintenance and operation are missing.  

 Most of the studies are focused on extreme and catastrophic events, while there is a 

lack of assessment for the weather impact of daily severe weather conditions.  
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2.4 Vegetation Management 

For the prediction of vegetation potential to cause faults due to inadequate tree trimming 

practices, the most important factor is plant growth rate [53]. There are two types of models for 

estimating plant growth dynamics [54]: 1) process-based models that aim at defining the processes 

that cause the tree growth [55], and 2) data-based models that are empirical [56]. Distribution lines 

do not have strictly enforced right-of-way and often end up being placed in a close vicinity of the 

growing vegetation. Due to the high expenses of trimming large areas populated by many 

distribution feeders and neighborhood concerns for preserving nature, it is not economical or 

environmentally feasible to have all trees securely trimmed at all times.  

In most cases, this process of tree trimming is applied in utilities based on a predetermined 

periodic schedule [57]. The only occasion when the schedule is changed is as a reactive measure 

to a vegetation-caused outage. The current practice relies on visual inspection made by crews using 

helicopters, airplanes, ground vehicles, or sometimes even people walking up to the lines [58]. 

Because of the high cost of this practice, it is of economic benefit to develop visual inspection 

methods that can provide automatic identification of dangerous zones [53]. 

Work in [59] uses Markov models to find the optimal inspection frequency while finding 

a compromise between the reliability of the system and the cost of distribution feeder inspection. 

Then, in [57], an optimal tree-trimming schedule is developed based on a hybrid genetic algorithm 

consisting of simulated annealing, genetic algorithms, and Tabu search. Vegetation-related failure 

rates are predicted using four different algorithms in [54]: linear regression, exponential 

regression, linear multivariable regression, and an artificial neural network. The developed 

predictors use historical outage data and only some of the weather parameters, neglecting the 
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vegetation indices. In the listed literature, when weather impacts are considered, only few a 

variables of interest are included and their impact is averaged over time.  

Two models, negative binomial generalized linear model and a Poisson generalized linear 

mixed model, were used in [60] to evaluate the impact of tree trimming to the rates of vegetation-

caused outages in distribution. The data used in this study was limited to the utility-collected data, 

without insight into weather and vegetation indices. In [61, 62] satellite imagery was used to 

identify trees around the transmission lines. While the use of high-resolution imagery did show 

the potential in transmission vegetation management, its use in distribution networks was not 

discussed. Work in [63, 64] developed a reliability-centered vegetation management while looking 

closely into the electrical characteristics of vegetation-related outages. The work in [65] 

demonstrated the potential of spatial correlation of Big Data for the improvement in distribution 

vegetation management, but did not provide the necessary data analytics.  

An analysis of the above methods identifies a number of shortcomings and constraints of 

the current data analytics approaches that we will try to overcome: 

 The amount and variety of different data is very limited. Specifically, some studies do 

not use any vegetation indices, and are limited to utility-collected data and some limited 

weather data sources [54, 57, 59].  

 There is no automatic way to observe the changes of the vegetation around the lines, 

and manual inspections are very expensive. While there were some efforts in creating 

automatic system for observation of vegetation progress around the transmission lines 

[61,62], no such studies were reported for distribution network. This is due to the higher 

spatial density of distribution compared to transmission, which makes it difficult to 

collect and process a variety of data sources with the appropriate resolution of data.  
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 Limited predictive capabilities are reported for vegetation-caused outages. The 

algorithms used in the studies were trained using limited input data [54, 57], and were 

not developed to support or exploit multiple diverse data sources, or the correlation of 

these data sources.  

 There are no dynamic optimal tree trimming approaches based on predictive methods. 

There are some tree trimming or tree inspection studies [59, 60], but they do not use 

predictive models to estimate the state of vegetation around the lines.  

2.5 Insulation Coordination 

As reported in [19], lightning studies and experiences with insulation coordination have 

been reported in [66-70]. For the purpose of estimating the probability of a lightning strike, 

historical lightning data has been used in [66, 67]. Correlation of lightning data with transient 

measurements has been studied in literature [71, 72]. In [72], real time monitoring of transmission 

line transients during lightning strikes was presented, which allowed for spatiotemporal correlation 

of lightning data and transient measurements to evaluate the impact on insulation coordination.  

In [70], lightning data is correlated with traveling wave fault locator data to provide better 

accuracy and robustness of a fault location algorithm. Correction factors for utilization of weather 

station data for insulation coordination have been described in [73]. In [74], a statistical method 

for lightning-related risk analysis was performed. An optimization procedure to determine 

locations of line arresters that minimize the risk was implemented. In [74], weather conditions 

were taken into account; however, the study has been performed based on randomly generated 

data. All of the methods were minimizing statistically-calculated risk functions considering 

insulator strength as defined by the insulator manufacturer.  

What is missing in all of the studies is:  



 

15 

 

  There is no capability to observe the history of each individual insulator and make 

predictions based on that. Rather, studies do statistical analysis that averages the 

expectations over a large number of components [74], without enabling the prediction 

of an individual insulator’s state based on its history.  

 Weather impacts on the components are not tracked and recorded in real time. This 

means that in all of the studies the assumed level of insulator strength was wrong. The 

only study that is an exception is [73]; however, this study does not make predictions 

of insulators’ future states based on weather forecast.  

 Estimates of insulator strength are not updated with time based on the experienced 

lightning events and atmospheric conditions around the network. None of the studies 

report the capability to track the weather impacts on insulators in real-time, analyze 

them, and make predictions based on them.  

2.6 Predictive Analysis for Power System Studies 

Asset and outage management, as well as operations planning, have relied heavily on 

physical model-based solutions in the past [75-80]. The inability of such methods to reflect the 

dynamically changing impacts over time makes it difficult to assess the unfolding deterioration of 

power grid infrastructure, anticipate fault location, and predict operating conditions [19]. The 

advancements in smart grid measurement technologies have enabled the necessary conditions for 

development of new data-driven solutions. While new sensors can provide abundant information 

about the power system state, there is a lack of data analytics to extract knowledge needed to draw 

causal inferences between evolving power system events and emergencies caused by weather.  

It is important to look into advancements in data analytics and identify the ways they can 

improve the existing power system applications and open the door for possible new solutions and 
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capabilities. Such new technologies can help improve the reliability of the system with advanced 

prediction methods. These prediction methods can mitigate outages, improve the resilience of the 

system, and reduce restoration time and cost. The power system community can benefit from these 

approaches in the following ways:  

 With more information coming from the new measurements, being collected in many 

domains surrounding network-related events, the accuracy of algorithms used for 

power system applications can be improved. In past studies, many of the impacts on 

the network were neglected due to the lack of data. For example, the use of weather 

conditions data during lightning-caused outages can improve the level of knowledge 

about the event that creates better input data for a prediction model.  

 The predictive capabilities of these algorithms can be used to move the practice from 

the mostly reactive decision-making that is dominant today, to more predictive and 

proactive decision-making. If we are able to predict and prevent more outages, we can 

significantly improve the overall reliability of the system. In addition, smart decisions 

based on expected risk to outages around the network can result in a more strategic 

allocation and distribution of maintenance resources around the network. This, in turn, 

will result in faster restoration and improve the overall resilience of the system.  

 Electric networks have experienced a number of changes in recent years, including the 

addition of multiple types of renewable energy sources such as concentrated and 

distributed solar and wind generators, and electric vehicle integration. Data analysis 

can provide an automatic platform to support the dynamics of these changes in the 

network. The renewable energy sources are highly dependent on environmental 
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impacts and conditions. Thus, analytics can greatly benefit from exploring the available 

data sources, and finding ways to analyze them in an efficient and accurate way.  

In recent years, a variety of power system data analytics studies in the literature have 

incorporated data-driven approaches based on various data mining techniques: regression models 

[81-83], clustering and classification [84-86], support vector machines [87-88], neural networks 

[89-90], deep learning [91-92], etc. Regression models have shown great performance in various 

applications that analyze historical measurements to predict future events in the network through 

ether logistic or linear regression. Clustering and classification methods have found their place in 

event classification applications based on PMU data. Support Vector Machines have proven to be 

powerful in dynamic stability analysis based on synchrophasor data. Neural network solutions 

have been used in various applications, e.g., optimal maintenance scheduling and optimal 

placement of various components in the network. Deep learning techniques are finding their way 

into various applications for real-time load forecasting and emergency management.  

The type of problem that is being solved in this dissertation is a regression problem, since 

we are trying to determine the relationship between a dependent variable (insulator strength, 

vegetation status, outage probability) and a number of input variables that are collected through 

various measurements (weather measurements, vegetation parameters, etc.). The choice of 

regression algorithm is based on consideration of the following three factors:  

1) The collected inputs are not only observed in time, but they are also spatially 

distributed. This means that the solution could benefit a great deal from a structured 

regression predictor that is able to incorporate the spatial distribution. Due to the 

electric network being easily represented in a form of a connected graph, this is a 
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natural data structure to be chosen as the network representation. This results in the 

recommendation to use a structured regression algorithm. 

2) The main reason driving the selection of prediction algorithm for this study comes from 

the fact that not only are the inputs observed spatially, but also there is a strong spatial 

correlation between outputs. In all of the studies considered in this research, a high 

probability of a given event in one node means that there is an increased probability of 

the same type of the event in neighboring nodes. For example, if there was a lightning 

strike on one tower in the network, the impact of the lightning wave propagates and 

can significantly affect all of the nearby nodes. It will, however, attenuate after a certain 

distance. Also, based on our historical outage data we were able to observe that in a 

majority of instances multiple weather-related outages will be clustered in a small area 

of the network. This results in the recommendation to use an algorithm that is capable 

of modeling the spatial interdependencies between outputs, which Conditional Random 

Fields can provide. 

3) We are modeling each tower or each span as one node, which results in hundreds of 

thousands of nodes, with over 30 different parameters measured for thousands of events 

over the history of each component. The high computational complexity when applying 

structured regression on large power system networks can be avoided by constructing 

CRF feature functions as quadratic functions of outputs. This results in a final 

recommendation to use the Gaussian Conditional Random Fields algorithm that can 

satisfy all the specifics of the problem at hand: network structure, scalability of 

prediction, spatiotemporal relations between inputs and outputs, and computational 

efficiency.  
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2.7 Conclusion 

While all the surveyed literature presents a variety of advanced methods for analysis of 

weather impacts on power systems outage and asset management, there are several aspects that are 

not addressed, and that will be taken into account in this dissertation.  

 First, the variety of data used in these past studies was very limited. Even though a 

number of data sets became available in recent years, they did not find their way into 

power system studies due to the high complexity of collecting and integrating such data 

with traditional power system databases. We place an empahasis in this study on 

collecting a large amount of data coming from sources that have never been correlated 

in the past. This research describes the development process for combining such a 

diverse set of data and extracting knowledge from it in real-time. 

 Second, current applications are mostly oriented towards statistical analysis of very 

limited data sets. This often results in averaging the impacts over a large number of 

components, and does not take into account specific events that occurred on individual 

devices over time. The main barrier to providing this capability is the development of 

a framework that can take a large volume of data from different data sets and process 

it over time for each component. In our study we will focus on analyzing each 

component’s history to model the exact state of the component after all the events that 

occurred in the past. We provide continious observation of each component over time, 

and use its history to predict its performance in the future. 

 Third, there is a lack of dynamic component-specific asset management capabilities 

that could improve the overall performance of the system. The optimization algorithms 

used in earlier works did not have access to a precise data-driven prediction of asset 
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states. We provide an optimal maintenance scheduler that uses the outputs of a 

predictive risk analysis to determine the best set of actions for each individual 

component in the network. 

 One of the most important aspects that is missing in the literature is the capability to 

use spatial and temporal interdependancies between components and variables to 

provide more accurate prediction. The spatiotemporal correlation of such data sets is a 

complex task. In addition, after the correlation, the ability to draw knowledge from 

spatiotemporal interdependencies of the components and events poses an additional 

challenge when developing a prediction algorithm. The inclusion of spatiotemporal 

observation of variable interdependancies can significantly improve the prediction 

accuracy. In addition, such a model is inherently robust to bad and missing data. 
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CHAPTER III  

PROPOSED RESEARCH APPROACH * 

3.1 Introduction 

The proposed research approach is built to target the three main limitations of existing 

solutions that were described in Chapter II: 1) lack of extensive data sets and methods for their 

integration and spatiotemporal correlation, 2) limited predictive capabilities that are not targeting 

every component individually, and 3) lack of prediction-based optimal maintenance strategies that 

could reduce the costs of asset management dynamically over different time horizons. To solve 

these problems and develop a unified prediction framework that can assess many different 

applications of weather impacts to power system transmission and distribution, we propose a three-

level approach that will be described in section 3.3.  

3.2 Hypothesis and Objectives 

The hypothesis of the research is that more accurate predictions are possible by structured 

learning from merged heterogeneous Big Data. The hypothesis will be validated by developing 

Optimized Risk-Based Asset Management capable of assessing equipment deterioration 

continuously across space and time, leading to an improved on-demand maintenance strategy. The 

main objectives of this study are: 

1) Implement short- and long-term prediction of outage occurrence probabilities. 

2) Develop dynamic optimal asset management strategies based on outage prediction. 

3) Demonstrate the capabilities of the predictive framework on multiple applications. 

                                                 

* This section is in part a reprint with permission of the material in the following paper: T. Dokic, M. Kezunovic, 

"Optimized Asset Management in Distribution Systems Based on Predictive Risk Analysis," Mediterranean 

Conference on Power Generation, Transmission, Distribution and Energy Conversion - MEDPOWER, Dubrovnik, 

Croatia, November 2018. 
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3.3 The Three-Level Approach  

The goal is to improve the current asset management practices on three levels: 

1 Data Management: The study includes a variety of data from multiple sources. Some 

of the challenges of collecting the diverse data sets are: 1) data storage: large volumes 

of data need to be collected and preprocessed in a way that increases the overall value 

of data for the utility; 2) data integration: the data is collected at multiple temporal and 

spatial scales; 3) data quality: the data sets may contain bad and missing data, and the 

uncertainty levels of data varies from one set to another. In this dissertation we show 

how such cases may be handled. The expected benefits include the generation of a 

unified spatiotemporally-referenced database capable of serving multiple applications, 

and the capability to provide accurate prediction even with bad and missing data, or 

data with high uncertainty.  

2 Data Analytics: The study uses prediction algorithms [93-96] capable of leveraging the 

spatial and temporal aspects of heterogeneous data as a knowledge source. Graph-based 

machine learning methods are used for prediction. We demonstrate the following 

features of the proposed data analytics: 1) high accuracy of prediction based on 

modeling of spatial and temporal interdependencies between variables, 2) capability to 

provide prediction on multiple temporal and spatial scales, 3) robustness to missing and 

bad data thanks to the use of variables from the nearby nodes. This kind of system is 

capable of serving multiple departments responsible for power distribution 

applications: 1) the prediction of expected locations of outages can be used by operators 

to make better decisions; 2) asset management can benefit from more precise 

component-oriented prediction of asset failures that relies on spatial interdependencies 
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of components; 3) outage management can use the results to provide better outage 

location identification and faster restoration practices. 

3 Economic Impact: Maintenance decision-making is focused on minimizing the risk 

level while maintaining economic investment limits. We assume that while the cost of 

periodic maintenance stays the same, the reactive maintenance cost can be optimized 

and reduced. The main benefits of the economic impact analysis are: 1) the capability 

to define user-specific optimization problems for any weather-related application in the 

network; 2) risk-driven optimization based on prediction of future events provides a 

new framework for dynamic allocation of funds and resources; 3) the value of the Big 

Data is increased by careful balancing of the costs of method implementation and asset 

management expenses on one side, and reduction of reactive maintenance costs and 

asset failures on another side. 

The above approaches result in a novel asset management that enables the following 

capabilities:  

 Assessing equipment deterioration continuously across space and time by learning 

from heterogeneous data 

 Performing real-time risk assessment on multiple temporal and spatial scales by 

assessing the hazards and vulnerabilities 

 Developing an optimal asset management strategy that reduces the outage risk 

The goal is to integrate the environmental data into the power system models and studies, 

build a model that integrates and exploits all types of data, implement data analytics that evaluate 

system and component risk in real time, and contrast the existing static asset management practices 
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with the new dynamic approach. The three-level approach targets each one of these goals with an 

appropriate action.  

3.4 Conclusion 

We have postulated the hypothesis and provided the approach for assessing its validity. 

Our main premise is that the high accuracy of prediction will be achieved for all cases even with 

a large high percentage of bad and missing data, and that such results can be used for development 

of optimal asset maintenance strategies that will significantly improve the reliability of the system.  

How the three-level approach is implemented will be described in Chapters V, VI, and VII. 

The details of implementations for two different applications will be described in Chapters VIII 

and IX. We will demonstrate how this kind of approach can lead to the improvement of system 

performances under severe weather conditions for multiple instances of weather impacts. We will 

illustrate how the proposed data analytics enable one to optimize the use of different assets in the 

network, on both the transmission and distribution sides, while reducing the cost. 
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CHAPTER IV 

ASSET MANAGEMENT* 

4.1 Introduction 

Current practices use several approaches to asset maintenance scheduling [19,97]:  

 Run-to-Failure (RTF): in this approach maintenance is only performed after the 

component fails. The advantage is that there are no expenses associated with equipment 

monitoring and analysis, but the disadvantage is that there is no mechanism to predict 

outages due to the equipment failure resulting in higher cost to reinstate service. 

 Condition-Based Monitoring (CBM): this type of maintenance is initiated by the 

monitoring equipment indicating that certain performance degradation thresholds are 

exceeded, requiring maintenance action. While this method allows prevention of an 

outage by “just in time” action, it is typically costly due to the requirement that each 

individual component is closely monitored. 

 Reliability-Centered Maintenance (RCM): the maintenance schedule is prioritized 

based on the likelihood of equipment failure. This kind of maintenance scheduling does 

observe the whole system and prioritizes the maintenance area. However, in the 

existing RCM studies, the likelihood is determined statistically and it is equal for all 

components, neglecting the variety of factors affecting the individual components over 

                                                 

* This section is in part a reprint with permission of the material in the following papers: (1) M. Kezunovic, T. Dokic, 

“Predictive Asset Management Under Weather Impacts Using Big Data, Spatiotemporal Data Analytics and Risk 

Based Decision-Making,” 10th Bulk Power Systems Dynamics and Control Symposium – IREP’2017, Espinho, 

Portugal, August 2017. (2) T. Dokic, M. Kezunovic, “Predictive Risk Management for Dynamic Tree Trimming 

Scheduling for Distribution Networks,” IEEE Transactions on Smart Grid, September 2018. Copyright 2018, IEEE. 

(3) T. Dokic, M. Kezunovic, "Optimized Asset Management in Distribution Systems Based on Predictive Risk 

Analysis," Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion - 

MEDPOWER, Dubrovnik, Croatia, November 2018. 
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time, which prevents the development of optimal spatiotemporal maintenance 

strategies. 

 Optimization Techniques (OT): the maintenance schedule is optimized based on the 

economic impacts. This kind of maintenance considers restrictions such as availability 

of maintenance crews, travel expenses, and restricted time intervals, but still does not 

get the benefit of the predictive risk assessment based on unfolding threats and 

vulnerabilities.  

The approach proposed in this dissertation assures that several shortcomings of the 

previous methods listed in Section 2.2 are addressed. The overview of characteristics of 

conventional asset management approaches and our proposed method is presented in Table 2.  

4.2 Asset Management for Vegetation 

This section describes the mechanisms of weather and vegetation impacts on vegetation-

caused outages, and current vegetation management practices implemented by the utilities [53]. 

As presented in Fig. 4, there are two major classes of vegetation-related feeder outages in 

distribution systems. They are differentiated by the tree coming in contact with feeders due to 1) 

overgrowing the feeder height, and 2) being forced into a contact with the feeder due to wind or 

some other similar weather impacts.  

Starting from the most recent tree trimming performed, the vegetation-caused failure 

probability is constantly increasing [98]. For predicting the potential of vegetation to cause faults 

subsequent to the last tree trimming, the most important factor is the vegetation canopy growth 
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rate. There are two types of models for estimating the canopy growth dynamics [100]: 1) process-

based models that aim at defining the processes that cause tree growth [101], and 2) empirical 

data-based models [102]. The maximum tree crown spread represents the maximum width of the 

tree crown (branches, leaves) along any axis. It is affected by the tree’s age, last tree trimming 

date, application of herbicides or growth regulators, and weather impacts (primarily temperature 

and precipitation) [100].  

Table 2 Comparison of asset management approaches, reprinted from [99] 

Approach/Feature 
Run-to-

failure/Periodic 

Condition-

based 

Reliability-

centered 

Optimization 

techniques  
Our Approach 

Monitoring cost No expenses High High High High 

Cost of reinstating 

services 
High  Low Low 

Low 
Low 

Preventive 

capability  
No Yes Yes 

Yes 
Yes 

System or 

component level 

Component 

level 

Component 

level 

System 

level 

Both 
Both 

Data No  

One or 

several 

different 

measurements 

One or 

several 

parameters 

observed 

One or several 

parameters 

observed 

Big Data – wide 

variety of 

parameters 

Predictive No No 
Yes – 

statistical  

No Yes – better 

accuracy with 

machine 

learning  

Spatiotemporal 

analysis 
No No Limited 

No All data 

spatiotemporally 

referenced 

Dynamic real-

time assessment  
No Yes Limited 

Limited 
Yes 

Interdependencies 

between 

components 

No No No 

No 
Geographical 

and electrical 
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The measured electrical behavior and physical processes and effects surrounding the 

vegetation-related faults were described in detail in [103, 104]. It was concluded from the 

experimental results that while the initial current during the tree contact can be quite low (~1A), 

after a complete carbonization path in the tree branch is formed, the current magnitude quickly 

increases to a much higher level.  

The weather parameters that can affect vegetation-related outages are wind speed, 

direction, and gusts, precipitation, temperature, humidity, pressure, and lightning, as listed in Fig. 

 

Figure 4 Environmental impact on vegetation management, reprinted from [5] 
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4. The impact of high-speed wind and heavy precipitation may cause trees to come into contact 

with distribution feeders due to the following reasons: a) branches break off and fly into lines, and 

b) complete trees topple when moved by wind [105]. The temperature, precipitation level, and 

humidity have impacts on the tree growth rate. In combination with the type of soil, they are the 

main factors dictating a tree’s growth rate. 

Vegetation maintenance staff are in charge of maintaining the feeder clearance to the 

surrounding vegetation. This includes trimming and removal of trees around the distribution poles 

and lines. Distribution lines are often placed near the surrounding vegetation due to relaxed right-

of-way requirements. Due to the high expenses of trimming large areas populated by many 

distribution feeders, it is not economical to have all trees securely trimmed at all times, so a more 

economical trimming schedule is needed.  

In most cases, the process of tree trimming is applied by utilities based on a predetermined 

periodic schedule. Each feeder section is given a tree trimming frequency, e.g. three or five years, 

based on the operating voltage and required clearance, leading to the standard fixed interval 

schedule [106]. The only other occasion when the schedule would be changed is as a reactive 

measure to a vegetation-caused outage. There are two types of reactive measures that can be 

distinguished: 1) only the faulted area is maintained, and 2) the entire tree trimming zone is 

trimmed. In addition to tree trimming, some utilities inject growth-retarding chemicals into trees 

(tree-growth regulators) or apply herbicides [106]. 

The current maintenance practice relies on a visual inspection by staff using helicopters, 

airplanes, ground vehicles, or people walking up to the lines [107]. Because of the high cost of this 

practice, it is of economic benefit to develop visual inspection methods that can provide automatic 
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identification of dangerous zones. If a predictive method as proposed in this dissertation is used, 

several benefits are expected:  

 In contrast to a limited amount and variety of data used in literature [54, 57, 59] in our 

study all of the aspects of vegetation related outage events are observed over time by 

collecting a variety of measurements surrounding every outage event in the network. 

 In contrast to studies [54,57], spatiotemporal predictive methods will enable accurate 

mapping of vegetation outages in the distribution network.  

 The processes of data collection, knowledge extraction, prediction, and optimization 

are all automatic, without any need for manual inspections in distribution, which was 

only possible in transmission in the past [61, 62]. 

 For the first time an optimal tree trimming schedule will be implemented based on the 

predictive risk analysis. 

4.3 Asset Management for Insulators 

The insulators play an important role in power transmission system, as the integrity of an 

overhead transmission line is directly governed by their electrical and mechanical performance 

[19]. Statistically, while insulators account for only 5% to 8% of the direct capital cost of the 

transmission line, more than 70% of the line outages and up to 50% of line maintenance costs are 

caused by the insulator-induced outages [21].  

Insulation coordination is the study used to select insulation strength to withstand the 

expected stress caused by lightning and switching overvoltages. There are two approaches to tackle 

this problem: deterministic and probabilistic [97]. In the former, the minimum strength is set to be 

equal to maximum stress. In the latter, the lightning flashover rate and lightning-related failures 

are calculated statistically, and insulation strength is selected accordingly. 
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Insulation strength can be described using the concept of BIL [97]. Statistical BIL 

represents a voltage level for which the insulation has a 90% probability of withstanding and 10% 

probability of failing. Standard BIL is expressed for a specific wave shape of lightning impulse 

and standard atmospheric conditions. A typical lightning impulse wave shape is presented in Fig. 

5 [108]. Conventionally, BIL is determined by the manufacturer by performing a set of tests at 

standard atmospheric conditions [97]. It should be noted that these tests are performed before any 

kind of environmental exposure of the insulator, so they may not reflect the actual strength of the 

insulator after the prolonged exposure.  

 

Figure 5 Standard lightning impulse (Tr = 0.1–20 μs, Th < 300 μs, where Tr is the time-to-crest 

value, Th is the time-to-half value), reprinted from [108] 
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Insulators exhibit two types of failures, [109]: 1) mechanical failures caused by physical 

deformities due to manufacturing defects or severe material erosion; and 2) electrical stress failures 

caused by increased leakage current, mostly due to a high number of experienced flashovers. Due 

to exposure to different environmental impacts, the mechanical and electrical performances of 

insulators deteriorate over time [109]. These changes in insulator performances are not always 

easily observable.  

Insulator deterioration can be classified into two stages, [110]: 1) the deterioration of 

hydrophobic properties where an insulator may age chemically, but it still retains its electrical 

properties; 2) hydrophobic properties of an insulator start to deteriorate causing the degradation in 

insulator electrical performance. Based on the study presented in [109], the second stage can be 

further separated into three groups: i) weathered, with a small or moderate loss of hydrophobic 

properties; ii) mature, with a very low hydrophobicity; iii) at risk, with a fully hydrophilic surface, 

or total loss of insulation properties. An overview of the deterioration rates is presented in Fig 6 

[111].  

There are multiple measurements that can be performed to estimate the conditions of 

network insulators [109]. At the network level, the history of outages and disturbances can be used 

to quantify the insulator failure rates. At the component level, the individual insulator can be tested 

for its electrical and mechanical properties. The tests can be destructive (only performed in 

laboratory) or non-destructive (performed in field with system energized or not energized 

depending on the test type) [111]. The following parameters can be measured in a nondestructive 

way [109]: i) leakage current magnitude, ii) flashover voltage, iii) electric field distribution, iv) 

corona discharge, v) radio interference voltage. In addition, it is possible to characterize the 
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insulator material by performing one of the following in-field tests [109]: i) visual inspection, ii) 

infrared reflection thermography, iii) hydrophobicity, and iv) remote chemical analysis.  

 This research focuses on the deterioration of the electrical performance of insulators 

during the second stage of deterioration when the insulator is experiencing a loss of electrical 

strength. During this period, the manufacturer’s BIL no longer can be used as the measure of 

insulator electrical strength. Instead, the BIL curve can be updated after every event in the network 

to reflect the changes in insulator performance caused by deterioration. This provides a more 

realistic approach to insulation coordination instead of simply using the initial manufacturer’s BIL, 

 

Figure 6 Insulator deterioration process due to environmental impacts, adapted from [111] 
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and enables dynamic component maintenance scheduling. With the capability to precisely estimate 

the current state of insulator at any moment in time, the prediction algorithm can rely on a more 

precise spatiotemporal set of input data describing events of interest.  

Overhead line insulators are exposed to variety of environmental impacts, [19]: i) lightning 

strikes, ii) temperature and pressure variations, iii) ultraviolet radiation and ozone, iv) wind impact, 

v) rain, humidity, hail, snow, fog, and vi) pollution. In addition, a variety of environmental factors 

affects the probability and characteristics of flashover. Vegetation coverage around the line will 

lower the probability of a lightning strike affecting the network, the phenomenon called “shielding 

by trees” [112]. Elevation data is of importance also, since lightning strikes are more likely to 

affect locations with higher altitude [113]. The type of soil at the tower location determines the 

tower grounding resistance, which has a big impact on overvoltage propagation on the line [114].  

To estimate the expected stress on insulation, the failure risk is calculated statistically as 

(Fig. 7): 

 
(1) 

where f(V) is the probability of overvoltage occurrence and D(V) is the probability of a disruptive 

discharge. The probability of an overvoltage occurrence can be described with a density function 

as follows: 

𝑓(𝑉) =
1

𝜎𝑂√2𝜋
𝑒

−
(𝑉−𝑉𝑂)2

2𝜎2  (2) 

where VO is the voltage for which probability density of overvoltage occurrences has a maximum, 

and σO is the standard deviation. The probability of a disruptive discharge can be expressed with a 

cumulative function: 





0

)()( dVVDVfR
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𝐷(𝑉) =
1

𝜎𝐷√2𝜋
∫ 𝑒

−
(𝑉−𝑉𝐷)2

2𝜎2

𝑉

−∞

𝑑𝑉 (3) 

where VD is voltage for which the insulation has a 50% probability of a flashover, and σD is a 

standard deviation. More details about probabilistic models of insulation flashover can be found 

in [115-118].  

Weather data is used to calculate BIL under nonstandard atmospheric conditions [97], BILA 

as: 

 

Figure 7 Risk of component failure, adapted from [115] 
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(4) 

where BILA is the BIL under nonstandard conditions, BILS is the standard BIL, δ is the relative air 

density, and HC is the humidity correction factor. Relative air density can be calculated using: 

 

(5) 

where TS and PS are standard temperature and pressure respectively; T and P are measured 

temperature and pressure respectively. The humidity correction factor is equal to 1 for rainy 

conditions and for dry conditions can be calculated using:  

 

(6) 

where H is humidity. 

If the predictive method proposed in this dissertation is used, several benefits are expected: 

 The study will enable prediction of lightning performance for each individual 

component based on all the historical data collected for outage events, which was not 

enabled in any of the existing studies [66-74]. 

 A system for real-time tracking of weather impacts and atmospheric conditions will be 

provided. This will extend the inclusion of weather parameters from [73] with the 

capability to use this data for prediction of future states of insulators. 

 Unlike in conventional studies that use constant insulator strength over time [66-74], 

the insulator strength will be updated over time based on the experienced lightning 

events and atmospheric conditions around the network. 
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 For the first time, optimal maintenance, replacement, and placement strategies will be 

enabled based on predictive risk mapping. 

4.4 Conclusion 

The review of the literature identifies several common shortcomings of the existing 

methods: 

 Limited data is used, including only utility data and limited sources of weather data 

 No precise tracking of component-related weather impacts; instead, the weather 

impacts are averaged over time or over larger area 

 Very limited predictive capabilities, where spatiotemporal interdependencies between 

component and events are not explored as a source of knowledge 

 No optimal asset management strategies based on predictive methods 

Compared to the mentioned methods, we propose a three-level approach that has several 

advantages: 1) it introduces the capability to process, utilize, and visualize larger amounts of 

diverse data; 2) it enables implementation of predictive analytics using spatiotemporal data where 

spatial interdependencies between components are considered; 3) it enables dynamic maintenance 

scheduling based on real-time observation of network components’ states and surrounding 

conditions. All of this can lead to improvement in practices for vegetation-related asset 

management and lightning equipment asset management because it enables real-time tracking of 

weather impacts, the prediction of expected vulnerabilities in the future, and development of 

optimal decision-making strategy for mitigation of such severe weather impacts. Further details 

are described in Sections 4.2 and 4.3. In Chapters V, VI, and VII we will describe how this can be 

achieved following the three-level approach.  
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CHAPTER V 

DATA MANAGEMENT* 

5.1 Introduction 

This chapter describes the first level of the framework, namely Data Management. Here 

we will list different datasets that were used in the study and discuss the kind of processing that 

was performed to prepare the data for the second level of the framework, namely data analytics. 

The correlation between the choices of data sources and approaches to data correlation are tied to 

the proposed data analytics and the reasoning is explained.  

We are considering many different data sources, some coming from electric utilities, such 

as historical outage data, asset data, network GIS data, etc. Other data come from other sources, 

such us weather data, vegetation data, lightning detection network data, etc. Correlating such data 

offers many benefits:  

 Building a unified spatially and temporally referenced database that can serve a variety 

of weather impact applications in power systems. For example, various applications 

need weather forecast data, and may use different parameters collected by weather 

forecast models. Vegetation indices can be used for prediction of vegetation-related 

outages, but they can also be used to identify areas shielded by trees for lightning 

protection studies. A unified framework takes care of all the preprocessing needs to 

extract the parameters needed for every application. However, the concentrated storage 

                                                 

* This section is in part a reprint with permission of the material in the following papers: (1) M. Kezunovic, T. Dokic, 

“Predictive Asset Management Under Weather Impacts Using Big Data, Spatiotemporal Data Analytics and Risk 

Based Decision-Making,” 10th Bulk Power Systems Dynamics and Control Symposium – IREP’2017, Espinho, 

Portugal, August 2017. (2) T. Dokic, M. Kezunovic, “Predictive Risk Management for Dynamic Tree Trimming 

Scheduling for Distribution Networks,” IEEE Transactions on Smart Grid, September 2018. Copyright 2018, IEEE. 
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of data and processing routines increases the value of this data, since it is not replicated 

for every application separately.  

 Identification of event characteristics by spatiotemporal correlation of all the 

measurements that surround it. For example, for one outage on a specific location, we 

want to be able to quickly extract various parameters that are not necessarily measured 

at that location (but in the close vicinity), or at that moment in time (but soon after or 

soon before). Weather measurements for an event may come from a set of stations that 

are closest to the outage location, and measured in time that is within one minute of an 

outage. 

 Real-time event tracking and event prediction. This aspect describes the capability of 

the framework to efficiently process all the data and provide answers within a specified 

time limit.  

The initial step is to collect all of the datasets and prepare them for the use in the proposed 

data analytics, which includes removing all the unnecessary data, as well as imposing quality 

control by removing data that may be bad or corrupted. After that, the specific set of parameters 

of interest for the approach we are using can be extracted from the datasets. The most important 

step is to implement spatiotemporal correlation between all datasets to make sure all the parameters 

are associated with the specific time of the event at the specific location. This is a necessary step 

for the development of prediction algorithm inputs and outputs required for training. For each 

historical event we want to analyze, the prediction algorithm needs to have a single time step and 

location for each component and its associated measurements. For example, if there was a 

lightning caused outage on a distribution line, we want to collect all the weather measurements 

and vegetation indices at the specific location of this outage at the time the event occurred.  



 

40 

 

5.2 Data Sources 

Tables 3 and 4 contain the list of data sources and their characteristics. The first dataset, 

ASOS, contains historical weather measurements. The measurement stations are located sparsely 

over the area of interest. Fig. 8 shows locations of weather stations in the analyzed area, and Table 

5 presents an example of one weather data point. The NDFD contains weather forecasts (current 

and archived). Fig. 9 shows an example of the weather forecast map for wind speed. The specific 

selection of data assures that the following aspects of the weather impacts are captured: 

 Historical weather measurements are collected with high temporal resolution and 

spatially interpolated to the component locations. As presented in Table 3, historical 

weather measurements coming from ASOS land-based weather stations come with a 

maximum time resolution of 1 min. These weather stations are sparsely located (there 

are about 900 stations across the US), and need to be spatially interpolated to the exact 

location of an event. 

 Real-time weather forecast is collected at each location and used as the temporal 

reference for the prediction algorithm output time referencing. As presented in Table 

3, the temporal resolution of weather forecast data coming from NDFD is 3 hours 

(except for precipitation, which is collected with a 12-hour resolution). Because the 

new weather forecast becomes available every 3 hours, this is chosen as the time 

horizon for the prediction algorithm. Every three hours we generate the new set of risk 

maps based on the most recent weather forecast.  
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A number of high-resolution imagery files are available on TNRIS as part of NAIP, Fig 

10. The TPWD EMST dataset contains the classification of vegetation types by area. An example 

of a simplified classification map is presented in Fig. 11. The NASA 3D Global vegetation map is 

presented in Fig 12. This map is created by combining radar and LIDAR remote sensing.  

Table 3 Non-utility Data Sources and Characteristics, reprinted from [10] 

 Source Data 

Type 

Temporal 

Coverage 

Spatial 

Coverage 

Temporal 

Resolution 

Spatial 

Resolution 

Measurements 

 

 

W 

E 

A 

T 

H 

E 

R 

ASOS 

[30] 

Land-

Based  

2000-

Present 

Used: 

2011-

2015 

USA 1 min 900 

stations  

Air Temperature, Dew 

Point, Relative Humidity, 

Wind Direction, Speed and 

Gust, Sea Level Pressure, 

Sky, Precipitation 

Vaisala 

NLDN 

[31] 

Lightning 

Data 

1989-

Present 

Used: 

2011-

2016 

USA Instantaneous Median 

Location 

Accuracy 

<200m 

Date and Time, Latitude 

and Longitude, Peak 

amplitude, Polarity, Type 

of event: Cloud or Cloud to 

Ground 

NDFD 

[32] 

Weather 

Forecast 

Data 

Present – 

7 days 

into future 

Used: 

2016 

USA 3 hours 5 km Wind Speed, Direction, 

and Gust, Temperature, 

Relative Humidity, 

Tornado Probability, 

Probability of Severe 

Thunderstorms, etc. 

V 

E 

G 

E 

T 

A 

T 

I 

O 

N 

TPWD 

[33] 

EMST 2015 Texas static 10 m Distribution of different 

tree spices 

TNRIS 

[34] 

NAIP  2010, 

2012, 

2014, 

2015, 

2016, 

2017 

Texas year 50 cm – 1 

m 

High Resolution Imagery 

NASA 

[119] 

3D Global 

Vegetation 

Map 

2011 World static 1 km Canopy height data 
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Table 4 Utility Data Sources and Characteristics 

Data Type Temporal 

Coverage 

Spatial 

Coverage 

Temporal 

Resolution 

Spatial 

Resolution 

Measurements 

Historical 

Outage Data 

2011-

2016 

Utility 

area 

instantaneous Feeder 

section 

Location, start and end time and date, 

number of customers affected, cause 

code 

Tree 

Trimming 

Data 

2011-

2016 

Utility 

area 

day Feeder Feeder location, date, trimming period, 

number of customers affected, cost of 

trimming 

Network GIS 

data 

2016 Utility 

area 

static Infinity 

(shapefile) 

Poles: location, material/class, height 

Feeders: location; conductor size, 

count, and material; nominal voltage 

Historical 

Maintenance 

Data 

2011-

2016 

Utility 

area 

day Tower 

location 

Start and end date and time, location, 

type (maintenance, replacement), cost, 

number of customers affected 

Insulator asset 

data 

2016 Utility 

area 

static Infinity 

(shapefile) 

Surge Impedances of Towers and 

Ground Wires, Footing Resistance, 

Component BIL 

In-field 

measurements 

2011-

2016 

Utility 

area 

instantaneous Tower 

location 

Leakage Current Magnitude, 

Flashover Voltage, Electric Field 

Distribution, Corona Discharge 

Detection, Infrared Reflection 

Thermography, Visual Inspection 

 

 

Figure 8 ASOS weather stations locations [30] 
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5.3 Spatiotemporal Correlation of Data 

Geographic Information System (GIS) and Global Positioning System (GPS) together 

provide a framework for conducting spatiotemporal correlation between the weather threats and 

their corresponding impacts. GIS provides a platform for spatial integration of various datasets. 

Table 5 ASOS weather station measurement example 

date/time tmpf dwpf relh drct sped alti mslp p01i 

9/9/2018 0:53 80.1 78.1 93.64 350 11.5 29.84 1010.3 0.04 

vsby gust_mph skyc1 skyc2 skyc3 skyl1 skyl2 skyl3 wxcodes 

7 M FEW SCT BKN 1000 3500 5000 -TSRA 

 

 

 

 

 

Figure 9 NDFD map example for wind speed [32] 
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The GPS clock is used to temporally 

reference events and measurement 

points. As stated in [120], the spatial and 

temporal correlation of data plays an 

essential role in the process of 

integrating Big Data analytics into the 

electric power industry applications, 

since it enables the identification of 

measured values of various parameters 

at the time of an event at the location of 

interest. Spatial correlation of data is 

done by integrating different data sets as 

layers of GIS, while GPS is used for 

time synchronization between events, 

and for synchronizing the sampling. All 

of the spatial processing of the data in 

this dissertation is done using ESRI 

ArcGIS [121]. Temporal data 

processing is done using the Python 

standard library datetime [122].  

The spatiotemporal correlation 

of diverse data makes sure that every 

dataset has associated unique spatial and 

 

Figure 10 NAIP Imagery example [34] 

 

Figure 11 EMST data example [32] 
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temporal references, and determines spatial and temporal relationships between different datasets. 

For example, for every historical vegetation-caused outage, we want to know the measured and 

forecasted weather conditions at that specific location, the distance between the feeder and the 

tree, etc. All these parameters are used as inputs to the prediction algorithm described in Chapter 

VI.  

5.3.1 Spatial data analytics 

As reported in [19], two distinct categories of GIS data, spatial and attribute data, can be 

identified [123]. Data which describes the absolute and relative context of geographic features is 

spatial data. For transmission towers, as an example, the exact spatial coordinates are usually 

accessible by the operator. To provide additional characteristics of spatial features, attribute data 

is included. Attribute data includes all other characteristics that can be either quantitative or 

 

Figure 12 3D Global Vegetation Map [119] 
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qualitative. For example, a table with the physical characteristics of a transmission tower can be 

described with the attribute data. Any kind of data with a spatial component can be integrated into 

GIS as another layer of information, [121]. As new information is gathered, these layers can be 

automatically updated.  

In terms of spatial data representation, raster and vector data can be used. In the case of 

vector data, polygons, lines and points are used to form shapes on the map. Raster data presents 

information as a grid, where every cell is associated with one data class. Typically, different data 

sources will provide different data formats and types. Some of the data received in tables with 

geographical coordinates is converted into GIS shapefiles that contain both geographic references 

and attribute tables for every dataset. Some of the data, such as satellite imagery, comes into the 

geodatabase as raster files. Different tools need to be used within GIS to extract needed parameters 

from raster files and shapefiles for the prediction algorithm. Also, the type of a file dictates the 

spatial resolution; while shapefiles have a precise location of the point/line/polygon, raster files 

average the measured value within a grid, where the size of the grid’s cell dictates the spatial 

resolution of data.  

To deal with different spatial resolutions of data, we use multiple approaches. We use 

spatial interpolation to increase the spatial resolution of datasets when such action is required. For 

example, ASOS weather station measurements are only available in certain sparse locations. To 

improve the spatial resolution of ASOS data, we will use interpolation to estimate weather 

parameters for the rest of the network area. We will also use spatial joins to project one dataset to 

a different dataset location. For example, we will need to extract all the NDFD data associated 

with a specific network zone. It is important to track all the spatial transformations that may have 
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affected the accuracy of the parameter. If we use spatial interpolation to increase the resolution of 

data, we introduce a certain estimation error.  

 5.3.2 Temporal data analytics  

GPS consists of a system of satellites installed by the US Department of Defense [124]. It 

provides location and time information for GPS receivers located on the Earth. To use this service, 

devices such as traveling wave recorders and lightning sensors are equipped with GPS receivers 

that supply information about longitude, latitude, and altitude, as well as a precise time tag and 

GPS clock. All data must be time referenced in a unique fashion [19]. The following factors are 

important for time correlation of data:  

 Time scales: Data can be collected with different time resolution: yearly, monthly, daily, 

hourly, once every few minutes or even seconds. In addition, different applications may 

require different rates of data acquisition. 

  Time standard: Different data sources use different time standards [125], such as UTC – 

Coordinated Universal Time, GPS Satellite Time, which use as a reference TAI – 

International Atomic Time. All time calculations have to be set into a unified time frame. 

 Time synchronization protocols: The accuracy of a time stamp is highly dependent on the 

type of the signal that is used for time synchronization. Different measuring devices that 

use GPS synchronization can use different synchronization signals, such as NTP – Network 

Time Protocol [126] or PTP – Precision Time Protocol [127].  

Time scales for different applications and events of interest are presented in Fig. 13, [128]. 

The temporal correlation module ensures that all the data has a unique temporal reference and that 

the same time standards and formats are followed. It contains two major parts: 1) historical data 

processing, and 2) real-time data processing. The final product of historical data processing is a 



 

48 

 

training list for the prediction algorithm. The prediction algorithm uses the time reference to iterate 

over the historical events, and set the prediction time horizon. The real-time data processing 

generates input data for the real-time risk maps. The temporal resolution is guided by the 

availability of different datasets. Similar to the spatial correlation of data, in some cases 

measurements will be taken to increase or decrease the temporal resolution of datasets by different 

methods of interpolation (if we want to increase the resolution) or different methods of averaging 

(if we want to decrease the resolution). The temporal correlation module makes sure that all the 

data used in the prediction algorithm is set to the same time frame, leading the prediction from one 

event to another with every parameter being projected to the exact time of the event.  
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Figure 13 Time scales of the Big Data and applications of interest to the power sector, adapted 

from [128] 
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5.4 Conclusion 

Based on the discussions in this chapter, it becomes clear why Big Data processing is 

needed, why it is beneficial to correlate the data, and how data analytics benefits from this 

approach. The key findings are:  

 With Big Data it is possible to collect all the available measurements coming from 

variety of sources. We develop a unified data model that collects, preprocesses, and 

spatiotemporally correlates a variety of different data sources for multiple applications. 

This enables an increase of the overall value of the data for utilities.  

 Big Data can handle the variety, volume, and velocity of all the datasets. Weather data 

sets contain multiple terabytes of data, as well as high resolution imagery files for the 

extraction of vegetation indices. The measurements are collected on multiple temporal 

scales, and the solution is capable of processing this in real-time.  

 Spatiotemporal correlation of data enables a systematic approach in the creation of 

necessary inputs for the prediction algorithm. This part of processing makes sure that 

the prediction algorithm gets a full set of variables that are all associated with a specific 

location and time of events of interest.  

The result of the data management level is a complete set of spatiotemporally correlated 

parameters that are used as inputs to the prediction algorithm that will be described in Chapter VI, 

and used in Chapters VIII and IX for two different applications. 
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CHAPTER VI 

DATA ANALYTICS* 

6.1 Introduction 

In this chapter we describe the prediction algorithm used for this study. The prediction 

model used for this study is GCRF [129], and it is a structured regression prediction algorithm that 

incorporates the spatial dependencies between nodes. The benefits of this algorithm for this 

particular set of applications in power systems are: 

 Graph structure of structured regression algorithm fits into the electric network model. 

 Spatial interdependencies of CRF enable extraction of additional knowledge from the 

data which improves accuracy and provides robustness to missing and bad data. 

 Fast execution is achieved by constructing feature functions as quadratic functions of 

the output, making it a Gaussian CRF. 

The purpose of the predictive risk model is to estimate what is the probability of a specific 

event (outage, asset failure) in the network at the specific location for a specific moment in time. 

The algorithm does this by learning from an extensive set of historical data that includes measured 

and spatiotemporally correlated parameters for historical events in the network such as outages. 

Based on this predicted probability, we generate risk maps that represent the state of the network 

and each individual component for a certain moment in time. Risk maps [130] provide the expected 

probability of an event (e.g., weather-caused outage) for each component in the network. Risk 

                                                 

* This section is in part a reprint with permission of the material in the following papers: (1) T. Dokic, M. Kezunovic, 

“Predictive Risk Management for Dynamic Tree Trimming Scheduling for Distribution Networks,” IEEE 

Transactions on Smart Grid, September 2018. Copyright 2018, IEEE; (2) M. Kezunovic, Z. Obradovic, T. Dokic, B. 

Zhang, J. Stojanovic, P. Dehghanian, and P. -C. Chen, "Predicting Spatiotemporal Impacts of Weather on Power 

Systems using Big Data Science," Pedrycz, Witold, Chen, Shyi-Ming (Eds.), Springer Verlag, Data Science and Big 

Data: An Environment of Computational Intelligence, ISBN 978-3-319-53474-9, 2017. 
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mapping is used in many engineering disciplines as a planning and design tool for increasing the 

robustness of critical infrastructures. Such risk maps can be used by operators in real-time to assess 

the current state of the network and expected changes in the following several time steps (next 

hour, next 3 hours, next day). The risk maps are created dynamically as new weather forecasts 

become available.  

6.2 Predictive Risk Framework 

Fig. 14 presents an overview of the predictive spatiotemporal risk model [53]. For every 

moment of time, each network component is assigned a state of risk value. To enable 

spatiotemporal analysis, the state of risk R is defined as follows [131]:  

𝑅(𝐺, 𝑡) = 𝑃[𝑇(𝐺, 𝑡)] ∙ 𝑃[𝐶(𝐺, 𝑡)|𝑇(𝐺, 𝑡)] 
(7) 

 

Figure 14 Spatiotemporal Prediction Model, reprinted from [5] 

 



 

52 

 

where 𝐺 represents the longitude and latitude of a single element, and 𝑡 represents the moment in 

time for which the observation is made. A unique state of risk value is assigned to each distribution 

feeder section. 𝑇(𝐺, 𝑡) represents the threat intensity. Threat intensity is defined as a qualitative 

metric of the weather condition severity. The first term in (7), 𝑃[𝑇(𝐺, 𝑡)], is a hazard probability. 

This term represents the probability of a severe weather condition with the selected threat intensity. 

The second term, 𝑃[𝐶(𝐺, 𝑡)|𝑇(𝐺, 𝑡)], is network vulnerability, where 𝐶(𝐺, 𝑡) is an occurrence of 

a consequence. Vulnerability is a conditional probability of a consequence (such as a vegetation-

caused outage) in the distribution network if and when severe weather is present. The risk 

definition presented here is an adaptation of definition in [132], where the last part of the risk-

economic impact is not included. In this research, the economic impact is calculated separately 

and included in the optimal maintenance model as one of constraints. The economic impact 

calculation takes the predicted risk values as inputs to the optimization objective function. The 

optimization will use the calculated risk maps for a period of time to determine the best set of 

countermeasures that can improve the reliability of the system. The calculated risk maps are used 

as inputs to the optimization objective function that is trying to minimize the overall risk for the 

network. The details of how the economic impact is combined with the risk framework will be 

described in the Chapter VII.  

6.3 Prediction Model  

6.3.1 Continuous Conditional Random Fields 

As we discussed in Chapter 2.6, the problem at hand can be modeled using graph-based 

structured regression. Since we want to use interdependencies between nodes to improve 

prediction accuracy and enable robust prediction in case of bad and missing data, we select the 

Conditional Random Fields as the algorithm. Continuous Conditional Random Fields, as presented 
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in Fig. 15 [133], model the conditional distribution 𝑃(𝒚|𝑋) over a set of outputs 𝒚 given all inputs 

𝑋, as 

𝑃(𝒚|𝑋) =
1

𝑍(𝑋, 𝜶, 𝜷)
exp(𝜙(𝒚, 𝑋, 𝜶, 𝜷)) (8) 

Where the term in the exponent 𝜙(𝒚, 𝑋, 𝜶, 𝜷) is defined as 

𝜙(𝒚, 𝑋, 𝜶, 𝜷) = ∑ 𝐴(𝜶, 𝑦𝑖 , 𝑋)

𝑁

𝑖=1

+ ∑ 𝐼(𝜷, 𝑦𝑖 , 𝑦𝑗 , 𝑥)

𝑗~𝑖

 (9) 

and the normalization constant 𝑍(𝑋, 𝜶, 𝜷) is defined as 

𝑍(𝑋, 𝜶, 𝜷) = ∫ exp(𝜙(𝒚, 𝑋, 𝜶, 𝜷))𝑑𝒚
𝒚

 (10) 

𝐴(𝜶, 𝑦𝑖, 𝑋) is a real-valued function called the association potential, and models how output 𝑦𝑖 is 

associated with the set of inputs 𝑋, where 𝜶 is an K-dimensional set of parameters [131].  

𝐼(𝜷, 𝑦𝑖, 𝑦𝑗 , 𝑋) is a real-valued function called the interaction potential that describes the 

interactions between pairs of outputs 𝑦𝑖 ~ 𝑦𝑗, where 𝜷 is an L-dimensional set of parameters [131]. 

This parameter is of a great importance for our studies, since the electric network is represented as 

the connected graph where every event happening in one node has impact on all the neighborhood 

nodes.  

Learning is accomplished by finding values of parameters 𝜶 and 𝜷 for which the 

conditional log-likelihood of the set of training examples is maximized, as in Eqs. 11 and 12: 

𝐿(𝜶, 𝜷) = ∑ log 𝑃(𝒚|𝑋) (11) 

(�̂�, �̂�) = arg max
𝜶,𝜷

(𝐿(𝜶, 𝜷)) (12) 



 

54 

 

The values of 𝜶 and 𝜷 can be chosen using optimization algorithms, for example gradient ascent 

optimization. The inference task is to find the outputs 𝒚 for a given set of observations 𝑋 and 

estimated parameters 𝜶 and 𝜷 such that the conditional probability 𝑃(𝑦|𝑋) is maximized as in Eq. 

13 [131]: 

�̂� = arg max
𝒚

𝑃(𝒚|𝑋) (13) 

In CCRF applications, the parameters 𝐴(𝜶, 𝑦𝑖, 𝑋) and 𝐼(𝜷, 𝑦𝑖 , 𝑦𝑗 , 𝑋) are often defined as linear 

combinations of a set of feature functions 𝑓 and 𝑔 in terms of 𝜶 and 𝜷 [131]: 

 

Figure 15 Continuous CRF graphical structure, reprinted from [131] 
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𝐴(𝜶, 𝑦𝑖, 𝑋) = ∑ 𝜶𝑘

𝐾

𝑘=1

𝑓𝑘(𝑦𝑖, 𝑋) (14) 

𝐼(𝜷, 𝑦𝑖, 𝑦𝑗 , 𝑥) = ∑ 𝜷𝑙

𝐿

𝑙=1

𝑔𝑙(𝑦𝑖, 𝑦𝑗 , 𝑋) (15) 

When using feature functions, any potentially relevant feature could be included in the 

model because parameter estimation automatically determines their actual relevance by feature 

weighting. This allows modeling of arbitrary relationships between inputs and outputs [133]. 

6.3.2 Gaussian Conditional Random Fields 

The applications of interest for this study include processing on large electric networks 

where every component (tower, pole, one line span) is modeled as one node of the graph, creating 

large graphs with hundreds of thousands of nodes, that are observed in tens of thousandths of time 

instances for a variety of parameters. The construction of feature functions 𝐴 and 𝐼 in CRF can be 

done many different ways; however, to reduce the computational complexity of learning and 

inference, 𝐴 and 𝐼 can be constructed as quadratic functions of 𝑦 [129]. If 𝐴 and 𝐼 are quadratic 

functions of 𝑦, 𝑃(𝑦|𝑋) becomes a Gaussian distribution – leading to the name Gaussian 

Conditional Random Fields (GCRF), Fig. 16. This improves the speed of execution of the program 

significantly, making it possible to process the data in real-time for the entire network.  

Let us assume we are given K unstructured predictors, 𝑅𝑘(𝑋), 𝑘 = 1, … 𝐾, that predict a 

single output 𝑦𝑖 taking into account 𝑋. To model the dependency between the prediction and 

output, quadratic feature functions are introduced [129]: 

𝑓𝑘(𝑦𝑖, ) = −(𝑦𝑖 − 𝑅𝑘(𝑋))
2

, 𝑘 = 1, … 𝐾 (16) 
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These feature functions describe the association potentials. Their values are large when predictions 

and outputs are similar. The association potential will identify the association between every 

independent variable and the output. For example, it models the association between measured 

temperature and insulator strength. To model the correlation among outputs, quadratic feature 

functions are introduced [131]:  

 

Figure 16 Gaussian CRF graphical structure, reprinted from [131] 
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𝑔𝑙(𝑦𝑖 , 𝑦𝑗 , 𝑋) = −𝑒𝑖𝑗
(𝑙)

𝑆𝑖𝑗
(𝑙)(𝑋)(𝑦𝑖 − 𝑦𝑗)

2
,   𝑒𝑖𝑗

(𝑙)
= 1, if (𝑖, 𝑗) ∈ 𝐺𝑙, 

                                           𝑒𝑖𝑗
(𝑙)

= 0, otherwise 
(17) 

This imposes that outputs yi and yj have similar values if they are connected with a link of a graph. 

Sij
(l)(X) represents the similarity between outputs yi and yj. The larger Sij

(l)(X) is, the greater 

similarity between the outputs yi and yj. 

P(y|X) for the CRF model (4.2), which uses quadratic feature functions, can be represented 

as a multivariate Gaussian distribution. The resulting CRF model can be written as in [131]: 

𝑃(𝑦|𝑋) =
1

𝑍
exp (− ∑ ∑ 𝛼𝑘(𝑦𝑖 − 𝑅𝑘(𝑋))

2
𝐾

𝑘=1

− ∑ ∑ 𝛽𝑙𝑒𝑖𝑗
(𝑙)

𝑆𝑖𝑗
(𝑙)(𝑋)(𝑦𝑖 − 𝑦𝑗)

2
𝐿

𝑙=1𝑖,𝑗

𝑁

𝑖=1

) (18) 

The learning task is to choose α and β to maximize the conditional log-likelihood, 

(�̂�, 𝜷) = arg max
𝜶,𝜷

(𝐿(𝜶, 𝜷)) where 𝐿(𝜶, 𝜷) = ∑ log 𝑃(𝒚|𝑋) (19) 

For the model to be feasible, we can impose the constraint that all elements of α and β are greater 

than 0, which results in a constrained optimization problem. To convert it to an unconstrained 

optimization problem, a technique used in [135] is adapted. Then, all parameters are learned by 

the gradient-based optimization. [135].  

6.4 Conclusion 

The presented prediction model performs well with the application of interest to asset and 

outage management in power systems due to the following reasons: 1) it is capable of following 

the temporal progression of events; 2) the data structure is a weighted connected graph which 

perfectly represents the electric network and models all the spatial dependencies in it; 3) events in 

the power system and their impact often impact a number of neighboring nodes. For example, 
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weather-related outages may affect a certain area, or lightning backflashover may propagate 

through the network from its source until it attenuates.  

The results of the prediction algorithm are used to generate various event risk maps which 

provide operators with valuable information about what may happen in the network in the near 

future. However, it is of most importance to also know what kinds of actions can be taken to 

improve the future performance of the network. With this purpose, the risk maps are observed over 

time to generate optimal action schedules for smart asset management, which will be described in 

the next Chapter VII. This gives the main purpose of the predictive risk analysis, where the optimal 

actions are chosen with a goal of reducing the future risk in the network.  
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CHAPTER VII 

ECONOMIC ASSESSMENT* 

7.1 Introduction 

The predicted levels of risk over the network for a specified period of time (fiscal quarter, 

6 months, 1 year, etc.) can be used to develop optimal asset management strategies for different 

components in the network. This feature makes predictive risk maps of great benefit, since they 

do not just predict the expected levels of risk in the network; they can be used to automatically 

decide the appropriate countermeasures that will reduce the risk in the future. For example, in 

operations, risk maps can be used to assess the state of the network, providing operators with better 

situational awareness. Operators can make better decisions about network configuration changes 

and dispatch of maintenance trucks. Asset management groups can use the risk maps to analyze 

the changes in states of various assets and develop techniques for optimal maintenance and 

replacement. Customers can use the risk maps to analyze the expected probability of losing service 

in near future, which can help in making economically efficient decisions for their business. The 

predictive risk maps can be generated with multiple temporal scales, and thus are able to serve 

many different applications in the electric utility, as demonstrated in Fig. 13 in Chapter 5.3.2. A 

maintenance scheduler has a goal to minimize the risk for the whole network while spending only 

the predetermined maintenance budget. While the objective and constraints of the optimization 

problem can be chosen in many different ways, we chose the approach to minimize risk with 

economic constraints because it is the most common approach taken by the utilities that are 

                                                 

* This section is in part a reprint with permission of the material in the following paper: T. Dokic, M. Kezunovic, 

"Optimized Asset Management in Distribution Systems Based on Predictive Risk Analysis," Mediterranean 

Conference on Power Generation, Transmission, Distribution and Energy Conversion - MEDPOWER, Dubrovnik, 

Croatia, November 2018. 
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deciding the budget for each department in advance on a yearly basis. Two types of maintenance 

costs are identified: 1) planned maintenance typically has a predetermined budget, and is 

performed periodically; 2) reactive maintenance includes the actions that occurred after the 

unexpected outage or asset failure, and the budget is variable. The optimal maintenance scheduler 

that will be described in this chapter aims at staying within the limits of the planned maintenance 

budget, while reducing the reactive maintenance costs. 

7.2 Optimization Framework 

The specific optimization problem has to be defined separately for each distribution asset 

type (pole, transformer, insulator…) but the overall procedure can be defined as follows: minimize 

the total risk for the network [99]: 

MIN{SUM(RISKCOMPONENT, TIME)} (20) 

subject to following economic constraint: 

{SUM(ACTION_COST) } ≤ BUDGET (21) 

The optimization problem solver will iterate over various actions (component maintenance, 

component repair, component replacement, environment assessment such as tree trimming, etc.) 

until it finds the best asset management schedule. For each time step, each component has an action 

flag that indicates if there is an action on that component and what type of action is performed. 

This makes the optimization problem nonlinear. To provide a feasible solution in time, heuristic 

solvers need to be considered.  

The impacts of the environment and component vulnerabilities for each moment in time 

are accumulated in the dynamic risk value we are trying to minimize. The limits of the budget for 

periodic (planned) actions are taken into account as constraints.  



 

61 

 

In addition to the main objective – minimizing the risk – reactive maintenance is indirectly 

targeted for minimization, and it is used for additional validation and testing of this approach’s 

performance. Our goal is, by minimizing the overall network risk, to also minimize the cost of 

reactive maintenance. As part of validation, after the optimization problem is solved, we compare 

the reactive asset management cost that was spent during the period of interest to the evaluated 

reactive maintenance expense that would be spent if an optimal asset management schedule was 

followed.  

Following are the required steps of the optimal maintenance scheduler, as presented in Fig. 

17: 

1. Generate risk maps based on the historical data and weather forecast and store the 

risk value for each component in the network. This step contains three tasks: 

a) Calculate the weather hazard using the weather forecast [32]. In this step we are 

evaluating the expected unfolding weather conditions that will affect the 

network at a certain moment in time. 

b) Calculate network vulnerability using historical data and the current profile of 

the network and environment. In this step we learn from the historical outage 

and weather data [30, 31] what the vulnerabilities of the network are, and we 

calculate, based on the knowledge from the past, what is the probability of an 

outage under an unfolding weather condition. 

c) Generate action on a specific component. By performing any of the 

countermeasures, it is possible to reduce the network vulnerability to the 

unfolding weather conditions. The optimization algorithm will iterate over 

multiple action configurations until it finds the optimal schedule. 
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2. Calculate the system risk by averaging or summarizing the risk over all 

components.  

3. Define the optimization problem that minimizes the calculated system-level risk. 

In this step, appropriate countermeasures need to be selected. For example, if we 

are observing vegetation management, the main countermeasure would be tree 

trimming. In another example, if we are targeting insulators, countermeasures may 

include insulator cleaning, insulator repair, insulator replacement, etc.  

 

Figure 17 Optimal Risk-based Scheduler, reprinted from [99] 



 

63 

 

4. Set the optimization constraints to limit the periodic asset management expense. In 

this step the specific practices followed by the utility need to be observed to set 

realistic economic constraints. 

5. Solve the nonlinear optimization problem by applying heuristics (Lagrangian 

Relaxation, Support Vector Machines, Neural Networks, etc.). In this dissertation 

the optimization problem is solved using enhanced linear programming relaxation 

with Lagrangian relaxation, with the addition of the heuristic method described in 

detail in [136]. This is a common approach for nonlinear problems that have risk 

reduction as the optimization objective, and economic impacts embedded into 

constraints. 

6. Calculate the reduction in reactive maintenance cost after the outage. During the 

validation process, the reduction in reactive maintenance can only be estimated. 

After the deployment in the field, the testing process can observe the changes in 

reactive maintenance expense before and after dynamic maintenance scheduling. 

7.3 Conclusion 

Optimal asset management based on predictive risk analysis provides a new paradigm that 

generates optimal maintenance tasks based on predicted levels of risk in the network in the future. 

The described optimal asset management system from this research can be used in different 

applications with different optimization targets and constraints, as long as the objective is to 

minimize the risk of a specific event, and we need to stay within a predetermined maintenance 

budget.  

The specific definition of risk needs to be created for each case individually. In the 

following chapters we will demonstrate the definition of the optimization problem for three 
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different applications: 1) optimal tree trimming scheduling, 2) optimal maintenance/replacement 

of insulators, and 3) optimal placement of LSAs. With the description of optimization process in 

this chapter we conclude the three-level methodology. In Chapters VIII and IX we will 

demonstrate how all three levels can be implemented for two different applications: 1) vegetation 

management, and 2) insulation coordination. 
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CHAPTER VIII 

APPLICATION TO VEGETATION MANAGEMENT* 

8.1 Introduction 

This chapter demonstrates the application of the developed three-level Big Data analytics 

framework to predictive vegetation management in distribution. This demonstration serves as a 

validation of our hypothesis that more accurate predictions are possible by structured learning from 

merged heterogeneous Big Data. This will be demonstrated by evaluating the prediction accuracy 

of the GCRF algorithm for vegetation-related faults, and the expected improvements in network 

reliability after an optimal tree trimming schedule is applied. 

The application discussed in this chapter differentiates itself from other vegetation 

management solutions by the use of an extensive set of data and specifically tailored data analytics 

to create predictions. We correlate different datasets and use them as inputs to the new predictive 

risk model that utilizes spatiotemporal data to produce real-time risk maps for tree trimming in the 

distribution network. The prediction algorithm, based on a GCRF model described in Chapter VI, 

leverages the spatial similarities between different feeder sections to ensure better prediction 

performance and compensate for missing data. The resulting risk model allows the implementation 

of a dynamically changing trimming scheduler that optimizes the tree trimming process. It will be 

shown that the achieved reduction in risk has the potential of reducing the cost of reactive tree 

trimming. The method is applied to a real distribution network and utility data. The testing 

                                                 

* This section is in part a reprint with permission of the material in the following paper: T. Dokic, M. Kezunovic, 

“Predictive Risk Management for Dynamic Tree Trimming Scheduling for Distribution Networks,” IEEE 

Transactions on Smart Grid, September 2018. Copyright 2018, IEEE.  
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confirms that the outages occurred in zones with risk predicted to be greater than 64%, which 

suggests a new predictive paradigm for vegetation management strategies.  

8.2 Data 

Raw data are processed to remove unused components. All the data that has a geographical 

reference is placed into a geodatabase during the preprocessing. Table 6 lists the extracted 

parameters needed for the prediction model, and the associated temporal and spatial references.  

Data come with different spatial and temporal resolutions. Historical weather data from 

ASOS [29] land stations has the highest temporal resolution (up to 1 min); however, the spatial 

resolution of data is low, including only a few weather stations in the network service area. 

Vegetation data has a low temporal resolution (collected once per year or two years) but has a high 

spatial resolution (up to 50 cm). The rate of data collection varies not only between different data 

sets, but also it can vary within a single data set. For example, weather data is collected by land-

based weather stations with a maximum rate of one data point per minute, but the rate can go down 

Table 6 Parameters Extracted in Preprocessing, reprinted from [53] 

 Historical 

Outage 

Data 

Periodic 

Tree 

Trimming 

Reactive 

Tree 

Trimming 

Poles Lines Vegetation  Weather 

Spatial Point 

shapefile  

Polyline 

shapefile 

Polyline 

shapefile  

Point shapefile  Polyline 

shapefile 
 Raster  

 Polygon 

shapefiles  

 Points  

 Polygon 

shapefiles  

Temporal Start and 

end time 

Year 

quarter 

Date Static Static Year 1 min to 3 

hours 

Other 

parameters 
 Num. of 

customers 

 Cause 

code 

 Trim 

period 

 Num. of 

customers 

 Cost 

 Cost  Material/class 

 Height 

 Conductor 

size 

 Conductor 

count 

 Conductor 

material 

 Nominal 

voltage 

 Imagery 

 Vegetation 

classes 

 Wind 

(speed, gust, 

direction) 

 Temperature 

 Precipitation 

 Humidity 

 Pressure 

 Forecast 

indices  
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to one data point per hour. In some rare cases, the rate may go as low as one measurement within 

several hours. After preprocessing, the dataset is still not ready for the input into the predictive risk 

model. All the parameters need to be spatially and temporally correlated, as is described in 8.2.1 

and 8.2.2.  

Image data is used to extract the location of vegetation surrounding the network. The 

imagery is collected from the TNRIS database [35]. The following orthoimagery datasets are used 

in the study:  

 National Agriculture Imagery Program 1m NC\CIR for years 2010, 2012, 2014, and 2016; 

 Texas Orthoimagery Program 50cm NC\CIR for 2015.  

The datasets are loaded into the geodatabase as raster files. First, to reduce the amount of 

data for processing, imagery raster files are clipped to a 20 m buffer around the distribution lines. 

Then unsupervised image classification [137] is applied. The iso-cluster is set to 40 classes in all 

datasets. In the next step the classes are reclassified to “vegetation class” and “non-vegetation 

class”, and converted into a polygon shapefile. The vegetation class is transferred to the next step 

   

             a)                       b)                        c) 

Figure 18 Example of vegetation extraction: a) 40 classes, b) imagery for reference, and c) 

reclassified, reprinted from [53] 



 

68 

 

(spatial correlation), and the rest is discarded. In Fig. 18, we provide examples of the unsupervised 

classification (a), and the resulting map after reclassifying (c). Map (b) is in Fig. 18 for visual 

reference.  

The result of image processing is a set of historical maps with vegetation locations. These 

maps are then spatially joined with the EMST developed by the TPWD [33]. The EMST data 

contains classification by vegetation type into 398 distinct classes, out of which 49 classes are 

present at the network location of interest. The average canopy height for 49 vegetation classes in 

the network area is then added to the vegetation dataset as a parameter.  

8.2.1 Spatial Correlation of Data 

The purpose of the spatial correlation module is to provide spatial links between different 

data sets. For example, for every historical outage we want to know the weather conditions at that 

specific location, the distance between the line and the closest tree, the location of areas that were 

trimmed, etc. The spatial correlation module is presented in Fig. 19. We distinguish three parts of 

the spatial processing module:  

Weather data processing encompasses creating the weather data grid that is overlaid on the 

utility network and has a spatial resolution of 1 km. The weather parameters in each grid cell are 

calculated from the weather station values using linear interpolation. 

Vegetation data processing extracts the vegetation indices, such as distance between the 

lines and vegetation and growth rate, using spatial links between multiple preprocessed vegetation 

files. All the calculated parameters are stored as attributes in the final vegetation polyline shapefile. 

Utility data processing converts the historical tables to shapefiles identifying the locations 

of points and polylines based on the line section codes and/or addresses provided in the utility’s 
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CSV files. In addition, every reactive tree trimming action is correlated with the outage that lead 

to it. 

To deal with different spatial resolutions of data we used multiple approaches, all included 

in Fig. 3. We used spatial interpolation where weather data was extracted for every location in the 

network based on the original weather station data with sparse locations. In other instances, data 

was projected to a nearby location using a spatial join. For example, the distance between the line 

and vegetation is projected to the line using a spatial join based on distance.  

8.2.2 Temporal Correlation of Data 

The temporal correlation module has five historical input datasets (weather, vegetation, 

outage, periodic tree trimming, and reactive tree trimming), and real-time weather forecast input. 

 

Figure 19 Spatial correlation of data, reprinted from [53] 
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Each dataset contains a variety of parameters (attributes) from Table 6, and is stored as a GIS 

shapefile. Static datasets (network feeders and poles) are assumed not to change over the observed 

period, and do not require any temporal correlation. Fig. 20 presents an overview of the temporal 

correlation module containing two major parts: 1) historical data processing, and 2) real-time data 

processing. The final product of historical data processing is a training list for the prediction 

algorithm. The real-time data processing generates input data for the real-time risk maps by 

generating the data for hazard, vulnerability, and economic impact that feeds the dynamic tree 

trimming scheduler, which will be described in the following sections.  

The temporal resolution is guided by the occurrence of outages. For every outage we want 

to extract, all the relevant information is included as presented in Fig. 20. For each outage, the data 

points that are closest in time are chosen from each set individually. For example, in the case of 

historical weather data, the closest data points were within one minute of outage. On the other 

hand, the closest vegetation maps could be up to several weeks apart.  

 

Figure 20 Temporal correlation of data, reprinted from [53] 
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8.3 Risk for Vegetation Management 

8.3.1 Hazard  

The hazard level is calculated based on the weather forecast data for a specific time and 

location. The data from the NDFD [32] is used. The database contains the forecast up to 7 days in 

the future with a time resolution of 3 hours. The updated forecast is provided every 3 hours. The 

spatial resolution of the weather forecast data is 5 km. Because the weather forecast data is updated 

every 3 hours with a maximum resolution of 3 hours, the risk maps are generated with the same 3 

hours resolution.  

Figures 7-9 summarize the construction of weather hazard. The following parameters are 

observed: wind speed, direction, and gust, temperature, relative humidity, convective hazard 

outlook, probability of critical fire, probability of dry lightning, hail probability, tornado 

probability, probability of severe thunderstorms, damaging thunderstorm wind probability, and 

extreme hail probability. Based on the values of the observed parameters, the threat level is 

classified into 6 groups from 0 to 5, where 0 represents normal weather conditions without any 

potentially severe elements, and 5 represents extremely severe weather conditions. k-means 

clustering [138] was used for classification into 6 groups. k-means clustering enables the 

Table 7 Hazard Classification, reprinted from [53] 

Probability 

[%] 

Threat Intensity 

0 1 2 3 4 5 

0-20       

20-40       

40-60       

60-80       

80-100       
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construction of hazard consequence levels from the individual weather parameters. This way, 

multiple parameters are combined into a single parameter, Threat Intensity, with 6 different states. 

The clustering is done using historical weather data, where different configurations of weather 

parameters are associated with their measured impact on the outage occurrence. Then the Hazard 

is constructed as a heat map in Table 7, where each threat level has an assigned probability of 

occurrence determined based on weather forecast. The construction of the heat map is based on 

[130], where heat maps are constructed following two steps: 1) constructing the probability matrix 

Table 9 Threat Intensity Levels, reprinted from [53] 

Category Description Example 

0 None No impact on the network 

1 Minor Minor service interruptions, no restoration needed 

2 Moderate Some outages in the network, some restoration 

needed 

3 Low Severe Moderate number of outages in the network, 

restoration delays may occur, e.g. rainy weather 

4 High Severe Multiple outages in the network with longer 

restoration duration, e.g. thunderstorm 

5 Catastrophic The whole network or very large parts of the 

network under the disconnected – large blackouts, 

e.g. Hurricane  

 

Table 8 Probability of Threat Level Occurrence, reprinted from [53]  

Probability Range [%] Description 

0-20 Extremely Unlikely 

20-40 Highly Unlikely 

40-60 Doubtful 

60-80 Somewhat Likely 

80-100 Very Likely 
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as in Table 8, and 2) constructing the threat intensity matrix as in Table 9. The Hazard value ranges 

from extremely low, marked green in Table 7, to extremely high, marked as red.  

8.3.2 Vulnerability  

The GCRF predicts the state of vegetation impact, denoted y, based on historical 

measurements in the input vector X. The following historical measurements are stored in the input 

vector x: wind speed, wind direction, wind gust, precipitation, temperature, humidity, pressure, 

vegetation distance to the line section, vegetation spread, vegetation growth rate, vegetation health 

index, pole height, tree trimming period, time since last tree trimming, outage duration, number of 

customers affected. The output y of the algorithm is the predicted state of vegetation impact on the 

feeder section.  

Historical outages are an integral part of the Vulnerability. The prediction of future 

vulnerability is done based on the knowledge collected from previous outages. As listed in Table 

6, the historical outage data contains information about the duration of the outage and the number 

of customers affected by it. This information guides the prediction algorithm to generate higher 

vulnerability levels in the cases where more customers were affected by the outage and for the 

greater duration.  

8.4 Optimal Tree Trimming 

The goal of the optimization model is to minimize the overall risk of the outage in the 

system while maintaining the budget allocated for periodic tree trimming. To achieve that, the 

quarterly periodic tree trimming schedule is designed based on the risk prediction for the next 3 

months. The time instances when the risk map is created are every three hours during a three-

month period. A total of T time instances is created each quarter. The risk is calculated for each of 



 

74 

 

the N feeder sections. An optimized tree trimming schedule is determined by solving the following 

optimization problem:  

𝑚𝑎𝑥 {𝑅 = ∑
1

𝑁
∑ ∆𝑅𝑛,𝑡 ∙ 𝐹𝑛,𝑡

𝑁

𝑛=1

𝑇

𝑡=1

} 

𝐹𝑛,𝑡 = {
0,  section n not trimmed at time t

1,  section n  is trimmed at time t
 

(22) 

where ∆𝑅𝑛,𝜃 = 𝑅𝑛,(𝜃−1) − 𝑅𝑛,𝜃 is the difference in risk value for feeder n before and after the tree 

trimming is performed. The following constraints are enforced: 

∑ ∑ 𝐹𝑛,𝑡

𝑁

𝑛=1

𝑇

𝑡=1

∙ 𝑃𝐶𝑛,𝑡 ≤ 𝑃𝐴 (23) 

For t=1,…,T, ∑ 𝐹𝑛,𝑡
𝑁
𝑛=1 ≤ 1 (24) 

where R is a total reduction in risk, PCn,t is the cost of tree trimming of section n at the time instance 

t; and PA is a total budget allocated for periodic tree trimming during the observed quarter. The 

optimization problem is nonlinear, and it is solved using enhanced linear programming relaxation 

with Lagrangian relaxation plus the heuristic method described in [136]. 

While a reduction in reactive tree trimming cost is not an explicit goal of the optimization 

problem, it is still calculated to check the impact of risk reduction on the reactive tree trimming 

cost. To do that, the reactive tree trimming orders are iterated, and for each one it is checked if the 

developed tree trimming scheduler recommended trimming of the area prior to the outage. If an 

area is part of the recommended tree trimming schedule in a time frame before the reactive tree 

trimming was performed, the reactive tree trimming cost is deducted from the total. 

 

 



 

75 

 

8.5 Evaluation and Results 

The observed utility distribution network has an area of ~2,000 km2. It contains ~200,000 

poles, and ~120,000 lines. The historical outage and weather data were collected for the period 

from January 2011 up to the end of April 2016. Over this period, 505 weather-related outages have 

been observed in the area, where a total of 331 outages were vegetation-caused (Fig 21).  The 

training set for a prediction algorithm consists of the first 300 historical outages in temporal order. 

 

Figure 21 Distribution of historical vegetation outages, reprinted from [53] 
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The remaining 31 outages that occurred at the end of 2015 and beginning of 2016 are used as 

testing set. 

The example of the predicted Hazard and Vulnerability map for an outage event that 

occurred on February 23, 2016 is presented in Fig. 22 and Fig. 23 respectively.  The weather hazard 

is presented as a grid covering the area of the network, while the vulnerability is assigned to each 

line section individually. The resulting predicted risk map for the observed date is presented in 

 

Figure 22 Hazard Map for 02/23/2016, reprinted from [53] 
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Fig. 24. As it can be seen in the upper right corner the predicted risk value on the faulted section 

for the outage in Fig. 24 that occurred on 02/23/2016 was 84%.  

The predicted risk values for all 31 test outages are presented in Fig. 25. The minimum risk 

value during an outage is 64%. There are 6 instances for which the risk probability was less than 

75%, all of which occur during the days with a low weather hazard. We would like to speculate 

that in the absence of weather hazard information, when the algorithm is limited to predicting the 

 

Figure 23 Vulnerability Map for 02/23/2016, reprinted from [53]                             
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risk based only on vegetation indices, performance is limited. Further investigation could be 

conducted with the larger dataset to test this hypothesis.  

 

Figure 24 Risk Map for 02/23/2016, reprinted from [53]     

 

Figure 25 Calculated risk at the end of training for the outages that occurred at the end of 2015 

and beginning of 2016, reprinted from [53]                               
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An example of the tree trimming schedule developed for one quarter is presented in Fig. 

26. The zones with different colors (not black) represent the areas of the network that need to be 

trimmed in the selected quarter. These zones change every quarter. The areas that need to be 

trimmed sooner are represented with red while the areas that need to be trimmed later are 

represented with green.  

 

Figure 26 Quarterly Tree Trimming Schedule, reprinted from [53] 
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The overall outage risk for the selected quarter is calculated as follows: 

𝑅 = ∑
1

𝑁
∑ 𝑅𝑛,𝑡

𝑁

𝑛=1

𝑇

𝑡=1

 (25) 

The optimal tree trimming schedule reduced the overall outage risk of the network for the period 

of three months by 32.8%. In addition, the reactive tree trimming total cost described in Sec. 8.4 

was predicted to be decreased by 27.2%.  

8.6 Conclusion 

In this section, we validated the hypothesis as stated at the beginning of the dissertation for 

the specific application of predictive vegetation risk management for optimal tree trimming 

scheduling. We also illustrated that this work provides several contributions:  

 To improve risk predictions, a variety of data sources are used: historical weather and 

weather forecast data, various vegetation indices and high-resolution imagery data, and 

historical utility records about outages and maintenance. The integration and 

correlation of this data provides a data framework capable of ingesting a large amount 

of interdisciplinary data, and spatiotemporally correlating it for the extraction of 

measured variables for all historical events.  

 A spatiotemporal model for correlating a variety of data in time and space is developed, 

which provides real-time generation of predictive risk maps for the assessment of the 

vegetation around the distribution feeders.  

 An analytical approach is introduced for vegetation risk management based on a GCRF, 

which takes into account both the spatial and the temporal configuration of the network 

and past events to improve the prediction performance in terms of prediction accuracy 

and robustness to bad and missing data.  
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 An optimized, cost-effective dynamic tree trimming scheduler is developed to 

minimize the overall risk of the network while maintaining the economic investment 

in periodic tree trimming. The unique benefits of this approach are demonstrated on an 

actual utility distribution network.  
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CHAPTER IX 

APPLICATION TO INSULATION COORDINATION* 

9.1 Introduction 

In this chapter, we describe the application to transmission line insulation coordination, 

based on the predictive three-level framework described in Chapters V-VII. This chapter also 

serves the purpose of verifying the hypothesis by testing the accuracy of the prediction algorithm, 

and quantifying the improvements in network reliability achieved based on optimal asset 

management.  

Our implementation provides a new predictive framework for insulator asset maintenance 

scheduling that combines sensor monitoring data with sets of weather, lightning, vegetation, and 

GIS data. Instead of statistically estimating failure rates, the data is used to train a prediction model 

based on linear regression. The state of the network assets is automatically updated, resulting in 

dynamic risk maps allowing optimized scheduling of assets based on dynamically unfolding risk 

assessment. The maintenance schedule is created whenever a new set of measurements becomes 

available and component state is automatically updated over time. The advantages of this 

framework are illustrated using the intelligent monitoring and maintenance scheduling for 

transmission line insulators, and the development of the optimal LSA placement strategy. 

 

 

 

                                                 

* This section is in part a reprint with permission of the material in the following papers: (1) M. Kezunovic, T. Dokic, 

“Predictive Asset Management Under Weather Impacts Using Big Data, Spatiotemporal Data Analytics and Risk 

Based Decision-Making,” 10th Bulk Power Systems Dynamics and Control Symposium – IREP’2017, Espinho, 

Portugal, August 2017.  
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9.2 Data 

The first step is to identify all the parameters of interest for the development of the 

predictive risk model. There are six groups of parameters: insulator physical characteristics, 

insulator deterioration group and in-field measurements, weather, lightning, other environmental 

factors, and historical network data. Table 10 lists all the parameters in the raw data.  

9.2.1 Spatial data analytics 

Spatial correlation of data is done using ESRI’s ArcGIS platform [101]. The geospatial 

data model is presented in Fig. 27. Utilities maintain a geodatabase with the locations of all towers, 

substations, and lines. These are typically stored as shapefiles. Based on the network geodata, the 

Table 10 List of parameters, reprinted from [19] 

Historical Network 

Data 

In-field 

Measurements 

Weather Lightning 

Outage Reports Leakage Current 

Magnitude 

Temperature Peak Current 

Maintenance Orders Flashover Voltage Humidity Polarity 

Replacement Orders Electric Field 

Distribution 

Pressure Type of Lightning 

Insulator Physical 

Characteristics 

Corona Discharge  

Detection 

Wind Parameters 

(speed, direction, 

gust) 

Other 

Environmental 

Parameters 

Surge Impedances of 

Towers and Ground 

Wires 

Infrared Reflection 

Thermography  

Pollution  

(sodium chloride) 

Vegetation Index 

(presence and 

canopy height) 

Footing Resistance Visual Inspection 

Reports 

UV index Elevation 

Component BIL Radio Interference 

Voltage 

Precipitation Soil  
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area of interest for correlated weather data can be selected. This area is then split into 1 km blocks, 

and all weather parameters are interpolated to the locations of these blocks. The final weather data 

contains a set of shapefiles with polygons where each time step has one shapefile assigned to it.  

 

Figure 27 Spatial Correlation of Data, reprinted from [19] 
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Vegetation data is clipped to a buffer around the lines. This data identifies the parts of a 

circuit that have tree coverage and are not likely to have lightning-caused outages. The vegetation, 

elevation, soil, and lightning frequency data is added to the tower shapefile one by one, performing 

a spatial join to extract the features of the selected file that are closest to the tower point features. 

Insulator physical characteristics, in-field measurement locations, and historical network data are 

already geocoded to the tower points, so their attributes can simply be added to the tower attribute 

table. In-field measurements and historical network data (including historical outage, maintenance, 

and component replacement data) have temporal components. Thus, for each tower, a pointer to 

the location of the historical file on the disk is created and added to the attribute table. 

The final product of spatial correlation of data are the following datasets: 

 Weather Dataset: contains one file for each time step. Every file is a shapefile containing 

polygons associated with the locational weather parameters. 

 Tower Dataset: contains all the parameters projected to the tower location as a point. In 

addition, the tower dataset contains the link to the historical dataset repository. 

 Historical Dataset: contains no geospatial data in its raw form. Each tower in the network has 

a set of four files inside historical dataset that lists all the events of interest that occurred in the 

tower’s history. These files are then associated with the geo-location of the towers, which 

transfers them into a geospatial dataset. 

Spatial correlation of data is performed only once as a part of preprocessing. After the 

initial setup of database, the information is automatically updated with every time step, as 

described in the following section 9.9.2. 
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9.9.2 Temporal data analytics 

Fig. 28 demonstrates the steps to achieve temporal correlation of data. Different datasets 

are collected in different time zones. The UTC time standard has been chosen, and all the temporal 

data is converted to the UTC time zone. The lightning data needs to be temporally correlated with 

1) weather data, by interpolating weather parameters at the time instance of the lightning strike, 

and 2) historical outage data, by identifying which lightning strike corresponds to the historical 

lightning outage.  

The following actions are performed automatically as concurrent processes: 

 Lightning Impact: After each lightning strike, changes are applied to the lightning performance 

characteristics of the insulator, and the insulator state is updated accordingly. 

 

Figure 28 Temporal correlation of data, reprinted from [19] 
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 Weather Impact: After each month, the weather impacts on the insulator are summarized and 

the insulator state is updated. 

 Measurement-Based State Update: Whenever a measurement in the field is performed, the 

predicted state of the insulator is compared to the measured characteristics. If there is a 

difference, the state of the insulator is calibrated to the measured value.  

 Outage Impact: Based on the collected outage data, the severity of lightning strike impact on 

the insulator is determined. 

 Maintenance/Replacement: Whenever there is a restorative action in the network, the 

associated insulator state is refreshed to the repaired value in case of maintenance, or new 

component value in case of replacement. 

9.3 Risk for Insulation Coordination 

The risk assessment framework used for this research is defined as in Chapter 6.2, Eq. 7 

where T is the lightning peak current, Hazard, P[T], is a probability of a lightning strike with 

intensity T, P[C|T] is the Vulnerability or probability of an insulation total failure if a lightning 

strike with intensity T occurred, and the Worth of Loss, u(C), is an estimate of financial losses in 

case of insulation total failure.  

Lightning data indicate the probability of a lightning strike, which impacts the probability 

of a backflashover. The probability of a backflashover is also impacted by weather conditions 

(temperature, pressure, humidity and precipitation). If there is a backflashover, the probability of 

a total component failure (a situation where insulation is significantly damaged and needs to be 

replaced) is examined. Not every flashover will cause insulation total failure, so the probability of 

a flashover and probability of insulation total failure are expressed separately and then combined 
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within the overall risk framework. Due to component failure, some losses are expected to be 

imposed.  

9.3.1 Hazard 

The probability of a lightning strike is estimated based on historical lightning data in a 

radius around the affected components. Historical data for a period of 10 years were used. For each 

node, the lightning frequency is calculated as: 

𝐿𝐷𝑖 =
𝐿𝐴

𝐿𝑇
 (26) 

where LA is the number of lightning strikes in the area within a radius of 100 m around the 

node and LT is the number of lightning strikes in the total area of the network. 

 

9.3.2 Vulnerability 

For the prediction of network vulnerability levels, the GCRF algorithm is used [78]. The 

advantages of this algorithm are the capability to model the network as interconnected graph with 

assigned geographical locations and time reference, and the capability to model the 

interdependencies between different nodes in the network. Input variables include: lightning peak 

current, lightning polarity, temperature, humidity, pressure, precipitation, temperature variations, 

UV, and pollution experienced during time step Δt, the presence of a catastrophic event, leakage 

current magnitude, flashover voltage, corona discharge detection, radio interference voltage, flag 

for inspection changes detected, BIL, and insulator state. The output of the prediction algorithm is 

the predicted insulator state after the time step Δt. Based on the predicted insulator state, the 

insulator is placed in one of four groups (as new, weathered, mature, and at risk), and the 

probability of insulator failure is determined as presented in Fig. 6 in Chapter 4.3.  
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9.4 Optimal Maintenance Scheduling 

The purpose of a maintenance scheduler is to provide a balance between system reliability 

and maintenance costs. The scheduler is trying to maximize the risk reduction for a system while 

minimizing the expenses of insulator replacement and maintenance. The available maintenance 

actions are classified into three groups: do nothing, perform maintenance, or replace a component. 

For each time instance, every insulator in the network can be assigned one of these three values. 

To reduce the number of permutations, only insulators that have a risk value higher than 60% are 

considered for maintenance, and those that have a risk higher than 80% are considered for 

replacement. The rest of the network is assigned the “do nothing” action. The maintenance and 

replacement actions are varied in the selected insulator set until the best maintenance plan is found. 

The optimal solution for the maintenance plan is determined by solving the following 

optimization problem that maximizes the system risk reduction: 
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(27) 

with the following constraints: 
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(28) 

where a is a selected insulator, N is a total number of insulators in the network, ΔRM(a) is 

a reduction in risk for an insulator that was under maintenance, ΔRR(a) is a reduction in risk for 

an insulator that was replaced. SM(a) is 0 if there was no maintenance action and 1 if there was 
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maintenance; SR(a) is 0 if there was no replacement action and 1 if there was replacement, MC(a) 

is a cost of maintenance for a component a, MA is a total allocated maintenance fund, RC(a) is the 

cost of replacement of component a, RA is a total allocated replacement fund.  

9.5 Optimal Location of LSA 

The global state of risk function is constructed as an arithmetic mean of the individual state 

of risk for each network component, and summarized over time: 





N

n

nR
N

R
1

1

 

(29) 

where R is a total risk for the entire network, N is the total number of towers in the network, 

and Rn is the individual risk for tower n. The optimization algorithm maximizes the global state of 

risk reduction by setting LSA positions as independent variables: 
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(30) 

where ΔRn is a risk reduction on a tower n after installation of LSA. The available budget 

for the LSA installation is considered to be limited, adding an economic constraint: 





N

n

nn TCCF
1  

(31) 

where Cn is a cost of installation of LSA on tower n, and TC is a total budget dedicated to the LSA 

installations. 
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9.6 Evaluation and Results 

The method has been simulated and tested on a 36 substation, 65 transmission lines section 

of a network, with a total of 1590 towers. The data coming from three ASOS weather stations [30] 

located in the vicinity of the network was used, and lightning data was obtained from the NLDN 

[31]. Weather forecast data used in this study was downloaded from the NDFD [32].  

In Fig. 29, an example of a Hazard map is presented. The Hazard map is created based on 

the interpolated weather data and presented as a polygon grid, where each block has an assigned 

 

Figure 29 Weather Hazard Map, reprinted from [139] 
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hazard probability. An example of a Vulnerability map is presented in Fig. 30. Each tower has a 

vulnerability value assigned to it. The Vulnerability value represents the probability of an insulator 

failure if the presented Hazard in Fig. 29 has occurred.  

In Fig. 31, an example of a risk map for one time instance is presented. The advantage of 

our method is that risk maps are generated continuously over time. At each moment new data is 

available; the appropriate risk map is assigned based on the current weather forecast and current 

conditions of network assets.  

 

Figure 30 Tower Vulnerability Map, reprinted from [139] 
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Based on the overall risk map created for a period of one year and associated economic 

cost, the optimal maintenance plan is presented in Table 11. The presented maintenance plan is 

expected to reduce overall risk by 56% during one year of application. With this method, the asset 

maintenance schedule is determined dynamically and it differs based on different environmental 

impacts on the network. The dynamic scheduler is constantly learning and adjusting the 

maintenance schedule to include the impact of all the events in the network.  

 

Figure 31 Risk Map of the Network, reprinted from [139] 
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The recommended number of line surge arresters (LSAs) is calculated to be 264, and the 

optimal locations of the LSAs in terms of risk reduction are presented in Fig. 32. The presented 

configuration of LSAs is expected to reduce the overall risk by 72%. This kind of result could help 

utilities make decisions about the installation of LSAs in an economically efficient way.  

 

Figure 32 Locations of 264 Line Surge Arresters, reprinted from [139] 
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9.7 Conclusion  

This application entails dynamic maintenance scheduling for predictive insulator asset 

management of geo-spatially and temporally referenced data. The following are the benefits of 

this application:  

Table 11 Optimal maintenance schedules, reprinted from [19] 

Time step 

(month) Insulator ID 

Type of 

action 

System Risk 

Reduction [%] 

1 
1528, 924, 949, 321, 1111 M 

18.02 
152, 954 R 

2 
333, 851, 29, 1374, 854, 376 M 

15.13 
34, 641 R 

3 
525, 241, 384, 964, 464, 56 M 

17.52 
944 R 

4 
309, 1191, 1352 M 

5.27 
861 R 

5 
1506, 1208, 592, 559, 243 M 

28.24 
185 R 

6 
1389, 1443, 1064, 1009, 345, 127 M 

13.13 
528, 74 R 

7 
511, 130, 1008 M 

10.54 
1181 R 

8 
574, 254, 367 M 

22.84 
497, 98 R 

9 
1435, 1471, 502, 1535, 131 M 

26.51 
771, 1313 R 

10 
612, 1244, 787 M 

7.89 
654 R 

11 
217, 70, 369, 137 M 

30.02 
184 R 

12 
1524, 1475, 1232 M 

12.44 
1485, 1501 R 
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 A novel predictive asset management framework is proposed that optimizes the maintenance 

schedule based on the dynamically created State of Risk.  

 The spatial and temporal integration of input data results in locational assessment of asset 

deterioration over time.  

 The model is capable of predicting the future State of Risk based on the GCRF model, which 

is scalable to include a large number of asset components.  

 The prediction model takes into account the spatial interdependencies of the input data, 

providing the additional knowledge for more precise prediction of the State of Risk.  

 The method combines sensor data used for condition monitoring with additional data obtained 

from sources outside of the electric utility, such as weather data, which gives a more precise 

assessment of the asset aging. 

 The optimal LSA placement strategy based on prediction of network state of risk for lightning 

related outages has been developed.  
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CHAPTER X 

CONCLUSIONS 

10.1 Introduction 

Weather impacts are the main cause of outages in power systems, causing utilities and 

customers to lose millions of dollars each year, and sometimes even putting the public in danger. 

The advancements in Big Data and data analysis have opened a new path for the development of 

predictive applications in power systems. The use of Big Data for the evaluation of weather 

impacts and the mitigation of consequences is an emerging area of research.  

In demonstrating the practical value of the solution, we placed a focus on applications of 

weather impact on asset and outage management in both transmission and distribution. The goal 

was to select and apply the most suitable prediction algorithm that can take advantage of the 

underlying data structure, as well as mitigate problems such as bad and missing data to produce 

prediction results not feasible before. The hypothesis of this dissertation was that such a solution 

will be able to provide a high prediction accuracy that will move predictive outage analysis from 

predicting the number of outages per area or risk for an outage in an area, to the level of prediction 

where precise risks of outages for components are predicted. This in turn will have a major impact 

on resiliency, cost reduction and customer satisfaction.  

With a judicious selection of prediction algorithm characteristics, we achieved the 

capability to predict outages on multiple temporal and spatial scales. This contribution has paved 

the way for accurate localized real-time prediction of outages and asset failures, which is not 

available to different maintenance strategies in use today. This kind of approach can significantly 

improve the efficiency and economic impact of asset management because it allows optimized 



 

98 

 

mitigation strategies to be developed ahead of the time, reducing the response time and cost of the 

resources.  

10.2 Contributions 

The follow-on achievement of this dissertation is an introduction of a new framework for 

optimal asset management based on predictive risk assessment that is illustrated with examples for 

distribution and transmission assets. The following are the specific innovative contributions and 

related benefits: 

 The unified data framework that enables the collection and spatiotemporal 

correlation of a variety of data sets serving different applications was developed. 

The study uses a variety of data sources, some collected by the utility such as outage 

and assets data; and an extensive set of environmental data, such as weather station 

data, weather forecast, vegetation, and lightning. The study developed data-driven 

techniques using all the measured parameters that surround the event of interest.  

 The temporal and spatial interdependencies between components and events in the 

network are leveraged for improving the prediction algorithm’s accuracy and 

ability to deal with bad and missing data. The prediction is done on multiple spatial 

and temporal scales. This enables the utilization of results for different purposes, 

ranging from operation to asset management and planning, and can significantly 

increase the overall value of the data for the utility. This is the first time that the 

prediction of weather impacts was made on the component level, without averaging 

the impacts over the area or component type.  

 The Gaussian Conditional Random Fields (GCRF) algorithm was used for the 

prediction of the probability of future outages in the network for the given weather 
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forecast data. The algorithm shows a high accuracy of prediction by predicting risk 

of 64% or higher for all the cases of outages in distribution, and over 74% of 

accuracy for cases in transmission. Three main reasons this algorithm is capable of 

achieving high performances for these applications are as follow: 1) it is a graph 

based structured regression capable of modeling all the aspects of the network; 2) 

Conditional Random Fields enables the extraction of knowledge from the spatial 

interdependencies of the outputs that improves the accuracy of prediction since the 

events of interest have higher correlation if they are near each other; 3) fast 

computation, capable of handling large electric networks with multiple hundreds of 

thousands of nodes, is achieved by making the feature functions Gaussian. We 

introduced a study that achieves the integration of the presented GCRF algorithm 

with multiple different applications in power systems.  

 The prediction results are presented on a geographical map in the form of Risk 

Maps. These maps are created dynamically based on the available weather forecast. 

The maps provide a precise prediction of risk for every component in the network 

at the moment in time when the weather forecast was made. Unlike the existing 

solutions that map the risk in various larger areas over the network, the risk maps 

developed in this research support multiple different spatial resolutions, capable of 

mapping the risk for the individual components, compared to existing solutions that 

average the impacts over a number of components.  

 A dynamic asset management system based on optimization was built to reduce the 

predicted risk of outages and component failure while maintaining predetermined 

economic investment in periodic asset maintenance. The novelty of this 
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optimization system is that it uses the outputs of the predictive risk analysis to 

optimize the decision-making process based on the predicted levels of risk for each 

individual component in the network.  

 The optimization was demonstrated on three different cases: 1) optimal tree 

trimming scheduling for distribution systems, 2) optimal maintenance/replacement 

of transmission line insulators, and 3) optimal placement of Line Surge Arresters. 

The method is applied to real utility data and the prediction performance in a real-

life setting is evaluated.  

10.3 Future work 

Due to continuous advancements in instrumentation and measurements, more and more 

new data sets are being collected every day. The study in this dissertation leveraged a large amount 

of data that was available at the time the research was conducted. There are constantly new datasets 

becoming available, and it is expected that this trend will continue in the future.  

For example, more and more 3-dimensional geographical data is collected by different 

organizations thanks to LIDAR technology and various drone surveys. New algorithms will have 

to be developed to extract all the necessary information from the 3-dimensional data and 

incorporate it into prediction algorithms. Methods such as computer vision could be used for this 

purpose. 

Advancements in weather forecasting are creating better prediction on multiple temporal 

scales with every new discovery in the field. One aspect that was not analyzed in our study, and 

that would be of potential use for improvement of the prediction algorithm’s capabilities, is how 

uncertainty in the weather forecast affects the outage prediction. This could result in the creation 

of a family of prediction algorithms that are capable of providing the best possible accuracy for 
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each time horizon of weather forecast. In addition to uncertainties in the weather forecast, there 

are other uncertainties introduced in the study during the preprocessing and spatiotemporal 

correlation of data, such as error due to spatial interpolation of weather measurements, error due 

to temporal misplacement of vegetation measurements, etc. It would be of great benefit to develop 

a comprehensive uncertainty study that can model different errors and their impact on the 

prediction result, which will correlate the range of possible output values based on these 

uncertainties.  

With the addition of new developing data sets it will be interesting to see how good the 

prediction performances of algorithms become in the future. The research in this dissertation is the 

first step in creating precise component-based prediction of weather impacts on electric 

transmission and distribution. However, the accuracy of the prediction is highly dependent on the 

availability, quality and spatiotemporal resolution of data sets. It is also dependent on the specific 

configuration of prediction algorithms that could always be improved to match the problem’s 

specific data structure. In this work a single data structure was used, even though different data 

sets come from different types of networks. This could be extended to a multilayer solution that 

combines different data structures. Each data structure would have to be the best match for the 

specific data set of interest. The future should focus on demonstrating how far the capabilities of 

predictive algorithms can go when estimating weather impacts on power systems. 

 



 

102 

 

REFERENCES 

[1] Eaton, “Blackout and Power Outage Tracker,” 2019 [Online] Available: 

https://switchon.eaton.com/blackout-tracker 

[2] We Energies, “Power outage causes and restoration,” 2019 [Online] Available: 

https://www.we-energies.com/outages_safety/reporting/outages.htm 

[3] M. Panteli, P. Mancerella, “Influence of extreme weather and climate change on the 

resilience of power systems: Impacts and possible mitigation strategies,” Electric Power 

Systems Research, Vol. 127, pp. 259–270, 2015. 

[4] Q. Yan, T. Dokic, M. Kezunovic, “Predicting Impact of Weather Caused Blackouts on 

Electricity Customers Based on Risk Assessment,” IEEE Power and Energy Society 

General Meeting, Boston, MA, July 2016. 

[5] T. Dokic, M. Kezunovic, "Real-Time Weather Hazard Assessment for Power System 

Emergency Risk Management," CIGRE US National Committee 2017 Grid of the Future 

Symposium, Cleveland, OH, October 2017. 

[6] E. Britt, “Hurricanes Harvey and Irma: Electric Industry Impacts, Restoration, and Cost 

Recovery,” Infrastructure, Vol. 57, No. 1, Fall 2017. 

[7] M. Panteli, P. Mancarella, “Influence of extreme weather and climate change on the 

resilience of power systems: Impacts and possible mitigation strategies,” Electric Power 

Systems Research, Vol. 127, October 2015, pp. 259-270. 

[8] P. Hines, et al., “Trends in the History of Large Blackouts in the United States,“ IEEE 

Power and Energy Society General Meeting, IEEE, 2008. 

[9] A. Kenward, and U. Raja, “Blackout: Extreme Weather, Climate Change and Power 

Outages,”2014 [Online] Available: http://assets.climatecentral.org/pdfs/PowerOutages.pdf 



 

103 

 

[10] M. Kezunovic, Z. Obradovic, T. Dokic, S. Roychoudhury, "Systematic Framework for 

Integration of Weather Data into Prediction Models for the Electric Grid Outage and Asset 

Management Applications," The Hawaii International Conference on System Sciences - 

HICSS, Waikoloa Village, Hawaii, January 2018. 

[11] A. Baggini, “Handbook of Power Quality,” Wiley, July 2008. ISBN: 978-0-470-75423-8 

[12] North American Electric Reliability Council, “Technical Analysis of the August 14, 2003, 

Blackout: What Happened, Why, and What Did We Learn?” Report to the NERC Board 

of Trustees by the NERC Steering Group, July 2004. 

[13] U.S.-Canada Power System Outage Task Force, “Final Report on the Implementation of 

the Task Force Recommendations” September 2006. 

[14] NEI Electric Power Engineering, New Hampshire December 2008 Ice Storm Assessment 

Report, Oct. 2009. 

[15] R. J. Campbell, “Weather-Related Power Outages and Electric System Resiliency,” 

Congressional Research Service, Aug. 2012. 

[16] Federal Energy Regulatory Commission Untied States Government, “Utility Vegetation 

Management Final Report,” Mar. 2004. 

[17] T. Dokic, P.-C. Chen, M. Kezunovic, "Risk Analysis for Assessment of Vegetation Impact 

on Outages in Electric Power Systems," CIGRE US National Committee 2016 Grid of the 

Future Symposium, Philadelphia, PA, October-November 2016. 

[18] Carroll Electric Cooperative, “Cost Analysis for Integrated Vegetation Management 

Plan,” 20 April 2010. [Online] Available: 

http://www.carrollecc.com/files/pdf/cecc_finley_cost_study.pdf 



 

104 

 

[19] M. Kezunovic, T. Dokic, "Predictive Asset Management Under Weather Impacts Using 

Big Data, Spatiotemporal Data Analytics and Risk Based Decision-Making," 10th Bulk 

Power Systems Dynamics and Control Symposium – IREP’2017, Espinho, Portugal, 

August 2017. 

[20] T. Dokic, P. Dehghanian, P.-C. Chen, M. Kezunovic, Z. Medina-Cetina, J. Stojanovic, Z. 

Obradovic "Risk Assessment of a Transmission Line Insulation Breakdown due to 

Lightning and Severe Weather," HICCS – Hawaii International Conference on System 

Science, Kauai, Hawaii, January 2016. 

[21] R. S. Gorur, et al., “Utilities Share Their Insulator Field Experience,” T&D World 

Magazine, Apr. 2005, [Online] Available: http://tdworld.com/overhead-

transmission/utilities-share-their-insulator-field-experience 

[22] P. R. Ilich, R. Riddles, W. Haak, R. Frowd, “Application of CIM model for enterprise wide 

power system model for Planning, Protection and Operations, “ Power and Energy Society 

General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 

Pittsburgh, PA, July 2008. 

[23] A. Abiri-Jahromi, M. Parvania, F. Bouffard, M. Fotuhi-Firuzabad, “A Two-Stage 

Framework for Power Transformer Asset Maintenance Management—Part I: Models and 

Formulations, “ Power Systems, IEEE Transactions on, Vol. 28, No. 2, pp. 1395-1403, 

October 2012. 

[24] T. Jinrui, Y. Xianggen, Z. Zhe, “Modeling Technology in Traveling- Wave Fault Location, 

“ TELEKOMNIKA, Vol. 11, No. 6, pp. 3333-3340, Jun. 2013. 

http://tdworld.com/overhead-transmission/utilities-share-their-insulator-field-experience
http://tdworld.com/overhead-transmission/utilities-share-their-insulator-field-experience


 

105 

 

[25] J. R. Marti “Accurate modeling of frequency-dependent transmission lines in 

electromagnetic transient simulations, “ IEEE Trans. Power Apparatus and Syst., Vol. 

PAS-101, No. 1, pp. 147-157, Jan. 1982. 

[26] M. Rui, H. Renmu, W. Peng, “A Multiobjective Operation Planning Model With 

Transmission Constraints and Load Characteristic of Distribution System, “ Transmission 

and Distribution Conference and Exhibition, 2005/2006 IEEE PES, Dallas, TX, May 2006. 

[27] S. Schlegel, R. Schwerdfeger, D. Westermann, A. Kuester, “Modelling of transmission 

system operation in Europe for enhanced security of supply, “ EUROCON, 2013 IEEE, 

Zagreb, July 2013. 

[28] National Oceanic and Atmospheric Administration, “Radar Data in the NOAA Big Data 

Project,” [Online] Available: https://www.ncdc.noaa.gov/dataaccess/radar-data/noaa-big-

data-project 

[29] National Oceanic and Atmospheric Administration, “Satellite Data,” 2017 [Online] 

Available: https://www.ncdc.noaa.gov/data-access/satellite-data 

[30] National Oceanic and Atmospheric Administration, “Automated Surface Observing 

System (ASOS),” [Online] Available: https://www.ncdc.noaa.gov/dataaccess/land-based-

station-data/land-baseddatasets/automated-surface-observing-system-asos 

[31] Vaisala, “National Lightning Detection Network – Technical Specification,” 2017 [Online] 

Available: 

http://www.vaisala.com/en/products/thunderstormandlightningdetectionsystems/Pages/N

LDN.aspx 

https://www.ncdc.noaa.gov/data-access/satellite-data
http://www.vaisala.com/en/products/thunderstormandlightningdetectionsystems/Pages/NLDN.aspx
http://www.vaisala.com/en/products/thunderstormandlightningdetectionsystems/Pages/NLDN.aspx


 

106 

 

[32] National Digital Forecast Database (NDFD) Tkdegrib and GRIB2 DataDownload and 

ImgGen Tool Tutorial, NWS, NOAA. 2017 [Online] Available: 

http://www.nws.noaa.gov/ndfd/gis/ndfd_tutorial.pdf 

[33] Elliott, Lee F., David D. Diamond, C. Diane True, Clayton F. Blodgett, Dyan Pursell, 

Duane German, and Amie Treuer-Kuehn. 2014. Ecological Mapping Systems of Texas: 

Summary Report. Texas Parks & Wildlife Department, Austin, Texas. 

[34] TNRIS, “Maps & Data,” [Online] Available: www.tnris.org/get-data 

[35] TNRIS, Lidar Data, [Online] Available: https://tnris.org/news/2017-06-12/tnris-lidar-data-

now-available-download/ 

[36] J. Endrenyi, et al., “The present status of maintenance strategies and the impact of 

maintenance on reliability,” IEEE Trans. on Power Sys, Nov. 2001, pp. 638-646.  

[37] Nelson, W. “Analysis of accelerated life test data-Part I: The Arrhenius model and 

graphical methods,” IEEE Transactions on Electrical Insulation, Vol. 4, pp. 165-181, 1971.  

[38] J. Endrenyi et al., “The present status of maintenance strategies and the impact of 

maintenance on reliability,” IEEE Transactions on Power Systems, Vol. 16, No. 4, pp. 638-

646, Nov 2001. 

[39] S. Natti, M. Kezunovic, "Assessing Circuit Breaker Performance Using Condition-based 

Data and Bayesian approach," Electric Power Systems Research, Vol. 81, No. 9, pp. 1796-

1804, September 2011. 

[40] Yeddanapudi, S. R. K., et al. “Risk-based allocation of distribution system maintenance 

resources,” IEEE Transactions on Power Systems, Vol. 23, No. 2, pp. 287-295, 2008. 



 

107 

 

[41] Abiri-Jahromi, et al., "An efficient mixed-integer linear formulation for long-term 

overhead lines maintenance scheduling in power distribution systems." IEEE Transactions 

on Power Delivery, Vol. 24, No. 4, pp. 2043-2053, 2009. 

[42] Liu, Nian, et al., "Asset Analysis of Risk Assessment for IEC 61850-Based Power Control 

Systems—Part I: Methodology." IEEE Transactions on Power Delivery Vol. 26, No. 2, pp. 

869-875, 2011. 

[43] Liu, Nian, et al., "Asset analysis of risk assessment for IEC 61850-based power control 

systems—Part II: Application in substation." IEEE Transactions on Power Delivery Vol. 

26, No. 2, pp. 876-881. 2011. 

[44] Qiu, Jian, et al. "Nonparametric regression-based failure rate model for electric power 

equipment using lifecycle data." IEEE Transactions on Smart Grid, Vol. 6, No. 2, pp. 955-

964, 2015. 

[45] Liu, Xindong, et al. "Risk assessment in extreme events considering the reliability of 

protection systems." IEEE Transactions on Smart Grid Vol. 6, No. 2, pp. 1073-1081, 2015. 

[46] P. Wang, and Roy Billinton. "Reliability cost/worth assessment of distribution systems 

incorporating time-varying weather conditions and restoration resources." IEEE 

Transactions on Power Delivery, Vol. 17, No. 1, pp. 260-265, 2002. 

[47] L. Treinish et al., “Operational utilization and evaluation of a coupled weather and outage 

prediction service for electric utility operations,” in Proc. 2nd Conf. Weather Climate New 

Energy Economy, Seattle, WA, USA, Jan. 2011. 

[48] D. Lubkeman, and D. E. Julian. "Large scale storm outage management." Power 

Engineering Society General Meeting, IEEE, Denver, CO, 2004. 



 

108 

 

[49] G. Li, , et al. "Risk analysis for distribution systems in the northeast US under wind 

storms." IEEE Transactions on Power Systems, Vol. 29, No. 2, pp. 889-898, 2014. 

[50] D. Yates, et al. "Stormy weather: Assessing climate change hazards to electric power 

infrastructure: A Sandy case study." IEEE Power and Energy Magazine, Vol. 12, No. 5, 

pp. 66-75, 2014. 

[51] M. Panteli, et al. "Power System Resilience to Extreme Weather: Fragility Modelling, 

Probabilistic Impact Assessment, and Adaptation Measures." IEEE Transactions on Power 

Systems, Vol. 32, No. 5, pp. 3747 – 3757, 2016. 

[52] C. Chen, et al., "Modernizing Distribution System Restoration to Achieve Grid Resiliency 

Against Extreme Weather Events: An Integrated Solution," Proceedings of the IEEE, Vol. 

105, No. 7, pp. 1267 – 1288, 2017. 

[53] T. Dokic, M. Kezunovic, “Predictive Risk Management for Dynamic Tree Trimming 

Scheduling for Distribution Networks,” IEEE Transactions on Smart Grid, Early Access, 

September 2018. 

[54] D. T. Radmer, P. A. Kuntz, R. D. Christie, S. S. Venkata, R. H. Fletcher, “Predicting 

Vegetation-Related Failure rates for Overhead Distribution Feeders,” IEEE Transactions 

on Power Delivery, Vol. 17, No. 4, pp. 1170-1174, October 2002. 

[55] R. Sievanen and T. E. Burk, “Adjusting a process-base growth model for varying site 

conditions through parameter estimation,” Can. J. Forest Res., Vol. 23, No. 9, pp. 1837–

1851, Sept. 1993. 

[56] D. C. Hamlin and R. A. Leary, “An Integral—Differential equation model of tree height 

growth,” in Proc. IUFRO Conf., Vol. 2, Minneapolis, MN, pp. 683–690, Aug. 1987,  



 

109 

 

[57] P. A. Kuntz, R. D. Christie, S. S. Venkata, “Optimal Vegetation Maintenance Scheduling 

of Overhead Electric Power Distribution Systems,” IEEE Transactions on Power Delivery, 

Vol. 17, No. 4, pp. 1164-1169, October 2002. 

[58] J. Wingfield, “New York Power Authority Develops Vegetation Management Solution for 

High-Voltage Transmission Lines with GIS,” ArcNews, Vol. 27, No. 1, pp. 35-, ESRI 

Spring 2005. 

[59] P. A. Kuntz, R. D. Christie, S. S. Venkata, “A Reliability Centered Optimal Visual 

Inspection Model for Distribution Feeders,” IEEE Transactions on Power Delivery, Vol. 

16, No. 4, pp. 718-723, October 2001. 

[60] S. Guikema, R. A. Davidson, H. Liu, “Statistical Models of the Effects of Tree Trimming 

on Power System Outages,” IEEE Transactions on Power Delivery, Vol. 21, No. 3, pp. 

1549-1557, July 2006. 

[61] Y. Kobayashi, G. G. Karady, G. T. Heydt, R. G. Olsen, “The Utilization of Satellite Images 

to Identify Trees Endangering Transmission Lines,” IEEE Transactions on Power 

Delivery, Vol. 24, No. 3, pp. 1703-1709, July 2009. 

[62] Y. Kobayashi, G. G. Karady, G. T. Heydt, M. Moeller, R. G. Olsen, “Satellite Imagery for 

the Identification of Interference with Overhead Power Lines,” PSerc Report 08-02, 

January 2008. 

[63] B. D. Russell, C. L. Benner, J. Wischkaemper, W. Jewell, J. McCalley, “Reliability Based 

Vegetation Management Through Intelligent System monitoring,” PSerc Report 07-31, 

September 2007. 

[64] J. A. Wischkaemper, C. L. Benner, B. D. Russell, “Electrical Characterization of 

Vegetation Contacts with Distribution Conductors – Investigation of Progressive Fault 



 

110 

 

Behavior,” Transmission and Distribution Conference and Exposition, Chicago, IL, April 

2008. 

[65] P.-C. Chen, T. Dokic, N. Stokes, D. W. Goldberg, M. Kezunovic, “Predicting Weather-

Associated Impacts in Outage Management Utilizing the GIS Framework,” IEEE/PES 

Innovative Smart Grid Technologies Latin America (ISGT-LA), Montevideo, Uruguay, 

October 2015. 

[66] I. M. Rawi, et al., "Lightning study and experience on the first 500kV transmission line 

arrester in Malaysia," International Conference on Lightning Protection (ICLP), Shanghai, 

China, 2014. 

[67] W. Sones, S. M. Wong, “Overview on Transient Overvoltages and Insulation Design For 

a High Voltage Transmission System,” International Conference on High Voltage 

Engineering and Application (ICHVE), New Orleans, LA, 2010. 

[68] Z. G. Datsios, et al., "Estimation of the minimum shielding failure current causing 

flashover in overhead lines of the hellenic transmission system through ATP-EMTP 

simulations." International Conference on Lightning Protection (ICLP), Vienna, Austria, 

2012. 

[69] S. T. Mobarakei, T. Sami, B. Porkar, "Back flashover phenomenon analysis in power 

transmission substation for insulation coordination," 11th Int. Conf. on Environment and 

Electrical Engineering (EEEIC), Venice, May 2012. 

[70] S. Bedoui, et al., "Analysis of lightning protection with transmission line arrester using 

ATP/EMTP: Case of an HV 220kV double circuit line." 45th International IEEE 

Universities Power Engineering Conference (UPEC), Cardiff, Wales, UK, 2010. 



 

111 

 

[71] M. Kezunovic, et al., “Improved Transmission Line Fault Location Using Automated 

Correlation of Big Data from Lightning Strikes and Fault-induced Traveling Waves,” 48th 

Hawaii Int. Conf. Syst. Sciences (HICSS), Jan. 2015. 

[72] T. Sadovic, et al., “Expert System for Transmission Line Lightning Performance 

Determination”, CIGRE Int. Colloq. on Power Quality and Lightning, Sarajevo, Jun. 2012. 

[73] Zhang, J., et al. "Application of hourly meteorological records to atmospheric correction 

factors in insulation coordination under switching impulse voltage." High Voltage 

Engineering and Application, Int. Conf. on. IEEE, 2008. 

[74] R. Shariatinasab, et al., "Probabilistic evaluation of optimal location of surge arresters on 

EHV and UHV networks due to switching and lightning surges." IEEE Transactions on 

Power Delivery, Vol. 24, No. 4, pp. 1903-1911, 2009. 

[75] J. Stojanovic, et al,. "Semi-supervised learning for structured regression on partially 

observed attributed graphs," SIAM International Conference on Data Mining, Vancouver, 

Canada, April 30 - May 02, 2015. 

[76] P. R. Ilich, R. Riddles, W. Haak, R. Frowd, “Application of CIM model for enterprise wide 

power system model for Planning, Protection and Operations, “ Power and Energy Society 

General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 

Pittsburgh, PA, July 2008. 

[77] A. Abiri-Jahromi, M. Parvania, F. Bouffard, M. Fotuhi-Firuzabad, “A Two-Stage 

Framework for Power Transformer Asset Maintenance Management—Part I: Models and 

Formulations, “ Power Systems, IEEE Transactions on, Vol. 28, No. 2, pp. 1395-1403, 

October 2012. 



 

112 

 

[78] T. Jinrui, Y. Xianggen, Z. Zhe, “Modeling Technology in Traveling- Wave Fault Location, 

“ TELEKOMNIKA, Vol. 11, No. 6, pp. 3333-3340, Jun. 2013. 

[79] J. R. Marti “Accurate modeling of frequency-dependent transmission lines in 

electromagnetic transient simulations, “ IEEE Trans. Power Apparatus and Syst., Vol. 

PAS-101, No. 1, pp. 147-157, Jan. 1982. 

[80] M. Rui, H. Renmu, W. Peng, “A Multiobjective Operation Planning Model With 

Transmission Constraints and Load Characteristic of Distribution System, “ Transmission 

and Distribution Conference and Exhibition, 2005/2006 IEEE PES, Dallas, TX, May 2006. 

[81] Saber, A. Y., Alam, A. R., ”Short-term load forecasting using multiple linear regression 

for Big Data< In Computational Intelligence (SSCI), 2017 IEEE Symposium Series on, pp. 

1-6.  

[82] B. Zhao, J. Cao, Z. Zhu and H. Zhang, "A new transient voltage stability prediction model 

using Big Data analysis," IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia), 

Melbourne, VIC, pp. 1065-1069, 2016. 

[83] Mao, M., Wang, Y., Yue, Y., & Chang, L. (2017, October), “Multi-time scale forecast for 

schedulable capacity of EVs based on Big Data and machine learning,” In Energy 

Conversion Congress and Exposition (ECCE), 2017 IEEE, pp. 1425-1431, IEEE. 

[84] Wang, Y., Chen, Q., Kang, C., & Xia, Q. “Clustering of electricity consumption behavior 

dynamics toward Big Data applications,” IEEE transactions on smart grid, Vol. 7, No. 5, 

pp. 2437-2447, 2016. 

[85] Song, Y., Wang, W., Zhang, Z., Qi, H., & Liu, Y., “Multiple Event Detection and 

Recognition for Large-Scale Power Systems Through Cluster-Based Sparse Coding,” 

IEEE Transactions on Power Systems, Vol. 32, No. 6, pp. 4199-4210, 2017. 



 

113 

 

[86] Dahal, O. P., Brahma, S. M., & Cao, H. (2014) “Comprehensive clustering of disturbance 

events recorded by phasor measurement units,” IEEE Transactions on Power Delivery, 

Vol. 29, No. 3, pp. 1390-1397, 2014. 

[87] S. Ye, X. Wang, and Z. Liu, “Dual-stage feature selection for transient stability assessment 

based on support vector machine,” in Proc. IEEE CSEE, Vol. 30, pp. 28–34, 2010. 

[88] Wang, B., Fang, B., Wang, Y., Liu, H., & Liu, Y. “Power system transient stability 

assessment based on Big Data and the core vector machine,” IEEE Transactions on Smart 

Grid, Vol. 7, No. 5, pp. 2561-2570, 2016. 

[89] S. K. Tso, X. P. Gu, Q. Y. Zeng, and K. L. Lo, “An ANN-based multilevel classification 

approach using decomposed input space for transient stability assessment,” Elect. Power 

Syst. Res., Vol. 46, No. 3, pp. 259–266, 1998. 

[90] Zhu, A., Li, X., Mo, Z., & Wu, R. (2017, September) “Wind power prediction based on a 

convolutional neural network,” IEEE International Conference on In Circuits, Devices and 

Systems (ICCDS), pp. 131-135, 2017  

[91] Wang, X. Z., Zhou, J., Huang, Z. L., Bi, X. L., Ge, Z. Q., & Li, L. (2016, March) “A 

multilevel deep learning method for Big Data analysis and emergency management of 

power system,” IEEE International Conference on Big Data Analysis (ICBDA), pp. 1-5, 

2016  

[92] J. Hao et al., "Short-Term Power Load Forecasting for Larger Consumer Based on 

TensorFlow Deep Learning Framework and Clustering-Regression Model," 2nd IEEE 

Conference on Energy Internet and Energy System Integration (EI2), Beijing, pp. 1-6, 

2018. 



 

114 

 

[93] Stojanovic, J., Jovanovic, M., Gligorijevic, Dj., Obradovic, Z. " Semi-supervised learning 

for structured regression on partially observed attributed graphs" Proceedings of the 2015 

SIAM International Conference on Data Mining (SDM 2015) Vancouver, Canada, April 

30 - May 02, 2015. 

[94] V. Radosavljevic, S. Vucetic, Z. Obradovic, “Neural Gaussian Conditional Random 

Fields,” Proc. European Conference on Machine Learning and Principles and Practice of 

Knowledge Discovery in Databases, Nancy, France, September, 2014. 

[95] V. Radosavljevic, Z. Obradovic, S. Vucetic, “Continuous Conditional Random Fields for 

Regression in Remote Sensing, “ Proc. 19th European Conf. on Artificial Intelligence, 

August, Lisbon, Portugal, pp. 809-814, 2010. 

[96] N. Djurovic, V. Radosavljevic, Z. Obradovic, S. Vucetic, “Gaussian Conditional Random 

Fields for Aggregation of Operational Aerosol Retrievals,” IEEE Geoscience and Remote 

Sensing Letters, Vol. 12, No. 4, pp. 761 – 765, 2014. 

[97] A. R. Hileman, “Insulation Coordination for Power Systems,” CRC Taylor and Francis 

Group, LLC, 1999. 

[98] P. A. Kuntz, R. D. Christie, S. S. Venkata, “A Reliability Centered Optimal Visual 

Inspection Model for Distribution Feeders,” IEEE Transactions on Power Delivery, Vol. 

16, No. 4, pp. 718-723, October 2001. 

[99] T. Dokic, M. Kezunovic, "Optimized Asset Management in Distribution Systems Based 

on Predictive Risk Analysis," Mediterranean Conference on Power Generation, 

Transmission, Distribution and Energy Conversion - MEDPOWER, Dubrovnik, Croatia, 

November 2018. 



 

115 

 

[100] D. T. Radmer, P. A. Kuntz, R. D. Christie, S. S. Venkata, R. H. Fletcher, “Predicting 

Vegetation-Related Failure rates for Overhead Distribution Feeders,” IEEE Transactions 

on Power Delivery, Vol. 17, No. 4, pp. 1170-1174, October 2002. 

[101] R. Sievanen and T. E. Burk, “Adjusting a process-base growth model for varying site 

conditions through parameter estimation,” Can. J. Forest Res., Vol. 23, No. 9, pp. 1837–

1851, Sept. 1993. 

[102] D. C. Hamlin and R. A. Leary, “An integro—Differential equation model of tree height 

growth,” in Proc. IUFRO Conf., vol. 2, Minneapolis, MN, Aug. 1987, pp. 683–690. 

[103] B. D. Russell, C. L. Benner, J. Wischkaemper, W. Jewell, J. McCalley, “Reliability Based 

Vegetation Management Through Intelligent System monitoring,” PSerc Report 07-31, 

September 2007, [Online] Available: 

https://pserc.wisc.edu/documents/publications/reports/2007_reports/T-27_Final-

Report_Sept-2007.pdf. 

[104] J. A. Wischkaemper, C. L. Benner, B. D. Russell, “Electrical Characterization of 

Vegetation Contacts with Distribution Conductors – Investigation of Progressive Fault 

Behavior,” Transmission and Distribution Conference and Exposition, Chicago, IL, April 

2008. 

[105] P.-C. Chen, T. Dokic, N. Stokes, D. W. Goldberg, M. Kezunovic, “Predicting Weather-

Associated Impacts in Outage Management Utilizing the GIS Framework,” IEEE/PES 

Innovative Smart Grid Technologies Latin America (ISGT-LA), Montevideo, Uruguay, 

October 2015. 

https://pserc.wisc.edu/documents/publications/reports/2007_reports/T-27_Final-Report_Sept-2007.pdf
https://pserc.wisc.edu/documents/publications/reports/2007_reports/T-27_Final-Report_Sept-2007.pdf


 

116 

 

[106] P. A. Kuntz, R. D. Christie, S. S. Venkata, “Optimal Vegetation Maintenance Scheduling 

of Overhead Electric Power Distribution Systems,” IEEE Transactions on Power Delivery, 

Vol. 17, No. 4, pp. 1164-1169, October 2002. 

[107] J. Wingfield, “New York Power Authority Develops Vegetation Management Solution for 

High-Voltage Transmission Lines with GIS,” ArcNews, Vol. 27, No. 1, pp. 35-, ESRI 

Spring 2005. 

[108] IEEE Standards Association “IEEE Std. C62.82.1-2010 - IEEE Standard for Insulation 

Coordination –Definitions, Principles, and Rules,” 2010. 

[109] Rowland, S. M., and S. Bahadoorsingh. "A Framework Linking Insulation Ageing and 

Power Network Asset Management." IEEE International Symposium on Electrical 

Insulation, (ISEI), Vancouver, BC, Canada, 2008.  

[110] Tzimas, Antonios, and Simon M. Rowland. "Risk estimation of ageing outdoor composite 

insulators with Markov models." IET generation, transmission & distribution 6.8 (2012): 

803-810. 

[111] Tzimas, Antonios, et al. "Asset management frameworks for outdoor composite 

insulators." IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 19, No. 6, pp. 

2044 – 2054, 2012. 

[112] A. M. Mousa, K. D. Srivastava, “Effect of shielding by trees on the frequency of lightning 

strokes to power lines,” IEEE Transaction on Power Delivery, Vol. 3, No. 2, pp. 724-732, 

April 1988. 

[113] A. M. Mousa, “A study of the engineering model of lightning strokes and its application to 

unshielded transmission lines,” PhD dissertation, The University of British Columbia, Aug. 

1986. 



 

117 

 

[114] T. Sadovic, et al., “Expert System for Transmission Line Lightning Performance 

Determination”, CIGRE Int. Colloq. on Power Quality and Lightning, Sarajevo, Jun. 2012. 

[115] Á. L Orille-Fernández, N. Khalil., and S. B. Rodríguez, “Failure risk prediction using 

artificial neural networks for lightning surge protection of underground MV cables,” IEEE 

Transactions on Power Delivery, Vol. 21, No. 3, pp. 1278-1282, 2006. 

[116] R. Shariatinasab, et al., "Probabilistic evaluation of optimal location of surge arresters on 

EHV and UHV networks due to switching and lightning surges." IEEE Transactions on 

Power Delivery, Vol. 24, No. 4, pp. 1903-1911, 2009. 

[117] A. P. Sakis Meliopoulos, „Lightning and Overvoltage Protection,“ In: D. G. Fink, H. W. 

Beaty, editors. Standard handbook of electrical engineering. 16 th ed. New York: McGraw-

Hill; 2007, ISBN: 9780071762311 . 

[118] IEEE Standards, “International Standard IEC 62539 – IEEE 930: Guide for the statistical 

analysis of electrical insulation breakdown data,” 2007 

[119] 3D Land Mapping, Jet Propulsion Laboratory, California Institute of Technology. [Online] 

Available: http://lidarradar.jpl.nasa.gov/ 

[120] M. Kezunovic, L. Xie, and S. Grijalva, "The role of Big Data in improving power system 

operation and protection," 2013 Bulk Power Systems Dynamics and Control Symposium 

– IREP’2013, pp. 1-9, Rethymno, Greece, Aug. 2013. 

[121] ArcGIS, Esri. [Online] Available: https://www.arcgis.com 

[122] Python, [Online] Available: https://www.python.org/ 

[123] David J. Buckey, Bgis Introduction to GIS, 11/10/2013. [Online]. Available: 

http://bgis.sanbi.org/gis-primer/ 

[124] GARMIN, “What is GPS?” [Online] Available: http://www8.garmin.com/aboutGPS/ 

http://lidarradar.jpl.nasa.gov/
https://www.python.org/
http://bgis.sanbi.org/gis-primer/
http://www8.garmin.com/aboutGPS/


 

118 

 

[125] National Geospatial-Intelligence Agency, “NGA Standardization Document – Time-

Space-Position Information (TSPI), NGA.STND.0019_2.0 2012-04-05. 

[126] Network Time Foundation, “NTP: The Network Time Protocol,” [Online] Available: 

http://www.ntp.org/ 

[127] IEEE Standards, “IEEE 1588-2002,” 8 November 2002. 

[128] A. von Meier, A. McEachern, “Micro-synchrophasors: a promising new measurement 

technology for the AC grid,” i4Energy Seminar October 19, 2012. 

[129] V. Radosavljevic, K. Ristovski, Z. Obradovic, “Gaussian Conditional Random Fields for 

Modeling Patients’ Response to Acute Inflammation Treatment,” Proceedings of the 30th 

International Conference on Machine Learning, Atlanta, GA, 2013. 

[130] B. M. Ayyub, “Risk Analysis in Engineering and Economics,” CRC Press, 2003, ISBN: 

978-1-4665-1826-1, pp. 57-60. 

[131] M. Kezunovic, Z. Obradovic, T. Dokic, B. Zhang, J. Stojanovic, P. Dehghanian, and P. -

C. Chen,"Predicting Spatiotemporal Impacts of Weather on Power Systems using Big 

Data Science,"Pedrycz, Witold, Chen, Shyi-Ming (Eds.), Springer Verlag, Data Science 

and Big Data: An Environment of Computational Intelligence, ISBN 978-3-319-53474-9, 

2017. 

[132] IEEE Standards, “IEEE 1588-2002,” 8 November 2002. 

[133] Qin, T., Liu, T. Y., Zhang, X. D., Wang, D. S., & Li, H., “Global ranking using continuous 

conditional random fields,” In Advances in neural information processing systems, pp. 

1281-1288, 2009. 



 

119 

 

[134] V. Radosavljevic, S. Vucetic, Z. Obradovic, “Continuous Conditional Random Fields for 

Regression in Remote Sensing,” Proc. 19th European Conf. on Artificial Intelligence, 

August, Lisbon, Portugal, 2010. 

[135] T. Qin, T.-Y. Liu, X.-D. Zhang, D.-S. Wang, and H. Li, “Global Ranking Using Continuous 

Conditional Random Fields,” in Proceedings of NIPS’08, 2008, Vol. 21, pp. 1281–1288. 

[136] W. Jewell, J. Warner, J. McCalley, Y. Li, S. R. K. Yeddanapudi, “Risk-Based Resource 

Allocation for Distribution System Maintenance,” PSerc Report 06-26, August 2006, 

[Online] Available: 

https://pserc.wisc.edu/documents/publications/reports/2006_reports/T-24_Final-

Report_Aug-2006.pdf. 

[137] ArcGIS, “Iso Cluster Unsupervised Classification,” [Online] Available: 

http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/iso-cluster-

unsupervised-classification.htm 

[138] W. Tian, Y. Zheng, R. Yang, S. Ji, and J. Wang, “A Survey on Clustering based 

Meteorological Data Mining,” International Journal of Grid Distribution Computing, Vol. 

7, No. 6, pp. 229-240, 2014. 

[139] M. Kezunovic, T. Dokic, R. Said, “Optimal Placement of Line Surge Arresters based on 

Predictive Risk Framework using Spatio-Temporally Correlated Big Data,” CIGRE Paris, 

August 2018. 

https://pserc.wisc.edu/documents/publications/reports/2006_reports/T-24_Final-Report_Aug-2006.pdf
https://pserc.wisc.edu/documents/publications/reports/2006_reports/T-24_Final-Report_Aug-2006.pdf

