
ASSIGNMENT AND TRAJECTORY PLANNING FOR TWO ROBOTS

WITH SPORADIC COMMUNICATION AND RISK OF FAILURE

An Undergraduate Research Scholars Thesis

by

WILLIAM PARK

Submitted to the LAUNCH: Undergraduate Research office at
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Faculty Research Advisor: Dr. Dylan Shell

May 2023

Major: Computer Science

Copyright © 2023. William Park.

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or biohaz-

ards must be reviewed and approved by the appropriate Texas A&M University regulatory research

committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement applies

to activities conducted at Texas A&M and to activities conducted at non-Texas A&M facilities

or institutions. In both cases, students are responsible for working with the relevant Texas A&M

research compliance program to ensure and document that all Texas A&M compliance obligations

are met before the study begins.

I, William Park, certify that all research compliance requirements related to this Undergrad-

uate Research Scholars thesis have been addressed with my Faculty Research Advisor prior to the

collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research Compli-

ance & Biosafety office.

TABLE OF CONTENTS

Page

ABSTRACT . 1

DEDICATION . 3

ACKNOWLEDGMENTS . 4

1. INTRODUCTION. 5

1.1 Related Works . 7

2. METHODS . 9

2.1 Problem Formulation . 9
2.2 Problem Definition for Two Robot, Single Communication Case . 21
2.3 Rationalizing under Uncertainty. 23

3. RESULTS. 25

3.1 Experiment . 25
3.2 Theoretical Results . 31
3.3 Questions Left Partially Unanswered . 40

4. CONCLUSION. 43

REFERENCES . 44

APPENDIX: Analytical Approach . 45

ABSTRACT

Assignment and Trajectory Planning for Two Robots with Sporadic Communication and Risk of
Failure

William Park
Department of Computer Science and Engineering

Texas A&M University

Faculty Research Advisor: Dr. Dylan Shell
Department of Computer Science and Engineering

Texas A&M University

A common approach to distributing work to be completed simultaneously among different

robots is called Multi-Robot Task Allocation. Particularly in a path planning scenario, two robots

are assigned tasks to drive to two different destinations to perform some action, with emphasis on

speediness. This paper tackles the real-world situation where some robots may fail, leading to any

remaining robots reassigning their destinations to balance the differences in rewards and travel time

between different locations. The catch is that when robots are restricted to sporadic communication

due to environmental or resource constraints, surviving robots experience a delayed response to

these failures – the uncertainty leading to many possible worlds where a late reassignment hinders

making timely progress. We propose an approach where robots proactively plan their paths during

these intervals of uncertainty in anticipation of possible robot failures. Specifically, robots will

answer the question: to what location should I drive before my team’s next time of communication

to best react on average to possible news of their failures? Observe the case when one robot will

definitely fail – the other must drive directly to a particular destination. But when that same robot

will definitely live, the other might drive to a different destination to balance the team-wise reward.

1

For the case when that robot’s probability of failure is uncertain, we present that the surviving

robot’s trajectory will incorporate a path that lies somewhere in between the prior two. We give

examples where this is the best plan that handles delayed awareness of robot failure because, over

multiple trials, it will ultimately travel less while collecting more reward.

2

DEDICATION

To my parents who supported me through my college career. It is their love that had my back

when even my own back got injured.

3

ACKNOWLEDGMENTS

Contributors

I would like to thank my faculty advisor, Dr. Shell, for his guidance and support over

the past four semesters. The time, advice, and encouragement he has given me are immensely

appreciated, and I enjoyed learning about writing techniques and robotics from him.

Thanks also go to my friends and colleagues and the department faculty and staff for making

my time at Texas A&M University a great experience.

Finally, thanks to my family for their encouragement throughout my education.

Funding Sources

Undergraduate research did not receive funding.

4

1. INTRODUCTION

Things in life often don’t go the way we plan them to. Even worse — we may find out too

late that we deviated from our plans a long time ago!

Often, a late change in plans causes us to expend more time and energy than having known

about the change beforehand. Making progress towards plan A and changing to plan B expends

more energy than doing plan B from the beginning. In this paper, we explore the consequences of

delayed changes to plans in a Multi-Robot Task Allocation problem — a class of problems where

robots are each assigned tasks from a collection of tasks in the most efficient way possible.

Specifically, we would like to know, if robots have statistics about the future beforehand

— is there a different method of approaching their tasks that will allow them to anticipate changes

in the future? The problem becomes more clear in our particular domain of trajectory planning

— an instance of the Multi-Robot Task Allocation problem where mobile robots are assigned

to drive to different cities and do some actions to collect some reward. Changes to an assigned

plan arise due to some subset of robots failing before arrival. If robots have access to real-time

communication, they would be able to readjust their paths based on these changes, but in our

scenario, communication must be sporadic instead. This induces intervals of time where all living

robots are uncertain about the state of the rest of their teams before they communicate to check in.

Here, the question proposed becomes evident — if robots have statistics on the likelihood of all

robot failures, then is there a different method of driving to their assigned destination that will put

them in a better position to react to changes, i.e. switch destinations?

The problem constraints that are to be studied are problems that crop up often in the real

world. As advanced as robotics has gotten these days, it is still expected of robots to experience

failure at some point. This is because the environment robots are embodied in is often times com-

plex and unforgiving and even the systems that compose the robots themselves might be subject

to faults. For a team of robots, it is a worldly expectation that at least one will fail. It is then no

5

surprise that finding approaches that coexist with some robot failures is desired since we would

not want the entire team of robots to collapse just because one of them malfunctioned. For Multi-

Robot Task Allocation, the adaptation process to robot failure is straightforward: recompute the

assignment of remaining robots to tasks and have the robots go on with their updated tasks.

The hard case is the sporadic communication constraint. Issues like these naturally arise due

to environmental or resource constraints where real-time communication is not possible or viable.

For example, consider the underwater navigation scenario where two aquatic, mobile robots are

tasked with swimming to and investigating two coral reefs of differing informative value. Because

water isn’t an ideal medium for communicating and robots are sufficiently far apart where this

becomes a big problem, we want robots to schedule in advance times to surface above the water

in order to communicate while accessing terrestrial devices such as satellite communication [1].

We also want to incorporate this check-in within robots’ plans because they might be swimming

in a region of water where turbulent currents pose a risk of sweeping the robots away or causing

malfunctions so checking in on each other is a necessary part of making sure they adapt to get the

most informative value possible [2].

A resource constraint example might be robots deliberately restricting the number of times

they communicate to a finite set of points in time in order to preserve energy like their battery.

This example is highly applicable to many scenarios where some failure is possible and conserv-

ing energy is a potent issue. A key clarification to be made is that sporadic communication is

intentionally scheduled rather than experienced randomly and haphazardly. Unlike the random,

unknown times a phone in a tunnel will connect and disconnect from Wifi, robots have the precise

time they will communicate because they plan them ahead of time. The focus of our problem is

only on forecasting what event will occur at a specific future time.

More generally, a realistic problem encountered in real life is Multi-Robot Task Allocation

when communication between robots is unreliable and environmental changes occur that affect

future rewards. We explore planning for the communication model where robots are disconnected

for a while and later achieve global communication to dispense any unsent changes observed in

6

the environment. Some connectivity is important because it enables task-allocation algorithms to

realign robots based on the communicated changes toward a new optimal objective. The question

we seek to answer is if robots can forecast the probability of those changes occurring, what actions

should they take while not connected so that when they eventually relay any changes, the robots

realign and maximize their reward on average? We investigate this question for robots allocated to

destinations in a 2-D plane where a subset of robots failing is expected.

The common research theme underlying this question is the belief that doing additional

work ahead of time helps robots react to uncertain events in the future since we trust being pre-

pared for the unexpected is better than not. Currently, there are not many scholarships related to

Multi-Robot Task Allocation addressing these specific conditions — sporadic communication and

robot failure — proactively. The research will contribute a proactive strategy to this field for the

trajectory planning instance of the problem.

1.1 Related Works

Turpin et al. [3] demonstrate in the deterministic 2-D setting that utilizing task allocation

can help assign trajectories for n homogeneous robots to n destinations that minimize the total

distance traveled. Their method uses the Hungarian Algorithm to find the trajectories whose dis-

tances sum to be the shorted combined distance possible. Our research also follows this trajectory

generation idea where we compare optimal trajectory allocations for each subset of robots due to

robot failure and consider paths that maximize the expected reward across the subsets.

Liu and Shell [4] give a Hungarian algorithm variant that hands each robot an interval that

thresholds how much deviation from their current assignment they are willing to take before issuing

a global reallocation. The method in [4] leaves the magnitude of the violation for the reallocation

to handle; our approach seeks to minimize the variation of an anticipated violation.

A successor work to [4], Nam and Shell [5] approach the problem of uncertain rewards and

expensive communication that could make connectivity prohibitive with the philosophy that doing

more upfront work leads to better performance at run-time. They propose an upfront sensitivity

analysis to scope out cost regions for when current allocations become suboptimal and suggest

7

corrective methods that take advantage of it during run-time. These corrective methods are: di-

viding robots into sub-teams that only need to communicate internally, persisting with the current

allocation if it outweighs the cost of communicating, and communicating incrementally. These

methods allow the team to react to robot failures by reallocating with minimal communication or

knowing to persist if communicating is prohibitive. The difference between our research is that

in [5] they don’t make forecasts about changes that could happen and deal with that by optimiz-

ing — during planning time — the robots’ ability to react. In our research, we do assume these

and focus specifically on where robots should proactively move during run-time to best discover

changes, a communication event that could be prohibitive to the problem in [5]. Our research is

similar because our method of proactive movement to be better positioned for future changes takes

inspiration from doing sensitivity analysis ahead of time to have advanced knowledge of how to

react.

In the field of pursuit-evasion, Olsen et al. [6] study the problem where pursuer robots are

tasked with detecting an evader within a two-dimensional polygonal environment. The authors

propose a novel formulation of the pursuit-evasion problem to tackle the case when at least one

robot fails. The plan incorporates redundancy amongst the paths robots take ensuring the search

is not disturbed by any particular robot failure. The key similarity with our research is that we

both incorporate an idea of redundancy into our robots’ paths. Their redundancy is geometrical

— no matter which robot fails, the pursuers are guaranteed to search the entire space for evaders

— whereas our redundancy is probabilistic — based on forecasted data we ensure the robot’s path

will get us the most reward. One key difference is that our robots need to communicate in order to

adapt, whereas, their robots do not communicate and will achieve success by design.

An alternative approach for partially observable and decentralized conditions is multi-task

multi-agent deep reinforcement learning [7]. Here robots each learn a planning policy from ex-

perience by training agents to coordinate without communication, although robot failure is not

considered.

8

2. METHODS

This section provides a mathematical formulation of the Multi-Robot Task Allocation Prob-

lem for n robots under sporadic communication constraints and robot failures. The analysis is

specified for two robots and derives and computes a trajectory that optimizes the expectation of

rewards robots collect as well as a description of a plan for the team.

2.1 Problem Formulation

2.1.1 Multi-Robot Task Allocation

Robots in the set of n robots, R = {r1, . . . , rn}, are each designated to move to a different

destination from a set of locations,D = {d1, . . . , dn}, so that there is a one-to-one correspondence.

Their task isn’t considered finished until they have arrived at their destination and they do some

‘action’ to signify completion. The latter condition is supposed to allow cases when a robot arrives

at its destination but might want to wait for any unforeseen circumstances before deciding to move

elsewhere.

Task completion is followed by a reward whose quantity corresponds to the location it was

completed at, denoted by the map M : D → R. Then it is added to the negative reward incurred

from the time it took for that robot to move there. The linear function of that time to a real number,

ϕ : [0,∞)→ R, is the fee paid for travel expenses. The total reward the robot gets for completing

its mission is:

ψ(d, t) =M(d)− ϕ(t). (1)

One example of a reward is informative value. In the coral reef example from the intro-

duction, different coral reefs may have different informative values, i.e. coral reefs rarely visited

have more potential for new information than coral reefs visited often. The time it takes to travel

to a coral reef can be translated as the penalty for expending resources to gather information —

imposing a real-world trade-off between values and constraints. The example demonstrates the

applicability of the general problem to a broad domain.

9

Although the goal of the problem is to maximize the collective sum of rewards from the

team of robots, the catch is that at some moment along the way a subset of robots can fail —

eliminating them and their ability to finish their task for good. If the other robots continue none

the wiser, they risk the unfortunate circumstance of being sub-optimal.

Because robots fail randomly, we must consider every possible way robots can fail. The

ultimate goal then is to maximize the expected collective reward acquired from handling each event

where a different subset of robots fail.

2.1.2 Communication Model

Fortunately, the team is allotted a collection of k times from the set T = {τ1, . . . , τk}

for a chance to contact everyone to see who’s still alive and update their assignment accordingly.

Because there is a limit in the time window of when failure is possible, we assume that robots will

schedule their last time to communicate, τk, to occur after that.

2.1.3 Failure Model

In conjunction with delayed contacts, anytime during the interval [0, τk] a robot has a chance

of failing. Specifically, the probability density function of this phenomenon is modeled by an

exponential distribution — where the event of failure occurs independently and continuously

over all time. Additionally, the model captures the nature that robots can only fail once. We

believe this is a good approximation of the failure process because although the reasons for failure

at any point in time are various, the number of occurrences over an interval should follow a certain

trend which can be captured by the rate parameter of the distribution.

At communication time τi, robots obtain the most recent information about the state of

failures amongst the team. Anticipating this information could change in the future, robots can

leverage the failure model to forecast the probability that a robot will fail at their next scheduled

communication time τi+1, to inform themselves what the best move should be in the time prior.

We can model the forecasting as a weighted coin flip for each robot at time τi+1 since there are

only two possibilities possible for it. If the coin flips heads, the robot lives, otherwise it fails. The

10

weight to flip tails for a robot, ptails, is the integral of the exponential distribution from τi to τi+1.

The cumulative distribution function, with a rate of failure parameter λ,

F (x;λ) =


1− e−λx x ≥ 0,

0 x < 0

(2)

can be used to derive the following probability of flipping tails

ptails = F (τi+1;λ)− F (τi;λ). (3)

In the instance ofK communication checkpoints, the chance of failure is conditioned on the

robot’s previous survival. If T is the exponential random variable that is the time of robot failure,

and ∆t = τi+1 − τi, then the probability of failing in (τi, τi+1] conditioned on prior survival,

Pr (T > τi), is

Pr (T ≤ τi+1 | T > τi) = Pr(T ≤ ∆t) (4)

by memorylessness. Memorylessness makes the coin-flipping model work out when you weight

each coin based on the integral over the duration of time passed for each interval because the du-

ration implicitly conditions the weight on prior survival. For example, if a robot will communicate

two times, the weight of failure at the second communication is the probability of flipping heads

on the first communication, multiplied by the probability of flipping tails on the second.

Note that we make two seemingly contradictory statements between the communication

model and the failure model; the communication model says failure will stop being possible after

time τk but the failure model says that the failure possibility extends to infinity in equation 2. To

clarify, the failure density is a statement about how the hazard would behave if it extended to

infinity. But we assume a limit to the window of failure, so we can cut short the possibility of

failure at some time τk. Therefore, there is no contradiction.

11

2.1.4 Robot State Model

The robot can be in three states at any time t: alive, dead, or finished. The true state

of each robot is marked by G : [0,∞) → {ALIVE,DEAD,FINISHED}n. All the robots start

alive — G(0) = {ALIVE}n — and once a robot dies it stays dead — for the first time of death

t
(i)
d = inf{t | G(t)i = DEAD}, G(t)i = G(min(t, t

(i)
d))i. Robots die according to the exponential,

hazard function in the failure model. Robots are finished when they complete their task before they

die.

The problem is that robots do not know the true state G, so they must approximate it with

their subjective, delayed knowledge A, where A : [0,∞) → {ALIVE,DEAD,FINISHED}n.

Because robots are distributed, knowledge of who’s alive may only be acquired and disseminated

during the allotted K checkpoints, denoted for time τi as A(τi) = G(τi). Only until the next call

can they update their knowledge. That knowledge in the interval between two calls at times τi and

τi+1, where tinterval ∈ [τi, τi+1), is characterized as A(tinterval) = A(τi). Accordingly, robots are all

in sync at the start: where A(0) = G(0).

2.1.5 Trajectory Model

The trajectory a robot follows is a function from time and knowledge, to a location in the

plane — πi : [0,∞)× {ALIVE,DEAD,FINISHED}n → R2 — where index i corresponds to the

traveling robot. Denote the position as πi(A(t)i).

To get a function that tells the running-cost a robot accrues at any time t, make a function

Ci, where Ci : [0,∞) → R, that considers the time a robot finishes: t(i)f = inf{t | G(t)i =

FINISHED}. Then Ci(t) = ϕ(min(t, t
(i)
f)).

2.1.6 General Objective Function

Then the general utility function over the set of finished robots, F = {i | G(T)i =

FINISHED}, is

U =
∑
i∈F

M(πi(A(T)i))− Ci(T). (5)

12

The objective function we wish to maximize is the expectation of the utility —

E[U] (6)

— over the probability distribution of the failure model. Specifically, we wish to know what the

optimal policy, π∗
i , should be to maximize the expected utility.

We count only the finished robots’ rewards because the goal of the problem is to maximize

the sum of rewards of all alive robots that complete their mission. Any expenses accrued from

dead robots are disregarded since we don’t count something out of a robot’s control — failure —

against them. For example, if a robot explodes halfway towards its goal, it doesn’t matter how

much fuel has been spent prior — the whole fuel tank’s gone! And the robot’s trajectory policy

isn’t to be blamed for that.

In the same vein, if a robot happens to complete a task but fails before it is able to notify

the rest of the team, the reward cannot be counted since there is no way for some central authority

or the remaining robots to know about the success. This affects the remaining robots because one

robot, assuming radio silence meant that the failed robot didn’t finish the task, could decide to

switch to the supposed incompleted task left behind, only to discover when it arrives that the task

had been completed. We let this discovery count as a task completion in and of itself, to simplify

the robot’s behavior from having to switch again. Also, it makes sense since discovering the team

obtained a reward is a reward in itself.

Additionally, it is important to emphasize that time is the factor being balanced against

money, rather than distance. The reason is that the timed nature of incoming information from

communication becomes irrelevant when all the robot has to do is wait until the final communica-

tion before departing with the full knowledge. Because there is no penalty to waiting since all that

matters is the distance traversed, a strategy like this negates the thesis’ goal of understanding how

uncertainty over time impacts the way robots should move.

Assume from here on out that the paper will discuss the n = 2 case only. The explicit

13

formula for the expected utility is not written for the general case but is written in the case with

two robots and a single checkpoint in section 2.2.

2.1.7 Optimal Trajectory

There are two properties of an optimal trajectory we must show: it is composed of straight

line segments and the points connecting two line segments have restrictions to where they can be.

Suppose a robot communicates at τi and moves to another location by the time τi+1. This

is simply going from one point to another, and the simplest and fastest way to represent the path of

that motion is a straight line between them (supplemented with waiting if the robot arrives early).

It is prudent to represent it this way because we want the robots to travel as fast as they can to a

destination at τk. Additionally, we demonstrate next that there is no alternative to a straight path

for trajectories between checkpoint times either.

Given the robot is positioned on some point, P , at checkpoint time τi, the locations that the

robot can be at time τi+1 must be within the area of the circle of reachable points centered around

P . Given the robot moves at some velocity vi, the radius of this circle must be τi+1−τi
vi

units of

distance. For simplicity, we assume all vi = 1.

We consider a robot moving to a point — point P — that resides strictly in the circle interior

as waiting because there is nothing else to do after arriving at point P until the next checkpoint.

This implies no matter what coordinate point the robot moves to, the running-cost at the next

checkpoint is the same — the fee ϕ(τi+1 − τi). Then we can ask where an optimal P should be

located during this window.

Lemma 2.1.1. Specifically, the optimal location must reside on the arc of the circle to reach either

destination with the shortest distance. This holds when the circle does not intersect the line
←−→
d1d2.

Proof. The proof is by contradiction - given a point Q inside the circle, we can always show

an alternative point Q′ on the circumference of the circle that is better than it. By taking the

projection of Q onto the circumference to form Q′, moving down the line passing through Q that

is perpendicular to the line connecting the two destinations, you can use the Pythagorean theorem

14

to show that the distance from the projected point Q′ to either city is always less than or equal to

the corresponding distances to each city from Q, the point inside the circle.

Referencing Figure 1, let height h = ||Q − A|| and h′ = ||Q′ − A||. We know h′ < h by

the definition of orthogonal projection. Then their squares must be less than each other:

(h′)2 < h2.

Adding the base length X of triangle ∆QAd1 to both sides,

(h′)2 +X2 < h2 +X2.

By the Pythagorean theorem, we can rewrite the inequality in terms of the hypotenuses as

(a′)2 < a2.

This implies a′ < a proving that the projection point Q′ is closer to d1 than Q. We can reapply the

same argument to b′ to get the same result. Notice that the argument makes no statement about the

type of triangle so the proof generalizes to any triangle types not found in Figure 1.

15

Figure 1: Shows the orthogonal projection Q′ from Q towards the line segment connecting the
destinations. Distances a and b are how far it would take to move to destination d1 and
d2 from Q. Distances a′ and b′ are how far it would take to move to destination d1 and
d2 from Q′. X is the length of the base formed by triangles ∆QAd1 and ∆Q′Ad1. Y is

the length of the base formed by triangles ∆QAd2 and ∆Q′Ad2. The Pythagorean
theorem T a′ < a and b′ < b.

The intuitive meaning is that there is no reason to stop and wait prematurely for the next

checkpoint time. A robot should always use the full time between τi and τi=1 to get as far away

from its starting point P and as close to either city as much as possible - the circumference being

the outermost possible region for the robot to move to.

This argument generalizes to the multiple communication case.

Lemma 2.1.2. Given an arbitrary path taken, you can improve upon it by reapplying the projection

method from Lemma 2.1.1 which not only improves on the point you’re projecting down but also

the points on the subsequent path. This holds when the no τ -circles intersect the line
←−→
d1d2.

Proof. This is possible because every projection line is parallel so all points on the path will get

improved simultaneously. Then by repeating the process for later points, you end up with a path

16

that goes to every circumference possible. In Figure 2 an arbitrary path is shown that utilizes wait-

ing at a point before the next communication. The subsequent figures, Figure 3 and Figure 4 show

the shifting process in order. This proves moving to the circumference without utilizing waiting

will garner more reward than a strategy utilizing waiting, no matter how many communication

checkpoints there are.

Figure 2: Shows the path a robot takes denoted by the black arrows. Each circle around a point
represents the circle of reachable points until the next communication. Here, the robot
moved to the pink point, waited until the next communication, and moved to the blue
point. The triangles can be interpreted similarly to Figure 1 as the distances to either

destination. Their heights are both orthogonal to the same base d1d2.

17

Figure 3: Follows from Figure 2 where the motion starting from the pink point is shifted
perpendicularly downwards to the circumference of the first, black τ -circle. The

second, green τ -circle and the motion from the pink point are translated downwards but
their transformation stays the same. Notice the new red and orange points which

represent potential points of departure towards either destination. Because they lie on
the same perpendicular height-lines as before, we can apply Lemma 2.1.1

to show any departure travels less distance than without the shift. The red arrow shows the
improved path the robot should take to get to the red point over the previous path.

18

Figure 4: Follows from Figure 3 which demonstrates the iterative process of improving on a
subsequent τ -circle — the green circle here — following the logic of Lemma 2.1.1.

The red and yellow arrows show the new path that is proven to have departures (at the
arrow tips) closer in distance to either destination than the previous path.

Because the points must always reside on the circumference, it is not possible to reach the

circumference in time τi+1 − τi unless the robot goes in a straight path to the point on it. An

exception to this argument is when the circle of reachable points intersects with the line segment

between two destinations since moving past the line travels an unnecessary, extra distance.

The goal of specifying these two properties of an optimal trajectory is to simplify the prob-

lem to the question of where should these points connecting line segments be placed?

2.1.8 Optimal Assignment

Lemma 2.1.3. There is always one robot that never switches its assignment regardless of if the

other fails or not.

Proof. To prove by contradiction assume any arbitrary starting points for the two robots at the final

19

checkpoint time τk. Assume that they are in the case when both robots live. They must choose

one possible assignment out of the other. Because an optimal assignment is chosen, that means the

reward from one assignment must be greater than the other, that is

ψ(d1, tf11) + ψ(d2, tf22) > ψ(d1, tf21) + ψ(d2, tf12) (7)

where tfij denotes the time spent traversing to the destination by the i−th robot to destination dj .

Now imagine the case when either of the robots fail. If r2 failing leads r1 to move to d2, r1

failing leads r2 to move to d1, and we assume these are the optimal decisions, the following must

be true about the rewards:

ψ(d2, tf12) > ψ(d1, tf11) (8)

and

ψ(d1, tf21) > ψ(d2, tf22). (9)

Adding equations 8 and 9 you get

ψ(d1, tf21) + ψ(d2, tf12) > ψ(d1, tf11) + ψ(d2, tf22) (10)

which is a contradiction to equation 7 which we decided was an optimal assignment but equation

10 would suggest otherwise. Therefore, our assumption that all robots must switch must be false,

and thus, at least one robot never switches. We refer to the robot that could switch or not as the

“Choice Bot” as its decision depends on the optimal strategy. Finally, a caveat is that I can only

prove this for the single communication case.

There are two immediate consequences of lemma 2.1.3. First is that there must be 4 dif-

ferent strategies robots utilize - there are 2 different ways to assign two alive robots and 2 ways to

assign the Choice Bot when only it is alive, making a permutation of 4 total. Second is that if a

robot never switches, then the optimal trajectory for it must be a straight path from start to finish.

20

2.2 Problem Definition for Two Robot, Single Communication Case

2.2.1 Objective Function

In the 2 robots, 2 destinations, and one communication time case, there are four objective

functions depending on the assignment, assuming p1 and p2 are the probabilities the coin flips

heads for each robot and the destination that at least one robot never switches from is d2 (assume

M(d2) ≥M(d1)):

“Never-Switch” — r1 always goes to d1 and r2 always goes to d2:

p1 ψ(d1, ||d1 − r1||) + p2 ψ(d2, ||d2 − r2||). (11)

“Switch-If-Needed” — r1 goes to d1 if r2 lives. r1 goes to d2 otherwise. r2 always goes to d2:

p1 (p2 ψ(d1, ||d1 − q1||) + (1− p2)ψ(d2, ||d2 − q1||)− τ) + p2 ψ(d2, ||d2 − r2||). (12)

“Never-Switch Swapped” — r1 always goes to d2 and r2 always goes to d1:

p1 ψ(d2, ||d2 − r1||) + p2 ψ(d1, ||d1 − r2||). (13)

“Switch-If-Needed Swapped” — r2 goes to d1 if r1 lives. r2 goes to d2 otherwise. r1 always goes

to d2:

p2 (p1 ψ(d1, ||d1 − q2||) + (1− p1)ψ(d2, ||d2 − q2||)− τ) + p1 ψ(d2, ||d2 − r1||). (14)

It is already assumed that the optimal points for robots to move to for equations 11 and

13 lie on the straight line from start to destination because, if robots never switch their initial

assignment, then the straight path must be the optimal one. For equations 12 and 14 we will

use calculus methods to find the optimal locations, q1 and q2, to move to for each corresponding

strategy. Finally, we will take the max over all objective functions to find the optimal strategy and

21

its corresponding optimal location.

2.2.2 Reduction to Polar Coordinates

Let’s focus on the general form of objective functions 12 and 14. When maximizing these

functions with respect to some point q, we can get rid of constant terms and scalar factors that

never change. This boils the form of each equation down to:

−p ||d1 − q||+−(1− p) ||d2 − q|| (15)

where q is restricted to some point along the circle. Then the maximization problem of this objec-

tive function becomes a minimization problem when you take out the negative.

minimize
θ

p ||d1 − q||+ (1− p) ||d2 − q||

subject to

||q − r|| = τ

This is important because we can convert optimizing for a point in two dimensions into a

problem of one dimension with polar coordinates where the polar coordinate of q can be denoted

by (τ, θ) assuming we center the coordinate frame with respect to the robot in question.

After we simplified the equation we used numerical methods to solve the optimization

problem due to being unable to find an algebraic expression for the solution. The attempt at solving

the problem analytically is in the appendix below.

2.2.3 Numerical Methods

We used calculus methods to solve the objective equations: for each objective, we took the

derivative to find the critical points, found the critical points at the greatest local maxima, and took

the maximum over all objective function maxima to select the best strategy. We used a software

package to implement the solution process.

22

2.3 Rationalizing under Uncertainty

This problem is about what would be the rational actions for robots to take under uncer-

tainty — an open-ended question with many models and at many times, the choice between models

is subject to a human-value judgment.

In our model, for rationality, our robots follow the principle of maximum expected utility

— where in our particular instance the utility is dollars earned, and agents seek to maximize the

average returns over all possible states of team-wide robot failure. This model is generally regarded

as the starting framework for what rational agents should do when faced with uncertainty. A

justification for using this framework is that you can derive it from a set of principles we regard as

rational: orderability, transitivity, continuity, substitutability, monotonicity, decomposability [8].

Another problem in our decision-making we made was to make the reward of dollars earned

risk-neutral. This means the utility value of money is its face value — one-to-one linear. This

is important to highlight because there are other ways of modeling the utility of money such as

taking the logarithm of money as the utility function to represent diminishing returns [8]. This

formulation characterizes agents who are risk-averse and the choice is backed up by empirical

studies. There is also another curve for risk-seeking agents. Our choice to stick with being risk-

neutral was made because we didn’t have a reason for robots to prefer being risky or not as that

detail was not pertinent to our main goal of answering what location should robots move to, to

anticipate uncertainty.

As an aside, the optimizer’s curse is a phenomenon where the optimized solution based

on estimated values can be sub-optimal when applied in the real-world [8]. If we make expected

utilities from estimates rather than their true values, selecting the choice that leads to the highest

expected utility can result in an overestimation of the true value. While this phenomenon can occur

in some optimization processes, it does not apply to us since we use the exact expected utility to

compare our choices, rather than estimated values.

Alternative models for rationality may be to minimize regret or to take a robust decision that

finds the best possible result in the worst case. The choice between these models and the principle

23

of maximum expected utility is more of a human-value judgment rather than a comparison between

rewards because all these are models for different ways an agent can be rational. Which way is

the best isn’t something quantifiable because a selection is based on the belief one model is more

rational than the other, which is a human choice. Therefore, we will stick with the standard model

of rationality of maximizing expected utility.

24

3. RESULTS

This section covers the experimental validation of our optimal strategy followed by theo-

retical results about the geometric structure of the problem and solution.

3.1 Experiment

3.1.1 Data Collection

For the experiment, three different arrangements of robots, destinations, checkpoints, and

failure rates are considered. For each arrangement, we compare the path given by our optimal

strategy contrasted by strategies where either the robot always heads in the direction of d1 or d2.

We will run a 100,000-independent-trial, software simulation where robots fail randomly along the

way according to our failure model and robots get an opportunity to change their destination and

trajectory at communication checkpoints. Under the same conditions for each trial, each strategy

will receive a reward at task completion, and a moving, cumulative average of total scores over

trials is stored.

We plot the moving average over trials for each strategy to measure the expected reward

each strategy converges to. Converging at higher rewards means the strategy does better in the

long run. Additionally, the theoretical expected value will be plotted as a horizontal line alongside

the moving averages as a value of reference of the optimal expected, achievable value. We expect

the moving average of the optimal strategy’s reward will converge to this theoretically computed

expected reward.

3.1.2 Results

The first two experiments showcase the single checkpoint case and the third experiment

will be a double checkpoint case.

For the first experiment, the locations as shown in Figure 5 of the r1, r2, d1, and d2 are at

(0, 10), (10, 10), (−10, 0), and (10, 0) respectively. M(d1) = 10 andM(d2) = 15. The checkpoint

is 5 units of time. Finally, both the failure rates are log 2
5

.

25

Figure 5: The P0s for each robot show the optimal coordinates to move to maximize expected
utility. The dashed arrows show the assignment and the percentage of time the robot
will follow it. The percentages are derived by flipping 50-50 coins. For example, r1

will go to d2 when r2 dies and r1 lives. This is the probability two fair coins flip head
and tail — 25.0%.

26

Figure 6: Shows the running average-reward over trials plot. The average reward from following
the optimal path converges to the theoretical expected value.

For the second experiment, the locations as shown in Figure 7 of the r1, r2, d1, and d2 are

at (7, 10), (7, 10), (−10, 0), and (10, 0) respectively. M(d1) = 10 and M(d2) = 15. The check-in

point is 5 units of time. Finally, the failure rate for r1 is log 10
5

and the failure rate for r2 is log 5
5

.

27

Figure 7: The golden point P0 is the optimal coordinate for r1 to move. The pink point P0 is the
optimal coordinate for r2 to move. The dashed arrows show that 2.0% of the time r1

will go to d1. But the 8.0% of the time r2 fails and r1 lives, r1 will switch to d2.

28

Figure 8: Shows the running average-reward over trials plot. The average reward from following
the optimal path converges to the theoretical expected value.

Figures 6 and 8 show in both experiments that the running average-reward of following the

optimal path converges to the theoretically estimated value. This validates our methodology for

correctness as the Law of Big Numbers says that the average of many trials should converge to

the expectation. The running average of going in the direction of d2 in Figure 8 is close to the

theoretically expected reward, but will never converge to it as it is not the optimal direction for r1

to move in.

Finally, in experiment 3, we validated the theoretical result for two checkpoints. All the

conditions shown in Figure 9 are the same as experiment 1 except for the checkpoint times and

rate of failures. There are two checkpoint times at τ1 = 3 and τ2 = 6. r1’s rate of failure is log 2
6

and r2’s rate of failure is log 10/3
6

.

29

Figure 9: The line segments joined by points P0 and P1 show the optimal path each robot
should move to maximize the expected reward. The dashed arrow at the golden point
P0 shows r1 will move to d2 22.61% of the time it discovers r2 failed at τ = 3. The

arrows at the golden point P1 show the possible cases at τ = 6 if both robots were still
alive at τ = 3. r2 never switches from its destination at any point in time.

30

Figure 10: Shows the running average-reward over trials plot. The average reward from
following the optimal path converges to the theoretical expected value.

Figure 10 shows that for the two-checkpoint case, the running average converges to the

optimal, theoretically-expected value, validating that our methodology generalizes to more than

one checkpoint.

3.2 Theoretical Results

Augmenting our numerical approach, we provide geometric explanations and observations

for several properties of the problem. The following five topics describe them — the first four

about the single check-in case and the last on the k check-in case:

1. Which destination should a robot go to — introduction to the one-sided, reward hyperbola.

2. When is switching relevant to the problem?

3. How do you find the robot that never switches?

4. When do we prefer one strategy over another?

5. Experimental observations on robot paths for k checkpoints.

31

3.2.1 Which Destination Should a Robot Go to?

Suppose r2 is the robot that never switches. Given any position q on the 2-D plane that r1

finds itself in, should it go to d1 or d2? Explicitly, for which q should r1 go to d2 over d1 to get

more reward? The following equation compares the expected reward between the two decisions:

p1 ψ(d1, ||d1 − q||+ τ) < p1
(
p2 ψ(d1, ||d1 − q||+ τ)

+ (1− p2)ψ(d2, ||d2 − q||+ τ)
)

(16)

Deriving the end result, a well-studied form of an equation is found:

||d2 − q|| − ||d1 − q|| < ϕ−1(M(d2)−M(d1)) (17)

This is the equation for the hyperbola, specifically a one-sided one, where d1 and d2 are the

foci and the right-hand side of the equation is a constant. This equation says that you should go

to the destination that’s on the same side of the hyperbola as your location q because the relative

reward is higher. Let this be known as the hyperbola property.

This hyperbola is important because it says a lot about the relationship between rewards

and distances and is used to explain subsequent interesting properties of the problem. Assume for

simplicity that ϕ(t) = t. An example is shown in Figure 11

For example, if you constrain q to be the set of points on the arc of the τ -circle around r1,

each section of the arc, that is divided by the hyperbola, prescribes which destination the robot

should go to to get the most reward.

32

Figure 11: A simple example of a one-sided hyperbola for equation 17 when M(d1) = 10 and
M(d2) = 15. The shaded region is the set of all points where the equation holds true.

τ = 3.35-circles are being shown around the robots.

Additionally, if q is exactly on the hyperbola line, then the robot is indifferent to either

destination — going to either one will give the same reward.

Finally, if the absolute value of the difference in reward is greater than the distance between

the two destinations — |M(d2)−M(d1)| > ||d2− d1||— then no matter where the robot is on the

plane, there is only one destination that will give more reward, as shown in Figure 12.

33

Figure 12: An example of a one-sided hyperbola when M(d1) = 10 and M(d2) = 30. Because
the difference in reward is 20, the same as the distance between d1 and d2, all the
points are shaded. This indicates no matter where the robot starts or ends up at,

moving to d2 will always have more reward than going to d1.

3.2.2 When is Switching Relevant to the Problem?

We can determine if a robot could potentially switch assignments by the starting locations

of the two robots.

Lemma 3.2.1. If the starting positions of both robots are on opposite sides of the hyperbola, then

no switching will occur.

Proof. Neither robot will ever go to a destination on the opposite side of the hyperbola from itself;

both will remain on their own side. When both are alive, if they both go to the opposite side, their

reward will be sub-optimal compared to staying on the same side by the hyperbola property.

More generally, robots will be losing out on reward every time they cross the hyperbola boundary

34

to go to another destination. If they choose to cross back, then they wasted even more potential

reward. Because there is no merit for a robot to cross boundaries and each robot has its own unique

destination to go to, the optimal policy will never have switching.

Lemma 3.2.2. If the starting positions of both robots are on the same side of the hyperbola, then

switching might occur.

Proof. Let d2 be the destination on the same side as the robots. We know by Lemma 2.1.3 that one

robot will never switch so choose r2 as the robot that never switches.

Case 1: r2 goes to d1. Then since r1 is on the same side as d2, by the hyperbola property

it should always go to d2. So no switching occurs. This is the uninteresting case.

Case 2: r2 goes to d2. Suppose the case when both robots are alive by time τ . Then by the

restriction of task assignment, r1 must go to d1. Suppose the case when r2 fails. Then r1 could go

to d2 or it could stick with going to d1. Unlike the previous proofs, there is no statement saying

one decision is always optimal so switching from d1 to d2 on r2’s failure might occur depending

on the situation.

Lemma 3.2.3. If the starting positions of both robots are on the same side of the hyperbola, and

the τ -circles of both robots never intersect the hyperbola, then switching must occur.

Proof. Assume the same conditions as Lemma 3.2.2. Because the circle of reachable points is

always on one side of the hyperbola, no matter where r1 goes, r1 should always switch to d2 on

r2’s failure by the hyperbola property.

3.2.3 How do you Find the Robot that Never Switches?

It is important to find the robot that never switches, as this simplifies the problem by reduc-

ing it to optimizing the policy of the other robot. We will focus on the situation when both robots

are on the same side of the hyperbola since otherwise, neither will switch by Lemma 3.2.1.

Lemma 3.2.4. Assume the starting positions of both robots are on the same side of the hyperbola.

Let q1 and q2 be the possible locations on r1 and r2’s τ -circle respectively. Then if for all q1 and

q2, ||d2− q1||− ||d1− q1|| < ||d2− q2||− ||d1− q2|| is true, then r2 is the robot that never switches.

35

Proof. Assume the case when both robots live. There are two assignments — r1 and r2 go to

d1 and d2 respectively or swapped. Then the comparison that the former assignment’s reward is

greater than the latter’s is the following inequality:

p1 p2
(
ψ(d1, ||d1 − q1||+ τ) + ψ(d2, ||d2 − q2||+ τ)

)
< p1 p2

(
ψ(d2, ||d2 − q1||+ τ)

+ ψ(d1, ||d1 − q2||+ τ)
)

(18)

The inequality simplifies to the assumption:

||d2 − q1|| − ||d1 − q1|| < ||d2 − q2|| − ||d1 − q2|| (19)

Conversely, if the assumption is true, then r1 will always go to d1 and r2 will always go to d2 for

all q1 and q2 when neither robots fail. Then the only way to make r2 switch assignments is if r1

fails, then r2 goes to d1. Because the hyperbola property says this is sub-optimal to staying on

the same side of the hyperbola going to d2, and r2 goes to d2 anyways when both robots are alive,

then r2 always goes to d2. r2 must be the robot that never switches.

If the strict converse of the inequality is true, then we can swap the labels of the robots to

achieve the same effect. In section 3.3, we will address the scenario in which the assumption that

the inequality holds for all q1 and q2 is violated.

3.2.4 When do we Prefer One Strategy Over Another?

Suppose d2 and both robots are on the same side of the hyperbola, r2 is the robot that never

switches from d2, and the τ -circle of r1 intersects with the hyperbola. Then by Lemma 3.2.2, r1

has to choose between two strategies — “Never-Switch” or “Switch-If-Needed.” The numerical

approach is to solve each objective functions 11 and 12 and take the argmax between the two angles

for the optimal direction.

Now, we would like to know at what probabilities of living, p1 and p2, does the optimal

strategy change from “Never-Switch” to “Switch-If-Needed.” For example, we know that when

36

the probability of p2 = 1 – r2 never dies — r1 will always move in a straight path to d1 by the

task assignment restriction. When p2 = 0 — r2 will die — r1 will move in a straight path to

d2 by the hyperbola property. From observation, we know the optimal angle, θ∗1, and its corre-

sponding strategy continuously changes from one to the other as p2 is monotonically perturbed.

We would like to know at what number p2 the strategies change and if the change in θ∗1 is smooth

or discontinuous along the arc.

First is the relevance of probability p1. p1 is a scalar for equations 11 and 12. Therefore,

they have no bearing on the optimization unless p1 = 0 in which there is no policy to be optimized

since r1 will always die. Assume from now on that p1 is a fixed, positive number to keep things

simple.

Second, we would like to know how θ∗1 is perturbed as we change p2. We do this by showing

a discontinuous property of θ∗1 and relate that to p2’s perturbation.

Lemma 3.2.5. Let P be the point of intersection between r1’s τ -circle and the line segment r1d1.

If P resides in the arc segment that’s on the same side as d1, then going to P and never switching

gets the most reward out of all the other points on that arc segment.

Proof. Point P is the orthogonal projection from r1 to d1 so the time it takes to move from P

d1 is the smallest. Additionally, by the hyperbola property, any other point on the arc segment

also follows the “Never-Switch” strategy. Then since going to P takes the least time for the same

reward taken at d1, P is the optimal location to move to.

This implies that θ∗1 is inherently discontinuous as p2 is perturbed. θ∗1 will never move

continuously across the whole arc from one side to another. At the very least, once it crosses the

hyperbola from one arc segment to the other will the strategy and angle change to where P should

be. An even stronger statement on this discontinuity is made:

Lemma 3.2.6. Let X be the point of intersection between r1’s τ -circle and the hyperbola that also

lies on the arc between P andQ, the orthogonal projections to the arc from r1 to either destination.

There exists a section of the arc on the d2 side of the hyperbola that continuously extends from X

37

such that doing the “Switch-If-Needed” strategy there has less reward than the “Never-Switch”

strategy at P .

Proof. First I must show that the reward as θ∗1 moves from one side of the hyperbola to another is

continuous. Because the objective functions for each arc segment are continuous, the rewards are

continuous. Next, I must show that the reward is continuous at the point these two arcs meet: X .

Because the robot is indifferent to the destination it goes to when it’s exactly on the hyperbola, the

rewards of doing either strategy at X must be the same. Therefore, the reward is continuous as θ∗1

moves across the whole arc.

Next, the reward at X of doing either strategy, UX is strictly less than the reward of the

“Never-Switch” strategy at P , UP . By Lemma 3.2.5, X is included on the arc segment on the same

side of d1 as that point is indifferent, therefore UX < UP .

Finally, by the intermediate value theorem, there must be some continuous segment of

points as θ∗1 moves past X onto the side of d2 where the reward is still less than or equal to UP .

Therefore, there exists a segment of the arc on the same side of d2 where ”Switch-If-Needed” is

sup-optimal to ”Never-Switch” at P .

38

Figure 13: The animation depicts the optimal-location point r1 should go to as p2 monotonically
increases from 0 to 1. As p2 increases, before the point reaches the hyperbola line, it
will ‘jump’ to the shaded purple region. The green region is where r1 should go to d2
and the purple region is for d1. The red arrows indicate the direction the optimal point

will move along the arc as p2 increases.

The direct implication of Lemma 3.2.6 is that there exists a threshold of p2, as it is mono-

tonically perturbed up from 0, where simply committing to d1 without switching is better than

switching. Because the θ∗1 associated with that threshold does not continuously cross the hyper-

bola but jumps to the other side, it is interesting to see this non-linearity.

3.2.5 Experimental Observations on Robot Paths for k Checkpoints.

An observation to note for some specific problem arrangements is that the optimal path

seems to curve. For example, the locations as shown in Figure 14 of the r1, r2, d1, and d2 are at

(0, 10), (10, 10), (−10, 0), and (10, 0) respectively. M(d1) = 10 and M(d2) = 15. The check-

points are 2, 3, 4
5
∗ 6, and 6 units of time. r1’s rate of failure is log 2

6
and r2’s is log 10/3

6
. This is

39

probably due to r1 having more opportunities to switch to d2 at the beginning but fewer as time

passes.

Figure 14: There are 4 checkpoints for the robots to communicate. The line segments for r1 seem
to curve toward d1. The points Px do not necessarily have to be on the τ -circles, but

as noted in Lemma 2.1.2.

3.3 Questions Left Partially Unanswered

Some scenarios and conditions that we have not fully addressed are:

1. What is the relationship between differing rates of robot failure to task assignment?

2. Caveat to finding the robot that never switches.

40

3.3.1 What is the Relationship between Differing Rates of Robot Failure to Task Assignment?

We mentioned in Lemma 3.2.4 about the scenario when for all q1 and q2 the assumption

for equation 19 fails to hold. We will talk about why this scenario is important and related to the

probability of failures. In the following examples, assume the conditions of Lemma 3.2.4 except

for equation 19 are true.

Starting with the simple case, assume that the robots start in the same location, r1 = r2,

and their probabilities to live are different, p1 > p2. We know one of them never switches from

d2. Intuitively, the robot with the greater chance of living should go to d2 as it would claim more

reward on average. But if we slightly perturb the location of r1 to be farther away from d2, does

the fact that r1’s probability to live still matter?

Intuitively, it seems that the robot with the higher probability should be the one to never

switch, but so far this has never been addressed. We can determine a way to address this utilizing

equation 19.

Equation 19 is an equation of 2 variables, q1 and q2, so it is hard to imagine this in a 2D

plane. But if the right-hand side were a constant, then the equation satisfies the definition of a

hyperbola! To visualize this, we treat q1 as any point on the plane and instantiate q2 to be some

point on r2’s τ -circle. But what point should we instantiate q2 to be?

The answer is not a single point, but multiple points. Specifically, we pretend for a moment

that r1 is the robot that never switches and solve the optimal policy for each strategy — objective

functions 13 and 14 — giving us two candidates for q2, an example shown in Figure 15. We know

that q2 must always be either one of these. This reduces q2 from an infinite amount of points to just

two points. By plugging these into equation 19 to form a hyperbola, we could do an analysis similar

to what we did with the reward hyperbola. This observation is partially unaddressed because we

ran out of time to do so.

The reason why the rate of failures is relevant is because one of the points, the solution to

equation 13, is a function of the probability p1. So the hyperbola where swapping which robot

never switches is dependent on the probabilities of the problem.

41

Figure 15: The two candidates for q2 are shown with their associated hyperbola — q
(2)
2

instantiates the orange hyperbola and q(1)2 instantiates the green hyperbola. The
shaded region is where if r1 moved to, then when both robots are alive r1 will move to
d2 and r2 will move to d1. q(1)2 is the point r2 would go to if it was implementing the

“Switch-If-Needed Swapped” strategy with p1 = 0.5. Here, M(d1) = 10 and
M(d2) = 15.

3.3.2 Caveat to Finding the Robot that Never Switches

Assuming the conditions of the previous section, we know the robot that never switches

is the one whose task assignment in both the robot’s alive cases is d2. The prior section tells us

that figuring this out is dependent on the probabilities of the robot if the assumption for Lemma

3.2.4 does not hold. We could simply numerically solve all four objective functions to find out the

robot that never switches, but that defeats the purpose of making a stronger statement about the

problem behavior based on its inputs. Because our analysis of the hyperbola based on equation 19

is incomplete, we have only partially addressed this answer.

42

4. CONCLUSION

This thesis presents an approach to solve the assignment and trajectory planning problem,

for two robots with sporadic communication and risk of failures, that maximizes the expected re-

ward. We introduced the communication and failure models robots are subject to and argued for

ways we could simplify the problem. We showed for two robots and two destinations, a calculus

approach to solving the problem and explained why we used numerical methods over an analytical

approach. After that, we validated our theoretical methodology with experiments, showing with

our simulation that the moving average-reward from following the optimal policy converges to the

theoretically, expected reward. Finally, we delved into the geometric properties of the problem

to explain certain properties such as ‘jumping’ and ‘switching,’ utilizing the one-sided, reward-

difference hyperbola as a tool. In the end, we left with some closing statements on certain proper-

ties we observed through experimentation but were unable to prove.

There are more questions to be asked, such as when are the optimal times to communicate

or how do we solve this problem for more than two robots? Although we were unable to answer

these, we believe that this thesis lays a foundation for future work tasked with generalizing beyond

the scope of our problem. We hope that this inspires further progress to be made in incorporating

proactive planning to robotics problems.

43

REFERENCES

[1] I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke, “Data collection, storage, and re-
trieval with an underwater sensor network,” in Proceedings of the 3rd International Conference
on Embedded Networked Sensor Systems, SenSys ’05, (New York, NY, USA), p. 154–165, As-
sociation for Computing Machinery, 2005.

[2] A. Zolich, D. Palma, K. Kansanen, K. Fjørtoft, J. Sousa, K. H. Johansson, Y. Jiang, H. Dong,
and T. A. Johansen, “Survey on communication and networks for autonomous marine sys-
tems,” Journal of Intelligent & Robotic Systems, vol. 95, pp. 789–813, Sep 2019.

[3] M. Turpin, N. Michael, and V. Kumar, “Concurrent assignment and planning of trajectories for
large teams of interchangeable robots,” in 2013 IEEE International Conference on Robotics
and Automation, pp. 842–848, 2013.

[4] L. Liu and D. A. Shell, “Assessing optimal assignment under uncertainty: An interval-based
algorithm,” The International Journal of Robotics Research, vol. 30, p. 936–953, Jun 2011.

[5] C. Nam and D. A. Shell, “Robots in the huddle: Upfront computation to reduce global com-
munication at run time in multirobot task allocation,” IEEE Transactions on Robotics, vol. 36,
no. 1, pp. 125–141, 2020.

[6] T. Olsen, N. M. Stiffler, and J. M. O’Kane, “Robust-by-design plans for multi-robot pursuit-
evasion,” in 2022 International Conference on Robotics and Automation (ICRA), pp. 10716–
10722, 2022.

[7] S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian, “Deep decentralized multi-task
multi-agent reinforcement learning under partial observability,” in Proceedings of the 34th
International Conference on Machine Learning (D. Precup and Y. W. Teh, eds.), vol. 70 of
Proceedings of Machine Learning Research, pp. 2681–2690, PMLR, 06–11 Aug 2017.

[8] S. J. Russell and P. Norvig, Artificial Intelligence: A modern approach. Pearson Education
Limited, 4th ed., 2020.

44

APPENDIX: Analytical Approach

First, convert the problem into polar coordinates. Convert d1, d2, q, r into polar coordinates. To

simplify the process:

1. Translate everything so r is at the origin.

2. Rotate everything so that d1 is 90◦ to the origin.

Define these variables after the transformations:

• l1 = ||d1 − r||

• l2 = ||d2 − r||

• θ1 = π
2

• θ2 = arctan(d2.y, d2.x)

• d1 = (l1, θ1)

• d2 = (l2, θ2)

• q = (τ, θ)

• r = (0, 0)

The general formula for the distance between two polar coordinates (x, θ1), (y, θ2) is

D =
√
x2 + y2 − 2xy cos(θ1 − θ2).

Therefore the distances between q and each destination are:

||d1 − q|| =
√
l21 + τ 2 − 2l1τ cos(θ1 − θ),

45

and

||d2 − q|| =
√
l22 + τ 2 − 2l2τ cos(θ2 − θ).

The objective function to solve, for arbitrary probability weights w1 and w2, is then

minimize
θ

w1

√
l21 + τ 2 − 2l1τ cos(θ1 − θ) + w2

√
l22 + τ 2 − 2l2τ cos(θ2 − θ).

We take the derivative and set it equal to 0 to solve for the critical points.

df

dθ
=w1

−l1τ sin(θ1 − θ)√
l21 + τ 2 − 2l1τ cos(θ1 − θ)

+ w2
−l2τ sin(θ2 − θ)√

l22 + τ 2 − 2l2τ cos(θ2 − θ)
= 0

w1
−l1τ sin(θ1 − θ)√

l21 + τ 2 − 2l1τ cos(θ1 − θ)
= w2

l2τ sin(θ2 − θ)√
l22 + τ 2 − 2l2τ cos(θ2 − θ)√

l22 + τ 2 − 2l2τ cos(θ2 − θ)√
l21 + τ 2 − 2l1τ cos(θ1 − θ)

= −w2l2 sin(θ2 − θ)
w1l1 sin(θ1 − θ)

l22 + τ 2 − 2l2τ cos(θ2 − θ)
l21 + τ 2 − 2l1τ cos(θ1 − θ)

= (
w2l2 sin(θ2 − θ)
w1l1 sin(θ1 − θ)

)2.

Recall the sin and cos angle difference formulas and what happens when one of the angles is π.

sin(θ1 − θ2) = sin θ1 cos θ2 − cos θ1 sin θ2.

cos(θ1 − θ2) = cos θ1 cos θ2 + sin θ1 sin θ2.

sin(
π

2
− θ2) = cos(θ2).

cos(
π

2
− θ2) = sin(θ2).

46

Let’s substitute this identity for trigs with θ1.

l22 + τ 2 − 2l2τ cos(θ2 − θ)
l21 + τ 2 − 2l1τ sin(θ)

= (
w2l2 sin(θ2 − θ)
w1l1 cos(θ)

)2.

(l22 + τ 2 − 2l2τ cos(θ2 − θ)) (w1l1 cos(θ))
2 = (l21 + τ 2 − 2l1τ sin(θ)) (w2l2 sin(θ2 − θ))2.

(l22 + τ 2 − 2l2τ cos(θ2 − θ)) (w1l1 cos(θ))
2 − (l21 + τ 2 − 2l1τ sin(θ)) (w2l2 sin(θ2 − θ))2 = 0.

Unfortunately, the simplification becomes ugly.

2 τ l1 l2
2w2

2 cos (θ2)
2 sin (θ)3

− 4 τ l1 l2
2w2

2 cos (θ2) sin (θ2) sin (θ)
2 cos (θ)

− l22w2
2 (τ 2 + l1

2) cos (θ2)
2 sin (θ)2

+
(
2 τ l1 l2

2w2
2 sin (θ2)

2 − 2 τ l1
2 l2w1

2 sin (θ2)
)
sin (θ) cos (θ)2

+ 2 l2
2w2

2 cos (θ2) sin (θ2) (τ
2 + l1

2) sin (θ) cos (θ)

− 2 τ l1
2 l2w1

2 cos (θ2) cos (θ)
3

+
(
l1

2w1
2
(
τ 2 + l2

2
)
− l22w2

2 sin (θ2)
2 (τ 2 + l1

2)
)
cos (θ)2.

Collect all the coefficients that are not a function of θ from top to bottom as a, b, c, d, e, f, g. Since

these are truly numeric values, we can compute them to make them more compact.

0 = a sin(θ)3+b sin(θ)2 cos(θ)+c sin(θ)2+d sin(θ) cos(θ)2+e sin(θ) cos(θ)+f cos(θ)3+g cos(θ)2.

To turn the equation computer solvable, we need to do a tangent half-angle substitution and intro-

duce a new variable t. This will turn the equation into a single variable.

t = tan(
θ

2
).

sin(θ) =
2t

1 + t2
.

47

https://en.wikipedia.org/wiki/Tangent_half-angle_substitution

cos(θ) =
1− t2

1 + t2
.

By substituting and simplifying, we get

(g − f) t6 + (2 d− 2 e) t5 + (4 c− 4 b+ 3 f − g) t4 + (8 a− 4 d) t3

+ (4 b+ 4 c− 3 f − g) t2 + (2 d+ 2 e) t+ f + g

t6 + 3 t4 + 3 t2 + 1
= 0.

The denominator factored is

t6 + 3 t4 + 3 t2 + 1 = (t2 + 1)3.

t2 + 1 = 0 =⇒ t2 = −1.

This is impossible therefore the denominator will never be 0. So we can cancel it out.

(g − f) t6 + (2 d− 2 e) t5 + (4 c− 4 b+ 3 f − g) t4 + (8 a− 4 d) t3

+ (4 b+ 4 c− 3 f − g) t2 + (2 d+ 2 e) t+ f + g
= 0.

We are unable to progress any further with this analytical expression because it is a polynomial of

degree six and there is no general closed-form formula for the roots. Our next step is to resort to

numerical methods to solve the minimization problem.

48

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	INTRODUCTION
	Related Works

	METHODS
	Problem Formulation
	Problem Definition for Two Robot, Single Communication Case
	Rationalizing under Uncertainty

	RESULTS
	Experiment
	Theoretical Results
	Questions Left Partially Unanswered

	CONCLUSION
	REFERENCES
	APPENDIX: Analytical Approach

	anm0:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

