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ABSTRACT 

Physics-Based Interpolation for Animation Using Physics-Informed Neural Networks 

Carlos Alvarez del Castillo Saleh 

Department of Computer Science and Engineering 

Texas A&M University 

Faculty Research Advisor: Dr. Shinjiro Sueda 

Department of Computer Science and Engineering 

Texas A&M University 

Keyframe interpolation is a fundamental technique used in computer animation. In this 

technique, an animator specifies keyframes and has a computer program generate the in-

betweens by interpolating between them. However, most common forms of interpolation use a 

non-physics-based path between keyframes to decide where the in-betweens should be drawn. 

When animating physical behavior, interpolating along a physics-based path of motion could 

create more realistic animations while reducing the number of keyframes that must be specified 

by the animator. Physically Informed Neural Networks (PINNs) are neural networks used to 

solve problems involving partial differential equations by directly incorporating information 

about those equations into the network. Because prior knowledge of the functions they are trying 

to model is incorporated into the network, one advantage of PINNs is they require less data to 

train than neural networks trained using only data points. This research trains PINNs to 

interpolate the path of an animated object, specifically a mass attached to a two-dimensional 

spring, in a physics-based manner while closely meeting the constraints imposed on the object’s 

position and/or velocity at keyframes. In addition, this project explores how modifying the 
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hyperparameters and boundary conditions used to train the PINN affects the interpolation and the 

efficiency of the training process.   
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1. INTRODUCTION 

1.1 Keyframe Animation 

Animations are made up of frames, a series of still images that give the illusion of motion 

when played in sequence. To create animations with the assistance of a computer, a technique 

called keyframe animation is often used. In this technique, animators specify keyframes, a series 

of poses that represent significant moments in the animation. A computer program then 

interpolates the keyframes to automatically generate in-between frames [1]. For example, when 

animating a falling ball, an animator may specify a keyframe depicting the ball at its highest 

point, and another keyframe depicting the ball at its lowest point. The in-between frames of the 

ball falling from its highest to its lowest point would then be automatically generated by the 

computer program. This is demonstrated in Figure 1.  

 

Figure 1: A conceptual example of the keyframing process for an animation of a falling ball. The keyframes are 

colored in red and would be specified by an animator. The in-between frames are colored blue and would be 

automatically generated by a computer program. 

The main advantage of keyframe animation is that it allows animators to maintain a high 

degree of control over their animations while being simple to use. That said, most common 

forms of keyframe interpolation use non-physics-based paths to determine the placement of in-
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between frames. As a result, the resulting animations may appear unnatural or lack realism. To 

address these issues while using this method, it is possible to add more keyframes or adjust the 

timing of the animation, but this can become very time-consuming as the complexity of the 

animation increases.  

1.2 Physics-Based Animation 

Physics-based animation encompasses a large variety of animation techniques. These 

techniques use physical laws and constraints to create motion, often by simulating the objects 

being animated [2]. For example, when animating a ball falling, an animator may specify the 

initial position and properties of the ball on the first frame of the animation. The computer will 

then run a simulation which will calculate the effects of gravity on the ball and determine where 

to draw it in the subsequent frames. One advantage of physics-based methods is that the 

animation generated by these methods inherently follows physical laws and can thus look very 

realistic. Moreover, unlike keyframe animation, physics-based animation doesn't need 

keyframes. As a result, this can save significant amounts of time when creating complex 

animations. However, the animator often no longer has the same level of control over the 

animation that keyframing provides even though there may be ways to interact with the 

simulation to create the desired animation. In cases where the animator is more concerned with 

achieving an overall effect rather than controlling every aspect of the animation, this is 

acceptable. For example, when animating a splash, it is unlikely the animator cares exactly 

where every drop of water is at every point in time if the splash looks good. For other situations, 

the animator may want to animate an object with a physics-based trajectory while ensuring the 

object passes through specific points at specific times. In this case, it may be complicated for the 
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animator to achieve the desired results by relying solely on either physics-based or keyframe 

animation.  

1.3 Physics-Informed Neural Networks 

Physics-informed neural networks (PINNs) are a class of machine learning algorithms 

that use physical knowledge in the form of partial differential equations (PDEs) and boundary 

conditions to train models which encode the underlying physical laws in those equations [3]. 

These algorithms have been used to fit physics equations to data and create models for a wide 

range of applications ranging from predicting arterial blood pressure [4] to predicting nanofluid 

viscosity [5]. PINNs can be trained using a common training method for neural networks in 

which a loss function and an optimizer are defined. Inputs are fed into the network and the 

network’s output is evaluated using the loss function. The loss function evaluates the network's 

current predictions against its intended behavior, outputting a single value that measures how far 

off the predictions are. Larger values typically mean the neural network is not behaving in the 

desired manner and must be adjusted while smaller values mean that the network is performing 

well and needs less adjustment. During this process, automatic differentiation calculates the 

gradient of the PINN’s loss function with respect to the weights in the neural network [6]. The 

gradient and loss function information is then passed into the optimizer, which is an algorithm 

that adjusts the weights of the neural network in a way that will minimize the value of the loss 

function. This process is then repeated in a loop until the loss measured by the loss function 

stagnates. At this point, the model is said to have converged into a solution. What distinguishes a 

PINN from other neural networks is that its loss function includes a term that involves solving 

differential equations using the output and gradient of the neural network itself. This makes it so 
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that as training progresses, the network and its gradients approximate a solution to those 

equations [7]. 

1.4 Objective of Research  

In the context of computer animation, a PINN’s boundary conditions can be treated as 

keyframes, allowing the animator to control the behavior of the simulation at specific points in 

time. By using boundary conditions in this way and leveraging the PINN’s reliance on partial 

differential equations to interpolate between them, the animator will be able to meet the specific 

needs of the animation while using fewer keyframes and obtaining the accuracy and realism of a 

physics-based approach. This would provide the animator with a powerful tool that incorporates 

the benefits of both keyframe and physics-based animation, thus improving their ability to create 

compelling animations while saving time and effort. This research investigates the effects of 

various parameters and types of boundary conditions when training PINNs to gain a deeper 

understanding of how they can effectively be used to create animations.  Specifically, it focuses 

on exploring the impact of the following: 

• Weights assigned to each term in the loss function: The PINN used in this paper is trained 

using a loss function with three terms. Two of these constrain the solution to match 

physics. The third constrains the solution to match the boundary conditions, which work 

similarly to keyframes in this context. The purpose of exploring the effects of these 

weights is two-fold. The first is to find a set of weights where the PINN can accurately 

interpolate in a physics-based manner. The second is to determine if adjusting these 

weights can control the degree to which the PINN interpolates in a completely physics-

based manner vs interpolating in a purely keyframe or boundary condition-based way.  
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• Number of collocation points used during training: Collocation points refer to the 

locations where the PINN is trained to satisfy the physical system being modeled and are 

what is used to calculate the physics terms of the loss function. By varying the number of 

collocation points used when training the PINN, this research intends to investigate their 

impact on the accuracy and convergence of the PINN to find out approximately how 

many are needed to achieve a good-looking animation. 

• Type of boundary condition: Boundary conditions can be specified for different aspects 

of the physical system that the PINN is approximating. This parameter was investigated 

to test whether it was more effective to place boundary conditions on the outputs of the 

network, its gradient, or both. In the PINNs used in this research, the output of the 

network represents the position of the animated object, and the gradient of the network 

represents its velocity. 

• Using a single boundary condition (start only, end only). 

• Using a variable number of boundary conditions linearly spaced across the time of 

simulation, including conditions at the start and end time: By trying different strategies 

for placing boundary conditions, this research hopes to identify any strategy that leads to 

interpolation that has any unique characteristics or looks significantly better than another. 

Additionally, it seeks to identify approximately how many boundary conditions are 

needed to achieve acceptable interpolation along the desired trajectory. This 

measurement can be compared to the number of keyframes required to achieve an 

animation using traditional keyframe animation methods. This can be used to determine 

whether animating with a PINN can reduce the number of keyframes that need to be 

specified. 
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• Physical realism of boundary conditions: It can be difficult for animators to place 

keyframes so that an object is animated exactly according to physics. Additionally, 

animators often want to animate objects with a physics-inspired motion but do not seek to 

match physics exactly. It is common practice to exaggerate certain parts of an animation 

to make it more aesthetically pleasing. Because of these reasons, it is expected that 

animators will often choose boundary conditions in a way that physics cannot possibly 

satisfy them all. By exploring the limits of the PINN’s ability to model increasingly non-

realistic boundary conditions, this research aims to provide insight into the trade-off 

between accuracy and artistic expression when using PINNs for interpolation. 

To achieve this goal, this research will train various PINNs that simulate the motion of an object 

attached to a two-dimensional Hookean spring while systematically varying parameters and 

boundary conditions. The results of this experiment will provide insight into the optimal use of 

PINNs for animation and could lead to new approaches for creating visually appealing 

animations. 

The rest of this paper is organized as follows. Section 2.1 details the architecture of the 

PINN used in this paper. Section 2.2 explains the implementation of the PINN’s loss function. 

Section 2.3 describes the process used to explore the effects of different hyperparameters and 

types of boundary conditions on training the network. Section 3 explores the results of the data 

generated from the process detailed in section 2.2. Section 4 discusses how to efficiently pick 

boundary conditions and parameters when animating with a PINN, details the advantages and 

limitations of this method, and details possible future work.  
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2. METHODS 

2.1 Network Architecture 

The PINNs for this research were defined to model the trajectory of an object attached to 

a two-dimensional Hookean spring. Given an input time, t, the network, f, was trained to predict 

the x and y coordinates of a point mass attached to a spring at that time. An illustration of this 

system is provided in Figure 2.  

 

Figure 2: An illustration of the two-dimensional spring system modeled by the PINN. It consists of a spring with one 

free end, and one end fixed to the origin. A point mass is attached to the free end. Given an input time of t, the PINN 

was trained to predict the x and y coordinates of the point mass attached to the end of a spring at that time. 

The network consisted of a linear input layer (1x16), four linear hidden layers (16x16), and a 

linear output layer (16x2) and used a tanh activation function. This structure is demonstrated in 

Figure 3. 
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Figure 3: Architecture of the trained PINNs. 

2.2 Loss Function 

The loss function used to train the PINNs consisted of three terms. To constrain the 

solution to satisfy the physics of the Hookean spring, two physics-based loss terms were applied 

to the model. The first was derived from the conservation of momentum, and the second from the 

conservation of energy. To constrain the solution to satisfy the boundary conditions specified at 

keyframes by the animator, a third loss term measuring how closely the neural network met those 

conditions was used. The overall loss function was:  

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝑤𝑚𝐿𝑚 +  𝑤𝑒𝐿𝑒 + 𝑤𝑏𝐿𝑏 , 
(1) 

where 𝐿𝑚, 𝐿𝑒, and 𝐿𝑏 are the overall loss derived from conservation of momentum, conservation 

of energy, and boundary conditions respectively and 𝑤𝑚, 𝑤𝑒, and 𝑤𝑏 are numerical values that 

specify the relative influence of each loss term. 

2.2.1 Conservation of Momentum 

 To calculate this term, the force acting on the object whose motion is being 

approximated must be known. For a Hookean spring, this is:  

 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑘𝑥, 
(2) 
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where 𝑘 represents the spring constant and 𝑥 represents the offset of the spring from its resting 

position. Newton’s second law can then be applied to set the force applied by the spring equal to 

the mass of the attached object, 𝑚, times its acceleration, 𝑎. The equation then becomes: 

 𝑘𝑥 = 𝑚𝑎. 
(3) 

Because the resting position of the spring is located at the origin in the system modeled by the 

PINN, the predicted position of the point mass output by the network and the offset of the spring 

from its resting position are the same. Thus 𝑥 can be directly substituted with the output of the 

network, 𝑓. Likewise, because acceleration is the second derivative of position with respect to 

time, and the input of the PINN represents time, it can be substituted with the second derivative 

of the network with respect to its input. After these substitutions, the final form of the equation 

becomes: 

 𝑘𝑓 = 𝑚
𝜕2𝑓

𝜕𝑡2 . 
(4) 

Because this condition must be met in a physically conforming system, it is possible to take the 

difference between the left and right sides of the equation to get a measure of the loss at a single 

collocation point. To quantify the overall loss for the conservation of momentum term, the 

differences across all collocation points were aggregated by taking the mean square error: 

 
𝐿𝑚 =

1

𝑛
 ∑(𝑘𝑓 − 𝑚

𝜕2𝑓

𝜕𝑡2
)2

𝑛

1

. (5) 

2.2.2 Conservation of Energy 

To calculate this term, the total amount of energy in the system must be known. This can 

either be specified by the user or calculated from a boundary condition where position and 

velocity are both specified. For a two-dimensional spring system, potential energy and kinetic 

energy can be calculated using: 
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 𝑃𝐸 =
1

2
𝑘𝑥2, 

(6) 

  𝐾𝐸 =
1

2
𝑚𝑣2. 

(7) 

 The sum of these two values:  

 𝐻𝑡𝑜𝑡𝑎𝑙 = 𝑃𝐸 + 𝐾𝐸, 
(8) 

was treated as the total amount of energy in the system. The energy at each collocation point 

used to train the PINN, 𝐻𝑝𝑜𝑖𝑛𝑡, was calculated by performing a substitution process similar to the 

one used to calculate the conservation of momentum term. Specifically, the output of the PINN, 

𝑓, was substituted for 𝑥. Because velocity is the first derivative of position with respect to time, 

the first derivative of the output of the PINN with respect to its input was also substituted for 𝑣. 

These substitutions resulted in: 

 𝑃𝐸𝑝𝑜𝑖𝑛𝑡 =
1

2
𝑘𝑓2, 

(9) 

  𝐾𝐸𝑝𝑜𝑖𝑛𝑡 =
1

2
𝑚 (

𝜕𝑓

𝜕𝑡
)2, 

(10) 

 and 𝐻𝑝𝑜𝑖𝑛𝑡 = 𝑃𝐸𝑝𝑜𝑖𝑛𝑡 + 𝐾𝐸𝑝𝑜𝑖𝑛𝑡. 
(11) 

Because of the principle of conservation of energy, the total energy in the system should stay 

constant. Thus, it is possible to quantify the loss at a single collocation point by taking the 

difference between the total energy in the system and the amount of energy calculated at that 

point. To obtain a measure of the overall loss for the conservation of energy term, the differences 

across all collocation points were aggregated using mean square error:  

 
𝐿𝑒 =

1

𝑛
∑(𝐻𝑡𝑜𝑡𝑎𝑙 − 𝐻𝑝𝑜𝑖𝑛𝑡)

2
.

𝑛

1

 (12) 
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2.2.3 Keyframes (Boundary Conditions) 

When training the PINN, boundary conditions for position and velocity could be 

specified. A boundary condition consisted of specifying the exact position or velocity the PINN 

should output for a specific input time. The loss at a single position boundary condition was 

calculated by taking the difference between the PINN’s predicted position of the object, 𝑓, and 

the desired position of the object at that time, 𝑥𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦. Similarly, the loss at a single velocity 

boundary condition was calculated by taking the difference between the PINN’s predicted 

velocity of the object, 
𝜕𝑓

𝜕𝑡
, and the desired velocity of the object at that time, 𝑣𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦. To obtain 

measures of the combined loss from all position and velocity boundary conditions, the position 

and velocity loss at every boundary condition was aggregated using mean square error. The 

aggregated values were then summed to get a final measure of the overall loss from boundary 

conditions: 

 

𝐿𝑏 =  
1

𝑛
∑(𝑥𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 − 𝑓)

2
𝑛

1

+
1

𝑛
∑ (𝑣𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 −

𝜕𝑓

𝜕𝑡
)

2

.

𝑛

1

 
(13) 

2.3 Parameter and Boundary Condition Exploration 

The result of training a PINN is affected by a variety of parameters. To better understand 

how to best use a PINN for interpolation and the limits of the method, it was decided to 

investigate the effects of varying the following easily tunable parameters: the weights assigned to 

each term of the loss function, the number of collocation points, the type of boundary condition, 

the placement of boundary conditions, the number of boundary conditions, and the physical 

realism of the boundary conditions.  
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2.3.1 Identifying Optimal Loss Function Term Weights 

To ensure that the Physics-Informed Neural Network (PINN) was interpolating the 

spring’s motion in a physics-based manner, a grid search was carried out. During this search, 

different combinations of weights for each loss term (𝑤𝑚, 𝑤𝑒, and 𝑤𝑏) were used to train each 

PINN, with every combination of the values 1e-3, 1e-1, 0, 1e1, and 1e2 tested. For each iteration 

of the search, a trajectory generated by simulating the spring's motion was compared to the 

trajectory generated by a PINN trained with the initial position and velocity from the simulation 

as the only boundary conditions. The best-performing weights were considered to be those that 

produced PINNs whose predicted trajectory most closely matched the trajectory from the 

simulation. During this search, all parameters involved in training the PINN aside from the loss 

term weights remained constant. Appendix A contains the exact configuration of parameters 

used for both the simulation and the PINN throughout this process. 

2.3.2 Exploring the Effects of Other Parameters 

After identifying the best-performing set of loss term weights for the PINN, a subsequent 

grid search was carried out to explore the impact of different boundary conditions setups and 

other parameters on the PINN’s performance. Specifically, the number of collocation points, the 

type of boundary condition, the placement of boundary conditions, the number of boundary 

conditions, and the physical realism of the boundary conditions were varied. Every combination 

of the following values for the parameters was tried: 

• Number of collocation points: 1, 10, 100. These were spaced out linearly across time for 

the duration of the animation. 

• Type of boundary conditions: Position only, velocity only, both position and velocity 

together. 
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• Placement of boundary conditions: One boundary condition at the start of the trajectory, 

one boundary condition at the end of the trajectory, a variable number (2, 3, 7, 15, 31) of 

boundary conditions linearly spaced in time including the start and end conditions. 

• Physical realism of the boundary conditions: guaranteed to be on a physical path, 

approximating a physical path, completely nonsensical. 

The mass and spring constant were set as learnable parameters with an initial value of 100. All 

other parameters including the weights for the loss terms were held constant. A complete list of 

the parameters used for this search can be found in Appendix B.    
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3. RESULTS 

3.1 Loss Term Weights 

After testing various combinations of weights for each term of the loss function, the 

weights which caused the PINN’s approximation of the trajectory to match the simulation’s 

trajectory most closely were the ones that minimized the energy conservation term (𝑤𝑒) and 

prioritized the boundary condition term (𝑤𝑏) over the conservation of momentum term (𝑤𝑚). 

With careful selection of weights, it is possible for the PINN to practically match the behavior of 

the simulation even when given minimal information of only the starting position and velocity as 

boundary conditions. This is demonstrated in Figure 4. 

 

Figure 4: Two plots demonstrating the trajectory of an object attached to a spring. The x and y positions of the mass 

attached to the spring are parameterized in time. The plot on the right shows the trajectory predicted by a 

simulation. The plot on the left shows the trajectory by a PINN trained with only the starting position and velocity of 

the simulation as boundary conditions. The position boundary condition is denoted by a red dot. 

Experimenting with different sets of weights also revealed that it is crucial to select these 

carefully because it is possible to end up with weights that do not perform interpolation in any 

useful way. Examples of this behavior are demonstrated in Figure 5.  
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Figure 5: Three plots demonstrating the trajectory of an object attached to a spring. The x and y positions of the 

mass attached to the spring are parameterized in time. The plots on the top show the trajectories predicted by 

PINNs trained with weights that did not work well and using only the starting position and velocity of the simulation 

as boundary conditions. The position boundary condition is denoted by a red dot. The plot on the bottom shows the 

trajectory predicted by the simulation and is what the top two plots should ideally look like.  

Regarding controlling the degree of accuracy vs artistic intent in the PINN’s interpolation 

using these weights, it does not seem to be very promising. The weights will either cause the 

PINN to converge to a mostly physically accurate trajectory or an unusable one. 

3.2 Number of Collocation Points 

Regarding the number of collocation points used for training PINNs, it was found that 

using 10 points is the minimum required for physics-based keyframe interpolation. However, 

using such a small number of points occasionally resulted in trajectories with segments that were 

not very physically believable and could look awkward. Increasing the number of collocation 
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points to 100 improved the accuracy of the trajectories and consistently produced PINNs that 

closely followed the physics laws they were trained on. However, this also led to an increase in 

training time, from two and a half minutes for 10 points to roughly 28 minutes for 100 points. 

This increased training time may not be ideal for animation workflows where being able to 

iterate quickly is desired. Therefore, a balance between physical accuracy and training time 

should be considered when training. 

3.3 Number of Boundary Conditions 

The number of boundary conditions has some impact on the resulting trajectory predicted 

by the trained PINN. At least one boundary condition is always required because the PINN will 

fail to converge to a solution if none are present. As the purpose of the PINN used in this paper 

was to do keyframe animation with physics-based interpolation, and the boundary conditions are 

the keyframes in this context, the best results should show the PINN’s predicted trajectory of the 

animated object generated passing through each boundary position as closely as possible. This 

was achieved consistently when the PINN only had to account for smaller numbers of boundary 

conditions. However, as the number of boundary conditions increased, the PINN sometimes 

became unable to meet all of them and would instead converge to a trajectory that minimized the 

boundary condition loss term by “averaging out” boundary conditions in a way. This behavior is 

displayed in Figures 6 and 7. 
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Figure 6: A plot demonstrating the trajectory of an object attached to a spring. The x and y positions of the mass 

attached to the spring are parameterized in time. The positions of boundary conditions are denoted by red dots and 

are placed roughly on a physically possible path. The plot does not necessarily specifically meet any boundary 

condition but rather appears as a type of “best fit” line. 

 

Figure 7: A plot demonstrating the trajectory of an object attached to a spring. The x and y positions of the mass 

attached to the spring are parameterized in time. The positions of boundary conditions are denoted by red dots and 

are all placed on a completely nonsensical path. 
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Figure 8: A plot demonstrating the trajectory of an object attached to a spring. The x and y positions of the mass 

attached to the spring are parameterized in time. The positions of boundary conditions are denoted by red dots and 

are all placed on a physically possible path. 

However, as shown in Figure 8, in the case where the boundary conditions were all 

located on a physically possible path, the PINN was able to produce good results for keyframe 

interpolation. This suggests that increasing the number of boundary conditions in and of itself is 

not what is primarily responsible for hindering the PINN’s ability to successfully interpolate 

between keyframes. This behavior is rather caused by the placement of boundary conditions 

because in all the cases where the PINN was unable to meet all the boundary conditions, there 

was no physically possible trajectory connecting the boundary conditions. Increasing the number 

of boundary conditions not located on a physically possible trajectory simply increased 

constraints on the PINN and the likelihood that it would be impossible to meet them all while 

still interpolating in a physics-based manner. 

3.4 Placement of Boundary Conditions 

The placement of boundary conditions has a large impact on the resulting animation. 

When boundary conditions were placed on a trajectory that was physically possible, the PINNs 

were consistently able to find a solution that closely met every boundary condition. When 

boundary conditions were placed on a path that was physics-inspired but not necessarily 
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possible, the PINNs converged to a solution that approximated it but did not necessarily hit any 

of the boundary conditions as shown above in Figure 6. When boundary conditions were placed 

on a completely nonsensical path, the network often converged to a solution that still appeared to 

follow a physically based trajectory. However, the resulting trajectory didn’t come anywhere 

near the boundary conditions, nor did it make any sense. This is demonstrated above in Figure 7.  

3.5 Type of Boundary Conditions 

On its own, changing the type of boundary condition used to train the PINN did not seem 

to have any significant effects.  If the boundary conditions were at least approximately physically 

possible, similar trajectories were produced regardless of boundary condition type. This is shown 

in Figure 9.  

 

Figure 9: Two plots demonstrating the trajectory of an object attached to a spring. The x and y positions of the mass 

attached to the spring are parameterized in time. The plot on the left shows the trajectory predicted by a PINN 

trained with only 7 velocity boundary conditions linearly spaced along time. The plot on the right shows the 

trajectory predicted by a PINN with only 7 position boundary conditions linearly spaced in time. The position 

boundary conditions are denoted by red dots. 

When the boundary conditions were not physically possible, using different types of 

boundary conditions while holding other variables constant also did not lead to any PINNs that 

were more usable than the others.   



 

23 

 

4. CONCLUSION 

4.1 Choosing Optimal Parameters and Boundary Conditions 

Careful selection of parameters and boundary conditions is crucial for achieving a PINN 

that converges to a solution that can be used to produce a visually appealing animation. This 

section discusses what were observed to be the best ways to set each parameter. 

4.1.1 Loss term weights 

The results of the investigation reveal that the loss term weights are one of, if not the 

most important parameters that impact the results from the PINN. Without setting these properly, 

the PINN will fail to converge to a useful solution. The best weights give the most importance to 

the boundary condition, conservation of momentum, and conservation of energy terms in that 

order. During the initial gird search, values of 1e-1, 1e-3, and 0 for 𝑤𝑏, 𝑤𝑚, and 𝑤𝑒 were found 

to be particularly effective at ensuring the PINN could accurately interpolate in a physics-based 

manner. With these weights, it was possible to get a near-exact match of the simulated trajectory 

using 100 collocation points and the initial position and velocity as the only boundary conditions. 

This was demonstrated in Figure 4. Choosing weights similar to these is thus strongly 

recommended.  

4.1.2 Boundary Conditions 

Aside from the weights of each term in the loss function, the physical plausibility of the 

boundary conditions has the most influence on the results from the PINN. Using boundary 

conditions for which it was possible for a physical path to exist or closely approximate resulted 

in PINNs with that very closely met those boundary conditions and were thus well suited for 

physics-based keyframe interpolation. One easy method of ensuring that boundary conditions 
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maximize the chances that the boundary conditions will all be located on a physically possible 

path is to only use a few positions as boundary conditions. This reduces the chances that the 

boundary conditions will contradict each other and avoids over-constraining the PINN, thus 

enhancing its ability to find a useful solution. By using one to three positions as boundary 

conditions, the PINNs trained throughout the course of this research were able to reliably model 

a trajectory that passes through them. 

The type of boundary condition (position or velocity) used during training does not seem 

to affect the results in any significant manner. That said, when animating trajectories, it is 

recommended to primarily use only position boundary conditions because their effects are more 

easily visualized. Setting a velocity boundary condition at a single point in time may be useful 

and help direct the network toward a desired trajectory. However, specifying both velocity and 

position conditions at every point in time for which a boundary condition is specified can make it 

easier to feed contradicting and/or physically impossible information into the PINN. This can 

lead to awkward trajectories for the animation, even when only specifying boundary conditions 

for a small number of points in time.  

4.1.3 Collocation Points 

The number of collocation points is also an important parameter to take into 

consideration. Using 100 collocation points resulted in the best performance, with the modeled 

trajectories most closely following physical laws. However, visually comparable results can still 

be achieved with as little as 10 collocation points. That said the trajectory from using a smaller 

number of points will be less physically accurate. Because it takes considerably longer to train 

PINNs as the number of collocation points increases, a recommended workflow for an animator 

could be to use fewer collocation points to quickly train a “preview” PINN and get a general idea 
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of how the PINN will interpolate the boundary conditions. The animator can then adjust the 

boundary conditions as needed and train the PINN again until they have an animation they are 

fairly satisfied with. At this point, they can then train a final PINN using more collocation points 

to improve the accuracy of the physics-based interpolation.  

4.2 Advantages of Method 

This research demonstrates the abilities of PINNs to interpolate physics-based motion 

very accurately with as little information as a single boundary condition. Additionally, the results 

of this research suggest using PINNs for keyframe interpolation has potential. When it is 

physically possible for all the boundary conditions to be met, a PINN treats them like keyframes 

and produces animations that reliably position the object as desired at specific times. This is 

demonstrated in Figure 10.  

 

 

Figure 10: Plots demonstrating the trajectory of an object attached to a spring predicted by PINNs trained using 

only start and positions as boundary conditions. The x and y positions of the mass attached to the spring are 
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parameterized in time. The positions of boundary conditions are denoted by red dots. Each plot shows the trajectory 

generated using a different PINN and set of boundary conditions. 

However, because the interpolation is physics-based, fewer keyframes are needed to 

achieve the animation than would be needed using traditional keyframe interpolation methods. 

This could allow the artist to put the time that would’ve been spent keyframing into improving 

other aspects of the animation. 

In situations where the PINN can’t meet all the boundary conditions, but the conditions 

are still roughly on a physically possible path, the PINN will interpolate the boundary conditions 

so that they are all met as closely as possible. In this case, the trajectory from the PINN 

resembles more of a line of best fit rather than a line that passes through each boundary 

condition. This behavior is shown in Figure 6. Although this is not optimal for keyframe 

animation because the animated object is no longer guaranteed to be positioned as desired at 

specific times, this property of PINNs could be useful if applied to animation techniques 

involving real-world measurements, which are often noisy. The measurements from these 

systems can be used as the boundary conditions in this context, and the PINN can find a physics-

based trajectory that fits the data well.  

4.3 Limitations of Method 

Although using a PINN to interpolate between keyframes has the potential to be an 

effective tool to create physically based animations, it has some significant limitations that need 

to be considered. One of these is that the animator must understand the physical systems 

involved in their animation, and differentiable equations that describe the physical constraints of 

the system must exist. Without these, it is not possible to create a PINN capable of representing 

the motion of that physical system. Another limitation of using PINNs is that they require a 

careful selection of parameters and boundary conditions during training. If these are chosen 
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poorly, a PINN is highly likely to fail to converge to a solution that produces quality animations. 

Moreover, the process of training a PINN and searching for optimal parameters can be time-

consuming and computationally expensive, which can limit an animator's ability to quickly 

iterate on their work and restrict the scenarios in which this method of interpolation can be 

applied. Because of this, it may be more efficient to use traditional methods to animate certain 

types of physics-based motion.  

4.4 Future Work 

Although the PINNs examined in this paper are limited in scope to the example of a 

single particle attached to a two-dimensional spring, animating with PINNs has shown some 

interesting results and there is potential to develop this concept further in various ways. 

4.4.1 Modelling the motion of a rope 

One way to extend this work would be to use PINNs to animate a rope that is continuous 

in space as opposed to a single particle. To do this, the architecture of the PINN in this paper 

could be modified so that it takes in a second input parameter, 𝑢. The modified neural network 

architecture is shown in Figure 11. 

 

Figure 11: Architecture of the PINN to model a continuous rope. 
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This 𝑢 parameter represents the location of the point we want to predict along the length of the 

rope. For example, if we have a rope of unit length, 𝑢 will range from 0 at one end to 1 at the 

other end. The point in the middle of the rope would correspond to a 𝑢 value of 0.5.  

To account for the forces acting on the rope, the physics term of the loss function would 

also need to be modified. One approach could be to define the elastic potential of the rope as: 

 
𝑉 = 𝑘 (

|
𝜕𝑥

𝜕𝑢
|

(
𝜕𝑥

𝜕𝑢
)

0

− 1)

2

, (14) 

where 𝑥 represents the position of a point in the rope, 𝑘 represents the spring constant, and (
𝜕𝑥

𝜕𝑢
)

0
 

represents the gradient of 𝑥 with respect to 𝑢 at time 0. The forces acting on the rope, could be 

defined to be the force of gravity and the negative derivative of the elastic potential with respect 

to 𝑥: 

 𝐹 =  −
𝜕𝑉

𝜕𝑥
+ 𝑚𝑔, 

(15) 

where 𝑚 is the mass of the rope. Newton’s second law could then be applied to set the forces 

acting on the rope equal to its mass times its acceleration, 𝑎: 

 𝑚𝑎 =  −
𝜕𝑉

𝜕𝑥
+ 𝑚𝑔. 

(16) 

To make the model continuous across space, it can be converted to an infinitesimal version by 

dividing both sides of the equation by the volume of the rope. This results in: 

 𝜌𝑎 =  −
𝜕𝑉

𝜕𝑥
+ 𝜌𝑔, 

(17) 

where 𝜌 is the density of the rope. To apply these equations to the PINN, the physics variables 

can be replaced with the corresponding outputs and gradients of the network. The position of a 

point in the rope, 𝑥, is represented by the output of the network, 𝑓, and can thus be substituted. 
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Likewise, the acceleration, 𝑎, can be replaced by the second derivative of the network with 

respect to time. The force equation thus becomes: 

 𝜌
𝜕2𝑓

𝜕𝑡2 =  −
𝜕𝑉

𝜕𝑓
+ 𝜌𝑔, 

(18) 

and 𝑉 becomes: 

 
𝑉 = 𝑘(

|
𝜕𝑓

𝜕𝑢
|

(
𝜕𝑓

𝜕𝑢
)0

− 1)2. (19) 

Because conservation of momentum requires both sides of the force equation to be equal, the 

difference between the left and right side of the equation can be used as a measure for the 

physics loss at a single collocation point. Thus, the physics loss at a single collocation point is: 

 𝐿 =  𝜌
𝜕2𝑓

𝜕𝑡2 +
𝜕𝑉

𝜕𝑓
− 𝜌𝑔. 

(20) 

The loss at each collocation point can then be aggregated into a single value and then combined 

with the loss from boundary conditions. These modifications should be sufficient to enable the 

network to simulate the motion of a rope which is continuous in space. 

4.4.2 Other directions 

Future directions for this work could also include using PINNs to interpolate different 

types of motion. For example, a PINN could be used to interpolate the motion of rotating objects. 

Another example could be interpolating the motion of multiple unconnected objects that 

influence each other’s trajectories due to forces such as gravity. PINNs could also potentially be 

used to interpolate motion that involves collisions.  

Another future direction for this work would be to experiment with different ways of 

modifying the loss function so that the PINN places more emphasis on meeting boundary 

conditions rather than ensuring physical accuracy. A basic expectation for keyframe interpolation 

is that the animation hits all the keyframes. However, the PINNs in this paper do not consistently 
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meet this expectation because they do not interpolate through boundary conditions placed on 

sufficiently impossible trajectories. This severely limits their use for this purpose. Addressing 

this issue would greatly expand the range of applications for using PINNs to interpolate 

keyframes. 

Alternatively, future work could explore the effects of using different types of boundary 

conditions for the training of PINNs. The boundary conditions of the PINNs studied in this 

research consisted of having the PINN match exact positions and/or velocities at specific points 

in time. However, it would be interesting to investigate the impact of different types of boundary 

conditions on the training process such as direction-based constraints. These could be more 

intuitive for animators to set, as they are often concerned with the direction of motion rather than 

an exact velocity. Additionally, instead of checking for a precise position or velocity at a given 

time, range-based constraints could be utilized. For example, the position of the animated object 

could be constrained to always remain within a certain distance from a specific point, or the 

velocity of the object could be constrained so that its magnitude is always within certain bounds. 

Experimenting with different types of boundary conditions could lead to more intuitive or 

adaptable PINNS for animation. 

Another future direction would be investigating how to best implement PINNs into an 

animator’s toolkit and comparing the process of making physics-based animations with a PINN 

to that of traditional methods. This could involve developing user-friendly interfaces and tools 

for animators to use PINNs in their workflow. The comparison could involve exploring the 

creative limitations and possibilities of using PINNs for interpolation and evaluating the speed 

and effectiveness of the method relative to traditional animation techniques when creating 

different types of animations.  
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APPENDIX: A 

Network Parameters that remained constant during the grid search for loss function term 

weights: 

• Number of collocation points (100) 

• Boundary conditions:  

o Position: Spring is at an initial displacement of (3 m, 5 m) at the start of 

the simulation (t = 0) 

o Velocity: The object is traveling with a speed of (5 m/s, 3 m/s) at the start 

of the simulation (t = 0) 

• Network architecture (activation function, number of layers, size of layers, etc.) 

• Learning rate (1e-4) 

• Optimizer (Adam) 

• Maximum number of epochs (20,000) 

• Duration of simulation (3 seconds) 

• Mass of object attached to spring (100 kg) 

• Spring constant (100 N/m) 

• Resting length of spring (0 m) 
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APPENDIX: B 

Network Parameters that remained constant during the grid search to explore the effects of other 

parameters: 

• Network architecture (activation function, number of layers, size of layers, etc.) 

• Learning rate (1e-4) 

• Optimizer (Adam) 

• Maximum number of epochs (50,000) 

• Duration of simulation (3 seconds) 

• Initial mass of object attached to spring (100 kg) 

• Initial spring constant (100 N/m) 

• Resting length of spring (0 m) 

 


