

MULTI-SOURCE BREADTH FIRST SEARCH IN MATRIX NOTATION

An Undergraduate Research Scholars Thesis

by

ALEXANDRA GOFF

Submitted to the LAUNCH: Undergraduate Research office at
Texas A&M University

in partial fulfillment of requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Faculty Research Advisor: Dr. Timothy Davis

May 2023

Major: Computer Science

Copyright © 2023. Alexandra Goff.

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or

biohazards must be reviewed and approved by the appropriate Texas A&M University regulatory

research committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement

applies to activities conducted at Texas A&M and to activities conducted at non-Texas A&M

facilities or institutions. In both cases, students are responsible for working with the relevant

Texas A&M research compliance program to ensure and document that all Texas A&M

compliance obligations are met before the study begins.

I, Alexandra Goff, certify that all research compliance requirements related to this

Undergraduate Research Scholars thesis have been addressed with my Faculty Research Advisor

prior to the collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research

Compliance & Biosafety office.

TABLE OF CONTENTS

Page

ABSTRACT .. 1

DEDICATION .. 2

ACKNOWLEDGEMENTS .. 3

1. INTRODUCTION .. 4

1.1 Background ... 4

2. METHODS ... 7

2.1 Multi Source Breadth First Search Algorithm .. 7
2.2 Diameter: Exact and Estimated .. 8
2.3 Pseudo-code Multi Source Breadth First Search Algorithm .. 9
2.4 Pseudo-code Estimate Diameter Algorithm ... 13

3. RESULTS ... 18

3.1 Breadth First Search Efficiency Comparisons.. 18
3.2 Diameter Results... 25

4. CONCLUSION ... 27

4.1 Discussion of Multi Source Breadth First Search Results .. 27
4.2 Discussion of Exact and Estimated Diameter Results .. 27
4.3 Conclusion .. 28

REFERENCES ... 30

1

ABSTRACT

Multi-Source Breadth First Search in Matrix Notation

Alexandra Goff
Department of Computer Science

Texas A&M University

Faculty Research Advisor: Dr. Timothy Davis
Department of Computer Science

Texas A&M University

In this thesis, I will discuss a multi-source breadth first search algorithm I wrote for

LAGraph. It allows a user to get the BFS parent and level data of a graph for several source

nodes at once instead of having to do each source individually. This is not only easier on the

user, but because of the parallelization that the matrix representation allows it is also more

efficient than looping through each of the nodes of interest. While this is valuable to a user in its

own right, a multi-source breadth first search also opens the door to other algorithms. I highlight

methods of estimating or directly obtaining diameter and discuss further algorithms that could be

added in the future.

2

DEDICATION

To my family, friends, instructors, and peers who supported me throughout the research process.

3

ACKNOWLEDGEMENTS

Contributors

I would like to thank my faculty advisor, Dr. Timothy Davis for his guidance and support

throughout the course of this research.

Thanks also go to my friends and colleagues and the department faculty and staff for

making my time at Texas A&M University a great experience.

The graphs analyzed for Multi-Source Breadth First Search algorithm evaluation were

provided by Professor Davis.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

Undergraduate research was supported by Intel, NVIDIA, Redis, MathWorks, and Julia

Computing at Texas A&M University.

4

1. INTRODUCTION

1.1 Background

1.1.1 Breadth First Search

A breadth first search is a method of searching through a graph starting from a source

node and expanding out to each node adjacent to it in levels. The primary information usually

gathered about a node in a breadth first search are its level and its parent. A node’s level

indicates how far it is from the source node, where the source node is level 0, nodes adjacent to

the source node are level 1, nodes adjacent to level 1 that are not already in a level become level

2 and so on. A node’s parent is a node on the level above the node of interest from which the

node was found. If a node has two or more nodes that could be its parent, any of the potential

parents can be considered a valid result. The source node of a breadth first search is considered

to be its own parent. A breadth first search is completed when the highest level has no adjacent

nodes that are still outside the breadth first search and results of a breadth first search are often

displayed in a tree with the source node at its root.

1.1.2 Diameter definition

A graph’s diameter is the graph’s maximum eccentricity, where the eccentricity of a node

is the maximum distance from that node to all other nodes in a graph [1]. Nodes that exhibit this

eccentricity are called peripheral nodes. Another way the definition can be phrased is that a

graph’s diameter is the longest shortest path in the graph [2]. Defining diameter this way is fairly

straightforward for graphs in which all the nodes are connected. However, some, such as [2],

caveat that a disconnected graph has an infinite diameter. For the purposes of this paper, I will be

5

treating the diameter of a graph as the longest shortest traversable or connected path and not

detecting disconnected graphs.

1.1.3 GraphBLAS and LAGraph

GraphBLAS is a package that seeks to standardize the representation of graphs in the

language of linear algebra and facilitate the use of this representation [3]. It includes methods of

representing a graph in matrix form and matrix operations that can be used to create algorithms

around those graphs. It also facilitates the creation of matrices and vectors to interact with these

graphs. LAGraph is a library of algorithms that use GraphBLAS [4]. LAGraph contains many

algorithms for working with and analyzing graphs efficiently based on the advantages of

working with the linear algebra representation of the graph.

1.1.4 Semirings and Masks

One key concept I had to become familiar with for this project was semirings. Semirings

are a way of defining operations performed on matrices and are composed of two monoids. The

semiring most commonly used is the one used for matrix multiplication, which would be a times-

add semiring. This refers to how the initial values are multiplied together, then those products are

summed, with multiplication and addition as the two monoids. To enable better matrix

operations, GraphBLAS allows for other types of monoids, such as ones that just determine if a

value is present using or or and boolean logic or ones that identify the row or column a value is

from.

Another tool used to improve matrix computations in GraphBLAS are masks. A mask is

used to decide which elements in an output matrix to actually compute. For example, in matrix

multiplication, if a mask is used and disallows filling in of C(i, j) in output matrix C, then in the

6

output matrix, C(i, j) will not be filled in. In my project, this is primarily used to ensure that

previous levels of the breadth first search trees are not overwritten by later levels.

1.1.5 Project Goal

In my project, I aimed to build and test an algorithm to extend the functionality of

LAGraph’s current Breadth First Search algorithms by developing a multi source breadth first

search algorithm that takes advantage of the matrix notation of LAGraph to more efficiently

perform a breadth first search from each node of interest at once, rather than just running a

breadth first search for each node individually. I then developed two algorithms based on the

multi-source breadth first search for determining the diameter of a graph. One to find the exact

diameter and the other to estimate it.

7

2. METHODS

2.1 Multi Source Breadth First Search Algorithm

2.1.1 Base Algorithm and Similarities

In building my algorithm I based it off of an existing breadth first search algorithm in

LAGraph [5]. That initial algorithm took in a single source node and a graph containing that

source node and generated vectors that gave the parent node and level of each node. The

algorithm had options to record just parent or just level vectors or compute both parent and level

vectors.

The option to compute parent, level, or both parent and level information was carried

over to my algorithm. Also carried over was the main structure of how the algorithm generates

the parent and level information. The algorithm starts with variable initialization and verification

of inputs. In particular, it verifies that it has been asked to compute at least one of parent and

level, since while the algorithm could do nothing and return success if not asked for either level

or parent information, we determined that if the algorithm was called it was likely expected to do

something, so being called to do nothing was likely an error that should be raised to the user.

There is also verification that the source or sources for the breadth first search are in the graph.

After the verification, there is further initialization set up based on whether the user has

requested parent information, level information, or both. Then the main loop for the breadth first

search is entered and parent, level, or parent and level information is generated and stored. Once

the loop is complete, parent and level information are made available to the user, all created

variables are cleaned up, and success of the algorithm is returned.

8

2.1.2 Algorithm Adaptations

The main adaptation to the algorithm in my project was adding a dimension to the

variables in the algorithm. This means that instead of a single source node I have a vector of

source nodes and instead of vectors for the level and parent of each node I have matrices of the

level and parent of each node with respect to each source node. The advantage of this dimension

increase is that I can compute each iteration of level and parent information for all the source

nodes at once instead of only for one source node at a time.

One other adaptation from the original algorithm was a simplification of the algorithm’s

method of advancing the frontier. In the original algorithm, for efficiency, the algorithm would

advance the frontier in either a push method or a pull method. Push method advancement is done

by starting from the nodes in the frontier and looking at all nodes adjacent to them to find any

that have not yet been seen and add them to the next level, pushing the frontier out. Pull method

advancement, by contrast, looks at all unfound nodes and determines whether any of them has an

adjacent node in the frontier and if so adds the node to the next level. In the original algorithm,

switching to the pull method towards the end of the program, when the frontier is large and the

remaining unfound node pool is small, was used to increase the algorithm’s efficiency. However,

since the push advancement method is more efficient for most of the process and it would be

harder to efficiently decide between methods with multiple breadth first searches occurring in

parallel, I have developed my algorithm to always use push method advancement.

2.2 Diameter: Exact and Estimated

2.2.1 Exact Diameter Calculation

If one performs a breadth first search on every node in a graph, the graph’s diameter will

be the highest level found of all the breadth first search trees. For my exact diameter algorithm, I

9

break the nodes into groups, grouping by a variable k that the function takes in and loop through

all the nodes calling a multi-source breadth first search on k nodes at a time. Breaking the nodes

up is done to keep the space requirements of the algorithm manageable at the cost of losing some

of the parallelization. For each batch, I store each node’s eccentricity, that is, the highest level in

its breadth first search tree. Once all the breadth first search levels have been found, the highest

level is the graph’s diameter. A vector of peripheral nodes, the nodes that are at that maximum

level from another node, can also be returned.

2.2.2 Diameter Estimation

For the estimation of the diameter, I again use a passed in k value to keep to a

manageable size. In that algorithm, I start with k random initial nodes and run a breadth first

search on them. Then I take the node(s) with the highest level in the found breadth first search

trees and run a multisource breadth first search with k of those nodes, or all of them if there are

fewer than k nodes at the maximum level. This is repeated until the maximum level of the

current breadth first search tree is the same as the maximum level of the last iteration. While this

algorithm is not guaranteed to find the diameter of a graph, it does find a reasonable lower bound

for it. Like the exact diameter algorithm, this algorithm can also return the nodes found with this

highest breadth first search level, though in this case the nodes are pseudo peripheral instead of

just peripheral nodes because they are only at a guessed boundary, not a certain one. The

algorithm does have an initial check for if k is greater than or equal to the total number of nodes

in the graph so that it doesn’t have to do a second search of the graph, since that high a k value

makes it the exact diameter algorithm.

2.3 Pseudo-code Multi Source Breadth First Search Algorithm

10

Algorithm 1: Multi-Source Breadth First Search
 Input: Matrix* level, Matrix* parent, Graph G, Vector src
 Output: Returns GrB_SUCCESS or an error code

1 // variable creation and input checking
2 Matrix frontier = NULL; // current frontier
3 Matrix pi = NULL; // parent matrix
4 Matrix v = NULL; // level matrix
5
6 bool compute_level = (level != NULL) ;
7 bool compute_parent = (parent != NULL) ;
8 if (compute_level) (*level) = NULL ;
9 if (compute_parent) (*parent) = NULL ;
10
11 // get problem size
12 Matrix A = G->A;
13 Index nsrc; // holds the number of sources
14 Index n;
15 GrB_Matrix_nrows (&n, A) ;
16 GrB_Vector_size (&nsrc, src) ;
17
18 Semiring semiring;
19
20 if (compute_parent)
21 {
22 // semiring used for parent computation
23 semiring = GxB_ANY_SECONDI_INT*
24 // set up parent matrix
25 pi = Matrix[nsrc][n];
26 // parent for each source is itself in its corresponding row
27 for (int64_t s = 0; s < nsrc; s++)
28 {
29 Index currsrc = src[s];
30 pi[s][currsrc] = currsrc;
31 }
32 // set up frontier
33 frontier = Matrix[nsrc][n];
34 // frontier also starts with the source nodes in their rows
35 for (int64_t s = 0; s < nsrc; s++)
36 {
37 Index currsrc = src[s];
38 frontier [s][currsrc] = currsrc;

11

39 }
40 }
41 else
42 {
43 // semiring for when only level is needed
44 semiring = LAGraph_any_one_bool;
45 // when only getting the level, the frontier can just be booleans
46 frontier = Matrix[nsrc][n];
47 // frontier starts with the source nodes in their rows being true
48 for (int64_t s = 0; s < nsrc; s++)
49 {
50 Index currsrc = src[s];
51 frontier[s][currsrc] = true;
52 }
53 }
54 if (compute_level)
55 {
56 // set up level matrix, sources are denoted by level 0
57 v = Matrix[nsrc][n];
58 for (int64_t s = 0; s < nsrc; s++)
59 {
60 Index currsrc = src[s];
61 v[s][currsrc] = 0;
62 }
63 }
64
65 // core BFS traversal and labeling
66 Index nfrontier = nsrc; // number of nodes in the current level
67 Matrix mask = (compute_parent) ? pi : v ;
68 for (int64_t nvisited = nsrc, k = 1 ; nvisited < n*nsrc ; nvisited += nfrontier, k++)
69 {
70 // advance the frontier
71 GrB_mxm (frontier, mask, NULL, semiring, frontier, A, GrB_DESC_RSC);
72 // stop if the frontier is empty
73 GrB_Matrix_nvals (&nfrontier, frontier) ;
74 if (nfrontier == 0)
75 {
76 break ;
77 }
78 // assign parents/levels

12

79 if (compute_parent)
80 {
81 // frontier(s, i) currently contains the parent id of node i in tree s.
82 // pi{frontier} = frontier, where {frontier} means using frontier as a

mask
83 GrB_assign (pi, frontier, NULL, frontier, GrB_ALL, nsrc,
84 GrB_ALL, n, GrB_DESC_S) ;
85 }
86 if (compute_level)
87 {
88 // v{frontier} = k, the kth level of the BFS
89 GrB_assign (v, frontier, NULL, k, GrB_ALL, nsrc,
90 GrB_ALL, n, GrB_DESC_S) ;
91 }
92 }
93 // clean up and return results
94 if (compute_parent) (*parent) = pi ;
95 if (compute_level) (*level) = v ;
96 return (GrB_SUCCESS) ;

While the function only returns a value indicating its success or an error message, it also

uses the passed in “parent” and “level” matrix pointers to basically return the created parent

matrix, level matrix, or both matrices to the user as well. Parent and level matrices are computed

based on if the user passes in a valid pointer for them to be assigned to. Since these variables are

being overwritten, at the beginning of the algorithm, lines 8 and 9, their contents are set to

NULL. This is done so that if the algorithm fails, the user does not end up using bad data

thinking it’s the breadth first search results.

The first 19 lines of the above code are the general set up of the algorithm. They

determine which of the breadth first search values are being asked for, level, parent, or both.

Lines 20 to 40 are set up for when the parent is being computed. The semiring selected for that is

one that will get the node from which that node was seen, that node’s parent. It uses the ‘any’

13

operator in it, which is a neat operator in GraphBLAS that can be used when you need one of the

values that satisfies a condition but don’t care which one. This works well in this case since a

node’s parent can be any node in the frontier that can see it. That section also sets up the matrix

to store parent information in and the frontier matrix. Then lines 41 to 53 do similar set up if the

parent matrix is not being computed, setting up the frontier and semiring again. The semiring in

this version only asks for a boolean, however, since for level you only need to know that the

node shares an edge with a node in the frontier, not which node it shares an edge with. Lines 54

to 64 are the set-up of the level matrix if the level is being computed. This is done separately

from the previous section because it needs to be done even when both level and parent matrices

are being computed. Lines 65 to 92 encompass the main loop of the function. The for loop tracks

two variables, the number of nodes that have been visited and the current level of the search, and

stops when all the nodes have been visited or when the frontier no longer has any nodes in it. On

each iteration of the loop, the frontier is advanced, checked for being empty, and provided new

nodes were found for the frontier, those nodes’ parent and level information are recorded as

needed. The final section then sets up the parent and level matrices to be available to the user

using the pointers passed in at the beginning, cleans up all created variables and returns an

indication of success to the user.

2.4 Pseudo-code Estimate Diameter Algorithm

Algorithm 2: Estimate Diameter
Input: Index* diameter, Vector* peripheral, Graph G, Index maxSrcs, Index maxLoops
Output: Returns GrB_SUCCESS or an error code

1 // variable creation and input checking
2 Vector ecc = NULL; // vector for tracking eccentricity
3 Vector peri = NULL; // vector for storing peripheral node status
4 Index d = 0; // most recently found diameter
5 Index lastd = 0; // previously found diameter
6 Vector srcs = NULL; // list of current sources
7 Index nsrcs; // number of current sources

14

8 Matrix level // a matrix to put level information in from the multisource bfs
9
10 bool compute_periphery = (peripheral != NULL) ;
11 if (compute_periphery) (*peripheral) = NULL ;
12 bool compute_diameter = (diameter != NULL) ;
13
14 Matrix A = G->A;
15
16 Index n;
17 GrB_Matrix_nrows (&n, A) ;
18
19 // start with the first maxSrcs sources, or n if maxSrcs > n
20 if (maxSrcs > n){
21 nsrcs = n;
22 } else {
23 nsrcs = maxSrcs;
24 }
25 srcs = Vector[nsrcs];
26 for (int64_t i = 0; i < nsrcs; i++){
27 srcs[i] = i;
28 }
29
30 // core loop to find diameter
31 Monoid max = GrB_MAX_MONOID*
32 bool incSrcs = false;
33 for (int64_t i = 0; i < maxLoops; i++){
34 // save previous diameter
35 lastd = d;
36
37 // get new diameter
38 MultiSourceBFS(&level, NULL, G, srcs);
39 ecc = Vector[n]
40 GrB_reduce(ecc, NULL, NULL, max, level, GrB_DESC_T0T1);
41 GrB_reduce(&d, NULL, max, ecc, GrB_NULL);
42
43 // check for completion
44 if (d == lastd) {
45 incSrcs = true;
46 break;
47 }
48
49 // set up source list for the next round of the loop
50 int64_t nperi = 0;
51 for (int64_t j = 0; j < n; j++) {
52 Index e;
53 e = ecc[j];

15

54 if (e == d) {
55 nperi += 1;
56 }
57 }
58 // select the number of sources for the next iteration
59 if (nperi > maxSrcs) {
60 nsrcs = maxSrcs;
61 } else {
62 nsrcs = nperi;
63 }
64 // choose sources
65 srcs = Vector[nsrcs];
66 int64_t curri = 0;
67 for (int64_t j = 0; j < n; j++) {
68 Index e;
69 e = ecc[j];
70 if (e == d){
71 srcs[curri] = j;
72 curri += 1;
73 if (curri == nsrcs) {
74 break;
75 }
76 }
77 }
78 }
79
80 // main loop complete, determine peripheral nodes if requested
81 if (compute_periphery) {
82 peri = Vector[n];
83 if (incSrcs) {
84 for (int64_t i = 0; i < nsrcs; i++) {
85 Index currsrc;
86 currsrc = srcs[i];
87 peri[currsrc] = 1;
88 }
89 }
90 for (int64_t i = 0; i < n; i++) {
91 Index e;
92 e = ecc[i];
93 if (e == d) {
94 peri[i] = 1;
95 }
96 }
97 }
98
99 // clean up and return results

16

100 if (compute_periphery) (*peripheral) = peri ;
101 (*diameter) = d ;
102 return (GrB_SUCCESS) ;

The first 18 lines are fairly straightforward, setting up the function. In that section,

there is a check that the user has actually given a place to put the found diameter, since that

is the purpose of the function. There is also a check for whether or not the user has asked for

pseudo peripheral nodes to be found, since these are optional. Lines 19 to 29 set up the

initial set of sources. If the user allows for more sources than there are nodes in the graph,

the algorithm just gets all the nodes in the graph. Otherwise, the first maxSources nodes are

selected. Lines 31 and 32 are a last bit of set up of variables. Line 31 defines the max

monoid, which is just an operator that will be used later to compare a bunch of values and

choose the highest one. Line 32 sets up the boolean incSrcs, a shortened form of include

sources, which will be used to determine whether the source nodes should be included in the

list of peripheral nodes later. I’ll discuss why this is used when it is changed later.

Jumping into the core loop now, line 35 saves the previous iteration’s diameter.

Then the algorithm determines the current iteration’s diameter. This is done in three steps.

Line 38 uses the multi source breadth first search algorithm to get the level information

about the sources, since the diameter should be the maximum level that can be found in that

matrix. Line 40 then reduces the level matrix into the vector ecc. The descriptor in the

reduce command tells the program to collapse the level matrix by column instead of by row,

so instead of finding the exact eccentricity of each source node, this gets an estimated

eccentricity for every node in the graph that is the furthest level it was away from any of the

nodes. Finally, line 41 reduces that eccentricity vector down to the final diameter value

17

using max again to ensure that the diameter is the highest level that was found in the whole

graph. Lines 43 to 47 then check the main end condition for the loop, which stops if the

diameter found on this iteration matches the diameter found on the previous iteration. This

is also where incSrcs is set to true. This is done because if the current and previous levels

have the same pseudo diameter then all the sources also have that same diameter, since they

were chosen as sources from the previous level for having that diameter. Lines 49 to 77 then

set up for the next iteration of the loop by selecting the sources for that next iteration. It

either selects all the pseudo peripheral nodes found in that iteration or the first maxSrcs

pseudo peripheral nodes, if more than maxSrcs pseudo peripheral nodes were found. This

concludes the loop, which will then run until either the diameter stops changing or a certain

number of loops, the maximum chosen by the user, have been completed.

With the main loop complete, lines 80 to 97 find the pseudo peripheral nodes if the

user asked for that. Pseudo peripheral nodes are indicated by a 1 in the peripheral node

vector at their index. Lines 99 to 102 then wrap up the algorithm with the contents of the

pointers passed in for outputs set to the proper values for the user and success returned.

18

3. RESULTS

3.1 Breadth First Search Efficiency Comparisons

Below are results from tests that were run to compare the multi source breadth first

search algorithm with repeatedly performing a regular breadth first search. My initial tests were

run using various graphs from LAGraph’s data folder. Additional tests were done with larger

graphs provided by Professor Davis. All the tests calculated both level and parent data.

Table 1: Small Graph with 34 nodes (karate.mtx).

Number of Sources Multi Source BFS
Time (sec)

Repeated Single
BFS Time (sec)

1 0.000343327 0.000280804

10 0.000638823 0.00433829

20 0.000284731 0.00239744

34 0.000340607 0.00286724

Table 2: Intermediate Graph with 1000 nodes (test_FW_1000.mtx).

Number of Sources Multi Source BFS
Time (sec)

Repeated Single
BFS Time (sec)

1 0.00447097 0.00360959

10 0.00744123 0.0389852

50 0.00849059 0.172488

100 0.00811515 0.341047

19

250 0.0167306 0.825478

500 0.029546 1.41658

750 0.035118 2.00946

1000 0.0465167 2.84693

Table 3: Large Graph with 2500 nodes (cryg2500.mtx).

Number of Sources Multi Source BFS
Time (sec)

Repeated Single
BFS Time (sec)

1 0.00136034 0.00131033

50 0.0327879 0.0720413

100 0.0659519 0.144659

500 0.194916 0.730689

750 0.225545 1.08628

1000 0.312125 1.44982

1500 0.376316 2.15283

2000 0.478275 2.86541

2500 0.613305 3.69793

Note: Results showing the efficiency improvements of the multi source breadth first

search algorithm over the regular breadth first search algorithm being run repeatedly. Several

sizes of graph used to show the differences in improvement with different numbers of nodes, and

thus iterations of the breadth first search loop.

20

Table 4: Push-pull Graph with 4000 nodes (pushpull.mtx).

Number of Sources Multi Source BFS
Time (sec)

Repeated Single
BFS Time (sec)

1 0.0152903 0.0151979

50 0.0330606 0.74579

100 0.0431611 1.50652

500 0.142936 7.67528

1000 0.299147 15.0793

2000 54.8362 26.8286

3000 88.136 35.2629

4000 212.632 46.0929

Note: As mentioned above, I removed a section of the original breadth first search

algorithm that decided between two methods of breadth first search tree expansion, push and

pull. While using exclusively the push method does not usually harm my algorithm’s efficiency

too much, as seen by the results with the other graphs, on a graph designed to benefit from the

ability to switch styles, there is a noticeable difference. Table 4 shows the results of running the

two algorithms on one such graph.

I also got the chance to test my algorithm on a couple larger, more real-world scale

graphs provided by Professor Davis:

Table 5: Very Large Graph 1 with 1,134,890 nodes (com-Youtube.mtx).

Number of Sources Multi Source BFS
Time (sec)

Repeated Single
BFS Time (sec)

21

1 0.0359982 0.0320092

10 0.25627 0.306387

50 1.77769 1.5783

100 3.16027 7.25969

500 11.3854 41.3023

1000 21.5215 80.9514

5000 103.506 462.175

10000 213.237 912.368

15000 301.597 1382.88

Table 6: Very Large Graph 2 with 1,696.415 nodes (as-Skitter.mtx).

Number of Sources Multi Source BFS
Time (sec)

Repeated Single
BFS Time (sec)

1 0.0386228 0.0320368

10 0.277473 0.386897

50 2.25212 1.83416

100 4.09847 3.74342

500 16.1427 48.4041

1000 33.3384 101.595

5000 157.673 522.407

10000 325.687 1035.5

15000 510.752 1561.37

22

For fewer source nodes on the large graphs the single source BFS is more efficient, likely

again showing the benefits of the push-pull methods. However, as the number of sources

increases, the efficiency of the parallelization wins out.

Figure 1: Graph of the results from Table 1. With so few nodes, it appears that random computational delays have
significant obfuscating effects, especially in the repeated running of the single source breadth first search.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0 5 10 15 20 25 30 35 40

Ti
m

e
(s

ec
on

ds
)

Number of Source Nodes

Small Graph Results

Multi Source BFS Repeated Single BFS

23

Figure 2: Graph of the results from Table 2. Time increase with the increasing number of sources begins to differ
significantly, showing the benefits of parallelization.

Figure 3: Graph of the results from Table 3. Increasing graph size starts to increase parallelized computation speed
noticeably, but still stays better than the base algorithm.

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200

Ti
m

e
(s

ec
on

ds
)

Number of Source Nodes

Intermediate Graph Results

Multi Source BFS Repeated Single BFS

0

0.5

1

1.5

2

2.5

3

3.5

4

0 500 1000 1500 2000 2500 3000

Ti
m

e
(S

ec
on

ds
)

Number of Source Nodes

Large Graph Results

Multi Source BFS Repeated Single BFS

24

Figure 4: Graph of the results from Table 4. As discussed above, this graph demonstrates that a push-pull shift in
the algorithm could provide improvements in breadth first search speed, depending on the graph.

Figure 5: Graph of the results from Table 5. Both algorithms do appear to have a direct correlation between
number of source nodes and the time they take.

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Ti
m

e
(S

ec
on

ds
)

Number of Source Nodes

Push-Pull Graph Results

Multi Source BFS Repeated Single BFS

0

200

400

600

800

1000

1200

1400

1600

0 2000 4000 6000 8000 10000 12000 14000 16000

Ti
m

e
(S

ec
on

ds
)

Number of Source Nodes

Very Large Graph 1 Results

Multi Source BFS Repeated Single BFS

25

Figure 6: Graph of the results from Table 6. At this scale, the benefits of the parallelization become very apparent.

3.2 Diameter Results

Below are results from running the exact and estimated diameter algorithms. These

results found with peripheral nodes being calculated. The same graphs as discussed above were

used, so matching up the number of nodes can be used to determine the graph if desired.

Table 7: Diameter Results with peripheral node calculation

Graph
Number of
Nodes

Number of
Sources per
batch (k)

Exact
Diameter

Exact
Diameter Time
(sec)

Estimated
Diameter

Estimated
Diameter Time
(sec)

34 10 5 0.00161535 5 0.000803881

34 34 5 0.00102 5 0.00060193

1000 10 500 0.258028 500 0.0076337

1000 100 500 0.051773 500 0.0133934

0

200

400

600

800

1000

1200

1400

1600

1800

0 2000 4000 6000 8000 10000 12000 14000 16000

Ti
m

e
(S

ec
on

ds
)

Number of Source Nodes

Very Large Graph 2 Results

Multi Source BFS Repeated Single BFS

26

1000 500 500 0.0402269 500 0.0259454

2500 10 98 1.83667 98 121.036

2500 100 98 1.67881 98 165.649

2500 1000 98 0.700281 98 168.409

2500 2500 98 0.498017 97 167.978

4000 100 2005 12.3621 2005 0.0510473

4000 500 2005 53.3279 2005 0.1686

4000 2000 2005 132.765 2005 55.6341

4000 4000 2005 208.09 2005 214.463

1,134,890 10 X X 24 0.523146

1,134,890 100 X X 24 2.01806

1,134,890 500 X X 24 7.01838

1,134,890 1000 X X 24 13.2149

1,134,890 5000 X X 24 61.771

1,696,415 10 X X 31 98.3638

1,696,415 100 X X 31 2.7098

1,696,415 500 X X 31 9.62034

1,696,415 1000 X X 31 20.4759

1,696,415 5000 X X 31 98.189

27

4. CONCLUSION

4.1 Discussion of Multi Source Breadth First Search Results

For small graphs of less than 100 nodes, the speed up from this algorithm is unlikely to

be noticeable. The convenience of not having to write a loop to go through the source nodes

would probably be of more benefit to the programmer. As the graphs reach a few thousand

nodes, the benefits of the algorithm’s parallelization become noticeable. At this size we do still

see very reasonable speeds from both algorithms and some graphs which particularly benefit

from switching frontier advancement methods mid-way through are even more efficient with

repeated use of the single source algorithm. Finally, for real world scale graphs, graphs with over

a million nodes, the number of source nodes plays a role in which algorithm is most efficient.

With as many as 100 source nodes, the benefits of the single source algorithm like the push-pull

advancement can be more efficient than the multi source breadth first search algorithm.

However, once one reaches up to 500 or more source nodes, the advantages of the algorithm’s

parallelization outweigh these benefits. I suspect that the reason the single source algorithm

performs well for so long is that the benefits of the ability to change between push and pull

methods becomes more pronounced as the size of the graph increases. The graphs of the real

world scale tests of the algorithm also show that there seems to be a linear correlation between

the number of source nodes and the time it takes the algorithms to run, though this relationship

was less apparent on smaller graphs.

4.2 Discussion of Exact and Estimated Diameter Results

My main expectations for the exact diameter finding algorithm were that adding more

nodes to the number of sources per batch would speed it up since it would allow for greater

28

parallelization and that it would in most cases be slower but more accurate than the estimated

diameter. For the estimated diameter, I expected that it would be fairly quick but not always

accurate and that increasing the number of sources per batch would usually make it slower but

might allow it to be more accurate since it could explore nodes it wouldn’t find on smaller

iterations. While most of these expectations were validated by the results, there were a few

interesting deviations. The oddest was the 2500 node graph, which I suspect had some oddity in

how it was laid out given the difference in behavior between it and all the other graphs.

Especially odd was the last iteration, where it should have used all 2500 nodes as sources and

thus found the exact diameter immediately and confirmed it on the second iteration. Instead,

however, that was the only iteration to find a lower diameter than others on a given graph. I am

currently uncertain what caused this behavior.

On the very large graphs, I was unable to compute the exact diameters due to computing

resource constraints, but I was able to get some interesting results from the diameter estimation

algorithm. In particular, the time difference on the largest graph between 10 source nodes and

100, which I hypothesize is due to the 100 source nodes then including source nodes that can

reach the diameter in far fewer iterations.

4.3 Conclusion

In conclusion, this algorithm allows a user of LAGraph to more efficiently gain BFS

information from several source nodes in a graph. In most cases, the multi source breadth first

search algorithm can be used to obtain breadth first search data about several source nodes more

efficiently than repeatedly using the normal breadth first search algorithm. However, some

exceptions can occur when a graph greatly benefits from a pull method of frontier advancement

later in the algorithm or when finding relatively few BFS trees on a very large graph. As such,

29

one way this research could be further improved in the future would be investigating ways to add

the push pull functionality to the multi source BFS algorithm. In particular, determining a good

time to switch methods of frontier advancement would likely be the most interesting

continuation on that path.

Beyond its direct value to users, the multi source breadth first search algorithm can be

used to determine other interesting information. I explored calculating the diameter of a graph,

which would be the highest level found if a BFS were performed on every node in the graph.

Additionally, rather than performing the BFS on every node, the diameter can be estimated by

selecting only a sample of the nodes and by iterating on a sample of the nodes that exhibit the

highest BFS level until the highest level found no longer increases. Finding the exact diameter

can also find peripheral nodes of the graph, since they are the ones seeing that diameter and in

the same way pseudo-peripheral nodes can be found when estimating the diameter.

In the future, the BFS data could also be used to estimate a good cut of the graph by

cutting all the nodes at a certain level of the graph away from a peripheral or pseudo-peripheral

node, such as making a cut at a level near half the diameter of the graph. While such a cut is

unlikely to be completely optimized, it could aid other algorithms in running more efficiently by

giving them a reasonable starting point rather than having them work from a random cut. Some

other information about a graph that could be found or estimated using similar methods are a

graph’s center, eccentricity, and radius.

30

REFERENCES

[1] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, “Exploring network structure,
dynamics, and function using NetworkX”, in Proceedings of the 7th Python in Science
Conference (SciPy2008), Gäel Varoquaux, Travis Vaught, and Jarrod Millman (Eds),
(Pasadena, CA USA), pp. 11–15, Aug 2008

[2] Weisstein, Eric W. "Graph Diameter." From MathWorld--A Wolfram Web Resource.
https://mathworld.wolfram.com/GraphDiameter.html

[3] T. Davis, “GraphBLAS,” Graphblas. [Online]. Available:
https://people.engr.tamu.edu/davis/GraphBLAS.html. [Accessed Sept. 12, 2022].

[4] J. Antal et al. (2023) LAGraph (v1.0.1) [Source code].
https://github.com/GraphBLAS/LAGraph. [Accessed Oct. 5, 2022]

[5] T. Davis, (2022) LG_BreadthFirstSearch_SSGrB [Source code].
https://github.com/GraphBLAS/LAGraph/blob/stable/src/algorithm/LG_BreadthFirstSear
ch_SSGrB.c. [Accessed Oct. 25, 2022]

	Abstract
	Dedication
	Acknowledgements
	1. Introduction
	1.1 Background
	1.1.1 Breadth First Search
	1.1.2 Diameter definition
	1.1.3 GraphBLAS and LAGraph
	1.1.4 Semirings and Masks
	1.1.5 Project Goal

	2. Methods
	2.1 Multi Source Breadth First Search Algorithm
	2.1.1 Base Algorithm and Similarities
	2.1.2 Algorithm Adaptations

	2.2 Diameter: Exact and Estimated
	2.2.1 Exact Diameter Calculation
	2.2.2 Diameter Estimation

	2.3 Pseudo-code Multi Source Breadth First Search Algorithm
	2.4 Pseudo-code Estimate Diameter Algorithm

	3. Results
	3.1 Breadth First Search Efficiency Comparisons
	3.2 Diameter Results

	4. Conclusion
	4.1 Discussion of Multi Source Breadth First Search Results
	4.2 Discussion of Exact and Estimated Diameter Results
	4.3 Conclusion

	References

