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ABSTRACT 

Multi-Source Breadth First Search in Matrix Notation 

Alexandra Goff 
Department of Computer Science 

Texas A&M University 

Faculty Research Advisor: Dr. Timothy Davis 
Department of Computer Science 

Texas A&M University 

In this thesis, I will discuss a multi-source breadth first search algorithm I wrote for 

LAGraph. It allows a user to get the BFS parent and level data of a graph for several source 

nodes at once instead of having to do each source individually. This is not only easier on the 

user, but because of the parallelization that the matrix representation allows it is also more 

efficient than looping through each of the nodes of interest. While this is valuable to a user in its 

own right, a multi-source breadth first search also opens the door to other algorithms. I highlight 

methods of estimating or directly obtaining diameter and discuss further algorithms that could be 

added in the future.  
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1. INTRODUCTION 

1.1 Background 

1.1.1 Breadth First Search 

A breadth first search is a method of searching through a graph starting from a source 

node and expanding out to each node adjacent to it in levels. The primary information usually 

gathered about a node in a breadth first search are its level and its parent. A node’s level 

indicates how far it is from the source node, where the source node is level 0, nodes adjacent to 

the source node are level 1, nodes adjacent to level 1 that are not already in a level become level 

2 and so on. A node’s parent is a node on the level above the node of interest from which the 

node was found. If a node has two or more nodes that could be its parent, any of the potential 

parents can be considered a valid result. The source node of a breadth first search is considered 

to be its own parent. A breadth first search is completed when the highest level has no adjacent 

nodes that are still outside the breadth first search and results of a breadth first search are often 

displayed in a tree with the source node at its root. 

1.1.2 Diameter definition 

A graph’s diameter is the graph’s maximum eccentricity, where the eccentricity of a node 

is the maximum distance from that node to all other nodes in a graph [1]. Nodes that exhibit this 

eccentricity are called peripheral nodes. Another way the definition can be phrased is that a 

graph’s diameter is the longest shortest path in the graph [2]. Defining diameter this way is fairly 

straightforward for graphs in which all the nodes are connected. However, some, such as [2], 

caveat that a disconnected graph has an infinite diameter. For the purposes of this paper, I will be 
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treating the diameter of a graph as the longest shortest traversable or connected path and not 

detecting disconnected graphs.  

1.1.3 GraphBLAS and LAGraph 

GraphBLAS is a package that seeks to standardize the representation of graphs in the 

language of linear algebra and facilitate the use of this representation [3]. It includes methods of 

representing a graph in matrix form and matrix operations that can be used to create algorithms 

around those graphs. It also facilitates the creation of matrices and vectors to interact with these 

graphs. LAGraph is a library of algorithms that use GraphBLAS [4]. LAGraph contains many 

algorithms for working with and analyzing graphs efficiently based on the advantages of 

working with the linear algebra representation of the graph. 

1.1.4 Semirings and Masks 

One key concept I had to become familiar with for this project was semirings. Semirings 

are a way of defining operations performed on matrices and are composed of two monoids. The 

semiring most commonly used is the one used for matrix multiplication, which would be a times-

add semiring. This refers to how the initial values are multiplied together, then those products are 

summed, with multiplication and addition as the two monoids. To enable better matrix 

operations, GraphBLAS allows for other types of monoids, such as ones that just determine if a 

value is present using or or and boolean logic or ones that identify the row or column a value is 

from.  

Another tool used to improve matrix computations in GraphBLAS are masks. A mask is 

used to decide which elements in an output matrix to actually compute. For example, in matrix 

multiplication, if a mask is used and disallows filling in of C(i, j) in output matrix C, then in the 
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output matrix, C(i, j) will not be filled in. In my project, this is primarily used to ensure that 

previous levels of the breadth first search trees are not overwritten by later levels. 

1.1.5 Project Goal 

In my project, I aimed to build and test an algorithm to extend the functionality of 

LAGraph’s current Breadth First Search algorithms by developing a multi source breadth first 

search algorithm that takes advantage of the matrix notation of LAGraph to more efficiently 

perform a breadth first search from each node of interest at once, rather than just running a 

breadth first search for each node individually. I then developed two algorithms based on the 

multi-source breadth first search for determining the diameter of a graph. One to find the exact 

diameter and the other to estimate it.   
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2. METHODS 

2.1 Multi Source Breadth First Search Algorithm 

2.1.1 Base Algorithm and Similarities 

In building my algorithm I based it off of an existing breadth first search algorithm in 

LAGraph [5]. That initial algorithm took in a single source node and a graph containing that 

source node and generated vectors that gave the parent node and level of each node. The 

algorithm had options to record just parent or just level vectors or compute both parent and level 

vectors.  

The option to compute parent, level, or both parent and level information was carried 

over to my algorithm. Also carried over was the main structure of how the algorithm generates 

the parent and level information. The algorithm starts with variable initialization and verification 

of inputs. In particular, it verifies that it has been asked to compute at least one of parent and 

level, since while the algorithm could do nothing and return success if not asked for either level 

or parent information, we determined that if the algorithm was called it was likely expected to do 

something, so being called to do nothing was likely an error that should be raised to the user. 

There is also verification that the source or sources for the breadth first search are in the graph. 

After the verification, there is further initialization set up based on whether the user has 

requested parent information, level information, or both. Then the main loop for the breadth first 

search is entered and parent, level, or parent and level information is generated and stored. Once 

the loop is complete, parent and level information are made available to the user, all created 

variables are cleaned up, and success of the algorithm is returned. 
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2.1.2 Algorithm Adaptations 

The main adaptation to the algorithm in my project was adding a dimension to the 

variables in the algorithm. This means that instead of a single source node I have a vector of 

source nodes and instead of vectors for the level and parent of each node I have matrices of the 

level and parent of each node with respect to each source node. The advantage of this dimension 

increase is that I can compute each iteration of level and parent information for all the source 

nodes at once instead of only for one source node at a time.  

One other adaptation from the original algorithm was a simplification of the algorithm’s 

method of advancing the frontier. In the original algorithm, for efficiency, the algorithm would 

advance the frontier in either a push method or a pull method. Push method advancement is done 

by starting from the nodes in the frontier and looking at all nodes adjacent to them to find any 

that have not yet been seen and add them to the next level, pushing the frontier out. Pull method 

advancement, by contrast, looks at all unfound nodes and determines whether any of them has an 

adjacent node in the frontier and if so adds the node to the next level. In the original algorithm, 

switching to the pull method towards the end of the program, when the frontier is large and the 

remaining unfound node pool is small, was used to increase the algorithm’s efficiency. However, 

since the push advancement method is more efficient for most of the process and it would be 

harder to efficiently decide between methods with multiple breadth first searches occurring in 

parallel, I have developed my algorithm to always use push method advancement. 

2.2 Diameter: Exact and Estimated 

2.2.1 Exact Diameter Calculation 

If one performs a breadth first search on every node in a graph, the graph’s diameter will 

be the highest level found of all the breadth first search trees. For my exact diameter algorithm, I 
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break the nodes into groups, grouping by a variable k that the function takes in and loop through 

all the nodes calling a multi-source breadth first search on k nodes at a time. Breaking the nodes 

up is done to keep the space requirements of the algorithm manageable at the cost of losing some 

of the parallelization. For each batch, I store each node’s eccentricity, that is, the highest level in 

its breadth first search tree. Once all the breadth first search levels have been found, the highest 

level is the graph’s diameter. A vector of peripheral nodes, the nodes that are at that maximum 

level from another node, can also be returned. 

2.2.2 Diameter Estimation 

For the estimation of the diameter, I again use a passed in k value to keep to a 

manageable size. In that algorithm, I start with k random initial nodes and run a breadth first 

search on them. Then I take the node(s) with the highest level in the found breadth first search 

trees and run a multisource breadth first search with k of those nodes, or all of them if there are 

fewer than k nodes at the maximum level. This is repeated until the maximum level of the 

current breadth first search tree is the same as the maximum level of the last iteration. While this 

algorithm is not guaranteed to find the diameter of a graph, it does find a reasonable lower bound 

for it. Like the exact diameter algorithm, this algorithm can also return the nodes found with this 

highest breadth first search level, though in this case the nodes are pseudo peripheral instead of 

just peripheral nodes because they are only at a guessed boundary, not a certain one. The 

algorithm does have an initial check for if k is greater than or equal to the total number of nodes 

in the graph so that it doesn’t have to do a second search of the graph, since that high a k value 

makes it the exact diameter algorithm. 

2.3 Pseudo-code Multi Source Breadth First Search Algorithm 
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Algorithm 1: Multi-Source Breadth First Search 
 Input: Matrix* level, Matrix* parent, Graph G, Vector src 
 Output: Returns GrB_SUCCESS or an error code 

1   // variable creation and input checking 
2   Matrix frontier = NULL; // current frontier 
3   Matrix pi = NULL;  // parent matrix 
4   Matrix v = NULL;  // level matrix 
5   
6   bool compute_level  = (level != NULL) ; 
7   bool compute_parent = (parent != NULL) ; 
8   if (compute_level ) (*level ) = NULL ; 
9   if (compute_parent) (*parent) = NULL ; 
10   
11   // get problem size  
12   Matrix A = G->A; 
13   Index nsrc; // holds the number of sources 
14   Index n; 
15   GrB_Matrix_nrows (&n, A) ; 
16   GrB_Vector_size (&nsrc, src) ; 
17   
18   Semiring semiring; 
19    
20   if (compute_parent) 
21   { 
22    // semiring used for parent computation 
23    semiring = GxB_ANY_SECONDI_INT* 
24    // set up parent matrix 
25    pi = Matrix[nsrc][n]; 
26    // parent for each source is itself in its corresponding row 
27    for (int64_t s = 0; s < nsrc; s++) 
28    { 
29     Index currsrc = src[s]; 
30     pi[s][currsrc] = currsrc; 
31    } 
32    // set up frontier 
33    frontier = Matrix[nsrc][n]; 
34    // frontier also starts with the source nodes in their rows 
35    for (int64_t s = 0; s < nsrc; s++) 
36    { 
37     Index currsrc = src[s]; 
38     frontier [s][currsrc] = currsrc; 
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39    } 
40   } 
41   else 
42   { 
43    // semiring for when only level is needed 
44    semiring = LAGraph_any_one_bool; 
45    // when only getting the level, the frontier can just be booleans 
46    frontier = Matrix[nsrc][n]; 
47    // frontier starts with the source nodes in their rows being true 
48    for (int64_t s = 0; s < nsrc; s++) 
49    { 
50     Index currsrc = src[s]; 
51     frontier[s][currsrc] = true; 
52    } 
53   } 
54   if (compute_level) 
55   { 
56    // set up level matrix, sources are denoted by level 0 
57    v = Matrix[nsrc][n]; 
58    for (int64_t s = 0; s < nsrc; s++) 
59    { 
60     Index currsrc = src[s]; 
61     v[s][currsrc] = 0; 
62    } 
63   } 
64   
65   // core BFS traversal and labeling 
66   Index nfrontier = nsrc;  // number of nodes in the current level 
67   Matrix mask = (compute_parent) ? pi : v ; 
68   for (int64_t nvisited = nsrc, k = 1 ; nvisited < n*nsrc ; nvisited += nfrontier, k++) 
69   { 
70    // advance the frontier 
71    GrB_mxm (frontier, mask, NULL, semiring, frontier, A, GrB_DESC_RSC); 
72    // stop if the frontier is empty 
73    GrB_Matrix_nvals (&nfrontier, frontier) ; 
74    if (nfrontier == 0) 
75    { 
76     break ; 
77    } 
78    // assign parents/levels  
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79    if (compute_parent) 
80    { 
81     // frontier(s, i) currently contains the parent id of node i in tree s. 
82     // pi{frontier} = frontier, where {frontier} means using frontier as a 

mask 
83     GrB_assign (pi, frontier, NULL, frontier, GrB_ALL, nsrc,  
84     GrB_ALL, n, GrB_DESC_S) ; 
85    } 
86    if (compute_level) 
87    { 
88     // v{frontier} = k, the kth level of the BFS 
89     GrB_assign (v, frontier, NULL, k, GrB_ALL, nsrc,  
90     GrB_ALL, n, GrB_DESC_S) ; 
91   } 
92  } 
93  // clean up and return results 
94  if (compute_parent) (*parent) = pi ; 
95  if (compute_level ) (*level ) = v ; 
96  return (GrB_SUCCESS) ; 

 
  
  

While the function only returns a value indicating its success or an error message, it also 

uses the passed in “parent” and “level” matrix pointers to basically return the created parent 

matrix, level matrix, or both matrices to the user as well. Parent and level matrices are computed 

based on if the user passes in a valid pointer for them to be assigned to. Since these variables are 

being overwritten, at the beginning of the algorithm, lines 8 and 9, their contents are set to 

NULL. This is done so that if the algorithm fails, the user does not end up using bad data 

thinking it’s the breadth first search results.  

The first 19 lines of the above code are the general set up of the algorithm. They 

determine which of the breadth first search values are being asked for, level, parent, or both. 

Lines 20 to 40 are set up for when the parent is being computed. The semiring selected for that is 

one that will get the node from which that node was seen, that node’s parent. It uses the ‘any’ 
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operator in it, which is a neat operator in GraphBLAS that can be used when you need one of the 

values that satisfies a condition but don’t care which one. This works well in this case since a 

node’s parent can be any node in the frontier that can see it. That section also sets up the matrix 

to store parent information in and the frontier matrix. Then lines 41 to 53 do similar set up if the 

parent matrix is not being computed, setting up the frontier and semiring again. The semiring in 

this version only asks for a boolean, however, since for level you only need to know that the 

node shares an edge with a node in the frontier, not which node it shares an edge with. Lines 54 

to 64 are the set-up of the level matrix if the level is being computed. This is done separately 

from the previous section because it needs to be done even when both level and parent matrices 

are being computed. Lines 65 to 92 encompass the main loop of the function. The for loop tracks 

two variables, the number of nodes that have been visited and the current level of the search, and 

stops when all the nodes have been visited or when the frontier no longer has any nodes in it. On 

each iteration of the loop, the frontier is advanced, checked for being empty, and provided new 

nodes were found for the frontier, those nodes’ parent and level information are recorded as 

needed. The final section then sets up the parent and level matrices to be available to the user 

using the pointers passed in at the beginning, cleans up all created variables and returns an 

indication of success to the user.  

2.4 Pseudo-code Estimate Diameter Algorithm 

Algorithm 2: Estimate Diameter 
Input: Index* diameter, Vector* peripheral, Graph G, Index maxSrcs, Index maxLoops 
Output: Returns GrB_SUCCESS or an error code 

1  // variable creation and input checking 
2  Vector ecc = NULL; // vector for tracking eccentricity 
3  Vector peri = NULL; // vector for storing peripheral node status 
4  Index d = 0;  // most recently found diameter 
5  Index lastd = 0;  // previously found diameter 
6  Vector srcs = NULL;  // list of current sources 
7  Index nsrcs;  // number of current sources 
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8  Matrix level  // a matrix to put level information in from the multisource bfs 
9    
10  bool compute_periphery  = (peripheral != NULL) ; 
11  if (compute_periphery ) (*peripheral) = NULL ; 
12  bool compute_diameter  = (diameter != NULL) ; 
13    
14  Matrix A = G->A; 
15   
16  Index n; 
17  GrB_Matrix_nrows (&n, A) ; 
18   
19  // start with the first maxSrcs sources, or n if maxSrcs > n 
20  if (maxSrcs > n){ 
21       nsrcs = n; 
22  } else { 
23       nsrcs = maxSrcs; 
24  } 
25  srcs = Vector[nsrcs]; 
26  for (int64_t i = 0; i < nsrcs; i++){ 
27    srcs[i] = i; 
28  } 
29    
30  // core loop to find diameter 
31  Monoid max = GrB_MAX_MONOID* 
32  bool incSrcs = false; 
33  for (int64_t i = 0; i < maxLoops; i++){ 
34    // save previous diameter 
35    lastd = d; 
36    
37    // get new diameter 
38    MultiSourceBFS(&level, NULL, G, srcs); 
39    ecc = Vector[n] 
40    GrB_reduce(ecc, NULL, NULL, max, level, GrB_DESC_T0T1); 
41    GrB_reduce(&d, NULL, max, ecc, GrB_NULL); 
42    
43    // check for completion 
44    if (d == lastd) { 
45     incSrcs = true; 
46     break; 
47    } 
48   
49    // set up source list for the next round of the loop 
50    int64_t nperi = 0; 
51    for (int64_t j = 0; j < n; j++) { 
52     Index e; 
53     e = ecc[j]; 
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54     if (e == d) { 
55      nperi += 1; 
56     }  
57    } 
58    // select the number of sources for the next iteration 
59    if (nperi > maxSrcs) { 
60     nsrcs = maxSrcs; 
61    } else { 
62     nsrcs = nperi; 
63    } 
64    // choose sources 
65    srcs = Vector[nsrcs]; 
66    int64_t curri = 0; 
67    for (int64_t j = 0; j < n; j++) { 
68     Index e; 
69     e = ecc[j]; 
70     if (e == d){ 
71      srcs[curri] = j; 
72      curri += 1; 
73      if (curri == nsrcs) { 
74       break; 
75      } 
76     } 
77    } 
78  } 
79    
80  // main loop complete, determine peripheral nodes if requested 
81  if (compute_periphery) { 
82    peri = Vector[n]; 
83    if (incSrcs) { 
84     for (int64_t i = 0; i < nsrcs; i++) { 
85      Index currsrc; 
86      currsrc = srcs[i]; 
87      peri[currsrc] = 1; 
88     } 
89    } 
90    for (int64_t i = 0; i < n; i++) { 
91     Index e; 
92     e = ecc[i]; 
93     if (e == d) { 
94     peri[i] = 1; 
95    } 
96   } 
97  } 
98    
99  // clean up and return results 



 

16 
 

100  if (compute_periphery) (*peripheral) = peri ; 
101  (*diameter ) = d ; 
102  return (GrB_SUCCESS) ; 

 

The first 18 lines are fairly straightforward, setting up the function. In that section, 

there is a check that the user has actually given a place to put the found diameter, since that 

is the purpose of the function. There is also a check for whether or not the user has asked for 

pseudo peripheral nodes to be found, since these are optional. Lines 19 to 29 set up the 

initial set of sources. If the user allows for more sources than there are nodes in the graph, 

the algorithm just gets all the nodes in the graph. Otherwise, the first maxSources nodes are 

selected. Lines 31 and 32 are a last bit of set up of variables. Line 31 defines the max 

monoid, which is just an operator that will be used later to compare a bunch of values and 

choose the highest one. Line 32 sets up the boolean incSrcs, a shortened form of include 

sources, which will be used to determine whether the source nodes should be included in the 

list of peripheral nodes later. I’ll discuss why this is used when it is changed later.  

Jumping into the core loop now, line 35 saves the previous iteration’s diameter. 

Then the algorithm determines the current iteration’s diameter. This is done in three steps. 

Line 38 uses the multi source breadth first search algorithm to get the level information 

about the sources, since the diameter should be the maximum level that can be found in that 

matrix. Line 40 then reduces the level matrix into the vector ecc. The descriptor in the 

reduce command tells the program to collapse the level matrix by column instead of by row, 

so instead of finding the exact eccentricity of each source node, this gets an estimated 

eccentricity for every node in the graph that is the furthest level it was away from any of the 

nodes. Finally, line 41 reduces that eccentricity vector down to the final diameter value 
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using max again to ensure that the diameter is the highest level that was found in the whole 

graph. Lines 43 to 47 then check the main end condition for the loop, which stops if the 

diameter found on this iteration matches the diameter found on the previous iteration. This 

is also where incSrcs is set to true. This is done because if the current and previous levels 

have the same pseudo diameter then all the sources also have that same diameter, since they 

were chosen as sources from the previous level for having that diameter. Lines 49 to 77 then 

set up for the next iteration of the loop by selecting the sources for that next iteration. It 

either selects all the pseudo peripheral nodes found in that iteration or the first maxSrcs 

pseudo peripheral nodes, if more than maxSrcs pseudo peripheral nodes were found. This 

concludes the loop, which will then run until either the diameter stops changing or a certain 

number of loops, the maximum chosen by the user, have been completed. 

With the main loop complete, lines 80 to 97 find the pseudo peripheral nodes if the 

user asked for that. Pseudo peripheral nodes are indicated by a 1 in the peripheral node 

vector at their index. Lines 99 to 102 then wrap up the algorithm with the contents of the 

pointers passed in for outputs set to the proper values for the user and success returned. 
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3. RESULTS 

3.1 Breadth First Search Efficiency Comparisons 

Below are results from tests that were run to compare the multi source breadth first 

search algorithm with repeatedly performing a regular breadth first search. My initial tests were 

run using various graphs from LAGraph’s data folder. Additional tests were done with larger 

graphs provided by Professor Davis. All the tests calculated both level and parent data. 

Table 1: Small Graph with 34 nodes (karate.mtx). 

Number of Sources Multi Source BFS 
Time (sec) 

Repeated Single 
BFS Time (sec) 

1 0.000343327 0.000280804 

10 0.000638823 0.00433829 

20 0.000284731 0.00239744 

34 0.000340607 0.00286724 

Table 2: Intermediate Graph with 1000 nodes (test_FW_1000.mtx). 

Number of Sources Multi Source BFS 
Time (sec) 

Repeated Single 
BFS Time (sec) 

1 0.00447097 0.00360959 

10 0.00744123 0.0389852 

50 0.00849059 0.172488 

100 0.00811515 0.341047 
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250 0.0167306 0.825478 

500 0.029546 1.41658 

750 0.035118 2.00946 

1000 0.0465167 2.84693 

 

Table 3: Large Graph with 2500 nodes (cryg2500.mtx). 

Number of Sources Multi Source BFS 
Time (sec) 

Repeated Single 
BFS Time (sec) 

1 0.00136034 0.00131033 

50 0.0327879 0.0720413 

100 0.0659519 0.144659 

500 0.194916 0.730689 

750 0.225545 1.08628 

1000 0.312125 1.44982 

1500 0.376316 2.15283 

2000 0.478275 2.86541 

2500 0.613305 3.69793 

 

Note: Results showing the efficiency improvements of the multi source breadth first 

search algorithm over the regular breadth first search algorithm being run repeatedly. Several 

sizes of graph used to show the differences in improvement with different numbers of nodes, and 

thus iterations of the breadth first search loop. 
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Table 4: Push-pull Graph with 4000 nodes (pushpull.mtx). 

Number of Sources Multi Source BFS 
Time (sec) 

Repeated Single 
BFS Time (sec) 

1 0.0152903 0.0151979 

50 0.0330606 0.74579 

100 0.0431611 1.50652 

500 0.142936 7.67528 

1000 0.299147 15.0793 

2000 54.8362 26.8286 

3000 88.136 35.2629 

4000 212.632 46.0929 

 

Note: As mentioned above, I removed a section of the original breadth first search 

algorithm that decided between two methods of breadth first search tree expansion, push and 

pull. While using exclusively the push method does not usually harm my algorithm’s efficiency 

too much, as seen by the results with the other graphs, on a graph designed to benefit from the 

ability to switch styles, there is a noticeable difference. Table 4 shows the results of running the 

two algorithms on one such graph. 

I also got the chance to test my algorithm on a couple larger, more real-world scale 

graphs provided by Professor Davis: 

Table 5: Very Large Graph 1 with 1,134,890 nodes (com-Youtube.mtx). 

Number of Sources Multi Source BFS 
Time (sec) 

Repeated Single 
BFS Time (sec) 
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1 0.0359982 0.0320092 

10 0.25627 0.306387 

50 1.77769 1.5783 

100 3.16027 7.25969 

500 11.3854 41.3023 

1000 21.5215 80.9514 

5000 103.506 462.175 

10000 213.237 912.368 

15000 301.597 1382.88 

Table 6: Very Large Graph 2 with 1,696.415 nodes (as-Skitter.mtx). 

Number of Sources Multi Source BFS 
Time (sec) 

Repeated Single 
BFS Time (sec) 

1 0.0386228 0.0320368 

10 0.277473 0.386897 

50 2.25212 1.83416 

100 4.09847 3.74342 

500 16.1427 48.4041 

1000 33.3384 101.595 

5000 157.673 522.407 

10000 325.687 1035.5 

15000 510.752 1561.37 
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For fewer source nodes on the large graphs the single source BFS is more efficient, likely 

again showing the benefits of the push-pull methods. However, as the number of sources 

increases, the efficiency of the parallelization wins out.  

 

Figure 1: Graph of the results from Table 1. With so few nodes, it appears that random computational delays have 
significant obfuscating effects, especially in the repeated running of the single source breadth first search. 
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Figure 2: Graph of the results from Table 2. Time increase with the increasing number of sources begins to differ 
significantly, showing the benefits of parallelization. 

 

Figure 3: Graph of the results from Table 3. Increasing graph size starts to increase parallelized computation speed 
noticeably, but still stays better than the base algorithm. 
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Figure 4: Graph of the results from Table 4. As discussed above, this graph demonstrates that a push-pull shift in 
the algorithm could provide improvements in breadth first search speed, depending on the graph. 

 

 

Figure 5: Graph of the results from Table 5. Both algorithms do appear to have a direct correlation between 
number of source nodes and the time they take. 
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Figure 6: Graph of the results from Table 6. At this scale, the benefits of the parallelization become very apparent. 

3.2 Diameter Results 

Below are results from running the exact and estimated diameter algorithms. These 

results found with peripheral nodes being calculated. The same graphs as discussed above were 

used, so matching up the number of nodes can be used to determine the graph if desired. 

Table 7: Diameter Results with peripheral node calculation 

Graph 
Number of 
Nodes 

Number of 
Sources per 
batch (k) 

Exact 
Diameter 

Exact 
Diameter Time 
(sec) 

Estimated 
Diameter 

Estimated 
Diameter Time 
(sec) 

34 10 5 0.00161535 5 0.000803881 

34 34 5 0.00102 5 0.00060193 

1000 10 500 0.258028 500 0.0076337 

1000 100 500 0.051773 500 0.0133934 
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1000 500 500 0.0402269 500 0.0259454 

2500  10 98 1.83667 98 121.036 

2500 100 98 1.67881 98 165.649 

2500 1000 98 0.700281 98 168.409 

2500 2500 98 0.498017 97 167.978 

4000 100 2005 12.3621 2005 0.0510473 

4000 500 2005 53.3279 2005 0.1686 

4000 2000 2005 132.765 2005 55.6341 

4000 4000 2005 208.09 2005 214.463 

1,134,890  10 X X 24 0.523146 

1,134,890  100 X X 24 2.01806 

1,134,890  500 X X 24 7.01838 

1,134,890  1000 X X 24 13.2149 

1,134,890  5000 X X 24 61.771 

1,696,415 10 X X 31 98.3638 

1,696,415 100 X X 31 2.7098 

1,696,415 500 X X 31 9.62034 

1,696,415 1000 X X 31 20.4759 

1,696,415 5000 X X 31 98.189 
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4. CONCLUSION 

4.1 Discussion of Multi Source Breadth First Search Results 

For small graphs of less than 100 nodes, the speed up from this algorithm is unlikely to 

be noticeable. The convenience of not having to write a loop to go through the source nodes 

would probably be of more benefit to the programmer. As the graphs reach a few thousand 

nodes, the benefits of the algorithm’s parallelization become noticeable. At this size we do still 

see very reasonable speeds from both algorithms and some graphs which particularly benefit 

from switching frontier advancement methods mid-way through are even more efficient with 

repeated use of the single source algorithm. Finally, for real world scale graphs, graphs with over 

a million nodes, the number of source nodes plays a role in which algorithm is most efficient. 

With as many as 100 source nodes, the benefits of the single source algorithm like the push-pull 

advancement can be more efficient than the multi source breadth first search algorithm. 

However, once one reaches up to 500 or more source nodes, the advantages of the algorithm’s 

parallelization outweigh these benefits. I suspect that the reason the single source algorithm 

performs well for so long is that the benefits of the ability to change between push and pull 

methods becomes more pronounced as the size of the graph increases. The graphs of the real 

world scale tests of the algorithm also show that there seems to be a linear correlation between 

the number of source nodes and the time it takes the algorithms to run, though this relationship 

was less apparent on smaller graphs. 

4.2 Discussion of Exact and Estimated Diameter Results 

My main expectations for the exact diameter finding algorithm were that adding more 

nodes to the number of sources per batch would speed it up since it would allow for greater 
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parallelization and that it would in most cases be slower but more accurate than the estimated 

diameter. For the estimated diameter, I expected that it would be fairly quick but not always 

accurate and that increasing the number of sources per batch would usually make it slower but 

might allow it to be more accurate since it could explore nodes it wouldn’t find on smaller 

iterations. While most of these expectations were validated by the results, there were a few 

interesting deviations. The oddest was the 2500 node graph, which I suspect had some oddity in 

how it was laid out given the difference in behavior between it and all the other graphs. 

Especially odd was the last iteration, where it should have used all 2500 nodes as sources and 

thus found the exact diameter immediately and confirmed it on the second iteration. Instead, 

however, that was the only iteration to find a lower diameter than others on a given graph. I am 

currently uncertain what caused this behavior.  

On the very large graphs, I was unable to compute the exact diameters due to computing 

resource constraints, but I was able to get some interesting results from the diameter estimation 

algorithm. In particular, the time difference on the largest graph between 10 source nodes and 

100, which I hypothesize is due to the 100 source nodes then including source nodes that can 

reach the diameter in far fewer iterations. 

4.3 Conclusion  

In conclusion, this algorithm allows a user of LAGraph to more efficiently gain BFS 

information from several source nodes in a graph. In most cases, the multi source breadth first 

search algorithm can be used to obtain breadth first search data about several source nodes more 

efficiently than repeatedly using the normal breadth first search algorithm. However, some 

exceptions can occur when a graph greatly benefits from a pull method of frontier advancement 

later in the algorithm or when finding relatively few BFS trees on a very large graph. As such, 
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one way this research could be further improved in the future would be investigating ways to add 

the push pull functionality to the multi source BFS algorithm. In particular, determining a good 

time to switch methods of frontier advancement would likely be the most interesting 

continuation on that path. 

Beyond its direct value to users, the multi source breadth first search algorithm can be 

used to determine other interesting information. I explored calculating the diameter of a graph, 

which would be the highest level found if a BFS were performed on every node in the graph. 

Additionally, rather than performing the BFS on every node, the diameter can be estimated by 

selecting only a sample of the nodes and by iterating on a sample of the nodes that exhibit the 

highest BFS level until the highest level found no longer increases. Finding the exact diameter 

can also find peripheral nodes of the graph, since they are the ones seeing that diameter and in 

the same way pseudo-peripheral nodes can be found when estimating the diameter.  

In the future, the BFS data could also be used to estimate a good cut of the graph by 

cutting all the nodes at a certain level of the graph away from a peripheral or pseudo-peripheral 

node, such as making a cut at a level near half the diameter of the graph. While such a cut is 

unlikely to be completely optimized, it could aid other algorithms in running more efficiently by 

giving them a reasonable starting point rather than having them work from a random cut. Some 

other information about a graph that could be found or estimated using similar methods are a 

graph’s center, eccentricity, and radius.  
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