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ABSTRACT 

 

Controlled-source electromagnetic (CSEM) methods are inexpensive geophysical 

techniques that can be combined with petrophysical and petroleum engineering methods 

to improve our understanding of subsurface formation characterization and fluid 

monitoring. This dissertation investigates two forms of CSEM methods, electromagnetic 

(EM) induction logging and terrestrial CSEM, and their applications to petroleum 

engineering. Induction logging is a standard formation evaluation tool for 

characterization of electrical properties in the near-wellbore region. Terrestrial CSEM 

methods are better suited for far-field diagnostics away from a wellbore and have been 

established for a range of industry applications including CO2 storage, geothermal 

exploration, terrestrial hydrocarbon exploration, buried pipeline, and hydraulic fracturing 

fluid flowback. In these applications, the EM response of a conductive wellbore casing 

must be accurately modeled and included in response simulations. 

This dissertation (a) provided a new approach for combining EM induction 

logging (via anomalous diffusion simulation) with nuclear magnetic resonance (NMR) 

fracture-pore diffusional coupling to improve micro-fracture density estimation; (b) 

developed a method for assisting hydraulic fracture placement for natural fracture 

corridor geologic targeting; (c) simulated induction log response effects for hydraulic 

and natural fracture interactions; (d) developed a 2-D integral equation (IE) forward 

modeling code for simulating the EM response of conductive wellbore casing; and (e) 
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described an approach for modeling the EM response of conductive wellbore casing 

using a newly developed hybrid finite-element integral (FE-IE) equation method. 

The methods used in this research include numerical NMR fracture-pore 

diffusional coupling simulation in multiple-porosity systems, 3-D FE numerical 

simulation of EM induction logging (via anomalous diffusion simulation), 2-D IE 

simulation of the EM response of conductive wellbore casing, and hybrid IE-FE 

simulation of the EM response for idealized fluid-bearing zones in an oil-field scenario. 

Results show that combining simulated EM anomalous diffusion with NMR can aid in 

distinguishing between micro-fracture fracture dimensions and density to improve 

fractured zone characterization, simulated EM anomalous diffusion may improve well 

production through better geologic targeting for natural fracture corridor depletion, and 

the hybrid IE-FE method improves FE solution stability while greatly reducing FE 

computation time by removing the need for an ultra-fine FE mesh around the wellbore. 
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NOMENCLATURE 

 

a  :   radius of the mandrel (m) 

an  :   cylindrical interfaces (m) 

A  :   magnetic vector potential (A) 

 

As  :   secondary magnetic vector potential (A) 

Ap(r)  :   Hankel transform (V) 

B  :   magnetic flux density (T) 

Csh  :   volumetric concentration of shale (unitless) 

d  :   diameter of the pores (µm) 

D  :   diffusion coefficient of pore fluids (m2/sec) used in Chapter 2; or burial  

                depth (skin depths) used in Chapter 4 and Appendix C  

 

Dt  :   fractional diffusion operator (unitless) 

Dt1-β  :   fractional derivative (unitless) 

E  :   electric field (A) 

Ey
i  :   incident electric field (A) 

Ey
S  :   scattered electric field (A) 

f  :   frequency (Hz) 

F  :   Lorenz force (N) used in Chapter 1; or electrical formation factor  

                            (unitless) used in Chapter 2  

 

g(ρ,z)  :   geometric factor (unitless) 

G  :   spatial gradient of the internal magnetic field (Hz/mm) used in  

                            Chapter 2, or conductive half-space Green’s function (unitless) used in   

                            Appendix C  
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H  :   magnetic field strength (A/m) used in Appendix C; or inhomogeneity 

                            height in the integral equation method (skin depths) used in Chapter 4  

                            and Appendix C  

 

Hx  :   total horizontal magnetic field response (A/m) 

Hx
S  :   scattered horizontal magnetic field response (A/m) 

Hz  :   total vertical magnetic field response (A/m) 

Hx
P  :   primary portion of the horizontal magnetic field response (A/m) 

Hz
P  :   primary portion of the vertical magnetic field response (A/m) 

Hz
S  :   scattered vertical magnetic field response (A/m) 

I  :   current in the transmitter coil (A) used in Chapter 1; or infinite line  

                            source current (A) used in Chapter 4 

 

Imag(Bz) :   imaginary (out-of-phase) component the magnetic field (k/s2) 

J  :   current density (A/m2) 

Ji  :   impressed electric current (A/m2) 

Js  :   source current density (A/m2) 

J1  :   Bessel function of order one (unitless) 

K  :   sensitivity factor derived from geometry and logging tool parameters  

                            (unitless) used in Chapter 1; or a complex dense matrix in the integral  

                            equation method (unitless) used in Chapter 4 and Appendix C; or  

                            electrical conductivity contrast between inhomogeneity and  

                            surrounding host formation (unitless) used in Appendix C  

 

K1  :   modified Bessel function of order zero (unitless) 

K2  :   modified Bessel function of order one (unitless) 

L  :   intercoil spacing (m) used in Chapter 1; or planar fracture length (µm)  

                            used in Chapter 2  

 

M0  :   magnetic permeability (Hz/m) 

Mi  :   impressed magnetic current (Hz/m) 
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P  :   geometrical factor described by a generic integral (unitless) 

q  :   mobile charge carrier (C) 

rw  :   connate water resistivity (ohm·m) 

rwb  :   clay bound water resistivity (ohm·m) 

Ra  :   apparent resistivity (ohm·m) 

Xa  :   distance between inhomogeneity center and infinite-line source  

                            (skin depths) 

 

Swt  :   total water saturation (unitless) 

S/V  :   surface-to-volume ratio of the pore space (1/m) 

T1-β  :   power law probability density function (unitless) 

T  :   inhomogeneity width in the integral equation method (skin depths) 

TE  :   inter-echo spacing time (µsec) 

T1  :   longitudinal relaxation time (msec) 

T2  :   transverse relaxation time (msec) 

T2p  :   relaxation time associated with inter-granular pores (msec) 

T2B  :   bulk relaxation time (msec) 

T2D  :   diffusion-induced relaxation time (msec) 

T2S  :   surface relaxation time (msec) 

U  :   electric potential (V)  

v  :   velocity of the moving mobile charge carrier (m/s) 

VR  :   voltage induced by the receiver coil (V) 

w  :   aperture of planar fractures (µm) 

ŷ  :   admittivity (S/m) 
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ŷ∗  :   normal values of admittivity (S/m) 

z  :   vertical position on the cylindrical solution domain (m) 

ẑ  :   impedivity (ohm·m) 

ẑ∗  :   normal values of impedivity (ohm·m) 

β :   waiting time distribution in the continuous-time random walk model  

                            (unitless) 

 

γ  :   gyromagnetic ratio of a proton (rad·sec-1·T-1) 

Г  :   gamma function serving as a normalizing constant (unitless) 

δ  :   skin depth (m) 

δ2  :   skin depth in the inhomogeneity body (m) 

ε  :   permittivity (F/m) 

ε0  :   permittivity of free space (F/m) 

µ  :   magnetic permeability (H/m) used in Chapter 1; or inductivity (H) used  

                            in Appendix C  

 

µ0  :   magnetic permeability of free space (H/m) 

ρ  :   surface relaxivity (µm/sec) 

ρ2  :   surface relaxivity (µm/sec) 

σ  :   formation electrical conductivity (S/m) 

σE  :   ohmic conduction term (A ·S /m) 

σ(r)  :   spatially varying electrical conductivity of the geological formation  

                            (S/m) 

 

σa  :   apparent conductivity (S/m) 

σg  :   apparent conductivity seen by the induction logging tool (S/m) 

σ0  :   known background electrical conductivity (S/m) 
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σ1  :   electrical conductivity of the inhomogeneity (S/m) 

σ2  :   electrical conductivity of the host formation (S/m) 

σβ  :   generalized conductivity, (A2s3kg-1m-3s-β) 

ϕfrac  :   porosity associated to fractures (%) 

ϕpore  :   inter-granular porosity (%) 

ϕF,coupled :   coupled micro-fractures (%)  

ϕF,iso  :   isolated micro-fractures (%)  

ϕt  :   total resistivity using NMR measurement (ohm·m)  

ϕtot  :   total porosity of rock (%)  

Φ  :   reduced scaler potential (A/m · rad/sec) 

ω  :   angular frequency (rad/sec) 
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ABBREVIATIONS 

 

Bi-CG  :   bi-conjugate gradient 

BICSTAB :   stabilized bi-conjugate gradient 

cEDFM :   compartmental embedded discrete fracture model 

CPMG  :   Carr-Purcell-Meiboom-Gill 

CG  :   conjugate gradient 

CGS  :   conjugate gradients squared 

CSEM   :   controlled-source electromagnetic 

CTRW  :   continuous-time random walk 

EDFM  :   embedded discrete fracture model 

EM  :   electromagnetic 

FD  :   finite-difference 

FE  :   finite-element 

FEM  :   finite-element method 

FV  :   finite-volume 

GMRES :   generalized minimal residual 

Hi-FEM :   hierarchical finite-element method 

IE  :   integral equation 

LWD  :   logging-while-drilling 

LU  :   lower-upper 

MLSI  :   moving least-squares interpolant 
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MoM  :   method-of-moments 

MT  :   magnetotelluric 

NMR  :   nuclear magnetic resonance 

RX  :   receiver 

SNR  :   signal-to-noise ratio 

SRV  :   stimulated reservoir volume 

SVD  :   singular value decomposition 

T1  :   longitudinal relaxation time 

T2  :   transverse relaxation time 

TX  :   transmitter 

QMR  :   quasi-minimal residual 

QR  :   matrix decomposition into an orthogonal matrix “Q” and upper  

                            triangular matrix “R” 

 

1-D  :   one-dimensional 

2-D  :   two-dimensional 

2.5-D  :   two-dimensional primary excitation imposed on a three-dimensional  

                            structure 

 

3-D  :   three-dimensional 
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CHAPTER I 

 INTRODUCTION  

 

This chapter reviews background information for the electromagnetic (EM) and 

nuclear methods I have used in the research, and the scope, objectives, and organization 

of this dissertation. Controlled-source electromagnetic (CSEM) methods are inexpensive 

geophysical techniques that can be combined with petrophysical and petroleum 

engineering methods to improve our understanding of subsurface formation 

characterization and fluid monitoring. I investigate two forms of CSEM methods: EM 

induction logging and terrestrial CSEM.  

Induction logging is a standard formation evaluation tool for characterization of 

electrical properties in the near-wellbore region. The tool relies on a purely inductive 

loop source to energize and thereafter measure the electrical conductivity of the 

surrounding formation. As a benefit of measuring electrical conductivity, induction 

logging simulation can provide high-grading of natural fracture corridors and reliable 

fracture geometry characterization. 

Surface-based (terrestrial) CSEM methods are better suited for far-field 

diagnostics away from a wellbore. In these methods, the presence of a grounded wire 

dipole deployed at the surface acts as the source as opposed to the purely inductive loop 

source used in induction logging. Ground coupling of the dipole is achieved through 

direct electrical contact with the surface via electrodes, as opposed to magnetic flux 

linkage per the inductive methods. Surface-based CSEM methods have been established 
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for a range of industry applications including CO2 storage and geothermal exploration 

(Castillo-Reyes et. al., 2022), terrestrial hydrocarbon exploration (Streich 2016), buried 

pipeline integrity (Couchman and Everett, 2022), and hydraulic fracturing fluid 

flowback (Jones et. al. 2019). In these applications, the EM response of a conductive 

wellbore casing must be accurately modeled and included in response simulations.  

This dissertation provides a new approach for combining EM induction logging 

(via anomalous diffusion simulation) with nuclear magnetic resonance (NMR) fracture-

pore diffusional coupling to improve micro-fracture density estimation. The combination 

produces a new method for characterizing natural fracture corridors. The dissertation 

also describes an approach for modeling the EM response of conductive wellbore casing 

using a newly developed hybrid finite-element integral (FE-IE) equation method. 

 

1.1 Background 

1.1.1 Finite-Element Method 

Solving Maxwell’s diffusion equations in the subsurface is challenging due to the 

complex nature of inhomogeneous electrically conducting media. A common approach 

to solving the equations is to use numerical techniques such as the finite-element (FE) or 

finite-difference (FD) method. Both FE and FD methods provide similar solution 

accuracy, memory storage requirements, and computational speed. However, the FE 

method permits an unstructured mesh allowing for local refinement around a wellbore 

casing or other strong contrasts in electrical conductivity. Both FE and FD approaches 

operate by discretizing the subsurface into a mesh whose degrees of freedom are defined 
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by connected nodes, edges, and/or elements. A system of linear equations describing 

Maxwell’s diffusion equations can then be solved to determine the degrees of freedom. 

This dissertation uses the FE method for controlled-source electromagnetic (CSEM) 

induction using Coulomb-gauged secondary potentials. An abbreviated version of the 

mathematical development for the Coulomb-gauged potential formulation of Maxwell’s 

equations in the inductive regime is included in Appendix B. A more in-depth review 

can be found in Badea et al. 2001. 

A typical FE analysis comprises pre-processing, processing, and post-processing. 

During the pre-processing phase, the initial parameters are selected and the FE mesh is 

generated. Processing involves numerical analysis to solve the governing linear system, 

and post-processing is where the final results are assembled and visualized.  

 The pre-processing phase involves choosing boundary conditions, defining 

material properties, selecting element type, and generating a mesh. The governing 

equations are discretized; they describe the partial differential equations being solved, in 

our case Maxwell’s equations. Additional input parameters defining material properties 

(such as the electrical conductivity of air, fluids, structures, and formation layers) are 

also included in the pre-processing phase. There are several different element types that 

can be used depending on the dimensionality of the problem. Some common 3-D 

elements include tetrahedral, cubic, and cylindrical. A FE mesh is then built by 

discretizing the subsurface into individual elements and connecting their vertices along 

edges and facets. An example of horizontal mesh slices of a tetrahedral mesh, displaying 

triangular facets, is shown in Figure 1.1. 
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Figure 1.1 – Horizontal slices through cylindrical and rectangular meshes 

generated in the FEM program. Reprinted from Couchman, 2022. 

 

A formulation that uses special “edge elements” is advantageous insofar as these 

elements produce divergence-free solutions without nonphysical, or spurious modes. 

Other special elements may be represented as a set of infinitesimally thin edges, each 

connecting two nodes within the grid (Weiss, 2017). The elements used in this 

dissertation are node-based, where the Coulomb-gauge condition is enforced to ensure 

that there are no spurious modes (Paulsen and Lynch, 1991).  

 The processing phase of the FE solution assembles and solves the linear matrix 

system. The latter is assembled from the coupled system of governing differential 

equations. The degrees of freedom, in this case the secondary nodal potentials, are 

expanded into piecewise linear representations. From there a linear system of equation in 

the form, Λu=b, can be obtained using the Galerkin method. The linear system equation 
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is then solved numerically. This research iteratively solves the FE matrix with a quasi-

minimal residual (QMR) algorithm.  

 The post-processing phase of the FE solution involves constructing and 

visualizing the results. The computed results (secondary potentials) and their spatial 

derivatives are interpolated using a moving least-squares (MLSI) interpolant (Tabbara et 

al. 1994) to derive electric or magnetic field responses. The frequency-domain electric 

field is used as an input if it is desired to compute a step-off or transient response in the 

time domain. Electric and magnetic field patterns can then be visualized throughout the 

modeling domain as contour maps of response amplitudes and/or phases. 

 

1.1.2 Seatem: Finite-Element Simulator 

 The in-house software seatem is a node-based FE simulator developed in 

FORTRAN. Seatem solves the governing diffusive Maxwell equations formulated in 

terms of secondary Coulomb-gauge electromagnetic potentials. The versions of seatem 

used in this research are adaptations of the original program development described in 

Badea et. al (2001) with later modifications by Stalnaker et. al (2006). An abbreviated 

version of the mathematical development of seatem is included in Appendix B. Seatem 

consists of four modules: a mesh generator, a module for assembling and solving the FE 

matrix, a module for post-processing the FE solution, and a module for visualizing EM 

field patterns. An illustration of the seatem workflow is given in Figure 1.2. 
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Figure 1.2 – Workflow for the in-house FE simulator seatem. 

  

The first module reads the parameter and mesh input files and generates the mesh 

on which the CSEM response is computed. Specifically, module 1 reads in a specified 

model geometry and outputs a file containing an unstructured mesh. Local mesh 

refinement is available through a process that subdivides selected mesh elements by a 

designated number of “split points” (Figure 1.3). The teterahedra designated for 

refinement are subdivided into 2, 4, or 8 subtetrahedra (Figure 1.4). Increasing the 

number of nested refinements increases the density of the nodes within the refined 

portion of the mesh. The latter is typically located near strong gradients in electrical 
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conductivity. Local mesh refinement typically improves solution accuracy, at the cost of 

increasing computational time and memory. 

 

  

Figure 1.3 – Tetrahedral mesh design with nested refinements. Modified from  

Badea et. al, 2001. 
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Figure 1.4 – Subdivision of tetrahedral mesh by number of split points.  

Reprinted from Badea et. al, 2001. 

 

 The second module of seatem assembles the FE matrix and populates it with 

inner products involving the conductivity of each mesh element and the tetrahedral basis 

functions. Next, the secondary Coulomb-gauged electromagnetic potentials are 

calculated, assuming they are driven by a right-hand-side “source” vector containing 

analytically derived primary potentials. Formulating the secondary potentials in the 
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Coulomb gauge (Equation 1.1) avoids the curl-curl term (Equation 1.2), leading to better 

matrix conditioning as the curl-curl term places a small value on the matrix diagonal.  

 

∇ · A = 0                                                                                                                                       (1.1) 

∇ X ∇ X A = −∇2A                                                                                                                      (1.2) 

 

In the above equations, A is the magnetic vector potential. 

The matrix conditioning is further improved using a Jacobi preconditioner that adds 

additional weight to the main diagonal. A quasi-minimal residual method iteratively 

solves the sparse, banded system. The solver outputs the secondary vector-magnetic and 

scalar-electric potentials at each vertex of the 3-D mesh. The use of primary potentials 

removes singularities and large solution gradients at or near the EM source, i.e the 

grounded electric dipole. Primary, secondary, and total (addition of primary and 

secondary) field potentials are interpolated onto surface nodes, where measurements in 

field applications are made. 

 The third and fourth modules provide post-processing of the FE solution. Module 

3 reads the potentials computed in the second module and derives the electric and 

magnetic field responses. The module also interpolates the latter at surface nodes 

yielding responses that would be measured by ideal noise-free receivers. Module 4 

acquires the total potentials on all subsurface nodes from Module 2 and constructs 

electric and magnetic field patterns, in the form of contour maps, throughout the 

modeling domain. 
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1.1.3 Induction Logging 

 Induction logging is a low-frequency controlled-source electromagnetic (CSEM) 

technique deployed as either a wireline or logging-while-drilling (LWD) method. An 

induction logging tool avoids direct electrical contact with the borehole wall by using 

sets of coils that enclose an insulating cylindrical mandrel. In the case of a simple two-

coil system, shown in Figure 1.5, alternating current flows through the lower TX 

(transmitter) coil, and induces a horizontal electric current (the “ground loop”) in the 

geologic formation around it. The field of the ground loop creates time-varying magnetic 

flux that passes through the upper RX (receiver) loop and is registered as a voltage. 

.  

 

Figure 1.5 – Basic two-coil induction system. Reprinted from Schlumberger, 1969. 
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The ground loop is formed by eddy currents carried by migrating ions such as Na+ and 

Cl- in the pore fluid electrolyte. Spatial changes in formation conductivity are caused by 

formation heterogeneity or fluid distribution. A Lorentz force is experienced by the 

drifting charge carriers in the medium. Bound charges confined to the single atoms and 

mobile charges trapped at material interfaces also experience a Lorenz force but these 

have little to no impact on the low-frequency EM induction response. It is the drift of the 

mobile charges that generates the measured electromagnetic response (Everett, 2013). 

The Lorentz force is  

 

F = q(E + v x B)                                                                                                                        (1.3) 

 

where q is the charge of the mobile carrier, v is its velocity, E is electric field, and B is 

magnetic field. 

The superposition of the primary and secondary EM magnetic flux produces the total 

voltage that is induced in the RX coil. The out-of-phase component of the secondary 

voltage generates a signal that is proportional to the apparent conductivity of the 

surrounding formation. 

Use of the induction method in well logging was first proposed by Doll (1949). 

Doll suggested that one could measure the mutual coupling between two coaxial loops 

placed in a wellbore. Doll developed the following general equation in 2-D cylindrical 

coordinates (ρ, z) for the apparent conductivity registered by the induction logging tool: 

 



 

12 

 

 

 

σg = ∫ dz∫ g(ρ, z)σ(ρ, z)
∞

0

∞

−∞

dρ                                                                                           (1.4) 

 

where σg is the apparent conductivity, g(ρ,z) is a geometric factor depending on the 

placement of the coils, and σ(ρ,z) is the formation conductivity. 

Among the assumptions of Doll’s method are that the induced ground loops are not 

magnetically flux-linked and propagation effects are neglected. Wait (1984) improved 

upon Doll’s method to include these effects and described the apparent conductivity 

equation for a multilayer case with concentric layers about the borehole. Wait found the 

following expression for apparent conductivity: 

 

σa = σ0 + ∑ (σn − σn−1)P (
L

an
)

n

n=1,2,…

                                                                                  (1.5) 

with 

P(y) =
y

π
∫ x{x[K0

2(x) − K1
2(x)] + 2K0(x)K1(x)}

∞

0

cos(xy)dx                                       (1.6) 

 

where L is the intercoil spacing, an are the cylindrical interfaces, P is a geometrical factor 

(Kaufman 1965), and K0 and K1 are modified Bessel functions. 

The approach used in this dissertation is adapted from the method outlined in 

Bray (2013). Apparent conductivity is based on the following equations (Moran and 

Kunz, 1962): 
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σa = 
VR

K
                                                                                                                                       (1.7) 

VR = ωA Imag{Bz}                                                                                                                    (1.8) 

K =
ω2µ2πa4

4L
I                                                                                                                            (1.9) 

 

where VR is the voltage induced by the receiver coil, K is a sensitivity factor derived 

from TX-RX coil geometry and logging tool parameters, ω is the operating frequency, A 

is the area bounding the flux of the magnetic field, Imag(Bz) is the imaginary or out-of-

phase component of the magnetic field at the RX locations, µ is the magnetic 

permeability (norminally that of free space), a is the radius of the mandrel, L is the 

transmitter-receiver offset, and I is the current in the transmitter coil. 

 

1.1.4 Nuclear Magnetic Resonance (NMR) 

Nuclear magnetic resonance (NMR) logging is an unconventional logging 

technique that measures the formation relaxation and diffusion properties. It is sensitive 

to various parameters including; pore size, permeability, fluid viscosity, hydrogen 

content, saturations, and clay surface area. NMR measurements may be used on any 

nucleus that has an odd number of neutrons, protons, or combinations. Nuclei typically 

contain both a magnetic moment and an angular momentum with the magnetic axis in 

alignment with the spin axis. Protons are of particular interest to the oil and gas industry 

due to the abundance of hydrocarbons and water which contain a large magnetic moment 

with a strong and measurable signal.  
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NMR logging operates by generating a magnetic field that aligns randomly 

oriented protons to that applied field. After equilibrium is achieved, an oscillating 

magnetic field is then created causing the protons to be tipped. Removing the oscillating 

magnetic field sends protons back to their original direction. The amplitude from 

realigning the spin magnetization with a resonant electromagnetic radiation pulse (spin-

echo) over time is then measured by the NMR logging tool. These measurements are 

affected by the following parameters: diffusivity (extent of the random movement of 

molecules in the fluid), hydrogen index (density of hydrogen atoms in the fluid), T1 

(longitudinal relaxation time describing the rate at which tipped protons relax 

longitudinally in the fluid), and T2 (spin-spin relaxation time describing the rate at which 

tipped protons relax transversely in the fluid).  

There are three main relaxation mechanisms that create NMR longitudinal and 

transverse relaxation: bulk relaxation, surface relaxation, and diffusive relaxation. Bulk 

relaxation is a fluid independent property that results from fluctuations in local magnetic 

fields occurring from the random motion of neighboring spins, while surface relaxation 

occurs due to Brownian motion of diffusing particles (Talabi, 2008). Both bulk and 

surface relaxation appear in longitudinal and transverse directions. The fluids on the 

surface have a rapid relaxation rate compared to the bulk fluids within the pore space. 

Diffusive relaxation occurs only in the transverse direction. It is measured using a pulse 

sequence such as Carr-Purcell-Meiboom-Gill (CPMG). 
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NMR T2 and its distribution are the most widely used interpretation methods for 

NMR relaxometry (Chi and Heidari 2014). Coates et al. (1999) gives equation (1.10) for 

the T2 relaxation time of hydrogen nuclei in porous media fluids.  

 

1

T2
=

1

T2B
+

1

T2S
+

1

T2D
=

1

T2B
+ ρ2 (

S

V
)
pore

+
D(γ · G · TE)2

12
                                 (1.10) 

 

Where T2 is the spin-spin relaxation time, T2B is the bulk relaxation time, T2S is the 

surface relaxation time, T2D is the diffusion-induced relaxation time, ρ2 is the surface 

relaxivity, S/V is the surface-to-volume ratio of the pore space, D is the diffusion 

coefficient of pore fluids, γ is the gyromagnetic ratio of a proton, G is the internal 

magnetic field gradient, and TE is the inter-echo spacing time. 

An inversion technique can be applied to the raw data from the echo-train 

resulting in a T2 distribution plot which represents pore size distribution under restricted 

conditions. These conditions include short inter-echo spacing in the CPMG pulse 

sequence, assumption of a fully-water saturated pore space, and uniform surface 

relaxivity across all pore space. Within these restrictions, surface relaxation methods 

control the relaxation process and are directly proportional to pore size Chi and Heidari 

(2014) Equation (1.11). Chi and Heidari also describe surface-to-volume ratios of 

spherical pores and planar fractures Equations (1.12) and (1.13). 
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S

V
)
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2

w
)
plane

                                                                                                       (1.13) 

 

where d is the diameter of the pores and w is the thickness of planar fractures. 

 

1.1.5 Skin Depth 

 Electromagnetic signal penetration depth in the CSEM method is limited by the 

conversion efficiency of the transmitted electromagnetic energy to kinetic energy of the 

subsurface mobile charge carriers. Higher electrical conductivity therefore leads to greater 

energy conversion, and consequently a smaller depth of penetration. The latter can be 

increased by lowering the operating frequency, at cost of degrading spatial resolution. One 

can determine an optimal frequency range and signal processing workflow to maximize 

signal-to-noise ratio (SNR). The CSEM method depth if investigation is based on “skin 

depth” that is controlled by formation electrical conductivity and transmitted frequency. 

We can calculate skin depth using Equation 1.14 developed by Moran and Kunz (1962): 

 

δ = √
2

µσω
                                                                                                                          (1.14)                                                                                                                        

 

where µ = 4𝜋 x 10 − 7 H/m denotes the magnetic permeability of free space, σ is the 

formation electrical conductivity, ω = 2𝜋f denotes the transmitted frequency, with f in Hz.  
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To illustrate the effect of lowering frequency on skin depth, we calculated skin 

depth in a frequency range of 1-1000 Hz for brine and various common formation types. 

A representative brine electrical conductivity is 2 S/m, while those of four common 

formations are: an organic-rich shale (10-13 S/m), a sandstone (10-3 S/m), a shale formation 

(10-2 S/m), and a limestone (104 S/m). Results are shown in Figure 1.6. 

 

 

Figure 1.6 – Skin depth calculations for various frequencies in common formation  

types. 

 

 There is a power law relation between penetration depth, in terms of skin depths, 

and frequency. Higher frequencies reduce penetration depth thereby requiring an 

increased number of skin depths to probe to that depth. An example of the relationship is 

shown in Figure 1.7. We selected a formation with an average electrical conductivity of 

10-3 S/m for common unconventional shale oil-field depths ranging from 5000 ft to 12500 

ft.   
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Figure 1.7 – Power law relationship between skin depth and frequency for various 

depths. 

 

To maintain a strong SNR, the TX operating frequency and formation conductivity 

should combine to yield a depth of investigation d~1.5δ − 2.0δ (e.g. Grant and West 

1965). I selected operating frequencies that probe to two skin depths based on the 

aforementioned power law. For a 10-3 S/m formation at 5000 ft depth the operating 

frequency should be ~250-450 Hz. 

 



 

19 

 

 

 

 

Figure 1.8 – Range of operating frequencies for maintaining a strong signal-to-noise 

ratio (SNR).  

 

1.2 Research Objectives 

The overall objectives of this research are to further develop electromagnetic and 

NMR geophysical techniques for; improving natural fracture characterization, increasing 

hydrocarbon production through natural fracture corridor depletion, accurately 

monitoring hydraulic fracturing fluid flow, and improving fracture model stimulated 

reservoir volume (SRV) estimation to increase unconventional reservoir simulation 

accuracy. Details on the milestones achieved during this research are described in the 

chapter outline below. 
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1.3 Chapter Overview 

The dissertation is organized as follows: 

In Chapter 2, I use controlled-source electromagnetic (CSEM) simulation to 

improve micro-fracture density estimation in the near-wellbore region. Chapter 2 uses a 

modified version of an in-house electromagnetic (EM) finite-element (FE) simulator, 

seatem. The modifications extend the capabilities of seatem for use as an induction 

logging simulator with a cylindrical mesh in the near-wellbore region transitioning to a 

Cartesian mesh in the far-field. An added term for quantifying the effects of anomalous 

EM diffusion in fractured media is also included. Simulated geologic roughness values 

derived from seatem-computed CSEM responses are combined with nuclear magnetic 

resonance (NMR) T2 relaxometry simulations to improve micro-fracture density 

estimation in fractured carbonate and organic shale formations. 

In Chapter 3, I use CSEM simulations to improve natural fracture detection and 

characterization in the near-wellbore region. Chapter 3 uses the modified version of 

seatem described in the previous paragraph. Simulated geologic roughness values 

computed by seatem are combined with surface gas readings and regional geomechanics 

to high-grade natural fracture corridors and model the EM response in the presence of 

interactions between hydraulic and natural fractures. This process can assist in hydraulic 

fracture placement for geologic targeting to improve natural fracture corridor depletion. 

In Chapter 4, I describe an Integral Equation (IE) based wellbore preconditioner 

for 3-D EM response modeling. I precondition an FE solver, in this case seatem, with an 

integral equation (IE) primary solution that captures the CSEM response of a realistic-
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sized steel wellbore casing. The version of seatem uses a rectangular mesh and is applied 

to the surface-based CSEM method. The novel hybrid IE-FE approach solves the 

primary field solution using a newly developed 2-D integral-equation code, and then 

interpolates the IE-computed solution onto the nodes of a FE mesh using an interpolation 

routine. Using seatem, I solve for secondary electric and magnetic field solutions. The 

hybrid FE-IE method is tested in a simple oil-field scenario with an idealized fluid-

bearing zone to demonstrate the improvements to FE solution stability and computation 

time gained by this method.  

In Chapter 5, I outline plans and give suggestions for future research. 

In Chapter 6, I summarize the conclusions and contributions of this work. 
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CHAPTER II 

 ASSESSMENT OF MICRO-FRACTURE DENSITY USING COMBINED 

INTERPRETATION OF NMR RELAXOMETRY AND ELECTROMAGNETIC 

LOGS*  

 

Assessment of micro-fracture density in hydrocarbon-bearing reservoirs is of 

special interest for designing production plans and selecting zones for fracture treatment. 

Controlled-source electromagnetic (CSEM) methods, such as induction logging, can be 

combined with NMR (nuclear magnetic resonance) to improve the accuracy of micro-

fracture density estimation. NMR T2 (spin-spin relaxation time) distribution has been 

traditionally considered insensitive to the presence of fractures. However, Lu and 

Heidari (2014) documented a measurable NMR sensitivity to the existence of micro-

fractures using a new concept of fracture-pore diffusional coupling. The quantification of 

micro-fracture density in multiple porosity systems is a challenging issue, and 

distinguishing fractures from pore space is not possible from NMR T2 measurement 

alone. However, the inclusion of additional borehole measurements, such as induction 

logs, enables evaluation of micro-fracture density. In this chapter, we introduce a new 

method to evaluate the porosity associated to micro-fractures and intra-/inter-granular 

pores in complex formations using combined interpretation of NMR and electromagnetic  

 

*  Part of this chapter is reprinted with permission from “Assessment of Micro-Fracture 

Density using combined Interpretation of NMR Relaxometry and Electromagnetic Logs” 

by Chi et al., 2014. URTeC 1922804. Copyright [2014] by Unconventional Resources 

Technology Conference (URTeC). 
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(EM) measurements. 

We used a previously-introduced NMR analytical model for fracture-pore 

coupling to account for micro-fractures in the rock. This model was verified by Dr. Lu 

through NMR numerical simulations (using a random walk algorithm) from previous 

work. Next, we simulated EM responses in the fluid-bearing fractured media using our 

in-house finite-element simulator, seatem. Seatem solves the diffusive Maxwell 

equations and describes spatial heterogeneity through representation of anomalous 

diffusion of quasi-free charges generating electromagnetic eddy currents in the fracture 

network. Finally, these simulations were jointly interpreted to solve for micro-fracture 

density and intra-/inter-granular porosity.   

We applied the described technique on synthetic cases devised from pore-scale 

images of carbonate and organic shale formations. The estimated micro-fracture density 

was in satisfactory agreement with the actual value. The results showed that assessment 

of fracture content is possible by combining the NMR analytical model of fracture-pore 

diffusional coupling, and EM simulations. Our introduced method for quantifying micro-

fracture density can improve reservoir characterization contributing to operational 

decisions regarding number and location of fracture treatments for enhanced production 

from tight carbonate and organic-shale formations.  

  

2.1 Introduction 

Unconventional reservoirs contain vast hydrocarbon accumulations needed to 

meet future energy requirements. These formations are identifiable by their low 
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permeabilities and/or low porosities. Due to their unique geologic properties, substantial 

stimulation of the rock matrix in the form of hydraulic or acid fracturing is required to 

make these formation types economically viable for production. However, to facilitate 

efficient completion plans, a comprehensive characterization of the fracture network is 

required. One of the primary difficulties we face is an inability to accurately quantify 

fracture density. We can resolve this matter through joint interpretation of NMR and EM 

measurements.  

NMR borehole measurements, although extensively applied to measure the 

formation porosity and pore size distribution, have been conventionally considered as 

insensitive to the existence of fractures. However, the concept of NMR fracture-pore 

diffusional coupling effect has shown that existence of micro-fractures can significantly 

influence the NMR T2 distribution in multiple-porosity systems. We adapted an existing 

theoretical model of pore-to-pore diffusional coupling (Ramakrishnan, et al., 1999), to 

explain the NMR T2 peak shifting phenomena observed between micro-fractures and 

inter-granular pores. We quantified the impact of micro-fractures and channel-like 

inclusions on NMR measurements in sandstone, carbonate, and synthetic organic shale 

rock samples by numerical simulations, and showed that the pore size or pore volume 

fraction can be significantly underestimated by NMR due to fracture-pore diffusional 

coupling (Chi and Heidari, 2014).   

Induction logging takes place as either a wireline or logging-while-drilling 

method. Sets of coils encircle an insulating mandrel. In the case of a two-coil system, 

alternating current flows through the bottom, or TX (transmitter) coil, and induces a 
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horizontal EM field into the geologic formation around it. This field creates a magnetic 

flux link between the TX loop and the top RX (receiver) loop (Figure 2.1).  

 

 

Figure 2.1 – A conceptual diagram showing the primary and secondary magnetic 

fields interacting with a conductive target in a CSEM survey. Reprinted from 

Grant and West, 1965. 

 

A secondary magnetic field is then formed from eddy currents primarily comprised by 

the migration of ions, such as Na+ and Cl-, in the pore fluid electrolyte. This 

phenomenon is created by changes in formation conductivity, caused by formation 

heterogeneity or fluid distribution. The combination of the primary and secondary EM 

fields then produces a voltage that is induced in the RX coil. The in-phase and out-of-

phase components of the voltage are next measured to generate a signal that is 

proportional to the apparent conductivity of the surrounding formation. The following 

sections describe the method, the results of joint interpretation of NMR and EM 

measurements in synthetic cases, and the conclusions.  
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2.2 Method 

We estimate micro-fracture density by combining NMR and EM measurements. 

First, we interpret the core and log data for apparent formation resistivity, Ra, and total 

porosity, ϕtot. Then, using a version of seatem designed for induction logging simulation, 

we model the roughness of the geology via a beta value describing the effect of 

anomalous EM diffusion in a fracture network. This value is then used to estimate 

porosity associated to micro-fractures, ϕfrac, and to determine pore/fracture distribution 

from our NMR T2 distribution. Next, through NMR analytical model of fracture-pore 

diffusional coupling, we can more accurately estimate porosity associated to fractures, 

ϕfrac, and pore space porosity, ϕpore. Figure 2.2 shows a flowchart illustrating this 

approach. A more detailed description of each step is presented in the following sections.  

 

   

Figure 2.2 – Steps for estimating micro-fracture density through combination of 

NMR and EM measurements. Reprinted with permission from Chi et. al, 2014. 
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2.2.1 NMR Pore-Scale Simulations and T2 Inversion 

The NMR magnetization decay is simulated using a random-walk algorithm 

(Øren and Bakke, 2002; Ramakrishnan et al., 1998) via a C++ program adapted from the 

work of Talabi et al. (2009). The input file for the simulator is a digital rock matrix 

including 0’s and 1’s (0 represents pore pixel and 1 represents grain pixel), converted 

from the pore-scale images of rock samples. The base micro-CT images of the carbonate 

rock examples were provided by a project funded by Qatar National Research Fund 

(QNRF, Gupta et al., 2011). The pore-scale images of the organic shale rock example are 

synthetically generated.   

In all the NMR simulations, we assume that (a) the pore space is fully saturated 

with brine water, and (b) there is no diffusion-induced relaxation (i.e. the internal field 

gradient is zero). For the carbonate and organic shale examples, the surface relaxivity 

values are assumed to be 10 µm/sec and 15 µm/sec, respectively (Talabi, 2008). The 

number of walkers assigned in each pore voxel is 4 for carbonate, and 5 for organic 

shale, respectively. The NMR T2 distribution is estimated after inversion of the 

simulated NMR magnetization decay using a curvature smoothing method (Chen et al., 

1999; Talabi et al., 2009; Toumelin et al., 2003). The areas under NMR T2 distribution 

curves are proportional to their total porosity.  

  

2.2.2 Fracture-Pore Diffusional Coupling in NMR Measurements 

The NMR fracture-pore coupling model introduced in our previous work was 

adapted from the diffusional coupling model proposed by Ramakrishnan et al. (1999). 
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We adapted the approximate 1-D analytical solutions from Ramakrishnan’s work (1999), 

by replacing their terms for micro- and macro-pores with our definitions of inter-

granular pores and micro-fractures, respectively. We defined the micro-fractures that are 

diffusionally coupled (i.e. connected) with inter-granular pores as “coupled fractures”, 

and those not connected to inter-granular pores as “isolated fractures”. In a previous 

publication, we expressed the relaxation time associated to the coupled fractures, 

T2F,coupled, as Equation 2.1: 

 

1

T2F,coupled
=

2

w
[√

σporeD

T2pF
+ ρ(1 − ϕpore)]                                                                       (2.1) 

 

where w is the thickness of planar fractures, D is the diffusion coefficient of saturating 

fluids (brine water) within the rock, ρ is the surface relaxivity of the rock grains, T2p is 

the relaxation time associated to inter-granular pores, and F and ϕpore are the formation 

factor and the inter-granular porosity in the inter-granular pore domain, respectively.   

In the analytical model, the amplitude of T2 modes is proportional to the volume 

fraction of corresponding pore structures. The T2 mode amplitude of isolated micro-

fractures, ϕF,iso, shows the real volume fraction taken by the micro-fractures; while the T2 

mode amplitude of coupled micro-fractures, ϕF,coupled, shows the apparent volume 

fraction measured by NMR, which has been overestimated from the real value due to 

fracture-pore diffusional coupling. According to the relationship between ϕF,coupled and 
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ϕF,iso (Ramakrishnan et al., 1999), we estimated the real volume fraction of micro-

fracture, ϕF,iso, i.e. the micro-fracture density, by Equation 2.2: 

 

ϕF,iso ≌ ϕF,coupled

(1 + X/2)

(1 + X)2
                                                                                                 (2.2) 

 

where  

 

X ≌
T2p/T2F,coupled

√1 − T2p/T2F,coupled

 

 

in which ϕF,coupled, T2p, and T2F,coupled were obtained from the measured (or simulated) 

NMR T2 distributions.   

Furthermore, we can estimate the real porosity of pore space, ϕpore, by Equation 

2.3: 

 

ϕpore = ϕtot − ϕF,iso                                                                                                              (2.3) 

 

where ϕtot is the total porosity of rock, which can be measured by NMR. Thereafter, we 

can estimate the thickness of planar fractures, w, based on Equation 2.4:  

w = 2𝑇2𝐹,𝑐𝑜𝑢𝑝𝑙𝑒𝑑 [√
ϕpore𝐷

𝑇2𝑝𝐹
+ 𝜌(1 − ϕpore)]                                                                   (2.4) 
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as long as we know the values of the parameters ρ, D and F. A water diffusion 

coefficient of D = 2.07x10-9 m2/s was used in this chapter. We assumed the surface 

relaxivity, ρ, as 10µm/sec and 15 µm/sec for carbonate and organic shale cases, 

respectively. The electrical formation factor, F, can be expressed as 1/ϕpore
m according to 

Archie’s law. We then selected the parameter, m, as 2.6 and 1.7 for carbonate and 

organic shale cases, respectively, and estimated the fracture thickness. We emphasize 

that the fracture thickness estimation is highly sensitive to the value of electrical 

formation factor, thus sensitive to the parameter m.  

  

2.2.3 Pore-Scale Numerical Simulations for Rock Electrical Resistivity 

To estimate the effective electrical resistivity of the rock samples, we use the 

finite-difference method to solve the Laplace equation, defined via Equation 2.5: 

 

∇ · (σ · ∇U) = 0                                                                                                                          (2.5) 

 

where σ is the electric conductivity and U is the electric potential. We input the electric 

conductivity of each matrix component (e.g. grains, water, …etc), and then apply a 

constant electric potential difference on the two boundaries of the interested direction. 

The output from the simulator is the spatial distribution of the electric field, which can 

be directly used to calculate the electrical resistivity of the rock sample. The calculated 

electrical resistivity is used as input parameters for the EM simulation as described 
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below. Our pore scale simulations are used only as a method to represent the apparent 

resistivity reading given by induction logs.   

  

2.2.4 Numerical Simulations for EM Response 

We simulated EM borehole measurements using our previously developed 

Finite-Element (FE) induction logging simulator written in FORTRAN. Seatem solves 

the governing diffusive Maxwell equations using a node-based FE technique. The 

equations are formulated in terms of secondary Coulomb-gauged electromagnetic 

potentials with a well-conditioned FE matrix (achieved using an iterative Quasi 

Minimum Residual (QMR) solver with a Jacobi matrix preconditioner). We then display 

the results as 3-D heterogeneous electrical conductivity distributions on a cylindrical 

mesh. All of the FE calculations employ a singularity removal by solving for secondary 

potentials while the primary potentials remain analytic.  

     

2.2.5 Geologic Roughness in EM Simulations 

In a homogeneous geologic formation the migration of charge carriers move 

around unrestricted. The introduction of hierarchical structure in conductivity causes 

variations in spatial heterogeneity leading to an anomalous diffusion response of the EM 

current. In anomalous diffusion the charge carriers are confined to the fracture network 

and cannot move into the matrix. Figure 2.3 (Metzler and Klafter, 2000) illustrates an 

example of classical and anomalous diffusion.  
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Figure 2.3 – Example of classical and anomalous diffusion. Reprinted from Mezler 

and Klafter, 2000. 

 

This concept of anomalous diffusion applies to electromagnetic particles when 

exposed to a time-varying magnetic field. We have an external changing flux, 

represented by the partial derivative of the magnetic field with respect to time. This 

changing flux will cause an anomalous diffusion of quasi-free charges, generating 

electromagnetic eddy currents in the fracture network. We then model this hierarchical 

behavior using a Continuous Time Random Walk (CTRW) algorithm for the migrating 

charge within a confined geometry, with non-Gaussian distribution of step lengths or 

waiting times between steps. Figure 2.4 illustrates how the CTRW can capture 

anomalous diffusion of quasi-free charges generating EM eddy currents in the fracture 

network. 
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Figure 2.4 – Example of the random walk of migrating charge due to an external 

changing magnetic flux in a simulated fractal fault network. Modified from Bour 

and Davy, 1999. 

 

We represent this by applying a spatially uniform roughness parameter, β (Ge, 

2014). This parameter represents the waiting time distribution of a charge carrier 

undertaking a random walk in a fractal geoelectrical network. It is then used to describe 

the degree of fracturing in the formation. An increasing β parameter indicates an addition 

in fracturing of the subsurface, while a β value of zero leads to the classical diffusion 

solution seen for a homogeneous medium. However, as β approaches a value of 1, we 

observe a subdiffusion response in the EM current. The β parameter is incorporated into 

the convolutional vector diffusion equation for the electric field E. Everett (2009) 
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derived a fractional vector diffusion equation from the time-convolutional form of 

Ohm’s law using a Reimann-Liouville fractional derivative. It is displayed below in 

Equation 2.6:  

 

∂

∂t
σβ ∗ E =

σβ

(β)

∂

∂t
∫

dt′E(t)

(t − t′)1−β

t

0

= σβ0Dt
1−β

E(t)                                                             (2.6) 

 

where 𝜎β is the generalized conductivity, E is the external electric field, β is the waiting 

time distribution for the CTRW model (geologic roughness parameter), Dt is the 

fractional diffusion operator, and Г is the Gamma function serving as a normalizing 

constant. Equation 2.7 shows a compact form of the vector diffusion equation for the 

electric field E:  

 

 E = −µ0σβ0Dt
1−β

E(t) − µ0
∂

∂t
Js                                                                                 (2.7) 

 

where 𝐽s indicates the source current density and μ0 represents magnetic permeability 

which equals 4π x 10-7 H/m. A comprehensive derivation of the β parameter and 

fractional diffusion modeling was given by Ge (2014), Everett (2009), and Weiss et al. 

(2007). An abbreviated version of the mathematical development for anomalous 

diffusion is included in Appendix A. 
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2.2.6 Fracture Detection in Formation 

We can detect the existence of micro-fractures in the formation using numerical 

EM simulations. Our background resistivity value (at β = 0) can be estimated using 

conventional resistivity models. In this chapter we used the Dual-Water model, and 

assumed the following parameters for our carbonate and organic shale cases listed in 

Table 2.1, where a, m, and n are adjustable model parameters.  

 

Table 2.1 – Parameters used in Dual-Water Model for carbonate and synthetic 

organic shale cases. Modified from Chi et. al, 2014. 

 

 
 

We then simulated the effects of increasing fracture density by perturbing our 

geologic roughness parameter by 0.01 from β = 0 to β = 0.4 using conductive fractures 

filled with brine water. A maximum value of β = 0.4 was chosen based on minimum 

resistivity convergence and error analysis from the experimental data. The simulations 

were performed for two synthetic cases, a carbonate and a synthetic organic shale 

formation. A detailed explanation of these cases is presented below in Synthetic 

Example No. 1 and 2. Figure 2.5 below shows results from these cases.  

Variable Carbonate Synthetic Organic Shale

a 1.3 0.9

m 2.47 1.70

n 2 2

Volumetric Concentration of Shale, Csh 0.045 0.90

Connate Water Resistivity, Rw 0.034 0.034

Clay Bound Water Resistivity, Rwb 3.00 3.00

Total Water Saturation, Swt 100% 100%
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Figure 2.5 – Simulated resistivity for the synthetic cases with a beta value 

perturbation of 0.01  and an operating frequency of 1000 Hz. Reprinted with 

permission from Chi et. al, 2014. 

 

We begin to see convergence of minimum resistivity values for both cases at β = 

0.4. This phenomenon is generated by dominating conductive mico-fracture density in 

the formation. Formation resistivities for beta values greater than 4 are almost entirely 

subject to micro-fracture conductivity instead of conductivity generated by original 

formation porosity. As fracture density increases from β = 0.01 to β = 0.4 we see an 

increasing concentration of micro-fractures. However, when beta values are below 0.01 

they can be neglected for fracture density analysis, as resistivity from these parameters 

typically correspond to numerical error.   

Next, we derived an empirical relation relating β and total formation porosity to 

apparent formation resistivity. We estimated the total formation porosity using NMR 

measurements, and the apparent resistivity using a representation of induction log 
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response. Our representation of measured apparent resistivity was computed using pore-

scale simulations of electrical rock resistivity.   

 

2.2.7 Error Analysis for EM Simulations 

We performed an error analysis for EM simulations, convergence, and variation 

in operating frequency. Errors for EM simulations were less than 3.5% in the Carbonate 

case and less than 0.04% for the Organic Shale case. Next, we calculated error in the 

convergence models (Figure 2.6). This resulted in an error of less than 2.1%. Then we 

computed error for operating frequencies ranging from 100 Hz to 1000 Hz. For these 

frequencies, we observed an average approximate error of 2.7%.  

  

 

Figure 2.6 – Reduction in resistivity from background resistivity values for 

synthetic cases with a beta value perturbation of 0.01 and an operating frequency 

of 1000 Hz. Reprinted with permission from Chi et. al, 2014. 
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2.3 Synthetic Cases 

2.3.1 Carbonate Formation with Different Density of Micro-Fractures 

Synthetic Example No. 1 is designed to investigate the reliability of our proposed 

fracture density estimation method in fractured carbonate formations. The five synthetic 

carbonate cases in this example contain 2, 4, 6, 8, and 10 planar fractures, respectively. 

The micro-fractures are square and planar shape, with thickness of 9 µm and length of 

270 µm. Figure 2.7 shows the comparison of these three synthetically fractured 

carbonate cases.   

We simulated the apparent resistivity, Ra, for each rock sample using our pore-

scale numerical simulator. We can also obtain the total resistivity, ϕt, using NMR 

measurement. Then we insert Ra and ϕt into the empirical relationship to estimate β value 

for each rock sample. The resulting β values displayed a strong relationship to the 

number of fractures in the formation, as shown in Figure 2.8. We increased the fracture 

volume percent by adding planar microfractures, with a thickness of 9 µm, from 0 

fractures to 10 fractures in increments of 2.  The results indicated a proportional increase 

in percent micro-fracture volume with our waiting time distribution parameter describing 

geologic roughness. Figure 2.9 below displays this correlation.  

Figure 2.10 shows the simulated NMR T2 distribution for these artificially 

fractured carbonate rock samples, and the corresponding analytical T2 modes estimated 

from the simulated T2 distribution. We attributed the T2 peaks at 215~242 msec to the 

existence of planar fractures, which can be verified by the β factor from EM responses, 

and by NMR numerical simulations. We then calculated the real micro-fracture density 
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using Equation 2.2, and further estimated the fracture thickness using Equation 2.4. 

Table 2.2 lists the pore and fracture T2 modes obtained from T2 distributions, the 

estimated/real micro-fracture density and relative error, the simulated beta values from 

EM responses, the estimated inter-granular porosity, and the estimated/real micro-

fracture thickness and relative error for all five rock samples. We observed that with 

higher concentration of micro-fractures, the fracture density estimates from NMR 

analytical model are more accurate.  
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             Case A                                       Case B                                       Case C     

  

           

             Case D                                       Case E  

Figure 2.7 – Pore-scale images of three cases of fractured carbonate rock samples 

with different amount of planar fractures. The numbers of micro-fractures for 

Case A to E are 2, 4, 6, 8, and 10, respectively. The square planar fractures are 9 

µm in thickness, and 270 µm in length for all cases. The white and black regions 

represent the rock grains and pore space, respectively. Reprinted with permission 

from Chi et. al, 2014. 
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Figure 2.8 – Effect of increased fracture concentration on beta value for a 

carbonate rock with 9 µm thick planar fractures. Reprinted with permission from 

Chi et. al, 2014. 

 

 

 

  

Figure 2.9 – Fracture density and beta value for a carbonate rock with varying 

numbers of 9 µm thick planar fractures. Reprinted with permission from Chi et. al, 

2014. 
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Figure 2.10 – Simulated T2 distributions for the carbonate rock sample including 

square planar fractures with thickness (w) of 9 µm, and length (L) of 270 µm. The 

blue, red, green, yellow, and cyan lines show NMR T2 distributions of carbonate 

rock sample with 2, 4, 6, 8, and 10 planar fractures, respectively. Reprinted with 

permission from Chi et. al, 2014.  

 

 Table 2.2 – Carbonate rock samples: NMR T2 values for coupled pores and 

fractures, estimated and real fracture density and its relative error, estimated value 

from EM responses, estimated inter-granular porosity, estimated and real fracture 

thickness and its relative error, for synthetic example No. 1. Modified from Chi et. 

al, 2014. 

 

 

Variable Case A Case B Case C Case D   Case E   

Carbonate Pore T 2 , msec 107.2 107.2 107.2 107.2 95.46

Coupled Fracture T 2 , msec 215.4 215.4 215.4 242 242

NMR Estimated Fracture Density, % 1.08 3.01 4.96 7.2 9.44

EM Estimated Fracture Density 2.39 4.46 7.41 8.46 10.39

% Real Fracture Density, % 1.74 3.99 6.79 8.82 10.89

NMR Relative Error in Fracture Density, % -38.02 -24.72 -26.9 -18.38 -13.33

EM Relative Error in Fracture Density 37.46 11.85 9.08 -4.09 -4.58

% Geologic Roughness Parameter, β 0.065 0.122 0.203 0.232 0.285

Estimated Inter-granular Porosity, % 16.2 16.69 17.53 17.32 17.15

Estimated Fracture Thickness, µm 8.79 8.87 9.1 10.25 10.43

Real Fracture Thickness, µm 9 9 9 9 9

Relative Error in Fracture Thickness, % -2.37 -1.43 1.08 13.9 15.84
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2.3.2 Carbonate Formation with Micro-Fractures of Different Thickness 

The three synthetic carbonate cases in this example contain planar fractures of 

different thickness. The square planar fractures are 270 µm in length, and 2 fractures are 

included in each case. The fracture thickness for Case A, B, and C are 9 µm, 12 µm, and 

15 µm, respectively. Figure 2.11 shows the comparison of these three artificially 

fractured carbonate cases. Figure 2.12 shows the simulated NMR T2 distribution for 

these fractured carbonate rock samples. We attributed the T2 peaks at 215, 242, and 305 

msec to the existence of planar fractures. We then calculated the real micro-fracture 

density using Equation 2.2, and further estimated the fracture thickness using Equation 

2.4. Table 2.3 lists the pore and fracture T2 modes obtained from T2 distributions, the 

estimated/real micro-fracture density and relative error, the estimated inter-granular 

porosity, and the estimated/real micro-fracture thickness and relative error for all three 

cases. Furthermore, we found that β factor estimated from EM responses doesn’t show a 

proportional relationship with the fracture thickness, i.e. the β factor is not explicitly 

sensitive to variation of fracture thickness.  
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             Case A                                      Case B                                      Case C  

Figure 2.11 - Pore-scale images of three cases of fractured carbonate rock samples 

with different thickness of fractures. The fracture thickness for Case A, B, and C 

are 9 µm, 12 µm, and 15 µm, respectively. The square planar fractures are 270 µm 

in length, and the number of fractures is 2 for all cases. The white and black 

regions represent the rock grains and pore space, respectively. Reprinted with 

permission from Chi et. al, 2014. 

 

 

Figure 2.12 - Simulated T2 distributions for the carbonate rock sample including 

planar fractures with length (L) of 270 µm and different thickness. The blue, red, 

and green lines show NMR T2 distributions of carbonate rock sample with planar 

fractures of 9-µm, 12-µm, and 15-µm thickness, respectively. Reprinted with 

permission from Chi et. al, 2014. 
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Table 2.3 - Carbonate rock sample: NMR T2 values for coupled pores and 

fractures, estimated and real fracture density and its relative error, estimated inter-

granular porosity, estimated and real fracture thickness and its relative error, for 

synthetic example No. 1. Modified from Chi et. al, 2014. 

 

 

 

2.3.3 Synthetic Organic Shale Formation with Micro-Fractures of Different Thickness 

The purpose of this synthetic case is to test the reliability of our introduced 

fracture density estimation method in fractured organic shale formations. The three 

synthetic organic shale cases in this example contain planar fractures of different 

thickness. The square planar fractures are 135 µm in length, and 2 fractures are included 

in each case. The fracture thickness for Case A, B, and C are 1.5 µm, 4.5 µm, and 7.5 

µm, respectively. Figure 2.13 shows the comparison of these three artificially fractured 

carbonate cases. Figure 2.14 shows the simulated NMR T2 distribution for these 

fractured carbonate rock samples. We attributed the T2 peaks at 17.5, 53, and 82 msec to 

the planar fractures. We then calculated the real micro-fracture density using Equation 

2.2, and further estimated the fracture thickness using Equation 2.4. Table 2.4 lists the 

Variable Case A Case B Case C 

Carbonate Pore T 2 , msec 107.2 107.2 107.2

Coupled Fracture T 2 , msec 215.4 242 305.3

Estimated Fracture Density, % 1.08 1.74 2.3

Real Fracture Density, % 1.74 2.32 2.9

Relative Error in Fracture Density, % -38.02 -24.99 -20.76

Estimated Inter-granular Porosity, % 16.36 16.28 16.3

Estimated Fracture Thickness, µm 8.78 9.94 12.83

Real Fracture Thickness, µm 9 12 15

Relative Error in Fracture Thickness, % -2.39 -17.2 -14.47
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pore and fracture T2 modes obtained from T2 distributions, the estimated/real micro-

fracture density and relative error, the estimated inter-granular porosity, and the 

estimated/real micro-fracture thickness and relative error for all three cases. Again, we 

estimated β factor from EM responses, however, we still observed minimal sensitivity to 

change in fracture thickness. Thus, there is no explicit relationship between β factor and 

fracture volume in this case.   

  

                    

             Case A                                       Case B                                       Case C  

Figure 2.13 - Pore-scale images of three cases of fractured organic shale rock 

samples. The fracture thickness for Case A, B, and C are 1.5 µm, 4.5 µm, and 7.5 

µm, respectively. The square planar fractures are 135 µm in length, and the 

number of fractures is 2 for all cases. The yellow, white, and black regions 

represent the kerogen, rock matrix, and pore space, respectively. Reprinted with 

permission from Chi et. al, 2014. 
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Figure 2.14 - Simulated T2 distributions for the synthetic organic shale sample 

including planar fractures with thickness (w) of 1.5, 4.5, or 7.5 µm, and length (L) 

of 135 µm. The blue, red, and green lines show NMR T2 distributions of organic 

shale matrix with planar fractures of 1.5-µm, 4.5-µm, and 7.5-µm thickness, 

respectively. Reprinted with permission from Chi et. al, 2014.  

 

 Table 2.4 - Synthetic organic shale sample: NMR T2 values for coupled pores and 

fractures, estimated and real fracture density and its relative error, estimated inter-

granular porosity, estimated and real fracture thickness and its relative error, for 

synthetic example No. 2. Modified from Chi et. al, 2014. 

 

 

 

Variable Case A Case B Case C 

Organic Shale Pore T 2 , msec 11.35 12.37 12.37

Coupled Fracture T 2 , msec 17.5 53.4 82.1

Estimated Fracture Density, % 7.1 16.28 27.55

Real Fracture Density, % 6.1 18.4 30.7

Relative Error in Fracture Density, % 16.4 -11.55 -10.26

Estimated Inter-granular Porosity, % 9.9 10.21 10.31

Estimated Fracture Thickness, µm 1.52 4.69 7.33

Real Fracture Thickness, µm 1.5 4.5 7.5

Relative Error in Fracture Thickness, % 1.56 4.27 -2.24
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2.4 Conclusions 

Characterization of micro-fracture density in multiple-porosity systems is a 

challenging task that directly impacts completion designs, including placement and 

number of fracture treatments. NMR measurements in multiple porosity systems have 

been proven to show sensitivity to the existence of micro-fractures due to fracture-pore 

diffusional coupling effect. Electromagnetic measurements were also demonstrated as 

sensitive to fracture density in the formation. We proposed a new method to evaluate 

volumetric fractions of micro-fractures and pore space by combining the NMR 

theoretical model and the fractional diffusion modeling of electromagnetic 

measurements.  

We tested the introduced method on a 3-D pore-scale carbonate image and a 

synthetic organic shale image, both containing artificial micro-fractures. We varied the 

number and thickness of micro-fractures in each case, and then estimated fracture 

density using combination of NMR and electromagnetic simulation results; our 

estimated fracture density showed agreement with the actual values, which confirmed 

the reliability of our method. The approach helps distinguish between variations in 

micro-fracture dimensions and density in multiple-porosity systems, while improving 

micro-fracture density estimation. This research has the potential to increase production 

from tight carbonate and organic-shale formations by improving our fracturing treatment 

designs through enhanced reservoir characterization. 
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CHAPTER III 

 MODELING ANOMALOUS ELECTROMAGNETIC DIFFUSION EFFECTS ON 

INDUCTION LOG RESPONSES FOR CHARACTERIZING NATURAL FRACTURE 

CORRIDORS*  

 

Controlled-source electromagnetic (CSEM) methods, such as induction logging, 

are commonly used to measure formation resistivity in the near-wellbore region. 

However, near-wellbore formation damage incurred during the drilling process often 

obscures well logging measurements making it difficult to differentiate between natural 

and artificially induced fractures. Combining surface gas readings and downhole 

measurements with electromagnetic (EM) induction log simulations of the anomalous 

EM diffusion response can improve natural fracture corridor characterization and 

detection. Traditional characterization and detection methods depend on high-resolution 

resistivity imaging and conventional well logs (e.g., induction logs). High-resolution 

resistivity imaging mitigates fracture characterization uncertainty; however, it is costly 

and may be inaccurate around near-wellbore formation damage. Meanwhile, induction 

logs provide reliable fracture detection but lack fracture geometry sensitivity. Our novel 

approach combines drilling measurements, regional geomechanics, and 3-D finite-

element (FE) numerical simulation of EM induction logging (via anomalous diffusion  

 

 

*  Part of this chapter is reprinted with permission from “Modeling the Effects of 

Anomalous Electromagnetic Diffusion on Induction Log Responses: The Next Step in 

Mapping Natural Fracture Corridors” by Elliott et al., 2014. SPE 170950. Copyright 

[2014] by Society of Petroleum Engineers. 
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simulation) to better describe near-wellbore induced fracture geometry and location. 

Thereby, improving natural fracture detection and mapping for unconventional 

formation completion plan optimization. 

We performed FE numerical simulations to model hydraulic fracturing effects on 

fractured zone induction log responses. Fractured zones were specified with a geologic 

roughness parameter, β. Beta represents an anomalous diffusion coefficient within the 

generalized Ohm’s law for fractured media. We then calculated apparent resistivity for 

resistive fractures placed inside a layered formation. This was accomplished using our 

in-house FE numerical simulator, seatem. The version of seatem used in this chapter is 

an induction logging simulator that solves the diffusive Maxwell equations and plots 

resulting apparent resistivity distributions within an unstructured cylindrical-cartesian 

conforming mesh. This improves our understanding of how the targeted zone interacts 

with varying stimulation factors. 

We performed numerical simulations along a multi-zoned reservoir interval for 

three synthetic cases: a sandstone formation, a carbonate formation, and an organic shale 

formation. Then, we quantified hydraulic fracturing effects on induction logs and 

optimized fracture treatment placement. Results suggested fracture corridor depletion 

and geologic targeting as viable for fractured zones with β values larger than 0.3.  

Additionally, using the β parameter, we developed a method to high-grade natural 

fracture corridors to assist in hydraulic fracture placement selection. Our methodology 
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will improve operational decisions and increase production during field development by 

increasing natural fracture corridor characterization and detection accuracy.   

 

3.1 Introduction 

Unconventional reservoirs retain hydrocarbon reserves often unobtainable 

through classical production techniques. These formations require enhanced recovery 

methods to produce those remaining hydrocarbons economically. Standard enhanced 

recovery methods involve stimulating the rock matrix through various fracturing 

techniques. However, optimizing fracturing placement remains challenging in the 

presence of naturally fractured corridors. These high permeability zones increase 

hydrocarbon production through corridor depletion. However, we often require optimal 

perforation placement to benefit fully from hydraulic and natural fracture interaction.  

Selecting natural fracture corridor stimulation locations requires accurate 

geomechanical parameter characterization. Some of these parameters, such as natural 

fracture density and geometry, are costly to obtain. Unconventional formation wells 

depend on low drilling and completion costs to remain profitable. Thus, operator budget 

constraints often prevent using specialized logging techniques, such as nuclear magnetic 

resonance (NMR) and high-definition resistivity imaging, required to accurately 

characterize geomechanical parameters. This restriction forces companies to rely on 

basic well-logging methods to extract fracture attributes. Our novel method provides a 

cost-effective solution to achieve accurate natural fracture corridor detection and 
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characterization by combining commonly obtained surface gas readings and downhole 

measurements with electromagnetic (EM) induction log simulations. 

 

3.1.1 Natural Fracture Corridors 

Natural fracture corridors are high-permeability zones created by a complex 

fracture network with varying spatial distribution and conductivities (Ahmed, 2010). 

These areas typically display a dominant fracture orientation containing a high 

storativity ratio and a low interporosity flow coefficient. Their parameters provide easier 

storage and fluid transfer from the matrix to fissures. Additionally, some shale resource 

plays production, for example the North Dakota Bakken shale, are geologically 

dominated by natural fracture corridor depletion (Anderson, 2011). Accurately 

predicting corridor locations and attributes is necessary for field development during 

infill drilling. Correctly detecting and characterizing these locations remains challenging 

without heavy formation evaluation investment through specialized logging techniques. 

Numerical EM simulation of induction log responses provide an alternative economical 

approach. EM simulations can quantify the degree of heterogeneity within natural 

fracture corridors by calculating a geologic roughness parameter, β. 

 

3.1.2 Geologic Roughness Parameter 

We assume subsurface formation fracture density, i.e. geologic “roughness,” can 

be specified with an isotropic scalar β parameter. This parameter represents charge 

carrier fractal transport within a geometry whose heterogeneities obey a spatial power 
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law density distribution. We associate β with the statistical behavior of charge carrier 

random walk through a disordered medium. Beta describes the non-Gaussian step-length 

distribution function in a continuous time random walk (CTRW) algorithm. Lower β 

values indicate shorter step lengths and smaller fracture concentration, while higher β 

values associate with longer step lengths and an increased concentration of large 

through-going fractures. Sher and Montroll (1975) originally presented the CTRW 

approach to electric charge transport. Their applications to induction logging are 

discussed in Bray (2013). 

During induction logging, the tool’s transmitter creates an electromagnetic field. 

This field diffuses out in a classical Brownian motion for an idealized homogeneous 

formation. We attribute a β value equal to zero for this scenario. However, fractured 

formations often exhibit spatial heterogeneity characterized by power law distributions. 

In such cases, the electromagnetic field undergoes anomalous diffusion as it propagates 

into the surrounding rock. Thus, the formation β value increases with reservoir fracture 

density. This β parameter is defined within the electromagnetic field solution for a 

convolutional vector diffusion equation. Everett (2009) derived the governing fractional 

Maxwell equation based on the time-convolutional form of Ohm’s Law. The time-

derivative of the generalized Ohm’s law is given by (Eq. 1):    

𝜕

𝜕𝑡
𝜎𝛽 ∗ 𝐸 =

𝜎𝛽

(𝛽)

𝜕

𝜕𝑡
∫

𝑑𝑡′E(𝑡)

(𝑡 − 𝑡′)1−𝛽

𝑡

0

= 𝜎𝛽0𝐷𝑡
1−𝛽

𝐸(𝑡)                                                         (3.1) 
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where σβ is a generalized conductivity, E is the electric field, β is the geologic roughness 

parameter, Dt1-β is the fractional derivative, and Г is the normalizing constant Gamma 

function. The fractional diffusion equation compact form can be written as:  

 

E = −µ0𝜎𝛽0𝐷𝑡
1−𝛽

𝐸(𝑡) − µ0

𝜕

𝜕𝑡
𝐽𝑠                                                                                (3.2) 

 

where Js represents the source current density and μ0=4π×10-7 H/m is the magnetic 

permeability of free space. Ge (2014), Everett (2009), and Weiss et al. (2007) provide a 

detailed derivation of the fractional diffusion equation. An abbreviated version of the 

mathematical development for anomalous diffusion is included in Appendix A. 

 

3.1.3 Natural Fracture Detection and Characterization 

We propose a new methodology to locate and high-grade natural fracture 

corridors for optimizing hydraulic fracture placement. Our approach uses available 

induction logging data combined with other surface and downhole measurements, such 

as surface-gas reading and offset well fracture pressure data. Norbeck (2012) proposed a 

similar methodology by combining mud log total gas concentration measurements with 

mud pit volume. We modified Norbeck’s method by including EM induction log 

response simulations. This improves the accuracy for locating natural fracture corridor 

boundaries. Previous work in simulated EM borehole measurements is found in 

Bespalov (2009) and Pardo (2007). Our EM induction logging simulator differs from 



 

55 

 

 

 

Bespalov and Pardo by providing natural fracture corridor representation through a β 

parameter. This aids in selecting fracture treatment placement to maximize stimulated 

reservoir volume. We describe our methodology for simulating hydraulic fracturing 

effects on induction log responses in the following section.  

 

3.2 Method 

We optimized hydraulic fracture placement through mapping natural fracture 

corridors. We used regional geomechanics and surface-gas measurements to define 

natural fracture locations and corridor boundaries. Dominant fracture orientation was 

then determined within the fractured zone using surficial basement lineaments, following 

the approach presented by Anderson (2011). Next, EM logging simulations were used to 

high-grade the fracture corridor for fracture density. After high-grading, modeling 

hydraulic fracture interactions with the natural fracture zone was used to optimize 

stimulation placement. The project workflow is illustrated in Figure 3.1.  A detailed 

description of each process is presented in the following sections.  
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Figure 3.1 – Workflow for selecting fracture treatment placement. Reprinted with 

permission from Elliott et. al, 2014. 

  

3.2.1 Mapping Natural Fracture Location 

The initial natural fracture corridor location was selected using surface-gas 

readings. Sustained gas measurement spikes generally correlate to high permeability 

zones during underbalanced drilling (i.e., the Bakken Shale). These spikes indicate gas 

coming out of solution corresponding to fracture corridors. We then redefined the 

fracture location using EM logging simulations. Our FE EM simulator, seatem, solves 

the governing fractional-diffusive Maxwell equations formulated as secondary 

Coulomb-gauge electromagnetic potentials. Next, it calculates 3-D heterogenous 

electrical conductivity distributions on a tetrahedral mesh. We developed a cylindrical-

cartesian conforming mesh for the research in this chapter. The mesh is cylindrical in the 

near-wellbore region and transitions to cartesian in the far-field by projecting nodes 

outward from each cylindrical region. Our mesh design includes fine meshing around the 



 

57 

 

 

 

wellbore to more accurately represent the primary field, as high gradients are often 

present near the source. An example of the mesh design is presented in Figure 3.2. We 

then generate synthetic induction logs for multi-layered formations and interpreted these 

new logs to map the natural fracture location.  

 

 

Figure 3.2 – Cylindrical-cartesian conforming mesh design viewed along the 

borehole. 

 

3.2.2 Determining Dominant Fracture Orientation 

We determined dominant fracture orientation with regional geomechanics and 

available seismic data. Since the methodology varies by region, the focus of this chapter 

is limited to the Bakken Shale of North Dakota and Canada. The liquids-rich Bakken 

formation of the Williston basin is a North American Plate interior intracrationic basin. 
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Since deposition, between the Upper Devonian and Lower Mississippian eras, the 

Bakken formation remained uninfluenced by tectonic activity. Despite this, it is fractured 

with the highest hydrocarbon production correlating to higher fracture densities. 

Moreover, higher fracture density areas occur in roughly linear arrangements defined as 

fractured lineaments. Anderson (2011) attempts to determine these fracture alignments 

origins. Anderson found the Precambrian basement contained extensive normal faulting 

by interpreting 2-D seismic data from Montrail County, ND. These faults extended 

upward through the overlying strata before tipping out. Despite tipping out, strain 

accumulation continued above the tip. Rather than macroscopic faulting, a more 

distributed linear region of fractured rock accommodates strain. Moreover, fractured 

lineaments within the Willison Basin occurred in two roughly orthogonal orientations. 

Surficial lineaments orientation is comparable to basement lineaments. Therefore, we 

inferred the Bakken lineaments likely orient similarly. We then correlated high 

permeability zones along different wellbores using orientations observed in basement 

and surficial lineaments. This is just one approach to determining dominant fracture 

orientation. The particular method to use varies with geological location and is typically 

well established for the region. 

 

3.2.3 Defining and High Grading Fracture Corridors for Fracture Density 

We high-graded natural corridors based on fracture concentration. Zones with 

higher fracture concentration were assigned a higher β value. Then, using seatem, 

estimated β effects on conductive and resistive fractures electromagnetic response were 
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obtained. The electromagnetic response represented apparent resistivity measured by a 

standard 4-meter length 1 kHz coaxial induction tool. Conductive fractures typically 

correspond to brine-filled fractures, while resistive fractures generally correlate to 

hydrocarbon-filled fractures. The matrix was assumed to be low-resistivity sandstone, 

moderate-resistivity carbonate, or high-resistivity organic shale. We selected initial β 

values based on the methods previously described in chapter two. Then, β was perturbed 

from β = 0 to β = 0.4 with a 0.01 step size to model conductive and resistive fracture 

effects on apparent conductivity. The results are shown in Figure 3.3. Resistivity 

decreases exponentially with increasing β for all three conductive fractures cases. This 

indicates a shift from classical to anomalous diffusion. The inverse response was 

observed for resistive fractures. 

 

 

Figure 3.3 – Geologic roughness effects on conductive and resistive fractured zone 

apparent resistivity. Modified from Elliott et. al, 2014. 
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We used seatem to determined qualitative fracture density to estimate the 

geologic roughness parameter along the corridor. The fracture corridor was then 

partitioned into equally sized zones and compared with β parameter values. Zones with 

higher β values indicated increased fracture density. Minimum and maximum β values, 

as well as area, were then calculated to select optimal fracture treatment placement. We 

calculated minimum and maximum β by plotting corridor zone resistivities from Figure 

3.3. While area was approximated by numerically integrating each zone using the 

trapezoidal rule.  

 

3.2.4 Modeling Hydraulic and Natural Fracture Interactions 

We modified the numerical logging simulator to calculate induction log 

response effects for hydraulic and natural fracture interactions. The modified program 

models a discrete 3-D hydraulic fracture embedded within the tetrahedral mesh (Figure 

3.4).  
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Figure 3.4 – Tetrahedral meshing for the horizontal slice of a hydraulic fracture 

(left), mesh enlarged 3 times (right). 

 

Parameters including conductivity, length, width, height along the wellbore, location 

along the wellbore, and orientation were used to define the fracture. The hydraulic 

fracturing properties were selected based on the work of Hibbs (2014). These properties 

included a hydraulic fracture area of 20000 m2 and a conductance (conductivity-

thickness product) of 1.5 S. We then inserted this hydraulic fracture into our simulator to 

model hydraulic and natural fracture interactions. After modeling, we can better 

optimize fracturing stimulation placement based on the interactions between hydraulic 

and natural fractures. We then selected the surrounding reservoir properties and ranked 

the natural fracture corridor with β values. Fracturing treatment effects on induction log 

responses could then be modeled with and without the effects of natural fractures.  
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3.2.5 Optimizing Hydraulic Fracture Placement 

We partitioned the newly defined fracture corridors into equal length zones along 

the wellbore and selected the fracture zones with largest β values and area. Then, we 

modeled the interactions between fracture treatments and our natural fracture corridor 

using seatem with the β values as input parameters. These results aided in determining 

the most favorable zone for optimizing hydraulic fracture placement. Our methodology 

was applied to a comprehensive suite of synthetic case studies. Three of these cases are 

described in the following section. 

 

3.3 Synthetic Cases 

We selected three synthetic cases to present: a sandstone formation, a carbonate 

formation, and an organic shale formation. Each case consists of a 6-layered earth model 

with relative depths and varying conductivities. The fracture corridor was then identified 

and partitioned into an arbitrary number of zones based on resistivity. We determined 

fracture corridor location with surface-gas measurements and regional geomechanics. 

Next, we applied our methodology to each case to show results for anomalous diffusion 

calculations, hydraulic and natural fracture interactions, and optimal fracture treatment 

placement. Tables 3.1-3.3 provide anomalous diffusion calculations for β values and 

area, while generated induction logs display fracture interactions and optimization. 

Results for each case are detailed below. 
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3.3.1 Synthetic Case No. 1: Sandstone Formation 

The first case is a sandstone formation with the highest fracture concentration 

located in the fracture corridor center. The formation contains a 6-layered earth model 

with 1.97 Ohm-m non-fractured resistivity, and fractured zone resistivities ranging 

between 6.99 Ohm-m to 64.94 Ohm-m (Figure 3.5, left). We partition this model’s 

fracture corridor into 8 equally spaced zones and display its generated induction log 

(Figure 3.5, right). The β values and area calculations are given in Table 3.1. Zone 5 was 

determined to be the most favorable fracture treatment placement location. This zone 

gives the largest area and highest β values combination.  

Next, we insert a 20000 m2 hydraulic fracture with a 1.5 S conductivity into zone 

5 at a relative depth of 1.9 m. Simulation results for the hydraulic fracture’s interaction 

with natural fractures are shown as a generated induction log in Figure 3.6 (left). Zone 5 

(Figure 3.6, right) resulted in a 0.4% induction log signature reduction after hydraulic 

fracture placement. This indicates a poor hydraulic fracturing response for zone 5. 

Therefore, the zone is determined to not be viable for geologic targeting and corridor 

depletion. 
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Figure 3.5 – Layered earth model for sandstone formation case (left), generated 

natural fracture corridor induction log (right). Modified from Elliott et. al, 2014. 

 

 

Table 3.1 - Fractured zone β values and area for sandstone formation. Modified 

from Elliott et. al, 2014. 

 

 

 

Zone Min β Max β Area, ohm-m2

Zone 1 0.164 0.140 19.92

Zone 2 0.140 0.166 37.57

Zone 3 0.166 0.318 93.24

Zone 4 0.318 0.340 175.10

Zone 5 0.340 0.396 182.99

Zone 6 0.235 0.385 182.38

Zone 7 0.138 0.235 43.89

Zone 8 0.030 0.138 23.37
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Figure 3.6 – Generated induction log for hydraulic and natural fracture 

interactions in sandstone formation case. Modified from Elliott et. al, 2014. 

 

3.3.2 Synthetic Case No. 2: Carbonate Formation 

Our second case, a carbonate formation, shows the highest fracture concentration 

on the left side of the fracture corridor. The formation contains a 6-layered earth model 

with 4.46 Ohm-m non-fractured resistivity, and fractured zone resistivities ranging 

between 5.93 Ohm-m to 175.44 Ohm-m (Figure 3.7, left). We partition this model’s 

fracture corridor into 8 equally spaced zones and display its generated induction log in 

Figure 3.7 (right). The β values and area calculations are reported in Table 3.2. We 

determined zone 2 as the optimal fracture treatment placement location. This zone gives 

the largest area and highest β values combination.  
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Next, we insert a 20000 m2 hydraulic fracture with a 1.5 S conductivity into zone 

2 at a relative depth of 18.1m.  Simulation results for the hydraulic fracture’s interaction 

with natural fractures are shown as a generated induction log in Figure 3.8 (left). Zone 2 

(Figure 3.8, right) results in a 23.9% induction log signature reduction after hydraulic 

fracture placement. Hydraulic fracturing response improved by 5875% from the 

sandstone formation case. Zone 2 is determined to be a viable geologic targeting and 

corridor depletion location. 

 

 

Figure 3.7 – Layered earth model for carbonate formation case (left), generated 

natural fracture corridor induction log (right). Modified from Elliott et. al, 2014. 
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Table 3.2 - Fractured zone β values and area for carbonate formation. Modified 

from Elliott et. al, 2014. 

 

 

 

 

  

Figure 3.8 – Generated induction log for hydraulic and natural fracture 

interactions in carbonate formation case. Modified from Elliott et. al, 2014. 

 

Zone Min β Max β Area, ohm-m2

Zone 1 0.001 0.316 102.56

Zone 2 0.316 0.387 597.16

Zone 3 0.199 0.345 252.75

Zone 4 0.157 0.199 116.48

Zone 5 0.084 0.157 60.49

Zone 6 0.062 0.084 38.08

Zone 7 0.032 0.062 34.03

Zone 8 0.006 0.032 28.09
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3.3.3 Synthetic Case No. 3: Organic Shale Formation 

Our third case, an organic shale formation, shows the highest fracture 

concentration in the fracture corridor sides. The formation contains a 6-layered earth 

model with 14.04 Ohm-m non-fractured resistivity, and fractured zone resistivities 

ranging between 28.01 Ohm-m to 555.56 Ohm-m (Figure 3.9, left). We partition this 

model’s fracture corridor into 8 equally spaced zones and display its generated induction 

log in Figure 3.9 (right). The β values and area calculations are listed in Table 3.3. We 

determined zones 2 and 7 as viable fracture treatment placement locations. These zones 

give the largest area and highest β values combination.  

Next, we insert a 20000 m2 hydraulic fracture with a 1.5 S conductivity into 

zones 2 and 7 at relative depths of 18.1 m and -8.4 m respectively. Simulation results for 

the hydraulic fracture’s interaction with natural fractures are displayed as a generated 

induction log in Figure 3.10. Zone 2 (Figure 3.11, left) results in a 45.7% induction log 

signature reduction after hydraulic fracture placement. While zone 7 (Figure 3.11, right) 

results in a 36.8% reduction. Hydraulic fracturing response improved by 11325% (zone 

2) and 9100% (zone 7) from the sandstone formation case. Zones 2 and 7 were 

determined to be viable geologic targeting and corridor depletion locations. 
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Figure 3.9 – Layered earth model for organic shale formation case (left), generated 

natural fracture corridor induction log (right). Modified from Elliott et. al, 2014. 

 

 

Table 3.3 - Fractured zone β values and area for organic shale formation. Modified 

from Elliott et. al, 2014. 

 

  

Zone Min β Max β Area, ohm-m2

Zone 1 0.009 0.314 287.84

Zone 2 0.314 0.382 1875.76

Zone 3 0.198 0.344 788.64

Zone 4 0.156 0.198 364.93

Zone 5 0.086 0.156 141.10

Zone 6 0.086 0.152 180.06

Zone 7 0.152 0.325 969.88

Zone 8 0.038 0.282 383.46
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Figure 3.10 – Generated induction log for hydraulic and natural fracture 

interactions in organic shale formation case. Modified from Elliott et. al, 2014. 

 

 
 

Figure 3.11 – Viable geologic targeting and corridor depletion zones for organic 

shale case. Modified from Elliott et. al, 2014. 
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3.4 Conclusions 

We combined surface-gas readings and downhole measurements with EM 

induction log simulations to improve natural fracture corridor detection and 

characterization. Using these simulations, we described fractured zone degree of 

heterogeneity with a calculated anomalous diffusion coefficient, β. The β parameter are 

then used in simulating hydraulic and natural fracturing interactions for three cases: a 

sandstone formation, a carbonate formation, and an organic shale formation. 

Conclusions for this chapter are listed below. 

 

1. Combining β values with resistivity measurements to describe fracture roughness 

normalizes unfractured reservoir conductivity 

2. Generating induction logs with β parameters helps differentiate between high and 

low fracture concentrations 

3. The best corridor depletion stimulation zones are carbonate or organic shale 

formations with β values greater than 0.3 

4. Simulating EM measurements with anomalous diffusion improves high-grading 

of natural fracture corridors and better optimizes hydraulic fracture placement in 

fractured zones 

5. Including anomalous diffusion in EM simulations improves geologic targeting 

which increases field production through natural fracture corridor depletion 
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CHAPTER IV 

 INTEGRAL EQUATION BASED WELLBORE PRECONDITIONER FOR 3-D 

ELECTROMAGNETIC RESPONSE MODELING 

 

Surface-based controlled-source electromagnetic (CSEM) methods can aid in 

subsurface characterization and fluid monitoring in the far-field. However, to achieve 

accurate simulation results, we must first account for the electromagnetic (EM) response 

of the conductive wellbore casing. Modeling subsurface controlled-source 

electromagnetic (CSEM) responses using the finite-element (FE) method is challenging 

in the presence of highly conductive wellbore casing. The very large conductivity 

contrast between the casing and the host formation leads to increased computation time 

and potentially unstable solutions. We address this difficulty by preconditioning a FE 

solver with an integral equation (IE) primary solution that captures the CSEM response 

of a realistic-sized steel wellbore casing. Our hybrid IE-FE approach solves the primary 

field solution using 2-D integral-equation forward modeling and then interpolates the IE-

computed solution onto the nodes of a FE mesh. Then using an existing FE simulator we 

solve for secondary electric and magnetic field solutions. This approach removes the 

need for an ultra-fine FE mesh around the wellbore, thereby improving FE solution 

stability while greatly reducing FE computation time. Our method is illustrated by 

modeling the CSEM responses of idealized fluid-bearing zones. 
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4.1 Introduction 

 Electromagnetic response modeling techniques have been established for a wide 

range of industry applications including CO2 storage and geothermal exploration 

(Castillo-Reyes et. al., 2022), marine and terrestrial hydrocarbon exploration (Chave et. 

al. 2017 and Streich 2016), buried pipeline integrity (Couchman and Everett, 2022), 

energy harvesting (Beskardes et. al. 2019), induction logging (Everett et al., 2001), and 

hydraulic fracturing fluid flowback (Jones et. al. 2019). A challenging aspect of these 

applications involves handling the high electrical conductivity between a steel-cased 

wellbore and the surrounding host formation. Conductivity contrasts can range to 19 

orders of magnitude (~106 S/m for steel casing to ~10-13 for organic-rich shale). 

Modeling these high contrasts typically requires time-consuming specialized techniques 

such as ultra-fine meshing around the casing region so there is plenty of room for new 

and efficient computational algorithms. Some commonly used approaches are described 

in the following paragraphs. 

Patzer et al. (2017) use a 3-D finite-difference (FD) approach wherein the steel 

casing is included in the primary field as a series of dipoles whose moments are 

calculated from the primary transmitted field. This approach offers a computational 

speed improvement but is limited to vertical wellbores in a homogeneous half-space. 

Additionally, the method requires a structured mesh that does not allow for local 

refinement around the wellbore. Puzyrev et al. (2017) employ a 3-D FD code based on 

the curl-curl electric field formulation using parallel direct solvers with automatic grid 
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refinement. The method provides fast computation times but does require parallelization 

architecture so that it is not readily accessible to most engineers and geoscientists.  

Heagy et al. (2019) used the finite volume (FV) approach to solve Maxwell’s 

equation for cylindrically symmetric 2-D and 3-D geometries. They assign a high 

conductivity to the annular casing region and employ an ultra-fine mesh. The use of a 

cylindrical mesh leads to difficulties in accommodating deviated, horizontal, or multi-

well casing scenarios. Hu et al. (2022) include steel casing without mesh refinement by 

using an edge-conductivity technique wherein the electric field is specified on mesh 

edges, the magnetic flux on mesh faces, and the steel casing is specified by using special 

mesh elements.  

Weiss (2017) developed a hierarchical finite-element method (Hi-FEM) using 

unstructured tetrahedral meshing. He modified the governing Poisson’s equation to 

include element-stiffness matrices for 2-D facets and 1-D edges. This technique has been 

proposed for applications such as energy harvesting for charging subsurface micro-

sensors (Beskardes et. al. 2019), and casing integrity mapping (Wilt et. al. 2020). Cuevas 

and Pezzoli (2018) developed a 2-D cylindrical FE solution wherein the conductive 

casing is approximated by an array of dipole sources. The vertical steel casing is excited 

by a vertical electric field antenna located in the borehole. Castillo-Reyes et al. (2022) 

developed a joint 2-D magnetotelluric (MT) 3-D CSEM inverse model using a parallel 

and high-order vector finite-element algorithm for CO2 storage and geothermal 

exploration applications. Couchman and Everett (2022) demonstrate a 3-D FE method 
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for detection of corrosion effects in near-surface buried pipelines. However, the method 

requires expensive ultra-fine meshing to be applied to oilfield casing scenarios. 

Kohnke et al. (2018) developed a method-of-moments (Harrington, 1968) 

integral-equation (IE) technique by replacing the casing with small current dipoles. The 

method is computationally and memory efficient, but there are limitations on the 

permissible casing geometry. Orujov et al. (2020) describe a similar approach using 

wedge elements, the latter being used to represent bent sections of a horizontal pipe.  

Um et. al. (2020) developed a hybrid FE-FD inversion algorithm that uses an 

unstructured tetrahedral FE mesh in the simulation domain and a course-structured 

rectangular FD mesh in the imaging domain. The hollow steel-cased well is modeled as 

a solid prism of equivalent conductance. Tang et. al. (2015) developed a hybrid IE-FE 

algorithm. The method of moments is used to calculate the primary field in a uniform 

half-space that includes an energized steel wellbore casing. The secondary field is then 

calculated by substituting the primary field, as a source term, into the FE formulation. 

Yu et. al. (2022) developed a FE method that discretizes the steel casing with triangular 

prism elements, its surroundings with pyramid elements, and the remaining host 

formation tetrahedral elements. Lui et. al. (2018) developed a hybrid IE-FE method 

wherein the FE portion solves the Maxwell equations in the interior domain while 

electric fields on the boundary are computed by the IE method.  

Our method is a hybrid IE-FE algorithm that preconditions a FE simulator with a 

pre-computed IE primary solution for an infinite grounded wire source energizing a 

horizontal wellbore casing located in a uniform half-space. The IE solution is adapted 
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from Hohman (1971) by converting the large uniform rectilinear inhomogeneity he 

considered to one with a much smaller cross-section that is placed directly below and in 

alignment with the infinite-wire source. This approach significantly reduces FE 

computation time by removing the need for ultra-fine mesh around the casing and is 

fundamentally different from previous hybrid methods. We perform the IE calculations 

outside of the 3-D forward modeling, and hence do not need to include the casing in the 

FE formulation. Moreover, the method works with any FE formulation.  

The remainder of this chapter is organized as follows. First, we discuss the IE 

forward modeling code, including benchmarking and validation exercises to test the IE 

code and solver stability. Then we apply the IE code to a simple oil-field scenario, using 

it to precondition an FE simulator. We illustrate the hybrid IE-FE method by 

investigating the EM response of a conductive subsurface fluid zone.  

 

4.2 Methods 

The terrestrial controlled-source electromagnetic (CSEM) geophysical method 

can be applied to critical tasks such as inspection of subsurface infrastructure or 

monitoring of enhanced geothermal or hydraulic fracturing operations. Terrestrial CSEM 

surveys typically operate with a grounded dipole transmitter and an array of surface 

and/or subsurface receivers. The transmitter generates an electromagnetic field that 

penetrates the underlying geological formation. A secondary magnetic field is produced 

by the induced eddy currents that are mediated by the migration of mobile charge 

carriers in the subsurface. Secondary electric and magnetic field CSEM measurements 
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are diagnostic of spatial variations in formation electrical conductivity caused by 

geological heterogeneity or the presence of fluids. For a given transmitter operating 

frequency 𝜔 = 2𝜋𝑓, the signal amplitude and phase at the receiver are analyzed. We 

investigate herein a 2.5-D CSEM problem representative of an idealized oilfield scenario 

(for one embodiment of a terrestrial CSEM survey, see Figure 4.1).  

 

 

Figure 4.1 – An embodiment of a terrestrial controlled-source electromagnetic 

(CSEM) survey. 

 

The conversion efficiency of the transmitted electromagnetic energy to kinetic 

energy for subsurface mobilized charge carriers determines the CSEM investigation 

depth. Electrical conductivity 𝜎 is determined by the product of the number density and 

mobility of the charge carriers (Everett and Chave 2019). Moreover, a normally incident 
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plane-wave signal loses 1 𝑒~0.3679⁄  of its incident amplitude after penetrating one skin 

depth 𝛿 into a uniformly conducting medium. Thus, higher electrical conductivity leads 

to greater energy conversion and consequently a smaller depth of penetration. The 

formula for skin depth (e.g. Moran and Kunz 1962) is  

 

δ = √
2

µσω
                                                                                                                             (4.1)                       

 

where µ = 4𝜋 x 10 − 7 H/m denotes the magnetic permeability of free space.  

Reducing the transmitter operating frequency increases the depth of investigation at the 

cost of reducing spatial resolution. For the modeling in this chapter, we select 

combinations of operating frequency and formation conductivity corresponding to a 

depth of investigation 𝑑~1.5𝛿 − 2.0𝛿 to maintain good signal to noise ratio (e.g. Grant 

and West 1965). 

We developed a 2-D integral-equation (IE) forward modeling code (hereinafter 

termed “simulator”) based on the algorithm of Hohmann (1971), see Appendix C. The 

problem considered is that of an infinite-line source lying on the Earth’s surface and 

aligned with the strike of a 2-D subsurface heterogeneity. The general matrix equation for 

the scattered electric field 𝐸𝑦 inside the body is: 

 

[K] · 𝐸𝑦 = −𝐸𝑦 
𝑖                                                                                                                    (4.2)                                                                                                                    
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where [K] represents a complex dense matrix, and 𝐸𝑦 
𝑖 is the incident (primary) electric 

field of the line source lying on a uniform half-space. The IE approach requires 

discretization and calculation of the scattered field only within the inhomogeneous region. 

Green’s functions for a conductive half-space are then used to propagate the effects of the 

scattered field onto the entire domain. The kernel of the Green’s functions for the integral 

equation was rewritten as a sum of nonsingular and singular terms. The singular term was 

obtained using an analytical expression with modified Bessel functions. We extracted the 

modified Bessel function values using a MatLAB code containing 1331201 interpolation 

points and stored them within a table for the main program. The nonsingular Green’s 

function was calculated numerically using Cosine integration with 2304 integration points. 

The large number of Bessel function interpolation values and Cosine integration points 

were required to maintain accuracy when working with high conductivity contrasts at oil-

field scenario depths.  

We modified Hohmann’s (1971; his Figure 4) principal test case by converting the 

large uniform rectilinear inhomogeneity to one with a much smaller, square cross-section 

that is placed directly below and in alignment with the infinite-wire source. The converted 

heterogeneity, endowed with sufficiently high electrical conductivity, is supposed to be 

representative of a steel wellbore casing. The strong inductive coupling between the 

infinite-line source and the infinite wellbore casing generates a “casing-as-a-secondary-

antenna” effect. The primary current from the wire and the current induced in the casing 

are nearly equal in magnitude and oppositely directed. Thus, the electromagnetic field 
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generated by the casing nearly cancels out the current generated by the infinite wire source. 

This is elaborated further below. 

The modifications to the Hohmann test case are shown in Figure 4.2. There is a 

large uniform rectilinear inhomogeneity set at a distance 𝑋 = 𝑋𝑎 (all distances are 

measured in skin depths) from the infinite-line source of strength 𝐼. The inhomogeneity 

has height 𝐻, width 𝑇, burial depth 𝐷 and it is infinitely extended in the strike direction 

𝑌. The electrical conductivity of the conductive inhomogeneity is 𝜎2, while that of the 

resistive host formation is 𝜎1 < 𝜎2. 

 

 

Figure 4.2 - Section view of the original Hohmann two-dimensional conductive 

inhomogeneity buried in the earth, and its modification to a wellbore casing 

scenario, shown in red. 
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4.3 Results 

4.3.1 Benchmarking 

We validated the IE simulator by comparing its output to that of the Hohmann 

1971 test case. The latter consists of a uniform rectilinear inhomogeneity of width 𝑇 =

0.03𝛿 and vertical extent 𝐻 = 0.3𝛿. The inhomogeneity is set at burial depth 𝐷 = 0.05𝛿 

and is located at distance 𝑋𝑎 = 0.5𝛿 from the infinite-line source. The line source 

current is of unit strength 𝐼 = 1 𝐴. Additionally, there is an electrical conductivity ratio 

of  𝜎2/𝜎1 = 103 between the inhomogeneity and the host formation.  

The body of the inhomogeneity is divided into 𝑀 × 𝑁 square cells. The 

discretizations examined by Hohmann (1971) in his Figure 4 are very modest by today’s 

standard: (i) 1 × 10, ∆= 0.9𝛿2; (ii) 2 × 20, ∆= 0.6𝛿2 and; (iii) 3 × 30, ∆= 0.3𝛿2 where 

∆ is the individual cell size and 𝛿2 is the skin depth in the body. The results shown in 

Figure 3 (left) are presented in terms of the total vertical magnetic field response 

normalized by the primary portion of the vertical magnetic field (𝐻𝑧 𝐻𝑧
P⁄ ) along a skin-

depth-normalized surface profile. We find excellent agreement for both the amplitude 

and phase for the case ∆= 0.6𝛿2 on our finer 10 × 100 discretization. Note that we 

adjusted the frequency upward to achieve the much higher mesh resolution permitted by 

today’s computational resources. 

Next, we evaluated the effect on the solution by varying the discretization of the 

mesh from 8 × 80 to 13 × 130 cells, with the results shown in Figure 4.3 (right). The 

figure confirms the stability and convergence of the solution on different mesh sizes. 
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Figure 4.3 – left: comparison of the IE simulator on the Hohmann test case; right: 

effect of mesh discretization size on IE simulator results. 

 

To further benchmark the IE simulator, we halved the electrical conductivity 

contrast for comparisons against Figures 5 and 6 of Hohmann (1971), which in turn was 

previously compared to an equivalent finite-element solution of Coggon (1971). The 

𝐻𝑧 𝐻𝑧
P⁄  profile is shown in Figure 4.4 (left) whereas the horizontal magnetic field profile 

𝐻𝑥 𝐻𝑧
P⁄  is shown in Figure 4.4 (right). We selected three mesh discretization sizes 

9 × 90, 10 × 100 and 11 × 110 for the comparisons, each of which exhibit a good 

match in both phase and amplitude. 
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Figure 4.4 – IE simulator benchmarking against Hohmann (1971) and Coggon 

(1971), left: 𝐇𝐳 𝐇𝐳
𝐏⁄  profile; right: 𝐇𝐱 𝐇𝐳

𝐏⁄  profile. 

 

The final IE-simulator benchmarking case investigated the stability of the 

solution under varying inhomogeneity burial depth. We simulated 𝐻𝑥 𝐻𝑧
P⁄  profiles for 

burial depths 𝐷 = 0.05𝛿, 0.1𝛿, 0.2𝛿 and 0.3𝛿, while the other model parameters were 

kept the same as the Hohmann Figure-4 test case. Additionally, we included the response 

of the host formation without the conductive inhomogeneity. It is evident that the IE-

simulator results shown in Figure 4.5 compare favorably to Figures 15 and 18 in 

Hohmann (1971).  
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Figure 4.5 – IE simulator benchmarking for variable inhomogeneity burial depth 

𝐃: left, 𝐇𝐱 𝐇𝐳
𝐏⁄  amplitude; right, 𝐇𝐱 𝐇𝐳

𝐏⁄  phase. 

 

4.3.2 Matrix Solvers 

We solved the IE complex dense matrix system (equation 2) using the QR 

decomposition subroutine qrdcmp from Numerical Recipes in Fortran (Press et al. 

1992). To validate the QR solver accuracy and efficiency, we compared its performance 

to an array of different custom and pre-built solvers. Our custom matrix solvers included 

singular value decomposition (SVD) and conjugate gradient (CG) routines, both written 

in Python. The pre-built solvers included SciPy Python LU and QR decomposition 

routines, in addition to MATLAB gaussian elimination, conjugate gradients squared 

(CGS), bi-conjugate gradient (Bi-CG), stabilized bi-conjugate gradient (BICSTAB), 

quasi-minimal residual (QMR), and generalized minimal residual (GMRES) routines. 
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We used each of these solvers in the IE simulator and compared the resulting 𝐻𝑧 𝐻𝑧
P⁄  

responses to the Hohmann (1971) Figure-4 test case (Figure 4.6). Each solver generates 

the same solution to within 1 part in 1010or less, with minimal difference in computation 

time, indicating that [K] is a stable well-conditioned matrix. 

 

 

Figure 4.6 – Matrix solver comparison for IE simulator: left, amplitude; right, 

phase of 𝐇𝐳 𝐇𝐳
𝐏⁄  response. 

 

4.3.3 Wellbore Modeling 

Preparatory to steel-wellbore modeling, we simulated the 𝐻𝑥 𝐻𝑧
P⁄  response of the 

Hohmann Figure-4 test case for a wide range of electrical conductivity contrasts 𝜎2/𝜎1 

between the inhomogeneity and the host formation.  Contrasts were selected to be higher 

and lower than Hohmann’s test case, which used 𝜎2/𝜎1 = 103. As the contrast increases, 
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the IE solution remains stable and converges uniformly as 𝜎2/𝜎1 → 109 (Figure 4.7, 

left). This result suggests that the IE simulator can comfortably handle large electrical 

conductivity contrasts.  

We then converted the Hohmann (1971) rectilinear inhomogeneity to one that is 

much smaller and of square cross-section. The so-called “pipe” has dimensions 𝑇 = 𝐻 =

0.095𝛿 and is discretized into 40 × 40 cells. The IE-simulator-calculated 𝐻𝑧 𝐻𝑧
P⁄  

response is shown at Figure 4.7, right wherein it is noted that a stable, convergent 

solution has been found, even at very high contrasts. 

 

 

Figure 4.7 – IE simulator results for variable conductivity contrast: left, the 

Hohmann 1971 test case; right, the smaller square inhomogeneity. 
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We next use the IE simulator to determine the secondary response 𝐻𝑧
S for various 

highly conductive “pipe” inhomogenities (40 × 40 cells) set in a uniform host with 

conductivity similar to that of organic-rich shale, 𝜎1 = 0.001 S/m. The pipe dimension 

ranged from realistically-sized 5.5 in. (0.14 m) to unrealistically large 40 ft. (12.2 m). 

The pipe’s horizontal location is lowered to 5000 ft. (1524 m) below and in alignment 

with the infinite-line source, while a 300 Hz operating frequency is used. The results are 

shown in Figure 4.8, left. The principle of equivalent conductance, in the 2-D case 

considered here, allows that targets of the same conductance (product of electrical 

conductivity and cross-sectional area) should generate the same response bar a constant 

scale factor. Accordingly, we scaled the computed 𝐻𝑧
S responses by a consistent scale 

factor of steel thickness normalized by pipe dimension to obtain equivalent solutions 

(Figure 4.8, right) down to the 5.5 in.-sized wellbore. Additional, results for the 

horizontal scattered magnetic field 𝐻𝑥
S amplitude response is shown in Figure 4.9. The 

scattered magnetic field phase response shows all scaled pipe diameters are in-phase 

(Figure 4.10). The fact that the IE-simulator obeys the principle of equivalence provides 

confidence that the simulator can be used to model the 2-D response of a realistic-sized 

steel wellbore.  
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Figure 4.8 –left:  IE-simulator scattered vertical magnetic field amplitude responses 

for varied pipe dimensions; right, scaled responses showing the equivalence of 

solutions that have the same pipe conductance. 

 

 

 

Figure 4.9 –left:  IE-simulator scattered horizontal magnetic field amplitude 

responses for varied pipe dimensions; right, scaled responses showing the 

equivalence of solutions that have the same pipe conductance. 
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Figure 4.10 – IE-simulator scaled scattered magnetic field phase responses for 

varied pipe diameters. 

 

We next simulated the 𝐻𝑥 and 𝐻𝑧 responses for a scenario in which the 5.5-in. 

steel casing is set in an organic-rich shale host and placed at 𝑋𝑎 = 0, i.e. directly beneath 

the infinite wire source. The results, shown in Figure 4.11, indicate that the casing acts 

as a source of earth return current. The casing current flow is nearly the same strength 

and exactly opposite in direction to the transmitter current. The secondary 

electromagnetic response generated by the return current in the casing almost exactly 

cancels out the primary field at the surface. This is indicated by the near-vanishing of the 

total signal (black lines) in Figure 4.11. In the scenario under consideration, the host is a 

uniform half-space. However, if a geological heterogeneity were present, such as a  
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lithological variation or a subsurface fluid zone, then any appreciable total 𝐻𝑥 and 𝐻𝑧  

response should be almost entirely attributed to that. This occurs since the line 

source/casing in the parallel alignment configuration generates virtually null response.  

 

 

Figure 4.11 - Oilfield scenario surface CSEM response indicating the casing acts as 

a return current: left, 𝐇𝐳 responses; right, 𝐇𝐱 responses. 

 

4.3.4 Preconditioning the Finite-Element Simulator 

The 𝐸𝑦 electric-field along-strike responses (primary and secondary) at the 

surface, and throughout the modeling domain, are determined within the IE simulator by 

propagating the scattered electric current outward from the inhomogeneity using the 

half-space Green’s functions. The latter are given in the Hohmann (1971) paper. Note 

that, in the 2-D case considered herein, the other components of electric field, by 
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symmetry, are identically zero, 𝐸𝑥 = 𝐸𝑧 = 0. Contours of the primary (incident) and 

secondary electric field are shown in Figure 4.12, top panel, for the Hohmann Figure-4 

test case and in Figure 4.12, bottom panel, for the 5.5-in. steel-casing scenario. The 

black crosshairs on the right-side plots indicate the position of infinite wire source 

whereas those on the left-side mark the center of the buried heterogeneity. The contour 

patterns indicate that the secondary electric field 𝐸𝑦
S, as expected, behaves in a similar 

fashion to the primary electric field 𝐸𝑦
P. This behavior occurs insofar as it appears to 

originate from a source of current, in these two cases the Hohmann Figure-4 

heterogeneity (top right) and the buried steel casing (bottom right).  
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Figure 4.12 – Contours of incident 𝐄𝐲
𝐢  and scattered 𝐄𝐲

𝐒 electric field response for 

two models: top, Hohmann 1971 test case; bottom, 5.5-in steel casing. 

 

We envision the IE simulator as an efficient means to generate a primary field that 

includes the effects of a realistically-sized, highly conductive steel wellbore. The 

primary field is intended for use in CSEM finite-element computations. Next, we 
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converted the IE-simulator response into a primary field for a finite-element simulation 

by interpolating the former onto the nodes of a FE mesh. The procedure is based on 

MLSI, moving-least squares interpolation (Tabbara et al. 1994), and the results are 

illustrated in Figure 4.13. Then, using an in-house FE simulator seatem (Badea et al. 

2001), we computed solutions to subsurface models that include 3-D conductivity 

anomalies in the presence of a steel wellbore. This version of seatem is a finite-element 

numerical simulator, containing a rectangular mesh, that solves the governing diffusive 

Maxwell equations formulated in terms of secondary Coulomb-gauged electromagnetic 

potentials. It uses the QMR algorithm to iteratively solve the FE linear system. The 

governing equations, recast in terms of secondary potentials to avoid a mathematical 

singularity at the transmitter location, are given as follows:  

 

∇x∇xAs − ∇(∇ · As) − iωµ0σ(As + ∇Ψs) = µ0Δσ𝐸⃑ 𝑝                                               (4.3)                                                         

∇ · [iωµ0σ(As + ∇Ψs)] = −∇ · (µ0σ𝐸⃑ 𝑝 )                                                                     (4.4)                                                        

𝐸⃑ 𝑝 = 𝑖ω(Ap + ∇Ψp)                                                                                                         (4.5)                                                                                                       

 

where (As, Ψs)  are the secondary potentials, (Ap, Ψp) are the primary potentials, and           

Δσ ≡ σ − σ0 is the difference between the required electrical conductivity of the 

formation σ and the known background electrical conductivity σ0. Additional details on 

the original mathematical development for seatem are described in Badea et al. 2001. An 

abbreviated version of the mathematical development for seatem is included in 

Appendix B. 
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The novel hybrid IE-FE approach described herein enables a preconditioning of 

the FE simulator with the primary response of the infinite-line source in the presence of 

the steel casing. The incorporation of such an IE-based primary solution removes the 

need for an ultra-fine FE mesh around the wellbore. Notice also that the modeling 

domain size spanned by the FE mesh is smaller than the domain on which the IE 

solution is computed. The reason for this difference in size is to avoid any edge effects 

when the IE solution is interpolated onto the FE mesh. 

 

 

Figure 4.13 – Interpolation of IE-computed primary electric field 𝐄𝐲 onto a finite-

element mesh. 
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4.3.5 Finite-Element Modeling with the Integral Equation Preconditioner 

We demonstrate our hybrid IE-FE approach by simulating 2.5-D CSEM 

responses for scenarios that involve a 5.5-inch steel casing set at 5000 ft. depth in an 

organic-rich shale. The parameters for this scenario match those of the previous 5.5-inch 

casing tests. For the FE demonstration using seatem, two symmetric 3-D conductive 

zones (left and right) are placed on either side of the wellbore; these zones could 

represent a fluid-rich zone or any other conductive heterogeneity, hereinafter for 

convenience they are referred to as “fluid zones”. The electrical conductivity of the fluid 

zones is 0.01 S/m while that of the host formation is 0.001 S/m. Each fluid zone extends 

2 km in the 𝑥-and 𝑧-directions, and 4 km in the 𝑦-direction. The latter is aligned with the 

common strike of the infinite-line source and casing. The problem is termed 2.5-D 

because a 2-D primary excitation is imposed on a 3-D structure. 

We interpolated IE solutions onto the interior nodes of several FE meshes of size 

413, 653, 813, 1293, and 1613 nodes. The IE-seatem-calculated 𝐻𝑧
S responses at the 

surface are shown in Figure 4.14. For the subsurface model containing both left and right 

fluid zones, there is a good convergence with increasing FE mesh size and, especially on 

the larger meshes, the appropriate symmetry is observed, i.e. a mirror reflection of the 

response about the 𝑥 = 0 axis. Next, we calculated separate IE-seatem 𝐻𝑧
S responses on 

the 1293 meshing for two models, one containing the left fluid zone only and one 

containing the right fluid zone only. The results are shown by the blue symbols in Figure 

4.14. The responses show the expected left-right symmetry which is a confidence check 
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that the IE-seatem algorithm generates reliable results for asymmetric subsurface 

models. 

 

 

Figure 4.14 – IE-seatem responses for models containing left, right, and left+right 

fluid zones, the latter for different mesh discretizations.  

 

Next, we investigated convergence rates for modeling scenarios including the 

5.5-in. steel casing and the left+right conductive fluid zones. We ran the scenario on 

both the IE-seatem and the stand-alone seatem (i.e. without the IE preconditioning) 

codes, and compare the results for mesh sizes ranging from 413 to 1613. All cases used 

the same QMR tolerance of 10−18. Note that the seatem-stand-alone cases use an 𝑥-

directed horizontal dipole transmitter without the 5.5-in. casing present. This difference 
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in the subsurface model and its excitation is immaterial since here we are interested only 

in examining the QMR convergence rate, as a function of mesh size, to determine 

whether it is affected by the IE preconditioning. Results for each mesh size with and 

without the IE preconditioning are shown in Figure 4.15. There are similar QMR 

convergence rates for the IE-seatem and the seatem-standalone runs, suggesting that IE 

preconditioning has little effect on the run-time of the FE linear system solver.  

 

 

Figure 4.15 – FE convergence rates of IE-seatem and seatem-stand-alone responses 

with conductive fluid zones. 
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We compared the simulation times for the previous IE-seatem and the seatem-

stand-alone modeling scenarios with the left+right conductive fluid zones. Recall that 

the 2.5-D IE-seatem code solved for an infinite-wire line source in the presence of the 

conductive casing whereas the fully 3-D seatem-stand-alone code solved for a horizontal 

electric dipole with no casing. The principal structural difference between the 

preconditioned and stand-alone codes is how the primary solution is constructed. It is 

either read in as a pre-computed IE solution or calculated explicitly using analytic 

equations. Hence, any difference in computational times can be attributed to the 

primary-solution specification. Table 1 lists the results for a comparison of the two 

codes. We observed an 85-91% reduction in computation time by implementing the IE 

preconditioner. Clearly, the largest use of the computer time by the seatem-stand-alone 

code is calculation of the primary field by analytic equations. Moreover, the seatem-

stand-alone modeling did not include the steel casing in this comparison. Including the 

casing, with the ultra-fine mesh refinement it entails, would have greatly increased the 

seatem-stand-alone run-time, whereas the casing was already included in the IE-seatem 

modeling. 

 

 

 

 

 

 



 

99 

 

 

 

Table 4.1 – Computation time comparison with and without IE preconditioning. 

 

 

4.4 Discussion 

We have developed an IE-based wellbore preconditioner that reduces the 

computation time of FE-based 3-D CSEM responses by removing the need for an ultra-

fine mesh around the wellbore casing. The IE simulator was validated against Hohmann 

(1971) and Coggon (1971). The first benchmarking scenario (Figure 4.3) found good 

agreement with Hohmann for vertical magnetic field amplitude and phase responses. We 

varied the mesh discretization and confirmed that changes in mesh size have negligible 

impact on the computed response. A second validation scenario (Figure 4.4) also 

matched well with Hohmann and Coggon for variable electrical conductivity contrast 

and mesh size. A final benchmarking scenario (Figure 4.5) found good agreement with 

Hohmann for variable inhomogeneity burial depth. 

We used QR decomposition to solve the complex dense matrix in the IE 

equation. The solver produced essentially identical results as 4 Python and 6 MATLAB 

algorithms (Figure 4.6). Relative errors ranged from 10-10 to 10-14 with minimal 

With IE, min No IE, min % Reduction

41-41-41 68921 3 21 85.71

65-65-65 274625 9 100 91.00

81-81-81 531441 20 190 89.47

129-129-129 2146689 124 867 85.70

161-161-161 4173281 259 1734 85.06

FE Mesh Nodes
FE Computation Time
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differences in computation time. The lack of dependence of the solution on the solver 

indicates that the matrix is well-conditioned. 

Our IE simulator is capable of handling high electrical conductivity contrasts 

between a very small casing and the surrounding host formation (Figure 4.7). We 

observed convergence for contrasts to 109. Therefore, the IE could calculate all the 

contrast cases. We simulated vertical and horizontal magnetic field responses for various 

steel casing diameters (Figure 4.8, Figure 4.9). The principle of similarity permitted 

scaling the response by the casing size and conductivity to obtain equivalent solutions. 

This allows for precomputing a single primary field solution for use as a preconditioner 

to FE computations for different choices of casing size and conductivity. We then 

simulated the vertical and horizontal magnetic field responses for a scenario representing 

a 5.5-inch steel casing set in a resistive half-space. The casing behaves as an earth return 

current (Figure 4.10), i.e. an image source carrying a current nearly equal and opposite 

to the transmitter current. The field of the return current almost exactly cancels out the 

primary field at the surface, in which case a subsurface heterogeneity response would be 

the main contribution measured by receivers.  

We developed a novel approach to modeling steel casing in 3-D CSEM 

simulations by preconditioning a FE method with an IE-computed primary solution. 

Incident and scattered electric field solutions were shown for both the Hohmann test case 

and a scenario involving a realistic 5.5-in. oilfield casing (Figure 4.11). The IE method 

requires discretizing only the domain of the heterogeneity, with the homogeneous area 

surrounding the casing modeled by half-space Green function propagators. We inserted 
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the IE-equation response into the FE simulator by interpolating the computed response 

onto the interior nodes of a FE mesh (Figure 4.12). A version of our FE simulator seatem 

was used to compute the solutions to 3-D subsurface models in the presence of 

conductive inhomogeneities. However, any secondary-field FE simulator can be used to 

accomplish this task, the use of seatem is not necessary. 

We applied our hybrid IE-FE approach to simulate the magnetic and electric field 

responses for a scenario involving a 5.5-in wellbore casing surrounded by two 

symmetric conductive fluid zones. We observed the appropriate symmetry in the 

response of the two fluid zones and found convergence of the magnetic field amplitude 

with increasing FE mesh discretization (Figure 4.13). Next, we compared the 

convergence rates for a range of FE mesh sizes with and without the IE preconditioner 

(Figure 4.14). Convergence rates were similar for both methods, indicating that the IE-

preconditioning does not degrade the FE matrix conditioning. FE simulation times with 

and without the IE preconditioner were then compared (Table 4.1). We observed 85-

91% reduction in FE computation time with IE preconditioning. The IE-FE hybrid 

implementation described herein uses an infinite-wire line source while the FE method 

alone is based on finite electric dipole excitation. A fully 3-D IE code is required to 

model the steel casing response due to finite dipole excitation. 

 

4.5 Conclusions 

We present a novel method for handling the high electrical conductivity contrast 

between a slender steel wellbore casing and the enclosing host geological formation. By 
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preconditioning an FE solver with an IE-computed primary solution, we remove the 

need for ultra-fine FE meshing of the wellbore and its immediate surroundings. The IE 

preconditioner provides a stable primary field source solution to the FE solver, 

improving solution stability while reducing computation time by 85-91%. Our IE-FE 

hybrid approach is based on an infinite-wire line source while it is desired in future to 

utilize a 3-D IE code that handles finite dipole excitation. Our research, although 

currently limited to a 2-D primary excitation imposed on a 3-D structure, provides proof-

of-concept for this kind of hybrid IE-FE modeling. Practicing engineers and 

geoscientists can apply this methodology to an existing FE code for modeling the 3-D 

response to a conductive or resistive inhomogeneity in the presence of a steel wellbore. 
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CHAPTER V 

 DISCUSSION AND FUTURE WORK  

  

This chapter discusses the applicability of my research to the petroleum industry 

and provides recommendations for continuation and future work. 

 

5.1 Discussion 

In Chapters 2 and 3 I discussed simulations for downhole CSEM applications. 

Chapter 2 described a method for combining nuclear magnetic resonance (NMR) with 

electromagnetic (EM) measurements to improve micro-fracture density estimation in 

fractured formations. The key aspect for coupling these two techniques comes from 

simulating the effects of anomalous EM diffusion in fractured media using the EM 

finite-element (FE) simulator seatem. Seatem provides quantitative estimates of the 

fractured formation geologic roughness, β. We found β to show strong sensitivity to 

fracture density variation, but little to no sensitivity to changes in fracture dimensions. 

Meanwhile, NMR shows sensitivity to variation in fracture density, thickness, and width. 

Knowledge of geologic roughness parameters can therefore aid in distinguishing 

between NMR fracture responses.  

Chapter 3 discussed how the simulated β values from seatem are combined with 

surface gas readings and regional geomechanics to high-grade natural fracture corridors 

and assist in hydraulic fracture stage placement for optimal geologic targeting. 

Simulating the EM response between hydraulic and natural fractures interactions can 
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help in determining stimulation placement that can best achieve the desired natural 

fracture corridor depletion. Optimal stage placement may provide significant production 

increase in some organic-rich shale reservoirs.  

Future work continuing from Chapters 2 and 3 could involve applying the 

concept of EM fractional diffusion to surface-based CSEM methods. This would require 

building anomalous diffusion into the existing seatem code. The incorporation of 

anomalous diffusion effects may provide an improved method for quantifying fracture 

geometry in the far-field. Results could be compared and combined with other far-field 

fracture mapping methods, such as microseismic and cross-well distributed acoustic 

sensing (DAS). 

In Chapters 4 I described simulations for surface-based CSEM applications. I 

developed a 2-D integral equation (IE) forward modeling code for modeling the EM 

response of conductive wellbore casing in the presence of an infinite-line source laid on 

the surface in alignment with the horizontal casing. The IE simulator was benchmarked 

and found to be in agreement with results presented in Hohmann (1971) and Coggon 

(1970). A hybrid IE-FE method was developed using the IE-computed primary EM field 

solution to precondition the FE simulator. The hybrid method was tested for a simple 

geological scenario containing idealized fluid-bearing zones. This approach resolves 

problems associated with modeling the conductive casing problem by removing the 

wellbore from the FE matrix formulation and placing its effects on the right-side of the 

linear system as part of the source term. This procedure eliminates the need for an ultra-

fine mesh around the wellbore, leading to improved FE solution stability and greatly 
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reduced computation time. A stable and efficient method to model the response of the 

conductive wellbore casing is required to implement CSEM simulations for applications 

such as monitoring hydraulic fracturing fluid flow.  

Future work continuing from Chapter 4 could include: modeling the EM 

response of hydraulic fracturing-induced fluid flow; development of a 3-D IE forward 

modeling code as an FE/FD preconditioner; and calibrating microseismic data with 

CSEM responses to improve discrete fracture models. Further details on these research 

topics are discussed in Future Work below. 

 

5.2 Future work 

5.2.1 Modeling the EM Response of Hydraulic Fracturing Fluid Flow 

I plan to test the hybrid IE-FE code for modeling the CSEM response of 

conductive fluid spreading in a realistic oil-field scenario. Although the hybrid IE-FE 

method does not require refinement around the wellbore casing, local nested-refinement 

around the fluid zones should be applied within the FE mesh. An improved mesh design 

is under development to accurately capture the thin dimensions of hydraulic fracturing-

induced fluid flow.  

 

5.2.2 Development of a 3-D Integral Equation Forward Modeling Code 

I have provided proof-of-concept for the efficacy of the hybrid IE-FE method. 

However, my approach is currently limited to a 2-D primary excitation imposed on a 3-

D electrical conductivity structure. To overcome this restriction, I recommend 
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developing a fully 3-D IE forward modeling code for incorporation into the hybrid IE-

FE method. Transitioning from a 2.5-D to a fully 3-D IE code is required for modeling 

the wellbore casing response due to a finite dipole excitation as opposed to excitation by 

an infinite-wire line source. This advancement would more accurately capture a realistic 

response of the conductive wellbore casing, eventually providing better implementation 

in industry applications.  

One of the current approaches to developing a 3-D integral equation method for 

CSEM response calculation is described by Orujov et al. (2020) and was developed from 

Harrington’s (1968) method-of-moments (MoM). The latter discretizes the wellbore 

casing into smaller sections, each treated as an individual dipole source. The interactions 

between each section are calculated and combined in a solution for the current 

distribution along the entire casing. Orujov et al. (2020) describe a special wedge 

element that represents a bent section of pipe. This feature prevents gaps in the 

geometry, thereby reducing potentially erroneous numerical results (Figure 5.1).  
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Figure 5.1 – Schematic representation of a bent section of a pipeline with two 

segments and one wedge. The wedge of length dδ is assigned to segment j and 

assumed to have the direction j for calculation purposes. Reprinted from Orujov, 

2020. 

 

Orujov (2020) tested their method on a 3-m diameter semicircular pipe 

constructed of alternating straight and wedge elements (Figure 5.2). They found that 

increasing the number of wedge elements from 60 to 180 reduces the computational 

memory requirements by a factor of 9, while retaining a solution that closely matches the 

equivalent solution obtained using COMSOL Multiphysics FE modeling software. A 

significant limitation of this approach is the restriction of the admissible geometry to a 

horizontal pipeline system. 
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Figure 5.2 – (a) Schematic representation of a semicircular pipe consisting of 

straight sections (black) and wedge elements (red) buried in a homogeneous space. 

The transmitter is located at the midpoint of the semicircle and is oriented in the 

positive x-direction. (b) Current distribution along the pipe obtained using 60 

segments, with and without wedge elements (the solid red and blue lines, 

respectively). (c) Current distribution obtained using 180 segments. Reprinted from 

Orujov, 2020. 
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My recommendation is to either reformulate our 2-D IE code into a fully 3-D 

forward modeling code using the same Hohmann (1971) approach, or expand on the 

MoM methodology presented by Orujov (2020) to incorporate both vertical and curved 

sections of the wellbore. 

 

5.2.3 Calibrating Microseismic with CSEM for Discrete Fracture Models 

Organic-rich shale reservoirs hold substantial hydrocarbon reserves, but they 

often require stimulation methods such as hydraulic fracturing to produce at economic 

rates. Finding effective methods to understand how these types of unconventional 

formations respond to stimulation is a challenging topic within the oil and gas industry. 

Modern approaches to simulating the response of unconventional shales include the use 

of a fully compositional reservoir simulator (Yan et al., 2016), and a quantitative 

description of the fractures, such as the compartmental embedded discrete fracture 

model (cEDFM) (Chai et al., 2018).  Embedded discrete fracture models (EDFM) are 

multi-porosity models in which the unfractured porous matrix is fully connected. Rather 

than conforming the model grid to accommodate a specified fracture geometry, fractures 

are simply placed in the matrix grid (Figure 5.3). 
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Figure 5.3 – Reservoir with 31 non-orthogonal fractures and EDFM discretization. 

Modified from Yan, 2017. 

 

The model divides the porous medium into an intact shale matrix and fractures. 

The former medium is further subdivided into organic matrix “kerogen”, an inorganic 

matrix, and micro-scale “natural fractures” (Figure 5.4). 

 

 

 

Figure 5.4 – Multi-porosity model with subdivisions. Reprinted from Yan, 2017. 
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EDFM allows fractures to be easily placed into an existing reservoir geological model. 

The workflow is first to characterize fracture density and orientation, then populate the 

grid with fractures and refine the former to capture important features. Next, fine-scale 

modeling is performed to capture the important physics. Finally, add multiple 

porosity/permeability media transfer functions for upscaling the physics. The placement 

of fractures within the EDFM workflow is typically accomplished by either manual 

input or population from microseismic data. An example of the latter type of fracture 

placement is shown in Figure 5.5. 
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Figure 5.5 – Workflow for populating EDFM from seismic data, seismic events are 

spatially bounded and overlaid on a frame of structured gridblocks and fracture 

gridblocks are activated with one or more seismic events located inside. Reprinted 

from Alfi, 2018. 
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  Stimulated reservoir volume (SRV) calculations using cEDFM or similar 

methods may be improved by placing fractures according to information provided by 

microseismic data. However, significant uncertainty accrues to this strategy.  

Microseismic data convey the location and intensity of fractures after a well completion, 

but provide limited information about the fluid distribution and production pathway back 

to the wellbore. Even if production and fiber optic (e.g. DAS) data are available, the 

results are somewhat inconclusive as to precisely which pathways convey the hydraulic 

fracturing fluid. Coupling controlled-source electromagnetic (CSEM) data with reservoir 

simulation may be an important factor to reducing the uncertainties related to hydraulic 

fracture fluid distribution and flow paths. 

Integrating CSEM responses into fracture modeling for unconventional reservoir 

simulation may help reduce model-parameter uncertainty and improve understanding of 

the underlying fluid-flow physics. Using a time-lapsed 3-D approach, CSEM responses 

can be analyzed to reveal information about fluid-flow pathways and locations of fluid-

filled fractures. In an oilfield setting, CSEM operations should begin before hydraulic 

fracturing to calibrate for the largely unknown, complex background noise. CSEM 

monitoring should continue through the initial flowback period. Using the hybrid IE-FE 

method, one might be able to evaluate expected CSEM responses during stimulation and 

compare them to the actual responses acquired during the flowback period. This 

comparison may yield some information about the pathway of conductive fracturing 

fluids during the completion and the initial production stage. Additionally, by analyzing 

the evolution of CSEM responses over time, one may be able to detect areas where the 
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fracture network has closed off, leaving conductive fluids behind. This information can 

be used as a constraint for conditioning the microseismic data that is used to populate 

EDFM. A proposed workflow for combining time-lapse CSEM simulations with 

microseismic data to improve SRV calculations from discrete fracture models is shown 

in Figure 5.6. It is hoped that CSEM methods eventually can be developed to enable 

accurately monitoring hydraulic fracturing fluid-flow.  

 

 

Figure 5.6 – Workflow for improving SRV calculations from discrete fracture 

model using CSEM. 
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CHAPTER VI 

 CONCLUSIONS 

 

This chapter summarizes the major results and conclusions of the work presented 

in this dissertation. 

 

6.1 Summary 

 The main technical contributions from this dissertation are summarized below: 

1. A method for combining nuclear magnetic resonance (NMR) with controlled-

source electromagnetic (CSEM) fractional diffusion simulations was established, 

and its viability for determining micro-fracture density in fractured formations 

was investigated. 

2. A method for combining surface gas measurement and regional geomechanics 

with CSEM fractional diffusion simulations was developed, and its application 

for high-grading natural fracture corridors was investigated. 

3.  Simulations of the EM response between hydraulic and natural fracture 

interactions were used in determining hydraulic fracturing stimulation placement 

for natural fracture corridor depletion. 

4. A 2-D integral equation (IE) forward modeling code was developed for 

simulating the EM response of conductive wellbore casing in simple oil-field 

scenarios. 
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5. A hybrid IE-FE method was developed using the IE-computed primary EM field 

solution to precondition our in-house FE simulator, and its accuracy and 

computational efficiency was tested in a simple oil-field scenario containing 

idealized fluid-bearing zones. 

 

6.2 Conclusions 

 The numerical simulation and theoretical analysis results from this dissertation 

led to the conclusions listed below: 

1. CSEM anomalous diffusion shows significant sensitivity to fracture density with 

minimal sensitivity to fracture dimensions. 

2. Combining CSEM anomalous diffusion with the NMR analytical model for 

fracture-pore coupling improves micro-fracture density estimation by 

distinguishing between fracture density and dimensions in NMR T2 distribution. 

3. Quantifying the spatial distribution geologic host-formation roughness through 

generated induction logs can differentiate between induction log responses of 

high and low fracture concentrations. 

4. Optimal stimulation zones for fracture corridor depletion were observed to be 

carbonate or organic shale formations having a geologic roughness (β) value 

greater than 0.3. 

5. The developed 2-D IE forward modeling code can comfortably handle high 

conductivity contrasts between the wellbore casing and surrounding host 

formation. 
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6. A consistent scaling argument was found for the computed scattered magnetic 

field (𝐻𝑧
S) providing equivalent solutions for varying pipe diameters. This 

enables precomputing of the primary field solution prior to hydraulic fracturing 

operations. 

7. The conductive wellbore casing acts as a source of earth return current that is 

nearly the same strength and exactly opposite in direction to the transmitter 

current. This indicates that the casing cancels out the primary field and 

subsurface heterogeneity response would be the main contribution measured by 

receivers. 

8.  The 2-D IE simulator provides a stable primary source solution to the FE 

method. 

9. Preconditioning the FE method with an IE primary source solution removes the 

need for an ultra-fine FE mesh around the wellbore, improving FE solution 

stability and greatly reducing FE computation time (85-91% reduction). 

10. Similar solver convergence rates for IE-FE and standalone-FE suggest that the IE 

preconditioning has little effect on the run-time of the FE linear system solver. 

Additionally, this indicates that the IE-preconditioning does not degrade the FE 

matrix conditioning.
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APPENDIX A 

ELECTROMAGNETIC ANOMALOUS DIFFUSION 

 

Appendix A provides a brief overview of the mathematical development of 

electromagnetic (EM) anomalous diffusion used in this dissertation. See Ge (2014) and 

Everett (2009) for a more in-depth review of the mathematical formulation. Starting with 

the vector form of Ohm’s law (A-1): 

 

𝐽 = σE                                                                                                                                      (A − 1) 

 

where J is the current density, σ is the electrical conductivity, and E is the electric field. 

The time-convolutional integral form of Ohm’s law can then be written as: 

 

𝐽 = σβ ∗ E ≡ ∫
dt′σβE(t)

(t − t′)1−β

t

0

                                                                                   (A − 2) 

 

where σβ is a generalized conductivity, E is the electric field, β is the geologic roughness 

parameter. The β parameter ranges from 0 to 1 where 0 indicates no geologic roughness 

or Brownian motion, and a value approaching 1 shows a subdiffusion response in the 

electromagnetic current. Equation (A-2) is derived from the Continuous-time Random 

Walk (CTRW) approach for a charge carrier undergoing a random walk in a fractal 
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geoelectrical network. A power law probability density function of t1-β is used for the 

waiting time. 

From Maxwell’s equations, Faraday’s law of induction (Equation A-3) is left 

unchanged while Ampère’s circuital law “with Maxwell’s additions” (Equation A-4) is 

generalized neglecting the displacement current (Equation A-5). 

 

∇ X E = −
𝜕𝐵

𝜕𝑡
                                                                                                           (A − 3) 

∇ X B = µ0(𝐽 + 𝜀0)
𝜕𝐵

𝜕𝑡
                                                                                           (A − 4) 

∇ X B = µ0𝜎𝛽 ∗ E + µ0𝐽𝑠(𝑡)                                                                                   (A − 5) 

 

where E is the electric field, B is the magnetic field, µ0 is permeability of free space, ε0 is 

the permittivity of free space, and Js(t) represents the source term. 

The generalized Amp𝑒̀re’s law is combined with Faraday’s law to eliminate the 

magnetic field, B. This results in a fractional vector diffusion equation with an analytic 

solution for a uniform rough half-space or stack of rough layers.  

 

E = −µ0𝜎𝛽  0𝐷𝑡
1−𝛽

𝐸(𝑡) − µ0

𝜕

𝜕𝑡
𝐽𝑠                                                            (A − 5) 

 

where E is the external electric field, μ0 represents magnetic permeability of free space, 

𝜎β is the generalized conductivity, Dt is the fractional diffusion operator, β is the waiting 
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time distribution for the CTRW model (geologic roughness parameter), and 𝐽s indicates 

the source current density. 

Equation (A-5) contains the Riemann-Liouville fractional operator as introduced by 

Metzler and Klafter (2000) and can be expressed as: 

 

 0Dt
1−β

E(t)  =
1

(β)

∂

∂t
∫

E(t′)dt′

(t − t′)1−β

t

0

                                                                  (A − 6) 

 

where Г is the Gamma function serving as a normalizing constant.  
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APPENDIX B 

COULOMB-GAUGED POTENTIAL FORMULATION FOR CSEM INDUCTION 

 

Appendix B provides a brief overview of the coulomb-gauge formulation for the 

finite-element method used in this dissertation. See Badea et. al (2001) for a more in-

depth review of the mathematical formulation. The diffusive Maxwell equations for 

electric and magnetic fields at low frequencies can be written as: 

 

∇ X E =  iωµ0H                                                                                                             (B − 1)  

∇ X H =  J = Js + σE                                                                                                    (B − 2)  

 

where ω is the angular frequency, µ0 is the permeability of free space, σ(r) is the 

spatially varying electrical conductivity of the geological formation under investigation, 

J is the electric current density, Js is an electric current density source term, and σE is an 

ohmic conduction term. 

Expressing equations (B-1) and (B-2) in EM field (E, H), we get the coupled 

vector-scalar potential formulation (A, Φ) for conductive non-magnetic geomaterials 

with σ=σ(r) and μ=μ0: 

 

B = ∇ X  A                                                                                                                       (B − 3)  

E = −iωA − ∇Φ                                                                                                            (B − 3)  
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where Φ ≡ -iωΨ is the reduced scaler potential. 

 

Recasting equation (B-2) in terms of EM potentials and adding the term 

− ∇(∇ · A) to the left-hand side of the equation gives the curl-curl equation: 

 

∇ X ∇ X A − ∇(∇ · A) − iωµ0σ(A + ∇Ψ) = −µ0Js                                               (B − 4)  

 

The added term is included to avoid numerical difficulties following the approach 

described in Biro and Preis (1989). Applying the vector identity ∇ X ∇ X A − ∇(∇ · A) =

−∇2A shows that equation (B-4) is equivalent to the Helmholtz equation. 

 

∇2A + iωµ0σ(A + ∇Ψ) = −µ0Js                                                                               (B − 5)  

 

Equation (B-4) is replaced by the following axillary equation to maintain a divergence 

free current density. 

 

∇ · [iωµ0σ(A + ∇Ψ)]                                                                                                    (B − 6)  

 

Equations (B-5) and (B-6) are solved simultaneously and valid within the 

solution domain Ω. This constitutes the incompletely gauged (A, Ψ) coupled vector-

scalar potential formulation of Maxwell’s equations. Taking the divergence of equation 

(B-4) reveals that the divergence of vector potential A satisfies the Laplace’s equation 
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everywhere within the solution domain Ω. The governing equations (B-5) and (B-6) are 

then defined with their secondary potentials to become: 

 

∇2A + iωµ0σ(As + ∇Ψs) = iωµ0σ(Ap + ∇Ψp)                                                    (B − 7)  

∇ · [iωµ0σ(As + ∇Ψs)] = −∇ · [iωµ0σ(Ap + ∇Ψp)]                                           (B − 8)  

 

Next, a boundary condition is applied such as the homogeneous Dirichlet boundary 

condition: 

 

(As + ∇Ψs) ≡ (0,0) on Г                                                                                            (B − 9)  

 

where Г is the outer boundary. 

The primary potentials (Ap, Ψp) are then given by the Hankel transform: 

 

Ap(r) = Ap(ρ, z)∅̂ =
µ0IA∅̂

2
∫

1

α0

∞

α0

exp(−α0|z − zS|)J1(λa)J1(λρ)λdλ       (B − 10) 

 

where ∅̂ is the unit vector in the azimuthal direction, z is the vertical position on the 

cylindrical solution domain Ω, α02 = λ2 - iµ0σ0ω, J1 is the Bessel function of order one. 

Hankel transforms can be calculated using the digital filter method proposed by 

Guptasarma and Singh (1997). Finite-element analysis is performed in Cartesian 

coordinates and the vector Laplacian operator decomposes into three scalar 
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Laplacian operators to simplify assembling the finite-element matrix. The 

secondary magnetic vector potential As can then be written as: 

 

As = Asxx̂ + Asyŷ + Aszẑ                                                                                         (B − 11)  

 

The governing equations (B-7) and (B-8) then become the weak formulation of 

the coupled potential boundary value problem: 

 

∇2Asx + iωµ0σ (Asx +
∂Ψs

∂x
) = iωµ0ΔσApx                                                                          

∇2Asy + iωµ0σ (Asy +
∂Ψs

∂x
) = iωµ0ΔσApy                                                        (B − 12) 

∇2Asz + iωµ0σ (Asz +
∂Ψs

∂x
) = iωµ0ΔσApz                                                                          

iωµ0σ(
∂σAsx

∂x
+

∂σAsy

∂y
+

∂σAsz

∂z
) + iωµ0σ∇ · [σΨs] = −iωµ0σ∇ ·  [σAp]        

 

Equation (B-12) is then multiplied by the test function η(r) and integrated by parts 

over the solution domain Ω using Green’s formula and a related identity. 
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−(Δη, Asx)Ω = iωµ0 (ση, Asx +
∂Ψs

∂x
)
Ω

= −iωµ0(Δση, Apx)Ω
                                        

−(Δη, Asy)Ω
= iωµ0 (ση, Asy +

∂Ψs

∂x
)
Ω

= −iωµ0(Δση, Apy)Ω
                      (B − 13) 

−(Δη, Asz)Ω = iωµ0 (ση, Asz +
∂Ψs

∂x
)
Ω

= −iωµ0(Δση, Apz)Ω
                                         

iωµ0σ(η,
∂σAsx

∂x
+

∂σAsy

∂y
+

∂σAsz

∂z
)

Ω

− iωµ0(σ∇η, ∇Ψs)Ω = iωµ0(σ∇η, Ap)Ω
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APPENDIX C 

INTEGRAL EQUATION METHOD 

 

Appendix C provides a brief overview of the Integral Equation method used in this 

paper. See Hohmann (1971) for a more in-depth review of the mathematical formulation. 

The frequency dependent Maxwell’s equations in mks units can be written as: 

 

−∇ X E =  ẑH + Mi                                                                                                      (C − 1)  

   ∇ X H =  ŷE + Ji                                                                                                         (C − 2)  

 

where E is the electric field, H is the magnetic field, Mi describes the impressed 

magnetic current, Ji describes the impressed electric current, ẑ is the impedivity, and ŷ is 

the admittivity. Impedivity and admittivity can be described through the inductivity (µ), 

conductivity (σ), and permittivity (ε) as follows: 

ẑ = iωμ; ŷ = σ + iωε                                                                                                                 

Equations (C-1) and (C-2) can then be rewritten to obtain the integral equation 

solutions for electromagnetic scattering as follows: 

 

−∇ X E =  ẑ ∗ H + Ms + Ii                                                                                         (C − 3) 

   ∇ X H =  ŷ ∗ E + Js + I                                                                                             (C − 4)  
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where the scattering currents are described by 

Ms = (ẑ − ẑ∗)H; Js = (ŷ − ŷ∗)H                                                                                         

given ẑ∗ and ŷ∗ to be the normal values of impedivity and admittivity in each region.  

Next, a line source carrying current I is placed along the surface y-axis. A 

uniform half-space with constant conductivity and permittivity is assumed, except within 

the inhomogeneity region, and magnetic scattering currents are neglected. The electric 

field then exists everywhere within the y-direction. By combining Equations (A-5) and 

(A-6) the Helmholtz equation in Ey is obtained: 

 

(∇2 + k2)Ey  =  iωµ0(Js + Ji)                                                                                   (C − 5) 

where 

k2  =  −ẑ∗ŷ∗ = ω2µ0ε∗ − iωµ0σ∗                                                                                            

 

In the air above the half-space, the permittivity  ε∗ = ε0 and the conductivity σ∗ = 0, 

while throughout the half-space to be the normal values of ε∗ = ε1 and σ∗ = σ1. 

The incident and scattered electric fields then satisfy the following differential 

equations in each region: 

 

(∇2 + k2)Ey
i  =  iωµ0Ji                                                                                              (C − 6) 

(∇2 + k2)Ey
s  =  iωµ0Js                                                                                             (C − 7) 

 

where Ey
i and Ey

s represent the incident and scattered electric fields respectively. 
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A solution for the first differential equation (C-6) can be described by the electric 

field due to a line source of current at the surface of a homogeneous half-space (Wait, 

1962). While a solution for the second differential equation (C-7) is obtained by 

multiplying the current density by Green’s functions and integrating over the 

inhomogeneity cross-section. The Green’s function can be described as the electric field 

due to a line current in the earth (Wait, 1962). Electric and magnetic fields are then 

calculated for Ey in the inhomogeneity while scattering fields are found by integrating 

over scattering currents at points outside of the inhomogeneity. After normalizing all 

distances by skin depth, the following integral equation is obtained:  

 

Ey(X, Z) = Ey
i (X, Z) −

i(K − 1)

π
 

· ∫ ∫ Ey(X
′, Z′)

H

D

· G(X, Z, X′, Z′)dX′dZ′                                                           (C − 8)
Xa+

T
2

Xa− 
T
2

 

 

where K represents the electrical conductivity contrast between the inhomogeneity and 

surrounding host formation, G is the conductive half-space Green’s function, Xa is the 

distance between the inhomogeneity center and line source current, and the limits T, D, 

and H are the skin depth normalized inhomogeneity width, height, and burial depth 

respectively.  

Green’s functions for a conductive half-space are used to propagate the effects of 

the scattered field onto the entire domain. The kernel of the Green’s functions for the 

integral equation can be rewritten as a sum of nonsingular and singular terms. The 



 

136 

 

 

 

singular term is obtained using an analytical expression with modified Bessel functions, 

while the nonsingular Green’s function is calculated numerically using Cosine 

integration. The inhomogeneity is divided into a body of M cells along the width and N 

cells along the height (Figure C-1).  

 

 

Figure C1 – Division of body into M X N cells for numerical solution. Reprinted 

from Hohmann, 1971. 

 

By assuming a constant electric field in each cell, Equation A-5 can be solved 

numerically using the following: 
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Ey
ij
 =  Ey

i  ij
+ λ ∑ Ey

mnGmn
ij

MN

mn=1

                                                                                   (C − 9) 

Letting  

λ =
i(1 − K)

π
                                                                                                                             

ij =  (i − 1)N + j                                                                                                                    

mn =  (m − 1)N + n                                                                                                              

MN = M · N                                                                                                                               

where 

Gmn
ij

= Δ2Gs(Xi − Xm; Zj + Zn) + ∫ ∫ Gp(Xi − X′; Zj − Z′)dX′dZ′

Zn+
Δ
2

Zn−
Δ
2

xm+
Δ
2

xm−
Δ
2

             

 

From there, a system of MN linear equations can be obtained to solve for the 

inhomogeneity electric field. The general matrix equation for the scattered electric field 

𝐸𝑦 inside the inhomogeneity body becomes: 

 

[K] · Ey  =  −Ey
i                                                                                                            (C − 10)  

 

where matrix [K] is defined as: 

Kmn
ij

= λGmn
ij

− δmn
ij

;     δmn
ij

= {
0 for ij ≠ mn
1 for ij = mn
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Next, the electric field can be found at a point (X, Z) outside the inhomogeneity 

using the following equation: 

 

Ey(X, Z) = Ey
i (X, Z) −

i(K − 1)Δ2

π

· ∑ ∑ Ey(Xm, Zn)

N

n=1

           

M

m=1

· [Gs(X − Xm; Z + Zn) + Gp(X − Xm; Z + Zn)]                                (C − 11) 

 

The following expressions are then obtained for the normalized electric and 

magnetic fields at the surface of the earth: 

 

Ey

Ey
p =

Ey
i

Ey
p −

i(K − 1)Δ2

ωµ0I

· ∑ ∑Ey(Xm, Zn)

N

n=1

           

M

m=1

· [Gs
E(X − Xm, Zn) + Gp

E(X − Xm, Zn)]                                            (C − 12) 

 

Hx

Hz
p =

Hx
i

Hz
p − 2X

(K − 1)Δ2

ωµ0I

· ∑ ∑Ey(Xm, Zn)

N

n=1

           

M

m=1

· [Gs
HX(X − Xm, Zn) + Gp

HX(X − Xm, Zn)]                                       (C − 13) 
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Hz

Hz
p =

Hz
i

Hz
p − 2X

(K − 1)Δ2

ωµ0I

· ∑ ∑Ey(Xm, Zn)

N

n=1

           

M

m=1

· [Gs
HZ(X − Xm, Zn) + Gp

HZ(X − Xm, Zn)]                                       (C − 14) 

 

Finally, expressions for calculating the normalized homogeneous-earth fields (C-

15 to C-17) and the Green’s functions for fields at the surface (C-18 to C-23) can be 

found in the following equations:  

 

Ey
i

Ey
p = −i∫

1

g + u

∞

0

 cos(gX)dg                                                                               (C − 15) 

Hx
i

Hz
p = −2X∫

g

g + u

∞

0

 cos(gX)dg                                                                           (C − 16) 

Hz
i

Hz
p = −2X∫

g

g + u

∞

0

 sin(gX)dg                                                                            (C − 17) 

Gs
E = ∫

u − g

u + g

∞

0

 
e−uZ

u
· cos[g(X − Xm)]dg                                                            (C − 18) 

Gp
E = K0 [(1 + i)((X − Xm)2 + Zn

2)
1/2

]                                                             (C − 19) 

Gs
HX = ∫

u − g

u + g

∞

0

 e−uZn · cos[g(X − Xm)]dg                                                       (C − 20) 

Gp
HX =

(1 + i)Zn

[(X − Xm)2 + Zn
2]

1/2
 K1 [(1 + i)((X − Xm)2 + Zn

2)
1/2

]                 (C − 21) 
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Gs
HZ = ∫

u − g

u + g

∞

0

 e−uZn
g

u
· sin[g(X − Xm)]dg                                                     (C − 22) 

Gp
HZ =

(1 + i)(X − Xm)

[(X − Xm)2 + Zn
2]

1/2
 K1 [(1 + i)((X − Xm)2 + Zn

2)
1/2

]                 (C − 23) 

 

For additional details on the development of Equations (C-12 to C-23) see Hohmann 

(1971) equations 32 - 48. 

 


