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ABSTRACT

The simulation of visible light propagation and interaction within virtual environments is partic-

ularly interesting in computer graphics. Volume rendering, a crucial technique, aims to simulate

light transfer through scattering media accurately. While existing solutions provide reasonable re-

sults, they become computationally complex when multiple scattering events occur. This paper

introduces a numerical solver based on the Feynman Path Integral designed to capture high or-

ders of scattering events. While previous solvers of the FPI were computationally inefficient, we

present novel numerical approaches for solving the FPI, which offer improved performance. The

solvers are validated and applied to render volumetric environments, demonstrating their effective-

ness. The proposed solutions hold promise for simulating radiative transfer in various disciplines

and could serve as a benchmark for high-order scattering simulations.
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NOMENCLATURE

FPI Feynman Path Integral
FPI-RT Feynman Path Integral Formulation of Radiative Transfer
FPI-SW Feynman Path Integral Formulation with Simplified Weight-

ing Kernel
G(R) A single path integral, parameterized by boundary conditions

R.
R Boundary conditions of FPI
P A valid path
σb(x⃗) A function mapping a world position to a volume scatter co-

efficient.
σa(x⃗) A function mapping a world position to a volume absorption

coefficient.
σt(x⃗) A function mapping a world position to a volume transmis-

sivity coefficient.
Ω The full solid angle
S A single segment of a path P.
M The number of equal-length segments a path is subdivided

into.
∆s The length of a single segment S.
S Arclength
x⃗S Starting Position of Path
ω̂S Starting Direction of Path
x⃗R Receiver Position of Light
ω̂R Receiver Direction of Light
r(s) A function mapping arclength to a world position, used to

define a P.
β̂(s) A function mapping arclength to a tangent direction, used to

define a P.
W(P) A function mapping which computes the weight of a path P.
WR(P) A function mapping which computes the regularized weight

of a path P.
WR

S (S) A function mapping which computes the regularized weight
of a segment S.

pdf Probability density function
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1. INTRODUCTION

Electromagnetic radiation is the driving force behind many exciting and important phenomena in

our universe. Many disciplines focus on narrower subsets of the full spectrum for solving spe-

cific problems. Medical disciplines focus on X-ray propagation for medical diagnosis purposes.

The defense industry focuses on many subsets, including infrared for night vision capabilities and

high-frequency portions of the spectrum for nuclear defense. In computer graphics, visible light

dominates the portion of the spectrum studied in research that attempts to realistically simulate ac-

curate propagation and physical interaction of light within virtual environments containing objects,

volumetric mediums, and light emitters.

Since its first introduction to the field of computer graphics [1], volume rendering has been es-

tablished as an important style of rendering for many disciplines: cinematic visual effects, video

games, and the medical field, to name a few. For many of these environments, the key to realistic

and believably-rendered images involves accurate simulation of visible light transfer through the

scattering media. Although computer graphics disciplines focus on the simulation of the visible

spectrum, volume radiative transfer solutions often extend naturally to other portions of the EM

spectrum and particle transport. For this reason, general radiative transfer solutions in computer

graphics tend to make good candidates for other scientific disciplines requiring radiative transfer

modeling in infrared, visible, ultra-violet, remote sensing, and neutron transport domains.

The computer graphics community commonly focuses on finding solutions to the rendering equa-

tion [2]. Notably, in its original form, the rendering equation fails to capture the behavior of light

scattering within a volume. However, extensions have been made to include the effects of volume

scattering. This limits the use of many published solutions of light transfer to environments that

do not contain volumes of suspended particles that scatter light moving through them. However,

a better solution is needed since many important environments include volumes that often signifi-
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cantly impact the final light transport. To capture this behavior, graphics researchers have turned to

neighbor fields and their radiative transfer model [3, 4], the equation of transfer [5]. These theories

are fully unified in the path integral form of the light transport equation for the volume scattering

case [6].

State-of-the-art research provides many reasonable solutions for the radiative transfer simulation,

such as path-tracing, bi-directional path tracing, and photon mapping [7, 8, 9, 10]. In addition,

basic radiative transfer models of volumes with emission only are fairly simple to solve, with

techniques like ray-marching [11]. However, even with the introduction of just a single scattering

event, solutions tend to become computationally complex quickly. With each additional scattering

event, solutions must capture exponentially more possible paths for light to travel through a scene.

As a result, solutions that attempt to model light transport through scattering volumes thoroughly

tend to grow exponentially in computation time. This results in the various existing numerical

schemes for multiple scattering tending to balance physical accuracy vs. increasing computation

time. Often, the more computationally expensive of these methods still struggle to capture more

than a few scattering events, despite their heightened cost.

One powerful model of radiative transfer formulates the problem as a Feynman Path Integral (FPI)

[12, 13, 14]. Referred to as FPI-RT in the remainder of this work, this model is unique in its ability

to capture a large number of scattering events within a volumetric medium, a notoriously difficult

problem in computer graphics. Unlike existing solutions, FPIs are particularly interesting as the

construction of the FPI-RT models all possible light transport through an environment simultane-

ously, effectively capturing all multiple scattering events within a volume. A previous numerical

solver of the FPI utilized a discrete Frenet-Serret representation of paths in space [14]. In their

representation, the resolution of the paths directly correlated to the maximum number of possible

scattering events captured by the solver, with their method easily capturing upwards of 200 scatter-

ing events. While the existing numerical solution produced impressive results by proving that the

FPI could be numerically evaluated, and despite the solver no longer scaling exponentially with the

2



number of scattering events, the solver, unfortunately, remained computationally expensive, utiliz-

ing a time-consuming root-solver-based perturbation method for generating paths. This work was

further optimized [13] to reduce the complexity of the root-solver by minimizing the number of

operations per iteration and by introducing a Metropolis sampling technique. Still, the implemen-

tation remained slow because of the large number of paths required, an expensive representation

of the paths, and a dependence on an expensive algorithm for generating paths.

Nevertheless, the FPI representation of radiative transfer remains of interest as it can feasibly com-

pute results for many scattering events and its ability to generalize to any portion of the electromag-

netic spectrum of interest. Thus, an efficient numerical solution would be particularly interesting to

all fields desiring to simulate radiative transfer through a scattering environment. In particular, my

goal is that with continued future work, my numerical solution of the FPI-RT can act as a baseline

for performance comparisons of methods of radiative transfer focused particularly on high orders

of scattering, as opposed to the commonly selected path trace methods, which are computationally

expensive and severely limited in their ability to capture high orders of scattering.

This work presents novel numerical approaches for solving the FPI-RT, which perform signifi-

cantly better than previous work. Additionally, I present a novel path generation numerical solver

for the FPI-RT, validation for the solver, and a sample application of applying the solvers to render

volumetric models. This work can be summarized as the following contributions.

1. In the first key contribution, I present a path perturbation numerical solver using a simple

yet powerful representation of paths and an efficient path perturbation algorithm for numeri-

cally computing the FPI-RT. Additionally, I show that while numerically stable and allowing

both an efficient CPU and GPU implementation, this optimized path-perturbation numerical

solver is limited by bias introduced by the path-perturbation approach. Lastly, I discuss the

limitations of the path perturbation approach, leading to my next contribution.

2. In a second key contribution, I present and verify a novel numerical solution approach based

3



on path generation, in which the solver randomly explores valid path space. I validate this

solver by comparing it against other numerical solvers for a simplified weighting function,

allowing for an analytical derivation of the simplified weight path integral (FPI-SW) solution

for small segment count paths. Additionally, I verify using the full radiative transfer weight-

ing kernel. Together, these two novel solvers bring the benefits of the FPI formulation, most

notably the ease in naturally modeling high orders of scattering, to a realistic computation

time of under an hour.

3. In a last contribution, I demonstrate that the proposed path generation solver is powerful

enough to render images within simple environments. While this demonstration falls in the

domain of computer graphics, the application of the solver is not limited to the visible light

portion of the electromagnetic spectrum, and the method could easily simulate other portions

of the spectrum for different research domains.

The rest of the document continues as follows. Chapter 2 summarizes related work on radiative

transfer simulation and multiple scattering, providing separate discussions for single and multiple

scattering domains. Chapter 3 provides a detailed discussion of the FPI formulation of radiative

transfer and introduces the most powerful prior path perturbation numerical solver. Chapter 4

introduces a novel path perturbation numerical solver for the FPI-RT and discusses the method’s

limitations. Chapter 5 introduces a simplified weighting kernel, an analytical derivation of the sim-

plified weight FPI, FPI-SW, for small segment path counts, and a novel path-generation numerical

solver for FPI-SW and FPI-RT. Chapter 6 then presents the application of the novel path-generation

numerical solver of FPI-RT to render images of different volumes within a virtual environment. Fi-

nally, Chapter 7 summarizes all findings and presents some directions for future work.
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2. RELATED WORK

Existing methods that solve volumetric scattering of radiative transfer within a medium can be

split into two categories based on the number of scattering events in the model. The first category

contains those methods that capture only a single scatter event, visualized in Figure 2.1. The second

category contains methods that capture more than one (i.e. multiple) scattering events, visualized

in Figure 2.2. In general, methods that capture higher numbers of scatter events are more accurate

as they capture more light transfer within a scene. However, methods that capture higher numbers

of scattering events tend to be more computationally complex, thus preventing their use in many

situations with strict time budgets.

Figure 2.1: Visualization of single scattering within an environment. Light traveling from
an emitter to a receiver can scatter, at most, one time.

2.1 Single Scattering Methods

Single scattering methods capture only one indirect scatter of emitted light within a volume before

detection by a receiver. While several methods exist for solving the single-scatter case, all are based
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Figure 2.2: Visualization of multiple scattering within an environment. Unlike
single-scattering environments, light traveling from a source to a receiver can scatter

(change direction) any number of times. More advanced techniques aim to capture higher
orders of this scattering.

on this strong limiting assumption that light can scatter only a single time in a volume media and

thus are impractical for capturing more realistic radiative transfer through a real physical medium.

Additionally, most proposed solutions lack generality, targeting a single specific type of media

such as clouds or planetary rings only, and thus are not applicable for general use.

Blinn’s notable single scattering solution attempted to visualize the rings of Saturn and other planet

atmospheres [1]. While providing an analytical solution, this method is severely limited in its

assumption that a light source and the viewer are located at infinity. Kajiya and Von Herzen

[7] extended Blinn’s method for ray tracing and eliminated the viewer and light placement at

infinity restrictions. While this prevents an analytic solution, this method is generalized to work in

various environments. Finally, Ebert and Parent implemented this model in the scan line context,

allowing the utilization of hardware acceleration [15]. Although these three techniques together

represent a general model for capturing single scatter events, they do not apply to most volumetric

media.
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While these single scattering techniques have their applications, they are quite limited in the total

scattering captured compared to the solutions I propose in this work. Thus I limit my discussion of

these techniques and defer to a survey paper [16] for a deeper discussion of other single scattering

techniques.

2.2 Multiple Scattering Methods

The earliest numerical solution for radiative transfer in computer graphics was by Kajiya and von

Herzen [7]. This method traces paths through the volume, and scattering and absorption events are

directly simulated during path construction. Unfortunately, this method suffers from a high com-

putation cost, notably due to the many paths required for convergence. Several other techniques

directly improve that solution. Lafortune and Williams [8] modify the method to use bidirectional

construction, greatly improving the convergence of the method by constructing paths starting from

both the emitter and the receiver. Pauly et al. [9] introduce the Metropolis-Hastings algorithm,

also improving the convergence of the original path sampling method by biasing the solver toward

paths that contribute most toward the final render (i.e. transfer the most light). While many ad-

ditional works introduce multiple-importance sampling, volumetric density estimation, and point

and beam estimators, Krivanek et al. [17] unify all the techniques into a single model capable of

high-quality renders. Bitterli and Jarosz [18] take this one step further by generalizing the existing

0-dimensional photon points and 1-dimensional photon beams into n-dimensional samples, im-

proving the run-time of existing volumetric photon mapping techniques by a factor of 2.4x to 40x.

These photon or path tracing methods are the most flexible, easily incorporating new scattering

functions and volume representations. However, despite many improvements and approaches over

the years, these models remain too slow for many real-world applications.

Another family of multiple scattering techniques starts with the assumption that a material has

a high enough albedo, or scattering likelihood, that light traveling through the volume can be

modeled as experiencing isotropic scattering within the medium due to a high number of scattering

events. In these models, diffusion theory is used to model the radiative transfer within the medium
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[19]. Some works have increased the speed of these diffusion techniques via directional dipole

models or multiple monopoles [20, 21]. These techniques approximate scattering as the net effect

of one or two point lights placed on either side of a medium’s boundary, providing semi-analytic

solutions that rely on a separate Monte Carlo tracing step for single-scattering or directly including

the single-scattering in a complete analytic solution. While these methods are incredibly useful for

high albedo materials, such as skin, these diffusion techniques are poor models for volumes with a

mean free path, the average distance a particle travels before experiencing a scattering event, closer

to the length of the medium (such as clouds).

Many techniques shift a significant amount of their solution to a pre-calculation step. Szirmay et al.

pre-computes several global light paths through a static volume [22]. Then, during the actual run-

time of the method, this global pre-computed light path structure is queried and used to calculate

transport through the volume at interactive frame rates. While the camera and light source are free

to move during runtime, the volume must remain static, limiting its use in real-world environments.

However, this technique does achieve interactive frame rates. Lee and O’Sullivan [23] pre-compute

a set of probability distributions within a homogeneous volume. During the evaluation, while

standard path tracing is used near the surface of the volume, deeper portions of the path utilize the

pre-computed functions to sample path traversal within the medium. Mueller et al. [24] adapt this

method to support heterogeneous environments. While these techniques can achieve interactive

frame rates, they struggle to generate physically accurate images.

A recent alternative to rendering multiple scattering effects is Disney Research’s Deep Scattering

method [25]. In this work, the authors train a neural network on a large database of clouds to

learn the spatial and directional radiant flux through the training environments. Then, for final

network evaluation, the network is fed a hierarchical grid of samples constructed to best sample the

heterogeneous density within the cloud structure. While the network is trained to predict multiple

scattering, all direct lighting and single scattering events are calculated using standard Monte Carlo

path tracing. The main strength of this method is its ability to capture the quality of the ground
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truth images within minutes.

Additionally, the method can accurately capture different scattering functions if the network is

trained on ground truth images using the desired scattering method. However, the authors, unfor-

tunately, fail to discuss the number of scatters captured utilizing this method. Thus a direct analysis

in comparison to the FPI method is not possible. The number of captured scatters is likely directly

related to the method utilized to generate the training data set. Thus the method is limited to, at

best, capturing the number of scattering events represented in the test data set.

2.3 Feynman Path Integral Construction of Radiative Transfer

A notably different approach to solving radiative transfer is through a Feynman path integral for-

mulation, first constructed by Tessendorf [12]. In this model, drawing from the field of quantum

mechanics, the probability of each potential path of travel of a photon is calculated using a Feyn-

man path integral [26], and these are summed to capture the overall probability density of the

photon traveling from a starting position to an ending position. Unlike the other multiple scatter-

ing methods, this method is constructed to capture an arbitrary number of scattering events, easily

capturing significantly more scatter events than even the best of other existing multiple scattering

methods. For environments where exact, physically accurate calculations are required, the FPI con-

struction is an extremely powerful technique. While the original formulation [12] was constrained

to slab geometry and ignored backscatter, Tessendorf later derived a more general time-dependent

representation, allowing the use in environments with complex geometry and with support for

backscattering [27]. This work was continued by Tessendorf and Kilgo in their construction of a

numerical solution directly integrating the FPI in its time-dependent form [14, 13, 28]. While they

demonstrate the ability of their solver to converge and accurately fit measured beam spread data

[13], their method has some limitations. Firstly, the FPI construction requires the evaluation of a

normalizing term that is currently computationally prohibitive to evaluate and thus was ignored.

Additionally, the method is slow, taking compute years to generate a significantly converged solu-

tion.
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The Feynman path integral also requires a Fourier-transformed representation of a volume medium’s

phase function. While Tessendorf [14] introduces a Gaussian Fourier phase function, the incorpo-

ration of other notable phase functions is limited by the need to derive each phase function’s Fourier

transform. Lastly, the direct integration of the FPI is computationally expensive, on the order of

multiple compute years, limiting its use in real-world applications in the current form.

A recent work by Petrzala [29] challenges the work of Tessendorf [12, 27, 14], claiming that

the presented derivation fails to measure up to its claims due to two critical errors: a failure to

capture an overall normalizing component and an incorrect assumption that a two-dimensional

delta function can be treated as a three-dimensional delta function. Additionally, Petrzala presents

a probabilistic approach to solving the FPI for an optically thick environment with a sharply peaked

Gaussian phase function, providing a different approach to solving the FPI.

Some other works explore the Feynman path integral approach to radiative transfer. Perelman

et al. apply the FPI to the problem of light propagation in turbid media [30, 31]. These works

focus on finding the most probable path for photon transport through a medium to represent the

overall photon transfer. However, these techniques are limited to optically thick media and limit

the scattering to small angles only.

Wilson and Wang apply the Feynman path integral to the problem of infrared light scattering

within tissue [32]. Due to tissue material’s high albedo for infrared radiation, a numerical solution

of infrared transfer through tissue requires a model that captures high scattering orders. Wilson and

Wang model scattering as a Lagrangian, which captures albedo and scattering, integrated along the

path as an energy function. This function is minimized to obtain the most likely path. Their method

can explicitly model absorption and respect constraints on intermediate points, directions, or path

length.

Premoze et al. [33] also present an approach for solving the FPI by identifying the most probable

path of light in the medium. This method evaluates the path integral like the WKB (Wentzel-
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Kramers-Brillouin) expansion by assuming that the most probable path and only its closest neigh-

bors can approximate the full transfer. This is a form of variance reduction compared to other

Monte Carlo techniques that must discover the highest weighted paths. While efficient, this as-

sumption limits the solver’s use to environments whose less likely photon paths have an insignifi-

cant impact on the final transfer. Additionally, this method assumes a uniform density volume and

a strong forward scattering phase function.

While many FPI techniques and their approximations allow for faster FPI-RT simulation within

specific environments, they lack the general applicability of the original formulation. However, the

existing numerical solver of the original FPI-RT formulation remains computationally prohibative

for use. In contrast, my presented numerical solvers maintain the generality of the full FPI-RT

construction while significantly improving overall computation efficiency (an improvement of four

orders of magnitude).
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3. FEYNMAN PATH INTEGRAL FORMULATION of RADIATIVE TRANSFER

My work focuses on efficiently computing the Feynman path integral formulation of radiative

transfer [12], and is heavily influenced by the work of both Tessendorf and Kilgo [14, 13]. In

this chapter, I provide a summary of radiative transfer, the FPI formulation of radiative transfer

(FPI-RT), and describe a previously published path perturbation numerical solver.

3.1 The Rendering Equation and Radiative Transfer

I begin with a discussion of the rendering equation [2], eq 3.1, which following the geometric

optics approximation captures all light emitted and scattered throughout a scene by surfaces, both

directly and indirectly.

Lo(x⃗R, ω̂R, λ, t) = Le(x⃗R, ω̂R, λ, t)

+

∫
Ω

fr(x⃗R, ω̂S, ω̂R, λ, t)Li(x⃗R, ω̂S, λ, t)(ω̂S · ˆ⃗n)dω̂S (3.1)

This equation represents the light detected at position x⃗R from direction ω̂R as a combination of

the following:

1. Light emitted at x⃗R in direction ω̂R, Le(x⃗R, ω̂R, λ, t)

2. The integration over the surface at point x⃗R from all incoming directions ω̂S from position

x⃗S . In this, fr represents the reflectance function capturing the amount of light coming in

from x⃗S in direction ω̂S which is reflected in ω̂R. Additionally, this term includes a cos

weighting factor between the incoming direction ω̂S and surface normal ˆ⃗n.

In its original form, the rendering equation ignores a number of physical effects that have minimal
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impact on the final image, such as light polarization, the Doppler effect, and phosphorescence; the

radiative transfer model I use is no different and ignores the effects as well. Additionally, many

computer graphics models further simplify two additional terms. First, the long-term steady-state

assumption is made, removing the dependence on t, as it is assumed that the light in an environment

that has reached a steady state. Additionally, while the general form of the rendering equation is

parameterized on the wavelength of light in question λ, this is often simplified to three channels,

red, green, and blue. Again, the models I focus on in this work also make these two assumptions,

focusing on a single wavelength of light at a time, which I simply refer to as the intensity of emitted

light, as well as focusing on the time-independent steady state of light.

While incredibly powerful, the rendering equation in this original form does not capture the effect

of volumes on the light in a scene. While the equation has been extended to the volumetric domain

[2], to fully capture the interaction of light with suspended particles in a virtual environment, most

computer graphics researchers instead turn to the radiative transfer equation (RTE), eq 3.2 [34].

The radiative transfer equation closely parallels the rendering equation, modeling the behavior of

light within a virtual environment. However, in addition to modeling the interaction of light bounc-

ing between surfaces, the radiative transfer equation additionally captures the physical effects of

absorption, scattering, and emission of electromagnetic radiation; all of which are physical prop-

erties of scattering media that significantly impact light energy propagating through a medium. I

describe these effects through the lens of each interaction’s effect on a small change in radiance

L(x⃗R, ω̂R) propagating in direction ω̂R at position x⃗R.

(ω̂R · ∇⃗) L(x⃗R, ω̂R) = −(σa + σb)L(x⃗R, ω̂R) (3.2)

+Q(x⃗R, ω̂R) + σb

∫
Ω

L(x⃗R, ω̂S) Pdω̂R

The left side of this equation, (ω̂R · ∇⃗) L(x⃗R, ω̂R) represents the time and position dependent
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change in L(x⃗R, ω̂R), where L(x⃗R, ω̂R) represents the radiance at position x⃗R in direction ω̂R.

The terms of the right side of the equation are described next.

Absorption represents the conversion of light energy to another form of energy, usually heat, re-

sulting in a net reduction in the intensity of propagating radiation, as modeled by eq 3.3. Examples

of the effect of absorption include the heating of a puddle in the sun enough to trigger evapora-

tion, or the inability to see through smoke due to the suspended carbon participates’ absorption of

light.

(ω̂R · ∇⃗) L(x⃗R, ω̂R) = −σa L(x⃗R, ω̂R) (3.3)

Scattering is the redirection of propagating electromagnetic radiation from an original direction to

different propagation directions. This manifests in two important ways, out-scattering describes

the reduction of light traveling in direction ω̂R due to scattering into a new direction ω̂S when

interacting with the media, modeled by eq 3.4.

(ω̂R · ∇⃗) L(x⃗R, ω̂R) = −σb L(x⃗R, ω̂R) (3.4)

In contrast, in-scattering describes the scattering of light from other directions ω̂S into direction

ω̂R and thus is an increase of radiance, as seen in eq 3.5. In modeling in-scattering, I make use of a

phase function P , which represents the normalized distribution of intensity distributed from ω̂S in

the direction of ω̂R. The important effect of scattering is responsible for the sky appearing blue, as

well as the inability to see more than a few feet into dense fog, with the suspended vapor’s highly

impactful scattering of light as it makes its way to a receiver.

As in-scattering at a position x⃗R potentially depends on all incoming light, I must integrate over

all possible incoming light directions ω̂S . Additionally, the phase function must be normalized, as
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shown in 3.5.

(ω̂R · ∇⃗) L(x⃗R, ω̂R) =

∫
Ω′
P L(x⃗R, ω̂S)dω̂S (3.5)∫

Ω

Pdω̂S = 1

Lastly, emission models the conversion of one energy type, often nuclear in the case of stars or

heat in the case of black bodies, to electromagnetic radiation, causing effects like electric stove

tops glowing red as their temperature increases. Emission is commonly modeled as a source term,

Q(x⃗R, ω̂R), with the full form shown in eq 3.6.

(ω̂R · ∇⃗) L(x⃗R, ω̂R) = Q(x⃗R, ω̂R) (3.6)

Additionally, it is helpful to write the RTE in an integral form rather than the integro-differential

form previously shown in Equation 3.2. In this new formulation, shown as Equation 3.7, radiance

at a single point x⃗R in direction ω̂R is modeled as the combined contribution of all transported light

from all positions and directions in the long-term time limit. In this, I integrate over all possible

arclengths of light paths
∫∞
0

ds, all possible starting positions of light in the environment
∫
V
d3x⃗S ,

and all possible start directions
∫
Ω
dω̂S . In the next section, I will describe the construction of

G (S, x⃗R, ω̂R, x⃗S, ω̂S) in the path integral formulation.

L(x⃗R, ω̂R) =

∫ ∞

0

ds

∫
V

d3 x⃗S

∫
Ω

dω̂S G (S, x⃗R, ω̂R, x⃗S, ω̂S) Q(x⃗S, ω̂S) (3.7)
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3.2 Feynman Path Integral Formulation of Radiative Transfer

The Feynman path integral (FPI) was introduced by Feynman as a tool for computing the prob-

ability amplitude of a quantum particle [26]. In the standard construction of a path integral, a

transition matrix representing the likelihood of a path to be taken by a particle is applied to all

possible paths a quantum particle could take through an environment. Afterward, the weighted

paths are summed with their total representing the overall probability of the particle undergoing

the transition in question. Tessendorf [12] formulated the radiative transfer problem to pose it as

a path integral with a transport kernel G (S, x⃗R, ω̂R, x⃗S, ω̂S), which has an explicit representation

in terms of a Feynman path integral:

G (S, x⃗R, ω̂R, x⃗S, ω̂S) = e−σtS

∫
DP

∫
Dp δ

(
β̂ (0)− ω̂S

)
δ
(
β̂ (s)− ω̂R

)
× δ (r⃗(0)− x⃗S) δ (r⃗(S)− x⃗S)

× δ

(
x⃗R − x⃗S −

∫ S

0

ds′β̂ (s′)

)
× exp

(
σb

∫ S

0

ds′ Z̃ (p⃗ (s′))

)
× exp

(
i

∫ S

0

ds′ p⃗ (s′) · dβ̂ (s′)

ds′

)
(3.8)

In this, DP represents an integration over valid path space, while Dp represents an integration

over the Fourier variable p⃗. Each valid path P is defined by an arclength parameterized curve r⃗(s)

mapping arclength to a world space position. β̂(s) likewise maps arclength to the tangent of the

curve, such that β̂(s) = (dr⃗(s)/ds).

In this path integral construction, the radiative transfer through the environment can be seen as an

integration over G (S, x⃗R, ω̂R, x⃗S, ω̂S). While its complete form is presented here, a derivation

of the transport kernel, G (S, x⃗R, ω̂R, x⃗S, ω̂S) is presented in Appendix A. Plugging this into the

integral formulation of radiative transfer, Equation 3.7, I obtain that radiance L (x⃗R, ω̂R) arriving

at a position x⃗R in the direction ω̂R, given the radiance source L0 (x⃗S, ω̂S), is

16



L (x⃗R, ω̂R) =

∫
Ω

dω̂S

∫
V

d3x⃗S

∫ ∞

0

dS G (S, x⃗R, ω̂R, x⃗S, ω̂S) Q (x⃗S, ω̂S) (3.9)

In the full radiative transfer solution of light received L (x⃗R, ω̂R), I must perform the full inte-

gration over all possible starting positions x⃗S , starting directions ω̂S ∈ Ω, and path lengths S.

While this will be important to revisit when I apply the FPI formulation to render an image within

a virtual environment, most of my discussion of prior and novel numerical solver approaches will

focus specifically on computing a single, fixed transport kernel, G (S, x⃗R, ω̂R, x⃗S, ω̂S).

Evaluation of single path integral transport kernel G (S, x⃗R, ω̂R, x⃗S, ω̂S) focuses only on paths

that meet a specific set of boundary condition parameters, R = S, x⃗R, ω̂R, x⃗S, ω̂S . For this specific

evaluation, an arclength-parameterized curve P is modeled as a position function of arclength, r(s),

and tangent unit vector function of arclength β̂(s) = dr(s)/ds. For a given path P to be considered

valid, it must meet a number of conditions specified by the boundary constraints R.

1. The path P must be of specific arclength S.

2. Path P’s position function r(s) must be formed such that, given the boundary constraint

specified starting and ending positions of the path integral, x⃗S and x⃗R, r⃗(0) = x⃗S and

r⃗(S) = x⃗R.

3. Path P’s tangent function β̂(s) must be formed such that, given the boundary constraint

specified starting and ending directions of the path integral, ω̂S and ω̂R, β̂(0) = ω̂S and

β̂(S) = ω̂R.

In eq 3.8, one can see that the five delta functions enforce these specified boundary conditions.

Lastly, I specify that p⃗(s) represents the Fourier functional integration variable at arclength param-

eter s, and Z̃(p) represents the Fourier transform of the medium’s phase function P . While this

seems an unnatural choice to those in the computer graphics domain, this approach is standard in
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physics. It allows for the full derivation of the weighting function, as shown in Appendix A.

Lastly, this construction defines a few functions representing the environment E through which

the FPI is calculated. In the general case, the environment is defined as two functions that can

vary spatially; σa(x⃗) represents the absorption at position x⃗R, and σb(x⃗) represents the scattering

at position x⃗R. Additionally, it is convenient to combine absorption and scattering into a single

function σt(x⃗) = σa(x⃗)+σb(x⃗) representing the extinction of the environment at position x⃗.

3.3 Prior Numerical Solver of Feynman Path Integral Radiative Transfer

While deriving an exact, analytical solution of the FPI formulation of radiative transfer remains

infeasible for all but the simplest of cases, prior work exploring a numerical solution has been

published which utilizes Monte Carlo techniques to generate and weight a subset of the total path

set [14]. This previous numerical solver calculates the path integral G (S, x⃗R, ω̂R, x⃗S, ω̂S) through

the method shown in Algorithm 1.

Algorithm 1 Frenet Serret Path Perturbation Numerical Solver

Input: R = {S, x⃗R, ω̂R, x⃗S, ω̂S}
Output: I
P0 ← GenerateSeedCurve(R)
pathsSet← ∅
while ||pathsSet|| < N do

Pi+1 = PerturbPath(Pi)
pathsSet← pathsSet ∪ PerturbPath(Pi+1)

end while
I ← 0
for Pi ∈ pathsSet do

I ← I +WR(Pi)
end for
I ← I/N
return I

In this prior numerical solver, an initial path is generated by constructing a simple, five-control

point Bezier curve such that the start and end positions and normals, as well as the total arclength
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specified in R, were maintained. However, as this initial seeding method is computationally expen-

sive and extremely limited in the geometry of paths it could generate, the authors decided that path

generation would be utilized only to generate the first path to seed the numerical solver. To circum-

vent the limitations of the expensive path generation, all other paths were generated by perturbing

previously generated paths using a faster and non-biased perturbation algorithm [14].

3.3.1 Discrete Path Representation

For their numerical solution, the prior work’s authors required a discretized representation of

paths. Thus, each path in their numerical solver is represented via a discrete Frenet-Serret frame-

work, where the Frenet-Serret frame is a specific construction of an orthonormal frame for curves

[35].

The path representation is as follows. Given a path P’s arclength-parameterized curve r(s), three

Frenet-Serret vector functions, Tangent T̂ (s), Normal N̂ (s), and Binormal B̂(s) are defined as

shown in eq 3.10, forming a local orthonormal basis.

T̂ (s) =
dr(s)

ds

N̂ (s) =
dT̂ (s)

ds
/

∣∣∣∣∣dT̂ (s)

ds

∣∣∣∣∣
B̂(s) = T̂ (s)× N̂ (s)

(3.10)

Additionally, these vector functions are related to the curvature κ(s) and torsion τ(s) of the curve

via a first order differential equation:


dT̂ (s)/ds

dN̂ (s)/ds

dB̂(s)/ds

 =


0 κ(s) 0

−κ(s) 0 τ(s)

0 −τ(s) 0



T̂ (s)

N̂ (s)

B̂(s)

 (3.11)

Utilizing these properties, the prior numerical solver divides each path into M discrete segments
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with arclength ∆s = S/M [14]. Each segment Si, 0 ≤ i < M has an associated curvature and

torsion value, κi, τi, which allows the construction of a matrix per segment Ui(κi, τi) representing

the rotation matrix transforming the Frenet frame at the starting point of the segment to the ending

point of the same segment. In addition to its segments, each path P has an associated initial Frenet-

Serret reference frame F0, as well as starting position x⃗S which is enforced to meet the initial

position constraint in R. Likewise, the initial frame F0 is constructed such that its tangent value T̂0

is enforced to be ω̂S . The stored base reference frame F0 and per segment matrices Ui reconstruct

the position and reference frame of any segment as

x⃗i = x⃗i−1 + T̂i ∆s Fi = Ui ∗ Fi−1 (3.12)

where the segment matrices are

Ui =


1− (κ2

i /l
2
i ) (1− cos (li∆s)) (κi/li) sin (li∆s) (κiτi/l

2
i ) (1− cos (li∆s))

−(κi/li) sin (li∆s) cos (li∆s) (τi/li) sin (li∆s)

(κiτi/l
2
i ) (1− cos (li∆s)) −(τi/li) sin (li∆s) 1− (τ 2i /l

2
i ) (1− cos (li∆s))

 (3.13)

li =
√

κ2
i + τ 2i (3.14)

3.3.2 Root-Solve Path Perturbation

In the prior work solver, a root-finder perturbation approach is utilized to generate a novel path P′

from an initial path P, shown in Algorithm 2. First, three segments are selected along the curve

Sl,Sm,Sr such that l < m < r. Note, each segment likewise has a torsion and curvature value,

giving us six parameters κl, κm, κr, τl, τm, τr. To generate a new curve, κm is randomly modified.

Then, a root solve is performed over the remaining five parameters K to bend the newly generated

path to meet the boundary constraints R. For this, I solve the set of equations shown in Equation
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3.15 for RS(K) = 0. Note that I use Equation 3.12 to calculate the curve’s final position x⃗M and

the final tangent of the curve T̂ (S).

Algorithm 2 Root-Solver Path Perturbation
Input: P
Output: P′

P′ ← P
S ← AccessSegments(P)
l← Rand(0,M − 3)
m← Rand(l + 1,M − 2)
r ← Rand(m+ 1,M − 1)
S[m].κ← Rand(κmin, κmax)
K ← S[l].κ, S[r].κ, S[l].τ, S[m].τ, S[r].τ
i← 0
while i ≤ maxSteps do

StepSolver(P′,K)
if Converged(P′,K) then

return P′

end if
end while
return

K =

[
κl κr τl τm τr

]T
RS(K) =



x⃗M [x]− x⃗R[x]

x⃗M [y]− x⃗R[y]

x⃗M [z]− x⃗R[z]

||T̂ (S)− ω̂R||1

||T̂ (S)− ω̂R||22


(3.15)

If a set of parameters K can be found such that a solution Equation 3.15 is found, a new path P′

has successfully been generated. However, this method is not guaranteed to converge and thus can

fail to generate a new path. To handle these cases, an upper limit of optimization iterations is set.
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If a path perturbation ever reaches this max iteration count without converging, the new path is

discarded, and the perturbation process begins again from the initial curve.

3.3.3 Path Weighting

Lastly, once a set of valid paths have been generated, the full FPI solution can be calculated by

weighting each path Pi and combining their weights into the final path integral solution.

G (S, x⃗R, ω̂R, x⃗S, ω̂S) = lim
N→∞

1

N

N∑
i=1

W (Pi)

pdf(Pi)
(3.16)

= lim
N→∞

D
1

N

N∑
i=1

W (Pi)

W (Pi) =
M−1∏
n=0

WR
S (Sn) (3.17)

WR
S = exp (−σt∆s)

∫ ∞

0

p

2π2
exp

(
σb∆s Z̃ (p)− ϵ2

2
p2
)

sin (pκn∆s)

κn∆s
dp (3.18)

In this formulation, D is a normalizing factor containing a number of factors that have typically

been ignored, although I will address this more in the coming sections. For now, take note that the

Monte Carlo pdf weighting has been combined into this normalization factor D. W(Pi) represents

the weight of the i-th path and WR
S (Sn) is the regularized weight of a single segment Sn of the path

Pi.

Z̃(p) is defined to be the Fourier transformed phase function, discussed in the previous work [14].

In addition, previous work shows that for ϵ ̸= 0, with ϵ being a regularization parameter, the

behavior of WR
S is numerically stable; as ϵ → 0, WR

S converges to the exact, non-regularized

weight of a single path segment. Again, while their final forms are shown here, a full derivation
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of the Feynman path integral radiative transport kernel G (S, x⃗R, ω̂R, x⃗S, ω̂S), as well as path and

segment weight functions and their regularized forms, can be found in Appendix A.

In an important optimization, in a homogenous environment, the weight of a path depends only

on the curvature, number of segments in the path, and total path arclength. This allows a table of

segment weights to be precalculated for curvature values independent of the paths generated within

the environment for a wide range of possible curvature values. This significantly improves the run

time of my method, allowing multiple FPI-RTs to be calculated within one virtual environment,

all sharing the precalculated table. Unfortunately, this assumption breaks down when scattering

and absorption parameters are non-homogenous, requiring a world space positional lookup per

segment to determine the local scattering and absorption parameters. Each scattering and absorp-

tion paramter combination requires a unique precalculated weight table, with the total memory

footprint of precalculated weight tables scaling quickly with environment complexity. For now, I

mitigate this by only allowing a small subset of possible scattering and absorption paramter com-

binations within a single environment, allowing for precalculating a weight table for each of these

few combinations. However, a new approach is likely needed as more complex environments are

explored in future work.

Summarizing the prior work numerical solver, to calculate G (S, x⃗R, ω̂R, x⃗S, ω̂S), N total paths

are generated; an initial curve P0 is generated using an expensive, Bezier-based method, after

which existing paths are continually perturbed until N unique paths P exist. Finally, all weights

are determined for each path P, with their combined weight representing a single path integral

solution, I .

3.4 Limitations of Prior Work

The previously published, root-solver numerical solver is limited in two primary ways. First, the

solver utilizes an expensive representation of paths, selected for its strict maintenance of path

length and explicit storage of curvature along the discrete path. This requires the storing of cur-

vature and torsion values for each segment along the curve, as well as expensive matrix rotation
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transforms and updates for each segment along the curve. Secondly, the selected path represen-

tation led to the selection of an expensive, and unbound perturbation algorithm based on direct

manipulation of the Frenet-Serret parameters. While this root-solve method was able to generate

novel paths from existing paths that maintain the end constraints of the existing paths, the perturba-

tion algorithm’s expensive root-solve method can fail to generate a valid path, leading to complex

code handling of these failure cases, as well as leading to unpredictable overall performance.
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4. NOVEL PATH PERTURBATION NUMERICAL SOLVER FOR FEYNMAN PATH

INTEGRAL RADIATIVE TRANSFER*

To address the limitations of the previous work’s numerical solver, I propose a path-perturbation

numerical solver which utilizes a minimal, efficient poly-line path representation that allows for

efficient storage of paths. This was published in the Annals of Nuclear Energy and was presented

at PHYTRA 5 [36]. Additionally, the proposed path-perturbation solver utilizes a novel and effi-

cient path-perturbation algorithm with better properties than the root-solver perturbation algorithm,

such as an efficient mapping to GPU hardware. Note that while I later present a novel path gener-

ation numerical solver, I present my path perturbation numerical solver here as the principles still

hold.

As discussed, the existing Feynman Path Integral formulation of radiative transfer is a powerful

representation of the problem, able to capture essentially all relevant scattering within a volume.

While a prior numerical solution for the FPI was published, providing an approach to calculating

the FPI, the solver remains incredibly limited. As discussed in the previous section, prior work

presented a Monte Carlo numerical solution of the FPI based on perturbing discrete Frenet-Serret

representations of paths through a virtual space [13]. While this work was able to calculate an FPI

to convergence and perform simple verification experiments, the method was incredibly slow, on

the order of CPU months. Thus, numerically calculating the FPI has remained too expensive for

use for any real problem, with any computations limited to single transport kernel calculations, or

limited virtual environments due to the significant computation requirement.

*Reprinted with permission from “Path integral radiative transfer via polyline representation allowing GPU im-
plementation” by Brennen Taylor, John Keyser, Jerry Tessendorf, 2022. Annals of Nuclear Energy, 173, 109098,
Copyright 2022 by Elsevier.
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4.1 Proposed Curve Representation

For my novel path-perturbation numerical solver, I proposed the following representation of a

discrete path P with M segments S, visualized in Figure 4.1. In this representation, each path

P is modeled as a set of M + 1 points, {x⃗0, ..., x⃗M}, where each pair of points, x⃗i to x⃗i+1, is

defined to be the segment Si of length ∆s = S/M . With this definition, as the limit M →∞ with

M∆s = S, this representation converges to a continuous representation of the path P, with up to

M − 1 scattering events represented by the path integral.

In this representation, for a path P to be considered valid, i.e. meeting the boundary constraints R,

the following must hold.

1. x⃗0 = x⃗S

2. x⃗1 = x⃗0 +∆sω̂S

3. x⃗M = x⃗R

4. x⃗M−1 = x⃗M −∆sω̂R

With the proposed representation of a path, all information required for the weighting equation

can be trivially reconstructed. For a curve of M segments, M − 1 curvature values are generated,

representing the scattering event at the end of each segment. Each segment’s curvature value κi is

reconstructed as follows; first, M tangents, {T̂0, ..., T̂M−1} are constructed using

T̂i =
x⃗i+1 − x⃗i

|x⃗i+1 − x⃗i|
(4.1)

After reconstructing the tangents of each segment, the M − 1 curvature values {κ0, ..., κM−2} can

be reconstructed using the standard definition of discrete curvature [35]
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Figure 4.1: Discrete, polyline representation of a curve. In this example, I have M segments,
and thus have M + 1 stored positions, with x⃗0, x⃗1, x⃗M−1, and x⃗M constrained by the

boundary conditions R. Each point is located exactly ∆s away from its neighbor. Each
segment tangent T̂i (red) is x⃗i+1 − x⃗i, with T̂0, T̂M−1 constrained by R.

κi =

∣∣∣∣∣ T̂i+1 − T̂i

∆s

∣∣∣∣∣ (4.2)

The calculated curvature values are then fed into the segment weighting equation (3.18), and a path

weight is calculated via (3.17).

I utilize this representation for the following presented numerical solvers in the remainder of the

dissertation. In summary, for a M segment path, I store M + 1 points along the path, with the first

and last segment points constrained to enforce the boundary conditions R.
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4.2 Simplified Geometric Perturbation Numerical Solver

Using the previously discussed poly-line representation, I devised a simple, yet effective and effi-

cient method for perturbing an existing path P into a new path P′. Unlike the prior work root-solve

approach, my perturbation algorithm always guarantees a novel path that meets the constraints

required by the boundary conditions.

The method works as follows. First, two points, x⃗l and x⃗r, are selected from the curve poly-line

uniformly at random. These positions are selected such that they meet the constraints 1 ≤ l <

(M − 1), l < r ≤ (M) to ensure that x⃗l exists earlier in the path than x⃗r and that there is at

least one segment distance ∆s separating the two selected points. Secondly, the point selection is

constrained such that S0 and SM−1 are never perturbed, as they must remain fixed to maintain R.

Selecting x⃗l, x⃗r divides the discrete poly-line into three sections, each acting as rigid collections

of segments that do not change position or rotation with respect to each other throughout the

perturbation. The three rigid sections are defined as RB0 = {S0, ...,Sl−1}, RB1 = {Sl, ...,Sr−1},

RB2 = {Sr, ...,SM−1}. Throughout a path perturbation, RB0 and RB2 are locked, allowing only

the positions that makeup RB1 to rotate. A rotation axis x⃗r− x⃗l is defined and a random angle θ is

selected uniformly at random from the range [0, 2π]. A rotation matrix Rθ around the axis x⃗r − x⃗l

is then constructed, and used to rotate each point in RB1, x⃗i|l < i < r, to a newly rotated position

x⃗′
i, shown in Equation 4.3.

x⃗′
i = Rθ (x⃗i − x⃗l) + x⃗l (4.3)

Finally, a newly generated path P′ is constructed by concatenating RB0, RB′
1, RB2, such that it

consists of the points of {x⃗0, ..., x⃗l, x⃗
′
l+1, ..., x⃗

′
r−1, x⃗r, ..., x⃗M}. One can easily see that for all

segments S′
i in P′, |S′

i| = |Si| = ∆s, as well as {x⃗′
0, x⃗

′
1, x⃗

′
M−1, x⃗

′
M} = {x⃗0, x⃗1, x⃗M−1, x⃗M} and

{T̂0, T̂M−1} = {T̂0, T̂M}.

28



By selecting both the left and right pivot points uniformly at random, as well as rotation angle θ

uniformly at random, no bias is inserted into the perturbation method. By performing a direct,

geometric perturbation of the previous path P into a new path P′, this novel perturbation method

is guaranteed to generate a new path, has a fixed number of operations, and is extremely fast.

In addition, each perturbation is guaranteed to meet all boundary constraints of the path integral,

always generating valid paths from valid paths.

In comparison, the previous method’s root-solve-based path perturbation method was expensive

and failed to solve occasionally while introducing a bounded error to each perturbation event.

Compared to the previous numerical solver, the presented perturbation method provides much

stronger performance guarantees. A visualization of 105 path perturbations can be seen from the

side in Figure 4.2.

Side View Front View

Figure 4.2: Visualization of 105 path perturbations (red) in order of generation. One can
clearly see how the perturbation method samples the region of space between the starting

point x⃗S (green), and the receiver point x⃗R (blue). These points are 10 units apart, with the
paths being 12 units in arclength S. The visualized grid (white) is centered on the origin and
visualizes the {x⃗, z⃗} plane. Note how the paths are constrained within the expected ellipsoid

boundary.
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4.2.1 GPU Implementation

One major benefit of the poly-line path representation and simple geometric perturbation algorithm

is how it allows for a performant GPU implementation. Unlike the previous perturbation method,

the geometric perturb method proposed in this paper has a bounded number of operations per path

generated and a consistent execution sequence that minimizes the divergence of threads. Compared

to the root-solve based perturb method, which has an unpredictable number of execution paths

depending on the random curvature modification, the presented method is a better candidate for

the GPU.

Additionally, the presented method is guaranteed to provide a valid path for each path perturbation;

i.e. for any path passed in, any perturbation performed on the path maintains the end constraints

of the path integral. This simplifies the GPU implementation significantly by allowing the im-

plementation to assume that a path generation will never fail, and thus the number of generated

paths desired by a single thread is guaranteed without requiring extra looping or a condition check

to ensure that the correct number of paths have been generated. In contrast, the root-solve per-

turbation method fails 20% of the time [14], requiring a GPU implementation of the root-solver

perturbation algorithm to tolerate these failures, introducing branching and looping complexity to

the implementation, again increasing thread divergence.

My GPU implementation offloads all path perturbation and a significant portion of the path weight-

ing to the GPU, see Figure 4.3. Experiment execution begins on the CPU, where the CUDA API

is used to allocate space per device hardware thread for a curve and copy the initial seed curve’s

poly-line to each device thread’s allocated space. Each thread’s curve storage is seeded with the

same Bezier-based initial curve, generated via the same methodology as the previous numerical

solver[14]. Then, given a problem of N total experiment paths, the problem is first subdivided

into K groups of 106 paths, per the combined path weight discussed in the next few paragraphs.

Given a warp size of W , each warp is assigned to generate K/G combined path weights. With

this construction, within a warp of size W , each thread is responsible for generating 106/W paths
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and combining their weights into a thread-specific combined path weight. Finally, once all paths

have been generated, the K combined path weights are copied back to the CPU, and execution

switches back to the CPU. The path weights are then extracted from the combined path weights

and summed into the final FPI weight.

Figure 4.3: Flow diagram describing the following GPU implementation steps: 1. An initial
seed curve is generated on the CPU. 2. The CUDA API is queried for the optimal dispatch

parameters for the perturb GPU kernel. 3. Memory is allocated on the GPU for storing
combined path weights and paths scratch space per thread. 4. The initial curve is copied to

the GPU per thread. 5. The GPU kernels are dispatched and all desired paths and
combined path weights are generated. 6. Combined path weights are transferred back to

the CPU. 7. Combined path Weights are decompressed and summed. Refer to Table 4.3 for
a more detailed breakdown of the runtime of each phase.
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In my implementation, I aim to minimize the amount of data transfer required between the host

(CPU) and device (GPU), particularly concerning scaling with the number of desired paths for

the experiment. During the initial experiment setup, a warp size W and grid size G is selected,

bounding the maximum number of unique threads executed on the device. Each of these threads is

allocated unique space for storing the positions, tangents, and curvatures of the curve it is perturb-

ing. As each perturbation is guaranteed to generate a valid curve, each thread simply overwrites

its previous thread with each perturbation event, thus minimizing memory usage. The experiment

setup requires the copy of the initial seed curve from host to device memory per thread and thus

is bounded only by the number of threads dispatched rather than the overall number of paths re-

quested for the experiment. Additionally, each thread’s per thread combined path weight is stored

in shared memory. As this memory is accessed often (per path generated) and small in size (only

four doubles), it is an ideal candidate for shared memory and extremely performant.

Unlike the setup stage, the transfer of data back from the device to the host scales with the number

of paths in the experiment, as ultimately, the data transferred back must contain the weight of each

path generated in the experiment. To minimize the amount of data transferred back, I devise a

compression method to store 106 paths in a combined path weight, represented by three doubles

and a single integer. In this scheme, the maximum path weight stored in each combined path

weight batch is scaled so it is the maximum possible double. All other path weights stored in the

same combined path weight are likewise scaled such that their relative weight to the maximum

path weight is maintained. The combined total of the path weights in the batch is stored in one

double, while the offset required to map the max path weight to the max double value, the current

max path weight in the combined path weight, and the number of values stored in the combined

weight are stored in the remaining variables. Once a combined weight value has been filled with

up to 106 path weights, the combined running total and offset can be transferred back to the CPU

and decompressed for the final weight combination. Each compressed weight is converted to an

arbitrary precision floating point value, a BigF loat, and all are summed into the final path weight

representing all N paths in the experiment.
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Table 4.1: CPU Implementation Performance

Path Count Run 1(ms) Run 2(ms) Run 3(ms) Run 4(ms) Run 5(ms) Average(min)
106 13517 13622 13483 13505 13491 0.23
107 78531 78784 78708 78714 78633 1.31
108 731451 734465 729769 733256 730593 12.20
109 7268669 7323906 7353347 7254203 7360236 121.88

Table 4.2: GPU Implementation Performance

Path Count Run 1(ms) Run 2(ms) Run 3(ms) Run 4(ms) Run 5(ms) Average(min)
106 14150 14154 14171 14153 14210 0.24
107 26586 26615 26618 26603 26598 0.44
108 196835 196718 196724 196672 196783 3.28
109 1884777 1883359 1883230 1883345 1885421 31.40

4.2.2 CPU and GPU Performance Comparison

To compare the CPU and GPU implementations, I generated a specified number of paths ranging

from 106 to 109 for each implementation, comparing their run times. These experiments were

performed on an Intel i7-8700 with 12 logical processors and 16GB of RAM as the host, using an

Nvidia Titan V as the GPU device. The CUDA dispatch parameters were tuned for the CUDA 7.2

architecture, with a dispatch warp size of 64 and a grid size of 64.

Tables 4.1 and 4.2 show that both the CPU and GPU implementations scale linearly with the

number of paths in the experiment. As both the CPU and GPU implementations’ setup phases take

constant time independent of the number of paths, scaling only with the parameters of the system,

Table 4.3: GPU Implementation Breakdown

Path Count Avg. Run Time(min) % Time(Setup) % Time(Perturb) % Time(Weighting)
106 0.24 46.98% 52.99% 0.03%
107 0.44 24.94% 74.95% 0.11%
108 3.28 3.38% 96.48% 0.14%
109 31.40 0.38% 99.48% 0.14%
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a small number of paths allows for the CPU implementation to potentially perform better than the

GPU as the CPU setup time is slightly cheaper than that of the GPU. Then as the number of paths

increases, the perturbation phase takes a larger percentage of the full computation, with the GPU

implementation outperforming the CPU implementation by a constant factor of 4x.

Focusing specifically on the GPU implementation, Table 4.3 shows how the implementation is

computationally bound by the compute phase due in part to the techniques discussed previously

regarding a reduced memory transfer between the host and device.

Additionally, it is important to note the performance difference between my CPU and GPU im-

plementations to that of the previous method. While data is limited for the previous method, I

reference the beam spread experiment data presented in Kilgo’s dissertation to compare time met-

rics [28].

For this comparison, I discuss metrics in terms of the throughput of path generation. Unfortunately,

this is not exactly a one-to-one comparison, as the metrics reported by Kilgo are performed over

many iterations of separate FPI-RT invocations of 1000 perturbed paths and initial curve genera-

tions. In contrast, my method is a single execution of an FPI-RT with a significantly higher path

count. However, as discussed in the next section, I can easily construct an initial curve at the same

cost as generating a single path sample. Thus, I believe that a direct comparison of the throughput

is fair.

For the previous method, 4x105 batches of 1000 perturbations of paths take 1.15 years, leading

to a generation of 4x108 total paths in 1.15 years. In contrast, my method on the CPU generates

108 paths in 12.2 minutes, or 2.31x10−5 years, resulting in a speed increase of 12394x increased

throughput, or four orders of magnitude. Likewise, my GPU implementation generates 108 paths

in 3.21 minutes, or 6.24e−6 years, resulting in a speed increase of 46100x increased throughput,

again four orders of magnitude. Thus, my method demonstrates very clear performance wins over

the previous method.
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4.2.3 Failure of Geometric Perturbation

While my published numerical solver significantly improved over the existing numerical solvers of

the radiative transfer path integral, several issues remained. Despite my previous validation exper-

iments of the path perturbation numerical solver signaling overall convergence, further discussed

in Appendix C, I found that the solver still struggled with convergence in many environments. In

contrast to expected Monte Carlo behavior, I found that the numerical solution began to diverge as

larger numbers of paths were included, with the final converged weight dropping off significantly

and steadily as the number of paths increased.

The main symptom of the problem is the consistent trend of a sequence of perturbed paths, ulti-

mately resulting in a sequence of low-weighted paths. I observe that once a sequence of generated

paths has reached this low-weighted state, the path perturbation method is unlikely to explore any

paths outside a very small subspace of possible paths. I deem this behavior ’coiling,’ as visualizing

the generated sequence of low-weighted paths shows a grouping of very similar, largely overlap-

ping paths in which the full lengths of the paths are tightly woven into a small region of overall

space.

My understanding is that my geometric perturbation and the path perturbation solvers are not

without bias, introduced by the parameters of the path perturbation impacting multiple degrees of

freedom of the model at a time. During a path perturbation, while I select a starting and ending

segment uniformly at random and a rotation angle uniformly at random, the resulting rotations do

not generate novel, valid path samples which are significantly different across valid path space.

Instead, the bias introduced by mapping the selected uniform random parameters for the geometric

perturbation causes a sequence of generated paths to, despite rotation, coil into a small region of

valid path space. While escaping this coiled state is possible, the required set of rotation events is

significantly less likely than a sequence of rotations that maintain the coiled state.

I believe this inability of the geometric perturbation algorithm to modify the path space degrees
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of freedom (the angles discussed in the next section) uniquely ultimately results in the sequence

of paths becoming stuck in a ’coiled’ state and producing only low-weighted paths. Further ex-

ploration of the exact means for this may be worthwhile. However, I explore methods for directly

sampling path space, as described in the next section.
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5. NOVEL PATH GENERATION NUMERICAL SOLVER FOR FEYNMAN PATH

INTEGRAL RADIATIVE TRANSFER

This chapter begins by taking a step back and presenting a different approach to viewing paths

from the perspective of the independent angles connecting neighboring segments. With this new

perspective, I present a novel method for generating unique, valid paths, which are guaranteed to

meet specified boundary conditions. With this new path generator, I then present a path-generation

numerical solver for computing the FPI, which I find to outperform the path-perturbation approach

presented in the previous chapter significantly.

5.1 Path Geometry

In the remaining sections of this work, it will often be helpful to discuss paths in terms of exploring

the total valid path space possible given a set of boundary conditions R and the independent degrees

of freedom used to model such paths. Specifically, I discuss paths in terms of manipulating the

spherical coordinate angles of each segment, Si+1 with respect to its previous neighboring segment

Si, as shown in Figure 5.1. I continue with a discussion of path construction for paths with small

numbers of segments.

5.1.1 Fully Constrained Paths, Fewer Than Four Segments

Starting with paths of segment count one, I find that these paths are valid only for an extremely

constrained set of boundary conditions. A valid path with one segment can only exist when the

boundary conditions are set such that |x⃗R − x⃗S| = S and ω̂R = ω̂S = (x⃗R − x⃗S) /(|x⃗R − x⃗S|),

as seen in Figure 5.2a.

For paths with segment count two, again only a single valid path, if any, exists per boundary

condition. A valid path exists only for environments constructed such that x⃗S + ∆sω̂S = x⃗R −

∆sω̂R. This construction is shown in Figure 5.2b.
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ϕ
x⃗i

x⃗i+1

x⃗i+2

θSi

Si+1

Figure 5.1: With two neighboring segments, I can define segment Si+1 in terms of spherical
coordinates off of Si. Starting at position x⃗i+1, I place Si+1 an angle ϕ off of the axis formed

by T̂i. I then rotate Si+1 an angle θ around this axis.

Lastly, I look at paths of segment count three. With three-segment paths, paths remain quite con-

strained, with path construction shown in Figure 5.2c. While the number of environment config-

urations supported continues to increase, for a given boundary constraint to have a valid solution,

|(x⃗R −∆sω̂R)− (x⃗S +∆sω̂S)| = ∆s. Thus, only a single valid path can exist for a given bound-

ary constraint.

I note that, while important to specify for a bottom-up construction approach, paths of segment

count M ≤ 3 do not make sense for the application of a numerical solver as there is no valid path

space to integrate over; only one valid path exists per set of boundary conditions.

5.1.2 Paths With Free Angles, at Least Four Segments

Now, I shift our attention to those paths constructed with more than three segments. I find that for

all paths with at least four segments, the size of valid path space increases such that there is more

than one valid path, requiring integration over valid path space to compute G (S, x⃗R, ω̂R, x⃗S, ω̂S).

Thus, paths with at least four segments are perfect candidates for solving using my presented FPI
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x⃗S x⃗R

(a) One segment path.

x⃗S

x⃗1

x⃗R

(b) Two segment path.

x⃗S

x⃗1 x⃗2

x⃗R

(c) Three segment path.

Figure 5.2: All segments are defined solely by the boundary conditions. In all cases, only a
single path meets the qualifications for being valid.

solver.

5.1.2.1 Four Segment Paths

I begin with a discussion of four segment paths which, as mentioned, allow for multiple valid paths

for a given boundary constraint configuration. So long as |(x⃗R −∆sω̂R)− (x⃗S +∆sω̂S)| ≤ 2∆s,

an infinite number of valid paths exist meeting the boundary conditions. With the introduction of

a fourth segment, I have introduced the first angle degree of freedom, θ0, to the constructed paths.

As can be seen in Figure 5.3, for a given boundary constraint, all valid paths are configurations

of the two center segments’ intersection point, x⃗2 rotated around a center axis defined by x⃗3 =

x⃗R −∆sω̂R and x⃗1 = x⃗S +∆sω̂S . I place point x⃗2 by rotating the first free segment, S1, around

axis x⃗1x⃗3 by θ0 which can take values in the range [0, 2π]. Additionally, I note the introduction

of another angle, ϕ0, defining the angle of S1 off of axis x⃗1x⃗3. However, as S1 and S2 have fixed
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ϕ0

x⃗0 x⃗1

x⃗2

x⃗3 x⃗4x⃗m

θ0

Figure 5.3: With four total segments, the center two segments are free to rotate around the
axis defined by x1x3 (green) by angle θ0. However, the angle of segment S12 (red) off this axis

ϕ0 is set by the boundary constraints.

lengths encoded by the path construction delta functions, this angle ϕ0 is enforced by the boundary

conditions and path geometry, and thus is constrained to a single value. In summary, I find that a

four-segment path can be paramaterized as PM=4(R, θ0).

5.1.2.2 Five Segment Paths

Next, consider paths with an additional fifth segment. I construct these paths by first placing

segment S1, the first movable segment, around a sphere of radius ∆s focused on x⃗1, as shown in

Figure 5.4a. This segment placement is defined in spherical coordinates by two angles, ϕ0 from

[0, π] and θ0 from [0, 2π]. However, selections of ϕ0 and θ0 remain valid so long as the remaining

distance |x⃗4 − x⃗2| ≥ 2∆s after placing S1 is maintained.

After placing S1, the two remaining free segments, S2,S3 are placed similarly to the four-segment

paths above. The rotation of S2 around x⃗2x⃗4, where x⃗2 is set by the placement of S1, is defined

by θ1, which is free to rotate between [0, 2π], shown in Figure 5.4b. Additionally, S2 is placed an

angle ϕ1 off of the axis of rotation defined by x⃗2x⃗4. Again, as S2 and S3 have fixed lengths encoded
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ϕ0x⃗0

x⃗1

x⃗2

x⃗3

x⃗4 x⃗5x⃗m

θ0

(a) With five segments, there are three center segments that are free to move: S1, S2,S3. Segment S1
is placed first by selecting a valid angle ϕ0 of the axis x⃗1x⃗4 (green). Additionally, the segment is then

rotated θ0 around axis x⃗1x⃗4. All configurations of ϕ0 and θ0 are valid such that |x⃗4 − x⃗2| ≤ 2∆s.

ϕ1

x⃗0

x⃗1

x⃗2 x⃗3

x⃗4 x⃗5

θ1

(b) After setting segment S1, segments S2 and S3 are placed. Like the four-segment case, these two
remaining segments are constrained by the boundary conditions such that S2 is a fixed ϕ1 off of the

axis x⃗2x⃗4. However, they are free to rotate θ1 around axis x⃗2x⃗4.

Figure 5.4: Five segment path.

by the path construction delta functions, this angle ϕ1 is enforced by the boundary conditions and

path geometry, and thus is constrained to a single value. With this, I have that a five-segment path

can be parameterized as PM=5(R, θ0, ϕ0, θ1). With the introduction of an additional, fifth segment,

I have introduced two additional angles compared to the four-segment paths.

5.1.2.3 M Segment Paths

I now define the general case. For a M segment path, M − 2 segments are unspecified by the

boundary conditions and thus can be freely placed. I place each free segment by assigning a ϕ and
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θ pair of spherical coordinates defining that segment’s rotation around its starting position, except

for the last free segment which only is specified by a single θ parameter, as the ϕ parameter is set by

the boundary conditions and path geometry. Thus, a path with M segments PM is parameterized

by (2M − 5) parameters.

In general, path construction allows for ϕ to range from [0, π] and θ to range from [0, 2π]. How-

ever in practice, as my numerical solver is focused only on valid paths which enforce boundary

constraints, each free parameter will have minimum and maximum value constraints in order to

remain valid.

5.2 Valid Path Generation

Next, I present a method of randomly generating valid paths with M segments which are guaran-

teed to meet specified boundary conditions R. While the approach is limited to specific segment

counts, as I will discuss in Section 5.2.3, the overall path-generation approach is very powerful. It

allows for the generation of valid paths across the full expanse of valid path space.

Beginning with the definition of two base algorithms that construct paths of two and three free

segments, I will then construct a recursive path generation algorithm that can generate paths of

even numbers of free segments.

5.2.1 Two Free Segment Path Generation

I start with a description of the approach generating (resolving) two free segments with a fixed

start and end position. While this can be used to directly generate paths of two free segments

(four segment paths), I will find that the approach can be used to generate the configuration of any

neighboring two segments, so long as the starting and ending positions are provided.

Lets define the two segments to be S0 and S1 spanning points x⃗0, x⃗1, and x⃗2. When placing the

two free segments, S0 and S1, I have three possible cases which need resolution.

First, as shown in Figure 5.5, it is possible that there is no valid configuration of the segments. In
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this case, the distance d between x⃗1 and x⃗3 is larger than 2∆s, the distance which the two segments

can span; i.e., the segments cannot connect, and thus no valid path configuration exists.

In a second case, x⃗0 and x⃗2 are stacked, as shown in Figure 5.6. In this case, I have that segments

S0 and S1 will also overlap exactly, as the distance of ∆s traversed from x⃗0 to x⃗1 by S0 must be

then traversed from x⃗1 to x⃗2 by S1. However, segment S0 is free to be placed anywhere on the

sphere of radius ∆s surrounding x⃗0, and thus S0’s θ can be sampled from the full [0, 2π] range,

and its phi can be sampled from [0, π]. I do not sample ϕ directly, but rather sample cos(ϕ) from

[−1, 1] to allow for unbiased, uniform sampling of segment S0 configurations.

In the third case, S0 and S1 intersect along the circumference of a circle centered exactly along the

axis x⃗0x⃗2, shown in Figure 5.7. In this case, θ can be uniformly sampled from [0, 2π] while I solve

directly for ϕ using the following equations.

d = |x⃗2 − x⃗1|

ϕ = acos

(
d/2

∆s

)

With this, I have defined a procedure for randomly generating configurations of two neighboring

free segments.

5.2.2 Three Free Segment Path Generation

Next, I discuss the generation of paths consisting of three neighboring free segments S0,S1,S2.

Unlike the two-segment case, the resolution of three segments will involve two phases. In the

first phase, the leading segment S0 is placed, after which the last two segments are resolved using

the two-segment resolution algorithm for the second phase. Like the two-segment approach, the

three-segment resolution has multiple cases which must be handled.

43



∆s ∆s
x⃗0 x⃗2

d

Figure 5.5: With two free segments covering distance 2∆s, but a separation of d with
2∆s < d.

ϕ0

x⃗0, x⃗2

x⃗1

∆s

θ0

Figure 5.6: When the two points x⃗0 and x⃗2 overlap, point x⃗1 is placed anywhere on the
surface of the sphere centered at x⃗0 with a radius ∆s.
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ϕ0 ϕ0x⃗0

x⃗1

x⃗2

∆s ∆s

d

θ0

Figure 5.7: With two free segments to place between two points, x⃗0 and x⃗2, which intersect
at x⃗1.

The first case again accounts for no valid path configuration. In this case, as seen in Figure 5.8, the

distance between points x⃗0 and x⃗3 is d while the total length of the path spanned by the three free

segments 3∆s is such that 3∆s < d. Thus, no valid path exists in this case, as the segments cannot

span the required distance d.

In the second case, points x⃗0 and x⃗3 are stacked at the same position in space, as shown in Figure

5.9. In this case, the first segment S0 can simply be placed such that x⃗1 is uniformly placed on

the sphere of radius ∆s centered at x⃗0. Then, the remaining two segments are placed using the

two-segment resolution. Note, this will always resolve as the distance between x⃗1 and x⃗3 is ∆s,

and I have two segments for which to cover the distance.

Lastly, I have a third, more general case for resolving three segments, visualized in Figure 5.10.

Similar to the two free-segment generation discussed in the previous section, this case is defined

by intersecting the sphere of radius ∆s centered at x⃗1, representing the extent of the first free

segment, with a sphere of radius 2∆s centered on x⃗4, representing the extent of the two remaining
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∆s 2∆s
x⃗0 x⃗3

d

Figure 5.8: With three free segments, but an invalid environment configuration.

ϕ0x⃗0, x⃗3

x⃗1

x⃗2

θ0

θ1

∆s

∆s

Figure 5.9: When the two points x⃗0 and x⃗3 overlap, point x⃗1 is placed anywhere on the
sphere placed centered at x⃗0 with a radius ∆s.
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ϕ0

d

∆s 2∆s

θ0
x⃗0

x⃗1

x⃗3

Figure 5.10: With three free segments to place between two points, x⃗0 and x⃗3, I first
intersect sphere extent of the first segment S0 with the sphere extent of the combined

segments S1 and S2, intersecting at x⃗1. Segments S1 and S2 are then resolved using the
two-segment resolution.

free segments. This results in two subcases that must be handled.

In the first subcase, if S1’s sphere is fully contained within the two-segment sphere, S1 has a full

range of motion and can be placed such that x⃗2 is uniformly sampled from the surface of S1’s

sphere. Then, after placing S1, the two remaining segments S2 and S3 are resolved using the

two-free-segment generation algorithm defined in the previous section.

In the other subcase, shown in Figure 5.10, if the two spheres only partially intersect, S0’s ϕ angle

will be constrained between [0, ϕmax]. If x⃗0 is fully outside the sphere centered at x⃗3, I use the
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following equations to calculate ϕmax. In these equations, h represents the fraction of d from x⃗0

to x⃗3 at which the intersection circle of the two spheres is centered. a represents the radius of this

intersection circle, with the circle placed perpendicular to the axis x⃗0x⃗3.

h =
1

2
+
−3∆s2

2d2

a = sqrt(∆s2 − (hd)2)

ϕmax = arcsin(a/∆s)

Instead, if x⃗0 is contained within the sphere centered at x⃗3, ϕmax is instead calculated as

ϕmax = π − asin(a/∆s)

With an upper bound for ϕ for segment S0, I place S0 by randomly sampling cos(ϕ) from [cos(ϕmax), 1],

and θ0 from [0, 2π]. Then, the remaining segments S1 and S2 are resolved using the two-segment

generation.

With this, I have defined a procedure for randomly generating configurations of three neighboring

free segments.

5.2.3 N Free Segment Path Generation

Now, I discuss a general approach for generating paths with N free segments. For a curve with N

free segments, I can evenly subdivide the list of free segments into two lists of N
2

segments. I then

sample the overlapping volume of the two spheres of radius N
2
∆s centered at x⃗0 and x⃗N for the

position connecting these two lists of segments, x⃗N/2. Again, I must handle a few cases.
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N
2
∆s N

2
∆sx⃗0 x⃗N

d

Figure 5.11: When resolving a distance d with N segments, but N∆s < d, thus no valid path
configuration exists.

First, I have the case where no valid path exists, shown in Figure 5.11. In this case, the distance d

between the two points x⃗0 and x⃗N is greater than N∆s, the distance spanned by the length of the

path. Thus no valid path can exist.

In a second case, I have that x⃗0 and x⃗N are stacked, and thus the connecting point x⃗N/2 can be

placed anywhere in the sphere of radius (N/2)∆s centered at x⃗0, shown in Figure 5.12. In this

case, I generate three parameters for placing the connecting point: θ, ϕ, and r. Given three uniform

random values ϵ0, ϵ1, ϵ2

θ = ϵ0 ∗ [0, 2π]

cos(ϕ) = ϵ1 ∗ [−1, 1]

r = ϵ
1/3
2 ∗ [0, (N/2)∆s]
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ϕ

x⃗0, x⃗N

x⃗N/2

N
2
∆s

θ

Figure 5.12: When the two points x⃗0 and x⃗N overlap, point x⃗N/2 is placed anywhere within
the sphere centered at x⃗0 with a radius (N/2)∆s.

ϕ ϕ
x⃗0

x⃗N/2

x⃗N

(N/2)∆s (N/2)∆s

d

θ

Figure 5.13: N free segments between two points, x⃗0 and x⃗N are resolved by selecting x⃗N/2

from their intersection volume.
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In a third case, I have that the two spheres intersect to form a volume region of two stacked

spherical caps, as shown in Figure 5.13. For this, I restrict my discussion to that of the spherical

cap contained within the sphere centered on x⃗N . To fully sample the volume formed by the two

caps, I randomly flip the generated x⃗N/2 point across the intersecting plane connecting the two

caps. Like the previous case, I generate three parameters for placing the connecting point: θ, ϕ,

and r. Given uniform random values ϵ0, ϵ1, ϵ2

θ = ϵ0 ∗ [0, 2π]

a = sqrt(∆s2 − (0.5d)2)

ϕmax = arcsin(a/∆s)

cos(ϕ) = ϵ1 ∗ [cos(ϕmax), 1]

r = ϵ
1/3
2 ∗

[
0.5d

cos(ϕ)
, (N/2)∆s

]

Using θ, ϕ, and r as spherical coordinates of x⃗N/2 within the sphere centered on x⃗0, I can now place

the center position x⃗N/2, randomly flipping this point across the plane forming the center of the

intersecting spherical caps. By sampling and fixing the connection point x⃗N/2, I can then recurse

and repeat the procedure on either half of the free-segment lists, connecting points x⃗0 to x⃗N/2 and

points x⃗N/2 to x⃗N . This process recursively continues until I am left with either two free segments,

in which they are resolved using the previously discussed two-segment resolution algorithm as a

base case, or three free segments, which are resolved using the three-segment resolution algorithm

as a second base case.

For this recursive process to be well-formed, with terminating base cases of either two or three

segments, this path generation method supports paths only with specific segment counts M in

which, for valid, positive integer values n, and N = M − 2.
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(M − 2) = 2n

or

(M − 2) = 3 ∗ 2n

With this, I have a method of generating unique, random, valid paths of N free segments, which

cover the full extent of valid path space from a set of uniformly sampled values between 0 and

1.

5.2.4 Discussion of Path-Generation Sample Bias

For utilization of my path-generation algorithm within a numerical solver, as I will discuss in the

next section, it will be important to make clear a very strong assumption which is made regarding

the sampling of paths within valid path space.

As discussed, to generate a path with M segments, a number of uniform random samples between

0 and 1 are utilized to uniformly sample θ and ϕ angles along the generated path. As these random

values are uniformly sampled from 0 to 1, the process of selecting angle values within their range

of values introduces no bias in the final generated path.

Additionally, the independent sampling of each ϕ and radius r is handled in an unbiased manner, as

I account for the ϕ and r sampling biases required to sample from a sphere in an unbiased manner.

Thus, the individual sampling of each angle on its own does not provide any bias.

However, I find that the angles along the generated path are not sampled independently. For an N

free segment path, all angles sampled along the two subdivided free segment lists during the recur-

sive process depend on the selected position of x⃗N/2. However, for different selections of x⃗N/2, the

volume of possible paths V (x⃗N/2) changes. Thus, bias is likely introduced, with generated paths

not distributed uniformly across valid path space.
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In this work, I do not perform further analysis of this bias or the relation between sampling pdfs

for different angle selections due to their interdependence during the recurrence process. Instead, I

continue with the assumption that with fully uniform random values, I uniformly sample the valid

path space. While this assumption was important for completing the remaining work, it is very

likely the main cause of bias seen in the remainder of this work.

5.2.5 Path-Generation Numerical Solver

Now that I have a method of generating a unique, valid path P with M segments that meets the

boundary conditions R, I can utilize this to define a novel, path-generation-based solver. Unlike

the previously discussed approaches utilizing path-perturbation, the path-generation solver is quite

trivial, with the pseudocode shown in Algorithm 3. To solve the path integral G (S, x⃗R, ω̂R, x⃗S, ω̂S)

using N samples, I simply perform N iterations generating a unique, valid path Pi, weighting the

path, and combining the weighted paths into a final sum. Path generation is provided by a uniform

random number generator ϵ, from which it can draw uniform samples between 0 and 1.

Algorithm 3 Path Generation Numerical Solver

Input: R = {S, x⃗R, ω̂R, x⃗S, ω̂S}
Output: I
I ← 0
for i < N do

ϵ← [UniformRandomFloat()]2(M−3)+1}
Pi ← GenerateCurve(M,R, ϵ)
I ← I +WR(Pi)

end for
I ← I/N
return I

The path-generation numerical solver is quite powerful. As discussed previously, the path gener-

ation method used allows for uniformly sampling valid path space. In addition, compared to the

path perturbation technique, there is no need to generate a seed curve from which all paths are

generated through a series of perturbations. The path-generation numerical solver thus avoids any
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bias introduced in perturbing a path Pi into Pi+1.

5.3 Verification of Numerical Solution With Simplified Model

Ultimately, the best verification of my model would be a comparison to an exact, analytical deriva-

tion of the FPI-RT for the number of segments in question. Unfortunately, the radiative transfer

weighting kernel is incredibly complex and thus limits the derivation significantly.

However, I am still able to leverage an analytical derivation for validating my numerical solver

by utilizing a simplified weighting kernel. As seen in Equation 5.2, the simplified weight path

integral formulation, FPI-SW, follows a similar construction to that of FPI-RT, seen in Equation

3.8. However, I utilize a simplified weighting transfer kernel rather than the full radiative transfer

weighting kernel. As this simplified kernel depends on the local curvature along the curve and

the radiative transfer kernel’s scattering σb and phase function width µ parameters, I can easily

integrate the simplified weighting function into my existing numerical solver.

G (S, x⃗R, ω̂R, x⃗S, ω̂S)
SW
N =

∫
Ω

N∏
i=0

dΩi δ
(
β̂0 − ω̂S

)
δ
(
β̂N − ω̂R

)
× δ (r⃗(0)− x⃗S) δ (r⃗(S)− x⃗R)

× δ

(
x⃗R − x⃗S −∆s

N∑
i=0

β̂i

)

× exp

(
−α

2

N∑
i=1

|β̂i − β̂i−1|2
)

(5.1)

α =
1

σbµ∆s

5.3.1 Deriving the Analytical Solution

The utility of the simplified weighting kernel is revealed when analytically deriving the exact

solution of the path integral, starting with paths of minimal segment count. I find that a general,
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closed form of the transport kernel for up to four free segments within a path can be derived, with

a recursive formulation for additional segments to be simple in construction. However, only small

segment path counts are reasonable to compute in a feasible amount of time.

By construction, the starting segment with normal ω̂S is not included in M . Thus, when targeting

a number of path segments M , I set N = M − 1. Note that in this formulation, N also represents

the number of possible scattering events and weighted segments.

I start by constructing a general form of the Feynman path integral of the simple model. Note that

although the form is similar to 3.8, the forms are critically different in their use of different weight-

ing kernels. For this reason, the following analysis using the simplified weighting kernel does not

represent full radiative transport. Instead, it is a simplified representation of only absorption and

out-scattering along a path and is utilized to explore the numerical solver’s behavior independent

of the weighting kernel.

As the initial and final directions of propagation, β̂0 = ω̂S , and β̂N = ω̂R, are specified as end

constraints for the model, their inclusion in the overall integration of the simplified model FPI can

be eliminated. The resulting simplified model reduces to the following

GN(q⃗, β̂) =

∫ N−1∏
i=1

dΩi ∆sδ

(
q⃗ −

N−2∑
i=1

β̂i − β̂

)

×
N∏
i=1

exp
(
−α
(
1 − β̂i · β̂i−1

))
(5.2)

This kernel model lends itself to an iterative construction of GN from GN−1. Defining the vec-

tor

q⃗ =
(x⃗R − x⃗S)

∆s
− (ω̂S + ω̂R) (5.3)
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the iterative relation is

GN+1(q⃗, β̂) = exp(−σa)

∫
dΩ′ GN(q⃗ − β̂′, β̂′) exp(α β̂ · β̂′) (5.4)

where the relation models the addition of an additional segment to GN , accounting for all valid

paths which include this new segment by integrating over all possible configurations of the seg-

ment. Additionally, the relation accounts for the application of a single absorption-like event

exp(−α) along the newly added segment, and a single scatter-like event exp(α β̂ · β̂′), whose

weight depends on the orientation of the newly added segment.

The lowest term of this construction is

G2(q⃗, β̂) =
δ(q⃗)

(∆s)3
exp(−α) exp(α(β̂ · n̂0)) (5.5)

This models a discrete curve with two segments and a single scattering event. As there are only

two segments, and the start and end directions are constrained, this lowest term naturally takes the

form of a delta function.

Using the recursive relation, as well as simplification, G3 evaluates exactly as

G3(q⃗, β̂) =
δ(1− q)

(∆s)3
exp(−2α) exp(αq⃗ · (ω̂S + β̂)) (5.6)

and G4 is

G4(q⃗, β̂) =
2πe−4α

(∆s)3
Θ(2− q)

q

× exp
(α
2

(
q2 + q⃗ · (ω̂S + β̂)

))
× I0

(
α
√
1− (q2/4) |β̂ − ω̂S|

)
(5.7)
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where I0 is the modified Bessel function of zero order, Θ is the Heaviside step function, and

q = |q⃗|. A full derivation is provided in Appendix D.

Due to the complexity of even the simplest orders of GN , the direct derivation of higher-order terms

of this analytical solution remains out of reach. However, it is trivial to implement a numerical

solver of the recursive integral relation to generate a few higher terms of this function, G5 and G6.

While these obtained results are not an exact analytical solution, they involve an integration over

the expanded numerical solution for G4, and thus act as an important metric for comparison.

G5(q⃗, β̂) = exp(−α)
∫

dΩ′ G4(q⃗ − β̂′, β̂′) exp(α β̂ · β̂′) (5.8)

G6(q⃗, β̂) = exp(−α)
∫

dΩ′ G5(q⃗ − β̂′, β̂′) exp(α β̂ · β̂′) (5.9)

Despite being trivial in construction, the numerical evaluation of the recursive relation is expensive

computationally, growing exponentially with the number of segments in a path. This currently

prevents generating higher-order terms in a reasonable amount of time.

5.3.2 Five Segment Path

I validate my path-generation numerical solver against two different solvers: the analytical derivation-

based numerical solver and a numerical integration directly over the free angles. I use the weighting

parameters shown in Table 5.1 for all validation experiments.

Table 5.1: Weighting Parameters

σa 0.004 Absorption paramter
σb 0.1 Scattering paramter
µ 1.0 Phase function width
ϵ 0.075 Regularization paramter

57



Additionally, I define the following environment, shown in Figure 5.14. I place a beam emitter at

the origin, facing down the positive x-axis. I then place a receiver ten units away on the x-axis.

However, I allow the receiver to rotate ϕR such that 0◦ is no rotation where the emitter and receiver

are aligned directionally, 90◦ places the directions perpendicular to each other, and 180◦ faces the

receiver directly back toward the emitter.

x⃗S x⃗R

10 units

ω̂S

ω̂R

ϕR

Figure 5.14: The environment construction used for validation of the FPI-SW and FPI-RT
numerical solvers. The only parameter which changes in the environment is ϕR, which
controls the angle of the placed receiver direction ω̂R. I allow this to vary from facing
directly away from the emitter (0◦) to facing directly back toward the emitter (180◦).

Lastly, it is important to note that there remains an overall normalization term D that remains un-

accounted for, preventing an exact comparison of numerical data. However, as this normalization

acts as a scale factor of the overall FPI solution, I can instead validate my numerical solutions by

comparing the relative behavior of the numerical solutions as the receiver angle changes rather

than an exact numerical comparison. So long as the two solutions are consistent in their relative

behavior, I take this as a valid verification instead of requiring exact, numerical equality.

I first validate my path-generation FPI-SW solver for five-segment paths. I compute a number of

FPI-SW solutions for a number of permutations of the validation environment by varying arclength

S = [11, 12, ..., 20] and the receiver angle ϕR = [0◦, 45◦, 90◦, 135◦, 180◦]. By manipulating these

dimensions, I explore the numerical solver’s behavior in a wide range of cases.

First, I present the results of the analytical derivation numerical solution’s execution in this wide

array of environments, shown in Table 5.2 and Figure 5.15. Additionally, I evaluate the FPI-SW
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Table 5.2: Five Segment Analytical Derivation Results

Arclength 0◦ 45◦ 90◦ 135◦ 180◦

11 4.75E-03 4.62E-03 N/A N/A N/A
12 5.04E-04 1.65E-03 N/A N/A N/A
13 1.31E-04 5.05E-04 N/A N/A N/A
14 6.17E-05 2.32E-04 2.36E-04 N/A N/A
15 4.23E-05 1.45E-04 1.90E-04 N/A N/A
16 3.70E-05 1.13E-04 1.54E-04 5.74E-05 N/A
17 3.68E-05 1.01E-04 1.37E-04 9.63E-05 4.00E-05
18 3.72E-05 1.01E-04 1.30E-04 1.05E-04 8.64E-05
19 3.96E-05 1.08E-04 1.32E-04 1.11E-04 1.02E-04
20 4.37E-05 1.23E-04 1.39E-04 1.20E-04 1.14E-04

Table 5.3: Five Segment Angle Integration Solver Results

Arclength 0◦ 45◦ 90◦ 135◦ 180◦

11 4.96E-07 N/A N/A N/A N/A
12 9.52E-09 8.37E-08 N/A N/A N/A
13 5.90E-10 5.94E-09 N/A N/A N/A
14 7.80E-11 8.17E-10 6.21E-09 N/A N/A
15 1.74E-11 1.77E-10 1.27E-09 N/A N/A
16 5.61E-12 5.18E-11 3.52E-10 N/A N/A
17 2.40E-12 1.98E-11 1.29E-10 4.00E-10 N/A
18 1.34E-12 9.06E-12 5.61E-11 1.51E-10 2.56E-10
19 9.07E-13 4.65E-12 2.69E-11 6.65E-11 1.02E-10
20 6.92E-13 2.71E-12 1.47E-11 3.43E-11 4.97E-11

using a direct, Monte Carlo integration of the FPI-SW over the free parameters θ0, θ1, and ϕ0,

which parameterize five segment paths, shown in Table 5.3 and Figure 5.16. Lastly, I evaluate the

FPI-SW using my path-generation numerical solver, shown in Table 5.4 and Figure 5.17.

From these results, I draw two main conclusions.

First, I find that the path generation and angle integration numerical solvers converge to the same

results. This is an excellent justification for my path-generation method, as it produces the same re-

sult as the angle integration, thus demonstrating no bias in my path-generation construction within
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Table 5.4: Five Segment Path Generation Solver Results

Arclength 0◦ 45◦ 90◦ 135◦ 180◦

11 4.95E-07 3.47E-06 N/A N/A N/A
12 9.51E-09 8.37E-08 N/A N/A N/A
13 5.90E-10 5.93E-09 N/A N/A N/A
14 7.80E-11 8.16E-10 6.21E-09 N/A N/A
15 1.74E-11 1.77E-10 1.27E-09 N/A N/A
16 5.61E-12 5.18E-11 3.52E-10 1.40E-09 N/A
17 2.40E-12 1.98E-11 1.29E-10 4.00E-10 7.90E-10
18 1.34E-12 9.06E-12 5.61E-11 1.51E-10 2.56E-10
19 9.07E-13 4.65E-12 2.69E-11 6.66E-11 1.02E-10
20 6.92E-13 2.71E-12 1.47E-11 3.43E-11 4.97E-11

Figure 5.15: Results of the analytical derivation of FPI-SW for a variety of environment
configurations and path arclength values for five segment paths.
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Figure 5.16: Results of angle integration numerical solver of FPI-SW for a variety of
environment configurations and path arclength values for five segment paths.

Figure 5.17: Results of path generation numerical solver of FPI-SW for a variety of
environment configurations and path arclength values for five segment paths.
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the independent angle selections. In addition, my path generation is significantly more efficient,

producing 100% valid paths while the angle integration fluctuates around 30% valid paths.

Second, the angle-integration and path-generation solvers differ from the analytical solution. While

this difference is limited for the five-segment case, we will find that this trend also continues for

the six-segment case, even increasing in severity. I provide a discussion of my best understanding

of why this is occurring and my best directions for future work to mitigate these issues after the

six-segment data is presented.

5.3.3 Six Segment Path

Next, I present the results of the three numerical solvers in the same environment parameteri-

zations, utilizing a discretization of paths into six segments. First, I demonstrate the analytical

derivation numerical results in Table 5.5 and Figure 5.18. It is important to note that with six

segments, I am numerically integrating G5 to obtain G6, while G5 is itself numerically integrating

the analytically derived G4. Thus, the analytical derivation is likely less accurate due to this con-

tinued abstraction from the direct analytical derivation. Secondly, I present the angle-integration

numerical solver from integrating over the angles θ0, θ1, θ2, ϕ0, and ϕ1 which parameterize paths

of six segments; these results are shown in Table 5.6 and Figure 5.23. Lastly, I show the results

of my path-generation numerical solver in Table 5.7 and Figure 5.24. Again, I draw two main

conclusions.

First, my path-generation numerical solver again closely matches the direct angle integration.

However, in addition to generating 100% valid paths, as opposed to the angle integration’s approx-

imately 1% to 30% valid paths, my path-generation numerical solver is able to capture difficult

environment configurations that the angle integration struggles to capture. This demonstrates the

path-generation numerical solver’s ability to integrate over all regions of valid path space, includ-

ing those for which very narrow parameterizations of paths exist.

Second, my path-generation numerical solver and the angle integration solvers fail to match the
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Table 5.5: Six Segment Analytical Derivation Results

Arclength 0◦ 45◦ 90◦ 135◦ 180◦

11 7.70E-04 6.12E-04 N/A N/A N/A
12 7.79E-05 2.50E-04 N/A N/A N/A
13 1.90E-05 7.82E-05 2.34E-05 N/A N/A
14 8.52E-06 3.36E-05 3.29E-05 N/A N/A
15 6.00E-06 1.92E-05 3.22E-05 3.75E-06 N/A
16 5.19E-06 1.40E-05 3.08E-05 7.32E-06 2.91E-06
17 5.51E-06 1.21E-05 3.06E-05 1.03E-05 5.41E-06
18 6.52E-06 1.19E-05 3.16E-05 1.36E-05 7.89E-06
19 8.19E-06 1.28E-05 3.41E-05 1.76E-05 1.10E-05
20 1.06E-05 1.47E-05 3.80E-05 2.28E-05 1.50E-05

Table 5.6: Six Segment Angle Integration Solver Results

Arclength 0◦ 45◦ 90◦ 135◦ 180◦

11 1.59E-10 N/A N/A N/A N/A
12 2.82E-09 7.46E-10 N/A N/A N/A
13 6.98E-09 2.81E-09 N/A N/A N/A
14 7.43E-09 3.77E-09 1.74E-10 N/A N/A
15 5.34E-09 3.14E-09 3.05E-10 N/A N/A
16 3.31E-09 2.08E-09 3.23E-10 2.33E-11 N/A
17 1.90E-09 1.24E-09 2.65E-10 3.29E-11 1.14E-11
18 1.11E-09 7.44E-10 1.98E-10 3.50E-11 1.51E-11
19 6.05E-10 4.18E-10 1.31E-10 3.02E-11 1.50E-11
20 3.28E-10 2.34E-10 8.31E-11 2.35E-11 1.29E-11

Table 5.7: Six Segment Path Generation Solver Results

Arclength 0◦ 45◦ 90◦ 135◦ 180◦

11 6.31E-11 5.46E-12 N/A N/A N/A
12 9.44E-10 2.97E-10 N/A N/A N/A
13 2.40E-09 1.10E-09 1.60E-11 N/A N/A
14 2.81E-09 1.54E-09 8.58E-11 N/A N/A
15 2.28E-09 1.38E-09 1.52E-10 5.07E-12 1.96E-13
16 1.57E-09 9.80E-10 1.68E-10 1.37E-11 3.44E-12
17 9.88E-10 6.26E-10 1.44E-10 1.95E-11 7.14E-12
18 6.16E-10 3.97E-10 1.12E-10 2.11E-11 9.45E-12
19 3.56E-10 2.36E-10 7.70E-11 1.87E-11 9.58E-12
20 2.03E-10 1.39E-10 5.08E-11 1.50E-11 8.45E-12
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Figure 5.18: Results of the analytical derivation of FPI-SW for a variety of environment
configurations and path arclength values for six segment paths.

Figure 5.19: Results of angle integration numerical solver of FPI-SW for a variety of
environment configurations and path arclength values for six segment paths.
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Figure 5.20: Results of path generation numerical solver of FPI-SW for a variety of
environment configurations and path arclength values for six segment paths.

analytical derivation. My leading hypothesis for the failure of my path-generation solver to con-

verge to the same solution of the angle integration method is two-fold. First, I believe that a small

amount of error is introduced by numerically integrating the analytical solution. However, I believe

this integration is minimally impacting the difference in converged solutions.

Our best hypothesis for the divergence in resulting solutions between the analytical derivation

solver and that of the angle-integration and path generation solvers is my assumption of uniform

valid path space sampling by the path-generation method being incorrect. As I currently assume

that valid path space is sampled uniformly, my Monte Carlo estimator within my path-generation

numerical solver does not correct for the non-uniform distribution of samples within valid-path

space. This same issue plagues the angle integration approach as well. Each angle is treated as

independently sampled uniformly from a distribution of possible values in these methods. While

this is true for each path as it is being constructed, there is an unaccounted dependence of angles

selected later in the process on those selected earlier, particularly the ϕ angles. For example, the
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selection of ϕ1, and thus the placement of S2, depends on the exact selection of ϕ0 and θ0, i.e., the

placement of S1. As S1’s placement changes such that ϕ1 increases, the volume of space covered

by fully exploring θ1 in [0, 2π] differs greatly. Suppose all configurations of S1 are treated equally

from the standpoint of path generation, meaning the same number of path samples are generated for

each configuration. In that case, I believe that bias is introduced and valid path space is sampled

non-uniformly. Ideally, an analytic representation of the pdf for different angle configurations

could be found, allowing direct integration into both the angle-integration and path-generation

numerical solvers, potentially correcting this issue.

Despite the discussed shortcomings, I believe that these simplified weighting validation tests demon-

strate the power of the path-generation numerical solver. Next, I show the use of my solver for full

radiative transfer.

5.4 Verification of Radiative Transfer Numerical Solution

I now verify the use of my path generation numerical solver for use in the full radiative transfer

FPI, FPI-RT. Unfortunately, when calculating the FPI-RT, and thus using the full radiative transfer

weighting kernel, a direct comparison to ground truth is impossible as I cannot analytically derive

the small segment solution of the FPI-RT with this more complex weighting kernel. Instead, I

validate the path-generation numerical solver in two ways. First, I show that the angle-based nu-

merical solver and path-generation numerical solvers provide the same results, as seen previously

in the simplified weight section. Then, I additionally show that for increasing path counts, the

path-generation numerical solver converges into a stable solution for a variety of environments as

path count increases.

5.4.1 Angle Integration and Path Generation Comparison

I begin with a comparison of the angle integration numerical solver and path generation numerical

solvers for the full FPI-RT for the same environment construction and parameterization as the

simple weight verification, shown in Figure 5.14.
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Table 5.8: FPI-RT Five-Segment Angle Integration Solver Results

Arclength 0◦ 45◦ 90◦ 135◦ 180◦

11 3.44E-03 N/A N/A N/A N/A
12 1.36E-03 6.01E-02 N/A N/A N/A
13 8.48E-04 6.54E-02 N/A N/A N/A
14 6.58E-04 7.48E-03 6.04E-02 N/A N/A
15 6.26E-04 5.03E-03 3.73E-02 N/A N/A
16 9.26E-04 6.36E-03 2.19E-02 N/A N/A
17 8.57E-04 5.66E-03 1.55E-02 7.78E-02 N/A
18 3.81E-04 1.43E-03 1.20E-02 2.82E-02 6.49E-03
19 2.45E-04 2.38E-04 9.06E-03 1.20E-02 7.91E-04
20 1.94E-04 1.92E-04 6.57E-03 6.76E-03 5.04E-04

Table 5.9: FPI-RT Five-Segment Path Generation Solver Results

Arclength 0◦ 45◦ 90◦ 135◦ 180◦

11 3.45E-03 2.01E+00 N/A N/A N/A
12 1.36E-03 6.01E-02 N/A N/A N/A
13 8.48E-04 6.59E-02 N/A N/A N/A
14 6.59E-04 7.49E-03 6.03E-02 N/A N/A
15 6.27E-04 5.06E-03 3.77E-02 N/A N/A
16 9.26E-04 6.33E-03 2.23E-02 4.02E-01 N/A
17 8.56E-04 5.62E-03 1.57E-02 7.83E-02 7.46E-01
18 3.81E-04 1.41E-03 1.22E-02 2.82E-02 6.51E-03
19 2.45E-04 2.38E-04 9.21E-03 1.21E-02 7.92E-04
20 1.93E-04 1.92E-04 6.62E-03 6.83E-03 5.05E-04

Focusing first on five-segment paths, the angle integration numerical solver results are shown in

Table 5.8 and Figure 5.21. Likewise, the path generation numerical solver results are shown in

Table 5.9 and Figure 5.22. For five segment paths, the results of both numerical solvers closely

match, with the path generation solver exploring more valid paths and thus providing a result for

more environment configurations than the angle integration solver, which fails to discover valid

paths for these specific configurations. Similarly to the simplified weight validation experiments,

my path generation numerical solver has all valid samples during path generation and thus performs

significantly better than the angle integration solver.
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Figure 5.21: Results of angle integration numerical solver of FPI-RT for a variety of
environment configurations and path arclength values for five segment paths.

Figure 5.22: Results of path generation numerical solver of FPI-RT for a variety of
environment configurations and path arclength values for five segment paths.
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Table 5.10: FPI-RT Six-Segment Angle Integration Solver Results

Arclength 0◦ 45◦ 90◦ 135◦ 180◦

11 N/A N/A N/A N/A N/A
12 1.03E-03 N/A N/A N/A N/A
13 6.16E-04 1.79E-04 N/A N/A N/A
14 6.19E-04 2.19E-04 N/A N/A N/A
15 8.15E-04 1.97E-04 0.00E+00 N/A N/A
16 3.39E-04 1.68E-04 7.86E-05 0.00E+00 N/A
17 1.85E-04 1.25E-04 6.90E-05 0.00E+00 0.00E+00
18 1.45E-04 9.85E-05 6.58E-05 0.00E+00 0.00E+00
19 1.27E-04 8.26E-05 5.78E-05 6.57E-05 0.00E+00
20 1.21E-04 7.38E-05 5.20E-05 5.98E-05 6.69E-05

Table 5.11: FPI-RT Six-Segment Path Generation Solver Results

Arclength 0◦ 45◦ 90◦ 135◦ 180◦

11 4.56E-02 5.92E+00 N/A N/A N/A
12 1.41E-02 1.19E-01 N/A N/A N/A
13 1.25E-02 2.56E-02 2.29E+00 N/A N/A
14 1.25E-02 9.74E-02 5.72E-02 N/A N/A
15 3.58E-02 3.94E-01 2.00E-02 7.23E-01 N/A
16 9.87E-03 7.81E-01 1.37E-02 4.49E-02 9.44E-02
17 9.23E-03 1.02E+00 1.14E-02 1.88E-02 1.00E-02
18 8.97E-03 1.12E+00 1.34E-02 1.36E-02 4.84E-03
19 8.36E-03 9.87E-01 1.22E-02 1.16E-02 3.93E-03
20 7.74E-03 7.75E-01 6.26E-03 1.14E-02 3.83E-03

Next, focusing on six-segment paths, the angle integration numerical solver results are shown

in Table 5.10 and Figure 5.23. Likewise, Table 5.11 and Figure 5.24 show the path generation

numerical solver results. For six segment paths, the results of the numerical solvers significantly

diverge. With this more complex weighting function, the angle integration method struggles to

discover paths that contribute significantly to the FPI solution; approximately 1% of path samples

are valid. In contrast, the path generation solver explores only valid paths and thus performs

significantly better. I believe that the difference in the two solver results shows the strength of the

path generation numerical solver for generating a solution to FPI-RT.
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Figure 5.23: Results of angle integration numerical solver of FPI-RT for a variety of
environment configurations and path arclength values for six segment paths.

Figure 5.24: Results of path generation numerical solver of FPI-RT for a variety of
environment configurations and path arclength values for six segment paths.
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5.4.2 Path Generation Convergence for High Segment Counts

Additionally, I want to show that the path generation numerical solver for FPI-RT converges for

higher segment counts. For this, I selected paths of 66 segments (with 64 free segments) for a few

reasons.

1. 66 segments allows for a large orders of scatter, one per segment. As the power of the FPI-

RT is the ability to capture high orders of scattering, I want to select as high a segment count

as possible.

2. In addition to allowing for more scattering, higher segment counts geometrically allow for

more path configurations. Thus, I want to select as high a value as possible, weighed against

my third criteria.

3. Due to the lack of FPI normalizer, the overall FPI-RT solution grows with the number of

segments. 66-segments was the largest path segment count I found which allowed for data

visualiation of the calculated FPI-RT. While I can efficiently simulate higher segment count

FPI-RT solves, visualizing the data quickly becomes painful as the final FPI solution out-

grows common floating point representations.

Utilizing the same environment parameterization used in the previous verification experiments, I

explore the convergence of the path generation numerical solver as the number of paths per FPI-RT

invocation increases from 106 to 109.

As seen in the results in Tables 5.12 to 5.15 and Figures 5.25 to 5.28, the path generation solu-

tion converges quickly to a converged solution, even with as few as 106 paths. As the path count

increases, one can see moderate noise and fluctuation, such as the bump shown for the 135◦ re-

ceiver path with 108 paths. However, with the increase in paths, the solution converges toward the

expected, stable solution, and these fluctuations stabilize.

Additionally, Table 5.16 compares the performance of the path generation solver to that of the
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Table 5.12: FPI-RT 66-Segment, 106 Paths

Arclength 0◦ 45◦ 90◦ 135◦ 180◦

11 2.06E+124 1.51E+127 1.77E+124 2.04E+124 2.76E+124
12 5.86E+123 6.99E+125 3.14E+123 1.90E+123 1.57E+123
13 3.94E+123 7.88E+126 2.19E+123 1.31E+123 1.12E+123
14 3.06E+123 1.19E+127 1.85E+123 1.14E+123 9.05E+122
15 2.47E+123 8.13E+126 1.56E+123 9.72E+122 7.98E+122
16 2.24E+123 4.05E+126 1.54E+123 9.54E+122 7.60E+122
17 2.08E+123 1.60E+126 1.50E+123 9.45E+122 7.47E+122
18 2.05E+123 4.11E+125 1.48E+123 9.64E+122 7.94E+122
19 1.97E+123 1.25E+125 1.47E+123 9.74E+122 8.06E+122
20 2.01E+123 3.74E+124 1.51E+123 1.03E+123 8.42E+122

Table 5.13: FPI-RT 66-Segment, 107 Paths

Arclength 0◦ 45◦ 90◦ 135◦ 180◦

11 2.18E+124 1.38E+127 1.42E+124 2.14E+124 2.77E+124
12 5.81E+123 7.20E+125 3.12E+123 1.94E+123 1.50E+123
13 3.84E+123 7.29E+126 2.19E+123 1.33E+123 1.05E+123
14 2.98E+123 1.27E+127 2.03E+123 1.12E+123 8.91E+122
15 2.53E+123 8.50E+126 1.62E+123 1.00E+123 8.01E+122
16 2.27E+123 3.66E+126 1.52E+123 9.59E+122 7.76E+122
17 2.11E+123 1.27E+126 1.47E+123 9.65E+122 7.69E+122
18 2.04E+123 3.93E+125 1.48E+123 1.02E+123 7.88E+122
19 1.99E+123 1.19E+125 1.50E+123 1.06E+123 8.20E+122
20 1.96E+123 3.50E+124 1.50E+123 1.02E+123 8.29E+122

Table 5.14: FPI-RT 66-Segment, 108 Paths

Arclength 0◦ 45◦ 90◦ 135◦ 180◦

11 2.05E+124 1.29E+127 1.52E+124 2.14E+124 2.77E+124
12 5.80E+123 7.10E+125 3.14E+123 1.90E+123 1.51E+123
13 3.84E+123 7.34E+126 2.20E+123 1.33E+123 1.05E+123
14 3.00E+123 1.26E+127 2.17E+123 1.12E+123 8.92E+122
15 2.51E+123 8.50E+126 3.43E+123 1.00E+123 7.95E+122
16 2.25E+123 3.68E+126 1.52E+123 9.66E+122 7.69E+122
17 2.12E+123 1.27E+126 1.48E+123 9.61E+122 7.74E+122
18 2.04E+123 4.01E+125 1.48E+123 9.88E+122 7.91E+122
19 2.04E+123 1.23E+125 1.51E+123 6.51E+123 8.58E+122
20 1.95E+123 3.67E+124 1.53E+123 1.03E+123 8.34E+122
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Table 5.15: FPI-RT 66-Segment, 109 Paths

Arclength 0◦ 45◦ 90◦ 135◦ 180◦

11 2.10E+124 1.20E+127 1.50E+124 2.16E+124 2.80E+124
12 5.80E+123 7.09E+125 3.13E+123 1.89E+123 1.52E+123
13 3.84E+123 7.36E+126 2.20E+123 1.33E+123 1.06E+123
14 3.00E+123 1.26E+127 2.65E+123 1.12E+123 8.93E+122
15 2.51E+123 8.47E+126 2.09E+123 9.98E+122 7.95E+122
16 2.26E+123 3.69E+126 1.54E+123 9.63E+122 7.71E+122
17 2.12E+123 1.28E+126 1.50E+123 9.61E+122 7.73E+122
18 2.04E+123 4.01E+125 1.48E+123 1.12E+123 7.92E+122
19 2.01E+123 1.23E+125 1.51E+123 2.36E+123 8.30E+122
20 1.95E+123 3.61E+124 1.51E+123 1.05E+123 8.66E+122

Figure 5.25: Results of path generation numerical solver of FPI-RT for a variety of
environment configurations and path arclength values. This experiment simulates paths

with 66 segments, generating 106 path samples.
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Figure 5.26: Results of path generation numerical solver of FPI-RT for a variety of
environment configurations and path arclength values. This experiment simulates uses

paths with 66 segments, generating 107 path samples.

Figure 5.27: Results of path generation numerical solver of FPI-RT for a variety of
environment configurations and path arclength values. This experiment simulates uses

paths with 66 segments, generating 108 path samples.
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Figure 5.28: Results of path generation numerical solver of FPI-RT for a variety of
environment configurations and path arclength values. This experiment simulates uses

paths with 66 segments, generating 109 path samples.

Table 5.16: Path Generation Performance

Path Count Path Generation (min) Path Perturb (min)
106 0.08 0.23
107 1.02 1.31
108 7.67 12.20
109 72.8 121.88

path perturbation solver on the CPU. These are measured the same as Table 4.1, using the path

generation solver instead. Experimentation finds the path generation technique performs 1.3x to

1.5x better than the path perturbation solver. It is also important to note that the path generation

technique remains four orders of magnitude times faster than previous FPI-RT solvers.

Again, it is essential to note that these FPI-RT results are obtained assuming that valid path space

is uniformly explored. However, as previously discussed, this is unfortunately not likely the case.

Thus I expect that as a correction for uniform sampling of valid path space is added to the path gen-
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eration numerical solver, the converged results could vary significantly. Still, the relative behavior

and, thus, conclusions drawn from the angle integration and path generation numerical solver com-

parisons will be maintained as the uniform sampling of valid path space assumption is made for

both solvers and will impact both methods in the same manner.
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6. APPLICATION OF MODEL TO VIRTUAL ENVIRONMENT

In the context of computer graphics, I desire to render an image of a virtual environment containing

a volume using my FPI-RT numerical solver. In the following sections, I demonstrate a number of

applications of my proposed path-generation numerical solver to generate images of homogeneous

and non-homogeneous environments.

6.1 Generalization of Path Integral to Full Environment

To utilize the presented numerical solvers for rendering an image of a full environment, it is essen-

tial to start by discussing exactly what the numerical solver provides.

I start with G (S, x⃗R, ω̂R, x⃗S, ω̂S), representing the path integral. The keen reader will note that

while useful, this formulation is quite limited in its applicability to capture complete radiative trans-

fer in a virtual environment, as the FPI-RT is missing key integrations over all possible arclengths

of light travel paths, emitter positions, and directions. However, I can utilize the FPI-RT within a

greater integration over other environmental parameters to obtain a complete solution.

The obvious next step for the application would involve additional integration over all possible

lengths of paths, as well as emitter locations and directions, shown in Equation 6.1. This can be

efficiently integrated into the path-generation numerical solver by modifying the path generator

to be parameterized by arclength. Thus, when integrating over all possible paths and randomly

generating paths, a random arclength between Smin and Smax is drawn and used to specify the

boundary conditions of the corresponding path sample.

L(x⃗R, ω̂R) =

∫ Smax

Smin

G (S, x⃗R, ω̂R, x⃗S, ω̂S) dS (6.1)

To numerically compute this integration, I need to compute reasonable values for Smin and Smax.
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6.1.1 Minimum Arclength Limit

First, I discuss the minimum limit for the arclength integration. Moving forward, I assume no

opaque geometry; i.e., paths are never prevented from propagating forward by reflecting off opaque

surfaces but rather scattered due to a local phase function. In order to successfully compute the

path integral for a given set of boundary conditions, I need an exact way of finding the minimum

arclength path that meets the boundary condition. I show a derivation of this formula in Equation

6.2.
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(M − 2)∆s = |(x⃗R −∆sω̂R)− (x⃗S +∆sω̂S)|

(M − 2)
S

M
=

∣∣∣∣(x⃗R − x⃗S)−
S

M
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S

M
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=
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S
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S

M
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∣∣∣∣2
S2

M2
(M2 − 4M + 4) =

(
(x⃗R − ω̂S)−

S

M
(ω̂S + ω̂R)

)
·
(
(x⃗R − x⃗S)−

S
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(ω̂S + ω̂R)

)
S2

M2
(M2 − 4M + 4) = (x⃗R − x⃗S) · (x⃗R − x⃗S)

− 2S

M
(ω̂S + ω̂R) · (x⃗R − x⃗S)

+
S2

M2
(ω̂S + ω̂R) · (ω̂S + ω̂R)

S2(M2 − 4M + 4) = M2 (x⃗R − x⃗S) · (x⃗R − x⃗S)

− 2SM (ω̂S + ω̂R) · (x⃗R − x⃗S)

+ S2 (ω̂S + ω̂R) · (ω̂S + ω̂R)

0 = M2 (x⃗R − x⃗S) · (x⃗R − x⃗S)

−M2S (ω̂S + ω̂R) · (x⃗R − x⃗S)

+ S2
(
(ω̂S + ω̂R) · (ω̂S + ω̂R)−

(
M2 − 4M + 4

))
(6.2)

Using this formulation, I can solve for Smin using the quadratic formula with the following param-

eters.
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a = (ω̂S + ω̂R) · (ω̂S + ω̂R)−
(
M2 − 4M + 4

)
b = −2M (ω̂S + ω̂R) · (x⃗R − x⃗S)

c = M2 (x⃗R − x⃗S) · (x⃗R − x⃗S)

I calculate each candidate of minimum arclength, S0, S1, and select the minimum, a positive can-

didate from the two possible candidates to be Smin.

Again, this construction is valid only for environments without opaque geometry. If there were

to be any boundaries formed by opaque geometry within the environment, this technique does not

consider them. It could produce a minimum arclength path that would intersect with this boundary

and thus be invalid.

6.1.2 Maximum Arclength Limit

Next, I discuss the upper limit of Smax. It is trivial to see that there is no maximum arclength for a

path light could travel. Thus, a full theoretical evaluation of the FPI-RT in an environment would

require integration to Smax =∞. However, in practice, longer paths will contribute less and less to

the overall amount of light received at the end position due to two factors. First, any environmental

absorption acts to downweigh the path exponentially with the path length, exp(σaS), leading to

longer paths providing exponentially less contribution than shorter ones. Secondly, in most realistic

scenarios, paths are weighted such that those with greater curvature tend to be weighed lower than

those with less curvature. When maintaining the same start and end positions and directions but

allowing arclength to change, it is trivial to see that the curvature of a path increases as the path

length increases. Thus longer paths are weighted lower than shorter paths.

Note that this is a general trend and not an absolute truth, as it is possible to construct a path of

greater length that is weighted higher than a shorter path. However, these are generally unlikely
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cases; thus, the general trend holds. In practice, I limit my numerical solver to a reasonable upper

limit, Smax, which I experimentally determined to work well when set to four times the Smin.

6.1.3 Discussion of Arclength Sampling Assumption

Similar to my uniform sampling of valid path space assumptions discussed during path generation,

a similar assumption is made for arclength sampling. For the results presented in this work, I

uniformly sample arclengths between Smin and Smax and assume all samples to contribute equally

to the final path solution.

However, I hypothesize that this assumption is not correct. As arclength increases, the volume of

valid path space increases as well. With this, an equal number of samples for Smin and Smax would

lead to a significant bias toward lower arclength paths in the full experiment’s valid path space. To

correct for this, samples should be biased toward paths with larger arclengths.

However, while more samples should be taken for larger arclengths, the radiative transfer weight-

ing significantly downweighs longer paths. Thus samples with larger arclength would contribute

significantly less to the overall solution. Thus, to aid in convergence, a practical numerical solution

would want to utilize an importance sampling scheme to sample lower-weighted paths. Uniform

sampling of the arclength range does something similar to this while missing the key sample weight

correction required for an importance sampling scheme. To correct this, the pdf of arclength with

regards to full experiment path space would need to be discovered and integrated into the numerical

solver. This is later discussed in the future work section of the conclusion.

6.2 Rendering Beam Spread on Light Field Receiver With FPI-RT

I start by first showing the application of my method to a trivial environment and building from

there. I select a simple beam spread environment, shown in Figure 6.1. In this environment, a

beam emitter is placed at the origin, oriented to emit down the positive z-axis. I then place a

receiving image located ten units along the z-axis, oriented along the XY-plane, facing the emitter.

I subdivide this image plane into several evenly sized pixels and model the amount of light received
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Figure 6.1: Empty environment configuration. Note, the full environment is considered to
consist of homogenous, low-scattering, and low-absorption material.

by each pixel as the weighted average of light received at the center of the pixel from N directions

along the hemisphere centered around the plane’s normal.

For this experiment, I model the environment as consisting of a homogeneous, low-scattering

medium, with a light emitter and receiving plane placed symmetrically around the z-axis. With

this construction, I expect the received light detected by the image place to be symmetrical around

the z-axis (more specifically, the distance of the pixel center to the z-axis). Thus, symmetry in my

results verifies the convergence of my path generation numerical solver.

I demonstrate this falloff in several beam-spread environments with a volume of absorption σa =

0.04, a scattering parameter of σb = 0.1, and paths containing 66 segments per the same reasons

as my FPI-RT validation. Additionally, the images shown here are a log plot of the FPI-RT result,

as this more accurately captures human perception, which are then normalized to the [0, 1] range

for display.

82



Figure 6.2: Detected beam spread in the empty environment.

In the resulting image in Figure 6.2, one can see the falloff from the center pixel in the received

light. While an amount of the emitted light does undergo scattering, a huge majority of the light

still reaches the center pixel of the image un-scattered. Thus, in my results, I look for a significant

spike in the amount of received light at the center pixel of the image compared to the neighboring

pixels. Additionally, one sees the expected falloff in the amount of light received at pixels with

distance from the center pixel.

6.3 Rendering Variations of Volume Sphere on Light Field Receiver With FPI-RT

Next, I render a more interesting environment containing a beam emitter casting light onto a light

field but with a volume sphere of non-trivial scattering between the beam emitter and camera.

This environment is constructed to contain a volume sphere of scattering material embedded in a

homogenous environment of homogenous, low-scattering material.
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To support arbitrary volume parameters within the environment, I modify my weighting function

to, per segment, look up the local scattering parameters at the segment’s final position in world

space. I then identify the prebaked weighting table with the closest matching scattering parameter-

ization and use that table to calculate the segment’s weight. To limit the size of the prebaked lookup

table, I allow my environments to contain two scattering configurations: within a high-scattering

object (sphere, bunny) and that which is not and is thus a low-scattering environment. When

performing the world space lookup of the local scattering parameters, I select the high-scattering

object table if the world space position is within the object and the low-scattering environment

table when outside for use during segment weighting.

6.3.1 Exploring the Effect of Changing Sphere Size

I first explore the effect of changing the sphere volume geometry on the final image, focusing on

the environment shown in Figure 6.3. Note I place the light field within the center of the sphere

volume to see the radius of the scattering sphere. I render multiple images, setting the sphere

scattering parameter to σb = 0.5 and varying the sphere radius, r = [2, 3, 5]. I use paths with 66

segments.

As seen in the resulting images in Figure 6.4, modifying the sphere radius results in the spheres

of different radii appearing in the images. Additionally, as the sphere increases in radius, the

received light decreases in amplitude as the light transfers/scatters through more volume density.

As expected, the received light peaks in the center of the sphere, as most of the emitted light

is forward scattered through the sphere. Additionally, the falloff of received light symmetrically

falls off from the center of the sphere due to multiple scattering through the outer portions of the

sphere.
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Figure 6.3: Volumetric sphere environment configuration.

(a) Sphere with radius = 2.
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(b) Sphere with radius = 3.
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(c) Sphere with radius = 5.

Figure 6.4: Sphere environment with emitter behind sphere.

6.3.2 Exploring the Effect of Changing Emitter Position

A second interesting effect I explore is the effect of changing the emitter position on the final image,

with environment construction shown in Figure 6.5. To conduct this, I focus on an environment

of a sphere of radius five and a scattering parameter σb = 0.5, varying the emitter location to

be placed offset from the center of the sphere in either the x- or y-axis, facing toward the sphere

center. Again, paths of 66 segments are used.
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Figure 6.5: Volumetric sphere with side emitter environment configuration.

(a) Sphere with emitter 10 units +y, facing -y.

88



(b) Sphere with emitter 10 units +x, facing -x.

89



(c) Sphere with emitter 10 units -y, facing +y.
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(d) Sphere with emitter 10 units -x, facing +x.

Figure 6.6: Sphere with different emitter directions.

As expected, nearly identical images are rendered for all emitter configurations, with each emitter

rotation by 90 degrees around the center z-axis resulting in an equivalent rotation of the resulting

image by 90 degrees. Additionally, the side of the sphere struck by the emitter first is the brightest,

with the pixels falling off as the light scatters through the sphere volume. Also, note that the

environment outside the sphere is darker on the side closest to the emitter, as light has not had a

chance to scatter through the volume, while the environment on the far side of the sphere from the

emitter is brighter.

6.4 Rendering Complex Volume on Light Field Receiver With FPI-RT

The next experiments I ran involved rendering a complex volume, in my case, a volumetric repre-

sentation of the Stanford bunny. Like the previous images, I generate this by firing a beam emitter
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toward an image plane centered such that the beam strikes the exact center of the image. However,

this time, I place an OpenVDB volume of the Standford Bunny between the emitter and image

plane, as seen in Figure 6.7.
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Figure 6.7: Bunny scattering environment configuration. Additionally, a standard
visualization of Stanford bunny demonstrates orientation within the environment. This is

not rendered using FPI-RT.
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First, I explore the behavior of setting the bunny to low scattering coefficients, σb = [0.001, 0.01, 0.9].

The resulting images, shown in Figure 6.8, clearly show the bunny volume, with the majority of

received light remaining at the center of the image, as most is forward scattered through the bunny.

As the scattering paramter increases, more light is scattered throughout the entirety of the bunny

volume, with the received bunny shape increasing in intensity due to this increase in overall scat-

tering throughout the volume.

(a) Volumetric bunny with σb = 0.001.
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(b) Volumetric bunny with σb = 0.01.
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(c) Volumetric bunny with σb = 0.9.

Figure 6.8: Low scattering volumetric bunny environment rendered using FPI-RT path
generation solver.

Next, I explore the behavior of setting the bunny to high scattering coefficients, σb = [25, 50, 75].

The resulting images, shown in Figure 6.9, still show the bunny volume. However, as the scattering

parameter increases in this high scattering range, the amount of scattering taking place within

the bunny leads to a near-uniform scattering within the bunny. Additionally, capturing this near-

uniform scattering requires significantly more overall paths, contributing to the increase in noise

in the resulting image. Lastly, with an increase in scattering, paths through the bunny become less

common, additionally contributing to the increase in noise.
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(a) Volumetric bunny with σb = 25.
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(b) Volumetric bunny with σb = 50.
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(c) Volumetric bunny with σb = 75.

Figure 6.9: High scattering volumetric bunny environment rendered using FPI-RT path
generation solver.

6.4.1 Rendering Bunny Lit From Side

Lastly, I explore the effect of lighting the bunny volume from a beam emitter placed directly

under the bunny, facing up through the volume, as shown in Figure 6.10. For this, I explore an

empty environment of this construction, as well as a range of scattering parameters of the bunny,

σb = [0.001, 0.01, 0.1, 5]. The resulting images are shown in Figure 6.11.

As seen in Figure 6.11, the resulting images of a volume bunny lit from below change significantly

as the scattering coefficient changes from 0.001 to 5. First, as seen in Figure 6.11a, an empty

environment lit from the bottom is dominated by the background scattering of the low, homogenous

environment scattering. With introducing a low scattering bunny, σb = 0.001, this environment

scattering maintains a dominant role. However, scattering of the bunny model tightens the spread
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Figure 6.10: Volumetric bunny with side emitter environment configuration.

of the entire beam and scatters an amount of light at the base of the bunny, clearly showing the

outline of the lowest part of the model. This trend continues as the scattering paramter increases

to σb = 0.01, then σb = 5, with the lit bunny becoming clearer as the scattering coefficient

increases.
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(a) Empty environment.

(b) Volumetric bunny with σb = 0.001.
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(c) Volumetric bunny with σb = 0.01.

(d) Volumetric bunny with σb = 5.

Figure 6.11: Volumetric bunny environment rendered using FPI-RT path generation solver,
with emitter placed directly under the bunny.
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7. CONCLUSION

To conclude, I first summarize the major contributions presented in this work, discussing how all

work together to improve computer graphics by improving the computation efficiency of numeri-

cally solving the FPI-RT. Then, I discuss several key future directions, which I believe are the next

best research directions for expanding the use of the FPI-RT formulation.

7.1 Summary of Contributions

In this work, I presented several contributions which move the computer graphics field closer to

utilizing the Feynman Path Integral formulation of radiative transfer when simulating radiative

transfer in virtual environments.

1. In a first key contribution, I present and verify a path perturbation numerical solver using a

simple yet powerful representation of paths and an efficient path perturbation algorithm for

numerically computing the FPI-RT, improving the computation efficiency of the solver by

104 times compared to the previous work. The approach is numerically stable and allows ef-

ficient CPU and GPU implementation. However, this optimized path-perturbation numerical

solver is limited by bias introduced by the path-perturbation approach.

2. In a second key contribution, I present and verify a novel numerical solution approach based

on path generation, in which the solver randomly explores valid path space. I validate this

solver by comparing it against other numerical solvers for a simplified weighting function,

allowing for an analytical derivation of the FPI-SW solution for small segment count paths.

Additionally, I demonstrate the convergence of the path generation numerical solver using

the full radiative transfer weighting kernel.

3. Third, I demonstrate that the proposed path generation solver is powerful enough to ren-

der images within simple environments. While this demonstration falls in the domain of
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computer graphics, the application of the solver is not limited to the visible light portion of

the electromagnetic spectrum. The method can easily simulate other portions of the spec-

trum for different research domains, demonstrated by my path perturbation solver first being

published in a nuclear engineering journal, the Annals of Nuclear Engineering [36].

All three contributions provide a clear improvement over the previous work, introducing a compu-

tationally efficient method of numerically solving the FPI-RT and demonstrating the formulation’s

applicability to simulating virtual environments. This is a significant step in making the FPI-RT

feasible for more general computations.

These advances promise to make FPI-RT feasible for computer graphics, providing a more efficient

numerical solution for one of the most powerful formulations of radiative transfer in its generality

and ability to capture high scattering orders. With the improvements in computation speed pre-

sented in this work and the identification of key directions of future work, I believe the FPI-RT has

the potential to be an attractive method to which the field will turn for ground truth comparisons

of high orders of scattering in virtual environments.

7.2 Key Directions of Future Work

Working toward utilizing the FPI-FT as a solution for radiative transfer in a virtual environment, I

have identified several key follow-up work directions.

One key direction of future work will be to fully explore and formalize the pdfs of samples within

valid path space. The first key pdf that needs to be formalized is the pdf relating angle parameter-

ization during path generation to the distribution of samples in path space. This will correct any

bias that might exist in the path generation and angle integration numerical solvers. Additionally, a

second key pdf relates the selected arclength of a path to the distribution of samples in the full valid

path space created by integrating over a continuous range of arclengths. Including correct handling

of this arclength pdf will remove any bias in the integration over the FPI-RT during environment

renders.
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A second promising direction of work is to explore the use of importance sampling during an FPI-

RT and when integrating over the FPI-RT for a full environment solution. While my proposed

numerical solver is very efficient, especially compared to the prior numerical solver, the evaluation

of the FPI-RT is still too slow for full environment renders. If performed correctly, importance

sampling can significantly increase the convergence rate of a single FPI-RT computation and thus

could decrease the computation time of performing an environment render significantly. An ob-

vious target distribution for importance sampling would be to sample the path weighting function

directly. However, as this path weighting function is very complex, I believe a different strategy

should be utilized. Rather than sampling directly from a pdf proportional to the path weighting

function, samples could be drawn from the angle parameterization and arclength pdfs proposed as

the first future work. These samples could then be utilized directly using standard importance sam-

pling or reweighted using re-weighted importance sampling to better target the FPI-RT samples to

the target path weighting pdf.

Another key direction of future work will involve fully deriving and computing the normalizing

term for the full path integral solution, D. While in this work, I have presented a method of nu-

merically computing the FPI-RT and was able to apply the solver to simulate the transfer of light

through a virtual environment, the generated results are not physically accurate as they lack this

key normalization. For example, one manifestation of this lack of normalizer is the inability to di-

rectly compare the results of FPI-RT calculations performed with different segment counts. Thus,

to present the images seen in this work and compare the results of multiple numerical solvers of

the FPI-RT for paths of the same number of segments, it was necessary to compare only the rel-

ative behavior of the results rather than the exact numerical values. Additionally, the lack of a

normalizer prevents combining the results of multiple FPI-RT solutions for paths of different num-

bers of segments. This approach could potentially increase the method’s performance by selecting

the minimally required number of segments depending on the environment parameterization and

region of valid path space.
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A major challenge of computing this normalizer is that as the number of segments in a path in-

creases, the normalizing component regarding the number of path segments becomes increasingly

complex and computationally expensive. This normalizing term, derived in Appendix B, is recur-

sive in construction, exponentially increasing computation time with the number of segments in

a path. I can compute this normalizing term with current hardware for up to six segment paths.

However, any normalization terms for a greater number of segments remain computationally pre-

ventative. Additionally, the full FPI-RT normalizer must include correct handling of the path

generation sampling pdf.

While these future steps will take significant work, they should enable FPI-RT to be a fully usable

rendering mechanism for computer graphics and other domains.
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APPENDIX A

DERIVATION OF FEYNMAN PATH INTEGRAL FORMULATION OF RADIATIVE

TRANSFER

I begin with the integral form of the Rendering Transport Equation.

L(x⃗R, ω̂R) =

∫ ∞

0

ds

∫
d3x⃗S

∫
4π

dΩ G(S, x⃗R, ω̂R, x⃗S, ω̂S) Q(x⃗S, ω̂S) (A.1)

In Chapter 3, I describe that the FPI formulation of radiative transfer utilizes the following transport

kernel.

G (S, x⃗R, ω̂R, x⃗S, ω̂S) = e−σt∆s

∫
DPDp δ

(
β̂ (0)− ω̂S

)
δ
(
β̂ (S)− ω̂R

)
× δ (r⃗(0)− x⃗S) δ (r⃗(S)− x⃗R)

× δ

(
x⃗R − x⃗S −

∫ S

0

ds′β̂ (s′)

)
× exp

(
σb

∫ S

0

ds′ Z̃ (p⃗ (s′))

)
× exp

(
i

∫ S

0

ds′ p⃗ (s′) · dβ̂ (s′)

ds′

)
(A.2)

A.1 Deriving the Path Integral Formulation of Radiative Transfer

I start with a discussion of what is represented by this transport kernel. The kernel, G (S, x⃗R, ω̂R, x⃗S, ω̂S)

represents the amount of light that travels from a starting position x⃗S and direction ω̂S to an ending

position x⃗R and direction ω̂R in time S. One useful property of this transport kernel allows the

propagator to be written as the combined effects of two propagators, combined via integration over

a linking spatial position x⃗′′ and direction ω̂′′.
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G (S, x⃗R, ω̂R, x⃗S, ω̂S) =

∫
d3x⃗′′

∫
d2 ω̂′′G (S ′, x⃗R, ω̂R, x⃗

′′, ω̂′′) G (S − S ′, x⃗′′, ω̂′′, x⃗S, ω̂S)

(A.3)

With this important property defined, I now discretize the transport kernel into M segments, cov-

ering equal time ∆s = S
M

. I maintain the boundary conditions by assuming x⃗M = x⃗R, x⃗0 = x⃗S ,

β̂M = ω̂R and β̂0 = ω̂S .

G (S, x⃗R, ω̂R, x⃗S, ω̂S) =

∫
d3x⃗i

∫
d2ω̂i

M∏
i=1

G (∆s, x⃗i, ω̂i, x⃗i−1, ω̂i−1) (A.4)

Next, simply taking the limit of M → ∞, and thus ∆s → 0, I have that each small ∆s length

interval can be expressed as a single scattering event. In doing so, I logically assume that no

absorption or scattering is performed along the length of the actual segment of length ∆s and

instead model the absorption or scattering at the end of the segment, i.e., the connection point

between neighboring segments. Thus, I obtain the following given an absorption paramter σa and

scattering paramter σb.

G (∆s, x⃗i, ω̂i, x⃗i−1, ω̂i−1) = (1− σa∆s)δ(x⃗i − x⃗i−1 − ω̂i∆s)

× ((1− σb∆s)δ(ω̂i − ω̂i−1) + σb∆s P (ω̂i, ω̂i−1)) (A.5)

Plugging this into the full expression, I obtain the following. Note, I simplify the absorption term

as I assume M →∞.
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G (S, x⃗R, ω̂R, x⃗S, ω̂S) =

∫ M−1∏
i=1

d3x⃗i d
2ω̂i(1− σa∆s)M

×
M∏
i=1

δ(x⃗i − x⃗i−1 − ω̂i∆s)

×
M∏
i=1

((1− σb∆s)δ(ω̂i − ω̂i−1) + σb∆s P (ω̂i, ω̂i−1))

G (S, x⃗R, ω̂R, x⃗S, ω̂S) = e−σa∆s

∫ M−1∏
i=1

d3x⃗i d
2ω̂i

×
M∏
i=1

δ(x⃗i − x⃗i−1 − ω̂i∆s)

×
M∏
i=1

((1− σb∆s)δ(ω̂i − ω̂i−1) + σb∆s P (ω̂i, ω̂i−1)) (A.6)

I continue by further assuming that I have a phase function that depends only on the angle between

the incoming and outgoing directions P (ω̂i − ω̂i−1). In doing so, I can then represent the phase

function using its Fourier representation. In this representation, Z̃ represents the Fourier repre-

sentation of the phase function P , with p⃗ representing the three-dimensional Fourier integration

variable.

P (ω̂i − ω̂i−1) =
1

(2π)3

∫
d3p⃗Z̃(p⃗) exp (ip⃗ · (ω̂i − ω̂i−1)) (A.7)

Likewise, I also make use of the following definition.

δ(x⃗) =
1

(2π)3

∫
d3p⃗ exp (ip⃗ · x⃗) (A.8)

Plugging these into the full representation, I obtain the following.
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G (S, x⃗R, ω̂R, x⃗S, ω̂S) = e−σt∆s

∫ M−1∏
i=1

d3x⃗i d
2ω̂i

×
M∏
i=1

δ(x⃗i − x⃗i−1 − ω̂i∆s)

×
M∏
i=1

d3p⃗j

(2π)3
exp(σb

M∑
i=1

∆s Z̃(p⃗j))

× exp(i
M∑
i=1

p⃗j · (ω̂i − ω̂i−1)) (A.9)

Now, I take the limit of M → ∞ to make a few substitutions. First, direction vectors ω̂ are now

written as a tangent vector of length ∆s along the curve, x⃗j = β̂(j∆s). Additionally, I rewrite∑
∆s as

∫
ds, and ω̂i − ω̂i−1 as dβ̂(s)

∆s
. Lastly, I provide two delta functions that enforce the

boundary condition directions in R.

G (S, x⃗R, ω̂R, x⃗S, ω̂S) = e−σt∆s

∫
DPDp δ

(
β̂ (0)− ω̂S

)
δ
(
β̂ (S)− ω̂R

)
× δ (r⃗(0)− x⃗S) δ (r⃗(S)− x⃗R)

× δ

(
x⃗R − x⃗S −

∫ S

0

ds′β̂ (s′)

)
× exp

(
σb

∫ S

0

ds′ Z̃ (p⃗ (s′))

)
× exp

(
i

∫ S

0

ds′ p⃗ (s′) · dβ̂ (s′)

ds′

)
(A.10)

Thus, I have fully derived the propagation kernel.

A.2 Selection of Phase Function

Next, now that I have the path integral form, I need to tease out the weighting for a single

path.
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I select the Fourier phase function, Z̃(ω̂R−ω̂S), utilized in prior work [14, 13]. Note, this function

only depends on the magnitude difference between the incoming and outgoing directions ω̂S and

ω̂R, and thus I can write the phase function as taking this single magnitude as input.

Z̃(p) = Np exp(
−µp2

2
) (A.11)

Np =

√
πµ/2

1− exp(−2/µ)
(A.12)

A.3 Deriving Single Path Weight

Last, I finish deriving a single path’s weighting function W(P).

I begin with the derived path integral, Equation A.10. I remove any integration over paths
∫
DP

and thus focus only on a single, valid path P. Note that I do not write the valid path enforcing delta

functions due to this validity assumption.

W (P) = e−σtS
d3p⃗

(2π)3
exp

(
σb

∫ S

0

ds′ Z̃ (p⃗ (s′))

)
× exp

(
i

∫ S

0

ds′ p⃗ (s′) · dβ̂ (s′)

ds′

) (A.13)

Now, I can rewrite this in a discrete form by taking P as a path of M segments. Note, I rewrite dβ̂(s′)
ds′

as N̂iκi, representing the local curvature of segment n, κn, which curves in direction N̂i.

W (P) =
M−1∏
i=0

e−σt∆s d3p⃗

(2π)3
exp

(
σb ∆s Z̃ (|p⃗|) + ip⃗ · N̂iκi∆s

)
(A.14)

I can now rewrite this equation with p⃗ in spherical coordinates.
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W (P) =
M−1∏
i=0

e−σt∆s

∫ 2π

0

dϕ

∫ ∞

0

∫ π

0

dθdp
p2 sin(θ)

(2π)3
exp

(
σb ∆s Z̃ (|p⃗|) + ip⃗ · N̂iκi∆s

)
=

M−1∏
i=0

e−σt∆s

∫ ∞

0

∫ π

0

dθdp
p2 sin(θ)

(2π)2
exp

(
σb ∆s Z̃ (|p⃗|) + ip⃗ · N̂iκi∆s

)
(A.15)

Next, I continue by rewriting p⃗ · N̂n as pcos(θ).

W (P) =
M−1∏
i=0

e−σt∆s

∫ ∞

0

∫ π

0

dθdp
p2 sin(θ)

(2π)2
exp

(
σb ∆s Z̃ (|p⃗|) + i p cos(θ)κi∆s

)
=

M−1∏
i=0

e−σt∆s

∫ ∞

0

dp
p2

(2π)2
exp

(
σb ∆s Z̃ (p)

)
×
∫ π

0

dθsin(θ) exp (i p cos(θ)κi∆s)

Finally, I integrate over dθ and simplify.

W (P) =
M−1∏
i=0

e−σt∆s

∫ ∞

0

dp
p2

(2π)2
exp

(
σb ∆s Z̃ (p)

) 2sin(pκn∆s)

pκn∆s

=
M−1∏
i=0

e−σt∆s

∫ ∞

0

dp
p

2π2
exp

(
σb ∆s Z̃ (p)

) sin(pκn∆s)

κn∆s

(A.16)

I have thus obtained the final, exact form of the path weight function W (P).

A.4 Regularized Path Weight Function

Unfortunately, this form of the path weight function is numerically unstable, as when I take p →

∞, I expect that Z̃(p) → 0. However, as I exponentiate Z̃(p), the entire form does not go to 0.

Thus, the previous work introduced a regularized form of the path weighting formula, introducing

a small, Gaussian blurring applied to the unscattered perturbation.
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WR (P) =
M−1∏
i=0

e−σt∆s

∫ ∞

0

dp
p

2π2
exp

(
σb ∆s

(
Z̃ (p)− ϵ

2
|p2|
)) sin(pκn∆s)

κn∆s
(A.17)

As this form is numerically stable for ϵ ̸= 0, this is instead used when numerically solving. Addi-

tionally, as ϵ→ 0, the numerical solution converges to the exact FPI-RT solution.
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APPENDIX B

DERIVATION OF PATH SAMPLING PDF

I want to normalize path sampling within my numerical solver accurately concerning the delta

function. In general, the portion of the solver I provide a normalization for is:

G =

∫
[DP] δ3

(
x⃗R − x⃗S −

∫ S

0

β̂(s′)ds

)
δ3
(
β̂(0)− ω̂S

)
δ3(β̂(s)− ω̂R) (B.1)

× δ (r⃗(0)− x⃗S) δ (r⃗(S)− x⃗R) W (P)

Which can be written in the discrete path form as:

GM =

∫
[P]δ3

(
x⃗R − x⃗S −∆s

M−1∑
i=0

β̂i

)
δ3
(
β̂0 − ω̂S

)
δ3
(
β̂M−1 − ω̂R

)
(B.2)

× δ (r⃗(0)− x⃗S) δ (r⃗(S)− x⃗R) W (P)

I take P to represent a full path and
∫
[DP] to represent an integration over valid path space. In

addition, take note of the five delta functions operating on the paths. These act as boundary con-

straints for valid paths, and all paths contributing to the final path integration must enforce these

boundary conditions. I must take care to account for them in my derivation of a path sampling

PDF.

This FPI can be estimated by:
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G =
1

N

N−1∑
i=0

δ3

(
x⃗R − x⃗S −∆sω̂R −∆sω̂S −∆s

M−1∑
i=1

β̂i

)
W(Pi) (B.3)

However, the delta function must be normalized to be a valid Monte Carlo estimator. Thus, I must

find a normalizing term KM for a Monte Carlo estimator of paths with M segments.

G = KM
1

N

N−1∑
i=0

δ3

(
x⃗R − x⃗S −∆sω̂R −∆sx⃗S −∆s

M−1∑
i=1

β̂i

)
W(Pi) (B.4)

To simplify, I can combine all delta functions into a single delta function. I also ignore the path

weighting function, as it does not contribute to the sampling probability of a single path.

FM(β̂) =

∫ M−3∏
i=1

δ3

(
x⃗R − x⃗S −∆sω̂R −∆sω̂S −∆s

M−3∑
i=1

β̂i −∆sβ̂

)
(B.5)

where I can take

q⃗ =
x⃗S − x⃗R

∆s
− ω̂S − ω̂R

FM(β̂) =
1

∆s3

∫ M−3∏
i=1

δ3

(
q⃗ −

M−3∑
i=1

β̂i − β̂

) (B.6)

Now, I can find the normalizing term KM of an FPI of paths with M segments to be

KM =

∫
dΩFM(β̂) (B.7)

B.1 Notable Properties of the Delta Function

I use a few notable delta function properties in my following derivation, which I list below.
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δ(3)(x⃗ a) =
1

|a|3
δ(3)(x⃗)

δ(3)(x⃗− y⃗) =
δ(1) (|x⃗| − |y⃗|)

|x⃗|2
δ(2)(ˆ⃗x− ˆ⃗y)

δ(f(x⃗)) =
δ(x⃗− x⃗0)

| df
dx
(x⃗0)|

B.2 Small Path Segment Derivations

I now focus on the case where I have three total segments. I begin with three segments as the cases

of one and two-segment paths are uninteresting.

F3(β̂) =
1

(∆s)3
δ3(q⃗ − β̂)

K3 =

∫
dΩF3(β̂)

K3 =
1

(∆s)3

∫
dΩδ3(q⃗ − β̂)

K3 =
1

(∆s)3

∫
dΩ

δ(1)(|q⃗| − |β̂|)
|q⃗|2

δ(2)(ˆ⃗q − β̂)

K3 =
1

(∆s)3
δ(1)(|q⃗| − 1)

∫
dΩδ(2)(ˆ⃗q − β̂)

K3 =
1

(∆s)3
δ(1)(|q⃗| − 1)

(B.8)

Note, I can reduce
∫
dΩδ(2)(ˆ⃗q − β̂) to one, as the integration over dΩ leads to a single value

for β̂ which equals q⃗. Additionally, I have that q⃗ must be of length one due the the constraint

δ(1)(|q⃗| − 1).

In this case, the normalizing term reduces to a one-dimensional delta function that encodes the

boundary conditions of the FPI. With only three segments, the first and last segments are locked

and enforced by the boundary conditions. This leaves a single free segment that must exactly

connect the first and last segment. The delta function in F3 encodes this single valid orientation of
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the free segment.

I now continue with the derivation of F4.

F4(β̂) =

∫
dΩ′ F3(β̂

′ + β̂)

F4(β̂) =
1

(∆s)3

∫
dΩ′ δ3(q⃗ − β̂ − β̂′)

(B.9)

As β̂′ is a unit vector, |q⃗ − β̂| = 1.

F4(β̂) =
1

(∆s)3
δ(1)(|q⃗ − β̂| − 1)

∫
dΩ′ δ(2)

(
q⃗ − β̂

|q⃗ − β̂|
− β̂′

)

F4(β̂) =
1

(∆s)3
δ(1)(|q⃗ − β̂| − 1)

(B.10)

This reduction is due to the definition of the integration of a delta function.

K4 =

∫
dΩF4(β̂)

K4 =
1

(∆s)3

∫
dΩ δ(1)(|q⃗ − β̂| − 1)

(B.11)

I can further reduce this by:

|q⃗ − β̂| =
√
|q⃗|2 + 1− 2

(
q⃗ · β̂

)
dΩ = d(cosθ)dϕ

K4 =
1

(∆s)3

∫
dϕd(cosθ)δ(1)(

√
|q⃗|2 + 1− 2|q⃗|cosθ − 1)

x = cos(θ)

K4 =
2π

(∆s)3

∫ 1

−1

dx δ(1)(
√
|q⃗|2 + 1− 2|q⃗|x− 1)

(B.12)
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Then, by the third delta property:

f(x) =
√
|q⃗|2 + 1− 2|q⃗|x− 1

x⃗0 = |q⃗|/2

f ′(x⃗0) = |q⃗|

K4 =
2π

(∆s)3

∫ 1

−1

dx
δ(1)(x− |q⃗|/2)

|q⃗|

K4 =
2π

(∆s)3
H(2− |q⃗|)
|q⃗|

(B.13)

In this, H() is the Heaviside step function. I will define a recursive approach for evaluating F5

now.

F5(β̂) =

∫
dΩ′ F4(β̂

′ + β̂)

K5 =

∫
dΩ F5(β̂)

(B.14)

I continue the derivation below as I cannot numerically integrate F4(β̂
′ + β̂) in its current form

due to the delta function in F4.

F5(β̂) =

∫
dΩ′ F4(β̂

′ + β̂)

F5(β̂) =
1

(∆s)3

∫
dΩ′

∫
dΩ′′ δ3(q⃗ − β̂ − β̂′ − β̂′′)

(B.15)

As β̂′′ is a unit vector, I must have that |q⃗ − β̂ − β̂′| = 1.
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F5(β̂) =
1

(∆s)3

∫
dΩ′

[
δ(1)

(
|q⃗ − β̂ − β̂′| − 1

)∫
dΩ′′ δ(2)

(
q⃗ − β̂ − β̂′

|q⃗ − β̂ − β̂′|
− β̂′′

)]

F5(β̂) =
1

(∆s)3

∫
dΩ′

[
δ(1)

(
|q⃗ − β̂ − β̂′| − 1

)]
r⃗ = q⃗ − β̂

F5(β̂) =
1

(∆s)3

∫
dΩ′

[
δ(1)

(√
r⃗2 + 1− 2r⃗ · β̂′ − 1

)]
F5(β̂) =

1

(∆s)3

∫
dϕ

∫
d cos θ

[
δ(1)

(√
r⃗2 + 1− 2|r⃗| cos θ − 1

)]
x = cos(θ)

F5(β̂) =
2π

(∆s)3

∫ 1

−1

dx
[
δ(1)

(√
r⃗2 + 1− 2|r⃗|x− 1

)]
F5(β̂) =

2π

(∆s)3
H(2− |r⃗|)
|r⃗|

(B.16)

As I can now numerically integrate F5, I can additionally integrate K5

K5 =

∫
dΩF5(β̂) (B.17)

K5 =

∫
dΩ

2π

(∆s)3
H(2− |q⃗ − β̂|)
|q⃗ − β̂|

(B.18)
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APPENDIX C

VALIDATION OF PATH-PERTURBATION SOLVER*

In my Annals of Nuclear Energy publication, I validated my novel numerical solver by evaluating

my method against two tests that parallel those in the previous work [14], as well as one novel test

that measures how well my solver captures the expected distribution of tangents in all generated

paths [36]. As all three tests focus on the behavior of the numerical solver for a single transport

kernel G (S, x⃗R, ω̂R, x⃗S, ω̂S), rather than an integration over transport kernel evaluations for dif-

ferent boundary conditions, all paths in a single numerical solver will have one specified arclength

S. In this case, absorption acts as an exponential falloff related to the arclength and can thus be

ignored. Thus, for all three tests in this section, I focus on scattering only by setting the absorption

constant of the scene to 0.0.

C.1 Statistical Stationarity of the Geometric Perturbation

The first method used for verification analyzes the statistical stationarity of path weights over

long, sequential sequences of path weights, referred to as weight slices, randomly selected from

within a much larger sequence. This test measures the ability of the proposed solver to generate a

sequence of paths that converges to the same FPI, regardless of the history of path perturbation. To

perform the test, a large number of paths are generated and weighted, producing the path weights

W = {W(P0), ...,W(PN−1}. Then, K random starting indices are selected within the generated

path weights, each representing the starting location for a slice of path weights of length L from

I . For each weight slice Si, the weight of that slice is computed by summing the L path weights

starting at the weight slice’s corresponding starting index, Ki. These generated values are then

presented in a histogram. A set of 108 path weights were generated, and weight slices of lengths

*Reprinted with permission from “Path integral radiative transfer via polyline representation allowing GPU im-
plementation” by Brennen Taylor, John Keyser, Jerry Tessendorf, 2022. Annals of Nuclear Energy, 173, 109098,
Copyright 2022 by Name of Elsevier.
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1000, 2000 and 5000 are presented in Figures C.1, C.2 and C.3. Note that the distribution of weight

slices in the histograms is distinctly log-normal in form.

Figure C.1: Histogram of 100,000 random slices of 1000 consecutive path weights. X-axis
represents the natural log of slice weights.

I found that as the weight slice length L increased from 1000 to 5000, the width µ of the log-normal

fits decreased, corresponding to a convergence of the calculated weight slice weights to the same

solution; this behavior is consistent with the previous solver[14]. From this, I can conclude that

no matter the initial starting path, my method can generate sequences of paths that converge to the

same solution.

C.2 Convergence of the Path Integral

My second validation method focuses on the convergence of my path integral calculation as the

number of paths included increases. While the prior test focused on measuring my path generation

algorithm’s ability to generate sequences of paths whose path integral converges to the solution,
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Figure C.2: Histogram of 100,000 random slices of 2000 consecutive path weights. X-axis
represents the natural log of slice weights.

this test focuses on the entire numerical solver’s ability to converge to a solution. For this experi-

ment, many paths, P0, ...,PN−1, are generated while simultaneously tracking the running average

of all path weights. Figure C.4 shows the result of running the path integral up to a path count

of 5 ∗ 107. The path weight average converges on a stable value somewhere between 1 ∗ 107 and

2 ∗ 107 paths generated, consistent with the previous work[14]. It’s important to note that conver-

gence remains independent of the absorption parameter, as absorption is modeled as an exponential

falloff of path length; thus, the path integral would converge in the same number of paths, and my

absorption setting of 0.0 has no impact on this conclusion.

C.3 Uniform Sampling of Paths

My third and novel validation method measures my numerical solution’s ability to sample path

space without bias. This analysis involves breaking the tangent T̂i of each segment of each path in

a numerical solve run into two components, e0,i and θi. e0,i is the component of tangent T̂i along
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Figure C.3: Histogram of 100,000 random slices of 5000 consecutive path weights. X-axis
represents the natural log of slice weights.

a principal axis z⃗ = (x⃗R − x⃗S)/∆s − ω̂R − ω̂S and is defined in the range [−1, 1]. θi is the

angle around the principal axis z⃗ and is defined in the range [0, 2π]. It’s important to note that the

path sample space is environment specific, defined by the boundary conditions R. For validation,

I carefully constructed an environment such that the boundary conditions are along a single axis;

in this case, R = {x⃗S = {0, 0, 0}, ω̂S = {1, 0, 0}, x⃗R = {10, 0, 0}, ω̂R = {1, 0, 0}}. This

allows for the analytical derivation of the ground truth expected distribution of sampled tangents.

Additionally, due to the symmetry of the environment, the theta distribution is known to be uniform

and thus is not analyzed further. Instead, I focus on the distribution of e0 values.

As seen in Figure C.5, my method closely captures the expected distribution of e0 values for all

target arclength values.
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Figure C.4: Convergence of the average path weight versus the number of paths in the
average. Y-axis represents the natural log of average weight.

C.4 Functional Forms

I provide the following functional form I utilized for calculating the ground truth uniform sam-

pling of paths. This ground truth represents the expected distribution of tangents for all curves of

specified arclength generated for the carefully constructed environment in which the start and end

directions all lie on the ˆ⃗x-axis and the start and end positions are located 10 units apart.

I desire to develop a PDF for selecting a single tangent weight T̂ for any path P with boundary

conditions R. For this, I focus only on the delta function portion of the transport kernel and can

ignore the weighting portion, as it simply acts on the path and does not restrict the path.
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Arclength of 12. Note the Y-axis log scale.

Arclength of 50. Note the Y-axis log scale.
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Arclength of 100. Note the Y-axis log scale.

Arclength of 1000. Note the Y-axis log scale.

Figure C.5: Visualization of ground truth (red) and histogram of the experimental (blue)
distribution of e0 values for experiment runs of arclength S = 12, 50, 100, and 1000 units.

The fit improves as the arclength increases from the minimum possible arclength defined by
the experiment constraints toward infinity.
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G (S, x⃗R, ω̂R, x⃗S, ω̂S)
′ = δ

(
x⃗R − x⃗S −

∫
β̂

)
δ
(
β̂(0)− ω̂S

)
δ
(
β̂(S)− ω̂R

)
× δ (r⃗(0)− x⃗S) δ (r⃗(S)− x⃗R)

=

(
1

∆s

)3 ∫ M−2∏
i=1

δ

(
q⃗ −

M−2∏
i=1

β̂i

)

I can then take the PDF of selecting a single valid tangent β̂ to be

PDFM(β̂) =

(
1

∆s

)3 ∫ M−2∏
i=2

δ

(
q⃗ − β̂ −

M−2∏
i=2

β̂i

)

I refer to the Heaviside step function as H(x). I define a function fM of a given order M , as well

as two base cases f3 and f4. In this function, each increase in order represents an increase in the

number of discrete segments per path by 1.

fM(r) =

∫ r+1

|r−1|
dr′fM−1(r

′)

f3(r) = H(3− r)(3− r)− 3H(1− r)(1− r)

f4(r) = H(4− r)
(2− r)2

2
−H(2− r)

(2− r)2

2
+H(2− r)

3r2

2

(C.1)

I then define a function LM(e0, q⃗), which for a specified arclength S, and alignment parameter e0

between−1 and 1, calculates the relative likelihood that a tangent T̂ is sampled such that T̂ ·q⃗ = e0.

Note the arclength parameter S and the alignment parameter e0 are unrelated.
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q⃗ =
x⃗R − x⃗S

∆s
− ω̂R − ω̂S

LM (e0, |q⃗|) =
(2π)M−1fM

(√
2e0q + q2 + 1

)
√
2e0q + q2 + 1

(C.2)

Finally, I evaluate LM=200 for specified arclength values of 12, 50, 100, and 1000, and on a full

range of e0 = [−1, 1], generating the expected values for my uniform sampling of paths analysis in

section 4.3 which accounts for all possible segment tangent directions of the specified arclength.

I then scale this ground truth to fit the minimum and maximum of my experimental data as I

lack a true normalizing term. This validation method demonstrates that the presented perturbation

method generates sets of paths with the expected distribution of tangents.
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APPENDIX D

DERIVATION OF SIMPLIFIED WEIGHT ANALYTICAL SOLUTION

D.1 General Construction

In this chapter, I discuss deriving an exact, analytic solution of the path integral for two, three, and

four-segment paths weighted by a simplified weighting function. Additionally, I present the recur-

sive manner in which the solution for higher segment count paths could be computed recursively

using the solutions for smaller segment count paths.

I begin with a modified path integral form with a simplified weighting kernel.

G (S, x⃗R, ω̂R, x⃗S, ω̂S) =

∫
dΩ δ

(
x⃗R − x⃗S −

∫ S

0

ds′β̂(s′)

)
(D.1)

δ
(
β̂(0)− ω̂S

)
δ
(
β̂(S)− ω̂R

)
× δ (r⃗(0)− x⃗S) δ (r⃗(S)− x⃗R)

× exp

(
− 1

∆sµσb

∫ S

0

ds′|β̂(s′)|2
)

I can easily simplify this by defining α = 1/(∆sµσb), leaving
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G (S, x⃗R, ω̂R, x⃗S, ω̂S) =

∫
dΩ δ

(
x⃗R − x⃗S −

∫ S

0

ds′β̂(s′)

)
(D.2)

× δ
(
β̂(0)− ω̂S

)
δ
(
β̂(s)− ω̂R

)
× δ (r⃗(0)− x⃗S) δ (r⃗(S)− x⃗R)

× exp

(
−α
∫ S

0

ds′|β̂(s′)|2
)

I now discretize the formulation of G for M segments, GM .

GM(S, x⃗R, ω̂R, x⃗S, ω̂S) =

∫ (M−2∏
i=1

dΩi

)
δ

(
x⃗R − x⃗S −∆s(ω̂S + ω̂R)−∆s

M−2∑
i=1

β̂i

)
(D.3)

× exp

(
−α

M−2∑
i=0

(
1− β̂i+1 · β̂i

))

Note I drop all other boundary condition-enforcing delta functions, as these only enforce the place-

ment of the FPI-RT in space and have no impact on the numerical solution. Defining the follow-

ing

q⃗ =

(
x⃗R − x⃗S

∆s
− ω̂S + ω̂R

)
(D.4)

I simplify GM further by substituting q⃗ in, as well as by distributing −α
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GM

(
q⃗, β̂

)
=

exp(−α(M − 1))

∆s3

∫ (M−2∏
i=1

dΩi

)
δ

(
q⃗ −

M−2∑
i=1

β̂i

)
(D.5)

× exp

(
α

M−2∑
i=0

(
β̂i+1 · β̂i

))

D.2 Analytic Derivation of Small Segment Count Paths

D.2.1 Two Segments

First, I have the equation for G2

G2 (q⃗) =
δ (q⃗)

(∆s)3
exp (−α) exp

(
α
(
β̂1 · β̂0

))
(D.6)

As this represents the analytical solution for paths with exactly two segments, I must have that in

a valid environment, β̂ = ω̂S and β̂1 = ω̂R. In doing so, I obtain the following.

G2 (q⃗) =
δ (q⃗)

(∆s)3
exp (−α) exp (α (ω̂S · ω̂R)) (D.7)

However, to derive the solution for higher path counts, I allow segment β̂1 to be specified freely.

G2

(
q⃗, β̂

)
=

δ (q⃗)

(∆s)3
exp (−α) exp

(
α
(
β̂ · ω̂S

))
(D.8)

I can exactly reproduce the non-recursive case by calling G2 (q⃗, ω̂R).
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D.2.2 Three Segments

I can then use the recursive relation to derive G3 using G2.

I have

G3

(
q⃗, β̂

)
= e−α

∫
dΩ′ G2

(
q⃗ − β̂′, β̂′

)
exp

(
α
(
β̂ · β̂′

))
(D.9)

I plug in G2 to obtain

G3

(
q⃗, β̂

)
= e−α

∫
dΩ′ 1

(△s)3
δ
(
q⃗ − β̂′

)
exp (−α) (D.10)

× exp
(
α
(
β̂′ · ω̂S

))
exp

(
α
(
β̂ · β̂′

))
=

e−2α

(∆s)3

∫
dΩ′ δ

(
q⃗ − β̂′

)
exp

(
α β̂′ ·

(
β̂ + ω̂S

))
(D.11)

Next, I use the following definition of the three-dimensional delta function.

δ
(
q⃗ − β̂

)
= δ

(
|q⃗| − |β̂|

)
δ(2)

(
q̂ − β̂

)
(D.12)

I use this definition for simplification and q = |q⃗|, yielding the following.
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G3

(
q⃗, β̂

)
=

e−2α

(∆s)3

∫
dΩ′ δ

(
|q⃗| − |β̂′|

)
δ(2)

(
q̂ − β̂′

)
exp

(
α β̂′ ·

(
β̂ + ω̂S

))
(D.13)

=
e−2α

(∆s)3

∫
dΩ′ δ (q − 1) δ(2)

(
q̂ − β̂′

)
exp

(
α β̂′ ·

(
β̂ + ω̂S

))
(D.14)

Referencing the three-segment path environment 5.2c, it is easy to see that again, the environment

is constrained such that only one valid path exists. One can see in the above equation that the

second delta function enforces that q̂ and β̂′ must be equal. Thus, when integrating over dΩ, I have

that q̂ must equal β̂′. Using this, I continue to simplify

G3(q⃗, β̂) =
e−2α

(∆s)3
δ (q − 1) exp

(
α
(
q̂ ·
(
ω̂S + β̂

)))
(D.15)

Thus, I have arrived at my final form for G3. As expected, the final form is constrained to only

allow for a single valid path, seen with the presence of the delta function.

D.2.3 Four Segments

I continue and derive the form for G4. As seen in 5.3, this is the smallest segment count path that

allows for more than one valid path. If solving numerically, I would need to integrate over all

possible paths. However, it is also possible to derive the exact analytical solution.

I begin with the following recursive relation.

G4(q⃗, β̂) = e−α

∫
dΩ′G3

(
q⃗ − β̂′, β̂′

)
exp

(
α
(
β̂ · β̂′

))
(D.16)
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Substituting the equation for G3 and performing basic simplification, I obtain

G4(q⃗, β̂) = e−α

∫
dΩ′ e−2α

(∆s)3
δ
(
|q⃗ − β̂′| − 1

)
(D.17)

× exp
(
α
(
q⃗ − β̂

)
·
(
ω̂S + β̂′

))
exp

(
α
(
β̂ · β̂′

))
=

e−3α

(∆s)3

∫
dΩ′ δ

(
|q⃗ − β̂′| − 1

)
× exp

(
α
(
q⃗ − β̂

)
·
(
ω̂S + β̂′

))
exp

(
α
(
β̂ · β̂′

))

Next, using the following

(
q⃗ − β̂′

)
·
(
ω̂S + β̂′

)
= (q⃗ · ω̂S) +

(
q⃗ · β̂′

)
−
(
β̂′ · ω̂S

)
− |β̂′|2 (D.18)

= (q⃗ · ω̂S) +
(
q⃗ · β̂′

)
−
(
β̂′ · ω̂S

)
− 1 (D.19)

I continue to simplify the previous form of G4.
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G4

(
q⃗, β̂

)
=

e−3α

(∆s)3

∫
dΩ′ δ

(
|q⃗ − β̂′| − 1

)
(D.20)

× exp
(
α
(
q⃗ − β̂

)
·
(
ω̂S + β̂′

))
exp

(
α
(
β̂ · β̂′

))
=

e−3α

(∆s)3

∫
dΩ′ δ

(
|q⃗ − β̂′| − 1

)
× exp

(
α
(
β̂ · β̂′ + q⃗ ·

(
ω̂S + β̂′

)
−
(
β̂′ · ω̂S

)
− 1
))

=
e−4α

(∆s)3

∫
dΩ′ δ

(
|q⃗ − β̂′| − 1

)
× exp

(
α
(
β̂ · β̂′ + q⃗ ·

(
ω̂S + β̂′

)
−
(
β̂′ · ω̂S

)))
=

e−4α

(∆s)3

× exp (α (q⃗ · ω̂S))

∫
dΩ′ δ

(
|q⃗ − β̂′| − 1

)
exp

(
α
(
β̂′ ·

(
β̂ + q⃗ − ω̂S

)))

To continue my derivation, next focus on the delta function δ
(
|q⃗ − β̂′| − 1

)
.

0 = |q⃗ − β̂′| − 1 (D.21)

1 = |q⃗ − β̂′|2 (D.22)

1 = |q⃗|2 + |β̂′|2 − 2β̂′ · q⃗ (D.23)

1 = q2 + 1− 2β̂′ · q⃗ (D.24)

0 = q2 − 2β̂′ · q⃗ (D.25)

Next, I define r = β̂′ · q⃗, and substitute to obtain
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0 = q2 − 2r (D.26)

2r = q2 (D.27)

r =
q2

2
(D.28)

Thus, β̂′ · q⃗ = q2

2
. However, it is important to note that this is true only when q is constrained.

Focusing on the domain of the dot product β̂′ · q⃗, I find that [−q, q] = q2

2
. Simplifying, I find that

[−2, 2] = q. However, as q is the length of the vector q, it must be positive. Thus, q ≤ 2 must be

true. I can enforce this via a Heaviside step function H(2− q).

I continue simplifying G4 with these new findings. In particular, I focus on extracting as much

out of the solid angle as possible, i.e., any terms that do not depend on β̂′ or that are enforced by

adding H(2− q).

G4

(
q⃗, β̂

)
=

e−4α

(∆s)3
exp (α (q⃗ · ω̂S)) (D.29)

×
∫

dΩ′ δ
(
|q⃗ − β̂′| − 1

)
exp

(
α
(
β̂′ ·

(
β̂ + q⃗ − ω̂S

)))
=

e−4α

(∆s)3
exp (α (q⃗ · ω̂S))H (2− q) (D.30)

×
∫

dΩ′ δ
(
|q⃗ − β̂′| − 1

)
exp

(
α
(
β̂′ · q⃗

))
exp

(
α
(
β̂′ ·

(
β̂ − ω̂S

)))
=

e−4α

(∆s)3
exp (α (q⃗ · ω̂S))H (2− q) exp

(
α
(
β̂′ · q⃗

))
(D.31)

×
∫

dΩ′ δ
(
|q⃗ − β̂′| − 1

)
exp

(
α
(
β̂′ ·

(
β̂ − ω̂S

)))
=

e−4α

(∆s)3
exp(α(q⃗ · ω̂S))H(2− q)exp(α

q2

2
) (D.32)

×
∫

dΩ′ δ(|q⃗ − β̂′| − 1) exp(α(β̂′ · (β̂ − ω̂S)))
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Next, I continue by focusing on simplifying the solid angle integration. I perform this by splitting

and separating the solid angle into two components, r = β̂′ · ˆ⃗q, which represents the amount β̂′ is

aligned with q⃗, and θ, representing the rotation of β̂′ around q⃗. Additionally, let us define a vector

perpendicular to q⃗ called q⃗⊥, such that β̂′ = rˆ⃗q +
√
1− r2ˆ⃗q⊥.

First, I rewrite G4 in terms of this separated solid angle.

G4(q⃗, β̂) =
e−4α

(∆s)3
exp(α(q⃗ · ω̂S))H(2− q)exp(α

q2

2
) (D.33)

×
∫ 2π

0

∫ π

0

sin(ϕ) dϕ dθ δ(|q⃗ − β̂′| − 1) exp(α(β̂′ · (β̂ − ω̂S)))

=
e−4α

(∆s)3
exp(α(q⃗ · ω̂S))H(2− q)exp(α

q2

2
) (D.34)

×
∫ 2π

0

∫ π

0

sin(ϕ) dϕ dθ δ(
√

q2 + 1− 2qr − 1) exp(α(β̂′ · (β̂ − ω̂S)))

I can then rewrite this in terms of r. For this, I also solve for r in
√
q2 + 1− 2qr − 1 = 0, due

to the delta function condition. This results in r = q
2
, thus the delta function becomes, with the

change of variable, δ(r− q
2
)

q
.
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G4(q⃗, β̂) =
e−4α

(∆s)3
exp(α(q⃗ · ω̂S))H(2− q)exp(α

q2

2
) (D.35)

×
∫ 2π

0

∫ 1

−1

dr dθ
δ(r − q

2
)

q
exp(α(β̂′ · (β̂ − ω̂S)))

=
e−4α

(∆s)3
exp(α(q⃗ · ω̂S))

H(2− q)

q
exp(α

q2

2
) (D.36)

×
∫ 2π

0

dθ exp(α(

(
q⃗

2
+

√
1− q2

4
q̂⊥

)
· (β̂ − ω̂S)))

=
e−4α

(∆s)3
exp(α(q⃗ · ω̂S))

H(2− q)

q
exp(α

q2

2
)exp(α(

q⃗

2
· (β̂ − ω̂S))) (D.37)

×
∫ 2π

0

dθ exp(α(

(√
1− q2

4
q̂⊥

)
· (β̂ − ω̂S)))

=
e−4α

(∆s)3
exp(α(q⃗ · ω̂S))

H(2− q)

q
exp(α

q2

2
)exp(α(

q⃗

2
· (β̂ − ω̂S))) (D.38)

×
∫ 2π

0

dθ exp(α(

(
|β̂ − ω̂S|

√
1− q2

4
cos(θ)

)
))

I am now left with the remaining integration of the angle around q⃗.

G4

(
q⃗, β̂

)
=

e−4α

(∆s)3
exp (α (q⃗ · ω̂S))

H (2− q)

q
exp

(
α
q2

2

)
exp

(
α
(
β̂ − ω̂S

) q⃗

2

)
(D.39)

×
∫ 2π

0

dθ exp

(
α |β̂ − ω̂S|

√
1− q2

4
cos(θ)

)
(D.40)

Now, I simplify using the following definition, where I0 is the modified Bessel function of the first

kind.

I0(x) =

∫ 2π

0

dϕ exp(x cos(ϕ)) (D.41)
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Using this rule, as I have a remaining portion of G4 of the form
∫ 2π

0
dϕ exp (x cos (ϕ)), I continue

to simplify.

G4

(
q⃗, β̂

)
=

e−4α

(∆s)3
exp (α (q⃗ · ω̂S))

H (2− q)

q
exp

(
α
q2

2

)
×
∫ 2π

0

dϕ′ exp

(
α
(
β̂ − ω̂S

)√
1− q2

4
cos(ϕ′)

)
(D.42)

=
e−4α

(∆s)3
exp (α (q⃗ · ω̂S))

H (2− q)

q
exp

(
α
q2

2

)
× 2πI0

(
α
(
β̂ − ω̂S

)√
1− q2

4

)
(D.43)

Finally, I have obtained the simplified form of G4, and thus an exact analytical solution for cal-

culating the FPI-SW for paths of four segments. Unfortunately, as seen by the complexity of the

derivation of G4, I am unable to derive higher order terms of G. Instead, I numerically integrate

G4 to produce G5 and G6 using the recursive definition of G.
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