

APPROACHES TO TEST SET GENERATION

USING BINARY DECISION DIAGRAMS

A Thesis

by

JAMES WINGFIELD

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2003

Major Subject: Computer Engineering

 Approved as to style and content by:

M. Ray Mercer
(Chair of Committee)

 A. L. Narasimha Reddy
(Member)

Michael Grimaila
(Member)

 Chanan Singh
(Head of Department)

APPROACHES TO TEST SET GENERATION

USING BINARY DECISION DIAGRAMS

A Thesis

by

JAMES WINGFIELD

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

December 2003

Major Subject: Computer Engineering

 iii

ABSTRACT

Approaches to Test Set Generation

Using Binary Decision Diagrams. (December 2003)

James Wingfield, B.S., Texas A&M University

Chair of Advisory Committee: Dr. M. Ray Mercer

This research pursues the use of powerful BDD-based functional circuit analysis to

evaluate some approaches to test set generation. Functional representations of the circuit

allow the measurement of information about faults that is not directly available through

circuit simulation methods, such as probability of random detection and test-space

overlap between faults. I have created a software tool that performs experiments to

make such measurements and augments existing test generation strategies with this new

information. Using this tool, I explored the relationship of fault model difficulty to test

set length through fortuitous detection, and I experimented with the application of

function-based methods to help reconcile the traditionally opposed goals of making test

sets that are both smaller and more effective.

 iv

 DEDICATION

To Frank and Shirley Wingfield, my first teachers.

 v

 TABLE OF CONTENTS

Page

ABSTRACT ... iii

DEDICATION ..iv

TABLE OF CONTENTS ...v

LIST OF FIGURES..vii

LIST OF TABLES ... viii

INTRODUCTION..1

Manufacture Testing ..1
Computational Problem..2

TEST GENERATION..4

Creating a Fault List...4
Fault Targeting Methods ..5
Generating a Test for a Given Fault ...5

BINARY DECISION DIAGRAMS...8

Space Complexity of BDDs ...8
Algorithmic Benefits of BDDs...11

FAULT MODEL DIFFICULTY AND TEST SET SIZE..13

Fortuitous Detection...13
Detection Probability..13
Test Set Sizes ...19
Interpretations...20

FUNCTION-BASED DYNAMIC COMPACTION..21

Experimental Setup ..23
Results ..25
Interpretations...28

 vi

Page

sByDDer...30

History of Development ...30
Latest Version ..31

SUMMARY AND CONCLUSIONS...34

REFERENCES...36

VITA ..38

 vii

 LIST OF FIGURES

Page

Figure 1: Test Set Generation Algorithm...4

Figure 2: Binary Decision Diagram of (A*B) + C, Showing A=1, B=0, C=1...................8

Figure 3: Binary Tree Depicting Levels...9

Figure 4: BDD for XOR Function..10

Figure 5: Cumulative Excitation Probability for Stuck-At Faults....................................14

Figure 6: Cumulative Observation Probability for Stuck-At Faults16

Figure 7: Cumulative Detection Probability for Stuck-At Faults17

Figure 8: Cumulative Excitation Probability for Transition Faults..................................18

Figure 9: Cumulative Detection Probability for Transition Faults18

Figure 10: Pattern-Based Dynamic Compaction Algorithm ..21

Figure 11: Function-Based Dynamic Compaction Algorithm ...22

 viii

 LIST OF TABLES

Page

Table 1: Test Set Lengths for Stuck-At and Transition Fault Coverage..........................19

Table 2: Test Set Lengths for Stuck-At Fault Targeting..26

Table 3: Test Set Lengths for Transition Fault Targeting..28

1

INTRODUCTION

Manufacture Testing

Since the invention of the integrated circuit in 1958, the microchip manufacturing

industry has expanded to become a leading part of the world’s economy. As in any

successful business, manufacturers of integrated circuits must strive to satisfy their

customers by delivering products that perform as specified. This policy is founded in the

motivation of businesses to retain or increase their customer base in an effort to increase

profit.

The process of manufacturing integrated circuits is very sensitive to disturbances from

the manufacturing environment and variations in the materials used in the circuit. Such

variations are not avoidable in practice, and they produce variations among different

integrated circuits that are manufactured to achieve the same product. To deliver

products that operate within the performance specifications promised to the customer,

manufacturers must test the integrated circuits that they produce to ensure that variations

do not cause the circuits to perform in an unacceptable fashion. Unacceptable products

(also called ‘parts’) are labeled as defective, and the variations that cause the

unacceptable performance are called defects.

For devices as complicated as integrated circuits, there could be many thousands of ways

for a product to fail due to a defect in the circuit. Each defect that could occur in a

digital integrated circuit has its own set of tests that can detect the defect. Manufacturers

can detect all possible defects in a combinational circuit by applying all possible tests to

the digital circuit; however, the test space size is exponentially related to the number of

circuit inputs. For example, a circuit with as few as 20 inputs has more than a million

This thesis follows the style and format of IEEE Transactions on Automatic Control.

2

possible binary input combinations (220= 1,048,576). This means that the number of

tests required to exhaust the test space does not scale well for circuits with more than a

few inputs.

Limitations in time and equipment make exhaustive testing infeasible for manufacturers.

Therefore, manufacturers must choose a subset of all possible tests to detect as many

defects as they can with the finite testing resources they have. In an effort to develop

algorithms to accomplish this task, much research has been done to explore the

relationship of the space of all possible defects in a circuit and the space of all possible

tests to detect the defects. The goal of this research area is to discover more information

about the theoretical nature of defects and test set coverage.

Computational Problem

Choosing a set of tests that detect a number of given defects while minimizing the size

of the test set requires knowledge of which tests detect which defects. Since integrated

circuits are manufactured in a non-discreet domain (the real world), each location in a

manufactured circuit can have an infinite number of possible variations from the

intended specifications. Even if we define the term ‘defect’ to refer only to such

variations that exceed an allowable threshold (change the digital value of a node, for

example), there are many possible ways a circuit can be defective at each point in the

physical circuit layout. This fact, combined with the complexity of physical layout

parameters, makes the problem of determining which tests will detect each defect very

difficult. To simplify the problem, some researchers use logical models of the circuit

instead of physical layout information, along with logical models of defects called faults.

The use of such models simplifies circuit analysis by allowing calculations to be

performed in the domain of logic functions. However, the mapping of physical defects

to fault models is not one-to-one; there may be many fault models of various

complexities to describe a particular defect. Nonetheless, simplifications are made to

3

reduce the computational requirement, and simple fault models are often used to create

sets of test patterns.

Even if we work in the realm of logical circuit models and faults, the problem of

producing minimized test set sizes is essentially a covering problem in two dimensions.

If a matrix of test patterns vs. faults is created, with all possible test patterns listed as

rows of the matrix, and all desired faults listed in columns, then a single bit could

represent whether a given pattern detects a given fault at the intersection of the

corresponding matrix row and column. This would yield complete information of the

problem, but would require O(m*2n) space, with n = # inputs, and m = # faults. Even for

small circuits this quickly grows beyond reasonable size; yet this is only the starting

information for the real problem of choosing an optimal subset of patterns to detect all of

the desired faults, which is NP-Hard [1].

4

 TEST GENERATION

Regardless of the computational complexity, test patterns must be generated, so the

problem has been approached in many ways. Test pattern sets are often generated

according to the algorithm in Figure 1.

Figure 1: Test Set Generation Algorithm

This algorithm is a framework of the test generation process. It does not realize an

optimum solution to the test generation problem, but each part of this algorithm can be

optimized in various ways to decrease the size of the test set that is produced.

Creating a Fault List

To create a fault list, the fault models of interest must be selected. As mentioned earlier,

various fault types may be used to model physical defects; thus the choice of fault

models to use in test generation is influenced by the type of defects that the user desires

to detect. In addition, for a given circuit structure and fault type, some faults in the

circuit will subsume other faults. This means that the fault list can be collapsed by

subsumption, and some test generation applications will collapse fault lists to speed up

the algorithm [2].

 Create a Fault List

 Begin Loop

 Choose a Target Fault from the Fault List

 Generate a Test Pattern for the Target Fault

 Simulate the Test Pattern to determine what faults are detected

 Repeat Loop until all faults have been detected

5

Fault Targeting Methods

Choosing a target fault in the test generation algorithm can also be optimized for better

performance. The target fault may be chosen randomly from the faults that have not yet

been detected, or the choice of target may be based on other information, such as

whether the fault has been previously identified as a hard to detect fault. Another fault

targeting strategy is to attempt to target a fault that is compatible with the test pattern

chosen for the previously targeted fault. This is made possible by the fact that, for most

circuits, many faults do not require fully-specified test patterns to detect the fault. This

means that there will be some parts of the generated test pattern that don’t have to be set

to a particular value (“don’t care” bits). These “don’t care” bits might be assigned

particular values such that the same test pattern is designed to target multiple compatible

faults. This method is called dynamic compaction [3].

There is also a method to compact the test set after it has been produced. This can be

done by examining which faults are detected by each pattern, and eliminating patterns

that detect faults which are already caught by other patterns. This method is referred to

as static compaction [4].

Due to the difference between physical defects and fault models, generating test sets to

achieve multiple detections of each fault can yield test pattern sets that detect more

defects [5]. This idea is practiced in most test generation software, and has come to be

known as multi-detect testing.

Other approaches to generating test patterns have also been explored and published,

including approaches that choose a test pattern first rather than targeting a specific fault,

such as in [6].

Generating a Test for a Given Fault

Once a target fault is chosen, generating a test pattern to detect the fault can be done in

many ways. The basic constraints of this sub-problem are that logic values can only be

6

assigned to the circuit inputs, and the assignment made must cause the circuit to enter a

state that would be altered in an observable way if the fault were present in the circuit.

Thus the generated test pattern must meet two conditions: fault excitation and fault

observation. Excitation is the set of conditions that are required to cause the fault to

produce an error in the circuit. Observation is the set of conditions that are required to

allow that error to propagate to the circuit outputs so that the error may be observed.

For example, consider the stuck-at fault model, which is commonly used in test set

generation for circuits. This model explains one effect of a defect that causes a node in

the circuit to retain the same logic value, regardless of its stimulus. A stuck-at one fault

for a particular circuit node would model the effect of that node exhibiting a value of

logic one for any input combination. Of course, this fault would not cause any error in

the circuit for input combinations that are supposed to set the node to a one, but it would

cause an error for input combinations that are expected to produce a logic zero at the

node. Thus, to excite the stuck-at one fault, the input values must be chosen to produce

the erroneous state, in which a non-faulty circuit would expect a logic zero at the node.

To observe the fault, the faulty node value must be propagated through the circuit to one

of the circuit outputs. This will cause the outputs of a non-faulty circuit to differ from a

faulty circuit, thus allowing the observation of a fault at that node. Only by meeting

both the excitation requirement and the observation requirement can a fault be detected.

Many test generation tools use simulation-based methods to generate tests that meet the

requirements for detecting a given fault. Such tools work with a gate structure of the

circuit by assuming that a point in the gate structure must be set to a given value, then

iterating backwards through the circuit toward the inputs, making assignments to nodes

along the way to cause the assumed condition to be valid. For example, if the output of

an AND gate is assumed to have a logic one value, then the gate inputs must all be set to

logic one. However, if the output of an OR gate is assumed to have a logic one value,

the only constraint is that at least one of the gate inputs must be a logic one. As the

algorithm works toward the gate inputs, nodes are encountered that connect the inputs of

7

multiple gates together (these are called fan-outs). Such nodes may show that the

algorithm has attempted to set the same node to different logic values, which is not

possible and indicates a contradiction in some of the assignments made by the algorithm.

Most circuits have fan-outs, thus the circuit-walking algorithms must allow backtracking

to exercise alternate assignment options.

Test generation can also be performed using function-based analysis of the circuit. By

calculating and storing a representation of the Boolean function at each node of the

network, a test generation tool can produce the information necessary to evaluate the

detection requirements of a fault model. The excitation requirement for a stuck-at one

fault, for example, can be represented by the Boolean function that will yield a logic zero

at the fault location. The Boolean functions can be thought of as a way to describe the

subset of possible input assignment combinations that will satisfy some constraint.

Thus, a Boolean function can also be formed to represent the set of input combinations

that will satisfy observation requirements, and the excitation and observation functions

can be combined with a Boolean AND operation (intersection operation of sets) to form

a detection function. Function-based analysis methods have the advantage of evaluating

total information about the faults, since the Boolean functions specify the entire set of

input combinations meeting their respective criteria. Likewise, they have the

disadvantages that come with working on such detailed information, including large data

structure sizes and high computational requirements.

In commercial applications, the demanding requirements of function-based analyses

make such methods impractical. This is why most test generation tools are simulation-

based. However, using function-based analyses can provide insight into the nature of

fault models and their relationship to test generation methods. It is for this reason that

my research focuses on the application of function-based analysis to fault modeling and

test generation.

8

 BINARY DECISION DIAGRAMS

Previous research has developed a compact way to store and manipulate Boolean logic

functions using directed acyclic graphs known as Binary Decision Diagrams (BDDs) [7]

[8]. These diagrams have nodes connected by paths to represent the dependency of the

logic function on various switching variables. For example, Figure 2 shows a simple

BDD that represents the function F= (A*B) + C. The topmost node of the tree is called

the root node. From the root node, a path can be followed to the bottom of the tree by

choosing one of the two branches at each node along the path. The choice of which

branch to follow is decided by the value of the variable that labels the node. For

example, if we assume A=1, B=0, C=1, then we would follow the path indicated by the

arrows in Figure 2, yielding a result of logic 1 for the function.

Figure 2: Binary Decision Diagram of (A*B) + C, Showing A=1, B=0, C=1

Space Complexity of BDDs

We can examine the space complexity of a BDD by dividing it into levels, as depicted in

Figure 3. In the worst case, each level of nodes in a binary tree could be twice the size

A

C

B

0 1

10

0 1

10

9

of the level above it since each node has two branches. BDDs can have a level of nodes

for each variable, so this leads to the initial estimate that a binary tree representation of a

logic function might require O(2n) nodes where n is the number of variables. However,

for BDDs that represent binary logic functions, there can be only 2 terminal nodes at the

bottom of the tree (logic zero and logic one), thus the size of each level must reduce as

the levels approach the terminal level, and the worst-case size will not actually reach the

worst-case size of a full binary tree, though the order of space complexity may remain

the same. Since the data structure size can grow exponentially as the number of

variables increases, this method appears to be impractical for use on circuits where the

number of variables is determined by the number of circuit inputs, and this number can

grow beyond 40 for commercial circuits.

Figure 3: Binary Tree Depicting Levels

In practice, however, the sizes of BDDs used to represent functions at nodes in a circuit

rarely approach the worst-case size. This is due to many reasons, including the fact that

most functions do not depend on every variable on every path through the BDD.

Consider again Figure 2. In this BDD, the path for A=0 does not contain a node for B,

since it doesn’t depend on the value of B to make a difference in the result of the

function. We can describe this situation by saying that this path of the BDD is vacuous

in variable B, and this happens whenever both branches from a node can point to the

A

C

BB

C C C

Level 1

Level 2

Level 3

10

same child node. For every vacuous (missing) variable, there is only one child directly

below the vacuous variable rather than 2 separate children, so the size of the BDD is

reduced by 2k, where k is the number of levels below the vacuous variable. Fortunately

this occurs often in practical applications.

Another way that the BDD structure lends itself to reducing its space requirement is by

the reuse of sub-trees. If there is some branch that leads to a child node that has the

same descendant structure as another node in the same BDD, there is no need to have

both copies of the same sub-tree because all branches that point to the duplicated

structure can point to the same node at the root of that structure. To demonstrate this

idea, consider the BDD structure for an XOR function of 3 variables (A XOR B XOR

C), shown in Figure 4. In this structure, the C nodes are reused twice each, reducing the

space requirement by 2 nodes. The lattice pattern of this XOR structure continues for an

arbitrary number of variables; such that the size of the XOR BDD is linearly related to

the number of variables (1+2*n) rather than exponentially related as in the worst case

space complexity.

Figure 4: BDD for XOR Function

A

B

0 1

10

1 0
B

0 1

C1 0
C

0 1

11

Algorithmic Benefits of BDDs

In addition, there are other benefits to the BDD structure that can reduce its space

requirements in practice. An inherent advantage of the BDD structure is that the inverse

of a function can easily be attained by simply swapping the logic zero and logic one

terminal nodes. Thus, finding the inverse of an arbitrary BDD can be done in constant

time.

Another useful task when working with functions is to calculate the number of variable

assignment combinations (also called minterms) that lead to logic zero or logic one.

This calculation can be performed by a simple algorithm that operates on the BDD

structure. Each branch coming from a BDD node represents the assignment of the

variable that labels that node. When an assignment to a variable is made, it reduces the

number of possible remaining combinations by a factor of 2. Graphically, this can be

illustrated by considering that half of the minterms at a given node will follow one of the

node’s branches, and the other half will follow the other branch. Thus, a simple

recursive algorithm can be used to calculate the minterms that go to a logic one terminal

node by starting at the root node with a count of the total number of possible minterms

(2n), and divide the count by 2 to determine the number of minterms at each of the child

nodes. Since BDDs allow multiple branches to point to the same node (sub-tree reuse as

described earlier), the algorithm must allow summing the minterm counts that come to a

node from multiple paths. When the algorithm has finished working on all the nodes in

the BDD, the minterm count at the terminal nodes can be recalled to yield the number of

minterms for the function. By performing the counting operation with a breadth-first,

non-repeating search of the tree, the minterm counts can be calculated in linear time

(O(n) where n is the number of nodes). In the environment of function-based circuit

analysis, minterm counting can be used to count the number of circuit input

combinations that will satisfy the detection requirements for a fault.

To be useful in circuit analysis, there must be a way to perform logical operations

between BDD structures, such as AND, OR, and XOR. These can be done with

12

reasonable efficiency according to the algorithms described in [8], as long as the BDD

structure is in a canonical form. Reduced BDDs are canonical if they follow a constant

ordering of variables in the structure levels. Such BDDs are called Ordered Binary

Decision Diagrams (OBDDs). An additional benefit of canonical forms is that they

allow easy comparisons between OBDDs to determine equivalence of functions.

13

 FAULT MODEL DIFFICULTY AND TEST SET SIZE

Fortuitous Detection

Traditionally, test pattern sets are generated to detect nearly all stuck-at type faults in a

circuit. For commercial circuits, the number of faults can grow beyond 100,000.

However, the test pattern set that detects all of these faults is much smaller than the

number of faults. In the test generation process of Figure 1, several faults may be

chosen as target faults before the algorithm is complete, but since each test pattern that is

generated detects more than just the targeted faults, it is not necessary to target every

fault. These extra detections can be called fortuitous detections, since they happen

consequentially. It is because of fortuitous detection that test pattern sets of reasonable

size can be generated in the traditional simulation-based manner to detect large numbers

of faults.

If the type of fault model is changed, but the same test generation procedure is used, the

number of fortuitous detections may change and thus the length of the generated test set

will change. Intuitively, if a fault model is more difficult to detect given a random test

pattern, it is less likely that the faults will be fortuitously detected, and more test patterns

will be required to detect all the faults. My first major experiment was to test this theory

and investigate the importance of fortuitous detection. To accomplish this task, I

examined test set sizes and the probability of detection using different fault models. The

difficulty of detecting a fault given a random test pattern can be measured using a

function-based circuit analysis tool, and the same tool can be used to generate test sets

according to the single-target test generation process.

Detection Probability

Using a function-based circuit analysis tool, I computed the Boolean functions that

represent the requirements for detection of stuck-at and transition type faults for several

14

benchmark circuits. As described earlier, these functions can be used to count the

number of input assignment combinations (possible test patterns) that will detect the

faults. By dividing this count by the total number of possible input combinations (2n

where n is the number of inputs), the probability of randomly detecting the fault can be

computed. Since the set of test patterns that detect a fault is calculated as the

intersection of the set of patterns that excite the fault and the set that will observe the

fault, I also examined the probability of randomly exciting and randomly observing the

faults.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
Probability of Excitation (%)

P
er

ce
nt

 o
f F

au
lts

c432 c499 c1355 c1908

Figure 5: Cumulative Excitation Probability for Stuck-At Faults

The results of my computations for random excitation probability using the stuck-at fault

model are shown in Figure 5 for four benchmark circuits: c432, c499, c1355, and c1908.

This graph shows the cumulative percentage of faults with a given excitation probability.

15

To understand the meaning of this graph, consider the point where the probability of

excitation is 19% and the percent of faults for c432 is about 15%. This means that 15%

of the faults in c432 have a probability of random excitation that is less than or equal to

19%. Steep changes in the graph indicate a large number of faults that have nearly the

same probability of excitation at that point.

One particular feature of this graph that is interesting is that there is a large change at the

50% probability mark, indicating that most of the stuck-at faults have a 50% probability

of excitation. Since the excitation requirement for a stuck-at fault is the same as the

inverted function at that fault’s location in the circuit, this result indicates that, for these

circuits, the statistical probability of a logic one or logic zero occurring at most nodes of

the circuits is 50%.

Also notable is the fact that the graph is symmetric about the point (50%, 50%). This is

expected, since if the excitation for a stuck-at one fault at a particular location is very

probable, then the excitation for the stuck-at zero fault at the same location must be very

improbable, forming complimentary pairs of data on which the graph is based.

Figure 6 shows the cumulative distribution of observation probability for stuck-at faults.

Note that this graph is not symmetric and that most of the faults have a relatively low

probability of observation. By comparing this graph with the excitation probabilities in

Figure 5, it can be seen that, for most faults, observing the fault is less probable than

exciting it. In other words, it is more difficult to observe stuck-at faults in these circuits

than to excite them. By showing that there are fewer ways to observe a stuck-at fault

than to excite it, this data lends definitive support to the work done in [9] in which the

observation requirement is met first, and the easier excitation requirement is satisfied in

multiple ways to produce more varied states in the circuit (which can detect more

defects).

16

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
Probability of Observation (%)

P
er

ce
nt

 o
f F

au
lts

c432 c499 c1355 c1908

Figure 6: Cumulative Observation Probability for Stuck-At Faults

The combination of excitation and observation criteria yields the requirements for

detecting faults. Figure 7 shows the cumulative distribution of random detection

probabilities for stuck-at faults. As expected, the probability of detection is lower than

excitation or observation alone for most faults, since both criteria have to be met at the

same time. The graph reveals that nearly all of the faults for these circuits have at most a

50% probability of detection.

Similar data was measured for transition faults in the same circuits. Figure 8 shows the

excitation probability distribution for transition faults, and the results show that this fault

model is inherently harder to excite than the stuck-at model. The increase in excitation

17

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
Probability of Stuck-At Detection (%)

P
er

ce
nt

 o
f F

au
lts

c432 c499 c1355 c1908

Figure 7: Cumulative Detection Probability for Stuck-At Faults

difficulty is due to the fact that exciting a transition fault requires setting the value of the

faulty node to two opposite values in two consecutive test patterns. The pool of possible

input combinations is therefore 22n since two patterns, each with n values, must be

assigned. Because of this increase in possible combinations, there are no transition

faults with a probability of excitation greater than 25%, which is half the excitation

probability of most of the stuck-at faults. In Figure 9 we see that the difficulty of

detecting transition faults is revealed, and most of the transition faults have a less than

10% chance of detection, given a randomly generated pattern. Since all of the transition

faults have a probability of detection less than 25%, and most of the stuck-at faults have

a detection probability less than 50%, we can estimate that transition faults are twice as

hard to detect as stuck-at faults.

18

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25
Probability of Transition Excitation (%)

P
er

ce
nt

 o
f F

au
lts

c432 c499 c1355 c1908

Figure 8: Cumulative Excitation Probability for Transition Faults

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25
Probability of Transition Detection (%)

P
er

ce
nt

 o
f F

au
lts

c432 c499 c1355 c1908

Figure 9: Cumulative Detection Probability for Transition Faults

19

Test Set Sizes

Since transition faults are more difficult to detect, we would expect that they would

experience less fortuitous detection when generating test sets in the traditional way.

Since traditional test set generation depends on fortuitous detection, this should lead to

larger test sets for transition faults. To experiment with test set sizes, I augmented the

function-based circuit analysis tool to generate tests according to the single-target

method of Figure 1. In my experiment, I configured the tool to choose target faults at

random from the remaining faults that have been detected least. Once a target fault is

chosen, a test pattern for that fault is generated randomly by choosing from the pool of

all patterns that will detect the target fault. Furthermore, I explored using this tool to

generate test sets that detect each of the faults at least once, and test sets that detect the

faults a given multiple of times. For the multi-detect test sets, I chose to use the multiple

15 based on the work of [10].

Table 1: Test Set Lengths for Stuck-At and Transition Fault Coverage

 1D SA 1D T Ratio 15D SA 15D T Ratio
c432 65 101 1.6 629 911 1.5
c499 80 143 1.8 982 1660 1.7

c1355 119 295 2.5 1601 3335 2.1
c1908 147 304 2.1 1748 3191 1.8

Table 1 shows the average number of test patterns in test sets generated using the single-

target test generation method for both stuck-at and transition fault models in the four

benchmark circuits. It should be noted that the size of transition test sets is given as the

number of test pattern pairs in the set, since each transition test uses two test patterns.

Stuck-at tests only require one pattern per test, so the size of stuck-at test sets is the same

as the number of test patterns in the set. It is clear from this table that the test sets for

20

transition faults (1D T and 15D T in the table) are much larger than the test sets for

stuck-at faults (1D SA and 15D SA in the table). Furthermore, if we consider the ratio

of the size of transition test sets to stuck-at test sets, we find that transition sets are about

twice as long, which corresponds to our estimate that transition faults are twice as hard

to detect.

Interpretations

The results of this experiment show that transitions fault models are twice as hard, and

require test pattern sets that are twice as long when the sets are generated in the

traditional way. This result is due to the fact that the traditional method relies heavily on

fortuitous detection, and harder fault models yield less fortuitous detection. The limited

resources of manufacture testing prompt the goal of reducing test set sizes, yet harder

fault models might model more types of defects than easier fault models. Therefore,

relying on fortuitous detection is not a good strategy when using harder fault models to

produce better test sets.

21

 FUNCTION-BASED DYNAMIC COMPACTION

To reduce the dependency of test generation on fortuitous detection, I explored

augmenting the information provided by function-based analysis into the dynamic

compaction test generation method. As described earlier, traditional dynamic

compaction affects the fault targeting step of the test generation process. Figure 10

illustrates the process of dynamic compaction.

Figure 10: Pattern-Based Dynamic Compaction Algorithm

As shown in Figure 10, this process is usually done by choosing an initial target fault,

and then generating a test pattern to detect that fault. During the test generation,

however, input assignments that are not required to detect the fault are marked as “don’t

cares”. If the input assignments that were made in the test generation are found to

contribute to a test that will detect another fault in the fault list, then that second fault is

Choose Target
Fault

Generate Test
Pattern for Target

Randomly Fill
Don’t Care Bits

Repeat Until Faults
Detected Desired Times

Simulate Test Pattern,
Count Fault Detections

Choose Next Target
Compatible with

Test Pattern

Change Don’t Care
Bits as Required to
Detect New Target

22

also targeted and any “don’t care” assignments are filled in as necessary to detect that

fault. This process is repeated until there are no “don’t cares” remaining, or no further

faults are compatible. This method makes good use of the “don’t care” assignments of

the fault that was targeted first, rather than assigning the “don’t cares” randomly.

Once the dynamic compaction process is complete, any remaining “don’t care”

assignments are decided randomly to generate a complete test pattern. The test pattern is

simulated through the circuit to count which other faults it detects (these are fortuitous

detections), and the process will repeat to generate a set of test patterns that detect the

desired faults a given number of times. I will refer to this method as pattern-based

dynamic compaction, since the compaction is based on the compatibility between the

chosen test pattern and potential target faults.

Figure 11: Function-Based Dynamic Compaction Algorithm

Choose Target
Fault

Select Complete Set of
Patterns that Detect

Target

Randomly Choose
from Working Set

Repeat Until Faults
Detected Desired Times

Simulate Test Pattern,
Count Fault Detections

Intersect Working Set
with Set that Detects

Next Compatible
Target

Repeat until Only 1
Pattern Remains in
Set or Targets are

Exhausted

23

To improve this method of test generation, I introduced the use of functions so that the

compaction can be based on all possible patterns that detect the target fault, rather than

on the single pattern generated in pattern-based dynamic compaction. For my proposed

method, I consider the BDD representation of the function that describes the detection

requirements for the initial target fault as a set of all the test patterns that will detect that

fault. I will call this set of test patterns the working set. Another fault is chosen, and the

set of test patterns that will detect the new fault is intersected with the working set (using

the logical operation AND on the functions) to produce a set of input combinations that

detect both faults. If the resulting set is empty, this means that the faults are

incompatible (no test pattern will detect both) and another fault is chosen to test for

compatibility with the working set. If the intersection operation results in a set that is

not empty, the resulting set becomes the new working set, and the second fault is added

to the list of targets. The process is repeated until there is only one input combination

remaining in the working set, or there are no faults left to test for compatibility. Finally,

a test pattern is chosen randomly from the working set to add to the set of generated test

patterns. As with other test generation methods, the chosen pattern is evaluated against

the faults in the fault list to record which faults are detected by it, and the whole method

is repeated to generate a set of tests that detect the faults a desired number of times. This

method is illustrated in Figure 11. I will refer to the method as function-based dynamic

compaction since the compaction relies on the compatibility of detection functions

between faults.

Experimental Setup

To evaluate the performance of function-based dynamic compaction, I used a BDD-

based test pattern generation tool. This tool takes a circuit description as input,

calculates the logic functions for the nodes of the circuit, and uses these functions to

compute the logic functions that specify the requirements for detecting particular types

of faults. Using the detection functions, the tool can generate sets of test patterns using a

single-target random pattern generation, pattern-based dynamic compaction, or function-

24

based dynamic compaction to achieve a desired minimum number of detections for each

of the faults in the circuit.

I used two fault models for the experiment: stuck-at faults and transition faults. As

described earlier, stuck-at faults are nodes in the circuit that retain a constant logic value

regardless of the input pattern (stuck-at one or stuck-at zero). Stuck-at faults can be

detected by a single test pattern that meets both the excitation and observation

requirements for the fault, as mentioned earlier in this work. Transition faults are

designed to model timing defects that might cause the logic value of a node in the circuit

to change too slowly (slow to fall from 1 to 0, or slow to rise from 0 to 1). Detecting

transition faults requires two test patterns. The first test pattern must excite the faulty

node to its initial state, and the following pattern must detect whether the node remained

stuck at that initial state.

Since increasing the number of detections of the least detected faults has been shown in

a commercial experiment to produce more effective test sets [9], I decided to measure

the performance of the random single-target method, pattern-based dynamic compaction,

and function-based dynamic compaction when generating test sets that detect each fault

both once and multiple times. For generation of multiple-detect test sets, I chose to

produce sets that detect each fault 15 times. This number is derived from the work of

[10] in which no escapes occurred at rated speed when a minimum of 15 detections per

fault was used. Though no ideal minimum number of detections has been discovered for

targeting transition test sets, I use 15 when targeting both stuck-at and transition faults

for comparison.

Therefore, for each test generation method, I had two variables to set: the type of fault

and the number of detections. As a result, for each method, I ran a total of four sets of

experiments such that both of the two fault types we chose were coupled with both

single- and multi-detection strategies. I selected four of the commonly-used ISCAS 85

benchmark circuits on which to perform these experiments: c432, c499, c1355, and

c1908.

25

Results

Stuck-At Test Sets

Table 2 shows the test set lengths that result from running my experiment using each of

the three test generation methods discussed earlier. Since single-target generation and

pattern-based dynamic compaction depend on random selection of a test pattern, I

executed the experiment 50 times for each of these methods to attain an average test set

length. Minimum and maximum test set lengths are also given in Table 2 for these

methods. Though function-based dynamic compaction uses random filling of “don’t

care” values, the selection of targeted faults follows the given order of our fault list,

which is in gate order according to the circuit description. Because the faults are always

in the same initial order when the experiment is run, the function-based dynamic

compaction always produces test sets of the same size, so it is unnecessary to execute the

function-based method multiple times.

It can be seen from Table 2 that pattern-based dynamic compaction improves on the

average test set length of single-target generation as expected, and that function-based

dynamic compaction produces by far the smallest test set sizes for both single detection

and multiple detection test sets.

It is also notable to observe the ratio of average test set sizes between single- and multi-

detect sets. This ratio is given as the last column in Table 2. A ratio of less than 15

indicates the method exhibits more compaction in the multi-detect sets than in the single-

detect sets. For all of the circuits I tested, the functional-based method has the highest

ratio, and the pattern-based method has the lowest for all except c1908. Since the single-

detect average test set length and the ratio for the pattern-based method is lower than the

corresponding values for the single-target method, pattern-based dynamic compaction

must be doing a better job of compacting the multi-detect sets than single-target

generation.

26

The function-based method does not compact the multi-detect set much more than the

single-detect set, as evidenced by the higher ratios. However, the test set lengths

achieved are near the theoretical minimums for single-detect test sets, which means it is

not possible to compact the set much more than what is produced by the function-based

method. The theoretical minimums are based on the results of [11] in which the

maximum number of independent faults is computed and given as the minimum test set

size.

Table 2: Test Set Lengths for Stuck-At Fault Targeting

 Stuck-At 1-Detect Stuck-At 15-Detect
 Avg. Min. Max. Avg. Min. Max.

Ratio of
Avg.

Single-Target 65 55 72 614 595 643 9.4
Pattern-Based 56 51 64 487 477 496 8.7

c4
32

Function-Based 32 32 32 409 409 409 12.8
 Theoretical Min 27

Single-Target 78 67 93 1003 981 1029 12.9
Pattern-Based 71 62 78 825 814 840 11.6

c4
99

Function-Based 53 53 53 781 781 781 14.7
 Theoretical Min 52

Single-Target 133 126 142 1701 1678 1723 12.8
Pattern-Based 128 118 143 1366 1352 1382 10.7

c1
35

5

Function-Based 85 85 85 1261 1261 1261 14.8
 Theoretical Min 84

Single-Target 155 142 167 1818 1793 1839 11.7
Pattern-Based 131 125 138 1700 1687 1714 13.0

c1
90

8

Function-Based 110 110 110 1594 1594 1594 14.5
 Theoretical Min 106

27

Transition Test Sets

The results of my experiments targeting transition faults are shown in Table 3. As with

stuck-at fault targeting, I executed the test generation 50 times for the single-target and

pattern-based methods and calculated average test lengths. The functional-based method

produces identical test lengths for the same reason as mentioned earlier.

Table 3 shows that the pattern-based method yields much smaller test sets than the

single-target generation, and the function-based method surpasses both. The

improvement in performance between single-target and pattern-based compaction is

much greater than what was shown for stuck-at fault targeting. This is evidence of the

impact of fortuitous detection on test set sizes, as discussed in the previous section of

this thesis. Transition faults are harder to randomly detect than stuck-at faults, which

leads to fewer fortuitous detections of non-targeted faults in the single-target method.

Since the pattern-based and function-based methods do not rely solely on fortuitous

detection to produce the desired number of detections per fault, these two methods

perform much better than single-target generation when a harder fault model is used.

These results also show that function-based dynamic compaction is able to detect all of

the transition faults using a test set that is only 7 patterns longer than the stuck-at test set

in the case of c432, and only 3 patterns longer in the case of c499. This is notable, since

transition faults are, on average, twice as hard to randomly detect as stuck-at faults

(demonstrated in previous section). It is important to keep in mind that each transition

test pattern is actually a pair of tests: an initialization (or setup) pattern followed by a

detection pattern. In spite of this, such a small increase in the test set length for a fault

model that is twice as difficult to detect lends support to the hope that more complex

fault models might be targeted without drastic increases in test set size.

28

Table 3: Test Set Lengths for Transition Fault Targeting

For this fault model the pattern-based approach does not show a better (lower)

compaction ratio as compared to the single-target method, which means that these two

methods are about equally as good at compacting multiple-detect sets over single-detect

sets. For the easier stuck-at model, the pattern-based method had a lower ratio. As with

the stuck-at targeting, the function-based method has the highest ratios, which is (as

before) due to having such short single-detect test pattern sets.

Interpretations

The Problem of Computational Effort

The dynamic compaction methods that I discussed involve greater computational effort

than the single-target method. The pattern-based method is not prohibitively difficult to

implement practically, and it is already included in standard industry tools. Function-

based dynamic compaction requires a test generation tool to operate in the functional

domain of the circuit, and thus requires much more computational work to implement

 Transition 1-Detect Transition 15-Detect
 Avg. Min. Max. Avg. Min. Max.

Ratio of
Avg.

Single-Target 102 94 113 882 851 906 8.6
Pattern-Based 66 58 74 571 552 597 8.7

c4
32

Function-Based 39 39 39 413 413 413 10.6

Single-Target 148 137 169 1637 1600 1668 11.1
Pattern-Based 76 69 83 847 836 866 11.1

c4
99

Function-Based 56 56 56 785 785 785 14.0

Single-Target 333 317 354 3450 3413 3503 10.4
Pattern-Based 214 200 230 2278 2242 2334 10.6

c1
35

5

Function-Based 120 120 120 1744 1744 1744 14.5

Single-Target 311 296 330 3182 3130 3234 10.2
Pattern-Based 166 160 175 1916 1894 1937 11.5

c1
90

8

Function-Based 130 130 130 1735 1735 1735 13.3

29

than pattern-based methods. I was able to use my function-based tool on comparatively

small combinational benchmark circuits, but the additional amount of effort required is

prohibitive for use on commercial-size sequential circuits. There is an effort to

investigate ways to reduce the computational complexity and time required to execute

operations involving BDD representations of functions. This may lead to the feasibility

of performing function-based analysis, including the function-based dynamic

compaction that we propose, on commercial circuits in the future. For the present, my

results are useful only for further discovery of the nature of test pattern generation and

fault models.

The Problem of Test Set Sizes

Considering the problem of test set sizes, my experiment shows that function-based

dynamic compaction performed much better than single-target and pattern-based

methods in every case that was tested. Based on these results, I predict that function-

based dynamic compaction would also show outstanding results if applied to commercial

circuits. The experiment also demonstrates that attempts to reduce test set size when

harder fault models are used may have greater success if the methods rely less on

fortuitous detection and more on deterministic targeting. If the barrier of computational

effort is relieved, function-based dynamic compaction could allow the use of more

complex fault models that have more difficult detection criteria without significantly

increasing test set length.

30

 sByDDer

To perform the experiments mentioned earlier, I have developed a software application

to manipulate BDDs for the purposes of test generation and fault analysis. The

application is called sByDDer, as a partial acronym for Binary Decision Diagram. Due

to the complete information provided by function-based circuit analysis, sByDDer has

become a platform for running experiments to test the ideas of many people in my

research group. I have served as primary software architect for the sByDDer project,

and have managed its distribution and use by the research group.

History of Development

The sByDDer application is based on a simple BDD tool originally developed by Li-C.

Wang. The original tool was used circa 1990-1995, when the limits of computational

power made it difficult to calculate just the detection functions for the small benchmark

circuits (c432) in less than a couple days of time. Now that computational power has

expanded by many factors of magnitude, the small circuits are usable and additional

functions or ideas can be applied to them, such as the ideas and results listed earlier in

this work.

The original BDD tool was written in the C programming language and included the

capability to calculate the Boolean function at each node of a circuit, as well as the

observation function at each node. These functions could be combined to form detection

functions, and to produce pseudo-random test patterns. I began with this base tool that

had been developed several years ago, and then I corrected operational bugs that were

discovered and expanded the tools capabilities to allow new types of experiments. One

of the improvements made to the tool was the addition of a minterm counting algorithm

to count the number of input combinations that would excite, observe, or detect a fault. I

also expanded the tool to enable multi-detect test generation, and I incorporated both

stuck-at and transition fault models into the application. Further expansion included the

31

capability to incorporate pattern-based and function-based dynamic compaction as

described in an earlier section. The resulting sByDDer tool could produce multi-detect

test sets (randomly or by dynamic compaction) for stuck-at or transition fault models on

a given circuit, along with fault dictionaries for the test patterns produced and a matrix

of pair-wise fault compatibilities.

One improvement I made to the BDD processing was the introduction of a compacted

BDD structure. Every BDD that is stored in the application is compared to an existing

stored BDD structure to find any common substructures. Instead of storing each new

BDD separately, the common substructures are combined, such that common structures

are never duplicated in memory. This reduces the amount of memory required to hold

the BDDs. It also greatly reduces the amount of time required to count the minterms of

the BDDs (used for fault difficulty and random pattern generation). Once the minterms

of a common substructure have been calculated, the minterm counts are stored with the

common structure and they never need to be recalculated. This means that instead of

calculating minterm counts over all nodes of every BDD, the application calculates only

over uniquely-structured nodes of the BDDs.

Latest Version

The many augmentations made to sByDDer over the years resulted in a very complex set

of programming code, with only a small portion of the original tool’s code remaining

intact. Since the application works on problems with great time and space requirements,

the code was designed to be very efficient for the computer. The C programming

language was originally chosen for the project because of the detailed control that it

grants to a programmer to make the program more efficient. Code that is efficient for a

computer is often very difficult for a human to understand, edit, and debug, thus

augmentations to the project took an increasing amount of time to complete as the

application became more complex. In addition, the complexity of the tool made it

difficult for anyone except the designers to edit it for experimenting with new ideas.

32

What we had in the end was a tool that performed its intended functions well, but was

difficult to improve and play with for testing new ideas. In a research environment,

where rapid prototyping is vital to measuring the value of a new idea, such applications

do not usually survive long.

After taking classes on the subjects of software design and smarter tree-based

algorithms, I thought of new ways to organize the program and its data structures by

utilizing object-oriented programming practices and the data-hiding concepts that such

practices are based on [12]. To fit sByDDer into the new organization would require a

complete rebuild of the program from scratch; but the benefit of such reorganization

would be much time saved when new ideas are implemented with the tool. In my

judgment, the benefits outweighed the cost of redesigning such a complex tool from

scratch, even if the new tool was less efficient. I chose to rewrite sByDDer using C++,

and coded in a way to make it cross-platform compatible, rather than optimized for a

particular computer architecture.

The resulting application is called sByDDer version 5.0, and has been tested on small

circuits. It is modularly designed to be extensible without much further effort, allowing

new fault models or new test generation algorithms to be integrated without requiring

knowledge of the complete operation of the program. The application is divided into

three major components: circuit objects, BDD objects, and fault objects.

The circuit objects provide data structures to store information about the gates in a logic

circuit and how they are connected. I have written functions within the circuit objects

that allow reading circuit descriptions written in the former sByDDer input file format,

and it would be a simple process to add functions to read from other useful formats, such

as Verilog or Bench. The circuit elements (gates) are created in a way that allows easy

identification of locations in the circuit by user-definable names for nodes, and the

capability to differentiate between branches of a fan-out network.

The BDD objects include all of the storage structure and algorithms for manipulating the

BDD representation of logic functions. The implementation details are hidden from

33

other parts of the program to allow simple manipulation of functions using easy-to-

understand operators such as +, *, !, and ^ of the operations OR, AND, NOT, and XOR,

respectively. The BDD object is configured to use two terminal nodes (logic one and

logic zero) in BDD trees, but it is flexible enough to easily allow the addition of other

types of terminal nodes, such as X or X*, which may be useful in future

experimentation.

Fault objects are coded to include a random test generation algorithm, and allow the

modular addition of other test generation methods. New fault models can also be easily

added by creating a new fault object based on the fault object template that is built-in to

the program.

The newest sByDDer application is now a fully-modular object-oriented system that can

be easily expanded or included in future applications. It will meet the rapid prototyping

needs of other researchers in our area, and will be easy to learn by future participants in

the computer engineering group.

34

SUMMARY AND CONCLUSIONS

There are two primary goals in generating tests for manufacture testing of integrated

circuits: to generate tests that detect as many physical defects as possible, and to

generate compact test sets that fit within tester resources. Since there are many ways

that a physical defect can occur in a circuit, certain effects of defects are modeled by

fault models. More complicated fault models may describe physical defects with greater

accuracy, but they also have a smaller probability of random detection. My experiments

show that such fault models are less likely to be detected fortuitously, thus targeting

them with traditional test generation methods produces larger test sets, and pits the two

goals of test generation against each other. Based on this knowledge, test generation

methods that rely on fortuitous detection are not a good strategy to meet both goals.

By using function-based circuit analysis, complete information about the faults may be

augmented into the traditional test generation process, such as with the function-based

dynamic compaction method that I have proposed. This method has produced test sets

that are near the theoretical minimum size for some of the ISCAS85 benchmark circuits.

However, the computational effort required to perform function-based analysis makes

this method infeasible when applied to commercial-size circuits using current

computational power. Future increases in the efficiency of function-based analysis or

increases in computational resources may enable the use of such methods in commercial

environments. For now, this approach remains useful to researchers studying the

concepts of fault modeling, test generation methodology, and designing circuits for

testability.

The BDD-based functional circuit analysis tool that I have developed to perform these

experiments will be useful for further research into new theories of the nature of fault

models and test generation for digital integrated circuits. The newest version of this tool

is designed with modularity and ease of use in mind, so that it can be used as a rapid

prototyping tool to quickly evaluate new ideas. The tool can also be easily expanded to

35

incorporate additional functionality, or it can be integrated into other tools to put the

information of function-based analysis to use in other ways.

36

 REFERENCES

[1] B. Krishnamurthy and S. B. Akers, “On the complexity of estimating the size of a

test set,” IEEE Transactions on Computing, vol. C-33, pp. 750-753, 1984.

[2] A. Prasad, V. D. Agrawal, and M. V. Atre, “A new algorithm for global fault

collapsing into equivalence and dominance sets,” in Proceedings IEEE

International Test Conference, 2002, pp. 391-397.

[3] P. Goel and B. C. Rosales, “Test generation and dynamic compaction of tests,” in

Digest of Papers Test Conference, 1979, pp. 189-192.

[4] I. Pomeranz, L. N. Reddy, and S. M. Reddy, “COMPACTEST: a method to

generate compact test sets for combinational circuits,” in Proceedings International

Test Conference, 1991, pp. 194-203.

[5] J. Dworak, J. Wicker, S. Lee, M. R. Grimaila, K. M. Butler, B. Steward, L-C.

Wang, and M. R. Mercer, “Defect oriented testing and defective part level

prediction,” IEEE Design and Test of Computers, vol. 18, no.1, pp. 31-41, 2001.

[6] S. Lee, B. Cobb, J. Dworak, M. R. Grimaila, and M. R. Mercer, "A new ATPG

algorithm to limit test set size and achieve multiple detections of all faults," in

Proceedings Design Automation and Test In Europe, 2002, pp. 94 – 99.

[7] C. Y. Lee, “Representation of switching circuits by binary decision programs,” Bell

System Technology Journal, vol. 38, no. 4, pp 985-999, 1959.

[8] R. E. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE

Transactions on Computers, vol. C-15, no. 8, pp 677-691, 1986.

[9] M. R. Grimaila, S. Lee, J. Dworak, K. M. Butler, B. Stewart, H. Balachandran, B.

Houchins, V. Mathur, J. Park, L. C. Wang, and M. R. Mercer, “REDO – random

37

excitation and deterministic observation – first commercial experiment,” in

Proceedings VLSI Test Symposium, 1999, pp. 268-274.

[10] S. Ma, P. France, and E. J. McCluskey, “An experimental chip to evaluate test

techniques: experimental results,” in Proceedings International Test Conference,

1995, pp. 663-672.

[11] I. Hamzaoglu, and J. H. Patel, “Test set compaction algorithms for combinational

circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 19, no. 8, pp. 957-963, 2000.

[12] B. Stroustrup, “What is object-oriented programming?” IEEE Software, vol. 5, no.

3, pp. 10-20, 1988.

38

 VITA

Contact Information:

James Wingfield, B.S. Electrical Engineering
TAMU Computer Engineering Group, MS 3259
College Station, TX 77843-3259
jwingfield@ece.tamu.edu

Professional Interests:

 Computer Design and Testability
 Design Verification
 Simulation
 Automatic Test Pattern Generation
 E-Commerce Application Development
 Internet Application Security

Education:

 Texas A&M University, M.S., December 2003
 Texas A&M University, B.S., December 2001

Professional Experience:

 Co-Owner, Web Application Developer, PureStudio Productions, 2000-Present
 System Administrator, Research Assistant, Computer Engineering Group, Texas

A&M University, 2001-Present
 Network Administrator, Lead Web Application Developer, Conference

Management Services, Inc., 2000-2002

Consulting:

 PureStudio Productions, 2000-Present
 Mercer & Associates, Streets and Steele, 2003

Professional Societies:

Member, Institute of Electrical and Electronics Engineers (IEEE)

Professional Society Presentations:

 “ATPG Depends on Fortuitous Detection” (with J. Dworak, B. Cobb, S. Lee, Li-
C Wang, and M. R. Mercer) International Symposium on Defect and Fault
Tolerance in VLSI Systems, Vancouver, Canada, November 6-8, 2002

 “Introduction and Analysis of a Novel Test Generation Approach: Function-
Based Dynamic Compaction” (with J. Dworak and M. R. Mercer) International
Symposium on Defect and Fault Tolerance in VLSI Systems, Cambridge,
Massachusetts, November 3-5, 2003

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

