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ABSTRACT 

Comparative Analysis of Error Correction in High-Throughput Sequences for the Human Gut 

Microbiome 

Nathan Purwosumarto 

Department of Computer Science & Engineering 

Texas A&M University 

Faculty Research Advisor: Dr. Sing-Hoi Sze 

Department of Computer Science & Engineering 

Texas A&M University 

With the development of high-throughput sequencing tools over the last few decades, the 

sequencing of genomic data at a large scale at a relatively low cost has drastically revolutionized 

the field of bioinformatics. Next-generation sequencing tools, such as the Illumina suite of bridge 

amplification sequencing technologies, can generate billions of base pair reads per experiment. 

However, one drawback of these tools is that they produce a lot more errors than early 

sequencing methods. While error rates may seem to be quite low on paper, they are compounded 

by the large number of bases sequenced. Since these errors have the potential to confuse analysis 

and further results within bioinformatics pipelines, many tools have been developed to mitigate 

this issue. The traditional method is to use clustering & denoising techniques to mitigate the 

error, but there have been a variety of software that also look at reducing error through correction 

using alternative methods, such as k-mer analysis. This project looks at the traditional method of 

error correction of high throughput sequencing using clustering & denoising and seeing if non-
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standard error correction models can be included in addition to the traditional pipeline to obtain 

better results.  

As the entire field of high-throughput sequencing is very large, a focus will be placed on 

error correction in bacterial taxonomic classification. For this project, taxonomic classification 

for the human gut microbiome will be studied, using the 16S rRNA gene as the target sequence 

due to its ubiquity and importance in bacterial taxonomic classification. This gene is a highly 

conserved sequence among most prokaryotes, serving a fundamental role in protein synthesis 

across bacterial species. Differences within this sequence allow for the analysis of taxonomic 

composition within bacterial communities, which will be analyzed in the context of the species 

residing within the human gut microbiome. Existing sequences that have known taxonomic 

composition for the human gut microbiome will be used with different error correction methods 

as part of an in silico pipeline using the bioinformatics platform QIIME2. This project builds off 

previous research in the field, studying their methodologies and differences to address the 

problem of errors arising during sequencing. The human gut microbiome was chosen due to 

recent studies finding that the diversity of the gut microbiome has been increasingly linked with 

a variety of overall health conditions. A contrastive approach will be taken to identify the 

differences between error correction and traditional taxonomic classification methods to 

determine whether increased taxonomic classification can be obtained with error correction on 

sequences for the human gut microbiome, focusing on the differences that error correction 

software can make at the genus and species level.  
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1. INTRODUCTION 

1.1 Overview of DNA Sequencing 

Since DNA was discovered to be the genetic material that formed the building blocks of 

life, the constraint for genomic research has been the ability to read, or sequence, DNA on a 

large scale. As researchers seek to understand how variations in DNA can lead to such a large 

diversity in observable forms of life, sequencing DNA has been a large building block to the 

modern-day field of bioinformatics, driven by initiatives such as the Human Genome Project.  As 

DNA is formed by a mere four repeating nucleotide bases: adenine, guanine, cytosine and 

thymine, the length of unique meaningful DNA sequences becomes quite long. These sequences 

that form specific coding regions, which when combined form the basis of genes, are of critical 

importance to individual function within any living organism. These regions also do not have a 

uniform size, from being a few hundred to even millions of base pairs in length for more 

complex genes. Because DNA bases are also smaller and more similar to each other than the 

amino acids that make up protein sequences, being able to read the order of these DNA bases 

was one of the first challenges in the field of bioinformatics, and an important precursor to many 

studies within the field.  

The first major breakthrough in DNA sequencing took place many decades after the 

discovery of DNA as the source of genetic material, in the form of Sanger's ‘chain-termination’ 

method developed in 1977; which used radioactive markers on dideoxynucleotides (ddNTPs) 

that terminated the DNA replication process by lacking the 3’ hydroxyl group required for 

further extension of the DNA strand (Heather and Chain 2016). This allowed one to amplify the 



5 

 

desired DNA sequence and terminate it at each possible base, allowing for the original sequence 

to be determined through gel electrophoresis. 

1.1.1 Next-generation Sequencing 

Nowadays, the rise of high throughput sequencing has revolutionized the field of 

bioinformatics by drastically reducing the time and cost requirements necessary to process large 

numbers of DNA samples. These technologies include emulsion PCR based sequencing, bridge 

amplification sequencing, Oxford Nanopore sequencing, and PACBIO sequencing. Next 

generation sequencing technologies allow for the reading of billions of DNA base pairs, being 

able to process whole genomes at a time in a single experiment. A long way from the original 

Sanger sequencing method that worked on sequencing fragments in the magnitude of thousands 

of base pairs, these technologies have revolutionized studies across various fields, including 

genomics and transcriptomics. At the base level, the most significant change that these 

technologies provide is that they allow for the parallelization of the sequencing process, where 

millions of sequences can be read simultaneously. While the Human Genome Project took 

billions of dollars and more than a decade to sequence the first human genome, sequencing 

human genomes nowadays using next-generation sequencing tools can be done within a few 

days at a fraction of the cost. Next-generation sequencing has also had profound implications for 

the medical field, as targeted genomic analysis has the potential to find specific mutations that 

are localized to a single individual.  

1.2 Error correction in High-throughput Sequencing 

While high-throughput sequencing methods are much more cost and time effective than 

the earlier generation of sequencing technologies, they are much more prone to error due to the 

sheer scale of sequencing output. Currently, one of the most used next-generation sequencing 
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tools is the Illumina suite of sequencing platforms, such as the HiSeq 4000, which use bridge 

amplification sequencing. For these Illumina machines, the estimated error rate on the machines 

is ∼0.1–1 × 10^-2 per base sequenced (Hussmann et al. 2013). Since the scale afforded by high-

throughput sequencing allows for hundreds of thousands of bases to be read in a relatively short 

amount of time, the accumulation of these errors has the potential to confound the results of an 

experiment and affect the resulting conclusions. 

There have been many different approaches that have attempted to address the problem 

of errors arising in the results of high-throughput sequencing. Traditional methods used to 

account for error correction when conducting taxonomic classification are de-noising and 

clustering techniques (Johnson et al. 2019). However, with the rise of generic error correction 

libraries in high-throughput sequencing, with Heo et al. (2021) evaluating 17 different error 

correction tools for Illumina sequencing alone, one must consider the effectiveness of these tools 

for taxonomic classification. Since there has not been much literature to compare these tools with 

the traditional methods of denoising and clustering in specific real-world use cases, this project 

hopes to explore the advantages and disadvantages of including an error correction library as part 

of the taxonomic classification pipeline in addition to the traditional method of dealing with error 

in the field of taxonomic classification in the human gut microbiome. 

1.3 Importance of the Human Gut Microbiome 

The human gut microbiome has been a diverse and extensive research area in the fields of 

bioinformatics and medicine, and has been shown to be increasingly linked to a plethora of 

biological functions and overall health. While many instances of bacteria within the human body 

are commonly seen as pathogens that need to be eliminated by the immune system, the majority 

of bacteria that live in the gut are non-pathogenic and live in a symbiotic relationship, providing 
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essential functions that include digestion of nutrients, drug metabolism, crowding out and 

preventing the colonization of pathogenic microorganisms in the gut, supporting intestinal barrier 

function, and even partial integration with the human immune system to fight off invasive 

pathogens or other microorganisms (Jandhyala et al. 2015). The diversity of the gut microbiota 

seems to play a major factor with regards to health conditions as well, as lower bacterial 

diversity has been observed in people with inflammatory bowel disease, psoriatic arthritis, type 1 

diabetes, atopic eczema, coeliac disease, obesity, type 2 diabetes, and arterial stiffness, when 

compared to healthy controls (Valdes et. al. 2018). Therefore, improvements in the ability to 

properly identify the specific bacterial communities residing in the human gut microbiome have 

the potential to revolutionize diagnosis and treatment for a variety of conditions. Currently, 

taxonomic analysis of the bacterial communities composing the human gut microbiome have 

been limited to taxonomic features that exist on the genus-level (Yang et al. 2020). At the species 

level, bacteria within the same genus share a very large amount of identical DNA, making them 

extremely difficult to distinguish. Furthermore, the discovery of new species that have not been 

previously categorized is not an uncommon occurrence.  

1.4 Taxonomic Classification 

Taxonomic classification experiments involve analyzing DNA samples from a target 

region or sequence to obtain information on the target organisms being sequenced. This can be 

done to determine the evolutionary relationships between the target organisms being sampled. If 

DNA samples of known composition are taken from a population of similar organisms, the 

similarities and differences found between them allow for the creation of taxonomic hierarchies 

such as phylogenetic trees, which help in determining which organisms are most closely related. 

This allows researchers to understand the chronology of the DNA changes observed, determining 



8 

 

which mutations took place earlier than the others based on the evolutionary relationships in the 

tree. Taxonomic classification can also be done to determine the origins of unknown genetic 

sequences by comparing them to existing reference genomes, classifying the unknown sequences 

to their most probable origin. Additionally, taxonomic classification techniques can also be 

applied to determining the origins of an unknown DNA sequence that does not have a reference 

genome by comparing the unknown sequence to DNA sequences from other organisms that 

show high similarity. This is used in conjunction with de novo sequencing and is particularly 

useful for organisms that have not been previously sequenced, to determine what other 

organisms it is related to, especially important in the discovery of new species.  

1.4.1 The 16S rRNA Sequence as a Taxonomic Marker 

Taxonomic classification in the human gut microbiome involves analyzing a sample from 

a bacterial community found in the human gut to determine its bacterial composition. The DNA 

sequences taken will be of unknown composition, but the resulting reads will be compared to a 

library of the common bacteria residing in the human gut microbiome to determine the 

taxonomic composition of the sample. Each unique DNA sequence found in the sample is called 

an amplicon sequence variant (ASV) and is labeled with a predicted organism based on the 

reference genomes of the common human gut bacteria. The target DNA region most commonly 

used for taxonomic composition of the human gut microbiome is the 16S rRNA gene. Since the 

16S rRNA sequence codes for the main component of the small ribosomal subunit in 

prokaryotes, it is highly conserved across species, as ribosomes are necessary to produce all 

proteins within an organism. Therefore, the 16S rRNA sequence has been commonly used in the 

study of bacterial phylogeny and taxonomy, and its critical function has not changed over time, 

which allows for a comparison of minute differences as a result of evolutionary mutation (Janda 
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and Abbott 2007). However, since this gene serves the same function across different species, 

comparative analysis of the whole sequence between different organisms will result in a very 

high level of similarity. Thus, specific hypervariable regions within the 16S gene that have a 

higher prevalence of differences between species are more often used to distinguish the 

composition of bacterial communities. One of these hypervariable subregions, V4, is only a 

couple of hundred base pairs long and has been demonstrated to be able to differentiate 

phylogenetic relationships closest to those based on the full-length sequence, which is why it is 

used for many analyses of the human gut microbiome (Yang et al. 2016). 
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2. RELATED WORKS 

2.1 Evaluation of Error Correction  

The paper Comprehensive assessment of error correction methods for high-throughput 

sequencing data published by Heo et al. (2021) describes challenges with error correction for 

various types of high-throughput sequencing data and presents a solution to measure the 

performance of error-correction algorithms through a software package. The first challenge 

described is the difference in error correction between DNA and RNA reads, mentioning how 

non-uniform expression levels and alternative splicing make RNA reads a lot more susceptible to 

variation and thus may require a different approach. The second challenge lies with differences 

in the underlying process of data collection. Because of the variety of tools available for high 

throughput sequencing, there are differences in what errors are produced based on the 

sequencing technology itself. For example, the dominant form of errors created in reads taken 

from Illumina machines is substitutions, while the dominant form of errors from PacBio and 

Oxford Nanopore machines are insertions and deletions. As such, error correction methods 

would perform differently for each of the sequencing technologies, and some error correction 

algorithms were developed only for a certain type of sequencing machine. The third challenge 

and the one most directly addressed in the paper is the lack of tools and metrics available to test 

the accuracy of error correction methods against one another, even though there have been many 

papers proposing various algorithms for error correction. The paper attributes this issue to the 

difficulty in determining whether an error correction method generated new errors during the 

error correction process, making it unclear whether an error was fixed or a new one was 

generated.  
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To address these problems, Heo et al. created a software package called SPECTACLE to 

evaluate the performance of 23 different error correction tools, which can be applied to both 

DNA and RNA reads and is invariant to what sequencing technology was used to obtain the 

initial reads. This software works by applying each error correction method to reads taken from a 

mix of simulated and real data that have a known reference sequence and calculates the accuracy 

of error correction by each method by comparing the results to said reference sequence. The 

results showed that while some error correction technologies were benchmarked to be better than 

others in the experimental setup, each tool performed differently based on factors such as read 

coverage and how repetitive the sequenced genome was. However, this software package would 

be extremely useful in the creation of new error correction algorithms, as it provides a baseline 

on which to test new methods of error correction against preexisting algorithms. 

2.1.1 Benchmarking based on unique molecular identifier sequencing 

Another study conducted by Mitchell et al. (2020) also looks at benchmarking error 

correction methods by using a special type of sequencing, based on the unique molecular 

identifier (UMI) method to act as the error-free template. This protocol involves adding short 

random sequences to every molecule of DNA to serve as a molecular barcode, allowing for the 

identification of duplicate sequences during the amplification process. These markers allow for 

the correction of errors that arise by the consensus method, by comparing all the sequences with 

the same UMI barcode after amplification. The same input data is then sequenced normally, and 

error correction methods are applied to the resulting reads. The accuracy of each error correction 

method is computed by taking the error-corrected sequencing reads compared to the UMI 

sequencing reads. While UMI sequencing is not completely error free, it provides much higher 

accuracy than normal sequencing methods. For the study, the authors only used UMI clusters 
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that had above 80% consensus on all nucleotides in the target segment and disregarded the rest, 

guaranteeing that the remaining UMI sequencing results are able to be used as the error-free 

template.   

The error correction methods tested by Mitchell et al. were more limited in scope than the 

ones tested by Heo et al., as the study was limited to Illumina error correction tools. Between 

these tools, the effect of k-mer size on the accuracy of the error correction method was 

determined individually for each input dataset, and the best value was used. This study also goes 

further in-depth into explaining the differences between each error correction tool when the 

coverage size of the original datasets was modified. The general trend was that increased k-mer 

size and coverage depth improved the accuracy of error correction, regardless of the specific 

algorithm used. This makes logical sense as larger k-mers and increased coverage of the target 

sequence allow for error correction tools to have more information on the sequence as a whole 

and make more accurate decisions throughout the error correction process. Their paper also used 

viral sequencing data as part of the benchmark, in addition to the more common human and 

bacteria sequencing data. The results of the paper showed large variability across different types 

of datasets for each error correction method, with no single method significantly performing 

better than the others. However, the results also showed that error correction methods are able to 

achieve performance comparable to the UMI barcoding sequence data in the right conditions. 

Their conclusion from the study was that error correction tools may replace UMI sequencing in 

the future, as UMI sequencing increases the size of the DNA being sequenced and is more 

expensive than error correction software. 
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2.2 Taxonomy of the Human Gut Microbiome 

The paper Exploring the universal healthy human gut microbiota around the world 

published by Piquer-Estaban et al. (2022) explores the history of taxonomic studies on the 

human gut microbiome, focusing on the differences between microbiomes throughout the world 

and determining a core taxonomy of bacterial species that roughly universal. Looking at research 

published in the field regarding the human gut microbiome, the authors found that this field is 

relatively new, with almost all studies conducted within the two few decades, starting with the 

Human Microbiome Project in 2007. They emphasize that the human microbiome has been 

found to be linked to host health for a variety of health conditions, making it a prime target of 

recent studies. However, one problem highlighted within the study was that most reference 

genomes for the human gut are mainly limited to western microbiomes, due in part to the higher 

levels of economic development in the western world. By comparing a large number of existing 

data from individual microbiome studies around the world, Piquer-Estaban et al. were able to 

determine a universal core of 20 bacterial genera. This taxonomy also accounts for the most 

abundant genera found within the gut microbiome itself, independent towards lifestyle and 

geographical differences, thus showing that they are crucial to a variety of biological functions 

within the human body. This is not to say that these differences are not important within the 

taxonomic composition of the gut, as they account for many of the other non-universal bacterial 

genera, but to highlight the existence of how some genera may be fundamental as part of co-

evolution with the history of the human species. 
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3. METHODS 

3.1 Bacterial Communities Used 

Data for this project is taken from the open source mockrobiota library, a publicly 

available resource used for microbiome bioinformatics benchmarking using artificially 

constructed communities. This library was used because it consists of many different datasets 

curated together into one public repository with clear labels, allowing for specific communities 

with the desired target sequences to be obtained in one centralized repository. Each community 

within this library is also clearly labeled with their taxonomic composition, allowing for a 

comparison to be made between expected results and actual results. One advantage of 

mockrobiota is that the communities included in the library were based off real-world biological 

observations. By basing them off real-world observations, these mock communities represent 

real communities far more accurately and are a better benchmark than synthetically generated 

data.  

Within the mockrobiota library, there were three groups of mock communities chosen as 

input data to be used for the taxonomic classification pipelines. The first group consisted of 

mock communities 13-15, which contained even amounts of purified genomic DNA from 21 

bacteria strains generated by Kozich et al. (2013). The second group consisted of mock 

communities 20 and 22, which contained even amounts of purified genomic DNA from 20 

bacterial strains generated by Gohl et al. (2016). The third group consisted of mock communities 

21 and 23, also generated by Gohl et al. using the same bacterial strains from the second group, 

but with an uneven composition. These three groups of mock communities were chosen because 

they are the most recent within the mockrobiota library to emulate bacterial sequencing data 
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using the 16S gene as the target gene and the V4 region as the target subfragment. These 

communities were also based on observations from the Human Microbiome Project, and 

resembled Illumina reads taken from biological samples regarding bacteria commonly found 

within the human gut. Thus, taxonomic classification of this data would closely resemble a real-

world scenario of obtaining sequence data from the human gut microbiome.  

3.2 High Level Overview 

To be able to compare the effectiveness of error correction, two parallel bioinformatics 

pipelines were created. The first uses the traditional method of analyzing sequence data using 

denoising and clustering techniques, while the second is identical to the first save an error 

correction step on the raw sequence data taken from mockrobiota. The bulk of the pipeline was 

implemented using the QIIME2 software package, an open-source microbiome bioinformatics 

platform for sequence analysis. Some output file postprocessing was done using Kaiser Galaxy, a 

web-based data analysis platform. This workflow and the tools described above were run on the 

TAMU HPRC Grace supercomputer cluster, and the result of the pipeline was run through a 

Python script to calculate the taxonomic accuracy. Since the composition of the input sequences 

are labeled, accuracy computations in the final stage of the two analysis pipelines will provide a 

benchmark to analyze the effectiveness of error correction methods, to determine whether 

external error correction software made a difference in our classification results. 

3.3 Importing Data 

The first step involves taking the raw sequence data from mockrobiota, which comes in 

FASTQ format. This format includes the sequences obtained from each sample similar to 

FASTA format, but an additional character is included per base to encode the quality scores from 

the sequencing run. These quality scores are a critical component when conducting error 
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correction, as they account for the confidence that bases are correctly determined. Typically, 

reverse reads have lower quality scores than forward reads to the nature of Illumina bridge 

amplification sequencing, as they are generated after the forward reads. Bases at the start or end 

of an individual sequence read tend to also have a lower quality score than those in the middle of 

the sequence. For the control pipeline, we take the sequence data as-is without further 

modification and import it directly into the QIIME 2 platform for further processing, using a 

manifest file to import into a QIIME 2 artifact with the datatype being paired-end sequences with 

quality. For the error correction pipeline, we run the Blue V2 error correction software, which is 

an error correction tool based on k-mer consensus and context (Greenfield et al. 2014). The 

executable binaries for Blue, and the preprocessing tool Tessel, which Blue relies on to generate 

the k-mer tiles for the sequence data, were downloaded and run on the raw sequence data. Since 

the Blue software was already created with an emphasis on bacterial genomes, the default 

parameters were used, with a k-mer length of 25. Running Tessel followed by Blue on the 

FASTQ files generated a set of error corrected FASTQ files, which were then also imported into 

QIIME 2 using the same procedure.  

3.4 Analysis Pipeline 

After the sequence data is imported into QIIME 2, we run the DADA2 plugin. This is 

used to generate the amplicon sequence variants (ASVs) from the sequence data, which are the 

inferred unique DNA sequences from the result of high-throughput sequencing. The DADA2 

plugin denoises the sequences and creates the ASV feature table, assigning a unique id to each of 

these features. Another QIIME 2 tool is then used to run this feature table through a pretrained 

Naïve-Bayes classifier on the SILVA Database for 99% OTUs from the 515F/806R (V4) 

subregion, to determine the taxonomic predictions of these ASVs. QIIME 2 has pretrained 
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Naïve-Bayes classifier for both the Greengenes and SILVA reference databases trained on either 

full-length sequences or V4 subregion sequences. This project looks at the V4 subregion and 

thus uses the corresponding classifier, and the SILVA model was used because it is a newer 

reference database. The Naïve-Bayes classifier itself works by implementing a machine learning 

algorithm based on probabilistic calculations based on Bayes theorem. In taxonomic 

classification, the classifier determines the probability of a sequence belonging to a predicted 

organism by looking at the observed evidence, or unique features, within each sequence. This 

probability of a sequence being from a certain species is calculated based on the previous 

training examples used when the model was created. Since this project uses pretrained models, 

no computational overhead was spent on training the predictive classifiers. In addition, the 

results of the taxonomic classifiers can be visualized in a taxonomic bar plot if determining the 

bacterial composition of the sample, but this project only looks at the predictions themselves and 

whether they were correct. 

The QIIME 2 portion of the analysis pipeline used for this project was run with the 

resources provided by Texas A&M High Performance Research Computing (TAMU HPRC), on 

the Grace supercomputer cluster. The QIIME 2 module is part of the software packages available 

on this cluster, and a command line interface was used to run each command of the pipeline. To 

streamline this process, batch files were created that allowed for multiple commands to be 

queued and run in succession using the integrated SLURM job scheduling system. Construction 

of these job files was done after each step of the pipeline was manually run to make sure each 

step of the pipeline had the desired input and output format, and that each command run resulted 

in the desired functionality. Each step within the pipeline was given a maximum time limit of a 
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couple hours of processing time on the cluster, but most tools did not require more than an hour 

of computation time.   

3.5 Computation of Taxonomic Accuracy 

The results of the taxonomic prediction from the Naïve-Bayes classifier are then 

compared with the known composition of the mockrobiota community, the true taxonomy of the 

sampled data. This was done by creating a Python script using the Pandas library, with the 

taxonomic predictions loaded in as a Pandas dataframe. Some data pre-processing was used to 

convert the QIIME 2 artifacts and true taxonomy FASTA file from their file formats into a 

tabular format for the Python script. This step was done using Kaiser Galaxy, a web-based data 

analysis tool also provided by TAMU HPRC.  

This project looks at the genus and species level predictions, since identifying the specific 

bacteria found in the human gut microbiome is the target of these experiments. Using the results 

obtained from the classifier in the pipeline, the Python script finds where the classifier made a 

prediction on the genus or species level. When the classifier did not have a high confidence, the 

prediction would be left blank, indicating that certain ASVs were not able to be identified at that 

taxonomic level, which were then labelled unknown. When the classifier made a prediction, it 

did so at a very high level of confidence, so these predictions are assumed to be correct if they 

match with an identified genus or species in the true taxonomic classification. If a prediction did 

not match an identified genus or species in the true taxonomic classification, then it was labelled 

as incorrect. The percentage of sequences identified was then computed by taking the number of 

correct and incorrect predictions divided by the total number of ASVs, while accuracy was 

computed by the number of correct predictions divided by the numbers of correct and incorrect 

predictions. 
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4. RESULTS 

4.1 Pipeline Comparisons 

Tables showing the final results of the two pipelines regarding taxonomic accuracy, with 

and without the error correction software on the raw sequence data are displayed below. The 

tables are broken down into genus level and species level, which can be looked at independently. 

For example, Table 1 shows the summary results of the two pipelines for mock community 13. 

Table 1: Control and error correction pipelines on mockrobiota community 13 

Mockrobiota 13 (Mock-13) Control Blue Error Correction 

ASV Sequences Generated: 64 76 

Unknown Genus: 1 (98.44% identified) 3 (96.05% identified) 

Genus Correct: 57 67 

Genus Incorrect: 6 6 

Genus Accuracy: 0.90476 0.91781 

Unknown Species: 
39 (39.06% of sequences 

identified) 

44 (42.11% of sequences 

identified) 

Species Correct: 12 12 

Species Incorrect: 13 20 

Species Accuracy: 0.48 0.375 

 

The results obtained for each community were highly variable at the species level, with 

the worst results to species level accuracy found with mock community 15, with -40% 
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percentage change after the error correction step. The best results to species level accuracy were 

found with mock community 20, going from 0% correct predictions for the control and 85.71% 

correct predictions after the error correction step. These summary statistics are shown in Table 2 

and Table 3, respectively. The full set of summary statistics for each community are not shown 

for sake of brevity, but their overall results are displayed in the subsequent section.  

Table 2: Control and error correction pipelines on mockrobiota community 15 

Mockrobiota 15 (Mock-15) Control Blue Error-Correction 

ASV Sequences Generated 53 75 

Unknown Genus: 2 (96.23% of sequences 

identified) 

2 (97.33% of sequences 

identified) 

Genus Correct: 45 69 

Genus Incorrect: 6 4 

Genus Accuracy: 0.88235 0.94521 

Unknown Species: 35 (33.96% of sequences 

identified) 

45 (40.0% of sequences 

identified) 

Species Correct: 10 10 

Species Incorrect: 8 20 

Species Accuracy: 0.55556 0.33333 

Table 3: Control and error correction pipelines on mockrobiota community 20 

Mockrobiota 20 (Mock-20) Control Blue Error Correction 

ASV Sequences Generated 7 20 
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Unknown Genus: 1 (85.71% of sequences 

identified) 

0 (100% of sequences 

identified) 

Genus Correct: 6 20 

Genus Incorrect: 0 0 

Genus Accuracy: 0.88235 0.94521 

Unknown Species: 6 (14.29% of sequences 

identified) 

13 (35% of sequences 

identified) 

Species Correct: 0 6 

Species Incorrect: 1 1 

Species Accuracy: 0 0.8571 

 

4.2 Overall Results 

The impact that error correction had on genus level accuracy is shown in Table 4. From 

the table it can be determined that error correction showed a slight improvement to accuracy, 

with only one dataset where accuracy decreased after error correction applied. The average 

improvement across all datasets was a ~2.1% increase for genus level accuracy. 

Table 4: Genus-level accuracy statistics for all datasets 

Dataset Control Blue Error Correction Percentage Change 

Mock-13 0.90476 0.91781 1.442371458 

Mock-14 0.84286 0.90667 7.570652303 

Mock-15 0.88235 0.94521 7.124157081 

Mock-20 1 1 0 

Mock-21 1 1 0 
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Mock-22 0.9667 0.9429 -2.46198407 

Mock-23 0.9091 0.9333 2.66197338 

Averaged Results 0.9293957143 0.9494128571 2.153780413 

 

The impact that error correction had on species level accuracy is shown in Table 5. These 

results are more inconclusive than the genus level accuracy, as for all datasets in the first group, 

Mock-13 to Mock-15, species level accuracy decreased after error correction. However, for the 

other two groups, species level accuracy increased, most prevalent for the Mock-20 and Mock-

21 communities where the control pipeline failed to predict any species correctly, but the error 

correction pipeline managed to achieve a reasonable 83-85% accuracy for species predictions in 

these datasets. 

Table 5: Species-level accuracy statistics for all datasets 

Dataset Control Blue Error Correction Percentage Change 

Mock-13 0.48 0.375 -21.875 

Mock-14 0.42308 0.36667 -13.33317576 

Mock-15 0.55556 0.33333 -40.00107999 

Mock-20 0 0.8571 N/A 

Mock-21 0 0.8333 N/A 

Mock-22 0.5714 0.6666 16.66083304 

Mock-23 0.25 0.2857 14.28 

Averaged Results 0.32572 0.5311 63.05415694 
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The most promising results that error correction made was to the number of unique 

ASV’s generated, shown in Table 6. Having more ASVs allows for the better identification of 

unique DNA sequences in the sample, which is an important step for taxonomic classification 

when determining the different bacterial species within the sample. Every dataset tested 

generated more ASVs after error correction, and an average percentage increase of 38% was 

found across all datasets. 

Table 6: ASVs generated for all datasets 

Dataset Control Blue Error Correction Percentage Change 

Mock-13 64 76 18.75 

Mock-14 71 77 8.450704225 

Mock-15 53 75 41.50943396 

Mock-20 7 20 185.7142857 

Mock-21 5 20 300 

Mock-22 30 41 36.66666667 

Mock-23 22 39 77.27272727 

Averaged Results 36 49.71428571 38.0952381 

 

4.3 Data Patterns 

The results obtained from these experiments seem promising, as the error correction on 

raw sequence data resulted in more unique ASVs being generated during the DADA2 noise 

correction and feature table creation step. An increase in ASVs found in this step show that the 

error correction helped to distinguish more defining features from the sequence data, which has 



24 

 

the potential to better identify taxonomic variety. For example, in the Mock-13 community, the 

DADA2 step only managed to be able to generate 64 unique ASVs in the control pipeline, while 

it generated 76 ASVs in the error correction pipeline, a significant improvement of 18.75%. In 

addition, the accuracy of the genus-level predictions showed a slight improvement for all 

datasets tested, showing that error correction at this level of taxonomic classification was able to 

improve the genus-level predictions by a slight margin. 

However, the results show that this pipeline did not improve the taxonomic classification 

at the species level as the results were highly variable, with the results for the first group of mock 

communities showing a decrease in accuracy after error correction. For this group of 

communities, the classifier did not see a benefit in having the sequences error-corrected for the 

sequence level taxonomic classification. Looking at the actual outputs and predictions of the 

classifier it seems that since there are more ASVs after the error correction step, the classifier is 

making the same classification mistake more times, which explains why accuracy decreased. For 

example, if there are two ASVs predicted to be Staphylococcus carnosus instead of 

Staphylococcus aureus in the control pipeline, there could be three or four of them in the error 

correction pipeline, and thus the classifier can be seen to be making more mistakes.  

4.4 False Negatives and Recall 

For the previous results, accuracy was computed based on the correct predictions made 

by the classifier, which can be seen as true positives, divided by the total number of predictions 

made by the classifier, where the incorrect predictions made by the classifier can be seen as false 

positives. To better understand the result of error correction we can determine a false negative 

metric, which we take as the number of unique genera or species in the true taxonomic 

composition of each sample that are not predicted as a result of the ASVs generated for each 
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community. For example, if Bacillus cereus exists in the true taxonomic composition of a mock 

community, but the classifier never made a prediction for Bacillus cereus for any of the ASVs in 

that run, then it is considered a false negative. These numbers are shown below in Table 7, where 

it can be seen that error correction made a slight improvement on both the genus and species 

level.  

Table 7: False negatives for all datasets 

Dataset Control 

(Genus) 

Control (Species) Blue Error 

Correction 

(Genus) 

Blue Error 

Correction 

(Species) 

Mock-13 0 12 1 11 

Mock-14 0 13 1 11 

Mock-15 1 12 1 12 

Mock-20 14 20 2 13 

Mock-21 17 20 5 14 

Mock-22 1 17 1 16 

Mock-23 6 19 5 18 

Averaged 

Results 

5.571428571 16.14285714 2.285714286 13.57142857 

 

 Additionally, we can calculate the recall for each dataset based on the number of 

true positives divided by the total sum of true positives and false negatives. The recall statistic 

for the genus level is shown in Table 8, which showed a large improvement on communities 20, 

21, and 23, but a small decline on communities 13 and 14. 
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Table 8: Genus level recall statistics for all datasets 

Dataset Control Blue Error Correction Percentage Change 

Mock-13 1 0.9853 -1.47 

Mock-14 1 0.9855 -1.45 

Mock-15 0.9783 0.9857 0.7564141879 

Mock-20 0.3 0.9091 203.0333333 

Mock-21 0.15 0.8 433.3333333 

Mock-22 0.9667 0.9706 0.4034343643 

Mock-23 0.7692 0.8485 10.30941238 

Averaged Results 0.7377428571 0.9263857143 25.57027226 

 

The recall for the species level is shown in Table 9. Interestingly, the recall for the 

species level improved after error correction for all datasets and had a larger average 

improvement than the recall statistic on the genus level.  

Table 9: Species level recall statistics for all datasets 

Dataset Control Blue Error Correction Percentage Change 

Mock-13 0.5 0.5217 4.34 

Mock-14 0.4583 0.5 9.098843552 

Mock-15 0.4545 0.4545 0 

Mock-20 0 0.3158 N/A 

Mock-21 0 0.2632 N/A 

Mock-22 0.1905 0.2 4.98687664 
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Mock-23 0.05 0.1 100 

Averaged Results 0.2361857143 0.3364571429 42.45448497 

 

 With the recall statistic we can calculate the resulting F1 scores, since the accuracy 

measurements earlier are equivalent to precision in the absence of a true negative class. The F1 

scores for the genus and species level are shown in Table 10 and Table 11.  

Table 10: Genus level F1 score for all datasets 

Dataset Control Blue Error Correction Percentage Change 

Mock-13 0.94999895 0.9503583009 0.03782645102 

Mock-14 0.9147303648 0.9444429253 3.248231578 

Mock-15 0.9278510252 0.9650304748 4.007049468 

Mock-20 0.4615384615 0.952385941 106.3502872 

Mock-21 0.2608695652 0.8888888889 240.7407407 

Mock-22 0.9667 0.9565495061 -1.050014881 

Mock-23 0.8333190967 0.8888820855 6.667672569 

Averaged Results 0.7592867805 0.9352197318 23.17081712 

Table 11: Species level F1 score for all datasets 

Dataset Control Blue Error Correction Percentage Change 

Mock-13 0.4897959184 0.4363499498 -10.91188525 

Mock-14 0.4399863033 0.423079142 -3.842656275 

Mock-15 0.4999742986 0.3845968927 -23.07666737 
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Mock-20 0 0.4615434905 N/A 

Mock-21 0 0.4000447971 N/A 

Mock-22 0.2857374984 0.3076852066 7.681073825 

Mock-23 0.08333333333 0.1481462276 77.77547317 

Averaged Results 0.256975336 0.3659208152 42.39530567 
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5. CONCLUSION 

5.1 Role of Error Correction 

In conclusion, the results of this project show that error correction software can be used 

on sequence data to better identify unique ASVs from that data in the context of taxonomic 

classification for the human gut microbiome for the samples tested. Each mock community was 

found to have a higher number of ASVs generated after running DADA 2 on the error-corrected 

sequences than compared to the control sequences. Genus level prediction accuracy showed 

some slight improvements, but sequence level prediction accuracy dropped because of the 

classifier model still not being able to distinguish between bacterial species of the same genus, a 

problem that still pervades the field of human gut taxonomic identification. The recall scores for 

species and genus level also showed some improvement after error correction, showing that error 

correction can generate less false negatives, predicting some genera and species that went 

unpredicted in the control. The F1 score combines the accuracy and recall statistics, supporting 

the claim that error correction made a difference at the genus level, as error correction improved 

this metric on all datasets, but is inconclusive at the species level due to the high level of 

variability.  

 The contrastive approach used in this paper also shows that error correction tools can be 

readily utilized directly with the traditional methods of taxonomic classification. Integrating the 

error correction step into the analysis pipeline showed that such a step could be used to improve 

results with little additional overhead. Potentially, such error correction software can also be 

made into a plugin to better synchronize with bioinformatics platforms such as QIIME 2. In this 
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way error correction to process raw sequence data, as a preprocessing step before the generation 

of feature tables and taxonomic prediction, can be a valuable step in sequence analyses.  

5.2 Future Work/Improvements 

Testing different classifiers with the conjunction of error correction software in 

taxonomic classification seems to be a promising direction for future work. Since the pretrained 

Naïve-Bayes classifier as part of the QIIME 2 feature classifier tool is based on the entirety of 

the SILVA bacterial database, training one to be fine-tuned on the specific species one expects to 

find in the human gut microbiome would increase the accuracy of the species level identification, 

as certain bacteria species within the same genus are more likely to inhabit the gut microbiome. 

Additionally, a different prediction architecture could be used entirely, trying different machine 

learning models that may be more accurate and not solely based on probabilistic calculation 

using Bayes Rule. Some other supervised learning models used in classification include the k 

nearest neighbour classifier or linear regression-based classifiers. While Naïve-Bayes classifiers 

are commonly used, and quite accurate when individual features are independent, this 

assumption may not hold true at the species level, where similar species within the same genus 

have an overlap of defining features. 

Furthermore, different error correction software could be tested on the raw sequence data, 

or additional pre-processing steps included before importing the sequences into QIIME 2. 

Another option that could be tried is instead of using DADA 2 to generate the ASV feature table, 

the Deblur plugin could also be tried, which also generates an ASV feature table using a different 

algorithm for quality control. However, these changes to the analysis pipeline would not be as 

impactful as making improvements to the classifier model, as that is what needed to be improved 

the most.  
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