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Abstract:  One random variable is larger than another in the increasing convex order if that 

random variable is preferred or indifferent to the other by all decision makers with increasing 

and convex utility functions.  Decision makers in this set prefer larger random variables and are 

risk loving.  When a decision maker whose utility function is increasing and concave is 

indifferent between such a pair of random variables, a tradeoff of size for risk is revealed, and 

this information can be used to make comparative static predictions concerning the choices of 

others.  For random variables ranked by the increasing convex order, the choices of all those who 

are strongly more (or less) risk averse can be predicted.  Thus, the increasing convex order, 

together with Ross’s (1981) definition of strongly more risk averse, can provide additional 

comparative static findings in a variety of decision problems.  The analysis here discusses the 

decision to self-protect, and several others.   
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1.  Introduction 

 

Building decision models that involve tradeoffs is a distinguishing feature of economic 

analysis.1  In models with randomness, the most important of these tradeoffs involves choosing 

between a larger and riskier random variable and a smaller and less risky one.  Mean-variance 

(M-V) decision models represent this tradeoff in a very simple and direct fashion.  M-V models 

measure size by the mean  and risk by the standard deviation , and use a utility function  

V(, ) to represent a decision maker's willingness to trade off size for risk.   

In expected utility decision models, representing the size for risk tradeoff is a much more 

complex problem.  There is no agreed upon measure of the size of a random variable, nor is there 

an agreed upon measure of the magnitude of risk.2  First degree stochastic dominance provides a 

partial order for size, and the Rothschild and Stiglitz (1970) definition of an increase in risk 

provides a partial order for risk, but neither provides a measure.  The analysis here employs the 

increasing convex order from the mathematical statistics literature to aid in modeling this size for 

risk tradeoff.  

One random variable is said to be larger than another in the increasing convex order if 

that random variable is preferred or indifferent to the other by all decision makers with 

increasing and convex utility functions.  Larger in the increasing convex order can also be 

characterized by a condition on cumulative distribution functions.  This condition is similar in 

form to those used to define various forms of stochastic dominance.  It is this characterization 

                                                 
1 Greg Mankiw, in his Principles of Economics textbook, lists as Principle 1:  "People Face Tradeoffs". 

 
2 Aumann and Serrano (2008) do provide a measure for risk, but their measure appears to combine both the elements 

of size and risk.  
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using cumulative distribution functions that is the fundamental tool for doing comparative static 

analysis. 

While the particular group of decision makers associated with the increasing convex 

order is not one that is frequently analyzed in economic analysis, the increasing convex order 

proves to be very useful when discussing a decision maker's willingness to trade off size for risk.  

Recently, Liu and Meyer (2013) show that whenever a decision maker is observed to be 

indifferent between two random variables where one is larger than the other in the increasing 

convex order, a willingness to accept a reduction in size in order to also reduce risk is revealed.  

Liu and Meyer (L-M) measure this willingness to exchange size for risk using the rate of 

substitution of a first degree stochastic dominant increase in the random variable for a Rothschild 

and Stiglitz (1970) risk increase.  More importantly for this analysis, L-M show that the 

magnitude of this rate of substitution increases as the decision maker becomes strongly more risk 

averse as defined by Ross (1981).  Thus, for pairs of random variables where one is larger than 

the other in the increasing convex order, if any decision maker is indifferent between them, the 

choices of all those who are strongly more (or less) risk averse can be predicted.  Such 

comparative static predictions are an integral part of the analysis of many economic decisions 

involving risk. 

The increasing convex order is a term defined in the mathematical statistics literature.  

That literature also provides several equivalent ways to characterize this order, including a 

characterization that is based on the CDFs of random variables.  The focus in the mathematical 

statistics literature, however, is on the partial order defined over random variables rather than 

using that order to frame the size for risk tradeoff.  Although some of the alternative 
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characterizations of the increasing convex order have been used before by others doing economic 

analysis, that work appears to be unaware of the full range of characterizations of the increasing 

convex order that are available, and does not refer to findings in the mathematical statistics 

literature.  In particular, the CDF-based characterization of the increasing convex order that is 

emphasized here has not been used before for economic analysis.   The primary reason for 

discussing the increasing convex order, and especially its CDF based characterization, is the 

comparative static statements that it can be used to demonstrate.   

This paper does two main things and is organized as follows.  First in Section 2, the 

increasing convex order is described and several equivalent characterizations are given.  The 

majority of this material comes from the mathematical statistics literature.  The terminology 

employed there is different from that used by most economists, but is easily translated into 

discussion that fits the more familiar stochastic dominance framework.  The connection between 

the increasing convex order, an order over random variables, and Ross's strongly more risk 

averse order, an order over expected utility maximizing decision makers, is also reviewed.   

After this review and summary, Section 3 presents an extensive discussion of how the 

increasing convex order, and Ross’s strongly more risk averse order, can be used together to 

derive new comparative static statements in a variety of decision models.  The section begins 

with the decision to self-protect.  With self-protection, the least preferred outcome is made 

smaller by the amount paid for self-protection.  This is an example of the so-called “left tail 

problem” where an activity which appears to be risk-reducing, in this case self-protection, shifts 

the worst outcome leftward.  When the left tail problem occurs, it is well known that risk 

aversion can play an unusual role in the decision process.  Some sufficiently risk averse decision 
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makers, for instance, would not choose the apparently less risky alternative, self-protection.  In 

addition, for any reference decision maker who chooses self-protection, there are always some 

decision makers who are more Arrow-Pratt risk averse who would not choose self-protection.3  

The increasing convex order provides a relatively simple condition on random variables that 

indicates when all those who are strongly more risk averse choose to self-protect whenever a 

reference decision make does so.  This is true even when the left tail problem is present.  

Comparative static analysis in several other decision models is discussed as well.  These include 

the insurance model with contract nonperformance by Doherty and Schlesinger (1990), the 

partial insurance model implicit in Ross (1981), and the decision model on risk-reducing 

investment by Jindapon and Neilson (2007).  

 

2.  Characterizations of the Increasing Convex Order 

In terms of notation, let 𝑥̃ and 𝑦̃ denote two random variables with cumulative 

distribution functions (CDF) F(x) and G(x) respectively.  Assume that the supports of all random 

variables lie in a bounded interval denoted [a, b] with no probability mass at the left endpoint a.  

This implies that F(a) = G(a) = 0 and F(b) = G(b) = 1.  Let F and G denote the mean values of 

these alternatives, and F
2 and G

2 their variances.  The convention used here is that the 

conditions are stated so that 𝑥̃ or F(x) dominates or is preferred to 𝑦̃ or G(x) rather than the 

reverse.  It is assumed that any utility function u(x) is differentiable at least three times. Before 

presenting the increasing convex order, the definitions for three well known types of changes in a 

random variable are very briefly reviewed to establish a context for later findings.   

                                                 
3 See Section 3.5 for a more complete discussion of the left tail problem and its implications. 
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The definition of first degree stochastic dominance (FSD) is provided by Hadar and 

Russell (1969) and Hanoch and Levy (1969).  FSD is a well accepted way to define when one 

random variable is larger than another. 

 

Definition 1:  𝑥̃ is larger than 𝑦̃ or 𝑥̃ dominates 𝑦̃ in FSD if G(x)  F(x) for all x in [a, b].   

 

It is well known that in expected utility (EU) decision models, F(x) dominates G(x) in 

FSD if and only if EFu(x)  EGu(x) for all u(x) with u'(x)  0.  It is also the case that FSD implies 

that F  G, but places no restriction on the relative sizes of F
2 and G

2.   

Rothschild and Stiglitz (R-S) (1970) define what it means for one random variable to be 

riskier than another.  Like FSD, this definition is well accepted as the way to define an increase 

in risk. 

 

Definition 2:   𝑦̃ is riskier than 𝑥̃ if ∫ [G(x) - F(x)]dx
y

a
  0 for all y in [a, b] with equality holding 

at y = b.   

 

It is also well known that G(x) is riskier than F(x) if and only if EFu(x)  EGu(x) for all 

u(x) with u''(x)  0.  The assumption that equality holds at y = b implies that F = G.  R-S riskier 

implies that F
2  G

2.   

Second degree stochastic dominance (SSD), also defined by Hadar and Russell and 

Hanoch and Levy, is closely related to R-S riskier.    

 

Definition 3:  𝑥̃ dominates 𝑦̃ in SSD if ∫ [G(x) - F(x)]dx
y

a
  0 for all y in [a, b].   
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It is the case that F(x) dominates G(x) in SSD if and only if EFu(x)  EGu(x) for all u(x) 

with u'(x)  0 and u''(x)  0.  SSD implies that F  G, and like FSD, SSD places no restriction 

on the relative sizes of F
2 and G

2.   

 The definition of larger in the increasing convex order is given below and comes from 

the mathematical statistics literature.4   

 

Definition 4:  Random variable 𝑦̃ is larger than 𝑥̃ in the increasing convex order if  

EG[u(x)]  EF[u(x)] for all u(x) with u'(x)  0 and u''(x)  0. 

 

Larger in the increasing convex order requires that G  F which is the opposite from the 

requirement imposed by FSD or SSD.  Like FSD and SSD, larger in the increasing convex order 

places no restriction on the relative sizes of F
2 and G

2.  Obviously, the relation defined in 

Definition 4 is transitive, therefore creating a partial order, the “increasing convex order” over 

random variables.  As is clear later (in Theorem 2), the change from F(x) to G(x), when G(x) is 

larger than F(x) in the increasing convex order, can be decomposed into a change becoming 

larger (in the FSD sense) and a change becoming riskier (in the R-S sense).  Because larger is a 

good property when u'(x)  0, and riskier is a bad property when u''(x)  0, when a random 

variable becomes larger in the increasing convex order, the change is a combination of a good 

change and a bad change for those decision makers with u'(x)  0 and u''(x)  0.   In other words, 

a pair of random variables linked by the increasing convex order presents a non-satiated and risk 

averse decision maker with a choice involving trading off size for risk.   

                                                 
4 For the definition of larger in the increasing convex order and related results in the mathematical statistics 

literature, see Shaked and Shanthikumar (2007).  A closely related concept is the so-called “stop-loss order” studied 

in the actuarial science literature (Denuit et al. 2005).  
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Several theorems in the mathematical statistics literature provide alternate ways to 

characterize the increasing convex order.  The one given next takes a form similar to the 

stochastic dominance definitions just reviewed.  Because the CDF-based characterization in 

Theorem 1 takes a different form than that in the mathematical statistics literature, an alternative 

and simple proof of Theorem 1 is provided in the Appendix.5   

 

Theorem 1:  Random variable 𝑦̃ is larger than 𝑥̃ in the increasing convex order if and only if 

∫ [G(x) - F(x)]dx
y

a
  -Q for all y in [a, b] where Q = G - F  0. 

 

The condition in Theorem 1 is easily tested; it allows one to determine whether G(x) is larger 

than F(x) in the increasing convex order by direct computation.   

Larger in the increasing convex order can also be characterized using a two-step 

procedure.  The first of these steps is to make 𝑥̃ larger in the FSD sense, and the second step is to 

make this result riskier in the R-S sense, reaching 𝑦̃ in the end.  The following theorem indicates 

that this characterization is indeed equivalent to the stated definition of larger in the increasing 

convex order.  In addition, whether the increase in risk or the increase in size occurs first is not 

important.  This result is also from Shaked and Shanthikumar (2007). 

 

Theorem 2:  The following two statements give equivalent characterizations of G(x) being larger 

than F(x) in the increasing convex order. 

                                                 
5  The condition in Theorem 1 could be equivalently written as ∫ [G(x) - F(x)]dx  0

b

y
 for all y in [a, b].  While this is 

a more compact expression, we choose the form given in Theorem 1 to emphasize the fact that larger in the 

increasing convex order allows negative values for ∫ [G(x) - F(x)]dx 
y

a
. 



8 

 

i)  There exists CDF H(x) such that G(x) is riskier than H(x) and H(x) dominates F(x) in 

the FSD.   

ii)  There exists CDF H*(x) such that G(x) dominates H*(x) in FSD and H*(x) is riskier 

than F(x).  

 

Theorem 2 indicates that the two separate changes, becoming larger and becoming 

riskier, can be applied sequentially and in either order.  Decomposing a relatively more complex 

change into two simpler changes seems to be quite natural.  Indeed, in their pursuit of a better 

understanding of Ross’s strongly more risk averse order, Ross (1981), Jewitt (1986) and Chiu 

(2005) all use this two-step decomposition.  These studies do not, however, use the 

characterization given in Theorem 1 and this limits the analysis that can be carried out.   

It is interesting to note that SSD changes to a CDF can also be decomposed into two 

separate parts.  One can show that G(x) dominates F(x) in SSD if and only if there exists a CDF 

H(x) such that H(x) dominates F(x) in FSD and G(x) is less risky than H(x).  SSD and larger in 

the increasing convex order are similar yet in some sense opposite concepts.  Each involve 

increasing the size of the random variable, but one decreases and the other increases the 

riskiness.   

If utility functions satisfy the usual assumptions made in economic analysis, u'(x)  0 and 

u''(x)  0, and 𝑦̃ is larger than 𝑥̃ in the increasing convex order, then some decision makers 

would choose 𝑦̃ over 𝑥̃ and others would choose 𝑥̃ over 𝑦̃.  More importantly, when a particular 

decision maker chooses one over the other, information concerning that decision maker’s rate of 

substitution or tradeoff of size for risk is obtained.  This information is useful for predicting the 

choice between 𝑥̃ and 𝑦̃ for those decision makers with rates of substitution which are larger or 
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smaller than that for the reference decision maker.  This very simple and nontechnical statement 

is the essence of the way the concept of larger in the increasing convex order is combined with 

the Ross strongly more risk averse order to derive comparative static results.  First a short review 

of the Ross order and facts concerning the rate of substitution of size for risk is needed. 

 

Definition 5:  (Ross)   Suppose u'(x) > 0 and u''(x) < 0.  u(x) is strongly more risk averse than 

v(x) on [a, b] if there exists a  > 0 such that 
u''(x)

v''(x)
       

u'(y)

v'(y)
 for all x and y in [a, b]. 

 

The Ross strongly more risk averse order implies but is not implied by u(x) more Arrow-

Pratt risk averse than v(x).  The Ross strongly more risk averse order has several other equivalent 

characterizations including one based on the tradeoff between size and risk.  Liu and Meyer 

(2013) discuss these characterizations and also define a rate of substitution Tu for an arbitrary 

FSD change and an arbitrary R-S risk change to a random variable.  This definition is given 

below and indicates the rate at which a particular decision maker is willing to substitute the one 

change for the other, trading off size for risk. 

 

Definition 6:  For any increase in risk from F(x) to G(x) and for any FSD deterioration from F(x) 

to H(x), the rate of substitution of size for risk is given by 

 Tu(F(x), G(x), H(x)) = 
∫ u(x)d[F(x) - G(x)]

b
a

∫ u(x)d[F(x) - H(x)]
b

a

 = 
∫ u'(x)[G(x) - F(x)]dx

b
a

∫ u'(x)[H(x) - F(x)]dx
b

a

  

  
L-M show that u(x) is strongly more risk averse than v(x) on [a, b] if and only if u vT T

 

for all F(x), G(x) and H(x) such that G(x) is riskier than F(x), and F(x) first-degree stochastically 
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dominates H(x).  That is, this rate of substitution provides another way to characterize the Ross 

strongly more risk averse order.    

 The following theorem uses the concept of larger in the increasing convex order to 

further explore the connection between the strongly more risk averse order of Ross, and the size-

for-risk tradeoff.  This theorem provides the comparative statics tool used in Section 3.  The 

proof of Theorem 3 is given in the Appendix.  

 

Theorem 3:  If G(x) is larger than F(x) in the increasing convex order, then  

i)  EFv(x)  EGv(x) implies EFu(x)  EGu(x) for all u(x) who are strongly more risk 

averse than v(x). 

ii)  EFv(x)  EGv(x) implies EFu(x)  EGu(x) for all u(x) who are strongly less risk 

averse than v(x).  

 

Combining conditions i) and ii), Theorem 3 implies that for any decision maker who is 

indifferent to a change from CDF F(x) to CDF G(x) which is larger in the increasing convex 

order, those strongly more risk averse than this person prefer F(x) (in some sense the smaller and 

less risky alternative), while those who are strongly less risk averse prefer G(x) (in some sense 

the larger and riskier option).  The result in Theorem 3 has been previously given by Ross 

(1981), Jewitt (1986) and Chiu (2005), using the two-step decomposition definition of larger in 

the increasing convex order.  What is new here is that Theorem 1 with its integral condition on 

cumulative distribution functions provides a concrete way to check for or impose the larger in 

the increasing convex order condition on random variables so that comparative static results can 

be derived. 
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This concludes the summary of the main results that are available in various places and 

using a variety of terminology concerning the larger in the increasing convex order for random 

variables.  The connection of this order to Ross’s strong more risk averse order is also reviewed.  

The remainder of the paper focuses on and uses the stochastic dominance like condition provided 

in Theorem 1 to determine the implications of these findings for comparative static analysis.  The 

decision to self-protect is examined, and other decision models as well.  

  

3.  Self-Protection and Other Economic Applications 

This section includes several comparative static theorems in a variety decision models 

that are obtained by making use of the concepts of the strongly more risk averse and the 

increasing convex orders.  

 

3.1  Self-Protection 

Ehrlich and Becker (1972) define self-protection as a costly action that reduces the 

probability that bad outcomes or losses occur.  Dionne and Eeckhoudt (1985) use many 

examples to show that the relationship between the demand for self-protection and the risk 

aversion level of the decision maker is not a straightforward one.  Most notably, as the decision 

maker becomes more Arrow-Pratt risk averse, higher levels of self-protection need not be 

selected.  The reason for this is that increased self-protection reduces the probability of loss, but 

not the size of the loss.  As a consequence, the smallest and least preferred outcome is shifted left 

by the cost of self-protection.  In an expected utility decision setting, this leftward shift implies 

that there is always a decision maker who is sufficiently risk averse to not prefer the increase in 

self-protection.  This is an example of the so-called left tail problem. 
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The literature since Dionne and Eeckhoudt has imposed complex joint conditions on risk 

aversion, prudence, and the relative sizes of the risk increases and decreases that result from an 

increase in self-protection as a way to overcome this comparative static difficulty.6  The analysis 

here shows that when the self-protection model satisfies modest restrictions, decreased self-

protection leads to an outcome variable which is larger in the increasing convex order, and hence 

Ross’s strongly more risk averse order can be used to make straightforward comparative static 

statements.  The comparative static predictions obtained here complement and augment those 

currently available.   

Erhlich and Becker, and also Dionne and Eeckhoudt, conduct their analysis of self-

protection in a simple decision model where there are just two possible outcomes, a loss of fixed 

size L, or no loss at all.  Much of the research on self-protection has maintained this Bernoulli 

distribution assumption and the discussion here does also.  The notation of Eeckhoudt and 

Gollier (2005) is used.  Assume that a decision maker begins with certain wealth w and that this 

wealth is subject to loss L > 0 with probability p(e).  The variable e represents the level of 

expenditure on self-protection chosen by the decision maker.  The probability of loss p(e) is 

assumed to be decreasing in e.  Final wealth W can take on one of two values, either (w - e) or 

(w - L - e). 

Assume that e1 and e2 represent two levels of self-protection with e2 > e1.  In addition, to 

simplify notation, let p1 = p(e1) and p2 = p(e2).  The CDF for outcome variable W associated with 

the higher level of self-protection e2 is denoted F(W), and that associated with e1 as G(W).  To 

apply Theorem 3, conditions are needed so that G(W) is larger than F(W) in the increasing 

                                                 
6 For example, see Briys and Schlesinger (1990), Lee (1998), Jullien, Salanie and Salanie (1999), Chiu (2000), 

Eeckhoudt and Gollier (2005), Liu, Rettenmaier and Saving (2009) and Meyer and Meyer (2011). 
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convex order. The difference between these two CDFs, [G(W) - F(W)], is given below, and 

Figure 1 displays this information graphically.7 

 

 

     0    for   W <  w - L - e2 

    -p2  for   w - L - e2    W  <  w - L - e1 

[G(W) - F(W)] =  p1 - p2   for   w - L - e1    W  < w - e2 

   p1 - 1  for   w - e2    W  < w - e1 

      0  for   w - e1    W 

 

Clearly [G(W) - F(W)] becomes negative first.  That is, compared to G(W), the CDF 

associated with more self-protection F(W) has more of a left tail.  This is the left tail problem.  

Because of this, a sufficiently risk averse decision maker chooses less self-protection and more 

risk averse persons may also choose less self-protection than less risk averse persons.  It is also 

the case that for appropriate parameter values, G(W) is larger than F(W) in the increasing convex 

order and thus Theorem 3 can be used to indicate who would choose more self-protection based 

on the strongly more risk averse order.  The integral condition in Theorem 1 provides a direct 

and easily computed method to find these parameter values.  G(W) is larger than F(W) in the 

increasing convex order if and only if   

(e2 - e1)p2  (w - p1·L - e1) - (w - p2·L - e2).   

To interpret this condition, the RHS of this inequality is Q, the increase in the mean from 

reducing expenditure on self-protection, while the LHS is the largest negative value that 

∫ [G(x) - F(x)]dx
y

a
 attains for this particular [G(W) - F(W)].  Graphically, the requirement is that 

                                                 
7 It is reasonable to assume that w - L - e1  < w - e2 or equivalently that e2 - e1  < L ,  since under no circumstance 

would a rational individual expend effort on self-protection beyond the size of loss, L.   
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area A be smaller in size than (area A) - (area B) + (area C), which reduces to area C being larger 

than area B.  All areas are treated as positive values.   

Each side of this inequality also has an economic interpretation.  The RHS is the net 

expected cost of increased self-protection as measured by the reduced expected outcome.  For 

this to be positive, it must be assumed that spending more on self-protection reduces the 

expected outcome; that is, the expected gain from increased self-protection is less than the cost 

incurred.  This condition, that risk reduction is costly, holds at the margin for this and other risk 

reducing activities when the level is chosen by a risk averse decision maker.   

The LHS of the inequality is a measure of the ineffectiveness of the increase in self-

protection.  It is the probability of the loss occurring even with the higher level of self-protection, 

p2, multiplied by the extra expenditure on self-protection, (e2 - e1).  The LHS is the increase in 

the expected value of the wasted or ineffective expenditure on self-protection.  Thus, the 

condition requires that the expected increase in wasted expenditure be less than the increase in 

net cost; that is the expected increase in cost is not a total waste. 

  Using Theorem 3, the following two comparative static theorems in the self-protection 

decision model are immediately available. 

 

Theorem 4:  Assume that (e2 - e1)p2  (w - p1·L - e1) - (w - p2·L - e2).  For any decision maker 

who chooses e2 over e1, all those who are strongly more risk averse also choose e2 over e1. 
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Theorem 5:  Assume that (e2 - e1)p2  (w - p1·L - e1) - (w - p2·L - e2) for all e2 > e1.
8  For any 

decision maker who optimally chooses a level of self-protection e*, all those who are strongly 

more risk averse choose a level of self-protection greater than or equal to e*. 

 

Theorem 4 is just a restatement of part i) of Theorem 3 in the self-protection context.  

Theorem 5 is the extension of this result to an optimal choice setting.  The logic of the proof of 

Theorem 5 is straightforward.  The condition (e2 - e1)p2  (w - p1·L - e1) - (w - p2·L - e2) for  

e2 > e1 implies that lower levels of self-protection yield larger random variables in the increasing 

convex order.  Whenever any decision maker optimally chooses a level of self-protection, e*, that 

decision reveals that e* is preferred or indifferent to all available alternatives, both lower and 

higher values of e.  Theorem 3 indicates that those decision makers who are strongly more risk 

averse than the reference person agree that e* is preferred to all lower levels of e.  Thus when 

these persons optimize they can only select a level of self-protection that is at least as large as e*.   

It is interesting to note that the way in which comparative static analysis is carried out 

using larger in the increasing convex order is somewhat different from the standard approach and 

is related to the procedure described by Ross in his Application I.  Assumptions are made to 

ensure that for any two levels of the choice variable, the outcome variable for the one is larger 

than the other in the increasing convex order.  Once this is accomplished, Theorem 3 is used to 

formulate and demonstrate comparative static theorems.  This approach to comparative static 

analysis does not require that the outcome variable be differentiable in the choice variable, and in 

                                                 
8 Note that this condition is equivalent to p(e)  1+p'(e)L for all e.  To give a general example in which this 

condition is satisfied, consider the self-protection technology p(e) = p0 /(1 + e), where p0 is the probability of loss 

without self-protection i.e. when e = 0.  A sufficient condition for p(e)  1+p'(e)L for all e is that L   (1- p0) / p0.  
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fact, allows the choice variable to be discrete.  Differentiation and first and second order 

conditions are not part of this comparative static analysis.   

An example where the test condition, (e2 - e1)p2  (w - p1·L - e1) - (w - p2·L - e2), is met 

is the following.  Suppose you own a bicycle whose value is $400 and the probability of it being 

stolen if unlocked is .1.  Thus, the expected value of this unlocked bike is $360 and the expected 

loss is $40.  It is well known that if a bicycle lock that would completely eliminate theft were 

available, those who are sufficiently risk averse would buy this lock even if the price of the lock 

is more than the expected loss.  Suppose now that the only lock available is one that does not 

completely eliminate theft, but does reduce the probability to .001, and that the price of this lock 

is e.  The expected loss with the lock is $.40.  The test condition is e(.001)   e - $39.60.  The 

LHS is the expected amount lost if the lock purchase is ineffective, and the RHS is the loss in 

expected value from purchasing the lock.  Solving for the critical value for e yields e  $39.64. 

The inequality indicates that as long as the price of the lock exceeds $39.64 then purchasing the 

lock leads to an outcome which is smaller in the increasing convex order.  Therefore whenever a 

risk averse person buys the lock then so do all persons strongly more risk averse than that person.  

This example illustrates the general finding that when the left tail problem is small relative to the 

change in the mean, then if any person chooses the apparently safer choice, those who are 

strongly more risk averse would also make this same choice. 

The theorems concerning self-protection are presented for those who are strongly more 

risk averse than the reference person.  Similar results hold for those strongly less risk averse as 

well.  These comparative static findings concerning who would choose more self-protection 

augment the existing ones and do not contradict or overlap with them.  
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3.2  The Insurance Decision with Contract Nonperformance 

 The self-protection example shows that even though the A-P more risk averse condition 

is not enough for obtaining definitive comparative statics results in the presence of the left tail 

problem, the strongly more risk averse condition of Ross is sufficient for this purpose as long as 

restrictions on the model parameters ensure that changing the size of the choice variable leads to 

an outcome variable which is larger in the increasing convex order. 

There are other decision models where the least preferred outcome is shifted left by a 

change in a choice variable, and where the outcome variables, for certain parameter values, are 

related to one another by the increasing convex order.  Doherty and Schlesinger’s (1990) model 

of contract nonperformance, and the model of excluded losses used by Meyer and Meyer (2010) 

have this property.  Models of information acquisition also are such that the information obtained 

does not prevent and may worsen the least preferred outcome.  Theorem 3 can be a useful tool 

for obtaining additional comparative static results in these models. 

To further illustrate the fact that the restrictions necessary to apply Theorem 3 are not 

onerous, consider a simplified version of Doherty and Schlesinger's (1990) insurance model of 

contract non-performance.  Similar to the self-protection example, it has a left tail problem in 

that buying insurance shifts the worst outcome leftward due to the potential contract 

nonperformance.  Specifically, suppose that the initial wealth is W and that a loss of size L 

occurs with probability p.  Without insurance, the final wealth x follows a Bernoulli distribution 

whose CDF is denoted G(x): W occurs with probability (1 - p) and (W - L) with probability p.  

Buying a full coverage insurance policy with premium P changes the final wealth outcome 

variable to one described by a different Bernoulli distribution whose CDF is denoted F(x):  
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(W - P) occurs with probability (1 - p + p·q) and (W - P - L) with probability p(1 - q), where q is 

the probability of insurer solvency conditional on the occurrence of a loss. 

To apply Theorem 3, conditions are needed so that G(x) is larger than F(x) in the 

increasing convex order. [G(x) - F(x)] is given below, and Figure 2 displays this information 

graphically. 

 

 

0    for   x <  W - P – L 

-p (1 - q) for   W - P - L   x < W - L  

[G(x) - F(x)] =  p·q   for   W - L   x < W - P 

   p - 1  for   W - P   x < W  

      0  for   W   x 

 

Applying the conditions in Theorem 1, it can be readily obtained that Q = G - F  0 is 

equivalent to (area A) - (area B) + (area C) = P – p·q·L  0 and that ∫ [G(x) - F(x)]dx
y

a
  -Q for 

all y in [a, b] is equivalent to (area A)  Q or p(1 - q)P  P - p·q·L.  Therefore, G(x) is larger than 

F(x) in the increasing convex order if and only if  P/L   p·q/(1 - p + p·q) .  In words, this 

condition requires that the ratio of P to L be no less than the ratio of the probability of a loss 

occurring and yet the insurer being solvent, to the total probability of the insurer being solvent 

regardless of whether a loss occurs.     

The following theorem is immediately obtained from Theorem 3.  

 

Theorem 6:  Assume that P/L   p·q/(1 - p + p·q).  For any decision maker who chooses to buy 

insurance in the presence of contract nonperformance, all those who are strongly more risk 

averse also choose to buy insurance. 
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3.3 Partial Insurance  

The next model illustrates the comparative static application of the increasing convex 

order in a decision model where the one outcome variable is larger than another in the increasing 

convex order, but the left tail problem is not exhibited.  Instead, the model yields alternatives 

such that ∫ [G(x) - F(x)]dx
y

a
 < 0 at some point y beyond the left tail of the distributions.  

Theorem 3 allows violations of ∫ [G(x) - F(x)]dx
y

a
  0 to occur at any value for y in [a, b] as long 

as these violations are small relative to the increase in the mean value in going from F(x) to G(x).  

Hence, larger in the increasing convex order can overcome comparative static difficulties in this 

decision model as well.   

Suppose a decision maker has an asset whose value is W when no loss occurs, but is 

subject to two different independently distributed losses of size L1 and L2 which occur with 

probabilities q1 and q2, respectively.  With no insurance the possible outcomes are (W - L1 - L2), 

(W - L2), (W - L1) and W and these occur with probabilities, [q1·q2], [q2(1 - q1)], [q1(1 - q2)] and  

[1 - q1 - q2 + q1·q2], respectively.  Denote the CDF for no insurance as G(x).  Assume now that 

full insurance coverage is available for the smaller of the two losses, which without loss of 

generality is L1.  Assume that the price of this insurance is P, and that no insurance is available 

for loss L2.  When the decision maker chooses to purchase this insurance the possible outcomes 

are (W - L2 - P) and (W - P) and these outcomes occur with probabilities q2 and (1 - q2), 

respectively.  Denote the CDF that results from choosing to insure as F(x).  

Again to apply Theorem 3, conditions are needed so that G(x) is larger than F(x) in the 

increasing convex order; that is no insurance results in a distribution that is larger in the 
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increasing convex order than does choosing to insure.  The difference between these two CDFs, 

[G(x) - F(x)], is given below, and Figure 3 displays this information graphically. 

 

 

     0     for   x <  W - L1 - L2 

    q1·q2   for   W - L1 - L2    x  <  W – L2 - P 

[G(x) - F(x)] =   q1·q2 - q2  for   W – L2 - P    x  < W - L2 

     0   for   W - L2    x  < W - L1 

   q1 - q1·q2  for    W - L1  x  < W - P 

   q1 + q2 - 1 - q1·q2 for   W - P < x   W 

      0   for   W    x 

 

In this decision model, [G(x) - F(x)] becomes positive first, and therefore there is no left 

tail problem.  It is still possible that G(x) is larger than F(x) in the increasing convex order, 

however.  Indeed,  following the conditions in Theorem 1, G(x) is larger than F(x) in the 

increasing convex order if and only if the insurance that is available is priced to be actuarially 

unfair in the sense that P  q1·L1.  Graphically, the condition Q = G - F  0 is equivalent to the 

requirement that (area A) - (area B) + (area C) - (area D)  0, and the condition 

∫ [G(x) - F(x)]dx
y

a
  -Q for all y in [a, b] is equivalent to the requirement that (area A) - (area B) 

be larger than (area A) - (area B) + (area C) - (area D).  Simple calculation shows that these 

requirements are satisfied if and only if P  q1·L1.  The next theorem follows as a result.  

Obviously, requiring that the price of insurance be actuarially unfair is not an onerous restriction 

to place on this model. 

 

Theorem 7:  Assume that P  q1·L1.  For any decision maker who chooses to insure against one 

loss in the presence of another independent loss, all those who are strongly more risk averse also 

choose to insure against the first loss. 



21 

 

 

3.4  The Comparative Statics Approach of Jindapon and Neilson (2007) 

As a final comparative statics application of Theorem 3, consider the following decision 

problem analyzed by Jindapon and Neilson (2007).  In contrast to the previous three comparative 

statics examples, the example here makes use of the larger in the increasing convex order 

concept without specifying the specific CDFs. 

Suppose that G(x) is R-S riskier than F(x) and that by incurring a cost c(t), G(x) can be 

made into a less risky distribution tF(x)  + (1 - t)G(x), where t is in [0, 1], c(0) = 0, c'(t) > 0 and 

c''(t) > 0.  Final wealth W can be denoted as W = ( ) ( )x t c t , where ( )x t has a CDF  

[tF(x) + (1 - t)G(x)].  The decision maker is assumed to choose t to maximize expected utility.  

Jindapon and Neilson show that a Ross more risk averse decision maker always chooses a 

(weakly) larger t, incurring a higher cost to get a less risky outcome variable.   

The same result can be obtained using Theorem 3.  To begin, it can be shown that final 

wealth W = ( ) ( )x t c t  becomes larger in the increasing convex order as t becomes smaller.  To 

see this, note that for t2 < t1, 2 2( ) ( )x t c t  is R-S riskier than 1 2( ) ( )x t c t , and 1 2( ) ( )x t c t  

dominates 1 1( ) ( )x t c t  in FSD.  Thus, according to Theorem 2, 2 2( ) ( )x t c t  is larger than 

1 1( ) ( )x t c t  in the increasing convex order when t2 < t1.    

To show that a strongly more risk averse individual u(x) always chooses a larger t than a 

less risk averse individual v(x), or tu  tv, assume otherwise, i.e., assume tu < tv.   Then, 

( ) ( )u ux t c t  is larger than ( ) ( )v vx t c t  in the increasing convex order.  Because v(x) prefers 

( ) ( )v vx t c t  to ( ) ( )u ux t c t  by the definition that tv is the optimal choice for v(x), Theorem 3 

indicates that the strongly more risk averse u(x) would also prefer ( ) ( )v vx t c t  to ( ) ( )u ux t c t , 



22 

 

contradicting that tu is the optimal choice for u(x).  Therefore, it must be that tu  tv.  That is, a 

Ross more risk averse decision maker always chooses a (weakly) larger t, incurring a higher cost 

to get a less risky outcome variable.   

 

3.5  Some Further Discussion 

For each of these examples, one alternative G(x) has a larger mean value than another 

alternative F(x), but G(x) does not dominate F(x) in SSD.  When this is the case, for decision 

makers with u'(x)  0 and u''(x)  0, some choose F(x) over G(x) and others choose G(x) over 

F(x) depending on their size for risk tradeoff.  Theorem 3 indicates that, under the condition that 

G(x) is larger than F(x) in the increasing convex order, if any particular decision maker is 

observed to choose F(x), then those who are strongly more risk averse also choose F(x).   

Diamond and Stiglitz (1974) also provide a methodology for dealing with this same 

question, but the findings are quite different.  The Diamond and Stiglitz definition of a mean 

utility preserving increase in risk is given below. 

 

Definition 7:   For a person with utility function v(x),  𝑦̃ is a mean utility preserving increase in 

risk from 𝑥̃ if ∫ v'(x)[G(x) - F(x)]dx
y

a
  0 for all y in [a, b] with equality holding at y = b.   

 

As with Definitions 1 - 4, this definition is most easily interpreted when it is connected to 

EU maximization.  Diamond and Stiglitz show that EFu(x)  EGu(x) for all u(x) who are more 

Arrow-Pratt risk averse than v(x) if and only if G(x) is a mean utility preserving increase in risk 

from F(x) for v(x).   Subsequent work (Meyer 1975, 1977) shows that for any F(x) and G(x) that 

cross a finite number of times, the CDF which becomes positive first is a mean utility preserving 
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increase in risk from the other for some v(x).  Based on this, comparative static statements can be 

made.  

The following theorems are true, in the self-protection model and the insurance model 

with contract nonperformance, respectively. 

 

Theorem 8:  For any e2 > e1, there exists a v(x) who is indifferent between e1 and e2 and all those 

who are A-P more risk averse than v(x) choose e1 over e2. 

 

Theorem 9:  For any premium P, there exists a v(x) who is indifferent between buying and not-

buying the full coverage and  all those who are A-P more risk averse than v(x) choose not to buy. 

 

Theorems 8 and 9 illustrate the left tail problem; those who are more risk averse choose 

less self-protection and decline to purchase insurance at all because the worst outcome becomes 

even worse with more self-protection or insurance.  This is a counterintuitive finding since self-

protection and insurance are thought to be risk reducing activities. 

For the partial insurance decision, the left tail problem is not present and it is the case that 

there exists a v(x) who chooses to insure, and all more risk averse than v(x) also choose to 

insure.  It is false, however, to conclude that if any v(x) chooses to insure then so do all who are 

more risk averse.  That is, choosing to insure is a necessary but not sufficient condition for no 

insurance to be a mean utility preserving increase in risk from insurance.  Thus, observing a 

decision maker choosing to insure must be paired with knowledge of that person's utility 

function to draw the conclusion that those more Arrow-Pratt risk averse also would choose to 

insure.  The definition of larger in the increasing convex order does not involve a utility function 

and does not impose this requirement.  Since no insurance is larger in the increasing convex 
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order than insurance, when any decision maker chooses to insure all those who are strongly more 

risk averse do so as well.   

 

4. Conclusion 

When a decision maker prefers more to less and also dislikes risk, choosing between two 

random outcomes when one is larger than the other in the increasing convex order, is a decision 

that trades off size for risk.  This paper uses the concept of the increasing convex order to 

provide a framework to study decision makers’ tradeoff of size for risk and derive additional 

comparative static findings in a variety of decision models.   

The first two examples illustrate how the larger in the increasing convex order concept 

can be used to address the left tail problem.  In both the self-protection model and the insurance 

model with contract nonperformance, the risk-reducing action, self-protection or the purchase of 

insurance, shifts the least preferred outcome further to the left.   As a consequence, it is not 

necessarily the case that the more risk averse decision-makers, in either the Arrow-Pratt or the 

Ross sense, want more self-protection or are more likely to purchase insurance.  The larger in the 

increasing convex order, however, can accommodate this left tail problem and still generate 

interesting and new results.  Specifically, with additional restrictions which seem minor, the risk-

reducing activity makes the final wealth distribution smaller in the increasing convex order.  

Thus, with these additional restrictions, strongly more risk averse individuals always invest more 

in self-protection and purchase insurance.  The third and fourth examples, concerning partial 

insurance and risk-reducing investment, respectively, indicate that the uses of larger in the 

increasing convex order go beyond dealing with left tail issues. 
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Appendix 

 

Proof of Theorem 1 

“if” 

Suppose that Q = G - F  0 and ∫ [G(x) - F(x)]dx
y

a
  -Q for all y in [a, b].  For every 

u(x) with u'(x)   0 and u''(x)  0, one obtains by using integration by parts twice  

EFu(x) – EGu(x) = – u'(b) (G – F)  – ∫ u′′(y)[∫ (G(x) –  F(x))dx
y

a
]dy 

b

a
 

   – u'(b) (G – F) – ∫ u′′(y)(−Q)dy  
b

a
=  – u'(a) Q  0. 

“only if” 

Suppose that EGu(x)  EFu(x) for all u(x) with u'(x)   0 and u''(x)  0. First, letting u(x) = 

 x implies Q = G – F  0. To show ∫ [G(x) - F(x)]dx
y

a
  -Q for all y in [a, b], use proof by 

contradiction.  Assume that ∫ [G(x) - F(x)]dx
y

a
 < -Q for some y in [a, b].  Then, due to 

continuity, there exists an interval [ , ]   (a, b) such that ∫ [G(x) - F(x)]dx
y

a
 < -Q for all y in 

[ , ]  . Choose a special u(x) such that u'(a) = 0, u''(x) > 0 for ( , )x    and u''(x) = 0 

otherwise. Then, 

EFu(x) – EGu(x) = – u'(b) (G – F)  – ∫ u′′(y)[∫ (G(x) –  F(x))dx
y

a
]dy 

b

a
 

  > – u'(b)Q – ∫ u′′(y)(−Q)dy 
b

a
 = – u'(a)Q = 0, 

contradicting that EGu(x)  EFu(x)  for all u(x) with u'(x)   0 and u''(x)  0.   

           QED 

 

Proof of Theorem 3 

One only needs to prove i) because the proof of ii) is similar. Suppose that G(x) is larger 

than F(x) in the increasing convex order and EFv(x)  EGv(x), the latter of which can be 

expressed as   

– v'(b) (G – F)  – ∫ v′′(y)[∫ (G(x) –  F(x))dx
y

a
]dy 

b

a
  0. 
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Also note that G(x) being larger than F(x) in the increasing convex order implies Q = G - F  0 

and ∫ [G(x) - F(x)]dx
y

a
  -Q for all y in [a, b], according to Theorem 1. 

Now let u(x) be a utility function that is strongly more risk averse than v(x). According to 

Ross (1981), there exists k > 0 and r(x), where r'(x)   0 and r''(x)  0, such that u(x) = kv(x) + 

r(x). Therefore, 

EFu(x) – EGu(x) = – u'(b) (G – F)  – ∫ u′′(y)[∫ (G(x) –  F(x))dx
y

a
]dy 

b

a
 

            = k{– v'(b) (G – F)  – ∫ v′′(y)[∫ (G(x) –  F(x))dx
y

a
]dy 

b

a
}  

   – r'(b) (G – F) – ∫ r′′(y)[∫ (G(x) –  F(x))dx
y

a
]dy 

b

a
 

     – r'(b) (G – F)  – ∫ r′′(y)[∫ (G(x) –  F(x))dx
y

a
]dy 

b

a
 

     – r'(b) (G – F)  – ∫ r′′(y)(– Q)dy 
b

a
 =  – r'(a) (G – F)  0.  

         QED 

 


