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Abstract

In any 2×2 global game, Carlsson and van Damme (1993b) showed that the game has a unique dominance

solvable equilibrium that corresponds to the risk dominant equilibrium of the related common knowledge

game with multiple strict equilibria. We test this prediction in repeated global stag hunt games. Under

private information, a few cohorts coordinate on thresholds close to the global games prediction, but

many cohorts coordinate on thresholds close to the e�cient threshold. We argue that initial conditions

and adaptive behavior play a key role in forming mutually consistent expectations in this game. We

also investigate why the iterated dominance argument used to get uniqueness in the private information

treatment is not salient.
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1 Introduction

Multiple strict equilibria arise in many economic situations: for example, team production, public

good provision, currency attacks, bank runs, market entry, and technology adoption, see Cooper

(1999). The re�nements literature attempts to solve this indeterminacy by imposing additional ra-

tionality restrictions or by requiring additional robustness properties to re�ne the Nash equilibrium

concept. However, because the equilibria are strict they survive all of the usual re�nements, see

van Damme (1991).
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Southern Economic Association Conference and the 2014 Texas Experimental Association Symposium for valuable
comments and discussion. First draft: April 2013; This draft: March 2014.

1



1 Introduction 2

In an innovative paper, Carlsson and van Damme (1993b) demonstrate that converting a com-

plete information game with multiple strict equilibria into an incomplete information game, called

a global game, results in many cases in a unique dominance solvable equilibrium prediction. The

conversion is motivated by the observation that even in common information games, where the

game form is common knowledge, players are uncertain about others utility from the game form.

Usually, the theory of global games assumes a special case of this general problem in which the

incomplete information game arises from players each observing a noisy signal of a common state

variable.

Morris and Shin (2001) motivate the importance of global games analysis by observing that it is

a �...heuristic device that allows the economist to identify the actual outcomes in such games, and

thereby open up the possibility of systematic analysis of economic questions which may otherwise

appear to be intractable.� They argue that multiple equilibria is the consequence of two modeling

assumptions: First, the economic fundamentals are assumed to be common knowledge; Second,

players are assumed to be certain about others behavior in equilibrium, see also Morris and Shin

(2000). They write, �...global games allow modelers to pin down which set of self-ful�lling beliefs

will prevail in equilibrium.�

While we agree with Morris and Shin that it is unlikely people have indeterminate beliefs, our

purpose in this paper is to argue against the position that these beliefs can be determined purely

by deduction alone. Instead, we urge a return to Nash's original interpretation of an equilibrium

as the stochastic steady state of some �mass-action� game, see Nash (1950, p.21-23).1 In our view,

historical accident and dynamic process play a key role in forming mutually consistent expectations

in games with multiple strict equilibria.

Carlsson and van Damme (1993b, p.1012) do not rely only on common knowledge of rationality

to justify the global games' predictions. They argue that for a great variety of learning processes the

sequence of choices will eventually converge to the set of strategies that survive iterated elimination

of strictly dominated strategies, see Milgrom and Roberts (1989). This suggests that the global

games approach may also be interpreted as the stochastic steady state of a realistic learning process,

which we do here.

In this paper, we test the global games' prediction for the stag hunt game analyzed in Carlsson

and van Damme (1993a). The stag hunt game models a situation in which symmetric players have

two choices: a safe choice that guarantees a payo� of q and a risky choice that yields a higher payo�

than q if enough other players choose it, but yields a lower payo� than q if too many players choose

the safe choice. Speci�cally, consider the class of stag hunt game forms depicted in Table 1. The

game has two strict equilibria either everyone chooses T , the risky choice, or everyone chooses B,

the safe choice. The equilibria are Pareto ranked with all T being preferred by everyone to all B.

While this favors T , strategic uncertainty, which is inherent in the strategy coordination problem,

may led players to choose B instead. Intuitively, if the number of people who have to choose T or

if q is close to 1, then it is more likely that people will choose B, the safe choice.

1 Actually, Cournot (1838, p.81) may have been the �rst to characterize a mutual best response outcome as the
steady state of a dynamic process. In translation, Cournot characterizes conditions for the equilibrium of a Cournot
Duopoly to be �stable�, where by �stable� he means �if either of the producers, ..., leaves it temporarily, he will be
brought back to it by a series of reactions, ...�
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Tab. 1: A Class of Stag Hunt Games when 0 < q < 1
T B

T 1 0
B q q

2 Analytical Framework

To focus the analysis, consider complete information stag hunt game forms where n identical players,

indexed by i, simultaneously choose between T and B. Let k denote the number of players, including

i, that choose T . Each player i is matched with the other n−1 players and earns the average payo�

from these matches, which is the matching protocol used in the experiment. (We call this a mean

matching protocol.) Player i's payo� to T is p( k
n ) = k−1

n−1 · 1 +
(

1− k−1
n−1

)
· 0 = k−1

n−1 for k ≥ 12 and

to B is q.

Consider the strategy assignment in which all n players choose T . Since k = n, the payo� to T

is 1. Deviating from the strategy assignment yields q, which is less than 1 by assumption. Hence,

playing T is a best response to the other n− 1 players choosing T and by symmetry a strict Nash

equilibrium.

Consider the strategy assignment in which all n players choose B. Since k = 0, the payo� to B

is q. Deviating from the strategy assignment yields 0, which is less than q by assumption. Hence,

playing B is a best response to the other n− 1 players choosing B and by symmetry a strict Nash

equilibrium.3

All of the players prefer all T , which yields them 1, over all B, which yields them less than 1.

The presence of multiple Pareto ranked equilibria confronts the player with a strategy coordination

problem. As mentioned earlier, equilibrium re�nements don't resolve the multiplicity problem. An

alternative approach to deducing a determinant prediction is equilibrium selection theory.

2.1 Equilibrium Selection

Harsanyi and Selten (1988) struggle with the choice of selection theory and ultimately give priority to

Payo� Dominance, which compares the e�ciency of equilibria and, if it exists, selects the equilibrium

that all players prefer. In the class of stag hunt games under consideration this principle selects the

all T equilibrium regardless of the value of q, which does not capture the intuitive notion discussed

in the introduction that the likelihood of all T should depend on q.4

Harsanyi and Selten (1988) develop Risk Dominance as the selection theory when Payo� Dom-

inance fails to make a unique prediction. For n = 2, Risk Dominance is equivalent to choosing the

equilibrium with the larger basin of attraction under best response dynamics. It is straightforward

to show that the all T equilibrium has the larger basin of attraction when q < 1/2 in which case

both Payo� Dominance and Risk Dominance agree on the selection of all T . However, when q > 1/2

2 Since k cannot be less than 1 when player i chooses T , de�ne p
(

k
n

)
≡ 0 for k < 1. Notice that p(x) is

non-decreasing with p(0) = 0 and p(1) = 1 as required by Carlsson and van Damme (1993a, p.239).
3 There are no other strict Nash equilibria, see Carlsson and van Damme (1993a, Proposition 2.1).
4 In the global games to be introduced below, Payo� Dominance will be sensitive to q, because when q > 1 a player

using Payo� Dominance selects B as it now strictly dominates T
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the all B equilibrium has the larger basin of attraction in which case Payo� Dominance and Risk

Dominance con�ict.

For n > 2, Harsanyi and Selten (1988, p.207-209) use the tracing procedure to select the Risk

Dominant equilibrium. It is straight forward to check the conditions given in Proposition 3.1 of

Carlsson and van Damme (1993a) to �nd the critical value of q, denoted q∗, that determines if Risk

Dominance and Payo� Dominance con�ict: q∗ = 1/2 as in the case where n = 2. Risk Dominance

selects all T when q < 1/2 and all B when q > 1/2.

2.2 Global Stag Hunt Games

Carlsson and van Damme (1993b) develop an equilibrium selection theory based on the idea that

the payo� parameters of a game cannot be observed with certainty. The complete information stag

hunt in Table 1 is replaced by a payo� perturbed game: a Global Stag Hunt game.

Following Carlsson and van Damme (1993a, Section 4) assume that everything about the Stag

Hunt game is common knowledge except the payo� to the safe choice q. Each player receives a signal

qi that provides an unbiased estimate of q. The signals are noisy so q is not common knowledge

amongst the players. Let Q denote a uniform random variable that is distributed on the interval

that strictly contains [0, 1], i.e., q ∼ U [a, b] where a < 0 and b > 1. So it is possible that q > 1 in

which case B strictly dominates T and it is possible that q < 0 in which case T strictly dominates

B. Let (E1, E2, . . . , En) denote an n-tuple of zero mean independently and identically distributed

random variables. The Ei are assumed to be independent of Q and to have support within [−1, 1].

For ε > 0, let Qε
i = Q+ εEi. The incomplete information model is described by the following rules:

1. A realization (q, q1, q2, . . . , qn) of (Q,Qε
1, Q

ε
2, . . . , Q

ε
n).

2. Player i observes qi and chooses between T and B.

3. Each player i receives payo�s as determined the actual q, the Table 1, the mean matching

protocol, and choices made in step 2.

Carlsson and van Damme (1993a, Proposition 4.1) states that in any strategy that survives iterated

elimination of strictly dominated strategies in the Global Stag Hunt Game, player i chooses T if

qi < p∗ and B if qi > p∗ where p∗ is given by

p∗ ≡
n∑

k=1

p
(
k
n

)
n

,

which is the expected value from choosing T when the number of players choosing T is uniformly

distributed on {0, 1, . . . , n− 1} . In general, this will not give the same critical value as Risk Domi-

nance when n is greater than two, but for the mean matching protocol p∗ = 1/2. Remarkably this is

true for any ε > 0 that are arbitrary small (smaller than b−1
2 and−a

2 ). Carlsson and van Damme's

argument thus gives another reason to expect the Risk Dominant equilibrium if the players have

arbitrarily small uncertainty about q. In the Global Stag Hunt Game, using a threshold of 1/2 is

the unique dominance solvable equilibrium.
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Any thresholds p 6= p∗ cannot be constituted as a mutual best response or an equilibrium

for every player in the group. To illustrate this, suppose all players except player j use the same

threshold at p, that is, they choose T if qi < p and B if qi > p. Let player j's best response threshold

be c, which means at qj = c, his expected payo�s for playing T and B are equal. Expected payo�

from playing B is qj for player j, while expected payo� from playing T depends on other players'

strategies. When player j observes c, his expected payo� from playing T is (p−ε)+ 1−c
1−0 ·2ε. Letting

expected payo�s from two choices to be equal, we get

c =
p + ε

1 + 2ε
. (1)

For any ε > 0, the only value that can make c = p is when c = p = 1/2. Additionally, when p > 1/2,

c < p and when p < 1/2, c > p which suggests that the myopic best response dynamic for all players

will gradually reach p∗ in equilibrium.

To be concrete, let ε be equal to 1
8 , the value used in the experiment, in equation (1), then the

equation for the best response threshold is

c =
1

10
+

4

5
p. (2)

To see that Payo� Dominance is no longer an equilibrium in the global game, set p = 1, then c = 9
10 .

2.3 Bounded Rationality

Experimental evidence suggests that people only engage in a few rounds of iterative thinking about

their opponents, see Crawford et al. (2010). This evidence makes us skeptical of predictions based on

the iterative elimination of strictly dominated strategies at least without experience in the game.

This has led to the use of non-equilibrium models of strategic thinking like Level-k models and

cognitive hierarchy models.

Interestingly, the non-equilibrium models also predict play by all but half of the step-0 thinkers

will correspond to Risk Dominance at least for initial play before the subjects have had a chance

to experience the game. Camerer et al. (2004, section III.B) provide an alternative route to Risk

Dominance in stag hunt games with their cognitive hierarchy model. Rather than requiring common

knowledge of rationality and mutual consistency of beliefs and choices, they assume participants

believe that they do more thinking than other participants. Participants are actually heterogeneous

with step-0 thinkers playing uniformly, step-1 thinkers best responding to a belief that everyone

else is a step-0 thinker, and so on. In two player symmetric coordination games, their cognitive

hierarchy model has all step thinkers except for half the step-0 thinkers conforming with the Risk

Dominance/Global Games selection criterion.
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Tab. 2: Version of Global Stag Hunt Game Form Used In the Experiment
T B

T 500 100
B Q + Ei Q + Ei

3 Experimental Design

The stage game form used in the experiment is given in table 25. The stage game was played 100

times to give adequate experience for the iterative elimination of strictly dominated strategies to

convergence to equilibrium. The values of Q used in the experiment were integers in the interval

0 to 600, that is, Q ∈ {0, 1, 2, . . . , 600}. The sequences of a hundred values of Q were generated

by a computer using a uniform distribution. As stated in the instructions, �Many sequences of one

hundred Qs were generated. One of these sequences will be used in today's session.� The sequence

was chosen to be representative of a uniform distribution even in small samples. The units denote

twentieths of a cent.

Two treatments were conducted. In the baseline treatment of common information about Q,

Ei = 0. In the private information treatment, Q was only observed with error. The private signal

error was Ei ∈ {−50,−49, . . . , 49, 50}. The sequences were generated in the same way as the Q

sequences. The same sequence of Q + Ei was used in all sessions of a treatment, but di�erent

sequences were used for the common information treatment and the private information treatment.

The instructions were read aloud to insure the game was common information among the par-

ticipants. After the instructions the participants �lled out a questionnaire to establish that the

participants knew how to calculate their earnings. There were always mistakes on at least one

questionnaire and the section on calculating earnings was always reread to the participants. Many

more mistakes were made in the private information treatment than the common information treat-

ment. Appendix A contains the instructions, questionnaire, and screen shots of the graphical user

interface.

Three sessions of three cohorts or nine cohorts were conducted for each treatment. Each cohort

consisted of eight participants. Thus, each treatment used 72 participants and the total number

of participants was 144. The participants were Texas A&M University undergraduates recruited

campus wide using ORSEE, see Greiner (2004).

The experiment was programmed and conducted with the software z-Tree, see Fischbacher

(2007). The experiment was conducted in the Economic Research Laboratory at Texas A&M

University, which has 36 networked participant stations, in February and March of 2013. A �ve

dollar show up fee plus their earnings in the session were paid to the participants in private and in

cash. The average earning is about $29.19 for a session that lasted between 70 and 90 minutes.

After the decision making portion of the session was completed and while they waited for their

earnings to be calculated, participants �lled out a questionnaire that asked them to explain their

behavior in the session.

5 We transform the game to G2 = 400 ∗ {G1 + 0.25}, where G2 is the game used in the experiment and G1 is the
game derived in section 2, to avoid decimal points and negative earnings in any periods.
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4 Experimental Results

A useful way to look at the data is with histograms of the frequency of T among a cohort by

either the private signal, Q + Ei, or Q depending on whether the treatment is private information

or common information.6 Figures 1 to 18 report the histograms by 25 period intervals for the

private information treatment and by 50 period intervals for the common information treatment.

The private information treatment �lls more bins, because usually there are eight observations per

period, than the common information treatment, where all eight observations are for the same

Q. Also, there appeared to be more learning going on with private information than common

information.

Cohorts 1 to 9 were conducted under the private information conditions. Looking down the

page, one can see how the histograms are changing with experience. Cohorts 1 and 2 in �gures 1

to 4 show evidence of learning to play the unique equilibrium of the private information game, 300,

that is, fewer participants are choosing T when the private signal is over 400 in each twenty-�ve

period interval. These two cohorts are the only ones to do this.

Cohort 3 in �gures 1 to 4 is more typical of the results in the private information treatment.

In periods 76 to 100, the participants implemented an almost perfect step function at 450, that

is, when the private signal was less than 450 everyone in every period choose T , the risky action

associated with the Payo� Dominant equilibrium, and when the private signal was more than 450

almost everyone in every period choose B.

Cohort 4 in �gures 5 to 8 shows some unraveling towards the unique equilibrium but for signals

in (400,450] more than �fty percent of the play is T . Cohorts 5 and 6 in �gures 5 to 8 and Cohorts

7 to 9 in �gures 9 to 12 all converge on a transition from all T to all B at around a private signal

of about 450, well above the unique global game equilibrium threshold of 300.

Cohorts 10 to 18 were conducted under the common information conditions. Cohort 10 in �gures

13 and 14 is perhaps the most remarkable. Cohort 10 coordinated perfectly on Payo� Dominance

as the selection principle, that is, when Q was in [0,500] all eight participants played T in every

period from 51 to 100 and when Q was in (500,600] all eight participants played B in every period

from 51 to 100. However, Cohort 10 is the only common information cohort to do this.

Cohort 15's histogram is almost a perfect step function but at Q equals 400. The remaining

common information cohorts all appear to step down at a Q in [400, 500]. The threshold (step

down) coordinated on is cohort speci�c.

6 The histograms were produced using the R statistics program, see R Core Team (2012).
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Fig. 1: Cohorts 1 to 3 periods 1 to 25

Fig. 2: Cohorts 1 to 3 periods 26 to 50

Fig. 3: Cohorts 1 to 3 periods 51 to 75

Fig. 4: Cohorts 1 to 3 periods 76 to 100
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Fig. 5: Cohorts 4 to 6 periods 1 to 25

Fig. 6: Cohorts 4 to 6 periods 26 to 50

Fig. 7: Cohorts 4 to 6 periods 51 to 75

Fig. 8: Cohorts 4 to 6 periods 76 to 100
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Fig. 9: Cohorts 7 to 9 periods 1 to 25

Fig. 10: Cohorts 7 to 9 periods 26 to 50

Fig. 11: Cohorts 7 to 9 periods 51 to 75

Fig. 12: Cohorts 7 to 9 periods 76 to 100
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Fig. 13: Cohorts 10 to 12 periods 1 to 50

Fig. 14: Cohorts 10 to 12 periods 51 to 100

Fig. 15: Cohorts 13 to 15 periods 1 to 50

Fig. 16: Cohorts 13 to 15 periods 51 to 100
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Fig. 17: Cohorts 16 to 18 periods 1 to 50

Fig. 18: Cohorts 16 to 18 periods 51 to 100
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Cohort Treatment b0 b1 Q + E = p−1(0.5) Rank

cohort 1 Private 18.19322 -0.05566 326.9 1
cohort 2 Private 13.61744 -0.03688 369.3 2
cohort 3 Private 97.95560 -0.21550 454.8 11
cohort 4 Private 14.55148 -0.03331 436.8 7
cohort 5 Private 31.06881 -0.06750 460.3 15
cohort 6 Private 29.86815 -0.06791 439.8 8
cohort 7 Private 28.75324 -0.06249 460.1 14
cohort 8 Private 24.56898 -0.05394 455.5 12
cohort 9 Private 76.78000 -0.16730 458.9 13
cohort 10 Common 1195.455 -2.42100 494.0 18
cohort 11 Common 41.82621 -0.09081 460.6 16
cohort 12 Common 18.97667 -0.04660 407.2 4
cohort 13 Common 32.42025 -0.07150 453.4 10
cohort 14 Common 23.00271 -0.05080 452.8 9
cohort 15 Common 286.5956 -0.71550 400.6 3
cohort 16 Common 18.24756 -0.04320 422.4 5
cohort 17 Common 68.29392 -0.14474 471.8 17
cohort 18 Common 27.26117 -0.06254 435.9 6

Tab. 3: Estimated Logit Models and Critical Values by cohort for last 25 periods.

The histograms in Figures 1 to 18 appear to us to have the shape of a logistic function. In

order to get a more precise measure of the heterogeneity of the various cohorts, we estimated the

following logit model on the cohort data for periods 76 to 100:

p(Q + E) =
eb0+b1(Q+E)

1 + eb0+b1(Q+E)
,

where p(Q + E) is the probability of T . Table 3 reports the estimated parameters and the critical

value for the eighteen cohorts.7

While it is notable that the two values close to the Risk Dominant threshold of 300 occurred in

the private information treatment and the one value essentially at the Payo� Dominant threshold

of 500 occurred in the common information treatment, we can not reject the hypothesis that both

treatments were drawn from the same distribution. The Mann-Whitney test statistic is 83 for the

private information treatment and 88 for the common information treatment. For signi�cance at

the 10 percent level, the test statistic for the private information treatment would have to be less

than 71.8 Most estimated thresholds are around 450 regardless of treatment. A stochastic steady

state appears to have emerged for most cohorts with a threshold in the interval [400,500]. These

thresholds are cohort speci�c and would seem di�cult to predict on an apriori basis.

Figures 19 and 20 illustrate the estimated logit models. The lines in the �gures show the critical

values at which �fty percent of the participants in a cohort are choosing T and �fty percent are

7 The logit model was estimated using the glm() procedure in R, see R Core Team (2012). The reported estimate
for cohort 12 excludes subject 17, who feel asleep twice, nodded o� repeatedly, and appears to have played randomly.
In the questionnaire, he wrote that he played randomly, which makes him a self-reported step-0 thinker and not a
threshold user.

8 See Conover (1980) table A7. The two-sample t statistic for a di�erence in treatment means is -0.8, which is also
not statistically signi�cant.
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Fig. 19: Estimated Logit Models: Private Information Treatment

Fig. 20: Estimated Logit Models: Complete Information Treatment
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choosing B. The private information cohorts have two outliers and seven tightly clustered

around 450, while the common information cohorts have almost a uniform distribution in the

[400,500] interval.

After the 100 choices were made, the subjects were asked to complete a debrie�ng questionnaire

consisting of four questions. The �rst question was �What strategy did you use while playing this

game? Please include details about what led you to choose A or B.�9 The answers were revealing.

Seventy-two percent of the subjects in the private information treatment and ninety-two percent

of the subjects in the common information treatment reported using a threshold. For example, a

subject reported �I chose B when the odds were that Q was greater than 500. I used the estimate

to decide this.� Twenty-�ve di�erent exact thresholds are mentioned in the 144 subject responses

ranging from 300 to 500. One subject used a threshold of 300, the Risk Dominant threshold. The

most common exact threshold was chose A if Q is less than 500 and B otherwise. It was chosen

by nineteen percent of the subjects. Other popular choices were thresholds at 450, 400, and 440 to

445 in order of decreasing popularity.10

The last group comes, 440 to 445, from people who focused on what A earns when one participant

chooses B. A typical answer was �I choose A or B depending on the spread that I was given for

choice B. I calculated the costs of one of my 'teammates' deviating from A and choosing B. If one

person deviated and I picked A I would receive 442, if 2 picked B I would get 385 and so on. If the

bottom boundary of my spread for Q was greater than 442 I choose B. If it was not then I chose

A.�

Ten percent of the subjects reported what we call a fuzzy threshold. They would chose A for

sure if Q was less than w and B for sure if Q was more than z, where w < z, and sometimes one or

the other for Q in [w, z]. For example, a subject wrote �If B was over 500, I would choose B. If B

was under 400 I automatically chose A. If B was between 400 and 500, I debated whether or not

to choose B, more times than not deciding to do so.�11

The second debrie�ng question was �Did you change your strategy over time?� Fifty-four percent

of the subjects in the private information treatment and two-thirds of the subjects in the common

information treatment reported changing their strategy over time.

The third debrie�ng question question was �If you changed your strategy, what made you change

it.� The typical response was the behavior of the other players in particular the need to coordinate

on the same threshold. For example, a subject wrote �I was initially choosing the highest number

of all those provided, so that was typically A unless B was a higher number. However, through

the experiment other participants stopped choosing the highest number (A = 500) when B became

more than 400.� Our interpretation of this quote is that the participant started using what might

be called a wishful thinking strategy (Maximax) because they write that the payo� to A was 500.

9 This is a direct quote. Participant choices were labeled A and B in the experiment. The risky choice T used up
to now was labeled A and the safe choice B was labeled B.
10 If we treat a strict threshold player as someone who always chose A for Q below some value and always chose B

for Q above the same value, then inspecting the individual data reveals that for the last 25 periods 76 percent of the
subjects in the private information treatment and 81 percent of the subjects in the common information treatment
were strict threshold players.
11 Subjects using a fuzzy threshold seem to be engaged in fast and slow thinking popularized by Kahneman (2011).

Schotter and Trevino (2013) exploit the di�erence in measured response time to accurately predict observed individual
thresholds in a global game.



4 Experimental Results 16

Over time they learned that the group was coordinating on a threshold of 400 and this led them to

change their behavior. Reading the debrie�ng answers from the cohort that perfectly coordinated

on the Payo� Dominant threshold of 500, cohort 10, we are now convinced that subjects initially

started with a wishful thinking strategy rather than any equilibrium concept like Payo� Dominance.

It is only after observing dis-coordination that they begin thinking about how to coordinate with

the group.

The forth question asked participants �If you could play this game again, what would you do?�

Fifty-one percent answered that they would do the same thing. Thirty-one percent answered that

they would change their strategy especially using the strategy that they adopted at the end of the

session earlier. Other frequently mentioned answers include wishing that they could communicate

and that they chose A more often.

A comparison of the location of the logit estimate of the group threshold by 25 period bins

reveals very little movement in the estimated threshold. For the nine private information cohorts,

the average absolute value of the change from the estimated threshold in the �rst 25 periods and

the last 25 periods is 22 units. For the nine common information cohorts, the average absolute

value of the change from the estimated threshold in the �rst 25 periods and the last 25 periods is

also 22 units. Interestingly, eight out of the nine private information cohorts decline between the

�rst and last 25 periods, that is, in the direction predicted by the theory, while �ve of nine common

information cohorts increase, which is slightly more than one would expect from chance.

It might seem puzzling that there is so little learning in the private information treatment when

myopic best response dynamic theory suggests that subjects should be learning iterated dominance.

If we always round down fractions to integers, it takes 20 best response iterations to go from the

Payo� Dominant assignment of all use a threshold of 500 to the Risk Dominant assignment of all

use a threshold of 300. Without rounding the process does not converge in a �nite number of

iterations. But notice that learning iterated dominance requires subjects to move to less e�cient

outcomes, which previous work suggests subjects are reluctation to do, see Van Huyck et al. (1997).

A calculation of the monetary incentive to deviate from an assignment may explain why subjects

are not learning iterated dominance. In the private information treatment, the best response, c∗,

to an assignment of all play a threshold p is given by the following equation: c∗ = 60 + 4
5p,

which is derived in the same way as equation (2) in section 2.2. Consider an assignment to a

threshold strategy combination of all use 450. The best response is a threshold of 420. However,

the optimization premium, the monetary incentive to give a best response, is an average of 3.75

units or 0.2 cents. This calculation is myopic because as behavior converges on 300 the group is

moving to less e�cient outcomes. If everyone conformed to a threshold of 450, they would each

earn $24.90 for the session. All participants using the Risk Dominant threshold of 300, which is

what best response learning converges to, would earn an average of $23.35 for the session, which

is a $1.55 dollar di�erence for the session and approximately a 1.6 cent di�erence per period. The

lost e�ciency is about eight times larger than the monetary incentive to best respond given an

assignment to everyone to use 450 as their threshold. Previous work has shown that subjects are

reluctant to converge towards less e�cient outcomes. This reluctance combined with a low myopic

incentive to best respond may explain the similar behavior observed under private and common

information.
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The low optimization premium relative to the ine�ciency of the unique equilibrium is a property

of the equilibrium solution. Scaling up the payo�s will make both larger by the same proportion.

This can be seen in �gure 21, which graphs the Expected Utility of the Payo� Dominant threshold,

Eu(qi|500) in red, and the Risk Dominant threshold, Eu(qi|300) in blue, given a realization of

qi. The horizontal axis graphs qi and the vertical axis graphs Eu(qi|p). Notice that the Expected

Utility function is discontinuous at Eu(500|500). At the Payo� Dominant threshold of all play 500

the expected utility from playing A is not 500, because on average half the participants observe a

qj above 500 and play B, which earns 100 per match, and half the participants observe a qj below

500 and play A, which earns 500 per match, making the expected earnings 300. For observations

qi ∈ {0, 1, . . . , 448, 449} the player can be sure that in a Payo� Dominant assignment all of the other

players receive a signal that induces them to play A and they all earn 500. Similar considerations

give the Risk Dominant, Eu(qi|300), function.

The dashed line and black dot in the function give the best response, 460, to an assignment of

all play 500. The area of the shaded triangle gives the expected earnings gained from deviating

from the assignment to the best response. The di�erence between playing 460 and 500 is from

observations qi ∈ {460, 461, . . . , 498, 499} in which strategy 460 plays B while strategy 500 plays A.

The average expected earnings lost from playing 500 is 6.67 (from the triangle area, 4,000, divided

by 600). The area of the shaded polygon minuses the area of the shaded triangle gives the expected

earnings lost from moving from the Payo� Dominance to the Risk Dominance (and global games

solution). This loss is, on average, 33.33 or about �ve times larger than the gains from playing 460

instead of 500 when all other players play 500. Scaling the payo�s from 600 to 6,000 or 600,000 will

not change the relative areas of the two shapes.

5 Discussion and Literature

Most of the experimental literature testing global games predictions focuses on variations of the

speculative attack model of Morris and Shin (1998). The �rst test of global games predictions in the

speculative attack model was Heinemann et al. (2004). In this game, an individual has two choices:

'attack' and 'not attack'. A player who attacks has an opportunity cost T . If a su�cient number of

players choose to attack, they succeed and each of the attacking agents earns an amount Y . They

assume that the number of players needed for a successful attack is a non-increasing function in Y .

In this game, if Y < T , the dominant strategy is 'not attack'. There exists Ȳ such that for Y > Ȳ ,

the dominant strategy is 'attack'. For Y such that T < Y < Ȳ , there are two pure Nash Equilibria,

all 'attack' and all 'not attack'. The value of Y varied from period to period. Undominated

threshold strategies were used by 92 percent of their subjects. In private information sessions,

estimated mean thresholds were close to the unique equilibrium with low assurance conditions and

below the unique equilibrium with high assurance conditions. In common information sessions,

estimated mean thresholds were between the thresholds of the Payo� Dominant equilibrium and

the global game solution. However, assuming subjects believe that other players choose to attack

with a probability of 2/3 for any state �t the data better. Estimated mean thresholds followed the

comparative statics of the global game solution and were higher under private information than

under common information. This implies that common information reduces the attack threshold
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Fig. 21: The Eu(qi|500) function is indicated by the thick red discontinuous line and the Eu(qi|300)
function by the thin blue continuous line.
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and increases the prior probability of devaluation in the speculative attack game.

Kneeland (2012) classi�es a restricted sample of subjects from Heinemann et al. (2004) into level-

k types12 and an equilibrium type. She estimates that around 70% of subjects are level-k types and

30% are equilibrium types. She suggests that �Under limited depth of reasoning, public information

coordinates the beliefs of players with di�erent depths of reasoning, increasing coordination.�

Cornand (2006) has two more treatments in the speculative attack game as in Heinemann et al.

(2004). In both treatments, subjects can observe two signals. In one treatment, subjects observe

both private and common signals whereas subjects in another treatment observe two common

signals. She �nds that in the treatment with both private and common information, subjects use

the public signal as a focal point. This implies that one clear public signal can control private

information beliefs from private information.

Kawagoe and Ui (2010) consider a global game with ambiguous variance of noise terms (ε in

this paper). They show in their experiment that low quality information (high ε) makes less players

choose the safe action, whereas uncertainty of information quantity (ambiguous ε) makes more

players choose the safe action. They suggest that providing a more precise variance of noise terms

can decrease the probability of a credit crisis.

Du�y and Ochs (2012) model a speculative attack as a dynamic global game where subjects have

multiple periods to decide whether to attack or not. They �nd little di�erence between static and

dynamic games and suggest that treating a speculative attack game as a static game is reasonable.

In contrast, Brindisi et al. (2011) observe a signi�cant di�erence between static and dynamic global

games in their two-person investment games. They show that endogenous timing for making a

decision in global games su�ciently improves welfare. In their experiment, a player with optimistic

beliefs about the pro�tability of investment invests earlier, which leads to an investment by others

who would not invest otherwise. They argue, �the behavioral di�erence between static and dynamic

global investments games is su�ciently di�erent to justify a continued focus on behavior in dynamic

games�.

Shurchkov (2013) focuses on learning in a dynamic speculative attack global game. She �nds

that subjects act more aggressively than the theoretical predictions when faced with a high cost of

attacking. In addition, the results show a high degree of learning where subjects adjust their beliefs

about other subjects' behavior between the stages of the experiment.

In this literature, behavior follows the comparative static prediction of global games but the

point estimates are not accurate. Subjects often coordinate on thresholds di�erent from the global

games prediction in favor of more e�cient thresholds in which they can earn more if they can

agree on the threshold. Allowing subjects to be able to observe other subjects' behavior, as in

dynamic global games, can reduce strategic uncertianty which can move behavior towards more

e�cient thresholds. In addition, the di�erences in behavior under common and private information

are not signi�cant, which suggests low levels of learning to use iterated dominance in the private

information condition.

Cabrales et al. (2007) analyzes a 2 × 2 game with a discrete signal that captures the logic

of a global game. In their setting, after eliminating strictly dominated strategies; the game has a

unique Nash equilibrium. In one treatment, the behaviors of the subjects converge to the theoretical

12 She assumes 3 level-k types: L1,L2 and L3.
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prediction after enough experience. In another treatment, there are some sessions that the behavior

did not converge after 50 periods. The results of complete and incomplete information are similar,

and they suggest that Risk Dominance plays a crucial role in explaining the behavior of the subjects.

Crawford et al. (2010) criticizes the global games approach on two grounds. First, there is no

evidence that people initially perceive the uncertainty in a game as if they were playing a global

game, that is, an incomplete information version of the game with special payo� perturbations.

Instead, the incomplete information in a global games analysis is constructed to allow the iterated

dominance argument. Second, the experimental evidence surveyed in their paper suggests that

people stop far short of the many steps of iterated dominance that is needed to make a global

games analysis yield a precise prediction.

There is a large literature on repeated stag hunt games, see Battalio et al. (2001) for references.

Rankin et al. (2000) estimate thresholds from individual data from an experiment with similar stag

hunt games, that is, in terms of this paper for 100 < Q < 500. They also �nd a bias away from

the risk dominance threshold towards more e�cient thresholds. Stahl and Van Huyck (2002) using

�nite mixture models reject the threshold speci�cation in favor of learning conditional behavior from

individual data from an experiment with two ranges of experience: one with 100 < Q < 500 and

one with 300 < Q < 500. Other di�erences include using random matching in Rankin et al. (2000)

and mean matching in Stahl and Van Huyck (2002). The answers to the debrie�ng questionnaire

used in the experiment reported here strongly support the view that subjects are using threshold

strategies over learning conditional behavior.

6 Conclusion

The global games theory does not make accurate predictions in the global stag hunt game under

private or common information. Only one cohort, cohort 1, was close to the predicted Risk Domi-

nant threshold of 300. Cohort 1's estimated threshold was 327. Instead, behavior is systematically

biased towards e�ciency. Formally, a Mann-Whitney test fails to reject the hypothesis that both

the common information and private information treatments were drawn from the same population.

There are strong cohort e�ects in the data. There is evidence of multiple equilibria in the

common information treatment. For example, cohort 10 converged on Payo� Dominance, that is,

all eight participants in the cohort behaved as if they were using Payo� Dominance for the last

50 periods. Cohort 15 converged on almost perfect implementation of a threshold of 400, half way

between Payo� Dominance and Risk Dominance. The remaining cohorts converge to thresholds

between 400 and 500. An inductive approach to equilibrium selection such as that proposed by

Haruvy (1999) and Haruvy and Stahl (2004) might be able to make more accurate predictions in

Global Stag Hunt games than the deductive selection principles examined in this paper.

Both estimated thresholds and self-reports reveal little tendency to converge toward either the

Risk Dominant threshold or the Payo� Dominant threshold. The initial conditions appear to focus

expectations and behavior converges on a threshold close to it. For the nine private information

cohorts, the average absolute value change in the estimated thresholds between the �rst and last 25

periods is just 22 units. The common information cohorts had the same average change of 22 units.

Interestingly, eight out of nine private information decline, while �ve of nine common information
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cohorts increase.

Under private information conditions, participants resist learning the iterative dominance so-

lution perhaps because doing so requires them to adopt less e�cient thresholds. The relationship

between the myopic best response incentive and the lost e�ciency is a property of the game rather

than the size of monetary payo�s used in the experiment.
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Tab. 4: Treatment 1: Q and Qi in each period
Period (Q,Q1, Q2, . . . , Q8) Period (Q,Q1, Q2, . . . , Q8))

1 (275, 260, 269, 311, 265, 230, 296, 257, 266) 51 (329, 379, 303, 374, 314, 304, 328, 305, 317)

2 (113, 104, 91, 108, 122, 132, 154, 67, 155) 52 (236, 208, 236, 277, 255, 215, 235, 239, 240)

3 (496, 537, 462, 538, 494, 513, 504, 516, 501) 53 (544, 511, 524, 555, 555, 575, 519, 494, 502)

4 (403, 453, 403, 388, 386, 382, 358, 410, 420) 54 (92, 140, 54, 100, 123, 51, 65, 53, 60)

5 (66, 67, 29, 112, 70, 38, 92, 60, 110) 55 (463, 426, 465, 508, 504, 448, 456, 504, 462)

6 (548, 593, 585, 540, 571, 523, 517, 587, 543) 56 (259, 209, 291, 277, 242, 213, 271, 234, 250)

7 (323, 346, 337, 280, 274, 340, 281, 277, 362) 57 (397, 404, 418, 415, 362, 438, 404, 440, 347)

8 (121, 144, 161, 145, 153, 140, 135, 171, 151) 58 (497, 500, 451, 452, 472, 494, 503, 472, 453)

9 (577, 570, 539, 587, 534, 563, 577, 543, 586) 59 (455, 458, 480, 420, 438, 497, 448, 414, 488)

10 (363, 331, 379, 383, 365, 315, 357, 372, 368) 60 (119, 111, 75, 156, 117, 96, 82, 123, 107)

11 (15, -22, 60, 64, -7, 32, 60, 33, 28) 61 (576, 543, 619, 547, 601, 566, 597, 569, 549)

12 (315, 327, 334, 356, 288, 283, 299, 357, 294) 62 (477, 503, 503, 519, 479, 491, 481, 527, 478)

13 (432, 424, 396, 459, 470, 413, 413, 411, 412) 63 (46, 67, 85, 69, 88, 32, 87, 50, 22)

14 (482, 449, 456, 492, 472, 518, 479, 506, 480) 64 (169, 149, 152, 196, 124, 146, 166, 206, 219)

15 (125, 83, 141, 136, 108, 141, 84, 111, 124) 65 (204, 161, 176, 170, 173, 209, 231, 246, 162)

16 (37, 19, -6, 87, 17, 38, -10, 3, 76) 66 (225, 262, 241, 187, 242, 249, 175, 177, 232)

17 (486, 523, 528, 469, 521, 468, 482, 517, 505) 67 (513, 549, 552, 477, 546, 517, 557, 552, 483)

18 (165, 136, 173, 158, 127, 186, 169, 212, 152) 68 (5, 31, -1, 11, -42, 43, 2, 39, -34)

19 (19, 58, 25, -31, 4, 5, 42, 45, 33) 69 (420, 385, 414, 386, 385, 419, 416, 412, 397)

20 (335, 362, 331, 315, 361, 354, 359, 297, 354) 70 (47, 42, 75, 41, 34, 17, 30, 82, 57)

21 (243, 283, 203, 287, 229, 201, 281, 216, 195) 71 (307, 274, 292, 324, 356, 320, 310, 326, 324)

22 (475, 474, 458, 474, 428, 515, 503, 466, 429) 72 (551, 572, 519, 591, 559, 504, 534, 583, 594)

23 (247, 204, 217, 216, 270, 234, 261, 266, 218) 73 (576, 543, 589, 587, 526, 614, 538, 578, 580)

24 (220, 176, 247, 200, 255, 251, 242, 253, 201) 74 (158, 123, 172, 190, 195, 132, 172, 135, 117)

25 (429, 391, 420, 472, 407, 412, 423, 405, 423) 75 (87, 92, 90, 48, 129, 118, 119, 73, 48)

26 (110, 111, 107, 72, 102, 160, 60, 103, 67) 76 (412, 437, 455, 422, 412, 417, 380, 409, 375)

27 (329, 351, 355, 296, 350, 293, 368, 281, 289) 77 (433, 408, 383, 412, 464, 460, 468, 483, 404)

28 (290, 272, 335, 296, 332, 293, 299, 254, 328) 78 (180, 160, 168, 199, 155, 152, 148, 180, 130)

29 (502, 490, 466, 482, 485, 548, 540, 473, 523) 79 (591, 567, 626, 557, 594, 568, 603, 638, 609)

30 (15, -25, 37, 38, 57, 59, -30, 53, 43) 80 (370, 345, 344, 378, 408, 371, 354, 367, 375)

31 (106, 106, 131, 107, 131, 132, 70, 102, 86) 81 (600, 594, 642, 628, 609, 583, 622, 566, 571)

32 (402, 413, 402, 360, 423, 361, 402, 362, 381) 82 (192, 189, 189, 215, 185, 242, 240, 184, 222)

33 (55, 89, 85, 5, 95, 43, 7, 61, 30) 83 (337, 371, 324, 292, 356, 318, 371, 370, 364)

34 (596, 616, 602, 582, 613, 566, 582, 594, 563) 84 (116, 121, 101, 98, 163, 79, 139, 148, 68)

35 (4, -9, 4, -42, -5, 16, 14, 27, 28) 85 (361, 404, 358, 338, 342, 334, 398, 363, 401)

36 (484, 502, 470, 437, 450, 453, 485, 510, 473) 86 (342, 322, 351, 387, 308, 380, 388, 351, 390)

37 (56, 42, 9, 25, 57, 95, 84, 45, 43) 87 (550, 573, 510, 501, 510, 569, 576, 521, 511)

38 (282, 277, 328, 268, 290, 332, 240, 316, 318) 88 (51, 70, 76, 24, 55, 14, 24, 66, 73)

39 (230, 204, 261, 203, 252, 229, 217, 183, 274) 89 (582, 602, 595, 604, 586, 616, 540, 563, 585)

40 (426, 434, 439, 454, 422, 459, 440, 394, 467) 90 (309, 342, 288, 344, 276, 291, 324, 273, 296)

41 (39, 63, 16, 1, -9, 10, 7, 78, 11) 91 (508, 480, 533, 540, 495, 536, 506, 504, 523)

42 (253, 277, 227, 225, 263, 280, 242, 236, 206) 92 (157, 161, 192, 129, 199, 131, 185, 191, 171)

43 (74, 66, 108, 106, 117, 94, 87, 78, 63) 93 (367, 412, 375, 334, 358, 364, 412, 375, 378)

44 (325, 282, 348, 322, 307, 278, 375, 345, 350) 94 (201, 158, 201, 154, 233, 216, 228, 178, 199)

45 (117, 158, 74, 138, 141, 160, 112, 79, 123) 95 (143, 121, 112, 161, 121, 115, 132, 109, 141)

46 (399, 414, 360, 365, 390, 388, 362, 426, 449) 96 (224, 243, 196, 250, 260, 272, 176, 265, 258)

47 (308, 344, 280, 354, 310, 303, 349, 304, 352) 97 (502, 550, 464, 494, 529, 487, 472, 540, 549)

48 (255, 236, 290, 212, 228, 207, 245, 234, 272) 98 (211, 236, 209, 186, 189, 252, 259, 210, 229)

49 (571, 558, 612, 553, 575, 521, 603, 613, 587) 99 (287, 322, 321, 272, 243, 241, 265, 268, 333)

50 (174, 136, 139, 138, 213, 142, 186, 202, 144) 100 (319, 281, 294, 349, 275, 321, 272, 294, 290)
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Tab. 5: Treatment 2: Q in each period
Period Q Period Q

1 433 51 37

2 255 52 110

3 329 53 420

4 600 54 87

5 224 55 143

6 577 56 325

7 174 57 220

8 484 58 4

9 46 59 119

10 19 60 544

11 287 61 308

12 66 62 5

13 121 63 125

14 106 64 513

15 582 65 243

16 591 66 455

17 550 67 282

18 169 68 335

19 315 69 253

20 39 70 309

21 158 71 412

22 225 72 361

23 576 73 157

24 290 74 56

25 426 75 201

26 192 76 319

27 596 77 15

28 165 78 363

29 180 79 116

30 402 80 548

31 370 81 399

32 397 82 571

33 259 83 15

34 113 84 337

35 230 85 51

36 117 86 508

37 403 87 429

38 551 88 74

39 236 89 307

40 247 90 502

41 497 91 576

42 275 92 482

43 367 93 47

44 432 94 486

45 204 95 502

46 329 96 55

47 477 97 323

48 496 98 475

49 92 99 211

50 342 100 463



Supplementary Materials 

Instructions used in the experiment 

We provide here the instructions used in the 2 treatments, a treatment with private information and a 

treatment with common information. Participants were seeing these instructions from the screen while 

one of the authors (John Van Huyck) also read aloud during the experiment. After the instructions, 

another author (Ajalavat Viriyavipart) passed out the questionnaire to establish that the participants 

knew how to calculate their earnings. 

1. A Private Information Treatment  

Instructions 

This session consists of one hundred separate decision making periods. You will participate in a 

group of eight people. At the beginning of period one, each of the participants in this room will be 

randomly assigned to a group of size eight and will remain in the same group for the entire one hundred 

decision making periods of the experiment. Hence, you will remain grouped with the same seven other 

participants for the next one hundred periods. 

At the beginning of each period, you and all other participants will choose an action. An earnings 

table (on the next page) is provided which tells you the earnings you receive given the action you and all 

other participants chose. The actions you may choose are row A or row B. During a period everyone will 

have a private estimate of the same earnings table. 

Your earnings are located in each cell. Units are twentieths of a cent. Your choice will be 

matched with the choices of the other participants in your group. You will receive the average of these 

earnings. The following table lists your choices A and B in the rows, and other participants in your 

group's choices in the columns. 

Table 

You have 2 choices, A and B, for all 100 periods. If you chose A and 5 other participants chose A 

and 2 chose B, then you would earn (500*5 + 100*2)/7 = 385.71 points or 19.29 cents. If you chose A 

and 2 other participants chose A and 5 chose B, then you would earn (500*2 + 100*5)/7 = 214.29 points 

or 10.71 cents. You will always receive Q points or Q/20 cents if you chose B. 

What is Q? 

When you choose B, your earning is Q. Q is an integer between 0 and 600 randomly determined 

by the computer. That means any number between 0 and 600 is equally likely to be picked by the 

computer. 



One hundred values of Q have been generated by a computer. Many sequences of one hundred 

Qs were generated. One of these sequences will be used in today's session. All participants in the 

session will have the same value of Q in each period. 

Before you make a decision you will not be told what Q is but instead you will receive an 

estimate of Q, which we will denote by E. Let's be more precise. After the computer randomly 

determines Q, it also picks a random integer between Q - 50 and Q + 50. This is your estimate E. Any 

number between Q - 50 and Q + 50 is equally likely to be picked by the computer. Although E does not 

tell you what Q is exactly, it gives an estimate of it. For example if you receive an estimate E = 406, then 

you know that Q is not less than 406 - 50 = 356 and it is not more than 406 + 50 = 456. 

Note that although Q will be the same for you and the other participants, your estimates can be 

different. That is, for the same Q, the computer also randomly picks other estimates exactly in the same 

manner for all other participants. All of these estimates are chosen independently. Therefore, it is very 

likely that they will be different numbers; however, all estimates will be between Q - 50 and Q +50.  

Making a choice 

Making a choice consists of clicking on the button representing the row of your choice, which 

changes the numbers (in the table) to green and activates a confirmation button below the earnings 

table. You may either confirm your choice or change it by clicking on the button representing the other 

row. Your choice is not final until you have clicked on the confirm button. 

After you have made a choice, a "please wait" message will be displayed and then the outcome 

will be reported. 

Summary 

*** The experiment consists of one hundred separate decision making periods. 

*** You have been randomly assigned to a group of size eight and will remain in the same group 

for the entire one hundred decision making periods of the experiment. 

*** You make a choice by clicking on a button, which changes the numbers to green. You must 

also confirm your choice by clicking on the 'confirm' button. 

*** Each period, if you choose A, your choice will be matched with all of the other choices and 

your earnings will be the average outcome. If you choose B, you will earn Q as explained before. 

*** Your balance at the end of the session will be paid to you in private and in cash. 

 

 

 



 

Screenshot 1 (Private Information Treatment) 

 

 

 

 



Questionnaire 

 

 

 

 

Suppose the actual Q is 300, please calculate your earnings below. Please do not put your name 

or UIN in this questionnaire. 

 

Your choice Number of A’s Number of B’s Your earnings 

A 7 0 500 

A 0 7  

B 7 0 300 

B 0 7  

A 5 2  

A 2 5  

B 5 2  

B 2 5  

  

 

 

 

 

 

 

 A B 

A 500 100 

 
B 

280 
[230,330] 

280 
[230,330] 



2. A Common Information Treatment  

Instructions 

This session consists of one hundred separate decision making periods. You will participate in a 

group of eight people. At the beginning of period one, each of the participants in this room will be 

randomly assigned to a group of size eight and will remain in the same group for the entire one hundred 

decision making periods of the experiment. Hence, you will remain grouped with the same seven other 

participants for the next one hundred periods. 

At the beginning of each period, you and all other participants will choose an action. An earnings 

table (on the next page) is provided which tells you the earnings you receive given the action you and all 

other participants chose. The actions you may choose are row A or row B. During a period everyone will 

have the same earnings table. 

Your earnings are located in each cell. Units are twentieths of a cent. Your choice will be 

matched with the choices of the other participants in your group. You will receive the average of these 

earnings. The following table lists your choices A and B in the rows, and other participants in your 

group's choices in the columns. 

Table 

You have 2 choices, A and B, for all 100 periods. If you chose A and 5 other participants chose A 

and 2 chose B, then you would earn (500*5 + 100*2)/7 = 385.71 points or 19.29 cents. If you chose A 

and 2 other participants chose A and 5 chose B, then you would earn (500*2 + 100*5)/7 = 214.29 points 

or 10.71 cents. You will always receive Q points or Q/20 cents if you chose B. 

What is Q? 

When you choose B, your earning is Q. Q is an integer between 0 and 600 randomly determined 

by the computer. That means any number between 0 and 600 is equally likely to be picked by the 

computer. 

One hundred values of Q have been generated by a computer. Many sequences of one hundred 

Qs were generated. One of these sequences will be used in today's session. All participants in the 

session will have the same value of Q in each period. 

Making a choice 

Making a choice consists of clicking on the button representing the row of your choice, which 

changes the numbers (in the table) to green and activates a confirmation button below the earnings 

table. You may either confirm your choice or change it by clicking on the button representing the other 

row. Your choice is not final until you have clicked on the confirm button. 

After you have made a choice, a "please wait" message will be displayed and then the outcome 

will be reported. 



Summary 

*** The experiment consists of one hundred separate decision making periods. 

*** You have been randomly assigned to a group of size eight and will remain in the same group 

for the entire one hundred decision making periods of the experiment. 

*** You make a choice by clicking on a button, which changes the numbers to green. You must 

also confirm your choice by clicking on the 'confirm' button. 

*** Each period, if you choose A, your choice will be matched with all of the other choices and 

your earnings will be the average outcome. If you choose B, you will earn Q as explained before. 

*** Your balance at the end of the session will be paid to you in private and in cash. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Screenshot 2 (Common Information Treatment) 

 

 

 

 



Questionnaire 

 

 A B 

A 500 100 

B 280 280 

 

 

 

Please calculate your earnings below. Please do not put your name or UIN in this questionnaire. 

 

Your choice Number of A’s Number of B’s Your earnings 

A 7 0 500 

A 0 7  

B 7 0 280 

B 0 7  

A 5 2  

A 2 5  

B 5 2  

B 2 5  
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