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Abstract 

The standard problem of portfolio choice between one risky and one riskless asset 

is analyzed in the model of expected utility with a safety-first component that is 

represented by the probability of final wealth exceeding a “safety” wealth level.  It 

finds that a positive expected excess return remains sufficient for investing a 

positive amount in the risky asset except in the special situation where the safety 

wealth level coincides with the wealth obtained when the entire initial wealth is 

invested in the riskless asset.  In this situation, the optimal amount invested in the 

risky asset is zero if the weight on the safety-first component is sufficiently large. 

Comparative statics analysis reveals that whether the optimal amount invested in 

the risky asset becomes smaller as the weight on the safety-first component 

increases depends on whether the safety wealth level is below the wealth obtained 

when the entire initial wealth is invested in the riskless asset.  Further comparative 

statics analyses with respect to the safety wealth level and the degree of risk 

aversion in the expected utility component are also conducted.    
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1. Introduction   

Whereas the majority of economists interpret risk as dispersion or variation in an 

outcome variable, many everyday decision makers tend to associate risk with the outcome failing 

to meet a certain “safety” level.  Roy (1952) first proposes the safety-first principle of decision 

making under risk, according to which a decision maker minimizes (or maximizes) the 

probability of wealth falling below (or exceeding) an exogenously given safety level.1  The 

safety-first principle has been given some more flexible interpretations since then.  For example, 

Bawa (1978) interprets the goal of the safety-first model as being to minimize the probability of 

shortfall subject to the constraint that the mean wealth does not fall below an exogenously given 

amount, whereas Arzac and Bawa (1977), de Haan et al. (1994), and Jansen et al. (2000) 

interpret the goal of the safety-first model as being to maximize the mean wealth subject to the 

constraint that the probability of shortfall does not exceed an exogenously specified number.  

These various interpretations to the safety-first principle either do not allow any tradeoffs 

between safety and the final wealth distribution, or allow only limited tradeoffs between the two.   

To remedy this deficiency, and building on the axiomatic foundation of Diecidue and van de Ven 

(2008), Levy and Levy (2009) propose a more general model of decision making under risk that 

includes both an expected utility component and a safety-first component, referred to as the EU-

SF model.  In this model, a decision maker’s concern about the final wealth distribution per se 

(absent of any benchmark, reference point or safety level) is captured by the expected utility of 

the final wealth, and his concern about meeting a safety wealth level is captured by the 

probability of final wealth exceeding the safety level.  Arguably, the EU-SF model retains the 

                                                             
1 Roy’s safety-first principle is equivalent to maximizing expected utility if the utility function has only two values: 

a lower value if disaster occurs and a higher value if it does not (Roy 1952).  Moreover, in the special case where the 

critical return level equals the gross return on riskless investment, Roy’s safety-first principle is equivalent to the 

mean-variance criterion (Levy and Sarnat 1972). 
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best of both the EU model and the SF model, and can accommodate the full range of tradeoffs 

between safety and the final wealth distribution.     

This paper studies the standard problem of portfolio choice between one risky and one 

riskless asset in the EU-SF model.  We focus on the portfolio choice decision to explore the 

implications of the EU-SF model for risk-taking behavior for two reasons: The portfolio choice 

between a risky and a riskless asset provides a classic tradeoff between risk and return, and it is 

mathematically equivalent to a few other decision problems in which the outcome variable is 

linear in the choice variable, such as the production decision of a competitive firm under price 

uncertainty or the insurance coverage decision under coinsurance (Dionne et al. 1993, Menegatti 

and Peter 2020).  The work here complements analyses of portfolio choices in alternative 

“behavioral” decision models, which include Gomes (2005), Bernard and Ghossoub (2010), He 

and Zhou (2011), Fortin and Hlouskova (2011), Li (2011), Eeckhoudt et al. (2016), and Iwaki 

and Osaki (2014, 2017), among others.  Our work may also shed light on the literature on the 

effect of relative wealth placement in a reference group on risk taking (Linde and Sonnemans 

2012, Kuziemko et al. 2014, Chao et al. 2017, Hillebrandt and Steinorth 2020). In this literature, 

the investment decisions that are implemented through experiments are a simplified version of 

the portfolio decision considered in this paper, and the concern about relative wealth position is 

comparable to the safety-first concern emphasized here.   

We find that, as in the traditional EU model, a positive expected excess return is 

sufficient for investing a positive amount in the risky asset in the EU-SF model, except in the 

special situation where the safety wealth level coincides with the wealth obtained when the entire 

initial wealth is invested in the riskless asset.  In this situation, the optimal amount invested in 

the risky asset is zero if the weight on the safety-first component is sufficiently large. 
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To describe the comparative statics results obtained in the paper, denote the safety wealth 

level, the initial wealth and the rate of return of the riskless asset as S, 0w  and i, respectively. We 

find that whether the optimal amount invested in the risky asset becomes smaller as the weight 

on the safety-first component increases depends on whether S < 0w (1+ i) (i.e. whether the safety 

wealth level is below the wealth obtained when the entire initial wealth is invested in the riskless 

asset).  Further comparative statics analyses with respect to the safety wealth level and the degree 

of risk aversion in the expected utility component are also conducted. We find that a marginal 

increase in the safety wealth level always induces a larger amount to be invested in the risky 

asset under the condition that the risky return follows a uniform distribution.  We also find that 

the optimal amount invested in the risky asset becomes smaller as the investor becomes Ross 

more risk averse (in the EU component), under the condition S > 0w (1+ i).     

The paper is organized as follows.  The next section introduces the EU-SF model of 

decision making under risk. It also presents three properties of the EU-SF framework, each being 

about the implications of changing one of the three parameters in the model. Section 3 describes 

the portfolio choice problem in the EU-SF model, and studies the relationship between a positive 

expected excess return and a positive optimal investment in the risky asset.  Section 4 presents 

results of comparative statics analyses with respect to the effects on the optimal investment in the 

risky asset from the parameters of the EU-SF model. Finally, Section 5 concludes.      

 

2. The EU-SF Model of Decision Making under Risk 
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For some random wealth x̃, one measure of its “riskiness” is the probability of the wealth 

falling below an exogenously given “safety” level S, or  .prob x S .2  The safety wealth level 

S may differ from one decision maker to another, and it may also be context-specific.  It could 

literally mean the minimum wealth level for survival, and it could also mean the wealth 

representing the status quo or any other aspiration level falling short of which is interpreted as a 

failure.  It could arise from a capital adequacy requirement by regulation, from an incentive 

mechanism for investment funds managers that has a specific performance target, or from a 

threshold asset balance specified in a commercial contract (such as the minimum balance in an 

investment account with margin calls).3  

 The so-called “safety-first principle” of Roy postulates that a decision maker would want 

the probability  .prob x S  to be as small as possible, or equivalently, he would want the 

probability  .prob x S  to be as large as possible. While the safety-first principle is intuitively 

appealing, casual observation suggests that a decision maker should also care about the overall 

distribution of the random wealth x̃.  An example given in Levy and Levy (2009) well explains 

the need for looking beyond  .prob x S  when formulating the overall objective of a decision 

maker.  Suppose that the safety wealth level is 0, and that random wealth x  yields $0.01 with 

certainty, and random wealth y  yields -$0.01 with a probability of 1% and $1 million with a 

                                                             
2 Note that the probability   0. ( ) ( )

S

prob x S S x dF x


     is also referred to as the “zeroth lower 

partial moment” with a target wealth level S, where F(x) is the CDF of x .  It is one of a class of downside risk 

measures called “nth lower partial moment” (Menezes et al. 1980, and Danielsson et al. 2006).  Also note that the 

probability   is closely related to Value-at-Risk or VaR in that ( )VaR S    (Jansen et al. 2000, and 

Danielsson et al. 2006).      
3 For further discussions of the safety or aspiration level of wealth, see Fishburn (1977), Diecidue and van de Ven 

(2008), and Levy and Levy (2009). 
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probability of 99%.  If the safety-first principle is strictly followed, x  would be preferred to y .4 

It seems, however, most people would choose y  over x  instead.        

 Through a series of experiments, Levy and Levy (2009) find strong evidence that 

decision makers care about safety.  That is, the probability of achieving at least the safety wealth 

level plays an important role in the decision-making process.  In the meantime, they also find 

evidence that decision makers do care about the entire distribution of random wealth beyond the 

information that is captured by the probability of being safe. 

 Consequently, Levy and Levy (2009) propose the model of expected utility with a safety-

first component – the EU-SF model – that has both an EU component that captures the utility 

from the entire wealth distribution excluding the safety concern, and an SF component that is 

represented by the probability of being safe.  Specifically, the goal for choosing among a set of 

random wealth variables is postulated to be maximizing      

(1)    (1 ) [ ( )] .E U x prob x S       

where x  is the random wealth, ( )U w  is a normalized von Neumann-Morgenstern utility function 

of the decision maker, S is the safety wealth level, and 0 1   is the weight on the SF 

component.5  As explained in Levy and Levy (2009), the value of   for a specific individual can 

be estimated based on observed choices of the individual.  The need for using a normalized 

utility function instead of an arbitrarily chosen von Neumann-Morgenstern utility function is 

                                                             
4 As pointed out in Levy and Levy (2009), this would imply highly unrealistic preferences that are indifferent 

between any two wealth levels above or equal to the safety level, and also between any two wealth levels below the 

safety level.    
5 Note that 0   and 1   correspond to the traditional EU model and the most narrowly interpreted SF model, 

respectively.  We exclude these extreme cases to focus on the non-trivial situations where both the EU component 

and the SF component play a role.   
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caused by the addition of the SF component.6  Suppose that all the random wealth variables 

considered here are contained in the interval [a, b].  Then any utility function of the individual,

( )u w , can be turned into a normalized utility function 
( ) ( )

( ) ( )
( )

u w u a

u b u a
U w




 .  Importantly, ( )U w , 

and hence the objective (1),  is invariant to positive linear transformations of ( )u w .  It is 

assumed that ( )U w , and hence the underlying ( )u w , is strictly increasing and strictly concave 

throughout the paper. 

 Presenting the overall objective in the EU-SF model represented by (1) as a weighted 

sum of an EU component and an SF component naturally combines the two concerns of a 

decision maker: the final wealth distribution and the probability of the final wealth exceeding a 

safety level.  As is explained in Levy and Levy (2009), however, the objective function (1) can 

also be obtained from decomposing the expected utility for a discontinuous utility function that 

has a positive jump at the safety wealth level S.7  

 The EU-SF model has the following features.  First, by adding an EU component to the 

SF goal, the EU-SF model improves on the SF model of Roy (1952), provides an alternative to 

the constrained optimization models of Arzac and Bawa (1977), Bawa (1978), de Haan et al. 

(1994) and Jansen et al. (2000), and allows for the full range of tradeoffs between safety and the 

final wealth distribution.  The increased flexibility facilitates accommodating a wider range of 

behavioral patterns. 

Second, although both the EU-SF model and the prospect theory of Kahneman and 

Tversky (1979) can account for the empirical and experimental evidence that individuals tend to 

                                                             
6 The need to work with a normalized von Neumann-Morgenstern utility function in some situations, rather than just 

any von Neumann-Morgenstern utility function, is also emphasized by Liu and Wang (2017) and Argyris et al. 

(2018). 
7 See Levy and Levy (2009), as well as the discussion in Diecidue and van de Ven (2008) of the axiomatic 

foundation for the general EU model with a safety or aspirational level of wealth.  



8 

 

think in terms of a reference point or a benchmark wealth level, there exists empirical and 

experimental evidence that people display care about the probability of final wealth exceeding an 

aspiration level, a phenomenon that cannot be explained by the (cumulative) prospect theory.8 

The critical difference between these two types of decision models is that outcomes are 

interpreted as the gains/losses in the prospect theory, but as success/failure in addition to as 

absolute wealth levels in the EU-SF model. 

Third, like both the EU model and the SF principle, the EU-SF model respects the first 

degree stochastic dominance, in the sense that a decision maker in the EU-SF model chooses y  

over x  whenever y  dominates x  in the first degree.9   Unlike the conventional EU model with 

concave utility functions, the EU-SF model does not necessarily respect the second degree 

stochastic dominance. That is, an EU-SF decision maker who maximizes (1) does not necessarily 

prefer y  to x  if y  dominates x  in the second degree (but not in the first degree). This is 

because the utility from the SF component may decrease with a mean-preserving contraction in 

the wealth distribution, even though the utility from the EU component will always increase with 

such a change under the stated assumptions of U(w) being increasing and concave.  In 

comparison, note that the mean-variance model and the (original) prospect theory do not even 

necessarily respect the first degree stochastic dominance, although the cumulative prospect 

theory does. 

The objective function of an EU-SF decision maker (1) is fully specified by exogenous 

parameters , S  and ( )U w .  We conclude this section by presenting three properties of the EU-

                                                             
8 For example, see Lopes and Oden (1999) and Payne (2005). 
9 Bernard et al. (2015) show that optimal investment choices based on preferences respecting the first degree 

stochastic dominance can be rationalized with the expected utility paradigm.   
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SF framework, each being about the implications of changing one of the three parameters.10  The 

proofs of these properties are given in the appendix. 

Property 1. Suppose that two EU-SF decision makers DM1 and DM2 differ only in the weight on 

the safety-first component  , with objective functions  1 1(1 ) [ ( )] .E U x prob x S       and

 2 2(1 ) [ ( )] .E U x prob x S      , respectively, where 2 1  .  Then for any x  that second-

degree stochastically dominates safety wealth S, 2x S  implies 1x S . 

 The intuition for Property 1 is the following. As explained earlier, an EU-SF decision 

maker does not necessarily like a second degree stochastic dominant move from S to x  because 

even though the EU component will always increase from such a move, the SF component may 

decrease.  It is straightforward to see that if such a move is overall beneficial for DM2 who 

places a larger weight on the SF component than DM1, the move must also be overall beneficial 

for DM1.  

Property 2. Suppose that two EU-SF decision makers DM1 and DM2 differ only in safety wealth 

level S, with objective functions  1(1 ) [ ( )] .E U x prob x S       and

 2(1 ) [ ( )] .E U x prob x S      , respectively, where 2 1S S .  Then  

(i) for any x  and 0x  such that 0 1 2x S S  ,  2 0x x  implies 1 0x x ; 

(ii) for any x  and 0x  such that 1 0 2S x S  ,  1 0x x  implies 2 0x x ; 

(iii) for any x  and 0x  such that 1 2 0S S x  ,  2 0x x  implies 1 0x x . 

                                                             
10Note that these properties are about the implications of changing one of the modeling parameters.  Importantly, 

they are not about characterizing such changes.  For examples of characterizing differences in preferences, see 

Chateauneuf et al. (2005), Bommier et al. (2012), Cohen and Meilijson (2014) and Eeckhoudt et al. (2017), in 

addition to the classic example of Pratt (1964).   
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The intuition for Property 2 is the following. First note that a change in safety wealth S 

only affects the SF component, and does not affect the EU component, for the evaluation of any 

(random) payoff.  For both cases (i) and (iii), whether safety wealth is 1S  or 2S  does not affect 

the SF component for the evaluation of 
0x , but the SF component for the evaluation of x  is 

smaller with 2S .  Therefore, if x  is preferred to 0x  by DM2, the former must also be preferred to 

the latter by DM1. For case (ii), on the other hand, while the SF component for random payoff x  

decreases from 1S  to 2S , the SF component for payoff 0x  decreases by a larger amount from 1S  

to 2S .  Therefore, if x  is preferred to 0x  by DM1, the former must also be preferred to the latter 

by DM2. 

When we consider a change in U(w), a natural candidate is a V(w) that is Arrow-Pratt 

more risk averse than U(w). However, comparative statics analysis using the notion of Arrow-

Pratt more risk averse fails to generate clear-cut statements in the context of the present paper.  

That is, being Arrow-Pratt more risk averse in the EU component is not sufficient to cause the 

optimal amount invested in the risky asset to decrease (or increase) in the EU-SF model.   

 As Eeckhoudt et al. (2017) demonstrate, using stronger notion of greater risk aversion 

often facilitates obtaining definitive comparative statics statements that would be unobtainable 

with notions of greater risk aversion that are not as strong, for a host of decision problems in the 

EU framework. Therefore, we consider here the implications of replacing ( )U w  with a Ross 

more risk averse ( )V w .11 We begin with the following definition and lemma, from Ross (1981), 

for two strictly increasing and strictly concave utility functions u(w) and v(w). 

                                                             
11 Ross more risk aversion has an advantage over Arrow-Pratt more risk aversion in that the former can be 

generalized to compare the third and even higher degree risk aversion (Modica and Scarsini 2005, Jindapon and 

Neilson 2007, Li 2009, Denuit and Eeckhoudt 2010, and Liu and Meyer 2013). 
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Definition 1. (Ross) v(w) is Ross more risk averse than u(w) on [a, b] if  

 

   
( ) ( )

( ) ( )

v x u x

v y u y

 
  

 
 for all x, y  [ , ]a b ,  

or equivalently, if there exists a constant 0   such that 
( ) ( )

( ) ( )

v x v y

u x u y


 
 

 
 for all x, y  [ , ]a b . 

Lemma 1. (Ross) v(w) is Ross more risk averse than u(w) on [a, b] if and only if there exists a 

constant 0  and ( )w such that ( ) ( ) ( )v w u w w   , where ( ) 0w   and ( ) 0w   on [a, b]. 

Definition 1 and Lemma 1 apply to any two strictly increasing and strictly concave utility 

functions u(w) and v(w), regardless of whether they are normalized utility functions.  For two 

normalized utility functions ( )U w  and ( )V w  – with ( ) ( ) 0U a V a   and ( ) ( ) 1U b V b   – we 

can prove a stronger lemma than Lemma 1. The proof of the lemma below is in the appendix.12 

Lemma 2.  Normalized utility function V(w) is Ross more risk averse than normalized utility 

function U(w) on [a, b] if and only if there exists a constant 1   and ( )w  such that 

( ) ( ) ( )V w U w w   , where ( ) 0w   and ( ) 0w   on [a, b]. 

 Comparing Lemma 2 with Lemma 1, we have more information about   in the former 

case: 1   rather than   being just a positive constant.  

Property 3. Suppose that two EU-SF decision makers DMU and DMV differ only in the 

normalized utility function in the EU component, with objective functions 

 (1 ) [ ( )] .E U x prob x S       and  (1 ) [ ( )] .E V x prob x S      , respectively, where 

V(w) is Ross more risk averse than U(w).  Then for any x , ( ) UE x x  implies ( ) VE x x . 

                                                             
12 The proof of Lemma 2 is based on an intermediate result that was independently established in Liu and Wang 

(2017) and Argyris et al. (2018) that if normalized utility function V(w) is Ross more risk averse than normalized 

utility function U(w) on [a, b], then V(w) - U(w) is concave on [a, b].    
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 The intuition for Property 3 is the following. First note that a change from U(w) to V(w) 

only affects the EU component, and does not affect the SF component, for the evaluation of any 

(random) payoff.  Intuitively, the relative attractiveness of the mean of x  over x  itself by the EU 

component is larger under the more risk averse V(w) than under the less risk averse U(w). As a 

result, if ( )E x  is preferred to x  by DMU, the former must also be preferred to the latter by the 

more risk averse DMV. 

 In the conventional EU model, V(w) is Ross more risk averse than U(w) if and only if 

decision maker V is always willing to pay more to avoid a Rothschild-Stiglitz risk increase than 

decision maker U (Ross 1981). With the added SF component in the EU-SF model, however, 

V(w) being Ross more risk averse than U(w) no longer has such a characterization.  The present 

paper abstracts from the difficult problem of characterizing risk aversion and greater risk 

aversion in the EU-SF model, and instead has a more modest focus on the implications of 

replacing U(w) with a Ross more risk averse V(w) in the EU-SF model.13     

 

3. Portfolio Choice in the EU-SF Model: The Non-Participation Puzzle 

 We consider the standard portfolio choice problem with one risky and one riskless asset 

in the EU-SF model, in order to obtain results that can be compared with those well-known 

results obtained in the EU model.14 An investor with initial wealth 0 0w   decides how much of 

the initial wealth, denoted  , is invested in the risky asset, with the remaining wealth, 0w  , 

                                                             
13 For examples of characterizing risk aversion and greater risk aversion in multi-period/multi-component 

environment, see Bommier et al. (2012), Bommier and Le Grand (2014), Bommier et al. (2017) and Bommier and 

Le Grand (2019).    
14 Recently, Chiu et al. (2018) apply the EU-SF model to a dynamic portfolio problem which includes cash and 

various options in the portfolio.  Their focus is on justifying investors’ use of cash and these options.  
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being invested in the riskless asset. Suppose that the risky asset has a random return r , and the 

riskless asset has a sure return i.  The end-of-period wealth can be expressed as  

(2)    0( ) (1 )w w i z    , 

where z r i   is the excess return of the risky asset over the riskless asset.   

 In the EU-SF framework, the standard portfolio choice problem with one risky and one 

riskless asset is 

(3)     
0[0, ]

max ( ) (1 ) ( ) . ( )
w

E U w prob w S


    


         .15 

Throughout the paper we assume that the risky return r  is a continuous random variable.  

Therefore, ( )  is continuous on 0[0, ]w , and a solution to (3) is guaranteed.  Following the 

convention in the literature on portfolio choice decision, we assume that the expected excess 

return, ( ) ( )E z E r i  , is positive.  In addition, we assume that r  does not dominate i in the first 

degree because otherwise the solution to (3) would trivially be 0* w  .16  Note that this latter 

assumption implies that  . 0 1prob r i   . 

In the conventional EU framework, the optimal amount invested in the risky asset is 

positive even for a risk-averse individual, as long as the expected excess return is positive.17 

According to Segal and Spivak (1990), while a risk averse EU maximizer displays second-order 

(global) risk aversion, he is nonetheless first-order (locally) risk neutral.  That is, a DM with a 

differentiable risk-averse utility function would behave like a risk-neutral person when the risk 

                                                             
15 Requiring  00, w   is equivalent to disallowing short-selling or borrowing.  This assumption is standard in a 

narrowly-focused portfolio choice problem. 
16 Moreover, the riskless asset would not exist in equilibrium in this case. 
17 For a comprehensive discussion of this result and other implications of the EU model for portfolio choice, see 

Gollier (2001) and Eeckhoudt et al. (2005). The counterpart of this result for the insurance problem in the EU 

framework is that the optimal insurance coverage is less than full even for a risk averse individual if the pricing of 

insurance is not actuarially fair.   
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involved is small.  As a result, he would invest at least a small amount in the risky asset as long 

as its expected return is larger than the sure return on the riskless asset.  However, this result is 

inconsistent with the empirical observation that a large proportion of the population does not 

hold any stock even though the expected return of stocks is substantially higher than that of 

bonds, generating the so-called “non-participation puzzle” (Mankiw and Zeldes 1991).18  

It seems that adding a safety-first component to the conventional EU model would give 

the decision maker another reason to avoid risk.  Therefore, it is interesting to explore a question 

raised in Levy and Levy (2009): to what degree can the EU-SF model explain the non-

participation puzzle?  We obtain the following proposition.  

Proposition 1.  (i) When the safety wealth is different from the end-of-period wealth that is 

obtained by investing the entire initial wealth in the riskless asset ( 0 (1 )S w i  ), the optimal 

amount invested in the risky asset is positive; (ii) When the safety wealth equals the end-of-

period wealth that is obtained by investing the entire initial wealth in the riskless asset (

0 (1 )S w i  ), the optimal amount invested in the risky asset is positive if the weight on the SF 

component,  , is sufficiently small, and is zero if   is sufficiently large. 

Proof: First, note that regardless of the value of S,   

(4)  
 

  0

0

( )
(1 ) ( ) 0

dE U w
U w i E r i

d







       . 

                                                             
18 Segal and Spivak (1990) demonstrate that the rank-dependent expected utility model, which is more general than 
the EU model, can admit first-order risk aversion and hence can be used to explain the non-participation puzzle. In 

addition, background risks and transactions costs have also been used to explain the non-participation phenomenon 

in the stock market. On the other hand, Iwaki and Osaki (2017) show that in the phantom aversion decision model, 

which is also more general than the EU model, the optimal investment in the risky asset is positive as long as its 

expected excess return is positive.   
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So the maximal value of  ( )E U w     is reached at 0  , as is well known from the portfolio 

choice under the expected utility model.  Denote 

       
0 0

0
0(0, ] (0, ]

max ( ) ( ) max ( ) (1 ) 0
w w

D E U w E U w E U w U w i
 

  
 

                . 

 (i) 0 (1 )S w i  .  In this case, for sufficiently small   (including 0  ) 

   0. ( ) . (1 ) ( )prob w S prob w i r i S        is either constant at 1 (when 0 (1 )w i S   ) or 

constant at 0 (when 0 (1 )w i S   ).  This means  

(5)   
 

0

. ( )
0

d prob w S

d







    . 

Combining (4) and (5), we have 
0

( )
0

d

d 



 


 , and as a result, that the optimal amount invested 

in the risky asset is positive when 0 (1 )S w i  .      

(ii) 0 (1 )S w i  .  In this case, whether the optimal amount invested in the risky asset is positive 

depends on a comparison between 
0(0, ]

max ( )
w




  and (0) .   

 First,  0(0) (1 ) (1 )U w i       .  On the other hand, 

(6)    
0 0(0, ] (0, ]

max ( ) (1 ) max ( ) . ( ) 0
w w

E U w prob r i
 

   
 

           

due to the fact that, when 0 (1 )S w i  ,    . ( ) . ( ) 0prob w S prob r i      for all 0
(0, ]w  .  

Therefore, 

  
0(0, ]

max ( ) (0) (1 ) . ( ) 0 1
w

D prob r i


  


           
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where D > 0 and  . ( ) 0 1prob r i     < 0 .  So 
0(0, ]

max ( ) (0) 0
w




    (i.e., the optimal amount 

invested in the risky asset is positive) if   is sufficiently small, and 
0(0, ]

max ( ) (0) 0
w




   (i.e., 

the optimal amount invested in the risky asset is zero) if   is sufficiently large.  Q.E.D. 

 

 According to Proposition 1, non-participation can be explained within the EU-SF 

framework in the special situation where 0 (1 )S w i  , i.e. where the safety wealth coincides 

with the final wealth obtained when the entire initial wealth is invested in the riskless asset.  In 

this situation, the optimal amount invested in the risky asset is zero if the weight on the safety-

first component   is sufficiently large.  The intuition for this result is easy to understand.  When 

0 (1 )S w i  , the probability of final wealth being no less than the safety wealth is one when 

0  , but is smaller than one when 0   under the assumption that r  does not first degree 

stochastically dominates i or  . ( ) 0 1prob r i   .  As a result, 0   is the optimal choice if 

the weight on the safety-first component is sufficiently large. 

 Also according to Proposition 1, the optimal amount invested in the risky asset should 

always be positive for a EU-SF decision maker whenever 0 (1 )S w i  . The intuition for this 

result is also straightforward. Suppose, for example, 0 (1 )S w i  .  Then for either 0   or a 

sufficiently small 0  , the probability of final wealth being no less than the safety wealth is 

zero. That is, the SF component is the same for 0   or a sufficiently small 0  . As is well 

known, however, the EU component yields a larger expected utility in the latter case when the 

expected excess return on the risky asset is positive.  

This result seems to suggest that the contribution of adding a safety-first component on 

the top of the expected utility model to solving the non-participation puzzle is limited to the very 
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special case of 
0 (1 )S w i  .  As a comparative statics result in the next section indicates, 

however, a larger weight on the safety-first component implies a smaller optimal amount 

invested in the risky asset when 
0 (1 )S w i  . In other words, for the case of 

0 (1 )S w i  , 

adding a safety-first component on the top of the expected utility model helps (partially) explain 

the non-participation puzzle by making the optimal amount invested in the risky asset smaller. 

 

4. Comparative Statics Analyses  

For comparative statics analysis, we are interested in how the optimal investment in the 

risky asset *  is affected by value changes in each of the three parameters in (1), namely  , S, 

and ( )U w .  First, adding a safety-first component to the conventional EU model naturally raises 

the question as to whether this would imply more or less risk-taking.  In other words, it is of 

interest to study whether an EU-SF decision maker would invest more or less in the risky asset in 

response to an increase in the weight of the safety-first component  .  In addition, the safety 

wealth level S is a critical part of the safety-first component, and it is of interest to see how the 

value of S influences the decision maker’s propensity to take risk.  Finally, a well-known 

comparative statics result for portfolio choice in the EU model is that a more risk averse 

individual in the Arrow-Pratt sense would invest a smaller amount in the risky asset.  Here, one 

would want to investigate the effect on the optimal investment in the risky asset when the utility 

function ( )U w  is replaced with a more risk averse ( )V w .    

In (3),   0 0(1 ) (1 )
. ( ) . 1

S w i S w i
prob w S prob r i G i

 

      
         

   
 when 

0  , where the function G(r) is the CDF of r .  As is established in Proposition 1, only in the 

special situation 0 (1 )S w i   can 0   possibly be an optimal solution.  Excluding this special 
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situation and focusing on the situations where 
0 (1 )S w i  ,19 the individual’s portfolio choice 

problem can be stated as choosing 
0(0, ]w   to maximize  

(7)             0
0

(1 )
( ) (1 ) (1 ) ( ) 1

S w i
E U w i r i G i   



    
               

  

. 

The first- and second-order derivative of ( ) are, respectively,  

(8)   0 0
0 2

(1 ) (1 )
( ) (1 ) (1 ) ( ) ( )

S w i S w i
E U w i r i r i g i   

 

    
               

 
, 

(9) 
  2

0

2

0 0 0 0

2 3

( ) (1 ) (1 ) ( ) ( )

(1 ) (1 ) (1 ) (1 )
2

E U w i r i r i

S w i S w i S w i S w i
g i g i

  

 
   

          

           
         
    

 

where g(r) is the PDF of r .   

 Note that when 0  , the DM’s optimization problem (7) reduces to pure expected 

utility maximization.  In this case, ( )  is globally concave (the first term in (9) is always 

negative), and comparative statics analysis can be conducted in the standard manner by 

comparing the first-order conditions that are respectively associated with two different values of 

the parameter in question.20 When 0 1  , however, both the second and third term in (9) 

could be positive, rendering the standard approach to comparative statics analysis inapplicable.             

We therefore resort to an alternative approach to comparative statics analysis developed 

by Topkis (1978) and Milgrom and Shannon (1994) that is based on a “single-crossing 

                                                             
19In the safety-first decision model, as well as the more general decision model with both an expected utility 

component and a safety-first component studied here, safety wealth S is exogenously determined. As a result, it 

would be extremely rare (with zero probability) to be in a situation where 
0 (1 )S w i  .  We therefore exclude the 

case 
0 (1 )S w i   in the comparative statics analyses in this section for mathematical convenience.  On the other 

hand, for portfolio choice in some models with an endogenous reference wealth level, e.g. Bernard and Ghossoub 

(2010), 
0 (1 )w i  is a natural (benchmark) reference wealth level.  Indeed, according to recent experimental 

evidence documented in Baillon et al. (2020), the most common reference points are the status quo. 
20 See Chuang et al. (2013) for an example of this standard approach to comparative statics analysis.  



19 

 

condition”.  This approach to comparative statics analysis does not require that the objective 

function be differentiable in the choice variable, and in fact, allows the choice variable to be 

discrete.  The first-order condition and concavity of the objection function are not part of this 

comparative statics analysis.21 For our purpose here, and following Wong (2017), the lemma 

below is adapted from Topkis (1978, 1998). A proof of the lemma is given in the appendix for 

completeness. 

Lemma 3. (Topkis’ Monotonicity Theorem) If the function ( , )  satisfies the single-crossing 

condition in ( , )  , i.e.,  

(10)   2 1 1 1 2 2 1 2( , ) ( , ) 0 ( , ) ( , ) 0               

for all 2 1   (alternatively 2 1  ) and 2 1  , then * *

2 1( ) ( )     (alternatively 

* *

2 1( ) ( )    ) for all 2 1  , where 
0

*

(0, ]

( ) arg max ( , )
w

   


  .  

4.1 Comparative Statics Analysis with Respect to the Effect of   

We start with the comparative statics analysis with respect to the effect of the weight 

given to the safety-first component  .  The following proposition is established. A proof is 

provided in the appendix. 

Proposition 2. (i) When the safety wealth is larger than the end-of-period wealth that is obtained 

by investing the entire initial wealth in the riskless asset ( 0 (1 ) 0S w i   ), the optimal amount 

invested in the risky asset is nondecreasing as the weight given to the safety-first component ( ) 

gets larger; (ii) When the safety wealth is smaller than the end-of-period wealth that is obtained 

                                                             
21Nocetti (2016) applies this approach to comparative statics analysis when he investigates the effects of various 

exogenous changes in the risky environment for a large category of models of decision making under risk.  Liu and 

Meyer (2017) implicitly adopt this approach when they study the effect of the intensity of risk aversion on the 

optimal choice in various decision problems. 
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by investing the entire initial wealth in the riskless asset (
0 (1 ) 0S w i   ), the optimal amount 

invested in the risky asset is nonincreasing as the weight given to the safety-first component ( ) 

gets larger. 

 According to Proposition 2, the effect of an increase in the weight on the safety-first 

component   on the optimal amount invested in the risky asset *  has the same sign as 

0 (1 )S w i  .  The intuition for this result is straightforward.  When 0 (1 ) 0S w i    

( 0 (1 ) 0S w i   ), the larger (smaller) amount invested in the risky asset, the higher the 

probability of meeting the financial safety.  Therefore, the optimal amount invested in the risky 

asset increases (decreases) in response to the weight on financial safety becoming heavier when 

0 (1 ) 0S w i    ( 0 (1 ) 0S w i   ).  

 Note that the increase in   studied in Proposition 2 includes an increase from 0   to 

0   as a special case.  Therefore, adding a safety-first concern in an otherwise EU maximizing 

DM’s preferences has the effect of inducing him to take more (less) risk – as measured by the 

amount invested in the risky asset – if  0 (1 ) 0S w i    ( 0 (1 ) 0S w i   ).   

4.2 Comparative Statics Analysis with Respect to the Effect of S 

The effect of the safety wealth level S on the optimal amount invested in the risky asset 

depends on the CDF of the risky return G(r) in complicated ways that are difficult to interpret.  

Nevertheless, while the comparative statics result with respect to S is not clear-cut in general, the 

following proposition can be established under the assumption that G(r) is the CDF of a uniform 

distribution. A proof is given in the appendix. 

Proposition 3.  Suppose that the risky return r  follows a uniform distribution. The optimal 

amount invested in the risky asset is nondecreasing as the safety wealth becomes larger (from S1 
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to S2 > S1), as long as the relative position of the safety wealth to the end-of-period wealth that is 

obtained by investing the entire initial wealth in the riskless asset remains unchanged (i.e., either 

2 1 0 (1 )S S w i    or 1 2 0 (1 )S S w i   ).  

4.3 Comparative Statics Analysis with Respect to the Effect of ( )U w  

We now proceed to answer the question: how would the optimal amount invested in the 

risky asset change when the normalized utility function ( )U w  is replaced with another 

normalized utility function ( )V w  that is more risk averse?  An important result from the 

conventional EU model is that an Arrow-Pratt more risk averse individual will optimally invest 

less in the risky asset.22  So we would naturally explore the possibility of establishing the same 

result in the more general EU-SF model. Unfortunately, our effort of using the Arrow-Pratt 

notion of greater risk aversion turned out to be negative. That is, being Arrow-Pratt more risk 

averse is not sufficient to cause the optimal amount invested in the risky asset to decrease (or 

increase) in the EU-SF model.   

  Therefore, we consider the effect on the optimal amount invested in the risky asset when 

( )U w  is replaced with a Ross more risk averse ( )V w . Denote the solution to the optimization 

problem (7) – with the normalized utility function U(w) – as U , and the solution to (7) when 

U(w) is replaced with another normalized utility function V(w) as V .  We prove the following 

proposition in the appendix. 

Proposition 4.  Suppose that the safety wealth is larger than the end-of-period wealth that is 

obtained by investing the entire initial wealth in the riskless asset ( 0 (1 ) 0S w i   ). Then the 

                                                             
22 A direct application of this result is that under decreasing absolute risk aversion or DARA, the amount invested in 

the risky asset increases as an individual’s initial wealth increases (Pratt 1964).  
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amount invested in the risky asset is nonincreasing if the normalized utility function U(w) is 

replaced with another normalized utility function V(w) that is Ross more risk averse. 

 Proposition 4 partially extends the corresponding result in the EU model – that greater 

Arrow-Pratt risk aversion implies a smaller amount invested in the risky asset – to the more 

general EU-SF model.  The extension is partial because the Ross notion of greater risk aversion 

in Proposition 4 is stronger than the Arrow-Pratt notion of greater risk aversion, and because we 

can only obtain an unambiguous comparative statics statement for the case of 0 (1 ) 0S w i   .   

 

5. Conclusion 

The portfolio choice decision has been extensively studied in the expected utility model 

(the EU model), with some interesting findings being obtained in the literature.  For example, in 

the standard portfolio choice problem where an investor allocates a given amount of initial 

wealth between a risky asset and a riskless asset with the former having an expected return that is 

higher than the sure return of the latter, it is found that the amount invested in the risky asset is 

positive and that a more risk averse investor in the sense of Arrow (1974) and Pratt (1964) will 

invest less in the risky asset and more in the riskless asset.   

In this paper we study the portfolio decision in the more general model of the expected 

utility with a safety-first component (the EU-SF model), to accommodate the empirical and 

experimental evidence that real-world decision makers care about the probability of final wealth 

exceeding a safety wealth level in addition to the distribution of the final wealth per se.  We find 

that, as in the traditional EU model, a positive expected excess return is sufficient for investing a 

positive amount in the risky asset in the EU-SF model, except in the special situation where the 

safety wealth level coincides with the wealth obtained when the entire initial wealth is invested 
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in the riskless asset (i.e., S = 0w (1+ i)).  In this situation, the optimal amount invested in the risky 

asset is zero if the weight on the safety-first component is sufficiently large. 

 In addition, we find that whether the optimal amount invested in the risky asset becomes 

smaller as the weight on the safety-first component increases depends on whether S < 0w (1+ i). 

Moreover, we find that a marginal increase in the safety wealth level always induces a larger 

amount to be invested in the risky asset under the condition that the risky return follows a 

uniform distribution. We also find that a Ross more risk averse individual will choose to invest a 

smaller amount in the risky asset in the situation S > 0w (1+ i).   

  Future research can study other economic and financial decisions in the EU-SF model, 

including the self-protection decision, the precautionary saving decision, and the insurance 

demand decision under deductible insurance arrangement or with the possibility of insurer 

default.  
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Appendix 

 

Proof of Property 1 

Suppose that x  second-degree stochastically dominates S and 2x S .  We then have 

 2 2 2 2(1 ) [ ( )] . (1 ) ( )E U x prob x S U S            , 

or equivalently,  

     2 2(1 ) [ ( )] ( ) 1 .E U x U S prob x S         . 

This implies that, for 2 1 

       1 2 2 1(1 ) [ ( )] ( ) (1 ) [ ( )] ( ) 1 . 1 .E U x U S E U x U S prob x S prob x S                     

, 

where the first (weak) inequality is based on [ ( )] ( ) 0E U x U S   ( x  second-degree 

stochastically dominates S).  Therefore, 1x S .      Q.E.D. 

 

Proof of Property 2 

(i) 0 1 2x S S     

Suppose 2 0x x  , that is, 

  2 0(1 ) [ ( )] . (1 ) ( )E U x prob x S U x          . 

Then  

 1 0(1 ) [ ( )] . (1 ) ( )E U x prob x S U x          , 

or 1 0x x . 
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(ii) 
1 0 2S x S     

Suppose 
1 0x x  , that is, 

 1 0(1 ) [ ( )] . (1 ) ( )E U x prob x S U x            . 

Then  

 2 0(1 ) [ ( )] . (1 ) ( )E U x prob x S U x          , 

or  2 0x x . 

(iii) 1 2 0S S x   

Suppose 2 0x x  , that is, 

  2 0(1 ) [ ( )] . (1 ) ( )E U x prob x S U x            . 

Then  

   1 0(1 ) [ ( )] . (1 ) ( )E U x prob x S U x            , 

or 1 0x x .           Q.E.D. 

 

Proof of Lemma 2 

The “if” part of Lemma 2 is obtained immediately from Lemma 1.  In the following, we 

prove the “only if” part: if normalized utility function V(w) is Ross more risk averse than 

normalized utility function U(w) on [a, b], then there exists a constant 1   and ( )w  such that 

( ) ( ) ( )V w U w w   , where ( ) 0w   and ( ) 0w   on [a, b]. 
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According to Lemma 1, if utility function V(w) is Ross more risk averse than utility 

function U(w) on [a, b], then there exists a constant 0   and ( )w  such that 

( ) ( ) ( )V w U w w   , where ( ) 0w   and ( ) 0w   on [a, b].  We now demonstrate that it 

must be the case that 1   when both U(w) and V(w) are normalized utility functions with 

( ) ( ) 0U a V a   and ( ) ( ) 1U b V b  . 

 We make use of an intermediate result that was independently established in Liu and 

Wang (2017) and Argyris et al. (2018) that if normalized utility function V(w) is Ross more risk 

averse than normalized utility function U(w) on [a, b], then V(w) - U(w) is concave on [a, b]. 

This result is established in the proof of their Proposition 1 in Liu and Wang (2017) and stated as 

their Lemma 1 in Argyris et al. (2018).   

 That V(w) - U(w) is concave on [a, b], together with ( ) ( ) 0U a V a   and 

( ) ( ) 1U b V b  , implies that 

(A1)     ( ) ( ) 0V a U a   . 

If 1  , however, we would have  

(A2)  ( ) ( ) ( ) ( ) ( ) 0V w U w V w U w w           for all w in [a, b],  

which obviously contradicts (A1).   

 Therefore, it must be the case that 1  .      Q.E.D. 

 

Proof of Property 3 

Suppose that for x ,  ( ) UE x x .  That is, 

     (1 ) ( ) . ( ) (1 ) [ ( )] .U E x prob E x S E U x prob x S              , 

or equivalently, 
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      (1 ) ( ) [ ( )] . . ( )U E x E U x prob x S prob E x S            

To show ( ) VE x x , it is sufficient to show 

    ( ) [ ( )] ( ) [ ( )]V E x E V x U E x E U x   . 

According to Lemma 2, there exists a constant 1   and ( )w  such that ( ) ( ) ( )V w U w w   , 

where ( ) 0w   and ( ) 0w  . Then 

      

 

( ) [ ( )] ( ) [ ( )] ( ) [ ( )]

( ) [ ( )].

V E x E V x U E x E U x E x E x

U E x E U x

      

 
 

           Q.E.D. 

 

Proof of Lemma 3 

We only prove the main version – the version outside the parentheses – of the lemma, 

because the alternative version – the version inside the parentheses – can be similarly proved.  

We use proof by contradiction.  Suppose * *

1 2( ) ( )     instead.  By the definition of 

*

1( )  , * *

1 1 2 1( ( ), ) ( ( ), ) 0        .  According to the single-crossing condition (10), we 

then have * *

1 2 2 2( ( ), ) ( ( ), ) 0        , contradicting the definition of *

2( )  .   

Therefore, it must be the case that * *

2 1( ) ( )    .     Q.E.D. 

 

Proof of Proposition 2 

We need to show that for 2 11 0    ,  (i) 
2 1*( ) *( )     if 0 (1 ) 0S w i   , and (ii) 

2 1*( ) *( )     if 0 (1 ) 0S w i   . 

From (7), 
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    2 1 0 2 0 1

0 0

1 2

( , ) ( , ) (1 ) (1 ) ( ) (1 ) ( )

(1 ) (1 )

E U w i r i E U w i r i

S w i S w i
G i G i

      


 

                 

       
        

    

 

(i) 0 (1 ) 0S w i    

 In this case, 0 0

1 2

(1 ) (1 )
0

S w i S w i
G i G i

 

       
       

    
 whenever 2 1  . 

Therefore, 2 1 1 1 2 2 1 2( , ) ( , ) 0 ( , ) ( , ) 0              for all 2 1  .  According to 

Lemma 3, we have * *

2 1( ) ( )    . 

(ii) 0 (1 ) 0S w i    

 In this case, 0 0

1 2

(1 ) (1 )
0

S w i S w i
G i G i

 

       
       

    
 whenever 2 1  . 

Therefore, 2 1 1 1 2 2 1 2( , ) ( , ) 0 ( , ) ( , ) 0              for all 2 1  .  According to the 

alternative version – the version inside the parentheses – of Lemma 3, we have * *

2 1( ) ( )    . 

            Q.E.D. 

 

Proof of Proposition 3 

We need to show that for either 2 1 0 (1 )S S w i    or 1 2 0 (1 )S S w i   , 

2 1*( ) *( )S S  . 

From (7), 
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    

    

 

2 1 0 2 0 1

0 0

1 2

0 2 0 1

0

1 2

( , ) ( , ) (1 ) (1 ) ( ) (1 ) ( )

(1 ) (1 )

(1 ) (1 ) ( ) (1 ) ( )

1 1
(1 ) ,

S S E U w i r i E U w i r i

S w i S w i
G i G i

E U w i r i E U w i r i

g S w i

    


 

  


 

                 

       
        

    

               

 
      

 

 

where g > 0 is the constant density of the uniform distribution. 

 Therefore, 2 1 1 1 2 2 1 2( , ) ( , ) 0 ( , ) ( , ) 0S S S S          for all 2 1   and 

2 1 0 (1 )S S w i    or 1 2 0 (1 )S S w i   .  According to Lemma 3, we have * *

2 1( ) ( )S S  . 

            Q.E.D. 

 

Proof of Proposition 4  

Denote the optimal amount invested in the risky asset U  under the normalized utility 

function U(w) and V  under the normalized utility function V(w) , and assume that V(w) is Ross 

more risk averse than U(w).   

We provide a proof by contradiction that essentially makes use of the logic behind 

Lemma 3.  From (7), we have 

(11)

    0 0

0 0

( , ( )) ( , ( )) (1 ) (1 ) ( ) (1 ) ( )

(1 ) (1 )
0,

U V U V

V U

U w U w E U w i r i E U w i r i

S w i S w i
G i G i

    


 

                 

       
         

    

 

where the inequality is from the definition of U .  

Since V(w)  is Ross more risk averse than U(w), according to Lemma 2, there exists a 

constant 1   and ( )w  such that ( ) ( ) ( )V w U w w   , where ( ) 0w   and  ( ) 0w    on  

[a, b]. Therefore,  
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(12)

    

    

0 0

0 0
0 0

( , ( )) ( , ( )) (1 ) (1 ) ( ) (1 ) ( )

(1 ) (1 )
(1 ) (1 ) ( ) (1 ) ( ) .

U V U V

U V

V U

V w V w E U w i r i E U w i r i

S w i S w i
E w i r i E w i r i G i G i

     

     
 

                 

       
                         

    

 

Now assume that the conclusion in Proposition 4, namely V U  , is not true.  That is, 

assume V U   instead.  This has two implications for some items in (12).  First, from 

Proposition 2 (the case of 0 (1 ) 0S w i   ), we have V U    , where 

 0 (1 ) ( )E U w i r i      is maximized at  .  This, together with the strict concavity of 

 0 (1 ) ( )E U w i r i     , implies   

(13)     0 0(1 ) ( ) (1 ) ( ) 0U VE U w i r i E U w i r i               . 

Second, when V U  , 

(14) 

   

    

    

0 0

0 0

0 0

(1 ) ( ) (1 ) ( )

(1 ) ( ) (1 ) ( ) ( )

(1 ) ( ) ( ) (1 ) ( ) 0,

U V

U V U

V U V

E w i r i E w i r i

E w i r i E w i r r r i

E w i r r r i E w i r i

   

    

    

            

               

                

 

where the expression in the first pair of curly brackets is nonnegative due to ( ) 0w  , and the 

expression in the second pair of curly brackets is nonnegative due to ( ) 0w  .  

From (12), (13) and (14), 

    0 0

0 0

( , ( )) ( , ( )) (1 ) (1 ) ( ) (1 ) ( )

(1 ) (1 )
0,

U V U V

V U

V w V w E U w i r i E U w i r i

S w i S w i
G i G i

    


 

                 

       
         

    

 

which contradicts V  being the optimal choice for V(w). Therefore, it must be the case that

V U  .            Q.E.D. 

 


