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1. Introduction 

 For more than half a century now economists have used the Arrow-Pratt measure of risk 

aversion to compare how risk averse two individuals are.  There are good reasons why.  For one 

thing, the mathematical characterization is very simple, based on a ratio of the first two 

derivatives of the utility function.  Second, and perhaps more importantly, the comparison based 

on the Arrow-Pratt measure was accompanied by some mathematically-equivalent behavioral 

conditions.  Specifically, being everywhere higher on the Arrow-Pratt measure is equivalent to 

having a larger risk premium or having a larger probability premium for an actuarially-neutral 

risk (Pratt 1964).   These behavioral, or choice-based, measures of risk aversion – i.e., the risk 

premium and the probability premium – have the advantage of being readily computed and 

compared in experiments investigating the factors that affect the strength of risk aversion.1   

Recent experimental studies have demonstrated, in various contexts, a salient aversion to 

risk increases of 3rd and even higher degrees.2  Moreover, 3rd-degree risk aversion (i.e., 

downside risk aversion or prudence), or even higher-degree risk aversion, has been shown to 

play critical roles in some important models of decision making under risk. One example is the 

self-protection decision.  While a risk averse individual does not necessarily invest more in self-

protection than a risk neutral individual, a downside risk averse individual tends to invest less in 

self-protection than a downside risk neutral individual (Chiu 2005, Eeckhoudt and Gollier 2005, 

Menegatti 2009, Denuit et al. 2016, Crainich et al. 2016, and Peter 2017).  Another example is 

the precautionary saving/effort decision. It has been shown that as future income undergoes an 

nth-degree risk increase, precautionary saving increases if and only if the utility function displays 

(n+1)th-degree risk aversion (Leland 1968, Sandmo 1970, Dreze and Modigliani 1972, Kimball 

1990, Eeckhoudt and Schlesinger 2008, Eeckhoudt et al. 2012, Liu 2014, Wang et al. 2015, and 

Nocetti 2016).  

Along with these interests in higher-degree risk aversion, a question arises as to how to 

compare two individuals’ relative strength of higher-degree risk aversion.  Pratt’s risk premium 

approach to comparative risk aversion has been generalized to deal with random initial wealth 

                                                             
1 For examples of choice-based risk aversion measures, see Holt and Laury (2002), Eckel and Grossman (2002), 
Andreoni and Sprenger (2011), Ebert and Wiesen (2014), Callen et al. (2014), and Grossman and Eckel (2015). 
2 For example, see Deck and Schlesinger (2010, 2014), Ebert and Wiesen (2011), Maier and Ruger (2011) and 
Noussair et al. (2014). 
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and comparative higher-degree risk aversion.3  By comparison, his probability premium 

approach to comparative risk aversion, though extensively used in experiments investigating the 

strength of 2nd-degree risk aversion, has not played an important role in the study of 

comparative higher-degree risk aversion.    

More recently, Jindapon and Neilson (2007) propose a new approach to comparative nth-

degree risk aversion that is based on a comparative statics analysis.  The intuition for this 

approach is the following. Given a continuous opportunity to reduce the nth-degree risk in one’s 

wealth by incurring a monetary cost, a “more nth-degree risk averse” individual would choose to 

incur a larger monetary cost to reduce the nth-degree risk further.  They show that, in the 

expected utility framework, an individual would always be willing to incur a larger monetary 

cost to reduce the nth-degree risk in wealth than another individual, if and only if the former is 

nth-degree Ross more risk averse than the latter. 

As Liu and Meyer (2013) argue, however, all these existing approaches to comparative 

nth-degree risk aversion essentially quantify nth-degree risk aversion by the willingness to trade 

a 1st-degree risk increase with an nth-degree risk increase.  They propose a notion of “risk 

tradeoff” – the ratio of the reduction in expected utility caused by an nth-degree risk increase to 

that caused by an mth-degree risk increase – in order to quantify nth-degree risk aversion through 

the willingness to trade an mth-degree risk increase with an nth-degree risk increase for any m 

such that 1 m n≤ < .  They further show that an individual always has a larger tradeoff between 

an nth-degree risk increase and an mth-degree risk increase than another if and only if the former 

is (n/m)th-degree Ross more risk averse than the latter.    

Nevertheless, Liu and Meyer’s “risk tradeoff” approach to comparative risk aversion has 

an important limitation.  Their “risk tradeoff” or “rate of substitution” is defined in the expected 

utility framework, and actually calculating it requires knowing the utility function of the decision 

maker, which greatly hinders the experimental implementation of their approach.  In contrast, the 

risk premium and probability premium by Pratt (1964) and the optimal monetary investment in 

reducing the nth-degree risk of wealth by Jindapon and Neilson (2007) are all choice-based and 

                                                             
3 For example, see Ross (1981), Machina and Neilson (1987), Modica and Scarsini (2005), Jindapon and Neilson 
(2007), Crainich and Eeckhoudt (2008), Li (2009), and Denuit and Eeckhoudt (2010). 
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can be assessed in appropriately designed experiments without requiring knowledge of a utility 

function.   

This paper extends the three main behavioral approaches to comparative risk aversion – 

the risk premium approach and the probability premium approach of Pratt (1964) and the 

comparative statics approach of Jindapon and Neilson (2007) – to study comparative nth-degree 

risk aversion, accommodating trading an mth-degree risk increase with an nth-degree risk 

increase for any m such that 1 m n≤ < .  We show that, within the expected utility framework, 

behavior in all of these approaches is governed by the same mathematical condition based on the 

ratio of the nth and mth derivatives of the utility functions.4  Accordingly, all of these behavioral 

conditions are equivalent, and decision analysts can treat all of them as appropriate avenues for 

measuring and interpreting higher-order comparative risk attitudes. 

First, we consider a situation where the individual compares random initial wealth to a 

binary compound lottery where the “good” state has less mth-degree risk than initial wealth and 

the “bad” state has higher nth-degree risk than initial wealth, with 1 m n≤ < .5 Generalizing 

Pratt’s probability premium, we look for the probability of the good state that makes the 

individual indifferent between initial wealth and the binary compound lottery.  The relevant 

behavioral condition for one individual to be more nth-degree risk averse than another is that the 

former requires a higher probability on the good state than the latter for every initial wealth, 

every nth-degree risk increase, and every mth-degree risk decrease.  We start with this 

generalized probability premium approach because it seems to be the most intuitive one, as well 

as the most convenient one to be implemented in experiments.   

Second, we propose a notion of the path-dependent mth-degree risk premium for an nth-

degree risk increase, and interpret the existing risk premium concepts as the 1st-degree risk 

premium along some special paths.  The relevant behavioral condition for one individual to be 

                                                             
4 Of course, these three approaches are not exhaustive.  For example, Keenan and Snow (2009, 2016 and 2017), 
Crainich and Eeckhoudt (2011), Liu and Meyer (2012), Li and Liu (2014) and Huang and Stapleton (2015) 
investigate additional alternative approaches to comparative 3rd or higher-degree risk aversion.  In particular, Li and 
Liu (2014) show that one individual has an everywhere larger ratio of the nth and mth derivatives of the utility 
function if and only if that individual has a larger monetary utility premium for an nth-degree risk than the other 
individual, a result very much in the spirit of the ones in this paper.  As a behavioral condition, though, the monetary 
utility premium is not as standard or as useful for practitioners as the behavioral conditions we study here. 
5 The “good” or “bad” is from the perspective of an individual that is both mth-degree risk averse and nth-degree 
risk averse. 
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more nth-degree risk averse than another is that the former has a larger path-dependent mth-

degree risk premium than the latter for every (random) initial wealth, every nth-degree risk 

increase, and every possible path of mth-degree increasing risk.   

Third, we study a decision problem in which an individual faces an indexed path of 

random variables, and movements along the path involve precisely-defined reductions in nth-

degree risk and increases in mth-degree risk.  This formulation has as special cases both the 

comparative statics problem analyzed in Jindapon and Neilson (2007) and the portfolio choice 

problem analyzed in Pratt (1964), Ross (1981), and Machina and Neilson (1987).  The relevant 

behavioral condition for one individual to be more nth-degree risk averse than another is that the 

former always chooses a random variable farther along the path than the latter.  More simply, the 

nth-degree more risk averse individual chooses a random variable with less nth-degree risk but at 

the cost of more mth-degree risk. 

Importantly, and unlike the derivative conditions, these general behavioral notions of 

comparative nth-degree risk aversion are all model-free; in particular, they do not depend on the 

expected utility framework to be well defined.  As a result, they can be readily computed/tested 

based on decisions solicited in appropriately designed experiments.  Nevertheless, the paper goes 

on to demonstrate that when the expected utility framework is assumed, all these general 

behavioral notions of comparative nth-degree risk aversion are equivalent, and can be 

characterized by the (n/m)th-degree Ross more risk aversion of Liu and Meyer (2013). Not only 

does this equivalence provide a unified choice-based justification for the concept of (n/m)th-

degree Ross more risk aversion, it also provides practitioners with a variety of methods for 

assessing and explaining comparative higher-degree risk aversion.   

 The paper is organized as follows. Section 2 reviews notions of nth-degree increasing 

risk, nth-degree risk aversion, and (n/m)th-degree Ross more risk aversion.  Section 3 presents 

three behavioral (i.e., choice-based) conditions comparing the nth-degree risk aversion of two 

individuals, as generalizations of the three main approaches to comparative risk aversion – the 

probability premium approach, the risk premium approach, and the comparative statics approach 

– respectively.  The theorems in this section establish that, in the framework of expected utility, 

all these three behavioral conditions are equivalent and characterized by the (n/m)th-degree Ross 

more risk averse condition.  Section 4 offers some conclusions. 
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2.  nth-Degree Increases in Risk, nth-Degree Risk Aversion, and (n/m)th-Degree Ross More 

Risk Aversion. 

Let F(x) and G(x) represent the cumulative distribution functions (CDFs) of two random 

variables whose supports are contained in a finite interval denoted [a, b] with no probability 

mass at point a.  This implies that F(a) = G(a) = 0 and F(b) = G(b) = 1.  Letting F[1](x) denote 

F(x), higher order cumulative functions are defined according to [ ] [ 1]( ) ( ) ,
xk k

a
F x F y dy−= ∫  k = 

2,3,…. Similar notation applies to G(x) and other CDFs.   

For any integer 1n ≥ , Ekern (1980) gives the following definition. 

 

Definition 1.  G(x) has more nth-degree risk (or is more nth-degree risky) than F(x) if 

 

 G[k](b) = F[k](b)             for k = 1, 2, …, n, and     (1) 

 [ ] [ ]( ) ( )n nG x F x≥          for all x in [a, b] with “>”  holding for some x in (a, b) . (2) 

 

Condition (1) guarantees that the first 1n −  moments are held constant across the two 

distributions, and conditions (1) and (2) together imply that F(x) dominates G(x) in nth-degree 

stochastic dominance.  Thus, the nth-degree risk increase is a special case of nth-degree 

stochastic dominance in which the first 1n −  moments are kept the same.  This general definition 

of nth-degree risk increases has many well-known notions of stochastic changes as special cases.  

An increase in 1st-degree risk is a first-order stochastically dominated shift, which visually 

entails a leftward shift in probability mass.  It implies (but is not equivalent to) a reduction in the 

mean.  An increase in 2nd-degree risk is simply the familiar risk increase of Rothschild and 

Stiglitz (1970) which corresponds to a sequence of mean-preserving spreads.  It implies (but is 

not equivalent to) an increase in the variance.  Similarly, an increase in 3rd-degree risk holds the 

first two moments constant and shifts risk from high-wealth levels to low-wealth levels, which is 

the downside risk increase of Menezes et al. (1980).   It implies (but is not equivalent to) a 

reduction in rightward (positive) skewness.   
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 The fact that an nth-degree risk increase requires that the first n – 1 moments remain 

constant places a restriction on the starting distribution F(x).  In particular, when F(x) is 

degenerate, placing all of its probability mass on a single outcome x0, only 1st-degree and 2nd-

degree risk increases are possible.  A 1st-degree risk increase would entail a first-order 

stochastically dominated shift, as usual, and a 2nd-degree one would involve a mean-preserving 

spread.  A 3rd-degree or higher risk increase would require that the variance of the new 

distribution be the same as that of the original distribution, and a degenerate distribution has zero 

variance.  Consequently, 3rd-degree or higher risk increases are only well-defined when the 

starting distribution is nondegenerate. 

 Ekern (1980) also provides a definition of nth-degree risk aversion when the preferences 

have an expected utility representation.  For any utility function u(x): [a, b] → ¡ , assume that 

u(x) has all possible derivatives and that they are continuous.  Denote by ( ) ( )ku x  the kth 

derivative of u(x), k = 1, 2, 3... .   

 

Definition 2.  Decision maker u(x) is nth-degree risk averse if 1 ( )( 1) ( ) 0n nu x+− >  for all x in [a, b].  

 

We use u and v to refer to decision makers, and also use utility functions u(x) and v(x) to 

refer to decision makers with the corresponding utility functions when the expected utility 

framework is assumed. Note that u(x) is said to be weakly nth-degree risk averse when the strict 

inequality in Definition 2 is replaced with a weak one.  1st-degree risk aversion corresponds to 

an everywhere increasing utility function, and the usual 2nd-degree risk aversion corresponds to 

a concave utility function.  If an individual exhibits all possible degrees of risk aversion his 

utility function will have derivatives that alternate in sign, beginning with a positive first 

derivative.6 

                                                             
6 Almost all often-encountered utility functions satisfy this “mixed risk aversion” property (Brockett and Golden 
1987, Caballe and Pomansky 1996).  Eeckhoudt and Schlesinger (2006) and Menegatti (2015) provide significant 
new results on how these preferences may be characterized.  For example, Menegatti (2015) shows that if the nth-
order derivative of an increasing function u(x) defined on [0, ∞ ] is sign invariant then all the derivatives of orders 
from 2 to n alternate in sign. Note also that throughout this paper, and for Definition 2 in particular, the outcome 
variable x is assumed to belong to a bounded interval [a, b].  With the assumption of a bounded domain imposed in 
this paper, Menegatti’s (2015) results do not apply.  
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 The relationship between the two concepts in Definitions 1 and 2 is given in Lemma 1 

below that is proved by Ekern (1980).7 

 

Lemma 1.  G(x) has more nth-degree risk than F(x) if and only if every nth-degree risk averse 

decision maker u(x) prefers F(x) to G(x). 

 

This result shows that nth-degree increases in risk are precisely the distribution changes that 

every nth-degree risk averse individual dislikes. 

 Another definition that is necessary for the analysis in this paper is (n/m)th-degree Ross 

more risk aversion, first described by Liu and Meyer (2013).  Assume that m and n are two 

positive integers such that 1 m n≤ < , and let the two utility functions u(x) and v(x) each be both 

nth-degree and mth-degree risk averse on [a, b].  The following definition of (n/m)th-degree Ross 

more risk aversion is from Liu and Meyer (2013).  

 

Definition 3.   u(x) is (n/m)th-degree Ross more risk averse than v(x) on [a, b] if  

 

   
1 ( ) 1 ( )

1 ( ) 1 ( )

( 1) ( ) ( 1) ( )
( 1) ( ) ( 1) ( )

n n n n

m m m m

u x v x
u y v y

+ +

+ +

− −
≥

− −
 for all x, y  [ , ]a b∈ ,  (3) 

or equivalently, if there exists 0λ > , such that 
( ) ( )

( ) ( )

( ) ( )
( ) ( )

n m

n m

u x u y
v x v y

λ≥ ≥  for all x, y  [ , ]a b∈ . 

 

Definition 3 includes many existing notions of one utility function being more risk averse 

than another as special cases.  For n = 2, m = 1 and y = x, condition (3) reduces to the familiar 

Arrow-Pratt more risk averse condition: ''( ) ''( )
'( ) '( )

u x v x
u x v x

− ≥ −  for all [ , ]x a b∈ .  As Ross (1981) 

points out, the behavioral conditions related to this characterization must have nonstochastic 

initial wealth, and the stronger condition 
''( ) ''( )
'( ) '( )

u x v x
u y v y

− ≥ −  for all , [ , ]x y a b∈  – which is 

                                                             
7 See also Denuit et al. (1999) and Jouini et al. (2013).  
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referred to in the literature as Ross more risk aversion – allows for random initial wealth.  For m 

= 1, Definition (3) reduces to Ross more risk aversion when n = 2, to Ross more downside risk 

aversion when n = 3 (Modica and Scarsini 2005), and to Ross nth-degree more risk aversion for a 

general 2n ≥  (Jindapon and Neilson 2007, Li 2009, and Denuit and Eeckhoudt 2010). 

The following lemmas regarding the (n/m)th-degree Ross more risk averse condition will 

be used in proving the main results in the paper. Specifically, Lemma 2 is useful when using 

(n/m)th-degree Ross more risk aversion as a sufficient condition, and Lemma 3 is useful when 

showing (n/m)th-degree Ross more risk aversion as a necessary condition.8  A proof of Lemma 2 

is given in Liu and Meyer (2013),9 and a proof of Lemma 3 is provided in the appendix.   

 

Lemma 2.  u(x) is (n/m)th-degree Ross more risk averse than v(x) on [a, b] if and only if there 

exist λ > 0 and ( )xφ  with 1 ( )( 1) ( ) 0m m xφ+− ≤  and 1 ( )( 1) ( ) 0n n xφ+− ≥  for all x in [a, b]  such that

( ) ( ) ( )u x v x xλ φ≡ + . 

 

Lemma 3.  If u(x) is NOT (n/m)th-degree Ross more risk averse than v(x) on [a, b], then there 

exist µ > 0, 1 1[ , ] ( , )a b a b⊂  and  2 2[ , ] ( , )a b a b⊂  such that ( ) ( ) ( )x u x v xφ µ≡ −  satisfies 

1 ( )
1 1

1 ( )
2 2

( 1) ( ) 0 for all x [ , ]
( 1) ( ) 0 for all x [ , ]

n n

m m

x a b
x a b

φ

φ

+

+

− < ∈

− > ∈
  

 

Besides its usefulness for proofs, Lemma 2 provides a way to construct utility functions that are 

(n/m)th-degree Ross more risk averse than a given one, which might be useful for applied work. 

In addition, it is clear from Lemma 2 that assuming two utility functions to be ranked according 

to the (n/m)th-degree Ross more risk averse relation is by no means a vacuous assumption.        

                                                             
8 To appreciate the usefulness of these lemmas in proofs, it may be helpful to discuss their counterparts in the 
context of the more familiar Arrow-Pratt more risk aversion.  By definition, u(x) is Arrow-Pratt more risk averse 
than v(x) if ( ) / ( ) ( ) / ( )u x u x v x v x′′ ′ ′′ ′− ≥ −  for all [ , ]x a b∈ .  Then the Arrow–Pratt counterpart of Lemma 2 is “u(x) 
is Arrow-Pratt more risk averse than v(x) if and only if the transformation function T(y), defined through 

( ) ( ( ))u x T v x≡ , satisfies ( ) 0T y′′ ≤  for all [ ( ), ( )]y v a v b∈ ,” and the Arrow-Pratt counterpart of Lemma 3 is “If u(x) 

is NOT Arrow-Pratt more risk averse than v(x), then there exists 1 1[ , ] ( , )a b a b⊂  such that for the transformation 

function T(y) defined through ( ) ( ( ))u x T v x≡ ,   ( ) 0T y′′ >  for all 1 1[ ( ), ( )]y v a v b∈ ”. 
9 See the proof of their Theorem 1. 
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3. Alternative Approaches to Comparative nth-Degree Risk Aversion 

 

3.1.  The Probability Premium Approach 

Pratt (1964) proposes to use the probability premium as a measure of (global) risk 

aversion.  Pratt defines the probability premium q according to the indifference condition 

    
1
2
1
2

with probability 
with probability 

w q
w

w q
ε
ε

+ +
 − −

:    (4) 

where w is the nonrandom initial wealth and 0ε >  is a constant.  Pratt (1964) further shows that, 

in the expected utility framework, an individual u(x) always has a larger probability premium 

than another individual v(x) – for all w and ε  – if and only if the former is Arrow-Pratt more risk 

averse than the latter. 

 Unlike the risk premium approach that is discussed in the next subsection, the probability 

premium approach to comparative risk aversion has not played an important role in 

understanding comparative higher-degree risk aversion, even though probability-type measures 

of 2nd-degree risk aversion have been extensively used in experiments.10  The reason for this is 

probably that the probability premium was not used by Ross (1981) in generalizing Pratt’s 

analysis from nonstochastic initial wealth to random initial wealth, and one has to work with 

random initial wealth when studying 3rd- or even higher-degree risk increases.   

We propose below a general formulation for using the probability premium to measure 

nth-degree risk aversion.  Suppose that w% is initial wealth, y% is an nth-degree risk increase from 

w%, and z% is an mth-degree risk decrease from w%.  For an individual who is both nth-degree and 

mth-degree risk averse, z w y% %%f f , where “ f ” denotes the strict preference relationship. 

Consider a two-state compound lottery 

 

 
with probability 

with probability 1
z p
y p


 −

%
%

 . 

                                                             
10The only exceptions are Jindapon (2010) and Watt (2011), who propose alternative probability-type measures of 
downside risk aversion based on the risk apportionment framework of Eeckhoudt and Schlesinger (2006).  In 
addition, Eeckhoudt and Laeven (2015) recently give a graphical representation of the probability premium. 
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As p increases continuously from 0 to 1, the above lottery goes from being dominated by w% to 

being preferred to w%.  Assuming continuity of preferences with respect to p, meaning that a very 

small change in p would not reverse a preference relation between the two lotteries compared, 

there exists a p such that  

    
with probability 

with probability 1
z p

w
y p


 −

%
%:

%
.    (5) 

Formally, the mth-degree probability premium for an nth-degree risk increase is defined below. 

 

Definition 4.  Suppose that w% is the random initial wealth, y% is an nth-degree risk increase from 

w%, and z% is an mth-degree risk decrease from w%.  The mth-degree probability premium for the 

nth-degree risk increase is the scalar p satisfying the indifference condition (5). 

 

Note that for n = 2 and m = 1, the mth-degree probability premium for the nth-degree risk 

increase includes Pratt’s probability premium as a special case.  To see this, let w w=% , z w ε= +%  

and y% have two outcomes, w ε+  and w ε− , with equal probability ½ . Then (5) becomes  

  
1
2 2
1
2 2

with probability 
with probability 

p

p

w
w

w
ε
ε

 + +


− −
:    

which is exactly the indifference condition (4) after relabeling 2
p  as q. 

 It is straightforward to see that if the individual is both mth-degree and nth-degree risk 

averse, then any mth-degree probability premium for an nth-degree risk increase lies in (0, 1).  

Now consider two individuals, u and v, with different risk preferences.  Given w%, y% and z%, if up  

and vp   satisfy (5) for u:  and v: , respectively, and u vp p> , then this means that, compared to 

v, individual u requires a larger probability on the favorable state – in which an mth-degree risk 

decrease materializes – for the two-state compound lottery to be indifferent to the status quo.  

 If u vp p≥  for all w%, y% and z%, then u can be regarded as being more nth-degree risk 

averse than v when the necessary compensation to offset an nth-degree risk increase takes the 

form of an mth-degree risk decrease.  The following theorem shows that in the framework of 
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expected utility, the condition u vp p≥  is characterized by (n/m)th-degree Ross more risk 

aversion.  The proof of the theorem is in the appendix. 

 

Theorem 1.  Suppose that two expected utility maximizers u(x) and v(x) are each both mth-

degree risk averse and nth-degree risk averse everywhere.  The mth-degree probability premia 

satisfy u vp p≥  for every w%, y% and z% such that y% is nth-degree more risky than w% and z% is 

mth-degree less risky than w%, if and only if u(x) is (n/m)th-degree Ross more risk averse than 

v(x). 

 

Theorem 1 provides a straightforward way for understanding what (n/m)th-degree Ross 

more risk averse means.  Individuals have initial random wealth given by w%, and consider 

replacing it with a binary compound lottery that pays random variable z% in the good state and 

random variable y% in the bad state.  What makes the bad state bad is that y% is nth-degree riskier 

than w%, and what makes the good state good is that z% is mth-degree less risky than w%.  

Choosing to move away from the status quo, then, involves trading off the nth-degree risk 

increase against the mth-degree risk reduction.  The individual who is (n/m)th-degree Ross more 

risk averse requires a larger probability on the mth-degree risk reduction to keep him indifferent 

between the binary compound lottery and the status quo, which means for him the nth-degree 

risk increase weighs relatively more heavily in his decision than the mth-degree risk reduction 

does, compared to the other individual.   

 

3.2 The Risk Premium Approach 

The best-known approach to comparative risk aversion involves the risk premium.  In the 

original Arrow-Pratt analysis, the decision-maker has nonstochastic initial wealth w and faces an 

additive mean-zero risk ε%.  The risk premium π is the payment that satisfies the indifference 

condition w wπ ε− + %: .   Ross (1981) extends the Arrow-Pratt analysis to random starting 

wealth levels, and defines the risk premium π according to  

w yπ−% %: ,              (6) 
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where w% is the random initial wealth and y% a Rothschild-Stiglitz risk increase from w%.  In the 

expected utility framework, Ross shows that an individual always has a larger risk premium than 

another – for all w% and y% – if and only if the former is Ross more risk averse than the latter.11 

Machina and Neilson (1987) extend Ross (1981) by defining a random risk premium.  

More precisely, suppose that w% is the initial wealth, y% is a Rothschild-Stiglitz risk increase from 

w%, and η% is a nonnegative random variable.  The random risk premium π  is a scalar satisfying 

the indifference condition 

w yπη− %% %: .              (7) 

Machina and Neilson further show that, in the expected utility framework, an individual always 

has a larger random risk premium than another – for all w%, y% and η% – if and only if the former 

is Ross more risk averse than the latter.  

 Note that the left-hand side of (6) or (7) ( w π−%  or w πη− %% ) is a 1st-degree risk increase 

from w% when 0π > , and the right-hand side ( y%) is a 2nd-degree risk increase from w%.  So the 

risk premium conditions (6) and (7) involve trading off a 1st-degree risk increase against a 2nd-

degree one, along their respective “path” of 1st-degree risk increases.  Take (7), for example.  

The set { }w
π

πη +∈
− ¡

%% , where [0, )
+
= ∞¡ , constitutes a continuous, parameterized path indexed 

by the scalar π.12 Along this path, higher values of π correspond to increases in 1st-degree risk, 

and identifying π in expression (7) is the same as finding the random variable on the path that is 

indifferent to y%.  A random variable further along the path involves more 1st-degree risk, and 

therefore a larger random risk premium, and consequently an individual who moves further 

along the path to reach indifference has a higher risk premium than one who does not move as 

far.   

 We can use this continuous path idea to formulate a general definition of the path-

dependent mth-degree risk premium for an nth-degree risk increase, where 1 m n≤ < , and use it 

to measure an individual’s nth-degree risk aversion in terms of an mth-degree risk increase.  Let

                                                             
11 This original notion of risk premium of Arrow-Pratt and Ross has been used to measure an individual’s aversion 
to higher-degree risk increases by Modica and Scarsini (2005), Crainich and Eeckhoudt (2008), Li (2009) and 
Denuit and Eeckhoudt (2010).   
12 Continuity is for the space of probability distributions and with respect to the topology of weak convergence. 
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w% be the random initial wealth and y% be an nth-degree risk increase from w%, and let 

{ } [0, ]
( )

B
x

π
π

∈
%  denote a continuous path of random variables, parameterized by [0, ]Bπ +∈ ⊂ ¡ , 

such that (0)x w=% % and for every ' 0π π> ≥  the random variable ( ')x π%  has more mth-degree 

risk than ( )x π%  does, where 1 m n≤ < .  We refer to { } [0, ]
( )

B
x

π
π

∈
%  as a path of mth-degree 

increasing risk from w%.   

 

Definition 5.  Suppose that w% is the random initial wealth, y% is an nth-degree risk increase from 

w%, and { } [0, ]
( )

B
x

π
π

∈
%   is a path of mth-degree increasing risk from w% with ( )x B y% %p .  The path-

dependent mth-degree risk premium is the scalar π  satisfying the indifference condition 

                                             ( )x yπ% %: .                (8) 

 

 Obviously, { }w
π

π +∈
− ¡

%  and { }w
π

πη +∈
− ¡

%%  are examples of paths of 1st-degree increasing 

risk from w%.  The following examples are some paths of mth-degree increasing risk from w% for 

2m ≥ .  First, { }( )x w
π

π πε +∈
= + ¡

%% % , where ε% is a mean-zero nondegenerate risk that is 

independent of w%, is a path of 2nd-degree increasing risk from w%.  Second, suppose that z% 

(with CDF H(x)) has more mth-degree risk than w% (with CDF F(x)).  Then { } [0,1]
( )x

π
π

∈
%  is a path 

of mth-degree increasing risk from w% if ( )x π%  has a CDF of ( ) (1 ) ( )H x F xπ π+ − .  In fact, 

assuming the expected utility framework and representing the preferences by utility function 

u(x), the path-dependent mth-degree risk premium for an nth-degree risk increase from w% to y% 

along this path is given by ( ) (1 ) ( ) ( )Eu z Eu w Eu yπ π+ − =% %%  or   

                                  ( ) ( )
( ) ( )

Eu w Eu y
Eu w Eu z

π −
=

−
% %
% %

 .    (9) 

Note that the ratio in (9) is the “rate of substitution” or “risk tradeoff” between an nth-degree risk 

increase and an mth-degree risk increase defined in Liu and Meyer (2013).  So, their rate of 

substitution is the path-dependent mth-degree risk premium for an nth-degree risk increase along 

a special path of mth-degree increasing risk from w%, { } [0,1]
( )x

π
π

∈
% , as discussed above.    
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 It is straightforward to see that if the individual is both mth-degree and nth-degree risk 

averse, any path-dependent mth-degree risk premium for an nth-degree risk increase must be 

positive.  Now consider two individuals, u and v, with different risk preferences.  Take as given 

w%, y%, and a path of mth-degree increasing risk from w%, { } [0, ]
( )

B
x

π
π

∈
%  .  If uπ  and vπ   satisfy 

( )u ux yπ% %:  and ( )v vx yπ% %: , respectively, and u vπ π> , then this means that, compared to v, 

individual u must move further along the path of mth-degree increasing risk from w% before 

offsetting the disutility caused by the nth-degree increase in risk entailed in y%.  More to the 

point, and much like the original Arrow-Pratt case, individual u is willing to accept a larger mth-

degree risk increase to avoid an nth-degree risk increase than individual v.   

 If u vπ π≥  for all w%, y%, and paths of mth-degree increasing risk from w%, { } [0, ]( ) Bx
π

π
∈

% , 

then u can be regarded as being more nth-degree risk averse than v when the willingness to pay 

for avoiding the nth-degree risk increase takes the form of an mth-degree risk increase.  The 

following theorem provides a utility function-based characterization of the condition u vπ π≥ , in 

the tradition of Pratt (1964), when the preferences of both u and v satisfy the axioms of expected 

utility, and are represented by utility functions u(x) and v(x), respectively.  The proof of the 

theorem is in the appendix. 

 

Theorem 2.  Suppose that two expected utility maximizers u(x) and v(x) are each both mth-

degree risk averse and nth-degree risk averse everywhere.  The path-dependent mth-degree risk 

premia satisfy u vπ π≥   for every w%, every y% that is nth-degree riskier than w% and every path of 

mth-degree increasing risk from w%, { } [0, ]
( )

B
x

π
π

∈
% , if and only if u(x) is (n/m)th-degree Ross more 

risk averse than v(x). 

 

 The condition that both individuals are everywhere mth-degree risk averse plays the same 

role that increasing utility functions play in the standard Arrow-Pratt characterization of 2nd-

degree comparative risk aversion.  There the increasing utility functions imply that the individual 

dislikes increases in the risk premium, and here the mth-degree risk aversion implies that the 

individual dislikes movements farther along the path of mth-degree increasing risk from w%.  We 
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want to emphasize that the path-dependent mth-degree risk premium is a choice-based notion 

and that the condition for one individual’s risk premium to be uniformly larger than another 

one’s is independent of whether preferences can be represented within the expected utility 

framework. 

    

3.3.  The Comparative Statics Approach 

Jindapon and Neilson (2007) construct a decision problem where an individual can 

reduce the nth-degree risk in the random wealth by incurring a monetary cost.  They show that, 

in the expected utility framework, individual u(x) would always want to incur a larger monetary 

cost, and hence to further reduce the nth-degree risk in the random wealth, if and only if the 

former is (n/1)th-degree Ross more risk averse than the latter.  They refer to their analysis as the 

comparative statics approach to comparative nth-degree risk aversion.13 

 In Jindapon and Neilson’s problem, the move to further reduce the nth-degree risk in the 

random wealth by incurring a larger monetary cost can be decomposed into an nth-degree risk 

decrease (an improvement) and a 1st-degree risk increase (a deterioration).  The definition below 

provides a general notion of changes in a random distribution that can be decomposed into an 

improvement and a deterioration. 

 

Definition 6.  F(x) is jointly less nth-degree risky and more mth-degree risky than G(x), if there 

exists H(x) such that F(x) has less nth-degree risk than H(x), and H(x) has more mth-degree risk 

than G(x).   

 

 Now consider a parameterized wealth path represented by ( )w α% , where as α  increases

( )w α%  becomes jointly less nth-degree risky and more mth-degree risky.  Moving down such a 

path, one reduces the nth-degree risk in wealth by increasing the mth-degree risk in wealth.  

Intuitively, if one individual always chooses a larger α  than another individual for all such 

                                                             
13Watt and Vazquez (2013) provide an alternative comparative statics approach to comparative downside risk 
aversion. 
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parameterized wealth paths, it must be that the former is more nth-degree risk averse than the 

latter.   

Adopting the expected utility framework, the problem of an individual u(x) is  

[ ]max ( )Eu w
α

α%           (10) 

The solution to (10) is assumed to be unique and is denoted uα .14  Similarly, denote the optimal 

choice of another individual v(x) as vα .  In the appendix, we prove the following characterization 

theorem for u vα α≥ .   

 

Theorem 3.  u vα α≥  for every wealth path ( )w α%  where, as α  increases, ( )w α%  becomes jointly 

less nth-degree risky and more mth-degree risky, if and only if u(x) is (n/m)th-degree Ross more 

risk averse than v(x). 

 

There are a number of situations that can give rise to wealth paths ( )w α%  where increases 

in α  make wealth jointly less nth-degree risky and more mth-degree risky, and one of such 

situations is a direct generalization of the problem considered in Jindapon and Neilson (2007).15 

Suppose that total wealth consists of two independent components, i.e. 1 2( ) ( ) ( )w w wα α α= +% % % , and 

as α  increases 1( )w α%  becomes less nth-degree risky and 2 ( )w α%  becomes more mth-degree risky.  

Note that the setup in Jindapon and Neilson (2007) is a special case of this situation where m = 1. 

It can be immediately checked that as α  increases ( )w α%  becomes jointly less nth-degree risky 

and more mth-degree risky. Then according to Theorem 3, an (n/m)th-degree Ross more risk 

averse individual would choose to have a less nth-degree risky first component and a more mth-

degree risky second component. 

Finally, it is important to point out that the assumption of a unique optimal solution to 

problem (10) is made for easy exposition rather than technical necessity.  Indeed, Theorem 3, as 

well as its proof in the appendix, remains valid if the unique solution to (10) is replaced with a 

                                                             
14 Without the expected utility approach, the value of αu would be defined by the criterion ( )uw α%  is weakly 
preferred to ( )w α%  for all α. 
15Discussions of other situations where Theorem 3 is applicable are available from the authors upon request.  
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general set-valued solution.  Such generalizability is important because global concavity of the 

objective function, which is often entailed by the assumption of a unique optimal solution, may 

impose strong constraints on the set of admissible utility functions for a given risk change or the 

set of risk changes for a given utility function. 

 

4. Conclusion 

More than half a century ago, Pratt (1964) uses two behavioral (or choice-based) 

conditions – which are based on the risk premium and the probability premium, respectively – to 

characterize the Arrow-Pratt more risk averse condition that is based on the famous Arrow-Pratt 

risk aversion measure, ( ) / '( )u x u x′′− .  These behavioral conditions regarding comparative risk 

aversion are important both because they have economic contents and because they can be 

readily implemented in experimental investigations into individual characteristics (e.g., gender, 

age, income, education, and religion) that affect the degree of risk aversion.  These behavioral 

conditions do not depend on the expected utility framework to be meaningful and can be checked 

via experiments without explicit specifications of the utility function.  

More recently, Liu and Meyer (2013) propose to use 
1 ( )

1 ( )

( 1) ( )
( 1) ( )

n n

m m

u x
u x

+

+

−

−
 as the (n/m)th-degree 

risk aversion measure for nth-degree risk aversion, and generalize the Arrow-Pratt more risk 

averse condition and the Ross more risk averse condition to the (n/m)th-degree Ross more risk 

aversion. 

This paper generalizes the three main existing (behavioral or choice-based) approaches to 

comparative risk aversion – the probability premium approach and the risk premium approach 

due to Pratt (1964) and the comparative statics approach due to Jindapon and Neilson (2007) – 

for comparative nth-degree risk aversion that can accommodate trading off an nth-degree risk 

increase and an mth-degree risk increase for any m such that 1 m n≤ < .  It shows that when the 

expected utility framework is assumed, all these general notions of comparative nth-degree risk 

aversion are equivalent, and can be characterized by the (n/m)th-degree Ross more risk aversion.    

In the future, economists and other social scientists, as well as financial analysts and 

decision analysts, may want to investigate the determining factors of the strength of 3rd- and 

higher-degree risk aversion, just as what they have extensively done for the 2nd-degree risk 
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aversion.  It is our hope that the results in this paper will deepen the understanding of, and help 

in creating alternative measures for, the intensity of nth-degree risk aversion.  
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APPENDIX 

 

Proof of Lemma 3.  

If u(x) is NOT (n/m)th-degree Ross more risk averse than v(x) on [a, b], then there exist some y 

and z [ , ]a b∈  such that      

( ) ( )

( ) ( )

( ) ( )
( ) ( )

n m

n m

u y u z
v y v z

< . 

Obviously, for such y and z, there exists 0µ > , such that      

 
( ) ( )

( ) ( )

( ) ( )
( ) ( )

n m

n m

u y u z
v y v z

µ< <  , 

which implies, due to continuity, that there exist 1 1[ , ] ( , )a b a b⊂  and  2 2[ , ] ( , )a b a b⊂  such that             

    
( ) ( )

( ) ( )

( ) ( )
( ) ( )

n m

n m

u y u z
v y v z

µ< <     

for all y 1 1[ , ]a b∈  and all z 2 2[ , ]a b∈ .   

Define ( ) ( ) ( )x u x v xφ µ≡ − .  Differentiating yields  
1 ( ) 1 ( ) 1 ( )

1 1
1 ( ) 1 ( ) 1 ( )

2 2

( 1) ( ) ( 1) ( ) ( 1) ( ) 0 for all x [ , ]
( 1) ( ) ( 1) ( ) ( 1) ( ) 0 for all x [ , ]

n n n n n n

m m m m m m

x u x v x a b
x u x v x a b

φ µ

φ µ

+ + +

+ + +

− = − − − < ∈

− = − − − > ∈
  

            Q.E.D. 

 

Proof of Theorem 1. 

For any given w%, y% and z% such that y% is nth-degree more risky than w% and z% is mth-degree 

less risky than w%, define  

( ) ( ) [ ( ) (1 ) ( )]U p Eu w pEu z p Eu y≡ − + −% %% .      

Clearly, ( ) ( ) ( ) 0U p Eu y Eu z′ = − <% %  because u(x) is both mth-degree risk averse and nth-degree 

risk averse.  For the same reason, (0) 0U >  and (1) 0U < . 

So (0,1)up∃ ∈  such that ( ) 0uU p = .  ( )V p  for v(x) can be similarly defined, and 

(0,1)vp∃ ∈  such that ( ) 0vV p = .  
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The “if” part:  Suppose that u(x) is (n/m)th-degree Ross more risk averse than v(x).  Then, from 

Lemma 2, there exist λ > 0 and ( )xφ  with 1 ( )( 1) ( ) 0m m xφ+− ≤  and 1 ( )( 1) ( ) 0n n xφ+− ≥  for all x in 

[a, b] such that ( ) ( ) ( )u x v x xλ φ≡ + . Note that ( )xφ  is both weakly mth-degree risk tolerant – 

meaning that ( )xφ−  is weakly mth-degree risk averse – and weakly nth-degree risk averse. 

 Evaluating ( )U p  at vp , we have 

( ) ( ) [ ( ) (1 ) ( )]
( ) ( ) [ ( ) (1 ) ( )]
( ) [ ( ) (1 ) ( )]

[ ( ) ( )] (1 )[ ( ) ( )]
0.

v v v

v v v

v v

v v

U p Eu w p Eu z p Eu y
V p E w p E z p E y

E w p E z p E y
p E w E z p E w E y

λ φ φ φ
φ φ φ

φ φ φ φ

= − + −
= + − + −
= − + −
= − + − −
≥

% %%
% %%

% %%
% % %%

     

The inequality above holds because (i) z% has less mth-degree risk than w% and y% has more nth-

degree risk than w%, and (ii) ( )xφ  is both weakly mth-degree risk tolerant and weakly nth-degree 

risk averse.  Because ( )U p  is strictly decreasing in p, we have u vp p≥ . 

 

The “only if” part:  Suppose that u vp p≥  for all w%, y% and z% such that y% is nth-degree more 

risky than w% and z% is mth-degree less risky than w%.  To prove that u(x) is (n/m)th-degree Ross 

more risk averse than v(x), assume otherwise.  Then, according to Lemma 3, there exist µ > 0,  

1 1[ , ] ( , )a b a b⊂  and  2 2[ , ] ( , )a b a b⊂ , such that ( ) ( ) ( )x u x v xφ µ≡ −  satisfies 

1 ( )
1 1

1 ( )
2 2

( 1) ( ) 0 for all x [ , ]
( 1) ( ) 0 for all x [ , ]

n n

m m

x a b
x a b

φ

φ

+

+

− < ∈

− > ∈
       (A1) 

Now denote the CDFs for w%, y% and z% as F(x), G(x) and H(x), respectively, and choose 

F(x), G(x) and H(x) such that    
[ ] [ ] [ ] [ ]

1 1 2 2
[ ] [ ] [ ] [ ]

1 1 2 2

0 ( , ) 0 ( , )
0 ( , ) 0 ( , )

n n m m

n n m m

G F x a b F H x a b
G F x a b F H x a b
 − > ∈ − > ∈
 

− = ∉ − = ∉ 
.       (A2) 

Evaluating ( )U p  at vp , we have 
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1 ( ) [ ] [ ]

( ) ( ) ( ) [ ( ) (1 ) ( )]
( ) [ ( ) (1 ) ( )]

[ ( ) ( )] (1 )[ ( ) ( )]

( ) [ ( ) ( )] (1 ) ( ) [ ( ) ( )]

( 1) ( )[ ( ) ( )]

v v v v

v v

v v
b b

v va a
b m m m m

v a

U p V p E w p E z p E y
E w p E z p E y
p E w E z p E w E y

p x d F x H x p x d F x G x

p x H x F x d

µ φ φ φ
φ φ φ

φ φ φ φ

φ φ

φ+

= + − + −
= − + −
= − + − −

= − + − −

= − −

∫ ∫
∫

% %%
% %%

% % %%

2 1

2 1

1 ( ) [ ] [ ]

1 ( ) [ ] [ ] 1 ( ) [ ] [ ]

(1 ) ( 1) ( )[ ( ) ( )]

( 1) ( )[ ( ) ( )] (1 ) ( 1) ( )[ ( ) ( )]

0.

b n n n n
v a

b bm m m m n n n n
v va a

x p x G x F x dx

p x H x F x dx p x G x F x dx

φ

φ φ

+

+ +

+ − − −

= − − + − − −

<

∫
∫ ∫

        

The inequality in above is from (A1) and (A2).  Because ( )U p  is strictly decreasing in p, we 

have u vp p< , a contradiction. Therefore, u(x) must be (n/m)th-degree Ross more risk averse 

than v(x).           Q.E.D.  

 

Proof of Theorem 2. 

The “if” part:  Suppose that u(x) is (n/m)th-degree Ross more risk averse than v(x).  Then, 

according to Lemma 2, there exist λ > 0 and ( )xφ  with 1 ( )( 1) ( ) 0m m xφ+− ≤  and 1 ( )( 1) ( ) 0n n xφ+− ≥  

for all x in [a, b] such that ( ) ( ) ( )u x v x xλ φ≡ + . Note that ( )xφ  is both weakly mth-degree risk 

tolerant – meaning that ( )xφ−  is weakly mth-degree risk averse – and weakly nth-degree risk 

averse.   

 For every w%, every y% that is nth-degree riskier than w% and every path of mth-degree 

increasing risk from w%, { } [0, ]
( )

B
x

π
π

∈
% , uπ  and vπ  satisfy ( ) ( )( )uEu x Eu yπ =% % and 

( ) ( )( )vEv x Ev yπ =% %, respectively, by definition.  Further, we have  

  

( ) ( ) ( )
( )
( )

( ) ( ) ( )

( ) ( )

( )
( ),

v v v

v

Eu x Ev x E x

Ev y E x

Ev y E y
Eu y

π λ π φ π

λ φ π

λ φ

= +

= +

≥ +

=

% % %
% %
% %

%

 

where the inequality is from (i) ( )vx π%  has more mth-degree risk than w% and y% has more nth-

degree risk than w%, and (ii) ( )xφ  is both weakly mth-degree risk tolerant and weakly nth-degree 
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risk averse.  Because ( )( )Eu x π%  is strictly decreasing in π , we have  u vπ π≥ .   

             

The “only if” part:  Suppose that the path-dependent mth-degree risk premia satisfy u vπ π≥   for 

every w%, every y% that is nth-degree riskier than w% and every path of mth-degree increasing risk 

from w%, { } [0, ]
( )

B
x

π
π

∈
% .  Then, it must be the case that u vπ π≥  for every w%, every y% that is nth-

degree riskier than w% and a special path of mth-degree increasing risk from w% that is defined as 

follows.  

 Suppose that z% (with CDF H(x)) has more mth-degree risk than w% (with CDF F(x)).  

Then { } [0,1]
( )x

π
π

∈
%  is a path of mth-degree increasing risk from w% if ( )x π%  has a CDF of 

( ) (1 ) ( )H x F xπ π+ − .  And for u(x), the path-dependent mth-degree risk premium for an nth-

degree risk increase from w% to y% along this path is given by ( ) (1 ) ( ) ( )Eu z Eu w Eu yπ π+ − =% %%  or   

  ( ) ( )
( ) ( )u

Eu w Eu y
Eu w Eu z

π −
=

−
% %
% %

 .     

Similarly,  

     ( ) ( )
( ) ( )v

Ev w Ev y
Ev w Ev z

π −
=

−
% %
% %

. 

So the given condition implies that ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

Eu w Eu y Ev w Ev y
Eu w Eu z Ev w Ev z

− −
≥

− −
% % % %
% %% %

 for every w%, every 

y% that is nth-degree riskier than w% and every z% that is mth-degree riskier than w%.  Note that the 

ratio on each side of the inequality is the “rate of substitution” between an nth-degree risk 

increase and an mth-degree risk increase defined in Liu and Meyer (2013).  According to their 

Theorem 1, it must be the case that u(x) is (n/m)th-degree Ross more risk averse than v(x). 

Q.E.D. 

 

Proof of Theorem 3.     

The “if” part:  Suppose that u(x) is (n/m)th-degree Ross more risk averse than v(x). By Lemma 2, 

there exists 0λ >  and ( )xφ  such that ( ) ( ) ( )u x v x xλ φ≡ +  , where 1 ( )( 1) ( ) 0m m xφ+− ≤  and 
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1 ( )( 1) ( ) 0n n xφ+− ≥  for all x.  Note that ( )xφ  is both weakly mth-degree risk tolerant – meaning 

that ( )xφ−  is weakly mth-degree risk averse – and weakly nth-degree risk averse. 

 We use proof by contradiction.  To prove u vα α≥ , assume u vα α<  instead.  Note 

[ ] [ ]( ( )) ( ( )) ( ( )) ( ( )) ( ( )) ( ( ))u v u v u vEu w Eu w Ev w Ev w E w E wα α λ α α φ α φ α− = − + −% % % % % % . 

The first bracket in the above expression is negative because the expected utility of v(x) is 

maximized at vα .  Under the assumption u vα α< ,  the second bracket is nonpositive because 

that ( )xφ  is both weakly mth-degree risk tolerant and weakly nth-degree risk averse, and that

( )vw α%  is sequentially less nth-degree risky and more mth-degree risky than ( )uw α% .  So 

( ( )) ( ( )) 0u vEu w Eu wα α− <% % , which contradicts that uα  is the optimal choice for u(x).  Therefore, 

it must be the case that u vα α≥ .    

 

The “only if” part: Suppose that u vα α≥  for every wealth path ( )w α%  where, as α  increases, 

( )w α%  becomes sequentially less nth-degree risky and more mth-degree risky.  To prove that u(x) 

is (n/m)th-degree Ross more risk averse than v(x), assume otherwise.  Then, according to Lemma 

3, there exist 0µ > , 1 1[ , ] ( , )a b a b⊂  and  2 2[ , ] ( , )a b a b⊂  such that ( ) ( ) ( )x u x v xφ µ≡ −  satisfies 

1 ( )
1 1

1 ( )
2 2

( 1) ( ) 0 for all x [ , ]
( 1) ( ) 0 for all x [ , ]

n n

m m

x a b
x a b

φ

φ

+

+

− < ∈

− > ∈
    (A3) 

Because u vα α≥ , ( )uw α%  is sequentially less nth-degree risky and more mth-degree risky 

than ( )vw α% .  So there exists z% such that ( )uw α%  has less nth-degree risk than z%, and z% has more 

mth-degree risk than ( )vw α% .    

Denote the CDFs for ( )uw α% , ( )vw α%  and z% as F(x), G(x) and H(x), respectively.  Due to 

the arbitrariness of the wealth path ( )w α% , we can choose F(x), G(x) and H(x) such that    

[ ] [ ] [ ] [ ]
1 1 2 2

[ ] [ ] [ ] [ ]
1 1 2 2

0 ( , ) 0 ( , )
0 ( , ) 0 ( , )

n n m m

n n m m

H F x a b H G x a b
H F x a b H G x a b

 − > ∈ − > ∈
 

− = ∉ − = ∉ 
.       (A4) 

Then we have 
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−
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x G x H x dx

x H x F x dx x G x H x dx

φ

φ φ+ +

−
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<
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∫ ∫

         (A5) 

The first inequality above is from the fact that vα  is the optimal choice for v(x).   The second 

inequality above is from (A3) and (A4).  Note that (A5) implies that uα  is not the optimal choice 

for u(x), a contradiction.  Therefore, it must be the case that u(x) is (n/m)th-degree Ross more 

risk averse than v(x).          Q.E.D.   
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