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ABSTRACT

Nonlinear state-spacemodels have long been used in the statistical signal processing community
as a powerful tool for modeling and forecasting the behavior of dynamical systems. However, in the
case of a large system with many unknown parameters, which is a common scenario in real-world
applications, the computational complexity of most methods becomes intractable, especially when
the system parameters contain both discrete and continuous components.

This dissertation is focused on efficient state and parameter estimation in nonlinear dynami-
cal systems with applications in biochemical regulatory networks and epidemic models. First, we
present PALLAS, a practical nonlinear state-space method for gene regulatory network (GRN) and
protein-protein interaction network (PPI) inference from real-world time-series data, which em-
ploys penalized maximum likelihood and particle swarms for optimization. PALLAS is based on
the Partially-Observed Boolean Dynamical System (POBDS) model and thus does not require ad-
hoc binarization of the data. The penalty in the likelihood is a LASSO regularization term, which
encourages the resulting network to be sparse. PALLAS is able to scale to networks of realistic
size under no prior knowledge, by virtue of a novel continuous-discrete Fish School Search parti-
cle swarm algorithm for efficient simultaneous maximization of the penalized likelihood over the
discrete space of networks and the continuous space of observational parameters. The accuracy
and efficiency of PALLAS are demonstrated by a comprehensive set of experiments using syn-
thetic data generated from real and artificial networks, as well as real time-series microarray and
RNA-seq data, where it is compared to several other well-known methods.

In addition, we developed a similar state-space method to model the outbreak of the COVID 19.
Mathematical models are widely recognized as an important tool to help people better understand
the epidemic, predict its future trends, explore intervention scenarios and ultimately control the epi-
demic, such as lock-down or vaccination. We proposed a sophisticated spatial-temporal nonlinear
state-space model based on a discrete-time susceptible - exposed - infected - recovered - deceased
(SEIRD)model, which can estimate the hidden states and parameters from a noisy, incomplete, time
series of reported epidemiological data, by applying Unscented Kalman Filter (UKF), Maximum
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Likelihood (ML) adaptive filtering andBroyden–Fletcher–Goldfarb–Shanno (BFGS)/metaheuristic
optimization. A comprehensive set of experiments, including simulations with different parameters
set on the state model, and estimations by using the synthetic dataset, demonstrate our model can
not only effectively simulate the different scenarios of the epidemic, such as spread with complex
contagion patterns, lock-down patterns, and vaccination scenario, but also accurately estimate the
unknown states and parameters which can be used for the prediction of the future trend.
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1. INTRODUCTION

Nonlinear state space model, which has long been considered in the statistic literature [1], has
become a powerful tool for modeling and forecasting real-world dynamic systems. Such model,
which has the ability to analyze and understanding hidden system behaviour through noisy indirect
measurements, in conjunction with various variants Kalman filter, has been used in a wide range
of applications, including Global position system (GPS) [2], target tracking [3, 4, 5], biological
processes [6] and more. Usually, the state model can be derived from some prior knowledge about
the process, but the system parameters, which cannot be calculated with established laws of nature,
can only be inferred from the indirectly observed noisy time-series data. That is to say, most of the
work in this area can be summarized as the problem of state and parameter estimation. However,
with the number of the unknown system parameter increases, especially containing both discrete
and continuous parameters, the computation complexity problem of parameter estimation is still
largely unsolved. This dissertation is mainly focused on efficiently state and parameter estimation
with applications on the area of computation biology.
1.1 Biological Networks

Biological networks such as gene regulatory networks (GRN), protein-protein interaction net-
works (PPI), can help build a picture of complex interactions that occur in cells. Identifying the
structure and the parameters of these networks from time series data is undoubtedly one of the
most important works in the system biology. With the advancement of high-throughput experi-
mental technologies, such as next generation sequencing (NGS), Liquid-Chromatography Mass-
Spectrometry (LC-MS), massive amounts of data make the inference of GRN and PPI networks
possible. In this dissertation, we present PALLAS, a practical method for parametric GRN and
PPI network inference based on partially-observed Boolean dynamical system (POBDS) model,
using penalized maximum likelihood (PML) and particle swarms for optimization. PALLAS is a
sophisticated state-space method that can detect edge directionality and activation/inhibition sta-
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tus, without any prior knowledge, in addition to being capable of working directly on expression
data, without the need for ad-hoc binarization. The penalty in the likelihood score is a L1-norm
LASSO regularization term [7], which encourages the resulting network to be sparse, i.e., contain
a small number of edges between genes; its value can be adjusted by the user to obtain a desired
level of sparsity. The likelihood itself is calculated efficiently by an auxiliary particle filter (APF)
implementation of the Boolean Kalman Filter [8, 9]. Another novel feature of PALLAS is the ap-
plication to Boolean models of a particle swarm method: a new mixed continuous-discrete version
of the Fish School Search algorithm [10, 11], for efficient simultaneous maximization of the pe-
nalized likelihood over the discrete space of networks and the continuous space of observational
parameters.
1.2 Mathematical Epidemiology Model

Infectious disease outbreaks remain a major threat to global health. This is especially the case
for highly pathogenic and transmissible diseases with pandemic potential. These global threats were
recently exemplified by the 2009 swine flu outbreak and the ongoing COVID-19 pandemic caused
by the novel Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). To effectively mit-
igate and control the spread of a disease epidemic, it is paramount for public health decision-making
to be informed by an accurate understanding of the dynamics of the epidemic and the potential im-
pact of intervention measures. To this end, epidemic models have become an important tool to help
people understand and take measures to prevent disease. Modern mathematical epidemiologymod-
els can be broadly divided into twomain types: compartmental models and agent-basedmodels. By
virtue of simplicity and fairly scalable of the model, we propose a nonlinear state-space framework
motivated by the compartmental model. The history of the compartment model can be traced back
to the beginning of twentieth century, the most famous work by [12] whose susceptible - infected
- recovered (SIR) model was used for modeling the cholera (London 1865) and plague (London
1665-1666, Bombay 1906) epidemics [13]. It is a deterministic model which is simple and well-
understandable, however, there is a poor agreement between the observation and data because of the
nonignorable randomness of the observation. In addition, many models cannot comprehensively
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depict the complex contagion patterns in the real world which induced by modern transportation
[14]. Furthermore, the most existing models assume all the parameters are known which is not
the case in real world. To handle these issues, we came up with a sophisticated spatial-temporal
stochastic dynamic model based on the nonlinear state space model combined with the well-known
susceptible - exposed - infected - recovered - deceased model (SEIRD - a variant of SIRmodel), and
the state and parameter estimation problems have been solved by using Unscented Kalman Filter
(UKF), which has been widely used for nonlinear system, andMaximum Likelihood (ML) adaptive
filtering combing with optimization (Broyden–Fletcher–Goldfarb–Shanno (BFGS)/metaheuristic)
algorithms.
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2. PALLAS: PENALIZED MAXIMUM LIKELIHOOD AND PARTICLE SWARMS FOR
INFERENCE OF GENE REGULATORY NETWORKS AND PROTEIN-PROTEIN

INTERACTION NETWORKS FROM TIME SERIES DATA*

2.1 Overview

PALLAS is a practicalmethod for parametric GRN and PPI network inference based on partially-
observed Boolean dynamical system (POBDS)model, using penalizedmaximum likelihood (PML)
and particle swarms for optimization. The algorithm has two main components: 1) efficient com-
putation of a penalized log-likelihood cost function, shown in Section 2.4; 2) maximization of the
previous cost function using a novel particle swarm method, namely, a mixed discrete-continuous
fish school search procedure, shown in Section 2.5. PALLAS is a fully-fledged program, written in
python, and available on GitHub (https://github.com/yukuntan92/PALLAS).
2.1.1 Gene Regulatory Network

Inference of gene regulatory networks (GRN) from gene expression time-series data is a prob-
lem of critical importance in Bioinformatics [15]. Many mathematical models have been pro-
posed in the literature to address this problem, including linear models [16, 17], Bayesian networks
[18, 19], neural networks [20], differential equations [17, 21] and information theory based ap-
proaches [22, 23]. The Boolean network (BN) model [24], is an effective model for GRNs due to
its ability to describe temporal patterns of gene activation and inactivation and its comparatively
small data requirement for inference [25, 26, 27, 28, 29]. Several extensions of the BN model
have been proposed, including Random Boolean Networks [24], Boolean Networks with perturba-

*Reprinted with permission from "Inference of gene regulatory networks by maximum-likelihood adaptive fil-
tering and discrete fish school search." by Tan, Yukun, Fernando B. Lima Neto, and Ulisses-Braga Neto, 2018. IEEE
28th International Workshop on Machine Learning for Signal Processing (MLSP), Copyright 2018 by IEEE.

*Reprinted with permission from "Inference of Protein-Protein Interaction Networks from Liquid-
Chromatography Mass-Spectrometry Data by Approximate Bayesian Computation-Sequential Monte Carlo
Sampling." by Tan, Yukun, Fernando B. Lima Neto, and Ulisses Braga-Neto, 2020. IEEE 30th International
Workshop on Machine Learning for Signal Processing (MLSP), Copyright 2020 by IEEE.

*Reprinted with permission from "PALLAS: PenalizedmAximumLikeLihood and pArticle Swarms for inference
of gene regulatory networks from time series data." by Tan, Yukun, Fernando LimaNeto, andUlisses Braga-Neto, 2020.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, Copyright 1969 by IEEE.
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tion (BNp) [30], and Probabilistic Boolean Networks (PBN) [31], and Boolean Control Networks
(BCN) [32, 33]. However, all of those models assume that the system Boolean states are completely
observable. This is a significant drawback, since all practical methods for the inference of Boolean
networks must include a step of ad-hoc binarization of the gene expression data. The Partially-
observed Boolean dynamical system (POBDS) model [8] addresses this problem in a principled
way, by postulating separate Boolean state and general observation processes. The time-series
gene expression data, whether microarray or RNA-seq data, is modeled by the observation process,
while the Boolean states are hidden. This allows the optimal inference of the sequence of Boolean
states, as well as system parameters, from the time series data.

The GRN function of PALLAS is an extension of the adaptive filtering method proposed in [9].
The latter performs maximization of the likelihood function by exhaustive search over the space of
networks and expectation maximization over the space of parameters of the observational model
for each candidate network. It is well suited if there is prior knowledge about the network, e.g.,
most of the edges are known and only a few putative edges are being sought, given the prohibitive
computational cost of exhaustively searching the space of all networks. As shown in Section 2.4,
in the absence of prior knowledge about the gene interactions, the number of networks is given by
3d2 × 2d , where d is the number of genes. With only d = 4 genes, there are a total of 688,747,536
Boolean network models to be searched, and with d = 10 genes this number is larger than 1050,
rendering exhaustive search completely unfeasible. PALLAS differs from themethod in [9] in using
penalized maximum likelihood and particle swarms for optimization, which allows it to handle
networks of realistic size in the absence of any prior knowledge.

The performance of PALLAS is demonstrated by a comprehensive set of experiments. Using
synthetic data generated from both real and artificial GRNs, which allows computation of perfor-
mance metrics, we compare PALLAS to regression-based methods, e.g. GENIE3 [34, 35], TI-
GRESS [36, 35]; Bayesian Networks methods, e.g. Banjo [37]; and Boolean network methods, e.g.
Best-Fit algorithm [38], REVEAL [39], GABNI [40], and FBNNet [41]. Using real time series
microarray data from the SOS DNA Repair System in E. Coli, we compare PALLAS to the meth-
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ods in [42, 43, 44]. We also illustrate the performance of PALLAS in recovering known regulatory
links in the E. Coli Biofilm Formation Pathway using time series RNA-Seq data.
2.1.2 Protein-Protein Interaction Network

Reconstructing the molecular networks underlying the functioning of a living cell is one of the
main goals of biology and medicine. In this respect, protein-protein interaction (PPI) networks
play a major role in most cellular processes. Inference of PPI networks from protein expression
data is essential for understanding the structure, function, and dynamics of the cell [45]. With
the advancement of high-throughput experimental technologies, such as Liquid-Chromatography
Mass-Spectrometry (LC-MS), massive amounts of proteomics data make the reconstruction of PPI
networks possible. Many methods for inference of PPI networks have been developed, includ-
ing experimental [46, 47] and computational techniques [45, 48, 49, 50]. The Boolean network
(BN) model [24] is an effective model which is widely used for inference gene regulatory networks
(GRN) due to its ability to describe temporal patterns of gene activation and inactivation and its
comparatively small data requirement.

The PPI inference function is developed based on GRN inference by applying Approximate
Bayesian Computation based on Sequential Monte Carlo sampling (ABC-SMC) method [51] to
handle the issue when the likelihood function is intractable in proteomics data. The performance
of the proposed approach is assessed by numerical experiments based on a prototype immunomic
network.
2.2 Partially-Observed Boolean Dynamical Systems (POBDS)

Wehave introduced the signalmodel of partially-observedBoolean dynamical systems (POBDS)
which is a general class of nonlinear state-space models which allows for uncertainty in Boolean
state transitions and partial observation of the Boolean state variables through noise.
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2.2.1 State Model

Consider a state process {Xk; k = 0, 1,…}, where Xk ∈ {0, 1}d is a Boolean vector of size d,
which evolves according to

Xk = f (Xk−1) ⊕ nk , (2.1)

for k = 1, 2,… where f ∶ {0, 1}d ⟶ {0, 1}d is called the network function, nk ∈ {0, 1}d is
additive noise at time k, and “⊕” indicates component-wise modulo-2 addition. The state and
noise processes are assumed to be independent. The state model (2.1) can be suitably modified to
include external inputs, if desired.

The noise random vector nk models uncertainty in the state transition: if a component of nk
is 1, the corresponding component of f (Xk−1) is flipped. As long as all components of nk have a
nonzero probability of being 1, the state process is an ergodic Markov Chain, with a steady state
distribution. But if the noise is too intense, i.e., the probability of 1’s in nk is too large, state
evolution becomes chaotic. However, it is well known that important biological pathways are tightly
regulated. Accordingly, each component of the noise vector is assumed here to be equal to 1 with
a small probability value p, independently of the others. The user can select a fixed value for
p or allow the algorithm to treat p as a parameter to be estimated from the data. Results in the
experiment Section 2.6.2.1 indicate that there is not a big difference between using a small fixed
value p = 0.05 and estimating p in an interval [0.01, 0.1], for the p53-MDM2 Negative-Feedback
Loop Gene Regulatory Network.

We assume a specific model for the network function. Let a sample state vector x ∈ {0, 1}d and
the network function f be expressed in component form as x = (x1,… , xd) and f = (f1,… , fd),
respectively. Each component fi ∶ {0, 1}d → {0, 1} is given by

fi(x) =
⎧

⎪

⎨

⎪

⎩

1,
∑d

j=1 aijxj + bi > 0 ,

0, otherwise,
(2.2)

where aij = +1 if there is positive regulation (activation) from gene/protein j to gene/protein i;
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aij = −1 if there is negative regulation (inhibition) from gene/protein j to gene/protein i; and
aij = 0 if gene/protein j is not an input to gene/protein i, whereas bi = +1∕2 if gene/protein i is
positively biased in the sense that an equal number of activation and inhibition inputs will produce
activation; the reverse being the case if bi = −1∕2. The network model is depicted in Figure 2.1,
where the threshold units are step functions that output 1 if the input is positive, and 0, otherwise.
This model constraint reduces the number of parameters needed to specify f from 2d to d2 + d.

Figure 2.1: Schematic representation of the network function.

2.2.2 Observation Model

The sequence of states is observed indirectly through the process {Yk; k = 0, 1,…}, where the
measurement vector Yk is a general nonlinear function of the state and observation noise:

Yk = h (Xk, vk) (2.3)

for k = 1, 2,…, where the noise vector vk is assumed to independent of the state process and state
transition noise process. We describe next the three observational models considered in the pack-
age, corresponding to two common gene expression modalities: RNA-Seq count data or microarray
fluorescence data and one protein expression modality: liquid chromatography - mass spectrometry
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(LC-MS) data. Observational models for other data modalities can be introduced, if desired.
2.2.2.1 RNA-Seq Observation Model

RNA-Seq data can be modeled with the Poisson distribution [52] or the negative binomial dis-
tribution [53, 54]. Here, we employ the latter, since it is able to address overdispersion in the count
distributions. We assume that the transcript counts Yk = (Yk1,… , Ykd) are related to the state
Xk = (Xk1,… , Xkd) via

P (Yk = y ∣ Xk = x) =
d
∏

i=1
P (Yki = yi ∣ Xki = xi), (2.4)

and adopt the negative binomial model for each count,

P (Yki = yi ∣ Xki = xi) =

Γ(yi + �i)
yi! Γ(�i)

(

�i
�i + �i

)yi( �i
�i + �i

)�i
,

(2.5)

where Γ denotes the Gamma function, and �i, �i > 0 are the real-valued inverse dispersion pa-
rameter and mean read count of transcript i, respectively, for i = 1,… , d. The inverse dispersion
parameter �i specifies the amount of observation noise: the larger it is, the less observation noise
is present. We model the parameter �i in log-space as:

log �i = log s + �i + �i xi , (2.6)

where the parameter s is the sequencing depth, which depends on the instrument, �i ≥ 0 is the
baseline level of expression in the inactivated transcriptional state, and �i > 0 is the difference
between read count as gene i goes from the inactivated (xi = 0) to the activated (xi = 1) state, for
i = 1,… , d.
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2.2.2.2 Microarray Observation Model

A reasonable model for continuous microarray fluorescence data is a Gaussian linear model:

y = µ +D x + v , (2.7)

whereµ = (�1,… , �d) ≥ 0 is the vector of baseline expression levels corresponding to the “zero” or
inactive state for each gene, D = diag{�1,… , �d} > 0 is a diagonal matrix containing differential
expression values for each gene, and v ∼  (0,Σ) is an uncorrelated zero-mean Gaussian noise
vector, where Σ = diag{�21 ,… , �2d} > 0. Notice that (2.4) is still satisfied here.
2.2.2.3 Liquid Chromatography-Mass Spectrometry Observation Model

In what follows, we consider the observational model for liquid chromatography-mass spec-
trometry (LC-MS) data proposed in [55], which we describe briefly next. The protein concentration
can be modeled as a Gamma distribution [56],

i = Γ(k, #), i = 1, 2,… , d, (2.8)

where the shape k and scale # parameters are assumed to be uniform random variables, such that
k ∼ Unif(klow,kℎigℎ) and # ∼ Unif(#low, #ℎigℎ). The multivariate Gaussian distribution is recom-
mended as the model for protein concentration variations. In this paper, we assume that protein
concentrations are mutually independent, so that

yi = i + i(�i − 1) xi + vi, (2.9)

for i = 1,… , d, where i is the baseline of protein concentration expression levels, �i is the fold
change when protein i is overexpressed, and vi is an uncorrelated zero-mean Gaussian noise for
protein i which v ∼  (0,Σ), where Σ = diag(�21 ,… , �2d) and �2i = ' × 2i . The coefficient of
variation ' is calibrated based on the observed data.
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2.3 Boolean State Estimation

2.3.1 Boolean Kalman Filter

Given a time series of observations Y1∶k = {Y1,… ,Yk}, we would like to find an estimator
X̂k = g(Y1∶k) of the state Xk that minimizes the conditional MSE:

X̂MS
k = argmin

X̂k∈{0,1}d
E[ ||X̂k − Xk||

2
| Y1∶k] . (2.10)

For a vector u ∈ [0, 1]d , define the threshold operator u ∈ {0, 1}d as u(i) = 1 if u(i) > 1∕2 and
0 otherwise, for i = 1,… , d, respectively. It was shown in [8, 9] that

X̂MS
k = E

[

Xk ∣ Y1∶k
]

. (2.11)

Assuming that all the parameters of the state and observation models are known, then the op-
timal MMSE filter in (2.11) can be calculated exactly by a recursive procedure called the Boolean
Kalman filter (BKF) [8, 9], which is described briefly next.

Let (x1,… , x2d ) be an arbitrary enumeration of all state vectors. Define the state conditional
probability distribution vectorΠk|k with components

(Πk|k)i = P
(

Xk = xi ∣ Y1∶k
)

, i = 1,… , 2d , (2.12)

for k = 0, 1,… According to equation (2.11),

X̂MS
k = E

[

Xk ∣ Y1∶k
]

= AΠk|k , k = 1, 2,… , (2.13)

where A =
[

x1⋯ x2d
] is a matrix of size d × 2d .

The computation ofΠk|k can be performed recursively. First, we have

Πk|k−1 = MkΠk−1|k−1 , k = 1, 2,… (2.14)
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whereMk is the transition matrix of the Markov state process, with entries

(Mk)ij = P (Xk = xi ∣ Xk−1 = xj)

= P (nk = xi ⊕ f (xj)), i, j = 1,… , 2d .
(2.15)

On the other hand,
Πk|k ∝ T (Yk)Πk|k−1 , k = 1, 2,… (2.16)

where “∝” means that the result must be normalized to add up to 1, and the update matrix T (Yk)

is diagonal of size 2d × 2d , with diagonal elements:

(

Tk(Yk)
)

ii = p
(

Yk ∣ Xk = xi
)

, i = 1,… , 2d . (2.17)

2.3.2 Auxiliary Particle Filter Implementation of BKF

When the network is large, however, the exact computation of the BKF is intractable since each
transition matrix contain 22d elements which requires large computational and memory. In this
case, approximate methods must be used, such as the Sequential Monte Carlo (SMC) method, also
known as particle filter [57].

The sequential importance sampling (SIS) algorithm is themost basicMonte Carlo (MC)method
but forms the basis of most SMC filters. SIS algorithm is based on importance sampling which is
widely used when it is difficult to directly sample from the target distribution p(x), but much easier
to sample from the proposal distribution q(x). The idea of SIS is to approximate the required pos-
terior density function by a set of "particles" drawn from proposal distribution with corresponding
weights, and recursively update these particles.

The mainly drawback of SIS is the degeneracy phenomenon, where after a few iterations, only
a few of the particles will have a significant weight and all the others will have very small weights
[58]. To address this problem, sampling importance resampling (SIR) algorithm has been proposed
in which resampling approach is applied in each iteration [59]. The original particle filtering im-
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plementation of the BKF in [60] was based on the SIR algorithm, which can be called the SIR-BKF
algorithm.

However, the SIR filter is sensitive to outliers since the state space is explored without any
knowledge of the observations. A more sophisticated implementation of the BKF based on the
Auxiliary Particle Filter (APF) is proposed in [61] called APF-BKF, which will be used in our
framework. APF is a look-ahead method that at time step k − 1 tries to predict the location of
particles with high probability at time k, with the purpose of making the subsequent resampling
stepmore efficient. Without the look-ahead, the basic SIR algorithm blindly propagates all particles,
even those in low probability regions.

The APF was introduced by [62], derived from the SIS algorithm by introducing an importance
density q(Xk, �k|Y1∶k) with auxiliary variable �k which represents as the index of the particles at
k− 1. Particles can be drawn from p(Xk, �k|Y1∶k) and omitting the auxiliary variable in pair (xk, i)
to produce a sample from the marginalized density p(Xk|Y1∶k). Given particles {xk−1,i}Ni=1 at time
k − 1 and associated weights {Wk−1,i}Ni=1, distribution p(Xk, �k|Y1∶k) can be factored as:

p(Xk, �k |Y1∶k)

∝ p(Yk |Xk) p(Xk, �k |Y1∶k−1)

= p(Yk |Xk) p(Xk |Xk−1, �k) p(Xk−1, �k |Y1∶k−1)

= p(Yk |Xk) p(Xk | xk−1,�k)Wk−1,�k ,

(2.18)

for �k = 1,… , N . The importance density used to draw samples is defined as:

q(Xk, �k |Y1∶k) ∝ p(Xk | xk−1,�k) p(Yk |�k,�k)Wk−1,�k , (2.19)

for �k = 1,… , N , where �k,i is the mode of X given xk−1,i in our implementation:

�k,i =Mode[Xk | xk−1,i]

=Mode[f (xk−1,i)⊕ nk,i] = f (xk−1,i),
(2.20)
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for i = 1,… , N, where the noise is zero-mode required by APF.
Sampling from (2.19) is done in two steps. In the first step, {�k,i}Ni=1 is obtained from the

particles {xk−1,i}Ni=1 using (2.20) and the first-stage weights or the presampling probability {Vk,i}Ni=1
can be presented as:

Vk,i = p(Yk |�k,i)Wk−1,i, (2.21)

for i = 1,… , N . In the second step, the auxiliary variables {�k,i}Ni=1 are drawn with probability Vk,i
which is a discrete distribution. We denote this by {�k,i}Ni=1 ∼ Cat({Vk,i}Ni=1), where “Cat” stands
for the categorical (discrete) distribution.

Finally, the new particles {xk,i}Ni=1 and associated second-stage weights {W̃k,i}Ni=1 can be com-
puted as:

xk,i = �k,�k,i ⊕ nk,i ∼ p(Xk | xk−1,�k,i), (2.22)

W̃k,i ∝
p(Xk, �k |Y1∶k)
q(Xk, �k |Y1∶k)

=
p(Yk | xk,i)
p(Yk |�k,�k,i)

. (2.23)

Based on [63], the unbiased estimator of the unnormalized posterior probability at each time
step is:

||�̂k||1 =

(

1
N

N
∑

i=1
Vk,i

) (

1
N

N
∑

i=1
W̃k,i

)

. (2.24)

This is needed in (2.29) when maximum-likelihood adaptive estimation is discussed.
Based on (2.11) and normalized second-stage weightsWk,i = W̃k,i∕

∑N
i=1 W̃k,i, i = 1,… , N , we

can write
X̂MS
k = E

[

Xk ∣ Y1∶k
]

≈
N
∑

i=1
Wk,ixk,i. (2.25)

2.4 Parameter Estimation

In the previous section, we have assumed that the system parameters are known and only the
state needs to be estimated. However, in practical models, the parameters are unknown as well.
The parameter estimation methods can be divided into two main categories: maximum-likelihood
(ML) and Bayesian approaches. In the PALLAS, we are using the latter case and we apply ABC-

14



Algorithm 1 APF-BKF: Auxiliary Particle Filter implementation of the Boolean Kalman Filter
1: x0,i ∼ Π0|0,W0,1 = 1∕N, for i = 1,… , N .
2: for k = 1, 2,…, do:
3: for i = 1 toN do
4: �k,i = f (xk−1,i).
5: Vk,i = p(Yk|�k,i)Wk−1,i.
6: end for
7: {�k,i}Ni=1 ∼ Cat({Vk,i}

N
i=1).

8: for i = 1 toN do
9: xk,i = �k,�k,i ⊕ nk,i.

10: W̃k,i =
p(Yk|xk,i)
p(Yk|�k,�k,i )

.

11: end for
12: ||�̂k||1 = ( 1

N

∑N
i=1 Vk,i)(

1
N

∑N
i=1 W̃k,i).

13: Wk,i = W̃k,i∕
∑N

j=1 W̃k,j , i = 1,… , N.

14: zk =
∑N

i=1Wk,ixk,i.
15: X̂MS

k = zk.
16: MSE(X̂MS

k |Y1∶k) = ||min{zk, zck}||1.
17: end for

SMC algorithm to estimate the likelihood when it is intractable with proteomics data. Expectation-
maximization (EM) algorithm is always used for finding the maximumwhen the system parameters
are continuous, however, when the system parameters contain both discrete and continuous, the
computation complexity is too high. In this case, we proposed a new metaheuristic optimization
method described in Section 2.5 which can get rid of EM algorithm and exhaustive search.

Let � = (�disc, �cont) ∈ Θ, with �disc ∈ Θdisc and �cont ∈ Θcont , be the discrete and continuous
unknown model parameters, where Θ, Θdisc and Θcont are the corresponding parameter spaces, with
Θ = Θdisc × Θcont . Here, �disc contains the parameters of the network function in (2.2), namely
the edge parameters aij ∈ {−1, 0, 1}, for i, j = 1,… , d, and the regulation bias parameters bi ∈
{−1∕2, 1∕2}, for i = 1,… , d. Hence,Θdisc = {−1, 0, 1}d2×{−1∕2, 1∕2}d . This is a finite space, but
its cardinality |Θdisc| = 3d2 ×2d increases extremely fast with the number of genes d. For example,
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for a network with only d = 4 genes, |Θdisc| = 688747536, while if d = 8, then |Θdisc| ≈ 8.8×1032.
On the other hand, �cont contains the observational parameters: 1) GRN: the baseline expression
levels �i > 0 and the differential expression levels �i > 0, for i = 1,… , d, for both RNA-Seq and
microarray data, the inverse dispersion parameters �i > 0, for i = 1,… , d, for RNA-Seq data,
and the standard deviations �i > 0, for i = 1,… , d, for microarray data (the sequencing depth
parameter s is assumed known for a given RNA-seq assay, so it is not part of �cont). Hence, the
dimensionality of �cont is Q = 3d in both cases; 2) PPI: the shape k and scale # of the baseline of
protein concentration expression level, the fold change � , and the coefficient of variation '.
2.4.1 Penalized Maximum-Likelihood Adaptive Filtering

Suppose that the sample data consist of n independent time series Yj
1∶k = {Yj

1,… ,Yj
k} up to

time k, for j = 1,… , n. The penalized log-likelihood of model � at time k is defined as

Lk(�) =
1
kn
log p�(Y

(1)
1∶k,… ,Y(n)

1∶k) − �
2d
∑

i,j=1
|aij|

= 1
kn

n
∑

j=1
log p�(Y

j
1∶k) − �

2d
∑

i,j=1
|aij| ,

(2.26)

where � > 0 is a regularization parameter, which has a default value of � = 0.01 in our imple-
mentation. Hence, the penalized log-likelihood in (2.26) is the sum of the average log-likelihood
per time series and a negative value times the number of edges in the model. Maximization of
(2.26) thus encourages the model to both fit the data and be sparse, i.e., contain a small number
of edges between genes, which is in agreement with biological knowledge. The value of � can be
adjusted by the user to obtain a desired level of sparsity. Notice that

log p�(Y
j
1∶k) = log

[

p�(Y
j
k ∣ Y

j
1∶k−1)p�(Y

j
k−1 ∣ Y

j
1∶k−2)

⋯ p(Yj
2 ∣ Y

j
1)p(Y

j
1)
]

=
k
∑

m=1
log p�(Yj

m ∣ Y
j
1∶m−1) ,

(2.27)
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where
p�(Yj

m ∣ Y
j
1∶m−1)

=
2d
∑

i=1
p�(Yj

m ∣ Xm = xi, Yj
1∶m−1) P�(Xm = xi |Yj

1∶m−1)

=
2d
∑

i=1
p�(Yj

m ∣ Xm = xi) P�(Xm = xi |Yj
1∶m−1)

(2.28)

With (��,jm )i = p�(Yj
m ∣ Xm = xi) P�(Xm = xi |Yj

1∶m−1), the penalized log-likelihood in (2.26) be
written as

Lk(�) =
1
kn

n
∑

j=1

k
∑

m=1
||��,jm ||1 − �

2d
∑

i,j=1
|aij| . (2.29)

When we do the GRN inference, the sequence of values ||��,jm ||1, for j = 1,… , n and m = 1,… , k,
can be computed by a BKF tuned to parameter � applied to the time series Yj

1∶k. As mentioned
in the previous section, here we use the auxiliary particle filtering implementation of the BKF, for
computational efficiency. On the other hand, whenwe do the PPI network inference, p�(Yj

k ∣ Y
j
1∶k−1)

can only be estimated by ABC-SMC algorithm shown in Section 2.4.2.
The maximum-likelihood estimator of parameter � at time k is then given by

�̂MLk = argmax
�∈Θ

Lk(�) . (2.30)

A state estimate X̂ML
k = X̂k(�̂MLk ) can be obtained, if desired, where X̂k(�) denotes the optimal state

estimator produced by a BKF tuned to the parameter �.
2.4.2 ABC-SMC Algorithm

In our previous work [64], we use an auxiliary particle filter algorithm to estimate the likelihood
and obtain the unknown parameters by maximum the estimation. However, this method cannot be
used for complex models, in which the conditional density g(Y|X) is intractable or computationally
expensive. Instead, we will assume that one may still able to obtain samples from this conditional
likelihood for different values of the parameter �, which leads to the Approximate Bayesian Com-
putation (ABC) technique [51]. ABC replaces the calculation of the likelihood with a comparison
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between the observed and sampled data to approximate the likelihood, namely, we generate M
samples from g�(Yk|Xk) and the estimated likelihood can be calculated as

lk =

∑M
j=1 1(d(Ŷ

j
k ,Yk) ≤ �k)

M
(2.31)

for k = 1,… , T , where �k is the precision tolerance, and d(⋅, ⋅) is the distance function between the
observed and sampled data. Theoretically, the approximation obtained by ABC filtering is matched
to true one when �k ≈ 0 andM = ∞.

However, a drawback of the ABCmethod is the low acceptance rate when stuck in a bad region.
In order to improve the ABC performance, the use of Sequential Monte Carlo (SMC) sampling has
been suggested [65, 66, 67]. In the SMC algorithm, 1

N

∑N
i=1 g(Yk ∣ Xk,i) is an approximation to the

conditional likelihood p(Yk ∣ Y1∶k−1). Thus, with the estimated likelihood from the ABC algorithm,
the full likelihood approximation p(Y1∶k) can be generated.

In Algorithm 2 we present the ABC-SMC algorithm based on [65, 67]. The basic design ele-
ments are the number of particles N, the number of auxiliary observation samples M and the ABC
precision tolerance �. The vector Π0|0 is the initial (prior) distribution of the states at time zero.
The vector W gives the weight of the particles, which is initialized to 1∕N for all particles. The
resampling step is necessary when the effective sample size (ESS) is low. The resampling threshold
E is commonly taken to beN∕2 [68].

Based on [65, 67],
p�(Y

j
k ∣ Y

j
1∶k−1) =

1
N

N
∑

i=1
W̃�,j

m,i, (2.32)

where (2.26) can finally be written as

Lk(�) =
1
kn

n
∑

j=1

k
∑

m=1
log ( 1

N

N
∑

i=1
W̃�,j

k,i ) − �
2d
∑

i,j=1
|aij| . (2.33)
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Algorithm 2 ABC-SMC
1: Initialize �1 > �2 >⋯ > �T > 0 and

X0,i ∼ Π0|0,W0,i = 1∕N, for i = 1, 2,… , N
2: for k = 1 to T do:
3: for i = 1 toN , do:
4: Xk,i = f (Xk−1,i) ⊕ nk,i
5: for j = 1 toM do:
6: Generate Ŷj

k,i ∼ g�(⋅|Xk,i)
7: end for
8: W̃k,i =

∑M
j=1 1(d(Ŷ

j
k,i ,Yk,i)≤ �k)

M

9: Wk,i ∝ Wk−1,iW̃k,i

10: end for
11: Wk,i = Wk,i∕

∑N
i=1Wk,i

12: If ESS = [
∑N

i=1(Wk,i)2]−1 ≤ E:
13: Resample Xk,i with weightsWk,i

14: Set Wk,i = 1∕N
15: end for

2.5 Metaheuristic Optimization

2.5.1 Overview

Metaheuristic methods have been widely used to tackle all kinds of optimization problems. The
goal when using such algorithms is to find a solution that is good enough to solve the problem in
a feasible amount of time, which would not be possible using exact methods due to the size and
complexity of some problems. Algorithms, such as the particle swarm optimization (PSO)[69], ant
colony optimization (ACO)[70] and fish school search (FSS)[71], use nature inspired mechanisms
to guide particles through the search space aiming to find a position which represents a better so-
lution for the problem at each iteration. We are using FSS as the foundation of our new proposed
algorithm since the ability to switch automatically between exploration and exploitation modes and
its modular concept.

The FSS algorithm [71] operates in a search space of continuous variables. Its main charac-

19



teristic is the ability of switching from exploration to exploitation and vice-versa automatically
according to the state of the fish school. Furthermore, it incorporates the concept of weight for
the fish enabling that more successful fish get heavier and therefore have more influence over the
fish school. However, the original FSS is also only for the continuous parameters, so the discrete
version of FSS (DFSS) has been proposed [72]. Combine original FSS and DFSS, we call it mixed
fish school search algorithm (MFSS) which can be used to search discrete and continuous space
simultaneously.
2.5.2 Proposed Mixed Fish School Search Algorithm

In this section, we describe in detail a novel particle-swarm optimization algorithm for discrete-
continuous parameter search, called the mixed fish school search (MFSS) algorithm. One of the
main novelties in the MFSS algorithm is the ability to operate on large continuous and discrete
parameter spaces simultaneously, which is needed to infer the continuous noise parameters of the
observation process, in addition to the discrete parameters of the GRN itself. As the original algo-
rithm, MFSS has a few properties that are unique among most particle swarm optimization tech-
niques, namely, the ability to switch automatically between exploration and exploitation modes and
its modular concept.

In the MFSS algorithm, the objective is to find a model that maximizes a given score or fitness
— in our present case, this is the penalized log-likelihood defined in the previous section. Each
candidate model, i.e., each candidate parameter vector � = (�disc, �cont), corresponds to a particle or
“fish.” The length of � is denoted by P . From the previous section, P = d2+d+Q. The fish school
is an ensemble of S such particles in the parameter space Θ = Θdisc × Θcont . The position of fish s
at iteration r will be denoted by �s(r) = (�sdisc(r), �scont(r)), for s = 1,… , S, and r = 0,… , R. The
number of fishes S and the total number of iterations R are user-defined parameters (in practice,
S = 3 × P and R = 5000 are found to be good values). In addition, each fish s has a weight ws(r)

at iteration r, which reflects the quality of the solution.
Initialization. The initial position �s(0) = (�sdisc(0), �

s
cont(0)) of each fish is assigned randomly.

The continuous vector �scont(0) is drawn from a uniform distribution over Θcont , but for the discrete
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part, it is advantageous to use a non-uniform distribution to initialize the edge parameters, in such
a way that asij(0) is equal to −1 or 1 with probability 1∕4, and 0 with probability 1∕2, for i, j =
1,… , d, which introduces a bias towards 0 over 1 and −1. This is in agreement with the biological
observation that GRNs tend to be sparsely connected. The initial value bsi (0) of the regulation bias
parameter is chosen to be either −1∕2 or 1∕2 with equal probabilities, for i = 1,… , d.
Individual movement operator. This is an exploratory step, where each fish independently moves
a short distance in a random direction, as long as this increases the fitness function. Let Δ�sind(r) =
(Δ�sdisc,ind(r),Δ�

s
cont,ind(r)) be the (candidate) individual displacement vector for fish s at iteration

r. Vector Δ�sdisc,ind(r) is drawn from a uniform distribution over the rectangular region [−1, 1]d2+d ,
while Δ�scont,ind(r) is drawn from a uniform distribution over the rectangular region [−�1(r), �1(r)] ×
⋯ × [−�Q(r), �Q(r)]. The step size bounds �q(r), for q = 1,… , Q, shrink linearly with r, in order
to ensure convergence and emphasize exploitation over exploration at later iterations. In our im-
plementation, the initial and final values �q(1) and �q(R) are set, respectively, to 10% and 0.01%
of the range (i.e., the difference between upper and lower bounds) of the corresponding continu-
ous parameter — these values can be modified by the user, if desired. Now, Δ�sdisc,ind(r) needs to
be quantized into the lattice {−1, 0, 1}d2+d in order to be added to the discrete component of the
current fish position. The quantization scheme we adopt here is a generalization of the method for
binary parameters in [73]. We define two adaptive thresholds:

thrspos(r) = max+(Δ�sdisc,ind(r)) ×
r
R
,

thrsneg(r) = min−(Δ�sdisc,ind(r)) ×
r
R
,

(2.34)

where the operator max+(v) is equal to the maximum of the components of vector v if at least one
of them is positive, and equal to zero, otherwise; similarly, min−(v) is equal to the minimum of
the components of v if at least one of them is negative, and equal to zero, otherwise. The factor
r∕R increases the thresholds (in magnitude) with r, to favor exploitation over exploration at later
iterations and ensure convergence. Exploitation could be understood as an analogy to tree depth-
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first search as opposed to exploration, whichwould equate to tree breadth-first search. In exploration
mode the algorithm widens the search in the parameter space, while in exploitation mode, the
algorithm attempts to get a more accurate result in a small area of the parameter space.

The quantized discrete displacement vector is obtained by assigning 1 to a positive component
if it is larger than thrspos(r), assigning −1 to a negative component if it is smaller than thrsneg(r), and
assigning 0 to all other components (no movement). Then the position of fish s is updated if the
exploratory move causes an increase in fitness:

�sind(r) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�s(r−1) + Δ�sind(r),

if Lk(�s(r−1)+Δ�sind(r)) > Lk(�s(r−1)),
�s(r−1), otherwise.

(2.35)

whereLk is the penalized log-likelihood of themodel, defined in the previous section. An absorbing
boundary condition is adopted, whereby each fish interrupts its movement at the boundary of the
parameter space, at the point where it encounters it.
Feeding operator. The weights of all fish are updated based on the fitness improvement from the
previous individual movement, if any:

ws(r) = ws(r−1) +
Lk(�sind(r)) − Lk(�

s(r−1))
maxs{Lk(�sind(r)) − Lk(�s(r−1))}

. (2.36)

Collective instinctive movement operator. This operator makes the fish that had successful in-
dividual movements influence the collective direction of movement of the school. The position of
each fish s is updated according to:

�sinst(r) = �
s
ind(r) +

∑S
s′=1Δ�

s′
ind(r)(Lk(�

s′
ind(r))−Lk(�

s′(r−1)))
∑S

s′=1(Lk(�
s′
ind(r))−Lk(�s

′(r−1)))
. (2.37)

The displacement in discrete parameter space is quantized following the same procedure adopted
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to discretize the individual movement displacement vector.
Collective volitive movement operator. This is similar to the individual movement step, but now
the fish move in concert, depending on whether the fish school is successful after the previous
steps, i.e., its total weight increases, or not. If the fish school is successful, then it should contract,
changing from exploration to exploitation mode. Otherwise, it should expand in order to explore
the space more. This is accomplished by first defining the current fish school barycenter:

b(r) =
∑S

s=1w
s(r)�sinst(r)

∑S
s=1ws(r)

. (2.38)

For each fish s, after the collective instinctive movement at iteration r, let ξs(r) = �sinst(r) − b(r) =

(�s1(r),… , �sR(r)) be the position vector with respect to the school barycenter. Let Δ�svol(r) =
(Δ�sdisc,vol(r),Δ�

s
cont,vol(r)) be the collective volitive displacement vector for fish s at iteration r. Vec-

torΔ�sdisc,vol(r) is drawn from a uniform distribution over the rectangular region [0, �s1]×⋯×[0, �sd2+d]
and quantized by the same process used in the individual move, while Δ�scont,vol(r) is drawn from
uniform distribution over the rectangular region [0, 2�1(r)�sd2+d+1(r) × ⋯ × [0, 2�Q(r)�sd2+d+Q(r)],
where �1(r),… , �Q(r) are the same step sizes used in the individual movement step. If the school
is successful, i.e., if∑S

s=1w
s(r) >

∑S
s=1w

s(r−1), then its radius should contract, and

�svol(r) = �sinst(r) − Δ�
s
vol(r) , (2.39)

otherwise, the radius expands, so the school can escape a bad region, and

�svol(r) = �sinst(r) + Δ�
s
vol(r) , (2.40)

The new position of the fish is �s(r) = �svol(r).
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2.6 Numerical Experiments

In this section, we present the result of a comprehensive set of numerical experiments, using
both synthetic and real gene expression time series data, to assess the performance of PALLAS and
compare it against that of other popular methods in the literature.
2.6.1 Performance Criteria

The problem of comparing networks is a nontrivial one; there is not a single metric that captures
both the topological and dynamical properties of the networks [74]. Here we consider two classes
of metrics, one based on the difference between the network functions, which takes into account
the full regulatory relationships among genes, and the other based on edge-calling accuracy rates,
which considers only the network topology.
2.6.1.1 Network Function Distance

Let f = (f1,… , fd) and f̂ = (f̂1,… , f̂d) be the network functions of the groundtruth and
inferred networks, where the component functions fi and f̂i are Boolean functions on d variables,
for i = 1,… , d; see (2.1). The performance criterion is the average number of disagreeing Boolean
functions between the two networks

'(f , f̂ ) = 1
d × 2d

d
∑

i=1

2d
∑

j=1
[fi(xj) ⊕ f̂i(xj)] . (2.41)

This distance is related to the dynamical behavior of the networks, since it has to do with how the
Boolean functions differ.
2.6.1.2 Edge-Calling Accuracy Rates

An edge in the groundtruth network represents a relationship between two genes. Here we
consider directionality (an edge from gene i to gene j is distinct from an edge from gene j to gene i),
but disregard activation/inhibition relationships (this is done because some of the methods to which
PALLAS is compared in this section do not capture activation/inhibition). Let TP and FN be the
total number of directional edges that are correctly detected (irrespective of inhibition/activation)
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and incorrectly missed by the inference algorithm, respectively. Similarly, let FP and TN be the
total number of directional edges that are incorrectly found and correctly missed, respectively. We
define the following edge-calling accuracy rates:

(i) Sensitivity/True Positive Rate (TPR):

TPR = TP
TP + FN

. (2.42)

(ii) Specificity/True Negative Rate (SPC):

SPC = TN
FP + TN

. (2.43)

(iii) Precision/Positive Predictive Value (PPV):

PPV = TP
TP + FP

. (2.44)

2.6.2 Experiments with Synthetic Data

2.6.2.1 Experiment 1: P53-MDM2 Negative-Feedback Gene Regulatory Network

The experiments in this section use the well-known p53-MDM2 negative-feedback gene reg-
ulatory network [75], which is displayed in Figure 2.2. The gene interaction parameters aij can
be read from Figure 2.2 (a), for example, p53 is activated by ATM, and is inhibited by WIP1 and
MDM2. These interactions can be represented as a21 = +1, a22 = 0, a23 = −1, a24 = −1:

a11 = 0, a12 = 0, a13 = −1, a14 = 0

a21 = +1, a22 = 0, a23 = −1, a24 = −1

a31 = 0, a32 = +1, a33 = 0, a34 = 0

a41 = −1, a42 = +1, a43 = +1, a44 = 0
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Figure 2.2: Activation/inhibition pathway diagram and state transition diagrams corresponding to
a constant input dna_dsb = 0 (no-stress) and dna_dsb = 1 (DNA-damage) for the p53-MDM2
negative feedback loop gene regulatory network with negative regulation biases.

with all biases bi = −1∕2, i = 1, 2, 3, 4.
The state vector is X = (ATM, p53, Wip1, MDM2), while dna_dsb acts an external Boolean

input that signals DNA damage (p53 is a master tumor-suppressing gene that activates DNA repair
mechanisms). These two cases lead to the state transition diagrams displayed in Figure 2.2(b) and
(c), respectively.

• Incomplete Network Topology:
In this experiment, we assume the system parameters are known, except that the relationships
between genes. Since these parameters are discrete only, we will use DFSS (MFSS without
continuous searching space) to do the optimization.
Average accuracy rates computed over 500 independently-generated time series of differ-
ent length n, process noise intensity p, observation noise standard deviation �i ≡ �, for
i = 1,… , 4, and the no-stress and DNA-damage conditions are displayed in Table 2.1. The
accuracy rates correspond to the proportion of time all four gene interaction parameters are
correctly identified at the time-series endpoint (i.e., an error occurs if at least one parameter
is incorrectly identified). We can observe that performance increases monotonically with an
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Table 2.1: Average accuracy rates for estimation of the gene interaction parameters.

No-stress DNA-damage
n p � = 0.1 � = 0.3 � = 0.5 � = 0.1 � = 0.3 � = 0.5

20

0.05 0.378 0.338 0.194 0.830 0.762 0.624
0.1 0.446 0.388 0.208 0.738 0.616 0.462
0.2 0.426 0.290 0.156 0.516 0.374 0.202
0.3 0.230 0.192 0.086 0.238 0.138 0.074

50

0.05 0.528 0.426 0.312 0.954 0.908 0.838
0.1 0.728 0.610 0.400 0.948 0.898 0.766
0.2 0.808 0.628 0.322 0.838 0.666 0.490
0.3 0.538 0.392 0.170 0.518 0.334 0.152

100

0.05 0.692 0.596 0.444 0.986 0.956 0.914
0.1 0.900 0.786 0.528 0.996 0.976 0.896
0.2 0.932 0.854 0.518 0.972 0.898 0.698
0.3 0.780 0.630 0.296 0.756 0.634 0.324

200

0.05 0.902 0.732 0.486 1.000 0.992 0.964
0.1 0.982 0.882 0.688 1.000 1.000 0.966
0.2 0.996 0.958 0.742 1.000 0.980 0.902
0.3 0.964 0.858 0.522 0.944 0.828 0.566

increasing time-series length and decreasing observation noise intensity, as expected. The
behavior with respect to the process noise is more interesting: under no stress, performance
exhibits peaking, whereby accuracy rates initially increases with increasing process noise but
eventually decreases. The reason for this is that at low process noise levels, the system cannot
escape its singleton attractor easily, visiting fewer states and decreasing performance. This is
not an issue under DNA damage, which contains a large cyclic attractor. On the other hand,
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large process noise intensity renders the system too chaotic, decreasing performance in all
cases. Finally, we can see that accuracy rates are better under DNA damage than no stress, for
a similar reason moderate process noise helps the inference process: under DNA damage the
system contains a large cyclic attractor and thus, for a fixed time series length, tends to visit
a larger portion of the state space than under no stress, when the system contains a single-
ton attractor. This can also be verified in Fig 2.3 that the estimated parameters convergence
more quickly under DNA damage condition. In fact, performance can be quite poor under no
stress, large process and observation noise and small time series length, while the opposite
happens under DNA damage and small process and observation noise levels.

Figure 2.3: Estimated parameters versus time for (a) no-stress and (b) DNA-damage conditions.

Next we compare the performance of the ML-BKF and the DFSS-ML-BKF approaches.
Since the former corresponds to an exhaustive search, it is expected to uniformly dominate in
terms of accuracy. The question we would like to ask instead is how they compare in terms
of computational effort at a high level of accuracy for the DFSS-ML-BKF, as the number
of unknown parameters (i.e., the number of unknown gene interactions) increases. The pa-
rameters of the simulation are set to n = 100, p = 0.1, and � = 0.1 under DNA damage.
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Figure 2.4: Comparison in computational effort among the various methods.

Two settings for the DFSS-ML-BKF are considered: “online,” when the observations are
presented one by one and “batch,” when all 100 data points are presented at once. This does
not make a difference for the ML-BKF algorithm, since it runs 3M BKFs in parallel for a total
of 3M ×100 BKF iterations in either case. We increased the size of the fish schoolN and the
maximum number of iterations tmax to make the DFSS-ML-BKF accuracy rate at least 97%
throughout. The number of visited parameters in the search space and the number of BKF
iterations against the number of unknown gene interactions are plotted in Figure 2.4. We
can see that the two methods are very similar in computational effort for a small number of
parameters, but DFSS-ML-BKF is much more efficient for a number of unknown parameters
exceeding 11. We can also observe that the batch method is more efficient than the online
method, since in the former case DFSS is only run once.

• Incomplete Network Topology and Unknown Noise and Expression Parameters

In this experiment, no prior knowledge is used, i.e., all model parameters must be estimated.
The dna_dsb input vector is held at a constant value 1, meaning that the system is constantly
under DNA damage stress. We assume in this experiment negative regulation biases, bi =
−1∕2, for i = 1, 2, 3, 4. The transition noise parameter p is selected randomly in the interval
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[0.01, 0.1]. The microarray data model has parameters �i ≡ � = 30, �i ≡ � = 20, �2i ≡ �2 =

49, for i = 1,… , 4.

Figure 2.5: p53-MDM2 experiment edge-calling accuracy rate results as a function of time series:
(a) search process noise; (b) fix process noise

Average edge-calling accuracy rates obtained by PALLAS over 20 repetitions of the experi-
ment are displayed as a function of time series length in Figure 2.5. The difference between
Figure 2.5 (a) and (b) is that we fix the process noise parameter to 0.05 in (b), but search for
this parameter in the interval [0.01, 0.1] in (a). We can see that the performance is similar.
In addition, in both cases, as the time series length increases, precision, sensitivity and speci-
ficity all increase. It can be seen also that performance improves quickly initially, but after
the time series length exceeds 20 there is little additional improvement.
Table 2.2 displays execution times obtained on a MacBook Pro, with 2.5 GHz Quad-Core
Intel Core i7 processor and 16 GB 1600 MHz DDR3 memory. Each set of parameters is
applied on 5 different synthetic datasets with 30 time points and average results are calculated.
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Table 2.2: Performance and execution time comparison with different parameters.

fish iterations particles execution time(s) sensitivity specificity precision

24 3000 8 1091 0.611 0.450 0.480
24 3000 16 1123 0.63 0.550 0.520
24 5000 8 1834 0.608 0.550 0.558
24 5000 16 1912 0.645 0.575 0.587
48 3000 8 2081 0.634 0.525 0.580
48 3000 16 2213 0.656 0.563 0.583
48 5000 8 3520 0.667 0.575 0.646
48 5000 16 3621 0.672 0.590 0.650
72 3000 8 3211 0.679 0.600 0.678
72 3000 16 3274 0.681 0.630 0.654
72 5000 8 5324 0.683 0.623 0.673
72 5000 16 5498 0.681 0.667 0.665

We can see from this table that computational complexity increases linearly with the number
of fish and number of iteration in the MFSS algorithm, but less than linearly in the number
of particles used in the particle filter to approximate the likelihood score. We can see that
performance is quite sensitive to the number of fish used in the search (for a fixed number
of iterations). Computation time can be reduced by decreasing the number of fish, at a cost
of performance. However, increasing the number of fish beyond 48, in this case, does not
improve performance significantly, indicating that there is a value of diminishing returns, as
expected.
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Figure 2.6: Mammalian cell cycle network.

2.6.2.2 Experiment 2: Mammalian Cell-Cycle Gene Regulatory Network

Here, we present results based on the well-known Mammalian Cell-Cycle network [76], which
is displayed in Figure 2.6. (Results for a different GRN are presented in the Supplementary Mate-
rial). The state vector is X = (CycD, Rb, p27, E2F, CycE, CycA, Cdc20, Cdh1, UbcH10, CycB).
This is a large network, with a huge parameter space, for which the estimation problem is hard. The
gene interaction parameters aij can be read from Figure 2.6 in the same way as in the p53-MDM2
network in the Supplementary Material. Once again, the regulation biases are set to bi = −1∕2,
for i = 1,… , 10. The transition noise parameter p is selected randomly in the interval [0.01, 0.1].
The RNA-Seq data model parameters are �i ≡ � = 0.1, �i ≡ � = 3, �i ≡ � = 5, for i = 1,… , 10.
The sequencing depth is set to s = 22.52 (500K-550K reads) and the time series length is fixed
at 50. Here we compare PALLAS with the GENIE3 [34], TIGRESS [36], and Banjo [37] algo-
rithms. Like PALLAS, these algorithms can operate directly on the noisy time series, without
a need for ad-hoc binarization. However, they do not estimate observational parameters or pro-
vide activation/inhibition information, so only the edge-calling accuracy rates in Section 2.6.1.2
are appropriate here. Average rates obtained over 20 repetitions of the experiment are displayed in
Figure 2.7. One can see that with similar specificity, PALLAS displays higher sensitivity and pre-

32



cision than GENIE3 and TIGRESS. Although it was not possible to adjust the specificity of Banjo
to the same levels, we can see that its sensitivity is quite low. In fact, Banjo returned a very small
number of edges overall in this experiment. PALLAS also displayed the highest precision among
all the algorithms.

Figure 2.7: Mammalian cell cycle experiment results.

2.6.2.3 Experiment 3: Artificial Networks

In this section we report results obtained on an ensemble of 10 randomly generated networks
with d = 8 genes, where each gene is regulated by 3 other genes on average. Edge connectivity,
including activation and inhibition, as well as regulation biases, are randomly chosen. The transition
noise parameter p is selected randomly in the interval [0.01, 0.1]. RNA-Seq synthetic data are
generated with parameters �i ≡ � = 0, �i ≡ � = 1 or 5, for i = 1,… , 8. In the first case, there is
more observation noise, and the problem is harder. The parameters �i are allowed to vary uniformly
over the intervals [1, 2] or [1, 5], for i = 1,… , 8. In the first case, the problem is harder, since the
differences in observed expression are smaller. Sequencing depth is set at s = 22.52 (500K-550K
reads).

Here, we compare PALLAS with the Best-Fit [38], REVEAL [39], FBNNet[41], and GABNI
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Figure 2.8: Comparison of network function distance among the PALLAS, Best-Fit, REVEAL,
and FBNNet algorithms, under different � ranges.

Figure 2.9: Comparison of edge-calling accuracy rates between the PALLAS and GABNI algo-
rithms, under different � ranges.
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[40] algorithms. These methods apply to Boolean time series, so they need to employ ad-hoc
binarization of the gene expression data. For the first two, [77] recommends the use of the KM3
binarization method, while for GABNI, [23] recommends the use of K-means binarization, as well
as FBNNet; hence, we use those binarization methods here. The output of the Best-Fit, REVEAL
and FBNNet algorithms are Boolean transition functions, for which the network function distance
is appropriate. On the other hand, the output of GABNI consist of positive (activating) or negative
(inhibitory) interactions, for which we use the edge-calling accuracy rates defined previously.

Figure 2.10: Comparison of network function distance among the PALLAS, Best-Fit, REVEAL,
and FBNNet algorithms, under different � ranges.

Average network function distances and edge-calling accuracy rates obtained over 20 repetitions
of the experiment (2 for each of the 10 networks) with � = 5 are displayed in Figures 2.8 and 2.9,
corresponding results for � = 1 are shown in Figures 2.10 and 2.11. Figure 2.8 shows that the
performance of Best-Fit and PALLAS increases with the time series length, while the performance
of REVEAL and FBNNet are mostly stable. PALLAS perform better than the Best-Fit algorithm,
especially when � is smaller. This reflects the fact that ad-hoc binarization of the data becomes less
accurate with a smaller difference between activation/inactivation levels in the observed data, which
is determined by �. Figure 2.9 shows that PALLAS beats GABNI in sensitivity throughout, as well
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Figure 2.11: Comparison of edge-calling accuracy rates between the PALLAS and GABNI algo-
rithms, under different � ranges.

as in specificity under sufficient data. Indeed, it is shown in Figures 2.10 and 2.11 that GABNI
detects very few edges under small sample size or high observation noise, which artificially inflates
its specificity.
2.6.2.4 Experiment 4: Prototype Immunomic Protein-Protein Interaction Network

We investigate the PPI inference performance of the PALLAS algorithm using a prototype im-
munomic network during infection [78]. The model consists of three state variables, which rep-
resent immune activation of three distinct T-cell populations. We assume that the dynamic ac-
tivity of the various T-cell populations on the model are measure through time series of LC-MS
measurements of the corresponding cytokines (interferon-gamma specific to CD4+ T helper cells,
interferon-gamma specific to CD8+ cytotoxic T cells, and interleukin-10 specific to the CD4+ reg-
ulator T cells).

Figure 2.12(a) depicts the model, which consists of a Boolean network with three nodes, labeled
"A", "B", and "C". The interaction parameters ai,j can be read from the figure. For example, node
"C" is activated by node "A" and inhibited by node "B". These interactions can be represented as
a31 = 1, a32 = −1, a33 = 0.

Figure 2.12(b) depicts the resulting state-space. From the state space, we can see that these
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Figure 2.12: Example of a simple Boolean network model of immunomic interactions during re-
sponse to infection, consisting of three nodes A, B, and C; node A is a promoter, B is a suppressor,
while node C produces the effector response, while also promoting suppression of B (negative feed-
back). a. Network wiring diagram and transition rules. b. Basins of attraction in state-space, with
attractors indicated by dashed rectangles.

states are partitioned into two basins of attraction: the first one corresponds to a single attractor,
whereas the second one consists of an attractor cycle. However, the two behaviors of the system is
only depends on the state of node "A". If it is not expressed (there is no "helper T-cell" response),
then the system will always tend to the resting single-state attractor 000. If "A" is expressed (there
is help), then the activity of the system corresponds to that of a attractor cycle with the effector
response being turned on and off cyclically.

In this experiment, We assume negative regulation biases, bi = −1∕2, for i = 1, 2, 3 and the
synthetic data is generated based on LC-MSmodel with parametersk = 4, # = 100, � = 3, and' =
0.01. Predefined interval ranges for estimation are k ∈ [2, 6], # ∈ [80, 120], � ∈ [1, 5], ' ∈

[0.01, 0.2]. Average edge-calling accuracy rates and network function distances obtained over 10
repetitions of the experiment are displayed in Figure 2.13 and 2.14. In Figure 2.13, we can see that
as the time series length increases, the algorithm is both sensitive and specific, with high precision,
capturing well the topology of the network. In figure 2.14 we can see that, in addition to capturing
the network edges well, the proposed algorithm can correctly identify the regulatory functions,
which controls the system dynamics, as time series length increases.

37



Figure 2.13: Average edge-calling accuracy rates.

Figure 2.14: Average network function distance.
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2.6.3 Experiments with Real Data

In this section, we demonstrate the application of PALLAS to real microarray data from well-
known biological systems. The complete results, including both false positives and false negatives.
2.6.3.1 Experiment 1: E. Coli SOS DNA Repair System

First, we consider the SOS DNA repair system in E. Coli. In the normal state, the protein
LexA is known to be a repressor to the SOS genes. When DNA is damaged, the protein RecA

becomes activated and mediates LexA autocleavage, which causes activation of the SOS genes.
After the activated SOS genes repair the damaged DNA, RecA stops mediating LexA autocleav-
age and LexA represses the SOS genes again. The full SOS DNA repair gene network is dis-
played in Figure 2.15 [79, 44]. We attempt to infer this network from gene expression time series
datasets generated by [80] (http://www.weizmann.ac.il/mcb/UriAlon/download/
downloadable-data). Each time series contains 50 measurements for every 6 minutes includ-
ing the initial zero concentrations; we pick the third dataset in the database for this experiment, and
compare the results against those found in [42, 43, 44].

Figure 2.15: SOS DNA repair system in E.coli (the red edges are the ones successfully recovered
by PALLAS).

The sparsity parameter � in (2.26) is chosen to produce about half of the possible edges in the
six-gene network. Figure 2.15 displays in red the edges of the original network that were suc-
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cessfully recovered by a consensus of the top three networks found by PALLAS, according to the
penalized likelihood score (the full network is displayed in Figure 2.16). We can see that all in-
hibitory edges from lexAwere successfully detected. Although PALLAS infers the wrong direction
between recA and lexA, the connection is detected. With a similar total number of inferred edges,
[43] finds the opposite regulations, i.e., all the inhibitory edges are inferred as activating edges.
While [42] finds most of the inhibitory edges, it misses the important edge from lexA to uvrA.
Finally, [44] recovers only two of the edges.

Figure 2.16: The SOS DNA repair system network inferred by PALLAS

2.6.3.2 Experiment 2: E. Coli Biofilm Formation Pathway

In this section, we demonstrate the performance of PALLAS onRNA-Seq time series expression
data from a pathway involved in biofilm formation by E. Coli, namely, the Rpos(sigmaS)/MlrA/CsgD
cascade, which involves eight genes: Rpos, MlrA, CsgD, YciR, YoaD, BcsA, YaiC, YdaM. Informa-
tion on this pathway can be found in the KEGG database (https://www.genome.jp/kegg/)
as well as in [81, 82, 83]. Figure 2.17 displays a consensus gene network derived from these
sources. The gene expression data used is from the E. Coli Strain B/REL606 and is available
at the Dryad Digital Repository (https://datadryad.org/resource/doi:10.5061/
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Figure 2.17: Biofilm architecture of Escherichia coli (the red edges are the ones successfully re-
covered by PALLAS).

dryad.hj6mr) [84]. This dataset consists of 3 bacterial samples and 9 time points evenly spaced
for each sample. The genes in this pathway display similar values at low expression levels, but vary
considerably at high expression levels. Accordingly, we assume a single baseline parameter �i ≡ �

for all genes, but the parameters �i and �i are allowed to differ from gene to gene, for i = 1,… , 8.
The sequencing depth is set at s = 1.02 (1k-50k reads) reflecting the low read counts in the data
set.

As in the previous experiment, the sparsity parameter � in (2.26) is chosen to produce about
half of the possible edges in the eight-gene network. Figure 2.17 displays in red the edges of the
original network that were successfully recovered by a consensus of the top three networks found
by PALLAS, according to penalized likelihood score (the full network is displayed in Figure 2.18).
PALLAS successfully infers five out of the six important activating interactions from RpoS. Most
of the other connections in the original network were correctly detected.
2.7 Conclusion

We presented PALLAS, a new framework for inference of Boolean gene regulatory networks
from gene expression time series data and protein-protein interaction networks from proteomics
expression time series data. The algorithm avoids ad-hoc binarization of the gene/proteomics ex-
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Figure 2.18: The biofilm system network inferred by PALLAS

pression data and allows inference of large networks by employing penalized maximum likelihood
as a regularization method, applying auxiliary particle filter implementation of the Boolean Kalman
filter and ABC-SMC algorithm for the computation of the likelihood, and using a novel version of
the fish school search particle swarm algorithm to search the parameter space. Numerical experi-
ments using synthetic time series data show that PALLAS outperforms other well-known inference
methods. The performance of PALLAS was also demonstrated on real gene expression time se-
ries data from the SOS DNA repair and Biofilm formation pathways in E. Coli. As a sophisticated
state-space method for Boolean GRN/PPI inference directly from noisy gene expression data, with-
out the need of ad-hoc binarization, PALLAS is computationally expensive. Results indicate that
execution time increases linearly with the number of fish used in the MFSS algorithm. The user
can adjust the running time by changing the number of fish, at a cost to performance. Future work
will include the implementation of PALLAS on high-performance parallel architectures, which will
enable the inference of larger networks.
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3. A NONLINEAR STOCHASTIC STATE SPACE APPROACH FOR EPIDMIC MODEL

3.1 Overview

Infectious disease outbreaks remain a major threat to global health. This is especially the case
for highly pathogenic and transmissible diseases with pandemic potential. These global threats were
recently exemplified by the 2009 swine flu outbreak and the ongoing COVID-19 pandemic caused
by the novel Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). To effectively
mitigate and control the spread of a disease epidemic, it is paramount for public health decision-
making to be informed by an accurate understanding of the dynamics of the epidemic and the
potential impact of intervention measures. To this end, epidemic models have become an important
tool to help people better understand the epidemic and predict its future trends, explore intervention
scenarios and ultimately control the epidemic, such as lock-down or vaccination.

Mathematical epidemiology models can be roughly divided into two main types: compartmen-
tal models and agent-based models. The agent-based model [85, 86, 87, 88, 89, 90, 91, 92] is
a very detailed stochastic model where the agent represent single individuals and thus generally
more complex and computationally expensive. On the other hand, population is assigned to com-
partments with labels in the compartmental model [93, 13, 94, 95, 96, 97, 98, 99], thus simplify
the mathematical model and are fairly scalable. In this work, we propose a nonlinear state-space
model motivated by the compartmental model.

The history of the compartment model can be traced back to the beginning of twentieth century,
the most famous work by [12] whose susceptible - infected - recovered (SIR) model was used for
modeling the cholera (London 1865) and plague (London 1665-1666, Bombay 1906) epidemics
[13], which describes the number of people transmitted among the compartments. More specifi-
cally, it is a kind of weighted directed graph representation of a dynamic system. The susceptible
refers to those healthy people who are susceptible to the disease and may get infected; the infected
refers to those under infection; the recovered refers to those who recovered from infection and will
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temporarily or permanently immune to the disease. However, there are several drawbacks in the
original SIR model:

1) It is a deterministic model, meaning the model always performs the same for a given initial
conditions, which cannot explain the nonignorable randomness of the observations [95, 100,
99];

2) It is only a temporal model which not consider the spread in geographical regions, e.g. human
interaction induced by modern transportation [14];

3) It assumes all the parameters are known which is not the case in real world. Parameter es-
timation is needed for better understanding and forecasting epidemics, by using the noisy
observations [100].

Many variants SIR models become available to solve those issues but not all of them, especially
the parameter estimation since the dynamics of the epidemic are partially observed and the obser-
vations are noisy. To handle these issues, we propose a new framework which embed the classical
compartmental model within the nonlinear state-space model. The state model is a spatial-temporal
stochastic dynamic model, considering not only allow hidden states in one place change through
time, but allow the states affect its neighbours’ as well because of the human interaction induced
by modern transportation. It is referred to as multinomial model based on a variant of SIR model
- SEIRD model [101, 102, 103]. The observation model is designed by considering several prior
knowledge including the each day testing rate, positivity rate, specificity and sensitivity of the tests.
In addition, we also consider the difference of the test rate among symptomatic, asymptomatic pa-
tients, similar symptomatic of people without epidemic disease and healthy people.

In ourmodel, one objectivewill be to estimate the continuous hidden state vectorXt = (S t, Et, I t,

Rt, Dt), based on the noisy incomplete time series epidemic data. In addition, we will also estimate
the parameters in the state model and observation model, including infection rate, inverse of the
average latent time (the rate brings people from E to I) and so on, which can obtain the guidance
of how to prevent and control the epidemic in reality.
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3.2 Mathematical Models for Epidemics

3.2.1 Generalized SEIRD Model

The SEIRD model simulates the time dependent of an epidemic phenomenon. It models the
dynamic interaction of people between five different compartments, namely, the susceptible (S),
the exposed (E), the infected (I), the recovered (R) and the deceased (D). The classic SEIRD model
can be described by the following equations:

dS t

dt
= −�SI t

S t

N
dEt

dt
= �SI

tS t

N
− �EEt

dI t

dt
= �EE

t − (�R + �D)I t

dRt

dt
= �RI

t

dDt

dt
= �DI

t

(3.1)

with S t + Et + I t + Rt +Dt = N .
The susceptible (S t) is the part of the population not yet infected with the disease at time t, it

will be initialed as the whole population without the infected information. The exposed (Et) is the
population that has been exposed to virus but does not show symptoms yet at time t. It is a latency
period or incubation period for the coronavirus. The infected (I t) is used to represent the infective
population after the latent period at time t. The recovered (Rt) denotes the number of individuals
who have been infected and then recovered at time t, and will not be reintroduced to the susceptible
if the epidemic is assumed to be immunized after infected. The deceased (Dt) is the compartment
which is removed from the total population because of the epidemic at time t. N is the total number
of the population.

As we can see, the model is governed by the following parameters:

• �S is the infection rate, which is the probability that brings people from S to E category. It
is multiplied with (S t∕N) to prevent from counting contacts between two individuals who
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cannot infect each other. Also, the nonlinear term is involved here meaning that the infected
speed not only depends on the infection rate, but also the percentage of infected people or
susceptible people over the whole population;

• �E is the probability that transports people from E to I category or can be understood as the
inverse of the average latent time of the epidemic;

• �R is the recovery rate which can also be explained as the inverse of the average recovery
time;

• �D is the death rate;

3.2.2 Proposed Nonlinear State-Space Model

Given the complexity and reality of the epidemic, many different implementations of the clas-
sical SEIRD model become available [104, 103, 105, 101]. In order to handle all the drawbacks in
the classic model and represent the reality as close as possible, we propose a nonlinear state-space
framework based on SEIRD model. We extended the state model as a spatial-temporal stochastic
model and came up with a new observation model which considers the accuracy of the tests and
different testing rate of symptomatic and asymptomatic people.
3.2.2.1 State Model

Consider a state process {Xt
i; i = 0, 1,…; t = 0, 1,…}, where Xt

i = [S t
i , E

t
i , I

t
i , R

t
i, D

t
i] is a

continuous state vector, which evolves according to

Xt
i = f (Xt−1

i ) + nt−1i (3.2)

for t = 0, 1,… represents the time, and i = 0, 1,… denotes the geographical region, where f
is the nonlinear state dynamics function and n is the process noise which is dependent on the state
in our model.

To be more precise, the state model can be represented as follows by using the multinomial
model:
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(3.4)

In our proposed model, most of the variables have the same meaning with the classic SEIRD
model described above. However, since it is a stochastic event for the spread of the disease. The in-
fection from one individual to another belongs to a stochastic manner. Thus, the stochastic property
is involved here.

We assume all the transitions belong to binomial or multinomial distribution. N t
Si
is the number

of people transport from S to I at time t in the region i effected by internal. It means that the
probability of being infected not only depend on the infection rate, but the percentage of infected
people in area i as well; NBt

Sj
is the number of people bring from S to I at time t in the region i

but effected by external region j. Similar with N t
Si
, but it belongs to multinomial distribution and

depends on the percentage of infected people in area j and calculated by the summation of all the
other regions j with weight cij . This is the key part to influence the spatial domain in the state model
which connect all geographical regions. Also, it will help us better understand the importance of

47



locking down some critical area in the early stage to control the epidemic; N t
Ei

is the number of
people transit from E to I at time t in region i;N t

Ri
is the number of people move from I to R at time

t in region i; andN t
Di

is the number of people removed at time t in region i.
Not only the states, but all the parameters which govern the model are designed with stochastic

properties. We assume all the parameters belongs to the Beta distribution since it is a continu-
ous distribution designed on the interval [0, 1]. Other than that, there are two differences in the
parameters compare with the classic model:

• cij is a correlation factor, reflects the external interaction between region i and region j. It
is the factor to connect all the geographical regions. cij is designed based on gravity models
[106, 107, 108];

• �Si is the infection rate but we assume it will different among all the regions because of
the density of each region is different. Generally speaking, the disease in the area of larger
density will spread much faster than sparsely populated places.

According to the standard state model representation, we can rewrite our model as follows to
make the noise terms more clearly:

S t
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N t
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(3.5)
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where the noise terms can be represented as:
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3.2.2.2 Observation Model

Among the state variables we discussed in state model, only the number of deceased (Dt) can
be directly observed but also come with the observation noise. Another measurement we can get
will be the number of confirmed positivity cases every day, however, it can only be represented by
the combination of the state variables and noise.

Assume the only two observations are {Yt
i; i = 0, 1,…; t = 0, 1,…} where Yt

i = [P
t
i , Q

t
i] (P t

i

is the number of confirmed cases and Qt
i is the number of death at time t in the place i) evolves

according to

Yt
i = h(Xt

i) + vti (3.7)

for t = 0, 1,… represents the time, and i = 0, 1,… denotes the geographical region, where h
is a general dynamics function which is a way to express the observations by the state variables and
v is the observation noise which is dependent on the state in our model.

Specifically, the observation model can be represented in the following:
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P t
i = NT tFPi + NT tT Pi
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i = Dt

T Pi
(3.8)
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(3.9)

• P t
i is the number of confirmed positivity cases in region i at time t;

• Qt
i is the number of death because of the epidemic in region i at time t;

• NT tFPi is the false positive of the number of test in the place i at time t;

• NT tT Pi is the true positive of the number of test in the place i at time t;

• � and � are the false positive and false negative rate for testing a person respectively;

• "1 is the percentage of test rate of asymptomatic people;

• "2 is the percentage of test rate of symptomatic people;

• "3 is the percentage of people who are not infected by COVID19, but have a similar symptom,
e.g., influenza;

• "4 is the percentage of infective people who are asymptomatic;

• Dt
T Pi

is the the true positive of the number of death in the place i at time t.

Comparably, we can rewrite the observation model as:
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The observation model is one of the major contribution of this framework. We modeled the
testing procedure which symptomatic and asymptomatic (the former is tested more), false positive
and false negative rates of tests are taking into account. To be more precise, we split the total
number of confirmed cases into two parts, one is the uninfected people but misdiagnosed as infected
because of the false positive of the tests and the other one is the true infected people (the infected
here are specifically refers to those suffering from COVID 19). Then in each part, symptomatic
and asymptomatic aspects are considered. As we know, the uninfected people can also have a
certain chance of having similar symptoms, e.g. influenza. Also, there are many infected people
are asymptomatic. No matter infected or not, people with symptoms are more likely to be tested.
In this procedure, "1 and "2 are correlated with "3 and "4 via two rates we can observe, namely, test
positivity rate and testing rate.

Test positivity rate (RP ) means the percentage of positive tests over the total tests, then it can
be represented as:

RP
t = P t

Ntest
t =

"1A� + "2B� + "2C(1 − �) + "1D(1 − �)
"1A + "2B + "2C + "1D

(3.12)

Similarly, testing rate (RT ) means the percentage of total tests over the total population, which
is shown as following:

RT
t =

Ntest
t

N t =
"1A + "2B + "2C + "1D

A + B + C +D
(3.13)
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where A = (1 − "3)(S t + Rt), B = "3(S t + Rt), C = (1 − "4)I t, D = "4I t + Et

Then "1 and "2 can be represented by "3 and "4 in each iteration as:

"1
t =

(S t + Et + I t + Rt)RT
t(RP

t("3(S t + Rt) + (1 − "4)I t) − �"3(S t + Rt) − (1 − �)(1 − "4)I t)
(1 − � − �)("3(S t + Rt)("4I t + Et) − (1 − "3)(S t + Rt)(1 − "4)I t)

"2
t =

(S t + Et + I t + Rt)RT
t

1 − � − �
×

�(1 − "3)(S t + Rt) + (1 − �)("4I t + Et) − RP
t((1 − "3)(S t + Rt) + ("4I t + Et))

"3(S t + Rt)("4I t + Et) − (1 − "3)(S t + Rt)(1 − "4)I t
(3.14)

Based on [109], which indicates the peoplewith symptoms, e.g. fever, cough, loss of taste/smell,
has higher possibility to be tested.

"1 = �"2 (3.15)

where � ∼ [2, 4.3] according to different symptoms. Bring equation (3.15) into equation (3.14),
then "3 can be represented as:

"3
t =

� (1 − � − RP
t)("4I t + Et) + (1 − "4)I t(1 − � − RP

t) − � (S t + Rt)(RP
t − �)

(1 − � )(S t + Rt)(RP
t − �)

(3.16)

In addition, according to this systematic review [110], the percentage of asymptomatic infected
people "4 is around 0.2 and thus all the "1, "2, "3 can be calculated iteratively.
3.2.2.3 Model Assumptions and Limitations

As we know, any model cannot be suitable for all real scenarios and it must have its own con-
ditions. I will summarize the assumptions and limitations of our proposed model:

• Wehave not considered the number of birth and natural deaths sincewe believe the population
is balanced in the short period without the epidemic and also it is uncommon that the virus
will transport from mothers to new birth.
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• We assume the epidemic disease will be immunized after the infected whichmeans the person
in the recovery (R) category will not be reintroduced to susceptible.

• The infection rates among different ages are not considered, although we know that higher
aged people are more vulnerable.

• The model is suitable to apply in some fixed period meaning that it is not accurate to fit the
model to the epidemic from day one till the end because although we model the stochastic
property of the parameters, we have not considered the trend of parameters over time, e.g.
death rate will be high and recovery rate will be low at the beginning because of the lack of
the effective medicine and experience. Also the different policy over time will also affect the
parameters, e.g. ask people to keep the social distance and wear mask will greatly reduce the
infection rate.

3.3 Epidemic Trend Estimation

Estimate the real trend of the epidemic is one of the main object of mathematical epidemiology
model. To be specifically, it is important for the model to have an accurate estimation for the true
values of state variables by using the noisy, incomplete, time series of reported epidemiological
data.

As we know, Kalman filter first introduced by Rudolph E. Kalman [111] is an optimal filter for
linear system which used for estimating the state of a time-varying system which is indirectly ob-
served through noisymeasurement. However, for nonlinear system, Kalman filter no longer applies,
the solutions include Extended Kalman Filter (EKF) (local linearization of the equations)[112] or
Unscented Kalman Filter (UKF) [113]. Since the EKF is based on linearizing the nonlinear system
which may difficult to tune and gives unreliable estimates, we decide to use UKF to do the nonlinear
state estimation to significant improve the accuracy.
3.3.1 Unscented Kalman Filter

The UKF is the filter that produce several sigma points around the current state with its co-
variance. Then, propagate these points by using the nonlinear map to get more accurate mean and
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covariance. Based on [113, 114, 115], the procedure we used is shown below (every region is
calculated parallel in the same procedure):

Recall our state space model eq (3.2) and eq (3.7), the state variables belong to:

X ∼ N(m,P) (3.17)

and the process noise and observation noise belong to:

n ∼ N(0,Q)

v ∼ N(0,R)
(3.18)

Prediction:
1) Generate sigma points:

X0
t−1|t−1 = mt−1|t−1,

Xi
t−1|t−1 = mt−1|t−1 +

[√

nPt−1|t−1
]

i
, i = 1,… , n

Xi+n
t−1|t−1 = mt−1|t−1 −

[√

nPt−1|t−1
]

i−n
, i = n + 1,… , 2n

(3.19)

2) Propagate the sigma point through the state model:

X̂i
t = f (Xi

t−1|t−1), i = 0,… , 2n (3.20)

3) Compute predicted mean and predicted covariance:

mt|t−1 = X̂t|t−1 =
1
2n

2n
∑

i=0
X̂i
t,

Pt|t−1 =
1
2n

2n
∑

i=0
(X̂i

t −mt|t−1)(X̂i
t +mt|t−1)T +Qt−1.

(3.21)

(see Appendix A for the calculation of the Qt−1)
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Update:
1) Update sigma points:

X0
t|t−1 = mt|t−1,

Xi
t|t−1 = mt|t−1 +

[√

nPt|t−1
]

i
, i = 1,… , n

Xi+n
t|t−1 = mt|t−1 −

[√

nPt|t−1
]

i−n
, i = n + 1,… , 2n

(3.22)

2) Propagate the sigma point through the observation model:

Ŷi
t = h(Xi

t|t−1), i = 0,… , n (3.23)

3) Compute predicted mean, predicted covariance and the cross-covariance:

µt = Ŷt|t−1 =
1
2n

2n
∑

i=0
Ŷi
t,

St = PŶ = 1
2n

2n
∑

i=0
(Ŷi

t − µt)(Ŷ
i
t − µt)

T + Rt,

Ct = PX̂Ŷ = 1
2n

2n
∑

i=0
(Xi

t|t−1 −mt|t−1)(Ŷi
t − µt)

T ,

(3.24)

(see Appendix A for the calculation of the Rt)
4) Compute the filter gain, state mean and covariance:

Kt = CtS−1t ,

mt|t = mt|t−1 +Kt(yt − µt),

Pt|t = Pt|t−1 −KtStKT
t .

(3.25)
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3.3.2 Maximum-Likelihood Adaptive Filtering Computation

In the previous sections, we have assumption that the parameters of the state model and obser-
vation model are known, however, it is not the case in real world. Thus, estimate the parameters
based on the observation data is the key step to make our model useful in practice. In this case, we
consider to use maximum-likelihood adaptive filtering to do the parameter estimation in nonlinear
state-space models [116, 117, 118]. All of the variables following are only consider one region, so
the corner mark of the region is ignored.

As we mentioned before, there are several parameters which govern the model eq(3.5) and
eq(3.8), e.g. �S , �E , "3, "4,… . Let call those paramters θ. θ is a set of the continuous unknown
model parameters. Then, suppose that the observation data we have Y1∶t (time series data up to
time t). The log-likelihood of model θ at time t is defined as

Lt(θ) = log pθ(Y1∶t) = log
[

pθ(Yt ∣ Y1∶t−1)pθ(Yt−1 ∣ Y1∶t−2)⋯ pθ(Y2 ∣ Y1)pθ(Y1)
]

= Lt−1(θ) + log pθ(Yt ∣ Y1∶t−1) ,
(3.26)

where
pθ(Yt ∣ Y1∶t−1) = − 1

2
log |2� St(θ)| −

1
2
vTt (θ)S

−1
t (θ) vt(θ),

vt = yt − µt.
(3.27)

The quantities µt and St are calculated in the UKF recursion. Then, the target is to maximize
the log-likelihood Lt(�):

�ML = argmax� log p�(Y1∶t) (3.28)

There are several ways for this optimization problemwhich only contain continuous parameters.
For example, Expectation-Maximization (EM) algorithm, especially when it has a closed-form
solution which avoids the recursive gradient calculation. However, there is no close-form solution
when we maximizing Q function in the M-step since the correlation between the states and noise,
and thus requires the numerical optimization, e.g. Broyden–Fletcher–Goldfarb–Shanno (BFGS)
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algorithm [119], in each recursion. In this case, using numerical optimization insider EM is quite
cumbersome [118] because we can directly calculate the gradients of the objective function (log-
likelihood function) and do the optimization with the same effort.

The derivative of the log-likelihood function equation (3.26) is obtained by:

)Lt(θ)
)�i

=
)Lt−1(θ)
)�i

− 1
2
tr(S−1t (θ)

)St(θ)
)�i

) − 1
2
vTt (θ)S

−1
t (θ)

)St(θ)
)�i

S−1t (θ)vt(θ) + vTt (θ)S
−1
t

)vt(θ)
)�i

(3.29)

Then only )St(�)
)�i

and )vt(�)
)�i

are need to computed recursively. (see the Appendix B for the details).
Metaheuristic algorithm can also be applied to this problem, e.g. the fish school search al-

gorithm discussed in last chapter. In this case, there is no need for the gradient of the objective
function anymore. (see the chapter 2 for the details).
3.4 Numerical Experiments

In this section, we present the result of a comprehensive set of numerical experiments, including
simulations with different set of parameters and estimations of unknown parameters with synthetic
data.

Here are the parameters selection based on the prior knowledge in the following simulation and
will also be used in the synthetic generation: False positive rate � = 0.01 and false negative rate �
= 0.15 [120]; �S is different with different regions but the average will be 0.3; �E = 0.1 based on
the CDC’s website which the incubation period ranges from 2-14 days; �R = 0.07 based on CDC’s
website which the person will recovery in 2 weeks on average; �D = 0.01 based on the number of
death reported every day.
3.4.1 Experiment 1: Simulation of Spatial and Temporal Dynamics of Epidemic

In the following cases of simulation, we would like to show our model’s ability to demonstrate
the spatial and temporal dynamics of epidemic. Fig 3.1, Fig 3.2, Fig 3.3, Fig 3.4 are the plots for
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the results at day 1, day 60, day 90, and day 100, respectively.

Figure 3.1: The simulation results at t = 1 day

From the Fig 3.1 we can see that the epidemic originated in region 1 with only a few people was
infected. Then, in Fig 3.2, 60 day past, the epidemic spread to other regions, but still very limited.

However, in Fig 3.3, only another 30 days after, the epidemic spread much faster than before,
especially in the originated region and the regions with large density, e.g. region 3 and region 6.
Then, the last plot Fig 3.4, only another 10 days. The number of infected people almost doubled.
From this simulation, we can clearly understand that the epidemic is easy to control at the very early
stage, however, the epidemic will spread and develop at an exponential rate after a period of time.
Meaning that introduce relevant policy to control the epidemic at the early stage is necessary and
useful, e.g. keep social distance, wearingmask or even lockdown the limited critical area (region 1).
In the next experiment, we will focus on one region to show the effect on the results with different
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Figure 3.2: The simulation results at t = 60 days

policy.
3.4.2 Experiment 2: Simulation of Effect of Different Policy

In this experiment, we will compare the results of the same region (region 9) under different
policy. Fig 3.5 is the result without any control. We can see that almost 80k people dead and the
epidemic ended with herd immunity. Almost every has been infected which is the worst case.

Fig 3.6 presents the region 9 is under the policy of keeping social distance and wearing masks.
From the figure we can see that the growth and decline have all eased a lot which because this
policy will decrease the infection rate a lot in our model. However, it needs a bit long time to end
the epidemic, although it will decrease the infected rate. In addition, many people still don’t have
the immunity which might cause the epidemic outbreak again.

Fig 3.7 depicts the scene that a certain number of vaccines will be delivered to people every day.
In our model, it will transport a certain number of people from susceptible category to recovery
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Figure 3.3: The simulation results at t = 90 days

Figure 3.4: The simulation results at t = 100 days
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Figure 3.5: The results of region 9 without any control

Figure 3.6: The results of region 9 with policy of keeping social distance or wearing mask
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Figure 3.7: The results of region 9 with around 1500 vaccines per day

category, which means that the number of people in the recovery category will growth very fast and
get to the herd immunity in a short period. At that time, almost all of the people have the immunity.

This simulation demonstrates that vaccination is the best way to stop the epidemic and if we
can introduce some policy during this period will get even better results.
3.4.3 Experiment 3: Epidemic Trend Estimation

The ability to estimate the epidemic trend based on the reported noisy observations is important
for a mathematical model. This experiment will demonstrate this ability with two scenarios. One
is based on the assumption that we know all the system parameters. Another one is more close to
reality that we need to estimate the unknown parameters first and check the performance.

Fig 3.9 is the figure that all of the parameters are known. Although it is not the case of real
world, it presents that our model can estimate the epidemic trend well. Then Fig 3.8 depicts the
situation that we need to estimate the unknown parameters by BFGS or metaheuristic algorithm
and use those estimated parameters to predict the trend. In this experiment, we assume �S , �R, �D
are unknown. We can see that without the prior knowledge of the parameters, our model can still
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estimate the epidemic trend well.

Figure 3.8: The estimation results of region 2 with all the parameters known

3.5 Conclusion

Wedeveloped a novel spatial-temporal nonlinear state spacemodel for COVID-19 transmission,
based on a discrete-time susceptible - exposed - infected - recovered - deceased (SEIRD) model,
which can estimate the hidden states and parameters from a noisy, incomplete, time series of re-
ported epidemiological data, by applying Unscented Kalman Filter (UKF), Maximum Likelihood
(ML) adaptive filtering and Broyden–Fletcher–Goldfarb–Shanno (BFGS)/metaheuristic optimiza-
tion. We used a comprehensive set of simulations and experiments, using synthetic data to demon-
strate that our model can not only effectively simulate the different scenarios of epidemic, such
as different lock-down patterns and vaccination scenarios, but also reliably estimate the unknown
parameters which are important for predicting future trends of the epidemic and more accurately
evaluating the effectiveness of public health policies.
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Figure 3.9: The estimation results of region 2 using the estimated unknown parameters

3.6 Appendix A

Given the process noise and observation noise in state model and observation model, the co-
variance matrix of those noises are calculated as:

1) Covariance of the process noise (Q):

V ar(ntSi) =V ar(N
t
Si
) +

∑

j1

∑

j2

Cov(NBt
Sj1
, NBt

Sj2
), j1 ≠ i, j2 ≠ i

=S t
i

�SI ti
N t
i
(1 −

�SI ti
N t
i
) +

∑

j
S t
i

cij�SI tj
N t
j
(1 −

cij�SI tj
N t
j
)

−
∑

j1

∑

j2

S t
i

cij1�SI
t
j1

N t
j1

cij2�SI
t
j2

N t
j2

, j1 ≠ j2 ≠ i, j ≠ i

(3.30)
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V ar(ntEi) =V ar(N
t
Si
) + V ar(N t

Ei
) +

∑

j1

∑

j2

Cov(NBt
Sj1
, NBt

Sj2
), j ≠ i

=S t
i

�SI ti
N t
i
(1 −

�SI ti
N t
i
) +

∑

j
S t
i

cij�SI tj
N t
j
(1 −

cij�SI tj
N t
j
)

+ Et
i�E(1 − �E) −

∑

j1

∑

j2

S t
i

cij1�SI
t
j1

N t
j1

cij2�SI
t
j2

N t
j2

, j1 ≠ j2 ≠ i, j ≠ i

(3.31)

V ar(ntIi) =V ar(N
t
Ei
) + V ar(N t

Ri
) + V ar(N t

Di
) + 2Cov(N t

Ri
, N t

Di
)

=Et
i�E(1 − �E) + I

t
i�R(1 − �R) + I

t
i�D(1 − �D) − 2I

t
i�R�D

=Et
i�E(1 − �E) + I

t
i (�R + �D)(1 − (�R + �D))

(3.32)

V ar(ntRi) = V ar(N t
Ri
) = I ti�R(1 − �R) (3.33)

V ar(ntDi
) = V ar(N t

Di
) = I ti�D(1 − �D) (3.34)

Cov(ntSi , n
t
Ei
) = −V ar(N t

Si
) −

∑

j1

∑

j2

Cov(NBt
Sj1
, NBt

Sj2
) = −V ar(ntSi) (3.35)

Cov(ntEi , n
t
Ii
) = −V ar(N t

Ei
) = −Et

i�E(1 − �E) (3.36)

Cov(ntIi , n
t
Ri
) = − V ar(N t

Ri
) − Cov(N t

Ri
, N t

Di
)

= − I ti�R(1 − �R) + I
t
i�R�D

= − I ti�R(1 − (�R + �D))

(3.37)
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Cov(ntIi , n
t
Di
) = − V ar(N t

Di
) − Cov(N t

Ri
, N t

Di
)

= − I ti�D(1 − �D) + I
t
i�R�D

= − I ti�D(1 − (�R + �D))

Cov(ntRi , n
t
Di
) = − I ti�R�D

(3.38)

The left will be all zero.
2) Covariance of the observation noise (R):

var(vpti) = "1(1 − "3)(S
t
i + R

t
i)�(1 − �) + "2"3(S

t
i + R

t
i)�(1 − �)

+ "2(1 − "4)I ti�(1 − �) + "1("4I
t
i + E

t
i )�(1 − �) + vp

t
i

var(vqti) =D
t
i�(1 − �)

(3.39)

The left will be all zero.
3.7 Appendix B

Direct likelihood based optimization details [118].

)vt
)�i

= −
)µt
)�i

)µt
)�i

=
∑

j
{ 1
2n
[Hx(mt|t−1 + Lt|t−1ξj ,θ) × (

)mt−1|t−1

)�i
+
)Lt−1|t−1
)�i

ξj) +
)ℎ
)�i
(mt|t−1 + Lt|t−1ξj ,θ)]}

)St
)�i

= 1
2n

∑

j
{[Hx(mt|t−1 + Lt|t−1ξj ,θ) (

)mt|t−1

)�i
+
)Lt|t−1
)�i

ξj) +
)ℎ
)�i
(mt|t−1 + Lt|t−1ξj ,θ) −

)µt
)�i

]

× [ℎ(mt|t−1 + Lt|t−1ξj ,θ) − µt]T + [ℎ(mt|t−1 + Lt|t−1ξj ,θ) − µt] × [Hx(mt|t−1 + Lt|t−1ξj ,θ)

× (
)mt−1|t−1

)�i
+
)Lt−1|t−1
)�i

ξj) +
)ℎ
)�i
(mt|t−1 + Lt|t−1ξj ,θ) −

)µt
)�i

]T } + )R
)�i (3.40)

whereHx is the Jacobian of observation model h, and L is the Cholesky factor (P = LLT ). The
partial derivative of the Cholesky factor )L

)�i
is calculated by
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)L
)�i

= L�(L−1 )P
)�i

L−T ) (3.41)

where�(⋅) is a function returning the lower triangular part and half the diagonal of the argument
as follows:

�ij(M) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Mij , if i > j,
1
2
Mij , if i = j,
0, if i < j.

)Pt|t
)�i

=
)Pt|t−1
)�i

−
)Kt

)�i
StKT

t −Kt
)St
)�i

KT
t −KtSt

)KT
t

)�i
(3.42)

)Pt|t−1
)�i

= 1
2n

∑

j
{[Fx(mt−1|t−1 + Lt−1|t−1ξj ,θ) × (

)mt−1|t−1

)�i
+
)Lt−1|t−1
)�i

ξj)

+ )f
)�i
(mt−1|t−1 + Lt−1|t−1ξj ,θ) −

)mt|t−1

)�i
] × [f (mt−1|t−1 + Lt−1|t−1ξj ,θ) −mt|t−1]T

+ [f (mt−1|t−1 + Lt−1|t−1ξj ,θ) −mt|t−1] × [Fx(mt−1|t−1 + Lt−1|t−1ξj ,θ)

× (
)mt−1|t−1

)�i
+
)Lt−1|t−1
)�i

ξj) +
)f
)�i
(mt−1|t−1 + Lt−1|t−1ξj ,θ) −

)mt|t−1

)�i
]T } + )Q

)�i

(3.43)

where Fx is the Jacobian of the state model f .

)mt|t

)�i
=
)mt|t−1

)�i
+
)Kt

)�i
vt +Kt

)vt
)�i

)mt|t−1

)�i
=

∑

j
{ 1
2n
[Fx(mt−1|t−1 + Lt−1|t−1ξj ,θ) × (

)mt−1|t−1

)�i
+
)Lt−1|t−1
)�i

ξj)

+ )f
)�i
(mt−1|t−1 + Lt−1|t−1ξj ,θ)]}

(3.44)
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)Kt

)�i
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)�i
S−1t − CtS−1t

)St
)�i
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)�i
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{ 1
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[
)Lt|t−1
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(3.45)
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4. SUMMARY AND CONCLUSIONS

In this dissertation, we proposed several nonlinear state space models for efficiently state and
parameter estimations in nonlinear dynamical systems with applications in biochemical regulatory
networks and epidemic models, respectively.

In section 2, we presented PALLAS, a new framework for inference of Boolean gene regu-
latory networks (GRN) and protein-protein interaction network (PPI) from time series data. The
algorithm avoids ad-hoc binarization of the expression data and allows inference of large networks
by employing penalized maximum likelihood as a regularization method, applying particle filter-
ing (in GRN framework) and ABC-SMC algorithm (in PPI framework) for the computation of the
likelihood, and using a novel version of the fish school search particle swarm algorithm to search
the parameter space. Numerical experiments using synthetic time series data show that PALLAS
works well in PPI inference and outperforms other well-known GRN inference methods. The per-
formance of PALLASwas also demonstrated on real gene expression time series data from the SOS
DNA repair and Biofilm formation pathways in E. Coli. As a sophisticated state-space method for
Boolean GRN inference directly from noisy gene expression data, without the need of ad-hoc bi-
narization, PALLAS is computationally expensive. Results provided indicate that execution time
increases linearly with the number of fish used in the MFSS algorithm. The user can adjust the
running time by changing the number of fish, at a cost to performance. Future work will include
the implementation of PALLAS on high-performance parallel architectures, which will enable the
inference of larger networks.

In section 3, we proposed a nonlinear state-space framework to model the outbreak of the
COVID 19. It is a stochastic and spatial-temporal model which satisfied the reality and can help
people better understand the epidemic, predict its future trends, explore intervention scenarios and
ultimately control the epidemics, such as lock-down or vaccination. By applyingUnscentedKalman
Filter (UKF),MaximumLikelihood (ML) adaptive filtering andBroyden–Fletcher–Goldfarb–Shanno
(BFGS)/metaheuristic optimization algorithm, make our framework powerful than most of the ex-
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isting methods since the ability of estimating the hidden states and parameters from a noisy, in-
complete, time series of reported epidemiological data. A comprehensive set of simulations and
experiments using synthetic data demonstrates that our model can not only effectively simulate the
different scenarios of epidemic, but also reliably estimate the unknown parameters which are im-
portant for predicting future trends of the epidemic andmore accurately evaluating the effectiveness
of public health policies.
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