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ABSTRACT

Recent advances in machine learning (ML) algorithms, in conjunction with the availability of

direct numerical simulation data, have resulted in a surge of interest in data–driven turbulence mod-

elling. The idea with such models is to replace one or more components of a classical closure model

with an implicit function obtained through a trained ML procedure. However, as the properties of

these learned functions are often poorly understood, the set of modelled equations can be internally

inconsistent. Therefore, more research is needed to understand the physical underpinnings of data–

driven turbulence models in order to ensure their generalizability to unseen test flows. The work

performed addresses the issue of ML closure generalizability by: (i) identifying key challenges in

applying ML techniques to two–equation turbulence models and proposing means of mitigating

inconsistencies and improving compatibility between different physical elements of the modeled

system, (ii) investigating the optimal choice of ML model hyperparameters and required degrees

of freedom for accurate approximation and, (iii) improved incorporation of the unsteady dataset

for complex turbulent flows with largescale instabilities and coherent structures. Three studies,

each addressing the above objectives, are performed which lead to physics–dictated guidance in

the development of ML–enhanced turbulence closure models.

In the first study, a novel procedure - based on fixed point analysis - is introduced to ensure that

the overall set of equations in data–driven turbulence modelling form a self-consistent dynamical

system. Three elements are proposed to ensure the physical underpinnings of ML turbulence

closures: (i) characteristic physical features and constraints that all (physics–based (PB) and ML)

closure models must strive to satisfy; (ii) ML training scheme that infuses and preserves selected

PB constraints; and (iii) physics–guided formulation of ML loss (objective) function to optimize

models predictions. First, key closure constraints dictated by the model system dynamics are

derived. Then a closed loop training procedure for enforcing the constraints in a self–consistent

manner is proposed. Finally, the simple test case of turbulent channel flow is used to highlight the

deficiencies in current ML methods and demonstrate improvements stemming from the proposed
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mitigation measures.

Generalizability of the ML–assisted turbulence model to unseen flows has many challenges due

to flow–dependent non–linearity and bifurcations of the constitutive relations. Further, there is little

consensus and great deal of uncertainty regarding the choice of Neural Network (NN) hyperparam-

eters and training techniques. Yet, these choices can significantly affect the predictive capability

and generalizability of ML turbulence models. Therefore, a second study is performed to under-

stand the optimal choice of hyperparameters, training process elements (type of loss function) and

necessary number of neurons of Deep Neural Networks (DNNs) required to allow a sufficiently

accurate approximation at the Reynolds averaged Navier–Stokes (RANS) closure modeling level.

Standard fully connected NNs are trained in a supervised manner and their approximation capa-

bilities are systematically investigated by considering the effects of (i) intrinsic complexity of the

solution manifold; (ii) sampling procedure (interpolation vs extrapolation); and (iii) optimization

procedure. It is shown that even for a simple proxy–physics system, the NN–model performance

is inadequate. Further, we identify and distinguish the challenges to generalizability arising out of

non–linearity and bifurcation.

The third study proposes a sub–filter stress neural network for scale–resolving simulations

(SRS) in complex turbulent flows with large-scale instabilities and coherent structures. The SRS

method chosen is the partially averaged Navier–Stokes (PANS) approach, which is known to be

more appropriate for such flows as it resolves the unsteady and coherent scales of motion. The

development of the new model is based on three main features. Firstly, there is an improvement

in the consistency between local flow field and local turbulent scales in high–fidelity turbulent

datasets. This is important for accurate representation of the flow physics. Secondly, an unsteady

low–fidelity dataset is reconstructed based on the energy content of the resolved scales at different

filter sizes. Finally, parametric machine learning PANS closure functionals are developed under

different choices of turbulent scales and degrees of resolution. It is demonstrated that the NN for

the (suitably normalized) subgrid stress constitutive relation is insensitive to the cut–off between

resolved and unresolved flow fields, so long as the coherent structures are fully resolved.
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1. INTRODUCTION

Turbulent flows exhibit vastly different characteristics in different parameter regimes depend-

ing upon the mean strain–to–rotation rate ratio [2, 3], mean-to-turbulence time scale ratio [4, 5, 6],

underlying flow instabilities [7], large–scale unsteadiness, presence or absence of system–rotation

or streamline–curvature [4], body–force effects and flow geometry. In addition, due to inherent

complexity of the turbulence phenomenon, closure models developed in one parameter regime

cannot be presumed to be reasonable or even valid in other regimes. The strong dependence of

flow statistics on the various physical parameters is one of the enduring challenges in the field

of turbulence closure model development. The degree of difficulty of closure modeling depends

upon the level of closure. In the Reynolds–averaged Navier–Stokes (RANS) method, the funda-

mental governing equations are averaged over all scales of motion leading to significant reduction

in computational effort needed for performing a flow simulation. The reduction in computational

burden comes at the cost of increased complexity of closure modeling. Ad hoc simplifications or

assumptions are typically invoked to close various terms in the RANS equations. While RANS

models may perform adequately in flows in which they are calibrated, they can be catastrophically

wrong in other complex flows due to lack of generalizability. Despite inherent limitations, RANS is

widely used in industrial applications involving complex flows due to ease of computations. At the

other extreme of the closure spectrum, in the large–eddy simulation (LES) approach, dynamically

important scales are resolved and only the small–scale motions are modeled. The small–scales

are significantly easier to model as they embody most of the ‘universal’ aspects of turbulence and

therefore, are more easily amenable to generalizability than their RANS counterpart. Thus, in

LES, the relative simplicity and generalizability of subgrid closure models comes at the expense

of significantly increased computational costs. The closure modeling challenges of scale resolving

simulations (SRS) are of intermediate degree of difficulty as they resolve more scales than RANS

but significantly lesser than LES [8, 9].

Many studies in recent literature aim to enhance the capabilities of turbulence models by in-
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corporating data–driven techniques. These methods seek to better utilize the increasingly available

high–fidelity numerical data of turbulent flows along with recent developments in machine learn-

ing (ML) to improve turbulence model predictions in unseen complex engineering flows. In these

approaches, functionals obtained using ML are used within existing turbulence modeling frame-

works to incorporate capabilities that fall beyond the scope of traditional approaches. In principle

data–driven methods may be used to improve model performance at any level of turbulence clo-

sure including LES, SRS and RANS methods. Closure modeling at each level has two sources of

inherent limitations: (i) due to the degree of filtering or averaging of the flow field variables; and

(ii) due to the simplified functional form of the closure model. Clearly the RANS framework and

associated model assumptions limit the capabilities of the closure models more than SRS or LES

methods. ML-based training may not overcome these inherent deficiencies, but can lead to the best

possible model subject to the limitations.

1.1 Motivation and Background

Data–driven approaches for two–equation RANS methods proposed in literature employ ma-

chine learning (ML) methods for certain closures and retain traditional models for other aspects.

For example Ling et al. [10] and Weatheritt and Sandberg [11, 12] use ML for obtaining im-

proved Reynolds stress constitutive relations while the modeled transport equations for turbulence

length and velocity scales are retained without changes. On the other hand, Zhang et al. [13]

and Parish and Duraisamy [14] use ML to optimize transport equation coefficients for best per-

formance in flows of their interest without changing Reynolds stress constitutive relation. Thus

the data–driven closure framework represents a mix of ML and traditional - physics–based (PB)

models. The closure models and coefficients are strongly interconnected as a result of underlying

physical characteristics of turbulence. Any change in a subset of coefficients without correspond-

ing modification of others can lead to erroneous model behavior. It is essential that any closure

procedure must make allowance for these physics–dictated relationships in the model development

process.

Lacking a formal procedure for NN selection and training protocol, ML–assisted turbulence
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closures can be as ad hoc as the traditional models and, more importantly, lack generalizability. In

order to develop a new algebraic Reynolds stress model using channel flow dataset, different NN

architectures have been employed in literature. Zhang et al. [15] trained a NN with 4 hidden layers

and 20 neurons per layer. Fang et al. [16] employed a NN with 5 hidden layers and 50 neurons

per layer. Jiang et al. [17] used a DNN with 9 hidden layers and varying number of neurons in

each layer. For planner and periodic hill channel flow dataset, Sotgiu et al. [18] used a NN with 8

hidden layers and 8 neurons in each layer. Thus, there is no clear guidance on the optimal choice

of architecture and hyperparameters or different elements of the training procedure.

Incorporating data–driven techniques into the turbulence closure modeling process can have a

transformative influence on the field. While preliminary studies show basis for optimism, more

research is needed to understand the physical underpinnings of data–driven methods in order to

ensure their generalizability to unseen test flows. In order to maximize their impact, data–driven

approaches must leverage the physical understanding and closure modeling knowledge already in-

cumbent in traditional models. The traditional PB–RANS model equations constitute a dynamical

system, wherein the closure coefficients are carefully calibrated to yield reasonable results in a set

of benchmark flows. To ensure some degree of generalizability to unseen flows, the relationships

between various closure coefficients are orchestrated to yield reasonable fixed–point and bifurca-

tion behavior in different asymptotic limits of turbulence. When some of the closure coefficients

are unilaterally altered during ML training, the closure system of equations may be adversely af-

fected. We identify potential inadequacies in current ML approaches for turbulence modeling and

propose the steps for ensuring that the ML training preserves the selected characteristics of PB

models leading to potential improvement in generalizability.

It is well recognized that the NN architecture and training protocol profoundly influence the

generalizability characteristics. At the Reynolds–averaged Navier–Stokes (RANS) level, NN–

based turbulence closure modeling is rendered difficult due to two important reasons: inherent

complexity of the constitutive relation arising from flow–dependent non–linearity and bifurcations;

and, inordinate difficulty in obtaining high–fidelity data covering the entire parameter space of in-
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terest. The practical learning problems consists of several aspects: (i) capacity of NN architecture

in describing the data; (ii) data availability to describe the true model and (iii) optimization proce-

dure in finding the best fit [19]. In general, deep learning is a non–convex optimization problem

and while a good approximation of a given unknown function by a NN may exist, it is unclear how

that can be expeditiously determined in a practical application. Additionally, it is certainly feasible

that the generated data might not contain sufficient information from the true model to assure that

the optimization process will converge to the theoretically best approximation [20]. Therefore, it

is necessary to numerically examine the existence of generalizable, reasonably–sized NNs from

practical learning prospective in the context of turbulence RANS closure modeling.

There are relatively few works in the literature that have attempted to combine ML with SRS

methods for the purpose of improving unsteady flow predictions. Lav et al. [1] applied Proper

orthogonal decomposition (POD) algorithm on high–fidelity DNS dataset and used two first eigen-

modes to segregate the flow length scales into scales associated with the organised motion and

stochastic turbulence. Then, they employed Gene Expression Programming (GEP) algorithm to

develop non–linear URANS and PANS closures only for the stochastic part of turbulence with

time averaged flow fields. Time averaging reduces the richness of the information in unsteady data

for turbulence modeling, as it removes the dynamics and time–varying nature of the flow. Coherent

structures in turbulent flows evolve and interact over time and time averaging the flow can obscure

these structures and their evolution mechanisms, which can make it more difficult to accurately

model the flow. Therefore, it is crucial to use the full time–varying data for SRS turbulence mod-

eling, as this can provide a more complete picture of the turbulent flow dynamics. ML techniques,

such as NNs, are well–suited for handling time–varying data and can learn to capture the important

temporal and spatial features of the flow, allowing for more accurate modeling of turbulence.

1.2 Research Objectives

The dissertation consists of three studies each suited towards fulfilling the following objectives:

1. Develop physics–dictated guidelines to improve the physical underpinnings and generaliz-

ability of ML turbulence models
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2. Examine the existence of generalizable, reasonably sized ML models under full and partial

availability of the turbulent training dataset

3. Develop parametric ML–enhanced SRS turbulent closure models

Toward the above objectives, three studies are undertaken and the specific tasks of each study are

listed below.

1.2.1 Study 1: Physical compatibility and consistency considerations in developing ML tur-

bulence closure models

The objective of this study is to exhibit potential inadequacies in current ML approaches for

turbulence modeling and propose means of mitigating inconsistencies and improving compatibil-

ity between different physical elements of the modeled system. The specific tasks of this study

include:

(i) Derive Physics–based (PB) key closure constraints dictated by the model system dynamics.

(ii) Propose a closed loop training procedure for enforcing the constraints in a self–consistent

manner.

(iii) Highlight the deficiencies in current ML methods and demonstrate improvements stemming

from the proposed mitigation measures in the simple test case of turbulent channel flow.

1.2.2 Study 2: Investigation of generalizable deep neural networks for turbulence closure

modeling

Generalizability of the ML–assisted turbulence models to unseen flows still faces many chal-

lenges due to flow–dependent non–linearity and bifurcations of the constitutive relations. Further,

there is little consensus and great deal of uncertainty regarding the choice of NN hyperparameters

and training techniques. Yet, these choices can significantly affect the predictive capability and

generalizability of ML turbulence models. We seek to understand the optimal choice of hyper-

parameters, training process elements (type of loss function) and necessary number of neurons of
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DNNs required to allow a sufficiently accurate approximation at the RANS closure modeling level.

We undertake the following tasks in this study:

(i) Adoptation of the simplified proxy–physics turbulence surrogates at different degrees of

complexity that incorporate some of the import features of real homogeneous flows to gen-

erate the sufficient training data.

(ii) Assess generalizability characteristics (interpolation vs extrapolation) of different network

architectures and hyperparameters in turbulence–like phenomena.

(iii) Performing a systematic search in state–space of hyperparameters and network–size for dif-

ferent data sampling scenarios.

1.2.3 Study 3: Data–driven closure modeling for scale resolving PANS simulations

Despite some advances in recent years, the performance of data-driven RANS turbulence clo-

sures in unseen flows of practical interest continue to be inadequate. Most complex turbulent

flows exhibit an intriguing mix of coherent structures and stochastic velocity field. The nature

of largescale coherent structures is strongly dependent on flow geometry and any underlying hy-

drodynamic instabilities. The small–scale stochastic flow field on the other hand exhibits nearly

universal behavior [21, 22]. The RANS closures attempt to model the effects of flow-dependent

large scales and the ‘universal’ small scales with a single constitutive closure expression. The

lack of generalizability of the RANS closures to unseen complex flows can be attributed to poor

modeling of the effects of largescale coherent structures.

Scale resolving simulations (SRS) seek to decompose the velocity field into largescale coher-

ent structures and smallscale stochastic flow fields. In the SRS approach, the largescale structures

are adequately resolved and only the effect of the smallscale stochastic field is modeled with con-

stitutive relationship. Thus, SRS is computationally more expensive, but the constitutive closure

relation is required to account only for the action of ‘universal’ small scale structures. Thus, data-

driven SRS approach has a better chance of being generalizable to unseen flows.
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This work proposes a framework for developing neural networks (NN) for SRS subgrid stress

constitutive relations. Toward this end, the study addresses some of the theoretical challenges and

formulates a procedure to incorporate the unsteady flow features of importance in the SRS closure.

The specific tasks of this study include:

(i) Formulate the foundational equations relating fine- and coarse-resolution subgrid stresses

for use in data-driven subgrid stress NN development.

(ii) Devise a parametric NN training procedure that incorporates the unsteady flow features.

Previous attempts have either been non-parametric or used time-averaged data to develop

SRS closures.

(iii) Demonstrate that the NN subgrid closure coefficients are insensitive to the cut-off at adequate

levels of resolutions or cut-offs.

(iv) Compare the different options for the timescale to be used in closure modeling.

1.3 Dissertation Outline

The following is the outline for this dissertation. Chapter 2 proposes physics–dictated guide-

lines to improve the physical underpinnings and generalizability of ML turbulence models. This

work is published in New Journal of Physics, 2020 (Taghizadeh et al. [23]). At the current state

of development, data–driven methods work best for interpolation, while application to parame-

ter space outside the training domain is fraught with uncertainty. When a NN–based turbulence

model is used for computing flows of engineering interest, parameter regimes outside the train-

ing domain will likely be encountered. Chapter 3 provides a realistic perspective on the utility of

ML turbulence closures for practical applications and identify areas for improvement in the con-

text of turbulence RANS closure modeling. This work is published in Physics of Fluids, 2021

(Taghizadeh et al. [24]). The development of parametric ML-–enhanced PANS turbulent closures

is presented in Chapter 4. Although the ML—enhanced turbulence closure model development
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framework presented in this Chapter is in the context of PANS, but it is generally applicable to

other SRS methods. The thesis concludes with a summary of all important findings in Chapter 6.
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2. PHYSICAL COMPATIBILITY AND CONSISTENCY CONSIDERATIONS IN

DEVELOPING ML TURBULENCE CLOSURE MODELS 1

Many studies in recent literature aim to enhance the capabilities of turbulence models by in-

corporating data–driven techniques. These methods seek to better utilize the increasingly available

high–fidelity numerical data of turbulent flows along with recent developments in machine learning

(ML) to improve turbulence model predictions in unseen complex engineering flows. In these ap-

proaches, functionals obtained using ML are used within existing turbulence modeling frameworks

to incorporate capabilities that fall beyond the scope of traditional approaches. In principle data–

driven methods may be used to improve model performance at any level of turbulence closure in-

cluding large–eddy simulations (LES), scale–resolving simulations (SRS) and Reynolds–averaged

Navier–Stokes (RANS) methods.

In their seminal work, Sarghini et al. [25] adopted neural networks to develop improved subgrid

scale models for LES of turbulence. Gamahara and Hattori [26], Maulik and San [27], Maulik et al.

[28] and Beck et al. [29] proposed ML–enhanced LES closures using neural networks. Different

ML techniques are employed to enhance RANS turbulence models. Random forest technique

[30] has been used by Wang et al. [31] and Wu et al. [32]. Field inversion and neural networks

techniques are employed to introduce correction factors in RANS modeled transport equations by

Singh and Duraisamy [33], Singh et al. [34], Zhang et al. [13] and Parish and Duraisamy [14].

Galilean invariant Reynolds stress anisotropy models are trained using tensor basis neural networks

by Ling et al. [10]. Explicit algebraic Reynolds stress models have been developed using gene

expression programming (GEP) by Weatheritt and Sandberg [11] and applied to different flows by

Weatheritt and Sandberg [12], Weatheritt et al. [35], Akolekar et al. [36] and Zhao et al. [37].

GEP is also used in unsteady RANS and PANS (partially averaged Navier–Stokes) simulations by

Lav et al. [1]. A review of the important contributions in this area can be found in Kutz [38] and

1Reprinted with permission from “Turbulence closure modeling with data-driven techniques: physical compatibil-
ity and consistency considerations” by Salar Taghizadeh, Freddie D. Witherden and Sharath S. Girimaji, 2020. New
Journal of Physics, 22 (9) : 093023, Copyright [2020] by IOPscience
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Duraraisamy et al. [39].

Incorporating data–driven techniques into the turbulence closure modeling process can have a

transformative influence on the field. While preliminary studies show basis for optimism, more

research is needed to understand the physical underpinnings of data–driven methods in order to

ensure their generalizability to unseen test flows. In order to maximize their impact, data–driven

approaches must leverage the physical understanding and closure modeling knowledge already

incumbent in traditional models. ML can potentially enhance turbulence models at all closure

levels- RANS, SRS and LES. Closure modeling at each level has two sources of inherent limi-

tations: (i) due to the degree of filtering or averaging of the flow field variables; and (ii) due to

the simplified functional form of the closure model. Clearly the RANS framework and associated

model assumptions limit the capabilities of the closure models more than SRS or LES methods.

ML-based training may not overcome these inherent deficiencies, but can lead to the best possi-

ble model subject to the limitations. Two–equation RANS models are still the most widely used

tools in practical flow calculations and any improvement of their capabilities can have significant

impact on engineering applications. For the sake of clarity and contrast, through the remainder of

this Chapter, we denote traditional closures with the prefix PB (to indicate physics–based) and the

novel data–driven approach with the acronym ML (for machine learning).

PB–RANS computations of a turbulent flow involves the solution of a dynamically interacting

system of equations. The two–equation RANS model is often called the lowest–order complete

closure model [40] as it solves independent model equations for length and velocity scales to

compute eddy viscosity. There are three main closure elements in a two–equation RANS model:

algebraic (linear or non–linear) Reynolds stress constitutive relation; a modeled transport (partial–

differential) equation for kinetic energy to provide the turbulence velocity scale; and a modeled

transport (partial–differential) equation for dissipation or turbulence frequency to specify the tur-

bulence length scale. The closure models and coefficients are typically developed in canonical

flows that highlight individual turbulence processes. For reliable predictive computations of com-

plex flows, the individual models must be independently accurate, and even more importantly,
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the dynamical interplay between the various equations must be compatible and consistent with

overall flow physics. In PB–methods, the required compatibility between the various equations is

accomplished (to the extent possible) by performing a dynamical system analysis. The fixed–point

behavior at various asymptotic limits is examined for consistency with known physics. Such a

systematic strategy assures some degree of generalizability to unseen flows.

Data–driven approaches for two–equation RANS methods proposed in literature employ ma-

chine learning (ML) methods for certain closures and retain traditional models for other aspects.

For example Ling et al. [10] and Weatheritt and Sandberg [11, 12] use ML for obtaining improved

Reynolds stress constitutive relations while the modeled transport equations for turbulence length

and velocity scales are retained without changes. On the other hand, Zhang et al. [13] and Parish

and Duraisamy [14] use ML to optimize transport equation coefficients for best performance in

flows of their interest without changing Reynolds stress constitutive relation. Thus the data–driven

closure framework represents a mix of ML and traditional (PB) models.

A major challenge in developing ML–based turbulence models is to ensure the generalizability

of the closures to unseen flows in order to perform predictive computations of complex engineering

flows. The objective of this study is to address the issue of ML closure generalizability in the

context of RANS modeling. We submit that generalizability can be most expeditiously achieved by

incorporating key physical principles and closure tenets already incumbent in traditional models.

Towards this end, we examine three key ML modeling elements in this Chapter:

1. Physical Compatibility: In the PB–RANS model the various coefficients are carefully or-

chestrated to yield reasonable and holistic behavior in a set of canonical cases. Any ML–

based modification of a subset of these coefficients can have deleterious effect on the overall

computed outcome. Therefore, the importance of ensuring compatibility between ML func-

tionals and PB elements is investigated. Constraints to impose consistency are developed.

2. Training Consistency: ML training requires input features that are currently obtained from

baseline RANS models which employ PB closure coefficients. Then, the ML training pro-

duces an improved functional for some of the same closure coefficients. In current training
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methods, there is no explicit process to ensure consistency between the a priori PB closure

coefficients that produce the input features and the a posteriori ML values of the very same

coefficients. The consequences of such inconsistency is examined and means of enforcing

consistency are proposed.

3. Loss function formulation: The success of the ML training approach hinges on the formu-

lation of an appropriate loss function. The optimal choice of the flow statistics contributing

to the loss function is examined.

It must be reiterated that the goal of the study is to propose physics–dictated guidelines to improve

the physical underpinnings and generalizability of ML turbulence models.

The Chapter is organized as follows. The RANS closure framework is discussed in Sec. 2.1.

Key challenges in applying ML techniques to two–equation turbulence model are identified in

Sec. 2.2. A closed loop training framework is proposed in this section. Section 2.3 formulates

proof–of–concept studies and demonstrates importance of defining appropriate loss function for

ML training. The results and inferences are presented in Sec. 2.4. The conclusions of this study

are summarized in Sec. 2.5.

2.1 RANS Closure framework

The Navier–Stokes equations for a viscous and incompressible flow can be written as,

∂Vi
∂xi

= 0,
∂Vi
∂t

+ Vj
∂Vi
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2Vi
∂xj∂xj

, (2.1)

where Vi is the i -th component of instantaneous velocity vector, p is the instantaneous pressure,

ρ is the density, ν is the kinematic viscosity and i , j = 1, 2, 3. Upon applying the Reynolds

averaging operator [41] to the Navier–Stokes equations, RANS equations for incompressible flows

are obtained:

∂Ui

∂xi
= 0,

∂Ui

∂t
+ Uj

∂Ui

∂xj
= −1

ρ

∂P

∂xi
− ∂⟨uiuj⟩

∂xj
+ ν

∂2Ui

∂xj∂xj
, (2.2)
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where Ui is the i -th component of mean velocity vector and P is the mean pressure. The Reynolds

stress tensor (⟨uiuj⟩) in this equation is the subject of closure modeling. This symmetric, second

order tensor can be decomposed into isotropic and anisotropic (bij) parts,

⟨uiuj⟩ = −τij =
2

3
δijk + 2kbij, k =

1

2
⟨ukuk⟩, (2.3)

where k is the turbulent kinetic energy, and δij is the Kronecker delta. In Reynolds stress closure

modeling (RSCM) approach, modeled transport equations are solved for all independent compo-

nents of Reynolds stress tensor [42, 43, 44, 3].

2.1.1 Two–equation RANS

In the two–equation RANS approach, which is the subject of this study, a constitutive relation-

ship for Reynolds stress tensor is postulated in terms of the strain and rotation rates of the mean

flow field. Modeled transport equations are solved for turbulence velocity and length scales to

yield eddy viscosity. We now describe each of the closure elements of the two-equation RANS

approach.

Reynolds stress constitutive relationship: Using representation theory, a general form of the

constitutive relationship for the normalized anisotropy tensor can be written as [45],

bij(sij, rij) =
10∑
n=1

Gn(λ1, ..., λ5, k, ϵ)T
(n)
ij , (2.4)

in terms of ten basis tensors T (n)
ij and their scalar invariant functions λ1, ..., λ5. Here ϵ is the

turbulent dissipation. The basis tensors and scalar invariants are known functions of the normalized

mean strain (sij) and rotation rates (rij) [45],

sij =
k

ϵ
Sij, rij =

k

ϵ
Rij, (2.5)

where

Sij =
1

2
(
∂Ui

∂xj
+
∂Uj

∂xi
), Rij =

1

2
(
∂Ui

∂xj
− ∂Uj

∂xi
). (2.6)
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The scalar coefficient G of each basis tensor, Tij must be modeled. Through the reminder of

this study the Gn are referred to as constitutive closure coefficients (CCC). Different Reynolds

stress constitutive relations of varying degree of complexity have been proposed in literature. The

simplest constitutive relation is the Boussinesq model [40] given by,

bij = −Cµsij, (2.7)

and turbulent viscosity (νt) can be written as,

νt = Cµ
k2

ϵ
. (2.8)

In this model, the CCC are: G1 = −Cµ = −0.09 and Gn = 0 for n > 1 [46]. More complex

non–linear eddy viscosity models [47, 48] and algebraic Reynolds stress models (ARSM) [45, 49,

50, 51] have also been proposed in literature. Various non–linear and ARSM models determine the

CCC using different approaches to match equilibrium anisotropies in various flows.

The goal of ML–enhancement is to learn ML functionals for CCC using high–fidelity data in

flows of choice.

Modeled transport equations: The required turbulence velocity and length scales are ob-

tained by solving the modeled transport equations for turbulent kinetic energy (k) and dissipation

(ϵ) or specific dissipation rate (ω = ϵ
β∗k

). The standard k − ω modeled transport equations are:

∂k

∂t
+ Uj

∂k

∂xj
= τij

∂Ui

∂xj
− β∗kω +

∂

∂xj

[
(ν + σ∗νt)

∂k

∂xj

]
,

∂ω

∂t
+ Uj

∂ω

∂xj
= α

ω

k
τij
∂Ui

∂xj
− βω2 +

∂

∂xj

[
(ν + σνt)

∂ω

∂xj

]
.

(2.9)

Here α, β, β∗, σ and σ∗ are the transport closure coefficients (TCC). In traditional modeling, the

values of TCC are determined to satisfy known asymptotic or equilibrium behavior in canonical

flows. Each calibration flow (discussed below) is chosen to highlight a key turbulence process.

Decaying Isotropic Turbulence (DIT): Decaying homogeneous isotropic turbulence is the sim-
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plest non–trivial turbulent flow wherein production and transport terms vanish and there is no spa-

tial variation of the flow statistics. This case is used to determine the ratio β/β∗ from the decay rate

of turbulent kinetic energy [40]. The modeled transport equations for k and ω (Eq. (2.9)) reduce

to:
∂k

∂t
= −β∗kω,

∂ω

∂t
= −βω2, (2.10)

leading to the following asymptotic power–law decay of kinetic energy and turbulence frequency:

k(t) = k0

( t
t0

)−n

, ω(t) = ω0

( t
t0

)−1

, where n =
β∗

β
. (2.11)

In the above equation k0, ϵ0 and ω0 are values for k, ϵ and ω at the reference time t0 = nk0/ϵ0. It is

known from a variety of experiments and DNS that the kinetic energy power–law decay exponent,

n takes a value in the range 1.15 < n < 1.45. In standard k−ω model, the ratio β/β∗ is determined

by selecting n = 1.25,
β

β∗ =
1

1.25
= 0.8. (2.12)

Equilibrium behavior of homogeneous turbulence: In a homogeneous flow, production term

is non–zero but all transport terms still vanish. In energetic homogeneous turbulent flows three key

dimensionless quantities – turbulence frequency (ω), production–to–dissipation ratio (P/ϵ) and

mean–to–turbulence frequency ratio (Sk/ϵ) – evolve to their respective equilibrium states. The

equilibrium values of the these quantities can be related to the unclosed model coefficients (TCC)

by performing a fixed–point analysis of Eq. (2.9):

∂ω

∂t
= α

ω

k
P − βω2 = 0. (2.13)

Invoking the definition of the turbulence dissipation (ϵ = β∗kω), Eq. (2.13) can be simplified to

yield,
P

ϵ
=

β

αβ∗ . (2.14)
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Employing Eq. (2.8), the production term (P) can be written as,

P = τij
∂Ui

∂xj
= νtS

2 =
Cµk

2

ϵ
S2 =

−G1k
2

ϵ
S2, (2.15)

where S is defined as S ≡
√

2SijSij . Equation (2.15) can be rewritten as,

P

ϵ
= −G1

(Sk
ϵ

)2
. (2.16)

Using Eqs. (2.14) and (2.16), the following relationship can be obtained,

(Sk
ϵ

)2
=

β

−G1αβ∗ . (2.17)

The fixed–point solutions relate α and β to the equilibrium values of Sk/ϵ and P/ϵ. From a suite

of experiments and numerical simulations of homogeneous turbulence, it is known that the range

of mean–to–turbulence frequency ratio is 4.0 < Sk/ϵ < 6.5 [46]. The production–to–dissipation

ratio range is 1.5 < P/ϵ < 2.0 [46]. In standard k − ω model, Sk/ϵ = 4.13 and P/ϵ = 1.54 are

selected to determine the values for α and β coefficients using Eqs. (2.14) and (2.17).

Body forces and other factors such as reference frame rotation and streamline curvature can

change the above equilibrium behavior of turbulence. For turbulence in a rotating frame, Speziale

et al. [52], demonstrate that dissipation and eddy viscosity (values of CCC) must vanish asymptot-

ically in the limit of infinite rotation. Thus there are many implied or explicit relationships between

TCC and CCC under different conditions. The exact nature of the relationship between TCC and

CCC will depend on the order of the constitutive relation (e.g., linear, quadratic, cubic) and the

complexity of flow (e.g., rotating reference frame) and type of flow.

Equilibrium behavior of log–layer: Turbulent transport model coefficients (σ and σ∗) are

developed from the analysis of equilibrium boundary layer [40]:

σ =

√−G1(
β
β∗ − α)

κ2
. (2.18)
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In the above κ is von Kármán constant. Experiments suggest that the value of this constant is

in the range 0.384 < κ < 0.41 [53]. It should be noted that Eq. (2.17) leads to the correct

fixed point behavior of Sk/ϵ and P/ϵ in homogeneous flows. On the other hand, Eq. (2.18) is a

transport constraint and leads to the mean flow log–law equilibrium profile in boundary layers. In

homogeneous flows, the constraint due to Eq. (2.18) is immaterial as the transport is negligible. In

channel and boundary layers, if only Eq. (2.18) is used, the log–layer behavior is guaranteed but

not correct Sk/ϵ and P/ϵ values. When both constraints are imposed in tandem, the dynamical

system tends to the correct behavior of the log–layer, Sk/ϵ and P/ϵ.

In the equilibrium log–layer, the Reynolds shear stress and kinetic energy are related as follows

[40],

τxy =
√
β∗ρk. (2.19)

It has been shown β∗ = 0.09 leads to a log–layer solution consistent with experimental measure-

ments [40]. Based on the above analyses, the values of TCC in the standard k–ω model (assuming

G1 = −0.09) are specified as:

α = 0.52; β = 0.072; β∗ = 0.09; σ = σ∗ = 0.5. (2.20)

In the above, the von Kármán constant is taken to be 0.41 [46]. It is evident from the above discus-

sion that the transport equation closure coefficients (TCC) and the the Reynolds stress constitutive

equation coefficients (CCC) are strongly interconnected as a result of underlying physical charac-

teristics of turbulence. Any change in a subset of coefficients without corresponding modification

of others can lead to erroneous model behavior. It is essential that any closure procedure must

make allowance for these physics–dictated relationships in the model development process.

While the two–equation models with advanced Reynolds stress constitutive relations perform

adequately in some applications of engineering interest, the models are generally found wanting

in flows which include complexities not accounted for in the model derivation procedure, e.g.,

non–equilibrium turbulence states, largescale unsteadiness, underlying instabilities, and spatially–
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developing features.

2.2 Data–Driven frameworks

To improve the performance of two–equation RANS models in complex flows, several recent

studies have considered replacing some traditional model elements by trained functionals obtained

from ML. Proposed modifications include improving the Reynolds stress constitutive relations

as described in [10, 11, 12, 35, 36, 1, 37], and optimizing coefficients of the modeled transport

equations as given in [54, 55, 13, 14]. In both instances the resulting system of equations are

composed of traditional closure elements and data–derived functionals obtained from ML.

As mentioned in the Introduction, we submit that key principles and closure constraints incum-

bent in PB closures can expedite the ML training process leading to optimal neural networks or

other data–driven functionals. We propose a three–step closure development process to increase

the physical–fidelity of the ML closures: (i) seek compatibility between the different elements of

the ML model system by imposing selected constraints from PB model development; (ii) ensure

that the ML training process effectively enforces the chosen constraints and preserves the char-

acteristics of the dynamical system of equations; and (iii) formulate the loss function (for ML

training) on the basis of physical significance of the contributing flow features. In what follows we

describe the current open loop ML training framework employed in literature. Then, we identify

shortcomings and propose potential improvements.

2.2.1 Open loop framework

The ML approaches in many current studies employ open loop training framework. Here we

briefly describe the approach adopted by Ling et al. [10]. A schematic of the approach comprising

of training and predictive computation stages is shown in Fig. 2.1. For training (building) the ML

functional, high–fidelity data of the Reynolds stress tensor (⟨uiuj⟩) or the normalized anisotropy

tensor (bij) is obtained from direct numerical simulations (DNS) or LES of chosen flows. Basis

tensors (T (n)
ij ) and input features for training ML functional are derived from the baseline (tra-

ditional) RANS computations. These include contributions from the solutions of the mean flow
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equations (sij and wij) along with k and ω modeled transport equations. The ML functional train-

ing is then undertaken to identify the ‘best possible’ Reynolds stress constitutive relation (optimal

values of CCC or Gn) by minimizing a suitably defined loss function simultaneously over all the

training cases. This leads to the values of CCC that are modified from those of the baseline RANS

case. However, the closure coefficients of the modeled transport equations (TCC) are retained at

the original values.

Predictive computations of previously unseen flow cases involve the following steps. In the

first step, baseline RANS computation is performed once again to generate the basis tensors and

features – mean flow strain rate, rotation rate, turbulent kinetic energy and dissipation fields. Then

the ML functional is invoked to yield the values of CCC corresponding to the input features from

the baseline case. The resulting ‘ML constitutive relation’ is used within the RANS framework

(in momentum equation and turbulent kinetic energy production term) to compute an updated flow

field. It is anticipated that updated flow field will represent an improvement over the baseline

RANS computation. This ML–RANS procedure can be considered open loop as there is no feed-

back from the ML output to the training process.

The open loop framework has two potential shortcomings, especially if the ML modification

to the CCC is large:

1. Physical incompatibility: The ML-trained values of CCC may not be compatible with the

values of TCC – see for example Eqs. (2.17) and (2.18). This incompatibility can possibly

lead to unphysical behavior of the ML model, even if the flow variables in the loss function

behave reasonably well. To improve compatibility, one or both of the Eqs. (2.17) and (2.18)

can be used to modify the values of TCC to be in accordance with ML values of CCC. How-

ever, over–constraining the coefficients may lead to other drawbacks. This will be discussed

in the later sections.

2. Training inconsistency: The baseline model (with standard CCC) is used to generate input

features for ML training. The training process produces a functional for CCC which is used

for predictive computations. The values of CCC used to generate the input features for
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Figure 2.1: Open loop framework

training will not be the same as those obtained from the trained ML functional. Thus there

is inherent inconsistency between a priori and a posterior values of CCC which can result

in change in the dynamical character of the system of equations. As a result the fixed–point

behavior of quantities not included in the loss function can be significantly different. The

inconsistency is exacerbated if the values of TCC not changed as it may lead to violation

of PB compatibility constraints. It is important to improve the consistency between a priori

and a posteriori values of the coefficients.

In summation, the physical inconsistency and incompatibility of the current open loop training

procedure can adversely affect the generalizability of the ML–enhanced turbulence closure models

to unseen flows.

2.2.2 Closed loop framework

It is desirable to incorporate dynamical systems analysis into the ML training process to ensure

consistency and compatibility between the various coefficients. However, due to the implicit na-

ture of the learned functionals, analytical approaches are not straightforward. Instead, we propose

embodying some degree of physical compatibility and training consistency into the modeling pro-
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cess by adopting a closed loop training framework. A schematic of one such framework is given

in Fig. 2.2.

Training procedure: The first few steps of the closed loop training procedure are similar

to those of the open loop framework. Baseline RANS produces the initial features which are

used in conjunction with high–fidelity data to build the initial ML functional for CCC. In the

open loop process, this functional is used directly in predictive computations. However, in the

closed loop procedure, several additional steps are involved as shown in the upper schematic in

Fig. 2.2. First, the values of TCC are modified (e.g., using Eq. (2.18)) for compatibility with

new values of CCC. If the new and baseline CCC and TCC are nearly identical (based on some

convergence criteria), then the training process is complete. If not, an iterative looping procedure

is performed as follows. A RANS computation is performed with the new (Loop–1) CCC and TCC

leading to updated values of the input features for ML training. These updated features and high–

fidelity data are used to re–train ML functional. In re–training process, the learned parameters

(e.g., weights and biases of neurons in neural networks technique) in Loop–1 are used to initialize

the ML algorithm. This process of reusing and transferring of the prior knowledge is similar to

transfer learning [56]. Using the re–trained values of CCC, the TCC are modified once again

using PB compatibility constraints (e.g., Eq. (2.18)). If the re–trained (Loop–2) and previous

(Loop–1) values of CCC and TCC are not nearly the same, the looping sequence continues until

convergence is achieved. The converged ML functional for CCC and corresponding TCC is then

deemed suitable for use in predictive ML–RANS computations. Thus in this closed loop training

framework, the iterative looping process ensures consistency between the system of equations that

produces the input features and the ML functional that produces the closure coefficients (CCC and

TCC) used in the equations. This consistency amongst the various closure coefficients ensures

preservation of the underlying physical characteristics leading to improved generalizability.

Predictive computations: A schematic of the predictive closed loop computation of unseen

flows is shown in Fig. 2.2. First, baseline RANS is performed to provide the initial features –

mean flow strain rate, rotation rate, turbulent kinetic energy and dissipation fields. Then ML-
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Figure 2.2: Closed loop framework

RANS computation is performed invoking the closed loop trained ML functional to repeatedly

update the values of CCC and TCC. With enhanced physical compatibility and consistency of the

closure coefficients in closed loop trained ML functional, it is expected that converged flow field

will represent an improvement over the baseline RANS or open loop computations.

The potential shortcomings of open loop training and the proof–of–concept of the closed loop

framework are examined next in a simple turbulent flow.

2.3 Proof–of–concept studies

In this section we formulate simple test studies to investigate the ML training shortcomings

and possible remedial measures discussed in the previous section. The objectives of the proof–

of–concept studies are to examine: (i) the inconsistencies that can rise from open loop training

framework; and (ii) the improvements enabled by imposing PB compatibility constraints and the

closed loop training procedure. To investigate the introduced concepts we examine ML training

frameworks in three types of flows:

22



1. Flows in which baseline RANS performs reasonably well.

2. Flows in which baseline Reynolds stress constitutive relation is incorrect.

3. Flows in which baseline modeled transport equations are inadequate.

The choice of flows for the above demonstration must be made judiciously. In many complex flows

involving separation and coherent structures, the very premise of a Reynolds stress constitutive

relation is questionable due to dominant spatial and temporal non–local effects. Therefore, to

examine ML training frameworks (open loop vs. closed loop) a prudent choice would be a simple

flow in which the two–equation RANS approach is reasonably valid. Study of such flows is of

value as any training process that does not perform well in simpler flows will be unsuitable for

complex flows.

The turbulent channel flow has long served as an important benchmark case for RANS and

higher–order closure model development [40]. Many simple two–equation RANS models have

been calibrated to yield a good agreement for the mean flow profile and the turbulent shear stress.

However, the anisotropy of the turbulent normal stresses are not very well captured if Boussinesq

constitutive relation is used. Anisotropic eddy viscosity models can improve the prediction of

turbulence normal stresses. Nevertheless, the standard k–ω model discussed in Sec. 2.1 will serve

as the RANS model. The goal of the first study is to examine if the ML training of the inadequate

standard model can lead to an improved prediction of the normal components of anisotropy tensor.

Rather than use other more complex flows for the second and third studies, we continue to use

the channel flow. For the second study, to emulate the effect of an inadequate Reynolds stress

constitutive relation, the standard values of CCC are modified to unphysical values. The aim of

the second study is to examine if the ML training process will recover the correct values of CCC.

For the third study, standard TCC are modified but the values of CCC retained intact. Thence, we

will determine if the ML training process will lead to reasonable predictions. Thus the baseline

models used in the second and third studies are intentionally degraded k–ω models. If the ML

training process is adequate, then in second and third studies, the ML models should overcome

the incorrectly specified coefficients to recover the correct closure coefficients and yield accurate
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results.

2.3.1 Loss function formulation

The success of ML–RANS computations depends on the formulation of the loss (objective)

function used for optimization of the model coefficients during the ML training process. In this

study we seek a ML functional for the Reynolds stress constitutive relationship. Thus there are two

choices of labels for defining the loss function – normalized anisotropy tensor (bij) or Reynolds

stress tensor (⟨uiuj⟩).

If the loss function in ML algorithm is based on normalized anisotropy tensor [10], ML–

enhanced turbulence closure model can be expected to reproduce normal components of anisotropy

tensor in the channel flow adequately. However, since RANS model does not necessarily predict

accurate turbulent kinetic energy levels, the final Reynolds stress tensor will not be accurate. In-

correct Reynolds shear stress (⟨u1u2⟩) leads to wrong mean velocity profile and friction velocity.

Indeed, the all important ‘log–layer’ features may also not be accurately captured. Thus formu-

lating the loss function exclusively in terms of anisotropy tensor can lead to errors in computing

other important flow quantities.

Constructing the loss function in terms of Reynolds stress tensor [57] is the other option. This

will certainly lead to an adequate computation of the mean velocity field. However, this can lead

to another important inconsistency. As mentioned earlier, the DNS and RANS kinetic energy

fields can be quite different. Thus the anisotropy predictions can be incorrect. It is evident that

some degree of disparity in the computed and DNS results is inevitable and some compromise is

unavoidable.

We designate the following characteristics as the required elements that must be computed

precisely,

1. Accurate log–law velocity profile.

2. Accurate Reynolds shear stress as it determines production.

3. Accurate normal components of anisotropy tensor.

4. Preserve realizability: ⟨uαuα⟩ ≥ 0.
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In this work, we impose realizability constraint in its most elementary form by requiring the prin-

cipal components of Reynolds stress tensor to be positive semi-definite. In future work, we will

seek to formulate a more comprehensive constraint taking into consideration the physical causes

of realizability violation as discussed in [58, 6].

The objective or mean square error (MSE) loss function for ML training is defined based on

three normal components of anisotropy tensor and Reynolds shear stress,

MSE =
1

4N

N∑
m=1

[ 3∑
α=1

(bαα − b̂αα)
2 +

1

u4τ
(⟨u1u2⟩ − ̂⟨u1u2⟩)2], (2.21)

where predicted outputs of the ML algorithm are denoted by b̂αα, ̂⟨u1u2⟩ and the true DNS values

are shown by bαα and ⟨u1u2⟩. Here, N represents the number of data points. In this definition,

shear stress component is normalized by true DNS value of the friction velocity (uτ ) to ensure a

consistent velocity scale.

Models based on fundamental physical principles can be expected to yield reasonable results

for quantities not invoked in the coefficient calibration process due to holistic nature of calibration.

One of the limitations of data–driven methods is that the accuracy of quantities not involved in

the loss function is unclear. In the computations we will examine the ability of the ML–enhanced

turbulence closure models in predicting important flow quantities not used in the loss function:

production–to–dissipation ratio (P/ϵ) and mean–to–turbulence frequency ratio (Sk/ϵ).

In summary, while turbulent channel flow is a simple benchmark problem, it is ideally suited

for examining important concepts in the development of ML–enhanced turbulence closure models.

2.3.2 Neural networks

Recently, various ML algorithms including neural networks and random forests have been

used for modeling fluid dynamics in general and turbulence in particular. Neural networks have

exhibited superior performance in modeling non–linear and complicated relationships with high–

dimensional data [10]. It has been shown that incorporating Galilean invariant characteristics fur-

ther enhances the generalizability of the neural networks [59]. In this study Tensorflow [60], which
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Figure 2.3: Schematic of the fully connected feed–forward neural network

is a widely used and reasonably well documented library, is employed to develop ML models. A

fully connected feed–forward neural network is trained using backpropagation with gradient de-

scent method. The schematic of the selected neural network architecture is shown in Fig. 2.3. To

control the overfitting of the neural network during the training process, a L2–norm regulariza-

tion term is imposed in the loss function (also known as Ridge–regression [61]) to constrain the

magnitudes of the learning parameters (weights and biases of neurons). A grid search approach is

adopted for hyperparameter optimization. The details of the optimized network architecture used

in this work are given in Table 2.1. The neural network library, Tensorflow is linked to open source

CFD code OpenFOAM [62] using the provided C application programming interface (API).

2.4 Results

The computations in this section are aimed at highlighting the closed loop training process

and contrasting the difference between open loop model (OL–Model) and closed loop model (CL–

Model) in predictive computations. The demonstration is performed in a turbulent channel flow

which is one of the simplest non–trivial cases of closure modeling interest. With this flow choice

the inherent limitations of two–equation RANS closure paradigm that affect more complicated

cases do not obfuscate the ML training inadequacies. The standard two–equation k − ω model is
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Table 2.1: Neural network hyperparameters

Name Value
Number of hidden layers 3
Number of nodes per layer 3
Activation function Elu
Optimization algorithm Adam [63]
L2–norm penalization coefficient 7× 10−3

Learning rate 1× 10−4

Initialization function Xavier normal

used without near–wall low Reynolds number corrections. The low Reynolds number corrections

are precluded, as one of the goals of the study is to determine if the ML training can enable

the Reynolds stress constitutive model to capture these effects. The transport and constitutive

equations describing the standard model are given in Sec. 2.1 and further details are available in

[40].

Given that the channel flow is statistically two–dimensional, the constitutive equation we seek

to train in this study requires only four basis tensors [46],

bij = G1(sij)+G2(sikrkj−rikskj)+G3(sikskj−
1

3
δijsmnsnm)+G4(rikrkj−

1

3
δijrmnrnm). (2.22)

Consideration is restricted to two scalar input features, λ1(= smnsnm) and k
ων

to determine the ML

functional for CCC, i.e., Gn = gn(λ1,
k
ων
). In the numerical formulation, the linear term G1(sij) is

treated implicitly in accordance with the suggestion of Wu et al. [64].

Datasets used in training, validation and predictive calculations are shown in Table 2.2. For

training purposes, DNS data [65] within the wall–normal distance range 0 < y/h < 0.8 is em-

ployed, where h is the channel half–width. The points in the regions near the channel center

(y/h > 0.8) are excluded to prevent the model coefficients from becoming unphysical as stresses

asymptote to zero [18].

We examine the use of two PB compatibility constraints. The relationship given in Eq. (2.18)

is used in all baseline models and CL–Models. Not imposing this constraint leads to poor ML–
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Table 2.2: Selected datasets

Reτ Reb Purpose
550 10,000 validation of the ML model
1000 20,000 training of the ML model
5200 125,000 predictive computation

Table 2.3: Baseline model coefficients used in different studies

α β β∗ σ σ∗ G1 G2 G3 G4

Case-1 0.52 0.072 0.09 0.5 0.5 -0.09 0 0 0
Case-2 0.52 0.072 0.09 0.23 0.23 -0.045 0 0 0
Case-3 0.52 0.054 0.09 0.143 0.143 -0.09 0 0 0

RANS behavior in the log–layer of the channel. The effect of imposing PB constraint implied by

Eq. (2.17) is also investigated.

2.4.1 Investigation of the closed loop training approach

As mentioned in Sec. 2.3, the predictive capabilities of the ML-enahnced models are investi-

gated in three different scenarios. Details of the baseline models employed in these studies are

given in Table 2.3. Here we use the term baseline model to describe the RANS model which

initiates the ML procedure. The phrase standard model indicates the original PB model. The

computations of each study are directed toward answering three questions:

1. To what extent are the standard values of CCC (or Gn) recovered by ML training when they

are intentionally altered in baseline model?

2. Do the trained ML values of CCC lead to marked improvement in anisotropy predictions?

3. How well does ML–RANS perform toward capturing quantities of interest (QoI) not in-

cluded in definition of the loss function?

2.4.1.1 Case–1: Standard model

In this study the standard k−ω closure serves as the baseline model. The model is then trained

with closed loop procedure. Computed results obtained by the baseline model and CL–Model are
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compared with DNS in Fig. 2.4. It is seen that training the ML algorithm over multiple loops

leads to gradual decrease in the magnitude of the G1 coefficient and it converges to a value around

0.083. Some variation of G1 in the wall–normal distance is seen. Other coefficients converge to

non–zero functions. Marked improvements in computing normal components of anisotropy tensor

are observed with CL–Model and turbulent shear stress is accurately reproduced. The results of the

baseline model and CL–Model for other quantities of interest (QoI), i.e., turbulent kinetic energy

(k), mean–to–turbulence frequency ratio (Sk/ϵ) and production–to–dissipation ratio (P/ϵ) are

nearly identical. No significant improvements are observed near the wall with CL–Model. This is

to be expected as the baseline model (in this case standard k− ω model) is tuned and calibrated to

yield good agreement of these QoI.

2.4.1.2 Case–2: Modified CCC model

In many applications of interest, the baseline Reynolds stress constitutive equation can be quite

inadequate due to incorrect values of CCC. For such cases, it is expected that ML training with

high–fidelity data can lead to a ML functional for CCC that is significantly more accurate. Clearly,

it is important to establish the capabilities of ML training procedure to recover from a poor baseline

model. Rather than seek a flow in which the standard model is not correct, we construct the scenario

by intentionally modifying the standard Boussinesq model coefficient (G1) (see Table 2.3).

Computation results of the baseline model and CL–Model for this case are presented in Fig. 2.5.

It can be seen that the baseline model with modified CCC is inaccurate for most of the QoI in

turbulent channel flow. By performing multiple loops of training, initially incorrect G1 coefficient

(= -0.045) used in baseline model recovers to a more reasonable value G1 ∼ −0.074. Other CCC

converge to non–zero functions similar to those in Case–1. The CL–model leads to improved

computations of turbulent shear stress and normal components of anisotropy tensor. Other QoI

such as mean velocity, Sk/ϵ and P/ϵ that have not been used in definition of the loss function

are also significantly better than the baseline model. It should be noted that the TCC constraint

for turbulent transport model coefficients σ and σ∗ (Eq. (2.18)) is imposed in baseline model and

CL–model. The results without this constraint are significantly worse. Thus the approach of
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Figure 2.4: Closed loop training for Case–1 at Reτ = 1000, (a) CCC, (b) turbulent shear stress
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(i) enforcing PB compatibility constraint; and (ii) closed loop training framework are critically

important for ML model to recover from an inaccurate baseline model.

2.4.1.3 Case-3: Modified TCC model

In many applications, the coefficients in the modeled transport equations (TCC) can be inac-

curate. To manufacture this effect, a key TCC, β coefficient is modified from the standard value

as shown in Table 2.3. This case is of interest as the incorrect closure coefficient is not directly

involved in the ML training process.

The computed results of various quantities by the baseline model and CL–Model are compared

against DNS data in Fig. 2.6. To compensate for the altered TCC, ML process changes CCC away

from their correct values. For instance, the value ofG1 drifts away from the ‘correct value’ of about

−0.09 to about −0.42. Despite the incorrect CCC, the anisotrpoies and turbulent shear stress are

captured reasonably well with CL–Model. Furthermore, the mean velocity and P/ϵ profiles are

also adequately computed. It must be noted that these QoI are directly related to the loss function.

This exhibits the strength of the closed loop training framework. Despite unphysical closure model

coefficients, the training process provides reasonable prediction of QoI included in the optimization

process. The unphysical closure coefficients leads to poor predictions of other quantities such as

turbulent kinetic energy and Sk/ϵ. Thus one of the important challenges in ML training procedure

is to ensure reasonable behavior of QoI not related to the loss function. In all three cases studied

so far, only one PB compatibility constraint (Eq. (2.18)) is imposed in ML training procedures. In

the next subsection, we demonstrate that the behavior can be improved by imposing additional PB

compatibility constraints.

2.4.2 Open loop vs. closed loop frameworks

The purpose of this set of computations is to compare and contrast open loop and closed loop

frameworks. Again, for the sake of simplicity and clear illustration, we use a channel flow at high

Reynolds number as the test flow. Any difference between the two frameworks exhibited in this

canonical flow will manifest more accurately in flows of practical interest. ML models trained at
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Figure 2.5: Closed loop training for Case–2 at Reτ = 1000, (a) CCC, (b) turbulent shear stress
and normal components of anisotropy tensor, (c) other QoI.
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Figure 2.6: Closed loop training for Case–3 at Reτ = 1000, (a) CCC, (b) turbulent shear stress
and normal components of anisotropy tensor, (c) other QoI.
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Reτ = 1000 are used to perform predictive simulations of channel flow at Reτ = 5200 (see Table

2.1). Three baseline models introduced in Subsec. 2.4.1 are trained with open and closed loop

procedures. In these computations, one or both of the PB compatibility constraints (Eqs. (2.17)

and (2.18)) are used in the closed loop framework. It should be noted that open loop framework

does not consider any PB compatibility constraints.

2.4.2.1 Case–1: Standard model

The results obtained with baseline and ML models trained with different frameworks along

with DNS data for channel flow at Reτ = 5200 are presented in Fig. 2.7. As expected, the baseline

model (in this case standard k − ω model), reasonably captures most of the QoI in channel flow

even at high Reynolds number. However, the normal components of anisotropy tensor are not

well captured as the baseline model employs the isotropic Boussinesq constitutive relation. Both

OL–Model and CL–Model result in nonlinear anisotropic constitutive relations. This leads to

significant improvement in computation of normal components of anisotropy tensor with both ML

training frameworks.

2.4.2.2 Case–2: Modified CCC model

The results of predictive simulations using the OL–Model, CL–Model and modified CCC base-

line model are compared with DNS data for channel flow at Reτ = 5200 in Fig. 2.8. As expected,

the baseline model results are poor for most QoI. The magnitude of turbulent shear stress is sig-

nificantly lower for the baseline model due to the small magnitude of the G1 coefficient. In turn,

this leads to steeper growth of the mean velocity in log–layer. Due to the steeper mean velocity

gradient, Sk/ϵ is also high in most parts of the channel. Next, we examine the OL–Model results.

The OL-Model trained with one–step training process over–corrects the G1 value for channel flow

at higher Reynolds number as illustrated by the larger magnitudes of Reynolds shear stress. As a

consequence, the mean velocity gradient in the log–layer is less steep than the DNS profile. The

various anisotropies are better captured than in the baseline model. Finally, we investigate the

CL–Model. Due to the multi–step training procedure, the value of G1 is reasonably accurate for
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Figure 2.7: Predictive computations with different models for Case–1 at Reτ = 5200, (a)
turbulent shear stress and normal components of anisotropy tensor, (b) other QoI.
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channel flow at Reτ = 5200. This is reflected in the precise computation of Reynolds shear stress,

mean velocity and Sk/ϵ profiles. The normal components of anisotropy tensor are also well cap-

tured. The production–to–dissipation ratio (P/ϵ) is reasonably captured along with other QoI by

CL–Model due to the imposition of the TCC constraint for turbulent transport model coefficients

σ and σ∗ (Eq. (2.18)). Clearly, the CL–Model leads to markedly improved and consistent results.

2.4.2.3 Case–3: Modified TCC model

Here we present the predictive computations of the channel flow at Reτ = 5200 with modified

TCC baseline model and ML models trained with open loop and closed loop frameworks. The

results of ML-RANS simulations using OL–Model and CL–Model are plotted against baseline

RANS and DNS data in Fig. 2.9. It is seen that baseline model severely underpredicts the magni-

tude of turbulent shear stress. As a result, the mean velocity profile exhibits extended buffer region

and late onset of log–law behavior. The turbulent kinetic energy level is much smaller than DNS.

The OL–Model shows significant improvement in Reynolds shear stress and the mean velocity

profile moves closer to DNS. The magnitude of normal components of anisotropy tensor are still

low and Sk/ϵ behavior is worse than the baseline model. The CL–Model shows the best agreement

with DNS for Reynolds shear stress and normal components of anisotropy tensor. The mean ve-

locity profile exhibits excellent match with DNS. However, for turbulent kinetic energy and Sk/ϵ,

the agreement is poor. The CL–Model exhibits the best prediction characteristics for quantities

included in the loss function. However, this improved behavior comes at the cost of poor behavior

of QoI not included in the loss function. In what follows, we examine how imposing additional

PB compatibility constraints in closed loop training framework can further enhance the predictive

capabilities of the ML-RANS for this case.

2.4.2.4 Two PB compatibility constraints

In all of the CL–Model results presented so far, only one PB compatibility constraint (Eq. (2.18))

was enforced between CCC and TCC. As mentioned earlier, this constraint is critically important

for two reasons: (i) obtaining the correct log–layer slope; and (ii) yielding P = ϵ in the log–layer.
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Figure 2.8: Predictive computations with different models for Case–2 at Reτ = 5200, (a)
turbulent shear stress and normal components of anisotropy tensor, (b) other QoI.
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Figure 2.9: Predictive computations with different models for Case–3 at Reτ = 5200, (a)
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38



We now demonstrate the predictive capability of CL–model which is trained using closed loop

training framework with two PB compatibility constraints, Eqs. (2.17) and (2.18). Case–3 serves

as the baseline model for this study. The results of predictive simulations using baseline model and

CL–Model with two–constraints are compared with DNS data for channel flow at Reτ = 5200 in

Fig. 2.10. The values of CCC obtained with CL–Model are exhibited in the first column of the fig-

ure. The G1 values produced by CL–Model with two–constraints for this case are only about 10%

higher in magnitude than the standard value of 0.09. Note that in the studies shown in the previous

subsection, the G1 values for Case–1 and Case–2 were about 10 ∼ 15% lower in magnitude. The

other values of CCC from CL-Model with two–constraints are quite close to those in Case–1 and

Case–2, Figs. 2.4 and 2.5. Thus CL–Model with two–constraints leads to adequate recovering of

closure coefficients. The Reynolds shear stress and normal components of anisotropy tensor from

the CL–Model with two–constraints are in good agreement with DNS data. The mean velocity

profile is well captured. The production–to–dissipation ratio is also in reasonable agreement with

data. This is to be expected as a consequence of enforcement of the first PB compatibility con-

straint. The benefit of imposing the second PB compatibility constraint is evident from the profile

of Sk/ϵ. There is a significant improvement in the predicted profile compared to the Case–3 with

one PB compatibility constraint.

Overall, the results presented in this section provides evidence for the importance of (i) closed

loop training framework; and (ii) imposition of appropriate PB compatibility constraints. Although

the demonstration has been provided only in the case of the simple channel flow, internal consis-

tency (closed loop training) and physical compatibility (CCC and TCC constraints) will be even

more important in complex engineering flows.

2.5 Conclusion

Turbulence models which incorporate machine learning (ML) techniques into the closure scheme

have the potential to transform the computation of complex flows of practical interest. In principle,

ML–enhancement can improve modeling capabilities at all closure levels ranging from RANS to

LES. ML–enhanced RANS is of particular interest as it can have an immediate impact on engi-
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for Case–3 at Reτ = 5200, (a) CCC, (b) turbulent shear stress and normal components of

anisotropy tensor, (c) other QoI.
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neering applications. To enable the development of ML models that are generalizable to unseen

flows, we suggest that it is important to infuse into ML models key physical principles and closure

tenets incumbent in physics–based (PB) models.

The traditional PB–RANS model equations constitute a dynamical system, wherein the closure

coefficients are carefully calibrated to yield reasonable results in a set of benchmark flows. To

ensure some degree of generalizability to unseen flows, the relationships between various closure

coefficients are orchestrated to yield reasonable fixed–point and bifurcation behavior in different

asymptotic limits of turbulence. When some of the closure coefficients are unilaterally altered

during ML training, the closure system of equations may be adversely affected.

We exhibit potential inadequacies in current ML approaches for turbulence modeling and pro-

pose three steps for ensuring that the ML training preserves the selected characteristics of PB

models leading to potential improvement in generalizability:

1. Physical compatibility constraints: It is shown that the discordance between the ML–

based constitutive closure coefficients (CCC) and traditional transport–equation closure co-

efficients (TCC) can lead to erroneous predictions. It is demonstrated that this shortcoming

can be overcome by imposing PB compatibility constraints among the various coefficients.

2. Training consistency: The inherent limitations of currently popular open loop framework

are investigated. Specifically the lack of consistency between the baseline model closure

coefficients that produce the input features and ML functional for the same coefficients is

examined. It is demonstrated that an iterative closed loop training procedure can lead to

consistency between the equations that produce the input features and the output which is

the ML functional.

3. Loss function formulation: The importance of formulating the most appropriate loss (ob-

jective) function for ML training process is examined. It is proposed that the loss function

based on a combination of anisotropy tensor and Reynolds stress tensor may be required to

optimize the training outcome.
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The proposed PB compatibility conditions, consistency procedure and loss function formulation

are investigated in a simple channel flow. In the evaluation process, the standard k − ω model

is intentionally altered from its original (correct) form and the ability of open loop and closed

loop frameworks to recover the original level of performance is examined. It is shown that the

closed loop training framework with PB compatibility constraints leads to significantly improved

predictions over open loop training framework. Future work will focus on predictive computations

of more complex flows and formulation of other PB compatibility constraints.
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3. INVESTIGATION OF GENERALIZABLE DEEP NEURAL NETWORKS FOR

TURBULENCE CLOSURE MODELING 1

Turbulent flows exhibit vastly different characteristics in different parameter regimes depend-

ing upon the mean strain–to–rotation rate ratio [2, 3], mean-to-turbulence time scale ratio [4, 5, 6],

underlying flow instabilities [7], large–scale unsteadiness, presence or absence of system–rotation

or streamline–curvature [4], body–force effects and flow geometry. In addition, due to inherent

complexity of the turbulence phenomenon, closure models developed in one parameter regime

cannot be presumed to be reasonable or even valid in other regimes. The strong dependence of

flow statistics on the various physical parameters is one of the enduring challenges in the field

of turbulence closure model development. The degree of difficulty of closure modeling depends

upon the level of closure. In the Reynolds–averaged Navier–Stokes (RANS) method, the funda-

mental governing equations are averaged over all scales of motion leading to significant reduction

in computational effort needed for performing a flow simulation. The reduction in computational

burden comes at the cost of increased complexity of closure modeling. Ad hoc simplifications or

assumptions are typically invoked to close various terms in the RANS equations. While RANS

models may perform adequately in flows in which they are calibrated, they can be catastrophically

wrong in other complex flows due to lack of generalizability. Despite inherent limitations, RANS is

widely used in industrial applications involving complex flows due to ease of computations. At the

other extreme of the closure spectrum, in the large–eddy simulation (LES) approach, dynamically

important scales are resolved and only the small–scale motions are modeled. The small–scales

are significantly easier to model as they embody most of the ‘universal’ aspects of turbulence and

therefore, are more easily amenable to generalizability than their RANS counterpart. Thus, in

LES, the relative simplicity and generalizability of subgrid closure models comes at the expense

of significantly increased computational costs. The closure modeling challenges of scale resolving

1Reproduced from “Turbulence closure modeling with data-driven techniques: Investigation of generalizable deep
neural networks” by Salar Taghizadeh, Freddie D. Witherden, Yassin A. Hassan and Sharath S. Girimaji, 2021. Physics
of Fluids, 33 (11), 115132, with the permission of AIP Publishing.
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simulations (SRS) are of intermediate degree of difficulty as they resolve more scales than RANS

but significantly lesser than LES [8, 9].

There is heightened expectation in recent times that ML techniques can be used to significantly

improve RANS turbulence closure model performance in complex industrial flows. The rationale

is that the shortcomings of the physics–based closures can be circumvented by appropriate data–

based training of the models. Toward this end, many authors have used different ML methods to

model the turbulence constitutive relation at all level of closure modeling, LES, SRS and RANS.

ML–enhanced LES closures have been proposed in different studies [25, 26, 27, 28, 29, 66, 67, 68,

69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79]. ML–enhanced RANS closures have also been proposed

in numerous works using different ML algorithms including NNs [10, 15, 18, 57, 16, 17, 80, 23, 81,

82, 83, 84, 85, 86, 87], random forest [30, 32, 88, 89, 83], gene expression programming (GEP) [12,

35, 36, 90, 1, 91] and deterministic symbolic regression models [92, 93, 94, 95]. A complete list of

important contributions in this area can be found in recent review papers [38, 39, 96, 97, 98]. ML

methods for turbulence closure are not without their own challenges and shortcomings. There is

no clear guidance on the optimal choice of architecture and hyperparameters or different elements

of the training procedure. For instance, in order to develop a new algebraic Reynolds stress model

using channel flow dataset, different NN architectures have been employed in literature. Zhang et

al. [15] trained a NN with 4 hidden layers and 20 neurons per layer. Fang et al. [16] employed

a NN with 5 hidden layers and 50 neurons per layer. Jiang et al. [17] used a DNN with 9 hidden

layers and varying number of neurons in each layer. For planner and periodic hill channel flow

dataset, Sotgiu et al. [18] used a NN with 8 hidden layers and 8 neurons in each layer. Lacking

a formal procedure for NN selection and training protocol, ML–assisted turbulence closures can

be as ad hoc as the traditional models and, more importantly, lack generalizability. In other areas,

it has been shown that ML models developed with subject matter expertise has a better chance of

succeeding [99]. Thus, it is of much interest to examine generalizability in turbulence–like systems

that are much simpler to compute.

The earliest fundamental analyses of the approximation capabilities of NNs demonstrate that
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any continuous function on a bounded domain can be approximated to arbitrary accuracy with at

least one hidden layer with sufficiently many neurons [100, 101]. However, these results do not

quantify the required sizes of NNs to achieve these rates. Approximation rates of NNs with dif-

ferent activation functions for various functions are presented in later studies [102, 103, 104, 105,

106, 107, 108]. As the most efficient statistical learning methods, deep neural networks (DNNs)

have been used to directly model the solution of PDEs [109, 110, 111, 112, 113, 114] in which

it is often plausible to bound the size of the involved NNs in a way that overcome the curse of

dimensionality, i.e., the approximation rates do not grow exponentially with increasing input di-

mension. DNNs have also been used to approximate the parameter (solution) maps in parametric

problems [115, 116, 117, 118, 19, 20]. In parametric PDE problems, parametric map connects

the solution space of PDE to the parameters that describe mathematical and physical constraints

of PDE, for instance shape of physical domain, boundary conditions. For linear parametric PDEs

it has been theoretically shown that feed–forward NNs of sufficient depth and size with Rectified

Linear Unit (ReLU) activation function are able to produce very efficient approximations. How-

ever, the results are not optimal and do not yield minimum depth and minimum number of neurons

per layer, thus it is not clear whether deep NNs are indeed necessary [19].

The practical learning problems consists of several aspects: (i) capacity of NN architecture in

describing the data; (ii) data availability to describe the true model and (iii) optimization procedure

in finding the best fit [19]. In general, deep learning is a non–convex optimization problem and

while a good approximation of a given unknown function by a NN may exist, it is unclear how

that can be expeditiously determined in a practical application. Additionally, it is certainly feasible

that the generated data might not contain sufficient information from the true model to assure that

the optimization process will converge to the theoretically best approximation [20]. Therefore, it

is necessary to numerically examine the existence of generalizable, reasonably–sized NNs from

practical learning prospective. In this work we use supervised learning method, to train standard

fully–connected NNs to fit the parameter–to–solution maps in the context of turbulence RANS

closure modeling.
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Turbulence has long been recognized as a complex flow phenomenon due to inherent chaotic

tendencies, multi–scale interactions arising out of the non–linearity of the governing equations.

As a consequence, a turbulence constitutive relation which relates Reynolds stresses to the mean–

flow field statistics can exhibit multiple complex features: (i) strong history and inhomogeneity

effects; (ii) non–linearity of unknown degree and (iii) multiple bifurcations in complex flows in-

volving compressibility, system rotation, streamline curvature, additional body forces and compli-

cated geometric features. Further, the RANS closures must satisfy key conservation laws, physical

principles and mathematical constraints [23]. Thus, generating a reasonable parameter–to–solution

map for turbulence modeling at the RANS level is challenging. Even if the full parameter space

is identified, obtaining data from direct numerical simulations (DNS) or experiments could be

prohibitively expensive and indeed infeasible.

At the current state of development, data–driven methods work best for interpolation, while ap-

plication to parameter space outside the training domain is fraught with uncertainty. When a NN–

based turbulence model is used for computing flows of engineering interest, parameter regimes

outside the training domain will likely be encountered. Therefore, it will be useful to assess the

extrapolation capabilities of the NN–based models.

To circumvent data sampling limitations, we propose to employ simplified proxy–physics tur-

bulence surrogates to generate parameter–to–solution maps. Using this data, we systematically

examine three main challenges of practical learning problems in the context of turbulence closure

modeling:

1. Effect of the intrinsic complexity: The effect of the complexity of the solution manifold on

the performance of the NNs is investigated by employing three proxy–physics surrogates of

different degrees of non–linearity and bifurcation characteristics. The turbulence surrogates

mimic some of the key features of turbulence and provide sufficiently many training/testing

data at low computational expense. It must be iterated that the actual turbulence constitu-

tive relationship can be considerably more complex due to history (transient) effects, flow

inhomogeneity and multiple bifurcations, which are not considered in the proxy–physics
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models.

2. Effects of sampling procedure (interpolation vs. extrapolation): The proxy–model ap-

proach allows for training data to be generated over all of the parameter space or select

regimes to investigate the effects of sampling. Based on underlying physics of these proxy–

physics models, training and testing datasets are segmented into three different scenarios to

assess generalizability (interpolation vs. extrapolation) characteristics.

3. Effects of the optimization procedure: Architecture and the hyperparameters of the DNNs

can significantly affect their performance and generalizability characteristics. In this study

we examine the existence of generalizable NNs by performing a systematic search in state–

space of hyperparameters and network–size for different data sampling scenarios. We seek

to establish the optimal choice of hyperparameters and DNN neurons of required to achieve

a predetermined level of accuracy.

To enable a reasonably rigorous analysis, we (i) restrict our consideration to statistically two–

dimensional homogeneous turbulence, which represents the most elementary non–trivial flows of

interest; and (ii) utilize data generated from proxy–physics turbulence surrogates that incorporate

some of the key aspects of real homogeneous flows. We consider using standard fully–connected

NNs to reproduce the results of the simplified proxy–physics models based around a cubic poly-

nomial. Such a model represents a gross oversimplification of the true physical dynamics of turbu-

lence. Hence, if a moderate–sized NN, given an arbitrarily large amount of training data is unable

to adequately reproduce this model, it would be unreasonable to expect NN–based ML models to

perform well in unseen turbulent flows. Further, the lessons learned for this simpler system can

yield valuable insight into the closure modeling of the more complex turbulence phenomenon.

The various NN hyperparameters and training elements considered in this study are: number

of hidden layers or depth of network, number of neurons in each layer or width of network, type

of loss function, type of activation function for neurons, type of training optimizer, learning rare,

batch size and regularization coefficient. The organization in the rest of the Chapter is as follows.
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The selected proxy–physics turbulence surrogates are explained in Sec. 3.1. The NN hyperparame-

ters and training elements are described in Sec. 3.2. Section 3.3 details how data is generated with

the proxy–physics turbulence surrogates in different regimes of two–dimensional homogeneous

turbulence. The results from different architectures and training methods are presented in Sec. 3.4.

We conclude with a summary of findings and recommendations in Sec. 3.5.

3.1 Proxy–Physics Methodology

In a statistically steady two–dimensional homogeneous incompressible turbulent flow field

without body forces, only two parameters govern the physical behavior – normalized mean strain

(sij) and rotation rates (rij),

sij =
k

ϵ
Sij, rij =

k

ϵ
Rij, (3.1)

where

Sij =
1

2
(
∂Ui

∂xj
+
∂Uj

∂xi
), Rij =

1

2
(
∂Ui

∂xj
− ∂Uj

∂xi
). (3.2)

Here k and ϵ are respectively turbulent kinetic energy and turbulent dissipation. This set of

flows do not exhibit any large–scale instabilities, coherent structures, complex geometrical fea-

tures or statistical unsteadiness. Despite the apparent simplicity, homogeneous two–dimensional

turbulent flows embody multiple complex phenomena that are strongly dependent upon the pa-

rameter values. The flow goes from hyperbolic to rectilinear to elliptic streamline geometry with

increasing mean rotation rate. Depending upon the mean flow to turbulence strain rate ratio, the

flow physics can range from the rapid distortion limit to decaying anisotropic turbulence.

Using representation theory, the four–term expansion of the anisotropy tensor in terms of the

normalized strain rate (s) and normalized rotation rate (r) tensors for two–dimensional mean flows

can be expressed as [51],

bij = G1(sij)+G2(sikrkj−rikskj)+G3(sikskj−
1

3
δijsmnsnm)+G4(rikrkj−

1

3
δijrmnrnm), (3.3)

where scalar coefficientsG1−G4 are constitutive closure coefficients (CCC) [23] that must be mod-
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eled. They are functions of scalar invariant of the strain and rotation–rate tensors (η1 = sijsij, η2 =

rijrij) and other flow quantities such as - turbulent kinetic energy (k), turbulence frequency (ω) and

the coefficients of the pressure–strain correlation model.

As mentioned in the Introduction, generalizability of the NN models in this simple system is

a prerequisite to generalizability in actual turbulent flows. Further, due to the fact that proxy–

physics turbulence surrogates capture many key statistical features of turbulence, this study will

yield much valuable insight into RANS ML modeling. Complete knowledge of the proxy–physics

solution enables precise error assessment incurred during generalization to test flows. In this study,

the proxy–physics data in different parts of the domain are used to train NNs of different architec-

tures and hyperparameters. The networks are then tested in other parameter regimes to examine

generalizability.

3.1.1 Proxy–Physics Surrogates

As stated before the main objective of this work is to look at the challenges posed by non–

linearity and bifurcation effects of turbulence, therefore three proxy–physics surrogates of different

non–linearity and bifurcation characteristics are employed to generate the parameter–to–solution

maps: two algebraic Reynolds stress models (ARSM) and one non–linear constitutive relationship.

Algebraic Reynolds Stress Model. ARSM does reasonably well in capturing key flow physics

in different parts of the flow regime [50, 51]. The model requires the solution of a cubic equation

and appropriate root must be chosen in different flow regimes to yield the correct behavior [51].

In this study, we use three–term self–consistent, nonsingular and fully explicit algebraic Reynolds

stress model (EARSM) proposed by Girimaji [51] with two pressure–strain correlation models,

Launder, Reece and Rodi (LRR) [42] and and Speziale, Sarkar and Gatski (SSG) [43] to generate

stress–strain (constitutive) relationship datasets for different normalized strain and rotation rates.

An implicit algebraic equation for the anisotropy tensor can be obtained in the weak equilib-

rium limit of turbulence using the following simplification [51],

Dbij
Dt

=
∂bij
∂t

+ Uk
∂bij
∂xk

≈ 0, (3.4)
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Table 3.1: Coefficients in the LRR and SSG models

Model C0
1 C1

1 C2 C3 C4

LRR 3.0 0 0.8 1.75 1.31
SSG 3.4 1.8 0.36 1.25 0.4

where D/Dt is the substantial derivative following the mean flow. The weak–equilibrium assump-

tion is valid for many flows wherein the timescale of anisotropy evolution is rapid compared to the

timescales of mean flow, turbulent kinetic energy, and dissipation rate [119, 120]. Using Eqs. (3.3)

and (3.4), the non–linear algebraic Reynolds stress equation with the three–term model (G1 −G3)

can be written as the following cubic fixed–point equation for G1 [51],

(η1L
1
1)

2G3
1 − (2η1L

0
1L

1
1)G

2
1 +

[
(L0

1)
2 + η1L

1
1L2 −

2

3
η1(L3)

2 + 2η2(L4)
2
]
G1 − L0

1L2 = 0. (3.5)

Then G2 and G3 can be expressed as [51],

G2 =
−L4G1

L0
1 − η1L1

1G1

, G3 =
2L3G1

L0
1 − η1L1

1G1

. (3.6)

The closure coefficients in Eqs. (3.5) and (3.6) are as follows:

L0
1 =

C0
1

2
− 1, L1

1 = C1
1 + 2, L2 =

C2

2
− 2

3
, L3 =

C3

2
− 1, L4 =

C4

2
− 1, (3.7)

where the C’s are numerical constants of the pressure–strain correlation models. The numerical

constants for LRR pressure–strain correlation model, linear in the anisotropy tensor (C1
1 = 0), and

SSG, quasilinear in the anisotropy tensor (C1
1 ̸= 0), are given in Table 3.1.

The cubic relation in Eq. (3.5) has multiple real and complex roots and the selection of the

appropriate solution for G1 is not straightforward. By considering two physical selection criteria;

(i) continuity of G1; and (ii) G1 ≤ 0, Girimaji [51] derived a fully explicit solution of the cubic
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Eq. (3.5) for scalar coefficient G1 as follows:

G1 =



L0
1L2

(L0
1)

2+2η2(L4)2
for η1 = 0,

L0
1L2

(L0
1)

2− 2
3
η1(L3)2+2η2(L4)2

for L1
1 = 0,

−p
3
+ (− b

2
+
√
D)

1
3 + (− b

2
−
√
D)

1
3 for D > 0,

−p
3
+ 2
√

−a
3
cos( θ

3
) for D < 0, b < 0,

−p
3
+ 2
√

−a
3
cos( θ

3
+ 2π

3
) for D < 0, b > 0.

(3.8)

Here the discriminant D of the cubic Eq. (3.5) is calculated as:

D =
b2

4
+
a3

27
, (3.9)

other parameters of Eqs. (3.8) and (3.9) are defined as below:

a = (q − p2

3
), b =

1

27
(2p3 − 9pq + 27r),

p = − 2L0
1

η1L1
1

, q =
1

(η1L1
1)

2

[
(L0

1)
2 + η1L

1
1L2 −

2

3
η1(L3)

2 + 2η2(L4)
2
]
,

r = − L0
1L2

(η1L1
1)

2
, cos(θ) =

−b/2√
−a3/27

.

(3.10)

The first two cases in Eq. (3.8) are special limiting cases of the last three and it can be shown

that the limiting behavior can be easily calculated from the general expressions [51]. After the

coefficient G1 is calculated, other CCC can also be obtained using Eq. (3.6) in the entire parameter

space.

The goal of this study is to use proxy–physics turbulence surrogates to provide some turbulence

subject matter expertise. For this reason, it is necessary to ensure that the selected proxy model

adequately incorporates some of the known features of turbulence. Different turbulence states

covered by the ARSM turbulence surrogate are depicted for the considered parameter space in

Fig. 3.1 (S ≡ √
sijsij ≡ √

η1 and R ≡ √
rijrij ≡ √

η2). At rapidly strained turbulence state,

strain rate dominates over rotation rate and the discriminant D (Eq. (3.9)) of the cubic fixed–point
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Figure 3.1: Different states of turbulence of ARSM

equation for G1 is negative. The realizability violations occur at this rapidly strained region due

to the governing elastic constitutive relationship. Rotation rate dominates over strain rate at high

values of mean vorticity state. Other important turbulence states are also represented in this figure.

Hyperbolic streamline flows occur when S >> R; and the streamlines are elliptic when S << R.

When S ≈ R rectilinear shear flows are seen [121].

The parameter–to–solution maps obtained from ARSM with two pressure–strain correlation

models are shown in Fig. 3.2. It is shown that the coefficient G1 is a continuous function across

bifurcation lineD = 0 in ARSM model. Therefore,G1, i.e., the effective turbulent viscosity is well

defined in the entire parameter space wherein different important turbulence states are covered.

Fig. 3.2 shows well defined values for G2 and G3 coefficients in the entire parameter space. The

corresponding CCC contours for ARSM with both the pressure–strain correlation models have

similar shapes. However, CCC values are in wider ranges with SSG model. In particular, the

magnitude of the G1 is approximately zero, 10−5 for larger values of parameters, while it is in the

order of 10−1 in decaying turbulence state. As mentioned earlier, small values of G1 for large S is

a consequence of elastic constitutive behaviour and is needed for preserving realizability.

Non–linear Constitutive Relationship. In addition to the three–term ARSM surrogate pro-

posed by Girimaji [51] with different pressure–strain correlation models, the four–term non–linear
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(g) (h) (i)

Figure 3.2: Parameter–to–solution maps, (a), (d) and (g) ARSM with SSG, (b), (e) and (h)
ARSM with LRR, (c), (f) and (i) SZL
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constitutive relationship proposed by Shih et al. [122](Shih, Zhu and Lumley – SZL model) is also

considered as a proxy–physics turbulence surrogate to generate the parameter–to–solution map in

this study. In SZL model, the CCC are expressed as [122, 48],

G1 = −Cµ =
−2

3

1.25 +
√
2η1 + 0.9

√
2η2

, G2 =
−15

2

1000 + (
√
2η1)3

,

G3 =
3
2

1000 + (
√
2η1)3

, G4 =
−19
2

1000 + (
√
2η1)3

.

(3.11)

It should be noted that the CCC expressions proposed in SZL model are simpler compared to

ARSM model counterparts. The non–linear SZL model does not have bifurcation and the continu-

ous function ofG1 is obtained with one single relation as given by Eq. (3.11) in the entire parameter

space. However, in ARSM two different relationships are employed. For the considered parameter

space, the third relation in Eq. (3.8) is used in the rotation–dominated region D > 0 and the fifth

relation is used in the strain–dominated region D < 0. Therefore, the parameter–to–solution map

generated by SZL model has less complexity level compared to ARSM, Fig. 3.2. In SZL model,

G2 − G4 coefficients are only functions of the invariant of strain rate (η1), therefore contour plots

show vertical lines in the parameter space. Overall, the physics underlying CCC contours is a rea-

sonable facsimile of real turbulent flows at different complexity levels of proxy–physics turbulence

surrogates.

Therefore, three proxy–physics turbulence surrogates of different degrees of complexity can be

used to examine the challenges posed by non–linearity and bifurcation effects of the solution man-

ifold: (i) SZL model, non–linear constitutive relation with no bifurcation in the parameter space;

(ii) ARSM with LRR model, mildly non–linear constitutive relation with bifurcation in the regime

of interest; and (iii) ARSM with SSG model, moderately non–linear constitutive model with bifur-

cation in the parameter space. The objective of this study is to investigate if a reasonably–sized,

fully–connected NN, given an arbitrarily large amount of training data can simulate the simple

surrogates of turbulence. If the NN–based ML models can not perform well with the simplified

descriptions, it is unlikely to perform successfully in real unseen turbulent flows.
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3.2 Machine Learning

Previous investigations. ML is a general term to describe a class of algorithms which uses

data to generate models. The selection of modeling strategy depends on the type of problem. Re-

cently, DNNs have been widely used for modeling turbulent flows. Ling et al. [10] trained a DNN

with 8 hidden layers, and 30 neurons per hidden layer with available high–fidelity data: duct and

channel flow, perpendicular and inclined jet in cross–flow, flow around a square cylinder and flow

through a converging–diverging flow. Their results showed that incorporating the Galilean invari-

ance property in the DNN architecture can improve the predictive capability of ML turbulence

models. Zhang et al. [15] trained a NN with 4 hidden layers and 20 neurons per layer in order to

develop a model to predict the Reynolds stress of a channel flow at different Reynolds numbers.

They obtained well behaved models by introducing regularization in their training algorithm. Us-

ing same channel flow datasets, Fang et al. [16] trained a NN with 5 hidden layers and 50 neurons

per layer in order to develop an improved Reynolds stress tensor model. Jiang et al. [17] used DNS

of channel flow at different Reynolds number in order to developed a new algebraic Reynolds stress

model by training a DNN with 9 hidden layers and varying number of neurons in each layer as,

12, 18, 21, 27, 32, 35, 30, 28, and 27, respectively. Sotgiu et al. [18] developed a Reynolds stress

constitutive model by training a NN with 8 hidden layers and 8 neurons. They used planner chan-

nel and periodic hill channel flow datasets for training the ML algorithm. Geneva and Zabaras [57]

trained a NN with 5 hidden layers and tapered the number of neurons in the last two hidden layers

to prevent weights from being too small and improve training performance. The required training

data was generated by performing LES simulations of different flows: converging–diverging chan-

nel, periodic hills, square duct, square cylinder and tandem cylinders. The importance of judicious

choice of network architecture has been recognized in the field of turbulence modeling. How-

ever, there have been no studies in literature to examine if the inherent complexity of turbulence,

sampling and training procedure pose any further challenges.

Objective. Determining a suitable network architecture and training hyperparameters of a DNN

is an empirical task and it has been shown that there is a strong positive correlation between the
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Figure 3.3: Profiles of different activation functions

final performance of the trained NNs and experience of the user in optimizing the hyperparame-

ters [99]. There is no rigorous guidance on the right choice of architecture and different elements

of the training procedure in developing ML–assisted turbulence models. The objective of this

study is to examine the existence of generalizable, reasonably–sized, fully–connected NNs under

full and partial availability of the training datasets. Adopted proxy–physics turbulence surrogates

are used to easily generate the training data for all flows in the parameter space. Based on under-

lying physics of the simplified proxy–physics models, training and testing datasets are segmented

at three different scenarios to assess the effect of sampling procedure on optimization capabili-

ties and generalizability characteristics (interpolation vs. extrapolation) of the DNNs of different

architectures and hyperparameters.

Deep neural networks. A DNN is a class of model which transforms the input parameters

(features) through several layers of units (neurons). Each unit (neuron) is connected by affine linear

maps between units in successive layers and then with non–linear (scalar) activation functions

within units. Different activation functions such as, rectified linear unit (ReLU), leaky ReLU,

exponential linear unit (ELU), Sigmoid and hyperbolic tangent [123] are shown in Fig. 3.3. The

ReLU function which is the popular choice in the ML literature is defined as:

σ(z) = max(z, 0), (3.12)
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Figure 3.4: Illustration of a deep feed–forward fully–connected NN

where, z is the input to a neuron. In this study, we examine the effects of employing different

activation functions on training and performance of the NNs.

It should be noted that DNNs consist of simple functions and their efficiency emanates from the

interactions between large number of hidden layers [123]. Due to their flexible architecture and su-

perior performance in modeling non–linear and complicated relationships with high–dimensional

data, they have become a popular subset of ML approaches. Although a variety of network

structures, such as convolutional neural networks (CNN), recurrent neural networks (RNN), or

long short–term memory (LSTM) networks have been proposed in the ML literature [123], we

will restrict ourselves to fully–connected architectures. Fig. 3.4 shows the schematic of a deep

feed–forward NN (also termed as a multi–layer perceptron (MLP)) which is trained using back–

propagation with gradient descent method. The input layer, the hidden layers and the output layer

are also shown in this figure.

Loss function. The DNNs are trained by minimizing a loss (objective) function, which mea-

sures the difference between the predicted output of the model and labels (ground truth data). It has

been shown that the success of ML models depends on the formulation of the loss function used

for optimization of the model coefficients (weights and biases of neurons) during the ML training
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process [23]. The type of loss function is also problem specific and need to be selected properly.

The root mean squared error (RMSE) is the commonly used loss function:

RMSE =

√∑N
i=1(yi − ŷi)2

N
, (3.13)

where ŷi denotes the ML prediction and yi is the true labeled data; N is the number of training

data. Alternatively, the mean absolute percentage error (MAPE) is also considered,

MAPE =
1

N

N∑
i=1

|yi − ŷi|
|yi|

, (3.14)

The RMSE loss works well in most cases, while the MAPE loss is better for the case where the

output has a large range of function values [124]. In order to find the appropriate type of loss

function, the models trained with MAPE and RMSE are compared in this study.

Adding a regularization term in the loss function formulation is one of the common ways of

avoiding overfitting. Overfitting occurs when the expressivity of the ML model is too large for the

complexity of the function it approximates. Introducing a regularization term in the loss function

formulation shrinks the model coefficients towards zero, decrease the complexity of the model and

hence significantly reduces the variance [125]. The L1 norm (Lasso Regression) and L2 norm

(Ridge Regression) are the two common regularization methods [125],

MAPE(y, yi) + λ

N∑
i=1

|ωi|, L1 − norm

MAPE(y, yi) + λ
N∑
i=1

ω2
i , L2 − norm

(3.15)

where ω denotes the weight of each neuron and λ is a positive hyperparameter to determine the

strength of regularization. For this work, to control the overfitting in some experiments, first a com-

parison between two regularization methods, L1 and L2 norms are made and then best performing

method is applied in all the hidden layers during the training of the NNs.
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Table 3.2: Different values of the considered hyperparameters

Hyperparameter Value
Activation function (act) ReLU, ELU, leaky ReLU, Tanh, Sigmoid
Learning rate (lr) 1 × 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3,

1× 10−2

Batch size (bs) 25, 50, 100, 1000
Optimization algorithm (opt) Adam [63], RMSProp
Regularization coefficient (λ) 0.01, 0.1, 0.2
Initialization function Xavier normal [126]

Network hyperparameters. Architecture and all training hyperparameters of the NNs need to

be suitably specified in order to build a robust and effective model that can generalize to unseen

datasets. For instance, hyperparameters include size of the networks (number of layers or depth,

width or breadth of each layer), formulation and type of the loss function, type of regularization

and optimization algorithm, type of activation function (act), batch size (bs), learning rate (lr),

type of initialization and etc. Hyperparameter optimization is an empirical task and grid search is

usually adopted, i.e., many networks with several different combinations of interval values of each

hyperparameter are trained and compared based on their accuracy and generalization ability.

In principle, all of the hyperparameters in the ML algorithm can be varied and they might have

significant impact on the model performance. However, the predictive capability and generaliza-

tion of a NN is mostly controlled by its architecture; the depth and breadth of network. In this study

we perform a systematic search in state–space of hyperparameters and network–size to train NNs

that are efficient and ensure a low generalization error in interpolation and extrapolation cases. We

consider a matrix of network sizes by varying the depth for four values of 1, 3, 5, 7 and the width

for four values of 3, 5, 7, 15. Other hyperparameters examined in this study are shown in Table 3.2.

3.3 Data Generation with proxy–physics turbulence surrogates

The data needed for training the ML algorithm is generated using the proxy–physics surrogates

as discussed in Sec. 3.1. The number of data points that are non–uniformly extracted for each
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(a) (b) (c)

Figure 3.5: Training (green circles) and testing (red circles) datasets for (a) Case–1, (b) Case–2,
(c) Case–3

input parameter (η1, η2) in the range [10−1, 104] is 150. Therefore, the total number of data points

is 22,500 in the entire parameter space. In this work, different investigations are conducted in order

to address the challenges in finding optimum NN architecture and hyperparameters when training

is performed as follows:

1. Fully available data in the entire parameter space from ARSM and SZL models

2. Partially available data only in one part of parameter space from ARSM model

3. Partially available data only in a narrow band of parameter space from ARSM model

These three investigations lead to important inferences about existence of the moderate–sized NN

approximation solutions for data manifolds with different complexity levels and their generaliz-

ability (interpolation vs. extrapolation) characteristics. We generate the training datasets in three

different scenarios as follows.

3.3.1 Training data over the entire parameter space

This case represents the ideal scenario in which the training data fully describe the true model

within the parameter space. Thus there is no physics that is unseen by the ML model which is

trained in supervised manner. Sufficient data is gathered over strain, shear and rotational flow

regimes. It should be noted that providing the real turbulence data in the entire parameter space,

requires expensive DNS over a wide range of flows. In this case, generalizability is expected
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to be trivially straightforward. The optimum choice of hyperparameters and necessary number

of neurons of DNNs needed to have a sufficiently accurate approximation are investigated. As

one of the objectives of this study is to examine the effects of underlying physics of the solution

manifold (non–linearity and bifurcation effects) on training and performance of the ML models,

three parameter–to–solution maps generated by proxy–physics turbulence surrogates discussed in

Sec. 3.1 are considered for this ideal case. For all the experiments in this case, the generated data

points in the parameters space are randomly split into 75% for training (Training Data) and 25%

for validation and testing the model (Testing Data). The testing data is used for final evaluation of

the models. Fig. 3.5a represents randomly distributed data in the entire parameter space for this

case.

3.3.2 Training data only in the strain–dominated region (D < 0)

In this case, the training data is partially available and restricted to a subset of the parameter

space. Therefore, part of the physics in the data manifold is seen by the NNs. Data points in the

strain–dominated region D < 0 (data generated with the fifth relation in Eq. (3.8)) are used for

training and data points in the rotation–dominated regionD > 0 (data generated with third relation

in Eq. (3.8)) are used for testing. Fig. 3.5b illustrates the segmented training and testing datasets for

this case. This represents an important generalizability challenge (extrapolation) as training and

testing are performed in parameter regimes of distinctly different turbulence physics. Existence

of generalizable DNNs for this case is investigated for parameter–to–solution maps generated by

ARSM with SSG and LRR pressure–strain correlation models.

3.3.3 Limited training data in the shear–dominated region

In many instances training data is partially available only in a very narrow region of the param-

eter space. In this regard, we examine the existence of a generalizble NN trained with the limited

dataset that covers shear–driven turbulence physics. In this case, the parameter–to–solution map

generated by ARSM with SSG proxy–physics model is considered. As it can be seen from ARSM

equation, Eq. (3.8), shear flow represents the bifurcation region between strain and rotation flows.
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Table 3.3: Selected hyperparameters

Hyperparameter Value
Learning rate (lr) 1× 10−3 ∼ 1× 10−6

Batch size (bs) 50
Optimization algorithm (opt) Adam [63]
Initialization function Xavier normal [126]

An arbitrary zone near the bifurcation line D = 0 is defined as, −1000 < (η1 − 0.7η2) < 1000.

The data points inside this region are used for training and data points outside this region are used

for testing. The segmented regions are represented in Fig. 3.5c.

3.4 Results

3.4.1 RMSE loss function vs. MAPE loss function

It has been shown that the appropriate formulation of loss function and optimal choice of the

flow statistics contributing to the loss function impact the success of the ML trained turbulence

models [23]. As mentioned in Sec. 3.2 we examine the performance of the ML models trained with

different loss functions in this study. For this analysis the parameter–to–solution map generated by

ARSM with SSG proxy–physics model is considered. First, the randomly generated dataset in the

entire parameter space is segmented as 75% for training and 25% for testing of the models. Then,

we train two DNNs with RMSE and MAPE loss functions without any regularization. The selected

fixed network architecture for both of the cases has 7 hidden layers with 7 computation neurons in

each layer. In this case, the type of activation function is ReLU and all other hyperparameters of

the models are as shown in Table 3.3. As shown in the table, a variable learning rate is employed

for training the models.

The performance of the models trained with different loss functions are reported with both

MAPE and RMSE error metrics on training and testing datasets in each column of Table 3.4. It

can be seen that the network with MAPE loss function has smaller training and testing errors

compared to the network with RMSE loss function. As mentioned in Sec. 3.1, the CCC have a

large range of values over the parameter space. When the RMSE is used as the loss function, the
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Table 3.4: Performance of models trained with different loss functions

Errors with various evaluation metrics
ML loss func. RMSE–training RMSE–testing MAPE–training MAPE–testing
RMSE 9.28× 10−3 9.34× 10−3 4.26 4.24
MAPE 4.03× 10−3 3.90× 10−3 0.043 0.044

training and back–propagation process are mostly dominated by the CCC with larger magnitudes,

as the small value coefficients contribute very little to the NN optimization process. Local error

contours of the models trained with different loss functions are shown in Figs. 3.6 and 3.7. It can

be seen that the ML algorithm trained with MAPE has smaller local errors in different turbulence

physics regions in the entire parameter space.

Comparing different error metrics, MAPE vs. RMSE for final performance of the models in

Table 3.4 and absolute error vs. MAPE for local error contours in Figs. 3.6 and 3.7, clearly shows

that MAPE metric has easily interpretable presentation of final model performance in this study.

Therefore, MAPE is selected as the appropriate type of loss function and evaluation metric for the

remainder of the analysis.

3.4.2 Case–1: Training data over the entire parameter space

In this experiment, three parameter–to–solution maps generated by SZL, ARSM with SSG and

LRR proxy–physics turbulence surrogates are considered. The datasets are randomly distributed

for training the NNs, i.e., 75% for training and 25% for testing the models. Using the generated

datasets, networks with different architectures are trained. The type of activation function for all

computation neurons is ReLU and all other hyperparameters are fixed as shown in Table 3.3 for

this case. Fig. 3.8 demonstrates the training and testing MAPE errors of all the 16 network archi-

tectures trained with different data manifolds. In this figure number of hidden layers and number

of neurons in each layer are shown with horizontal and vertical axes, respectively. Although for

this case, L2 regularization is not used during ML training, all the 16 networks have similar per-

formance on both the training and testing datasets and models test quite well without over/under

fitting. It can be seen that shallow NNs (networks with one layer) and DNNs with small width
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Absolute error contours of CCC for ML models trained with different loss functions,
(a)-(c) RMSE, (d)-(f) MAPE

(networks with three neurons in each layer) have the worst training and testing errors for all the

data manifolds in the interpolation case. Additionally, as the number of the layers and neurons

in each layer increase, the training and testing errors decrease and for this case NN with largest

degrees of freedom (7L–15N) has the lowest training and testing errors. This is a surprising ob-

servation that the NN-based models require very large networks (more degrees of freedom than

true proxy–physics model) to reduce errors to a reasonable level even for this interpolation case.

Therefore, DNNs are not efficient approximations for the non–linear solution manifolds created by

simplified proxy–physics turbulence surrogates. The approximation capabilities of the large NNs

with the data manifolds of different complexity levels are comparable in this case. However, for the

networks with reasonable degrees of freedom (total number of neurons less than 25), the errors are

smallest in data manifold with no bifurcation (SZL model). These networks have bigger errors in

data manifold with moderate non–linearity (ARSM with SSG model) compared to data manifold
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: MAPE contours of CCC for ML models trained with different loss functions, (a)-(c)
RMSE, (d)-(f) MAPE

with mild non–linearity (ARSM with LRR model). Local MAPE contours in the entire parameter

space for the networks with 7 hidden layers and different neurons trained with data manifold gen-

erated by ARSM and SSG model are shown in Fig. 3.9. It is evident that by increasing the number

of neurons in each layer, error decreases in the entire parameter space and for the network with

large architecture (7L–15N) the maximum error occurs mainly near the bifurcation line D = 0

where the physics of turbulence undergoes rapid change. It should be noted that ReLU activation

function is considered for all the NNs so far.

For Case–1, the effects of using ReLU and Sigmoid activation functions on approximation ca-

pability of the NNs with different architectures are further investigated. In this experiment all the

hyperparameters are kept fixed as shown in Table 3.3 and the data manifold generated by ARSM

with SSG model is considered. The training and testing MAPE errors of all the 16 network archi-

tectures for both activation functions are illustrated in Fig. 3.10. It is evident that the performance
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Training and testing MAPE for Case–1, (a) and (d) SSG, (b) and (e) LRR, (c) and (f)
SZL
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of the NNs with the considered activation functions are significantly different. For both activa-

tion functions, networks with small width have large training and testing errors. But small width

networks with Sigmoid activation function have smaller training and testing errors. Unlike the

networks with ReLU activation function, the training and testing errors does not decrease as the

number of the layers increases in networks with Sigmoid activation function and these networks

outperform in shallow with large width architectures. It should be noted that Sigmoid activation

function involves expensive operations (exponentials, etc.) compared to ReLU which is simply

thresholded at zero (Eq. (3.12)). As illustrated in Fig. 3.3, Sigmoid activation function takes an

input (z) and outputs a value (σ) in the range between 0 and 1. It is known that when a neuron with

Sigmoid activation function saturates at either tail of 0 and 1, it ‘kills’ the gradient and the informa-

tion is not transferred through the neuron [123]. Hence the saturation of the neurons with Sigmoid

activation function could negatively affect the learning of the large networks. On the other hand, a

large gradients for ReLU neurons in shallow and small width networks could unfavorably update

the weights during the back–propagation process. Therefore, the ReLU neurons can irreversibly

‘die’ during training since they can get knocked off the data manifold [123].

3.4.3 Case–2: Training data only in the strain–dominated region (D < 0)

In this experiment the existence of generalizable NNs is examined when training data is par-

tially available only in one side of parameter space (extrapolation). The data points in the strain–

dominated region D < 0 are used for training and the data points in the rotation–dominated region

D > 0 are used for testing of the models. For this analysis, ReLU activation function and L2 norm

regularization with λ = 0.1 are used. All other hyperparameters are fixed as shown in Table 3.3.

A justification for the choice of hyperparameters for this case is given in Appendix A. Fig. 3.11

shows the training and testing errors of the 16 network architectures trained with partially available

data generated by ARSM with SSG and LRR models. Unlike the interpolation case (Case–1), the

ML models trained with limited (biased) data show overfitting for large networks. It is seen from

Fig. 3.11 that for both the data manifolds, the NNs with one and three hidden layers have the worst

performance in training dataset. As the number of hidden layers increases to five, the capability
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(g) (h) (i)

Figure 3.9: MAPE contours for Case–1, (a)-(c) 7L–5N, (d)-(f) 7L–7N, (g)-(i) 7L–15N
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of the NNs in capturing the non–linear relationship between the input parameters and CCC labels

increases. Although, the training error reduces with increasing number of hidden layers from three

to five, the testing error increases. By further increasing the number of hidden layers and neurons

the performance of the model in training and testing datasets oscillates. Comparing the perfor-

mance of the networks trained with different data manifolds in this case, shows that similar to

the interpolation case, NNs trained with moderately non–linear data manifold (ARSM with SSG

model) have bigger errors than NNs trained with mildly non–linear data manifold (ARSM with

LRR model). However, unlike the interpolation case, finding a generalizable NN with a reasonable

size is not straightforward when training data partially describe the true proxy–physics surrogate

in the parameter space (only the strain–dominated region in this case). Local MAPE contours of

DNNs with 7 hidden layers and different neurons trained with moderately non–linear data mani-

fold are compared in Fig. 3.12. It is seen that DNNs with large number of neurons has relatively

smaller errors in both training and testing regions of parameter space for all the CCC.

3.4.4 Case–3: Limited training data in the shear–dominated region

In this scenario the training dataset covers a limited but important region of the parameter space

near the bifurcation line D = 0. The data points in rest of the parameters space are used for testing

the ML models. For this case, the data manifold is generated by ARSM with SSG model. The

ReLU activation function is employed for all computation neurons and all other hyperparameters

are fixed as shown in Table 3.3. The performance of NNs with 16 architectures in the training

and testing datasets are compared in Fig. 3.13. Similar to Case–2, a L2 norm regularization with

λ = 0.1 is used during training to reduce the overfitting of the ML models in this case. Al-

though, the training error reduces by increasing number of hidden layers from three to seven in

networks with large width, the testing error oscillates. Similar to Case–2, selecting a reasonably–

sized generalizable NN is not straightforward when training data is limited to a narrow range in

the shear–dominated region. Local MAPE contours in the entire parameter space for DNNs with

different number of neurons are compared in Fig. 3.14. It is seen that the DNN with large width

have relatively smaller errors in both training and testing regions.
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(a) (b)

(c) (d)

Figure 3.10: Training and testing MAPE for Case–1, (a) and (c) ReLU, (b) and (d) Sigmoid
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(a) (b)

(c) (d)

Figure 3.11: Training and testing MAPE for Case–2, (a) and (c) SSG, (b) and (d) LRR
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.12: MAPE contours for Case–2, (a)-(c) 7L–5N, (d)-(f) 7L–7N, (g)-(i) 7L–15N
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The main inferences from the three case studies can be summarized. We systematically exam-

ined the suitability of DNNs for RANS turbulence closure modeling. We studied the existence of

a generalizable, moderate-sized NN given sufficiently many training data in the entire parameter

space. The results show that NNs require more degrees of freedom (than the true proxy–physics

model) to accurately approximate the true polynomial model with four coefficients even with en-

tire data points of the parameter space. This implies that DNNs are not efficient approximations of

data manifolds with non–linearity and bifurcation effects such as turbulence even in interpolation.

We also observed that the approximation capability of the NNs significantly varies by activation

function of neurons. Comparing the performance of the NNs with different loss functions (MAPE

and RMSE) showed that networks with MAPE loss function have better performance for the gen-

erated datasets in this study. For the interpolation case, it has been shown that the reasonably–sized

NNs trained with data manifold with no bifurcation (SZL model) have the smallest errors. How-

ever, the coexistence of non–linearity and bifurcation in the data manifold produced the largest

level of testing errors in the NN solutions even in these simple proxy–physics models. As the

non–linearity increases in the data manifolds with bifurcation, the approximation capability of the

NNs reduces in both interpolation and extrapolation cases. Furthermore, in the extrapolation cases

it is not straightforward to find an optimal architecture.

3.5 Conclusion

Generalizability of ML–assisted RANS turbulence model to unseen flows still faces many chal-

lenges [97] due to flow–dependent non–linearity and bifurcations of the constitutive relations. Fur-

ther, there is little consensus and great deal of uncertainty regarding the choice of NN hyperparam-

eters and training techniques. Yet, these choices can significantly affect the predictive capability

and generalizability of ML turbulence models. We seek to understand the optimal choice of hyper-

parameters, training process elements (type of loss function) and necessary number of neurons of

DNNs required to allow a sufficiently accurate approximation at the RANS closure modeling level.

Standard fully–connected NNs are trained in a supervised manner and their approximation capa-

bilities are systematically investigated by considering the effects of: (i) intrinsic complexity of the
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(a) (b)

Figure 3.13: MAPE of NNs with different architectures for Case–3 (a) training, (b) testing

solution manifold; (ii) sampling procedure (interpolation vs. extrapolation) and (iii) optimization

procedure.

A key novelty of this work is the adoption of simplified proxy–physics turbulence surrogates

that incorporate some of the important features of real homogeneous flows to generate the suffi-

cient training data to assess generalizability (interpolation vs. extrapolation) characteristics. An

important advantage of this approach is that training data for all flows in the parameter space can

be generated easily. In contrast, DNS or experiments would be prohibitively expensive and may

not even be feasible for all flows in the parameter space. Successful generalizability of ML models

in this proxy–physics turbulence system is a necessary but not a sufficient condition for ML–

model generalizability in actual turbulent flows. Nevertheless, this study provides valuable insight

into the generalizability characteristics of different network architectures and hyperparameters in

turbulence–like phenomena.

Three turbulence surrogates of different degrees of complexity are chosen: (i) a non–linear

constitutive relation with no bifurcation in the parameter regime (ii) mildly non–linear constitutive

relation with bifurcation in the regime of interest; and (iii) moderately non–linear constitutive

model with bifurcation. When the constitutive relation does not have bifurcation in the entire
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(g) (h) (i)

Figure 3.14: MAPE contours for Case–3, (a)-(c) 7L–5N, (d)-(f) 7L–7N, (g)-(i) 7L–15N
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parameter space, the accuracy of the ML model is quite reasonable. However, when the surrogate

data exhibits bifurcation, the combination of non–linearity and bifurcation produced the largest

level of testing errors even in these simple proxy–physics models. Moreover, testing error increase

with the level of non–linearity in the proxy–physics surrogate with bifurcation in the parameter

space.

The conclusions of the study are two–fold. First, even for interpolation, the NN–based models

require very large networks (more degrees of freedom than true proxy–physics model) to reduce

errors to a reasonable level. Secondly, in a practical calculation, it is difficult a priori to guaran-

tee that the model will be queried only in the trained domain. Therefore, it is critical to establish

that the NN–model can handle certain level of extrapolation. To assess the model ability for ex-

trapolation/generalization, we train the model in limited parameter space and test outside of this

regime. It is shown that even for this simple proxy–physics system, the NN–model performance

is inadequate (Cases 2, 3). Further, we identify and distinguish the challenges to generalizability

arising out of non–linearity and bifurcation. We believe that these findings are important and yet

not clearly understood in current literature. Therefore, studies such as these are necessary for a

balanced assessment of NN–based RANS turbulence models as predictive tools for use in unseen

flows.

As mentioned before, true turbulence phenomena is much more complicated with many more

degrees of freedom (many more physical parameters) and multiple bifurcations in the overall be-

havior. For example, mean flow three–dimensionality, large–scale instabilities, streamline curva-

ture, stratification, compressibility and other effects encountered in typical engineering flows will

lead to significantly more complex constitutive relations with non–equilibrium effects. It is very

likely that sufficiently large samples of accurate (direct numerical simulations or experimental)

time dependent data over all possible regimes of turbulence encompassing all these effects will

not be available in the near future. Even if such data were available, it is unclear if an optimal set

of hyperparameters can be found using currently available methods. Until such a time when (i)

sufficiently large volume of unsteady data is available over the entire parameter regime of turbu-
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lence; and (ii) analytical methods for determining optimal network architecture are available, the

results of the current study suggest that ML–enhanced RANS models will be limited in its ability

to perform predictive computations of real engineering flows. It is important to note that when

data is indeed available over the entire parameter range, traditional closure development methods

may also lead to significantly improved models. Thus, the relative advantages of ML methods over

traditional methods must be reassessed at that time.
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4. DATA–DRIVEN CLOSURE MODELING FOR SCALE RESOLVING PANS

SIMULATIONS

Most flows encountered in industrial applications are unsteady and exhibit intrinsic large–scale

instabilities, coherent structures, separation, complex geometrical features, or statistical unsteadi-

ness. The spatio–temporal resolution requirements of the underlying physical phenomena make di-

rect numerical simulation (DNS) and large eddy simulation (LES) prohibitively expensive and their

applicability remains restricted [127, 128, 129]. On the other hand, Reynolds–averaged Navier–

Stokes (RANS) is inherently inadequate for accurately computing the statistical features of the

complex flows. Averaging fundamental governing equations over all scales of motion and the

associated model assumptions limit the applicability of the RANS models more than LES. Scale-

resolving simulations (SRS) resolve the unsteady and coherent scales of motion and offer a com-

putationally less intensive alternative to LES and is well suited for the engineering applications.

The partially averaged Navier–Stokes (PANS) approach is a SRS method that offers the ability to

simulate turbulent flows at any degree of resolution between DNS and RANS [130, 8, 9].

The persistent challenges of traditional approaches motivate the use of data–driven techniques

for turbulence modelling at all level of closures: RANS, SRS and LES. These methods leverage

recent advances in machine learning (ML) and increasingly available high–fidelity data of turbu-

lent flows to build improved turbulence models. Steady–state RANS is widely used in industrial

applications due to ease of computations and is a promising target for early efforts of ML–based

turbulence modeling [54, 34, 10, 15, 18, 57, 16, 17, 80, 23, 81, 82, 131, 84, 85, 132, 133, 86, 87,

32, 31, 89, 88, 89, 83, 12, 35, 36, 90, 1, 134, 92, 93, 94, 95, 135, 136, 137, 138].

Despite some advances in recent years, the performance of data–driven RANS turbulence clo-

sures in unseen flows of practical interest continue to be inadequate. Most complex turbulent

flows exhibit an intriguing mix of coherent structures and stochastic velocity field. The nature of

large–scale coherent structures is strongly dependent on flow geometry and any underlying hydro-

dynamic instabilities. The small–scale stochastic flow field on the other hand exhibits nearly uni-
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versal behavior [21, 22]. The RANS closures attempt to model the effects of flow-dependent large–

scales and the ‘universal’ small–scales with a single constitutive closure expression. The lack of

generalizability of the RANS closures to unseen complex flows can be attributed to poor modeling

of the effects of large–scale coherent structures. It is now well understood, that ML–based training

with averaged flow–features may not overcome the inherent deficiencies of tradition models, but

can lead to the best possible model subject to the limitations [24, 139]. Ling et al. [10] showed

that the invariant tensor basis neural network (TBNN) in which the structural form of the model is

posited a priori has significantly more accurate predictions than a non–parametric neural network

closure model that does not have any prior form of the constitutive relationship. Taghizadeh et

al. [23] proposed a “closed loop training" framework in order to incorporate some degree of physi-

cal compatibility and training consistency into the ML–RANS modeling process. The closed loop

framework reuses and transfers the prior knowledge in training process via transfer learning which

leads to significantly improved predictions over open loop training framework. A complete list of

important contributions in this area can be found in recent review papers [38, 39, 96, 97, 98].

ML–enhanced LES turbulence models are not as extensively studied like RANS counterparts

and many of the recent studies have aimed to directly learn the sub-grid-scale (SGS)/sub-filter-

scale (SFS) stress from high–fidelity data as an outcome of the optimization, i.e., without any prior

assumption about the structural/functional form of the constitutive relationship [26, 71, 75, 78, 140,

76]. Although this non–parametric (also called as model–free [70] and “form-free-in-prior” [81])

data–driven LES models can accurately account for interscale transfers (e.g., backscattering [141])

and outperform the traditional physics–based SGS/SFS models such as Smagorinsky and dynamic

Smagorinsky models in a priori tests, they lack of embedded physical laws and have two major

shortcomings:

1. Generalizability: Data–driven closure models are able to predict only a narrow range of

flows that have been used during training and suffer from rather limited generalization (or

extrapolation) capabilities [24]. Such extrapolations are challenging for neural networks

(NN) in general [142, 143, 144, 145, 146]. It is shown that the non–parametric NN–based
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SGS models do not accurately predict the turbulence statistics when ML–LES (i.e., a poste-

riori test) was conducted with a grid resolution different from that used for training NN [76].

Some level of generalization capability in the data–driven SGS models is essential for the

LES models to be robust and trustworthy. It is shown that training of non–paramertic NNs

with the datasets having two different resolutions, coarser and finer than that of ML–LES

can enhance the generalizability capability of these models [76]. However, the parametric

data–driven LES models with embedded physical invariances within the architecture gen-

erally outperform both purely data–driven ones as well as parametric traditional SGS/SFS

models [147, 148].

2. Robustness: The non–parametric ML closures are uninterpretable and situationally predict

unrealistic values that contradict the physics of turbulence. Therefore, these models become

unstable in a posteriori test simulations which leads to numerical instability or physically

unrealistic flows. The reason for instability of the non–parametric ML–based LES clo-

sures remains unclear [140] and usually ad hoc corrections such as backscatter clipping,

wall damping function or combining the ML–based model with an eddy viscosity model are

used in a posteriori computations to ensure numerical stability [70, 29, 66, 28, 97, 67, 76].

However, such ad hoc corrections of ML–based LES closures substantially compromise the

advantages gained from the non–parametric, data–driven approach and can lead to an incon-

sistency between the results of a priori and a posteriori tests [76]. For instance, it is shown

that a non–parametric SGS model with highest correlation coefficients between the true and

predicted SGS stresses in a priori test, leads to an unstable solution in a posteriori test,

unless backscatter clipping is implemented [76]. On the other hand, a non–parametric SGS

model that shows an excellent prediction capability for the mean velocity and Reynolds shear

stress in a posteriori test without any backscatter clipping, gives low correlation coefficients

between the true and predicted SGS stresses in a priori test [76]. As a result, numerical

instabilities remain a major obstacle to broadening the applications of ML–enhanced LES

models.
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Scale resolving simulations (SRS) seek to decompose the velocity field into large–scale coher-

ent structures and small–scale stochastic flow fields. In the SRS approach, the large–scale struc-

tures are adequately resolved and only the effect of the small–scale stochastic field is modeled with

constitutive relationship. Thus, SRS is computationally more expensive, but the constitutive clo-

sure relation is required to account only for the action of ‘universal’ small–scale structures. Thus,

data–driven SRS approach has a better chance of being generalizable to unseen flows. However,

there are relatively few works in the literature that combine ML with SRS methods for the purpose

of improving unsteady flow predictions. Lav et al. [1] applied Proper orthogonal decomposition

(POD) to high–fidelity DNS dataset and used two first eigenmodes to decompose the flow into

organised motion and stochastic turbulence. Then, they employed Gene Expression Programming

(GEP) algorithm to develop non–linear URANS and PANS closures only for the stochastic part of

turbulence with time averaged flow fields. Time averaging reduces the richness of the information

in unsteady data, as it removes the dynamics and time–varying nature of the flow. It is crucial to

use the full time–varying data for SRS turbulence modeling, as this can provide a more complete

picture of the turbulent flow dynamics. ML techniques, such as NNs, are well–suited for handling

time–varying data and can learn to capture the important temporal and spatial features of the flow,

allowing for more accurate modeling of turbulence.

Another important challenge in SRS closure model development is the availability of time-

accurate data. In many high Reynolds number flows of practical interest, high-fidelity experimental

or direct numerical simulation (DNS) is not feasible. The only realistic possibility is the availabil-

ity of adequately fine-resolution, but not full resolved, data from which models for coarser grid

resolution can be developed.

This work proposes a framework for developing neural networks (NN) for SRS subgrid stress

constitutive relations. Toward this end, the study addresses some of the theoretical challenges

and formulates a procedure to incorporate the unsteady flow features of importance in the SRS

closure. Most importantly, it is demonstrated that the NN for the (suitably normalized) subgrid

stress constitutive relation is insensitive to the cut–off between resolved and unresolved flow fields,
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(a) (b)

Figure 4.1: Schematic of ML–enhanced turbulence closure model developments with (a)
Instantaneous statistics (present work) and (b) Averaged statistics (Lav et al. [1])

so long as the coherent structures are fully resolved. Such behavior is highly desirable as it is

consistent with the ‘universal’ nature of the stochastic scales of the flow.

The main objectives of this study are to:

1. Formulate the foundational equations relating fine- and coarse-resolution subgrid stresses

for use in data–driven subgrid stress NN development.

2. Devise a parametric NN training procedure that incorporates the unsteady flow features.

Previous attempts have either been non–parametric or used time–averaged data to develop

SRS closures.

3. Demonstrate that the NN subgrid closure coefficients are insensitive to the cut–off at ade-

quate levels of resolutions or cut–offs.

4. Compare the different options for the time scale to be used in closure modeling.

To exploit the sequential nature of data, a fully connected feed–forward NN model is trained

for local turbulent stresses at each time based on the local input features and tensors at that time.
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This can allow the model to capture the temporal evolution of the flow and make more accurate

predictions of instantaneous evolution and time–averaged statistics. The schematic illustration of

the proposed model development framework is shown in Fig. 4.1. The new model development

has three main characterstics: (i) improved consistency between local turbulent flow field and local

turbulent scales in high–fidelity data by extracting them from PANS simulation at fine filter; (ii)

reconstructing unsteady low–fidelity data corresponding to PANS simulation at coarse filter by

employing POD as a test filter; and (iii) a priori investigation of the ML closure functionals under

different choices of turbulent scales and degrees of resolution (filter sizes).

Overall, this study develops a reasonable framework for SRS closure modeling and provide

a priori results. Although the proposed ML–enhanced turbulence closure model development

is presented in the context of PANS, but it is generally applicable to other SRS methods. It is

important to regard this work as only a first, but important, step toward data–driven SRS closure

model development. It is evident that much more effort is needed to make this approach a frontline

CFD tool. The Chapter is organized as follows. The PANS closure framework is discussed in

Sec. 4.1.1. Multiresolution PANS modeling is proposed Sec. 4.1.2. Reference flow and dataset

generation are elaborated in Sec. 4.2. The details of the employed NN architecture are explained

in Sec. 4.3. The results and inferences are discussed in Sec. 4.4. The conclusions of this study are

summarized in Sec. 4.5.

4.1 Methodology

4.1.1 PANS Closure Framework

The continuity and Navier–Stokes equations for a viscous and incompressible flow can be

written as,
∂Vi
∂xi

= 0,
∂Vi
∂t

+ Vj
∂Vi
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2Vi
∂xj∂xj

, (4.1)

where Vi is the i -th component of instantaneous velocity vector, p is the instantaneous pressure,

ρ is the density, ν is the kinematic viscosity and i , j = 1, 2, 3. The instantaneous velocity and

pressure fields are decomposed into the resolved and unresolved components using an implicit
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commutative filter indicated by angular brackets ⟨ ⟩ [149]:

Vi = ⟨Vi⟩+ u′i, ⟨u′i⟩ ≠ 0,

p = ⟨p⟩+ p′, ⟨p′⟩ ≠ 0.

(4.2)

The resolved fields further decompose into mean () and zero–mean resolved fluctuating (̃ ) parts :

⟨Vi⟩ = ⟨Vi⟩+ Ṽi,

⟨p⟩ = ⟨p⟩+ p̃.

(4.3)

Upon applying the implicit filtering operator ⟨⟩ to the Navier–Stokes equations, the filtered

equations for incompressible flows are obtained:

∂⟨Vi⟩
∂xi

= 0,
∂⟨Vi⟩
∂t

+ ⟨Vj⟩
∂⟨Vi⟩
∂xj

=
1

ρ

∂⟨p⟩
∂xi

− ∂τ(Vi, Vj)

∂xj
+ ν

∂2⟨Vi⟩
∂xj∂xj

. (4.4)

The generalized turbulent stress or "sub–filter–scale (SFS)" stress relates the resolved and unre-

solved fields as:

τ(Vi, Vj) = ⟨ViVj⟩ − ⟨Vi⟩⟨Vj⟩. (4.5)

The second order, symmetric SFS stress can be decomposed into isotropic (ku) and anisotropic

(bij) parts:

τ(Vi, Vj) = 2kubij +
2

3
kuδij; where ku =

1

2
τ(Vi, Vi). (4.6)

A local form of the constitutive relationship for the normalized anisotropy tensor can be written

using representation theory as [45]:

bij(sij, rij) =
10∑
n=1

Gn(λ1, ..., λ5, ku, ϵu)T
(n)
ij . (4.7)

Here, the basis tensors T (n)
ij and their scalar invariant functions λ1, ..., λ5 are defined as functions
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of normalized strain rate (sij) and rotation rate tensor (rij) of the resolved field [45]:

sij = τISij =
τI
2
(
∂⟨Vi⟩
∂xj

+
∂⟨Vj⟩
∂xi

), rij = τIRij =
τI
2
(
∂⟨Vi⟩
∂xj

− ∂⟨Vj⟩
∂xi

), (4.8)

here the turbulent time scale, τI is used to normalize the strain rate and rotation rate tensors of

the resolved field. The scalar coefficient G of each basis tensor, Tij in Eq. 4.7 also referred to as

constitutive closure coefficients (CCC) [23] must be modeled. The objective of ML–enhancement

is to learn ML functionals for CCC using high–fidelity data in flows of choice.

The transport equations for the unresolved turbulent kinetic energy (ku) and specific dissipation

rate (ωu) are solved for turbulence velocity and length scales [150]:

∂ku
∂t

+ ⟨Vj⟩
∂ku
∂xj

= τ(Vi, Vj)
∂⟨Vi⟩
∂xj

− β∗kuωu +
∂

∂xj

[
(ν + σ∗

uνu)
∂ku
∂xj

]
,

∂ωu

∂t
+ ⟨Vj⟩

∂ωu

∂xj
= α

ωu

ku
τ(Vi, Vj)

∂⟨Vi⟩
∂xj

− (αβ∗ − α
β∗

fω
+

β

fω
)ω2

u +
∂

∂xj

[
(ν + σuνu)

∂ωu

∂xj

]
.

(4.9)

We use subscripts u and r to represent the unresolved and resolved properties. In PANS the effec-

tive filter width is controlled by the resolution control parameters fk, fϵ and fω which are defined

as the ratio of the unresolved to total quantities:

fk =
ku
k
; fϵ =

ϵu
ϵ
; fω =

ωu

ω
=
fϵ
fk
. (4.10)

The transport closure coefficients (TCC) in Eq. 4.9 are α = 0.52, β = 0.072, β∗ = 0.09 and the

Prandtl number for the unresolved kinetic energy and dissipation are expressed as [151]:

σ∗
u =

fω
fk
σ∗; σu =

fω
fk
σ, (4.11)

in which the RANS Prandtl numbers are σ∗ = σ = 0.5.

Applying an ensemble average operator on generalized turbulent stress (SFS) in Eq. 4.5, relates
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the PANS statistics to their RANS counterparts [152]:

R(Vi, Vj) = τ(Vi, Vj) +R(⟨Vi⟩, ⟨Vj⟩), (4.12)

where R(Vi, Vj) represents the Reynolds stress:

R(Vi, Vj) = ViVj − Vi Vj, (4.13)

and the resolved turbulent stress in Eq. 4.12 is explicitly calculated as:

R(⟨Vi⟩, ⟨Vj⟩) = ⟨Vi⟩⟨Vj⟩ − ⟨Vi⟩ ⟨Vj⟩. (4.14)

4.1.2 Multiresolution PANS modeling

We define two filtering operators like traditional dynamic SGS eddy viscosity models [153]:

one is the grid (fine) filter, denoted by f subscript, while the other, the test (coarse) filter is denoted

by c subscript. The statistics of two filter levels can be related according to Eq. 4.12:

R(Vi, Vj) = τf (Vi, Vj) +R(⟨Vi⟩f , ⟨Vj⟩f ) = τc(Vi, Vj) +R(⟨Vi⟩c, ⟨Vj⟩c), (4.15)

and the ensemble SFS stress at coarse filter can be written based on the ensemble SFS stress at fine

filter and the difference between resolved turbulent stress at two filter levels:

τc(Vi, Vj) = R(⟨Vi⟩f , ⟨Vj⟩f )−R(⟨Vi⟩c, ⟨Vj⟩c) + τf (Vi, Vj). (4.16)

Using Eq. 4.14, the ensemble SFS stress at coarse filter can be further expanded as:

τc(Vi, Vj) = ⟨Vi⟩f⟨Vj⟩f − ⟨Vi⟩c⟨Vj⟩c − (⟨Vi⟩f ⟨Vj⟩f − ⟨Vi⟩c ⟨Vj⟩c) + τf (Vi, Vj). (4.17)
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The (instantaneous) SFS stress at coarse filter can be derived from Eq. 4.17 by invoking Eq. 4.3:

τc(Vi, Vj) = ⟨Vi⟩f⟨Vj⟩f − ⟨Vi⟩c⟨Vj⟩c − (⟨Vi⟩f ⟨Vj⟩f − ⟨Vi⟩c ⟨Vj⟩c)

− (⟨Vi⟩f (Ṽj)f + ⟨Vj⟩f (Ṽi)f − ⟨Vi⟩c(Ṽj)c − ⟨Vj⟩c(Ṽi)c) + τf (Vi, Vj).

(4.18)

Thus, if fine resolution data is available, the coarse resolution closure model coefficients can be

determined. In order to find closure coefficients (CC) for SFS at coarse filter, we use transfer

learning concept used in closed–loop training framework [23]. First the stress terms on RHS of

Eq. 4.18 are calculated with an initial guess for CC and then ML algorithm is trained to learn new

CC for SFS stress at coarse filter (LHS). Next a posteriori simulation with new CC is performed to

update the stress terms on RHS for the second loop of ML training. The iterative training sequence

will continue until convergence is achieved for CC and other flow quantities of interest [23].

4.2 Reference flow and dataset

The turbulent flow in a channel with periodic hill–shaped constrictions is considered as the test

case to generate the reference dataset for developing ML–enhanced PANS closure models in this

study. The flow configuration and boundary conditions are summarized in Fig. 4.2. The geometry

and domain dimensions are consistent with those in previous works [154, 155]. The hill height (h)

is one–third of the total channel height. In the streamwise direction, the domain extends from one

crest to the next over a distance of 9h. In the spanwise direction, the domain size is 4.5h. A body

fitted, curvilinear grid very similar to the one used in [154] is generated for the flow geometry.

For the computational domain in streamwise, wall–normal and spanwise directions (x, y, z), a grid

resolution of 150 × 100 × 60 points is considered [156]. The flow is periodic in both streamwise

and spanwise directions and no slip boundary condition is used at the bottom and top walls. Flow is

driven by a constant pressure gradient which is added as a source term to the momentum equation.

Flow Reynolds numbers based on the bulk velocity (Ub) above the crest of the hill is 10590.

Fine resolution PANS simulations of the periodic hill flow is performed at fk = 0.15 and fϵ = 1

with turbulent constitutive closure coefficients of G1 = −Cµ = −0.09 and Gn = 0 for n > 1. The
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Figure 4.2: Flow configuration

simulation is conducted in OpenFOAM, with second–order accurate schemes in space and time.

The flow properties of the PANS simulation at fine filter are collected after 20 flow–through times

(T) and over a time period of 20T [156].

The PANS fk = 0.15 results are used to generate coarse–grid type results using proper orthogo-

nal decomposition similar to the method adopted by Lav et al. [1]. One of the main benefits of POD

is that it allows for the decomposition of a flow field on the basis of energy content. The modes

with the highest energy content correspond to the largest length scales in the flow, while the modes

with the lowest energy content correspond to the smallest length scales. Recently the similarity

between the physical and Fourier scales and the POD modes, in terms of kinetic–energy content

and the interchange of energy between the scales and modes, is used in developing POD–assisted

LES closure models [157].

In order to construct statistics at coarse filter level, we apply the snapshot POD technique

as a test filter on the resolved velocity fluctuations collected from PANS simulation at fine filter

in the entire three dimensional computation domain. Details of the filtering approach with POD

algorithm are given in Appendix B. First the effects of data sampling frequency over the time period

of 20T on the energy contribution of the eigenmodes is studied at the coarse filter f c
k = 0.35. The

results indicate that the energy content of the eigenmodes and the value of the highest POD mode,

N i
c does not significantly change with 630 time samples collected over an interval of 0.29 time

units (∆tseq = ∆tUb/h). Previous studies have shown that ML training with dataset collected at

different filter resolutions can enhance the generalisation capability of ML–LES models [76]. In

88



Table 4.1: POD resolution control parameter (f ∗
k ) and the highest POD mode (N i

c) for
reconstructing the resolved fluctuations at different levels of filtering

f f
k f c

k f ∗
k N i

c

0.15 0.25 0.12 259
0.15 0.35 0.24 154
0.15 0.45 0.35 98

order to investigate the filter resolution effects on performance of ML–enhanced PANS models,

we reconstruct the flow fields at three different coarse filters, f c
k = 0.25, 0.35 and 0.45 by applying

POD on 630 time samples. The corresponding POD resolution control parameter (see Appendix B

for definition) and the highest POD modes at each cut–off length scales are given in Table 4.1. As

the cut–off filter decreases the required number of the POD modes to reconstruct the fluctuating

velocity vector at coarse filter decreases. The resolved velocity vector fields at fine and coarse

filter levels are sampled from the middle x–y plane of the computational domain and are used

to determine the instantaneous SFS stress at coarse filter according to Eq. 4.17. The strain and

rotation rate tensors are calculated from resolved velocity vectors at coarse filter level.

A turbulent time scale (τI) is needed to normalize the resolved strain and rotation rate ten-

sors in definition of the basis tensor functions (T (n)
ij ) and their scalar invariant functions λ1, ..., λ5

(Eq. 4.8). Here we examine different choices of the turbulent time scales in this a priori study.

In order to develop consistent ML turbulence models, previous studies have followed an approach

first introduced by Parneix et al. [158], where the turbulent time scale is obtained by solving the

turbulent transport equations in a "frozen/passive" mode [12, 35, 36, 90, 1]. In these studies, the

transport equation for turbulent length scale (ω or ϵ) is solved using the frozen (fixed in time and

space) averaged velocity and Reynolds stress of the high–fidelity (DNS/LES) reference data. In the

present study, the PANS framework is used to acquire high–fidelity training dataset and the corre-

sponding turbulent scales at each time sample can be obtained from turbulent transport equations

(Eqs. 4.9), hence it can enhance the consistency of the ML model and eliminate the challenges of

the frozen methodology. Two different choices of modeled turbulence velocity and length scales
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Figure 4.3: Illustration of the proposed deep feed–forward fully connected NN

from PANS simulation at fine filter (f f
k ) are considered:

1. Instantaneous turbulent time scale, τI = ku/ϵu = 1/
(
β∗ωu

)
2. Time–averaged turbulent time scale, τI = ku/ϵu = 1/

(
β∗ωu

)
4.3 Data–Driven frameworks

As stated before, the main objective of this work is to develop parametric ML–enhanced PANS

closure model using unsteady training dataset. Due to the flexible architecture and superior perfor-

mance in modeling non–linear and complicated relationships, deep neural networks (DNN) with

a variety of network structures, such as convolutional neural networks (CNN), recurrent neural

networks (RNN), or long short–term memory (LSTM) networks have been used for modeling

fluid dynamics in general and turbulence in particular. In this work we employ a fully connected

feed–forward neural network [also termed as a multi–layer perceptron (MLP)] with the proposed

architecture schematically shown in Fig. 4.3. The model is trained using back–propagation and a

gradient descent method with learning rate of 0.01. The training batch in our proposed network

architecture consists of all the time sequences together and the hidden layers are executed indepen-

dently for each sample in the sequence, but with the same weights and biases. In the future work,
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Table 4.2: Fixed NN hyperparameters

Hyperparameter Value
Activation function Tanh
Optimization algorithm Adam [63]
Initialization function Xavier normal [126]
Learning rate 1 ×10−2

Batch size 1000
Regularization coefficient 0.0

we will seek to combine the proposed MLP network with RNN architectures in order to better

utilize the information contained in the temporal dynamics of the data. The hyperparameters of the

NN models trained in this study are given in Table 4.2.

It has been shown that the success of ML trained turbulence models depends on the formulation

of the loss function used for optimization of the model coefficients (weights and biases of neurons)

during the ML training process [23, 24]. In this work we employ mean square error (MSE) loss

function for ML training:

MSE =
1

6N

N∑
m=1

3∑
i=1

i∑
j=1

(τ cij − τ̂ cij)
2, (4.19)

where τ̂ cij denotes the prediction of the ML algorithm and τ cij is the true labeled data; N is the total

number of the data points.

4.4 Results

Turbulent flows are characterized by fluctuations over a wide range of time and length scales.

Well resolved instantaneous data can capture this complexity more accurately than time–averaged

data. Therefore, it is vital to incorporate the unsteady flow features of the high–fidelity data into

the ML–SRS turbulence closure models. ML–models with embedded physical invariances within

the architecture outperform the pure data–driven non–parametric models [10, 147, 148], therefore
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Table 4.3: Performance of models with different network sizes

Network Hidden layers Nodes Training Testing
NN–1 4 4 3.114 ×10−4 3.065 ×10−4

NN–2 5 5 3.113 ×10−4 3.064 ×10−4

NN–3 6 5 3.113 ×10−4 3.064 ×10−4

NN–4 8 8 3.112 ×10−4 3.063 ×10−4

in this study we seek to train a constitutive relationship with a given a priori form as (Eq. 4.7),

τc = 2kc

(
G1T

(1)
ij +G2T

(2)
ij +G3T

(3)
ij +G4T

(4)
ij +

1

3
δij

)
. (4.20)

Following Taghizadeh et al. [23], we consider only four basis tensors and four scalar invariant func-

tions λ1, ..., λ4 as input features to determine the ML functional for CCC, i.e., Gn = gn(λ1, ..., λ4),

T
(1)
ij = sij, T

(2)
ij = sikrkj − rikskj, T

(3)
ij = sikskj −

1

3
δijsmnsnm, T

(4)
ij = rikrkj −

1

3
δijrmnrnm

λ1 = sijsji, λ2 = rijrji, λ3 = sijsjkski, λ4 = rijrjkski.

(4.21)

Details of the unsteady dataset acquisition for ML training are given in Sec. 4.2. The dataset

at each time sequence is segmented as 75% for training and 25% for testing of the models. The

computations of each study are directed toward answering the following questions:

1. How does the value of CCC (or Gn) change by filter size or degree of resolution?

2. How does the value of CCC (or Gn) change by turbulent time scale?

The results are presented in three parts. In Sec. 4.4.1, the importance of the utilizing full unsteady

training dataset is discussed and the effects of NN architectures, sampling frequency on training

performance and a priori CCC prediction of the networks are shown. The training performance

and a priori CCC prediction of the networks at different cut–off length scales are compared in

Sec. 4.4.2. The effects of using time–averaged turbulent time scale for normalization of strain and

rotation rate tensors across different filter resolutions are investigated in Sec. 4.4.3.

92



(a) (b)

(c) (d)

Figure 4.4: (a) Instantaneous field, (b) Instantaneous feature state–space, (c) Time–averaged field
and (d) Averaged feature state–space

4.4.1 Importance of unsteady training data

Time averaging smooths out and eliminates small–scale temporal fluctuations, therefore in

order to develop SRS turbulence models it is vital to utilize full unsteady, time–varying dataset,

as this can allow for a more accurate and complete representation of the real flow dynamics. The

velocity magnitude contours and the training feature state–space (λ1 vs. −λ2) of the instantaneous

and time–averaged fields are presented in Fig. 4.4. As it is evident from the contour plots, many

important temporal and spatial characteristics of the flow are lost due to the time–averaging and

the training feature state–space gets smaller. It has been shown in previous study [24], that the lack

of sufficient information on the training dataset can significantly reduce the predictive capability

and generalizability of NN closure models. Furthermore, the ML–SRS models will be deployed
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(a) (b)

(c) (d)

Figure 4.5: CCC distributions of NNs with different network sizes, (a) G1, (b) G2, (c) G3 and (d)
G4

for instantaneous flow fields in a posteriori simulations and the differences between instantaneous

and time–averaged tensor basis functions (T (1)
ij ...T

(4)
ij in Eq. 4.21) can lead to inconsistency and

numerical instability of the parametric SRS models developed with time–averaged dataset.

In order to build robust and effective ML models, first we evaluate the predictive capability

and generalization of NNs with different network–size, i.e., different sizes of depth and breadth

of network. For this case the turbulence velocity and length scales of the PANS simulation at

fine filter level are used to normalize the strain and rotation rate tensors at each time sample. The

performance of the models on the training and testing datasets generated for coarse filter f c
k = 0.35

with 630 time samples are given in Table 4.3. All of the 4 networks have similar performance on

both the training and testing datasets and models test quite well without over/under fitting. A

priori distributions of CCC over the entire dataset at all the network architectures are compared in
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Table 4.4: Performance of models with different number of input sequences. Nseq,∆tseq and
∆ttot are total number of time samples, time increment between two samples and total time

interval of the sampling, respectively.

Model Nseq ∆tseq ∆ttot Training Testing
M–1 210 0.86 20T 3.134 ×10−4 3.064 ×10−4

M–2 315 0.57 20T 3.109 ×10−4 3.073 ×10−4

M–3 630 0.29 20T 3.114 ×10−4 3.065 ×10−4

Fig. 4.5. As it can be seen the average value of the predicted CCC profiles remains same for all

the network sizes and the standard deviation of CCC profiles gets larger with network size. The

network architecture with 4 hidden layer and 4 nodes per layer (NN–1) is selected for the rest of

the analyses in this study.

As it is discussed in Sec. 4.2, the velocity fields at coarse filter are constructed by applying

POD on 630 time samples collected over the time period of 20T with the interval of 0.29. As

a next step we investigate the effects of sampling frequency from this reconstructed dataset on

the ML training performance and CCC distributions. This analysis is performed for the dataset

corresponding to the cut–off length scale of f c
k = 0.35 and normalized with instantaneous turbulent

time–scale. The performance of the models trained with different data sampling frequencies are

given in Table 4.4. A priori CCC distributions of models are also compared in Fig. 4.6. As the

results show, training the NN with different number of time samples does not change the model

performance and average value of the predicted CCC profiles. The model trained with 630 input

time sequences has the largest standard deviation forG1 profile and the smallest standard deviation

for other CCC profiles. The training dataset consisting of 630 input time sequences is used for the

other analyses in this study.

4.4.2 Cut–off length scales

The training performance and CCC distributions of the NN models are investigated at four lev-

els of physical resolution (cut–off length scale) designated according to the fraction of unresolved

turbulent kinetic energy f c
k = 1.00, 0.45, 0.35 and 0.25. It is important to note that f c

k = 1.00
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(a) (b)

(c) (d)

Figure 4.6: CCC distribution of NNs with different number of input sequences, (a) G1, (b) G2, (c)
G3 and (d) G4

corresponds to a RANS computation and decreasing f c
k implies increasing resolution. The low-

est resolution computation, i.e., RANS, models the entire velocity field and does not distinguish

between coherent and stochastic turbulence field. However the success of the PANS approach

depends upon ensuring that only the stochastic field is modelled. It has been shown that PANS

with physical resolutions fk ≤ 0.5 resolve the coherent structures in most unsteady flows like flow

around a circular cylinder [159].

The performance of the NN models trained with normalized instantaneous turbulent time scales

at physical resolutions fk ≤ 0.5 are represented in Table 4.5. The MSE on the training and test-

ing datasets increases by the resolution control parameter f c
k . A priori CCC distributions of NN

models at different cut–off length scales are compared in Fig. 4.7. It is evident that the CCC dis-
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tribution profiles of NN models at different PANS physical resolution f c
k = 0.45, 0.35 and 0.25 are

quite similar. At fk ≤ 0.5 the modeled field is comprised mostly of fully–developed (stochastic)

turbulence, therefore the convergence of the CCC for physical resolution f c
k = 0.45, 0.35 and 0.25

is consistent with the ‘universal’ nature of the stochastic scales. The CCC profiles are wider for

RANS case as the ML closure function attempts to model the effects of large coherent scales and

the small–scales.

4.4.3 Time–averaged turbulent time scale

In this study the time average of modeled turbulence velocity and length scales of the PANS

simulation at fine filter are used to normalize the strain and rotation rate tensors at each time

sample. The effects of cut–off filter size on training performance of NN models and a priori dis-

tribution of the CCC are investigated. Similar to previous cases, training dataset consisting of 630

time samples and a network architecture with 4 hidden layer and 4 nodes per layer are used in this

case. As given in Table 4.6 the MSE on the training and testing datasets at each cut–off filter are

similar to the case with instantaneous time scale and the the MSE increases by resolution control

parameter. The CCC profiles predicted by ML models at different f c
k values are shown in Fig. 4.8.

The distributions of G1 coefficient across different f c
k values are similar with mean value of -0.09.

However, the mean and standard deviation of the other CCC are different for each cut–off filter. As

the resolution control parameter (f c
k) decreases the magnitude of mean and standard deviation for

G2, G3 and G4 coefficients decreases. This trend in the CCC distributions is only observed in this

case, where the time average of modeled turbulence velocity and length scales are used for normal-

ization of strain and rotation rate tensors. As it has been shown in Fig. 4.7, the CCC distributions

are identical across all the filter resolutions when turbulent time scale correspondingly changes

with input strain and rotation rates. Moreover, the difference between the CCC distributions of

the models with instantaneous and averaged turbulent time scale is more significant at low cut–off

filters. These results show that different choices of turbulent time scales in developing ML–PANS

models can change the predicted CCC distributions especially at small cut–off length scale, which

can significantly impact the generalizaiblity and robustness of the ML-PANS models in a posteri-
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Table 4.5: Performance of NN models at different cut–off length scales with instantaneous
turbulent time scale

f c
k MSE–training MSE–testing

0.25 1.584 ×10−4 1.562 ×10−4

0.35 3.114 ×10−4 3.065 ×10−4

0.45 4.577 ×10−4 4.497 ×10−4

(a) (b)

(c) (d)

Figure 4.7: CCC distribution of NNs at different cut–off length scales with instantaneous
turbulent time scale, (a) G1, (b) G2, (c) G3 and (d) G4

ori simulations. A posteriori tests of the proposed ML–PANS framework will be carried out in the

future work.
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Table 4.6: Performance of NN models at different cut–off length scales with time–averaged
turbulent time scale

f c
k MSE–training MSE–testing

0.25 1.584 ×10−4 1.562 ×10−4

0.35 3.110 ×10−4 3.061 ×10−4

0.45 4.572 ×10−4 4.491 ×10−4

(a) (b)

(c) (d)

Figure 4.8: CCC distribution of NNs at different cut–off filters with time–averaged turbulent time
scale, (a) G1, (b) G2, (c) G3 and (d) G4
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4.5 Conclusion

Developing data–driven turbulence models for Scale Resolving Simulations (SRS) can be an

effective way to improve the accuracy of unsteady flow predictions. These models can leverage

large amounts of unsteady data from high–fidelity simulations to capture the stochastic physics

of turbulence at various scales. This can lead to more accurate predictions of unsteady flow in

complex geometries, such as industrial equipment, wind turbines, and aircraft. In this study we

propose a methodology to rigorously incorporate unsteady flow features in developing parametric

ML–enhanced PANS turbulent closures. The proposed framework employes cut–off filters at dif-

ferent levels similar to the traditional dynamic SGS eddy viscosity models. In order to increase the

consistency in the unsteady training dataset, high–fidelity data is acquired from PANS simulation

at small cut–off filter, instead of DNS. Then low–fidelity dataset is reconstructed based on the en-

ergy content of the resolved scales by applying POD on acquired temporal high–fidelity dataset. In

this study, a priori results of the new framework is presented under different choices of turbulent

scales and degrees of resolution. The results show that the ML–enhanced SRS models are nearly

insensitive to cut–off so long as the coherent structures are fully resolved.
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5. SUMMARY AND DISCUSSION

A recent thrust in turbulence closure modeling research is to incorporate machine learning

(ML) elements, such as neural networks, for the purpose of enhancing the predictive capability to

cover a broader class of flows. For generalizability to unseen flows, we submit that the data-driven

ML approaches must preserve certain fundamental physical principles and closure tenets incum-

bent in physics-based (PB) models. In the first study, we propose and investigate three elements

to ensure the physical underpinnings of ML turbulence closures: (i) characteristic physical fea-

tures and constraints that all (PB and ML) closure models must strive to satisfy; (ii) ML training

scheme that infuses and preserves selected PB constraints; and (iii) physics-guided formulation

of ML loss (objective) function to optimize models predictions. Current ML training and imple-

mentation strategies that can potentially cause significant physical incompatibilities and internal

inconsistencies are identified. Means of mitigating inconsistencies and improving compatibility

between different physical elements of the modeled system are developed. First, key closure con-

straints dictated by the model system dynamics are derived. Then a closed loop training procedure

for enforcing the constraints in a self-consistent manner is proposed. Finally, the simple test case

of turbulent channel flow is used to highlight the deficiencies in current ML methods and demon-

strate improvements stemming from the proposed mitigation measures. In summary, this study

addresses the need for physics-dictated guidance in the development of ML-enhanced turbulence

closure models.

It is well recognized that the neural network (NN) architecture and training protocol profoundly

influence the generalizability characteristics. At the Reynolds–averaged Navier–Stokes level, NN–

based turbulence closure modeling is rendered difficult due to two important reasons: inherent

complexity of the constitutive relation arising from flow–dependent non–linearity and bifurcations;

and, inordinate difficulty in obtaining high-fidelity data covering the entire parameter space of

interest. Thus, a predictive turbulence model must be robust enough to perform reasonably outside

the domain of training. In this context, we investigated the approximation capabilities of standard

101



moderate-sized fully connected NNs in the second study. We seek to systematically investigate the

effects of (i) intrinsic complexity of the solution manifold; (ii) sampling procedure (interpolation vs

extrapolation); and (iii) optimization procedure. To overcome the data acquisition challenges, three

proxy-physics turbulence surrogates of different degrees of complexity (yet significantly simpler

than turbulence physics) are employed to generate the parameter-to-solution maps. Lacking a

strong theoretical basis for finding the globally optimal NN architecture and hyperparameters in the

presence of non-linearity and bifurcations, a “brute–force” parameter-space sweep is performed to

determine a locally optimal solution. Even for this simple proxy–physics system, it is demonstrated

that feed–forward NNs require more degrees of freedom than the original proxy-physics model to

accurately approximate the true model even when trained with data over the entire parameter space

(interpolation). Additionally, if deep fully connected NNs are trained with data only from part of

the parameter space (extrapolation), their approximation capability reduces considerably and it

is not straightforward to find an optimal architecture. Overall, the findings provide a realistic

perspective on the utility of ML turbulence closures for practical applications and identify areas

for improvement.

For complex turbulent flows with largescale instabilities and coherent structures, both tradi-

tional and data–driven Reynolds–averaged Navier–Stokes (RANS) methods are inherently unsuit-

able. Scale resolving simulations (SRS) such as the partially averaged Navier–Stokes (PANS)

method are more appropriate as they resolve the unsteady and coherent scales of motion. In the

third study, we developed a subfilter stress neural network for SRS methods using high–fidelity

data. The three main features of the new model development are: (i) improved consistency in

high–fidelity turbulent dataset between local flow field and local turbulent scales; (ii) reconstruc-

tion of unsteady low–fidelity dataset based on the energy content of the resolved scales at different

filter sizes (iii) developing parametric ML–PANS closure functionals under different choices of

turbulent scales and degrees of resolution. The results show that the ML–enhanced SRS models

are nearly insensitive to cut–off so long as the coherent structures are fully resolved.
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APPENDIX A

HYPERPARAMETER OPTIMIZATION

For the Case–2 in which training data is partially available in the strain–dominated region, a

systematic grid search hyperparameter optimization is performed. For this case, the data manifold

is generated by ARSM with SSG model. First, the performance of a 7L-7N NN with different

activation functions (act) is studied. During the training a L2 norm regularization with λ = 0.1

is used. All other hyperparameters are fixed as shown in Table 2.3. The training and testing

MAPE errors for this experiment are shown in Table 4.5. It is seen that between the five activation

functions, ReLU, Elu, and Sigmoid have reasonably small training and testing MAPE errors. By

selecting two ReLU and Sigmoid activation functions, the performance of the NNs with different

architectures are further investigated. MAPE of all the 16 network architectures in the training and

testing datasets is shown in Fig. A.1. Results show that for both activation functions, optimum

network architecture should be selected from the deep networks with small training and testing

MAPE errors. Additionally, it is seen that between two activation functions, larger networks with

Sigmoid activation function have smaller testing errors in this case.

A 7L–7N NN with Sigmoid activation function are selected to study the effects of other hy-

perparameters on training and performance of the models. The results reported in Tables A.1–A.4

justifies the selection of optimum hyperparameters shown in Table 2.3 in this study.

Table A.1: Performance of models trained with different learning rates, act=Sigmoid, bs=50,
opt=Adam, L2(λ=0.1)

Learning rate MAPE–training MAPE–testing
1.0× 10−2 2.48 3.98
1.0× 10−3 0.85 4.39
1.0× 10−4 0.77 10.81
1.0× 10−5 0.74 10.98
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(a) (b)

(c) (d)

Figure A.1: Training and testing MAPE for Case–2, (a) and (c) ReLU, (b) and (d) Sigmoid

Table A.2: Performance of models trained with different batch sizes, act=Sigmoid, lr=0.001,
opt=Adam, L2(λ=0.1)

Batch size MAPE–training MAPE–testing
25 0.88 4.41
50 0.85 4.39
100 0.91 9.63
1000 0.88 11.08
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Table A.3: Performance of models trained with different type of optimizers, act=Sigmoid,
lr=0.001, bs=50, L2(λ=0.1)

Type MAPE–training MAPE–testing
Adam 0.85 4.39
RMSProp 1.92 5.43

Table A.4: Performance of models trained with different regularization coefficients, act=Sigmoid,
lr=0.001, bs=50

L1–norm L2–norm
Coefficient λ Training Testing Training Testing
0 0.83 5.75 0.83 5.75
0.01 0.82 5.24 0.82 5.15
0.1 0.82 4.74 0.85 4.39
0.2 0.83 4.49 0.84 4.40
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APPENDIX B

POD AS A TEST FILTER

Proper orthogonal decomposition (POD) also known as Karhunen-Loève decomposition or

singular value decomposition (SVD) is one of the primary methods to construct low–order bases

for model reduction of complex, nonlinear problems. The method decomposes the fluctuating field

into a sum of mutually orthogonal eigenfunctions of the two–point correlation tensor. For a given

number of basis functions, POD is an optimal of all decompositions of energy measures in terms

of quadratic error minimization [160, 161] and the contribution of the extracted eddies to second–

order turbulence statistics can be determined [162]. The eigenfunction with the largest eigenvalue

is the dominant (most energetic) eddy [162]. POD has been widely used for identification of the

organized structures in turbulent flows [162, 163, 164], flow intermittency events [165], and in the

development of reduced-order [166, 167, 168, 169, 170, 171] and turbulence modeling [1, 157].

Here we apply POD as a test (coarse) filter on the resolved velocity fluctuations at fine filter,

i.e.,

(Ṽi)f =
∞∑
n=1

ϕi
n(x)ψ

i
n(t)

=

N i
c∑

n=1

ϕi
n(x)ψ

i
n(t) +

∞∑
n=N i

c

ϕi
n(x)ψ

i
n(t)

= (Ṽi)c + u′′,

(B.1)

where ϕi
n(x) are the time–invariant orthonormal POD modes and ψi

n(t) are the space–invariant

POD coefficients. The (Ṽi)c represents the resolved fluctuating velocity at coarse level, u′′ is the

POD sub–filter–scale velocity and N i
c is the highest POD modes for reconstructing the resolved

fluctuations. As N i
c → ∞ the sub–filter–scale velocity diminishes u′′ → 0 and (Ṽi)f = (Ṽi)c.
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(a) (b)

Figure B.1: (a) Cumulative energy of POD modes, (b) Energy spectrum of turbulent flow with
PANS spectrum cut-off

The POD modes are eigenfunctions of the (Fredholm) integral equation [161]:

∫ ∞

−∞
⟨Ṽi(x, t)Ṽi(r, t)⟩ϕi

n(x)dr = λinϕ
i
n(x), (B.2)

where the corresponding eigenvalues λin represent the modal energies. The low–rank modes cor-

respond to the large scales of flow motion containing large energy and the higher rank modes

represent small scales of turbulence (low–energy) (λi1 ≥ λi2 ≥ ... ≥ λin > 0). The total kinetic

energy associated with the resolved (k∗u) and sub–filter–scale POD modes (k∗r ) are:

k∗u =
1

2

∑
i

(
N i

c∑
n=1

λin

)
, k∗r =

1

2

∑
i

(
∞∑

n=N i
c

λin

)
, (B.3)

Figure B.1a represents the k∗u, k∗r and N i
c on the schematic cumulative energy profile of POD

eigenmodes. A typical spectrum of energy as a function of wavelength for turbulent flow with

coarse, fine and POD filters and their associated energies are depicted in Fig B.1b. As shown in

Fig B.1b the resolution control parameter for POD decomposition can be defined as:

f ∗
k =

k∗u

kfr
=

k∗u
k∗u + k∗r

. (B.4)
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The POD resolution control parameter can be related to fine and coarse cut off parameters (f c
k >

f f
k ) as follows:

f c
k = f ∗

k (1− f f
k ) + f f

k , (B.5)

which can be written based on POD resolution control parameter:

f ∗
k =

f c
k − f f

k

1− f f
k

. (B.6)

Eq. B.6 is used to determine the value of the highest POD mode (N i
c) for constructing the fluctu-

ating resolved velocity at coarse filter. We assume that the mean resolved velocity is the same for

both cut off filters and hence the total resolved velocity field at coarse filter is determined as:

⟨Vi⟩c = ⟨Vi⟩f + (Ṽi)c = ⟨Vi⟩c + (Ṽi)c. (B.7)

126


	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	introduction
	Motivation and Background
	Research Objectives
	Study 1: Physical compatibility and consistency considerations in developing ML turbulence closure models
	Study 2: Investigation of generalizable deep neural networks for turbulence closure modeling
	Study 3: Data–driven closure modeling for scale resolving PANS simulations

	Dissertation Outline

	PHYSICAL COMPATIBILITY AND CONSISTENCY CONSIDERATIONS IN DEVELOPING ML TURBULENCE CLOSURE MODELS
	RANS Closure framework
	Two–equation RANS

	Data–Driven frameworks
	Open loop framework
	Closed loop framework

	Proof–of–concept studies
	Loss function formulation
	Neural networks

	Results
	Investigation of the closed loop training approach
	Case–1: Standard model
	Case–2: Modified CCC model
	Case-3: Modified TCC model

	Open loop vs. closed loop frameworks
	Case–1: Standard model
	Case–2: Modified CCC model
	Case–3: Modified TCC model
	Two PB compatibility constraints


	Conclusion

	INVESTIGATION OF GENERALIZABLE DEEP NEURAL NETWORKS FOR TURBULENCE CLOSURE MODELING
	Proxy–Physics Methodology
	Proxy–Physics Surrogates

	Machine Learning
	Data Generation with proxy–physics turbulence surrogates 
	Training data over the entire parameter space
	Training data only in the strain–dominated region (D < 0)
	Limited training data in the shear–dominated region

	Results
	RMSE loss function vs. MAPE loss function
	Case–1: Training data over the entire parameter space
	Case–2: Training data only in the strain–dominated region (D < 0)
	Case–3: Limited training data in the shear–dominated region

	Conclusion

	DATA–DRIVEN CLOSURE MODELING FOR SCALE RESOLVING PANS SIMULATIONS
	Methodology
	PANS Closure Framework
	Multiresolution PANS modeling

	Reference flow and dataset
	Data–Driven frameworks
	Results
	Importance of unsteady training data
	Cut–off length scales
	Time–averaged turbulent time scale

	Conclusion

	SUMMARY AND DISCUSSION
	REFERENCES
	APPENDIX HYPERPARAMETER OPTIMIZATION
	APPENDIX POD AS A TEST FILTER

