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ABSTRACT

For many physical problems, robust numerical methods for solving the compressible Eu-

ler equations are essential. For the Euler equations to accurately describe the �uid behavior

a suitable equation of state (EOS), which describes the relationship between the thermody-

namic variables, must be chosen. However, a robust numerical method which can handle an

arbitrary equation of state has been unavailable.

In this thesis, we present a second order invariant-domain preserving method for the com-

pressible Euler equations with an arbitrary equation of state. The description of the second

order method �rst requires the development of a �rst order method that preserves certain

thermodynamic properties of the �uid. A method which preserves this physical aspect is

referred to as an invariant-domain preserving method. The fundamental methodology of the

�rst order method relies on estimating the maximum wave speed of local Riemann problems.

For an arbitrary equation of state this estimation can be impossible. We circumvent the

issue by extending the system with an interpolatory EOS, and rigorously justify that the

use of the max wave speed of this extended problem implies the invariant-domain preserving

properties of the method.

Using a higher order graph viscosity cannot guarantee the invariant-domain preserving

property. We resolve this issue through the use of quasiconcave limiting on the density and

a surrogate entropy. For an arbitrary equation of state, access to the entropy may not be

possible, therefore, this surrogate entropy is used to guarantee that a local approximation of

the entropy will increase across shock waves. Furthermore, limiting on the surrogate entropy

guarantees that the speci�c internal energy satis�es the invariant domain constraint.
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1. HYPERBOLIC CONSERVATION LAWS

1.1 Introduction

The partial di�erential equations (PDEs) known as �conservation laws� are used to model

a wide variety of physical phenomena. For example, the shallow water models can be used

to predict evacuation zones for a storm surge brought about by a hurricane or due to a

tsunami. One can also predict and categorize �ood zones for which insurance companies

and home-buyers use to assess their respective risk. Another active area of research is in

compressible �ow. Engineers and scientists are researching supersonic aircraft designs which

mitigate the sonic boom e�ect that happens when the aircraft breaks the sound speed barrier.

This research is carried out by numerically solving the compressible Euler or Navier-Stokes

equations. Furthermore, the study and design of hypersonic objects is now of increasing

importance for both national defense and atmospheric reentry vehicles.

These motivations play a major role in the development of robust numerical methods.

These robust methods must maintain several important properties. One, the numerical

method should preserve the physical properties of quantity or material being studied. For

example, preservation of positive water height in the shallow water equations, positive spe-

ci�c internal energy in compressible Euler equations, and so on. Two, the numerical method

should produce a �physically relevant� solution. It is known that there are in�nitely many

weak solutions to a scalar conservation law. In the case of the compressible Euler equa-

tions, the numerical method should be able to exclude non-physical solutions through the

enforcement of the minimum principle on the speci�c entropy. Three, the method should not

have any tunable parameters that must be adjusted depending on the initial data or com-

putational domain. Four, the method should be scalable. Real applications often require an

extremely �ne grid to accurately model the object being studied, or operate over a very large

spatial domain as in the case of modeling hurricanes. Therefore, it is necessary to simulate
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these experiments on a supercomputer. Hence, scalability implies that the numerical method

can be programmed e�ciently in parallel. Five, the numerical method should be high order.

That is, the method converges to the solution rapidly as the mesh size decreases.

Numerical methods for the compressible Euler equations go all the way back to von

Neumann [3] and Lax [4] in the early 1950s with the use of �nite di�erence schemes in one

dimension. In 1960, Lax and Wendro� [5] introduced a second order method for systems

of conservation laws with arti�cial viscosity to stabilize the method. Also in 1959, Go-

dunov published a new �nite di�erence method, (which could be regarded as a �nite volume

method), for hydrodynamics. It uses the solution to local Riemann problems at the interface

between cells to de�ne the �ux on these interfaces. As the original paper was published

in Russian in Matematicheskii Sbornik; an English translation provided in [6]. In 1969, a

novel second order accurate method for hydrodynamics was published by MacCormack [7]

(the citation provided is a reprint of the original paper). This method is often referred to

as the �predictor-corrector� method. The method works by �rst computing an intermediate

solution using a �rst order forward-di�erencing method. This solution is then used to re-

compute the �ux at the interfaces. The �nal solution is then computed using a backward

di�erencing method but with the new �uxes. This results in a second order method. In 1981,

a new approach was developed by Steger and Warming [8] which involves splitting the �ux

vector into two components based on the positivity or negativity of the eigenvalues of the

Jacobian matrix. This method is referred to as the �ux-vector splitting method, see also, van

Leer [9]. Around the same time, an approximate Riemann solver was used to compute the

�ux on the cell interface by Roe [10]. Further advances in the use of approximate Riemann

solvers appear in the HLL scheme [11], and the HLLC scheme [12]. Since then many new

ideas using �ux-vector splitting and approximate Riemann solvers were developed like the

AUSM scheme by Liou; see [13]. We would also like to point out the popular ENO [14]

and WENO [15] schemes which work to minimize oscillations near discontinuities. Lastly, a

new approach to numerical methods for conservation laws, referred to as, invariant-domain
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preserving methods, began in 2016 with Guermond & Popov [16].

The speci�c focus of this thesis is on the development of a second order accurate invariant-

domain preserving method for the compressible Euler equations with an arbitrary or tab-

ulated equation of state (EOS). That is, the method will be shown to always preserve the

necessary thermodynamic properties enforced by the equation of state. For example, posi-

tive density and positive speci�c internal energy. We do this by discretizing the compressible

Euler equations with P1 (or Q1) �nite elements and also introduce a �graph viscosity� to the

equations which is essential for invariant-domain preserving properties. The numerical up-

date is then written as a convex combination of some �states�. These states motivate the

de�nition of the graph viscosity which is determined by the maximum wave speed to lo-

cal Riemann problems. It is the determination of this maximum wave speed that is the

fundamental di�culty when the equation of state provided is tabulated. There are several

numerical methods (e.g. Godunov-type methods) which require the solution to the Riemann

problem. Several papers have addressed the issue of the solution to the Riemann problem,

but only if the EOS is de�ned analytically (not tabulated), see [17, Sec. 1], [18], and [19].

Another approach for handling an arbitrary EOS is to use an approximate Riemann solver.

See the work done in, Dukowicz [20], Roe & Pike [21], Pike [22], and Lee et. al. [23].

However, these methods make no guarantee on preserving invariant-domain properties other

than positivity of the density.

Once the maximum wave speeds are determined, we are able to justify that the states

belong to a so-called, �invariant set�. This invariant set is de�ned by quasiconcave functionals

which express the physical quantities we are trying to preserve. This invariant set is slightly

di�erent but inspired from the notion of an invariant region described in Chueh et. al. [24],

Ho� [25], and Frid [26]. This invariant set is convex and hence a convex combination of

states inside a convex set imply that the updated state also belongs to that set. Thus we

guarantee that the physical properties we desire, are held.

The extension to second order is done by de�ning a so-called �entropy viscosity� which is
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small in the regions of smooth �ow and large when there are discontinuities. The motivating

factor for this viscosity measures the change in entropy. I.e., no change in entropy indicates

that the �ow is smooth and hence we can take the graph viscosity to be small. This second

order method by itself is not invariant-domain preserving and a local �limiting� process based

on local bounds is required to preserve the physical properties. Limiting is performed on the

density and an entropy. However, for a given EOS, we may not know the speci�c entropy

or the speci�c entropy may not be a concave function of the speci�c volume and the speci�c

internal energy. Therefore, we suggest the use of a surrogate entropy which behaves similar

to a physical entropy; in that, the surrogate entropy increases across shocks.

In Chapter 2 we go over some of the necessary thermodynamic properties for describing

the equation of state as well as, a description of several EOS which we use in our numerical

demonstrations. In Chapter 3 we give a brief survey of the �nite element method of which we

employ in the discretization of the problem. Note, however, that the numerical method de-

scribed in Chapters 4, 5, and 6 is discretization independent. That is, one could equivalently

describe the problem in the �nite volume or �nite di�erence context; see Remark 4.0.1. In

Chapter 4, we derive the �rst order invariant-domain preserving method for an arbitrary or

tabulated equation of state. The estimation of the maximum wave speed for local Riemann

problems is detailed here. Then in Chapter 5 we extend the �rst order method to second

order by using the consistent mass matrix and a smaller graph viscosity. It is known that

the use of a graph viscosity which is too small can lead to instabilities in multiple forms.

This issue is addressed with the use of quasiconcave limiting described in Chapter 6. Lastly,

numerical results are presented in Chapter 7.
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1.2 Review of the Theory of Conservation Laws

We begin by reviewing some relevant facts regarding the theory of hyperbolic conservation

laws. We are interested in the partial di�erential equation (PDE),

∂tu +∇ · g(u) = 0, for x ∈ Rd, t > 0, (1.1a)

u(x, 0) = u0(x) ∈ B ⊂ Rm, (1.1b)

where d denotes the spatial dimension and u = u(x, t) = (u1(x, t), . . . , um(x, t))T is the un-

known vector of conserved quantities with T denoting the transpose, and g ∈ C2(Rm;Rm×d) is

the �ux. In particular, g(u) = (g1(u), . . . , gd(u)), where gk : B ⊂ Rm → Rm for k ∈ {1 : d}

and gk(u) = (gk1(u), . . . , gkm(u))T. The set B is some subset of the phase space and will be

explored more in Chapter 4.

The form (1.1) is referred to as the conservative form and can be equivalently written in

the quasi-linear form,

∂tu +
d∑

k=1

Ak(u)∂xku = 0, for x ∈ Rd, t > 0. (1.2)

where Ak(u) =
(
∂gki
∂uj

(u)
)

1≤i,j≤m.

De�nition 1.2.1 (Hyperbolic System). De�ne A(u;n) :=
∑d

k=1 Ak(u)nk, where n :=

(n1, . . . , nd)
T and ‖n‖`d = 1. We say that (1.1) is hyperbolic, if A(u;n) has m real eigenval-

ues λ1(u;n), · · · , λm(u;n), for all u ∈ B and n ∈ Sd−1. Furthermore, we say that (1.1) is

strictly hyperbolic if the eigenvalues are all distinct.

It is a well known fact that solutions to hyperbolic conservation laws can develop discon-

tinuities in �nite time, even if the initial data is smooth. The goal instead, is to �nd weak

solutions to (1.1).

De�nition 1.2.2 (Weak Solutions). A function, u ∈ [L∞(Rd × (0,∞))]m is said to be a
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weak solution to (1.1) if

∫
Rd

∫ ∞
0

u∂tϕ+ g(u)∇ϕ dt dx = −
∫
Rd

u0(x)ϕ(x, 0) dx, (1.3)

holds for all ϕ ∈ C1
c (Rd × [0,∞)), with C1

c denoting compactly supported C1 functions.

For a system of strictly hyperbolic conservation laws in one dimension, under the assump-

tion that all of the characteristic �elds are either genuinely nonlinear or linearly degenerate

(see De�nition 1.2.5), Glimm [27], proved the existence of weak solutions utilizing a random

choice method.

In the coming numerical method, we seek physically relevant weak solutions; that is,

solutions in the vanishing viscosity sense. This vanishing viscosity solutions will satisfy the

so-called, entropy inequalities, see [28, Chapter 11, Theorem 2].

De�nition 1.2.3 (Entropy Solutions). A weak solution u ∈ [L∞(Rd × [0,∞))]d+2 to (1.1)

is said to be an entropy solution if,

∫
Rd

∫ ∞
0

η(u)∂tϕ(x, t) + F (u) · ∇ϕ(x, t) dt dx ≥ 0 (1.4)

for all ϕ ∈ C1
c (R× [0,∞)) and all entropy, entropy-�ux pairs (η,F ) with η convex. In short,

we say that ∂tη(u) +∇ · F (u) ≤ 0 in the weak sense.

It is still an open problem on whether the entropy solution will be unique for a hyper-

bolic system of conservation laws. However, there are results for special cases. For scalar

conservation laws, the weak solution only needs to satisfy the so-called Kruzhkov entropies,

to ensure uniqueness of the solution, see Kruzhkov [29]. For the Cauchy problem with vis-

cosity, ∂tu + A(u)∂xu = ε∂xxu, if A(u) is strictly hyperbolic and if the initial data is small

enough; that is, ‖u‖BV < δ for some δ > 0, then there exists a unique solution uε(x, t). This

solution, uε is referred to as the viscosity solution. For ε → 0+, we have that uε converges

to the unique solution to ∂tu + A(u)∂xu = 0. This solution is referred to as the vanishing
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viscosity solution. For the general system ∂tu+∂xg(u) = 0, the vanishing viscosity solution

is an entropy solution. This solution was shown in Bianchini & Bressan [30] to be the same

solution derived by Glimm in [27]. For more on the theory of vanishing viscosity solutions,

see [30]. Despite the lack of results for systems in higher dimensions, entropy solutions are

still sought after since they exclude many non-physical solutions.

One of the main motivations of our numerical method, the invariant-domain preserving

method, is that the solution should reside in region of the phase space for which the physical

properties are satis�ed. This motivates the de�nition of an invariant region.

De�nition 1.2.4 (Invariant Region). A set B ⊂ Rm is said to be an invariant region for the

PDE (1.1) if u(x, 0) ∈ B for all x ∈ Rd and there exists δ > 0 such that a solution u(x, t)

exists for all 0 < t < δ, and if u(x, t) ∈ B, then we say that B is an invariant region.

Remark 1.2.1. This set B will be de�ned in terms of some quasiconcave functionals. That

is, let {Ψi}Ni=1 be a collection of quasiconcave functionals, then

B := {u ∈ Rm : Ψi(u) > 0, i = 1, . . . , N}, (1.5)

is an invariant region. This de�nition was originally motivated by Chueh et. al. [24] in the

context of convection-di�usion problems and the functionals, {Ψi} are chosen to be convex,

with the constraints Ψi(u) ≤ 0.

As much of the upcoming material (see Chapter 4) requires analysis of the Riemann

problem which is one-dimensional, we switch our focus to conservation laws in one-dimension.

Consider the one-dimensional problem,

∂tu + ∂x(g(u)) = 0, for x ∈ R, t > 0. (1.6)

Let A(u) be the Jacobian matrix for the �ux g(u). Assume the eigenvalues of A(u) are

all real and distinct, λ1(u) < · · · < λm(u). Let r1(u), . . . , rm(u) be the associated right
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eigenvectors. Then we have the following de�nitions,

De�nition 1.2.5 (Wave Type De�nitions). For the one-dimensional conservation law, (1.6),

we have the following de�nitions,

� We call (λi(u), ri(u)) the i-characteristic �eld.

� The i-characteristic �eld is said to be genuinely nonlinear if Dλi(u) · ri(u) 6= 0 for all

u ∈ B.

� The i-characteristic �eld is said to be linearly degenerate if, Dλi(u) · ri(u) = 0 for all

u ∈ B.

De�nition 1.2.6 (k-Riemann invariant). A smooth function w : B → R is said to be a

k-Riemann invariant, if Dw(u) · rk(u) = 0 for all u ∈ B.

De�nition 1.2.7 (Rankine-Hugoniot Conditions). The Rankine-Hugoniot conditions are

de�ned as,

S(uL − uR) = g(uL)− g(uR), (1.7)

where S is the instantaneous speed of the discontinuity and uL and uR are the instantaneous

states to the left and right of the discontinuity.

1.3 The Riemann Problem*

A large number of numerical methods for conservation laws require, in some way, the

concept of a Riemann problem.

De�nition 1.3.1. Let g ∈ C1(Rm;Rm) be the �ux, then the Riemann problem is written

* Lemma 1.3.1 and its proof are taken from [2] and are reprinted with permission from [2].
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as: Find a self-similar (weak) solution u ∈ L∞(R× (0,∞);Rm)∩C0((0,∞);L1
loc(R;Rm)) to

∂tu + ∂xg(u) = 0, (1.8a)

u(x, 0) =


uL, x < 0,

uR, x > 0,

(1.8b)

We then have a fundamental result for the existence and uniqueness of solutions to the

Riemann problem,

Theorem 1.3.1 (Existence and Uniqueness). Assume the system (1.8a) is strictly hyperbolic

and the characteristic �elds are either genuinely nonlinear or linearly degenerate. If ‖uL −

uR‖ < δ for δ > 0, is su�ciently small, then there exists a unique self-similar solution to

the Riemann problem.

For the proof of this theorem see, [31, Chapt. I. Theorem 6.1]. The Riemann problem

was �rst studied by Riemann in the context of the isentropic Euler equations in the seminal

paper [32]; an English translation can be found in [33, pg. 109]. In particular, the Riemann

solution can be constructed using Lax's method, see [34, Sec. 9]. In particular, the solution

to the Riemann problem consists of m + 1 constant states separated by m waves. That is,

there exists 2m numbers,

λ−1 ≤ λ+
1 ≤ λ−2 ≤ λ+

2 ≤ · · · ≤ λ−m ≤ λ+
m. (1.9)

These 2m numbers de�ne 2m+1 sectors in the (x, t)-plane. In particular, they can be de�ned

through the self-similarity parameter, ξ := x/t. That is, ξ belongs to one of the intervals,

(−∞, λ−1 ), (λ−1 , λ
+
1 ), (λ+

1 , λ
−
2 ), . . ., (λ−m, λ

+
m), and (λ+

m,∞). Note, some of these intervals can

be empty. If the interval (λ−i , λ
+
i ) is non-empty for i ∈ {1 : m}, then the solution inside this

interval must be a rarefaction wave. All other wave solutions are either shocks or contact
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Figure 1.1: An example Riemann fan consisting of 5 waves and 6 constants states

discontinuities. Note that u(x, t) = uL for x
t
∈ (−∞, λ−1 ) and u(x, t) = uR for x

t
∈ (λ+

m,∞).

See Figure 1.1 for a visual description.

The main motivation for introducing these 2m numbers is that the numerical method

described in Chapter 4 relies on estimation of the maximum speed of propagation. That is,

we need an upper bound on

λmax := max{|λ−1 |, |λ+
m|}. (1.10)

For the purposes of our numerical method, me modify slightly the de�nition of the in-

variant region, see De�nition 1.2.4.

De�nition 1.3.2 (Invariant Set). We say that B ⊂ Rm is an invariant set for (1.1) if for

every pair (UL,UR) ∈ B × B we have that average of the entropy solution to (1.8a)�(1.8b)

with g(u) := g(u)n for any n ∈ Sd−1 over the Riemann fan, remains in B; that is,

1

t(λ+
m − λ−1 )

∫ λ+mt

λ−1 t

u(x, t) dx ∈ B (1.11)

for any t > 0.

Lemma 1.3.1. Let u ∈ L∞(R × (0,∞);Rm) ∩ C0((0,∞);L1
loc(R;Rm)) be a solution to the
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Riemann problem (1.8a)�(1.8b) with uL,uR ∈ B. Then the following holds for all t ∈

(0, 1
2λmax

] where λmax is the maximal wave speed to the Riemann problem de�ned in (1.10),

1. u(t) :=
∫ 1/2

−1/2
u(x, t) dx = 1

2
(uL + uR)− t(g(uR)− g(uL)).

2. u(t) ∈ B.

3. Let Ψ ∈ C1(B;R) be a quasiconcave functional. Assume that Ψ(u(x, t)) ≥ 0, for a.e.

x ∈ R and all t > 0. Then Ψ(u) ≥ 0.

4. Let Ψ ∈ C1(B,R) be a concave functional. Assume that Ψ(u(x, t)) ≥ 0 for a.e. x ∈ R

and all t > 0. Assume that there exists λ[, λ] ∈ [−λmax, λmax], λ[ < λ], so that

Ψ(w(x, t)) > 0 for a.e. x
t
∈ (λ[, λ]). Then Ψ(w(t)) > 0.

Proof. The proof of this lemma is taken from Clayton et. al. [2, Lemma 3.2]. For the entire

proof t is a �xed real number in (0, 1
2λmax

).

(i) Let u1, . . . , um be the m components of u, and let g1, . . . , gm be the m components of the

�ux g. Let l ∈ {1 : m}. Since u is a weak solution to (1.8a), we have

0 =

∫ ∞
−∞

∫ ∞
0

(−ul∂τφ− gl(u)∂xφ)dτdx− ul,L
∫ 0

−∞
φ(x, 0)dx− ul,R

∫ ∞
0

φ(x, 0)dx

for all φ ∈ W 1,∞(R × [0,∞);R) with compact support in R × [0,∞). Here, ul,Z is the l-th

component of uZ. Now we de�ne a sequence of smooth functions (φε)ε>0 with φε(x, τ) =

φ1,ε(|x|)φ2,ε(τ),

φ1,ε(x) =


1 0 ≤ x ≤ 1

2
,

1
ε
(−x+ 1

2
+ ε) 1

2
≤ x ≤ 1

2
+ ε,

0 1
2

+ ε ≤ x,

φ2,ε(τ) =


1 0 ≤ τ ≤ t,

1
ε
(−τ + t+ ε) t ≤ τ ≤ t+ ε,

0 t+ ε ≤ τ .

Using that ul ∈ C0([0,∞);L1
loc(R)), we infer that

∫∞
−∞

∫∞
0
−ul∂τφεdxdτ →

∫ 1
2

− 1
2

ul(x, t)dx as

ε → 0. Likewise, we have
∫∞
−∞

∫∞
0
−gl(u)∂xφεdτdx →

∫ t
0
(gl(uR) − gl(uL))dτ = (gl(uR) −
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gl(uL))t as ε → 0. Finally, −ul,L
∫ 0

−∞ φε(x, 0)dx − ul,R
∫∞

0
φε(x, 0)dx → −1

2
(ul,L + ul,R) as

ε→ 0. In conclusion, we have established that

0 = u(t) + (g(uR)− g(uL))t− 1
2
(uL + uR). (1.12)

(ii) Since B is convex, u(x, t) ∈ B for æx ∈ R and all t > 0, and the length of the interval

[−1
2
, 1

2
] is 1, we infer that u(t) ∈ B.

(iii) Let Ψ ∈ C1(B;R) be a quasiconcave functional. The quasiconcavity implies that

Ψ(u(t)) ≥ ess infx∈(− 1
2
, 1
2

) Ψ(u(x, t)) ≥ 0.

(iv) Let Ψ ∈ C1(B;R) be a concave functional. Jensen's inequality implies

Ψ(u(t)) ≥
∫ 1

2

− 1
2

Ψ(u(x, t))dx ≥
∫ λ]t

λ[t

Ψ(u(x, t))dx > 0, (1.13)

where we used −1
2
≤ λ[t < λ]t ≤ 1

2
. This concludes the proof.

Results 1. and 2. in Lemma 1.3.1 are used in Chapter 4 to prove that the numerical

method is invariant-domain preserving. Results 3. and 4. are used for the purposes of

quasiconcave limiting, see Chapter 6. For more information regarding the existence of self

similar solutions to the Riemann problem see, Dafermos [35, Chapter IX].

1.4 The Compressible Euler Equations

The main focus of this thesis is on numerical methods for solving the compressible Euler

equations. These equations are a fundamental and important model for simulating �uid �ow

with very small viscosity (or, equivalently, a very large Reynolds number). They also form

the basis for more complicated multi-physics models.

The Euler equations represent the conservation of mass, momentum and total energy;
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they are given respectively as,

∂tρ(x, t) +∇ · (ρ(x, t)v(x, t)) = 0, (x, t) ∈ Rd × (0,∞), (1.14a)

∂tm(x, t) +∇ · (m(x,t)
ρ(x,t)

⊗m(x, t) + p(ρ, e(u))Id) = 0, (x, t) ∈ Rd × (0,∞), (1.14b)

∂tE(x, t) +∇ · (m(x,t)
ρ(x,t)

(E(x, t) + p(ρ, e(u))) = 0, (x, t) ∈ Rd × (0,∞), (1.14c)

where ρ is the density, m = (m1, . . . ,md) is the momentum, E is the total energy, ⊗ is the

outer product, d is the spatial dimension (where d is either 1, 2, or 3) and u = (ρ,m, E)T .

The pressure mapping R2 ⊃ A 3 (ρ, e) 7→ p(ρ, e) ∈ R is de�ned by an equation of state on

some suitable thermodynamic region, A, for which the equation of state can be inverted as,

e = e(ρ, p); see Chapter 2. Furthermore, we refer to the pressure, p = p(ρ, e) as the oracle

as we make no assumptions on the exact description of the equation of state (EOS). The

total energy is, E = ρe+ 1
2
ρ‖v‖`2 , where ρe is the internal energy and 1

2
ρ‖v‖`2 is the kinetic

energy with v := m/ρ being the velocity and ‖ · ‖`2 the usual Euclidean norm. Solving for

e, we can also write, e(ρ, p) = e(u) := E
ρ
− ‖m‖

2
`2

2ρ2
. We write the Euler equations in the more

general form,

∂tu +∇ · f(u) = 0, (1.15)

with,

f(u) :=


mT

m
ρ
⊗m + pId

mT

ρ
(E + p)

 . (1.16)

Additionally, for practical purposes, we must numerically solve the Euler equations on

a bounded domain D ⊂ Rd. This requires the implementation of boundary conditions.

Implementation of boundary conditions is reserved for Chapter 7.

Remark 1.4.1 (Assumptions on the Oracle). The only assumption we make on the equation

of state is that, p+ p∞ ≥ 0 where p∞ is a reference pressure state or is the absolute value of

the global minimum pressure. If p∞ is, a priori, not known, then we set p∞ = 0 and require

13



p ≥ 0.

Remark 1.4.2 (Parameters Given by the Oracle). There are certain parameters that the

oracle may possess that can be used in the approximation of the problem. We list them here.

The maximum compressibility (or covolume) constant, b > 0 which represents the smallest

volume the �uid can occupy; that is, τ − b > 0 or ρ < b−1. A reference speci�c internal

energy, q ∈ R, so that e− q > 0. A reference pressure p∞ as described in Remark 1.4.1. The

exact use of these parameters will be evident in Chapter 4.

1.5 The Riemann Problem for the Euler Equations

As the compressible Euler equations are a multi-dimensional system of conservation laws,

the notion of a Riemann problem is not necessarily clear. For many numerical methods,

the Riemann problem for the Euler equations is de�ned in terms of a direction, n. Let

n ∈ Sd−1(0, 1) be given, then de�ne the orthonormal basis, {n, t1, . . . , td−1}. The exact

choice of {ti}d−1
i=1 is not important. With respect to this basis, we write the momentum as,

m = (m,m⊥)T where m := m ·n and m⊥ := (m · t1, . . . ,m · td−1)T. The velocity is de�ned

similarly, v = (v,v⊥)T where v := m/ρ and v⊥ := m⊥/ρ. Thus the Riemann problem in

the direction n is de�ned by,

∂tu + ∂x(f(u)n) = 0, for x ∈ R, t > 0 (1.17)

u(x, 0) =


uL, x < 0,

uR, x > 0,

(1.18)

This can be explicitly written as,

∂t



ρ

m

m⊥

E


+ ∂x



m

1
ρ
m2 + p(u)

m
ρ
m⊥

m
ρ

(E + p(u))


= 0 (1.19)
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The solution to this Riemann problem is carried out by �rst solving,

∂t


ρ

m

E

+ ∂x


m

1
ρ
m2 + p(u)

m
ρ

(E + p(u))

 = 0 (1.20)

where E := E − ‖m
⊥‖2

`2

2ρ
. Then m⊥ is found afterwards by solving ∂tm⊥ + ∂x(

m
ρ
m⊥) = 0.

Note also that ρe = E− m2

2ρ
= E − ‖m‖

2
`2

2ρ
; this says that the internal energy does not depend

on the change of basis. More on the solution to the Riemann problem will be presented in

Chapter 4.

Remark 1.5.1 (Invariant Sets for the Euler Equations). The compressible Euler equations

depend on the EOS, therefore, each EOS may de�ne a di�erent invariant set. For example,

if the EOS is given by the ideal gas law, p(ρ, e) = (γ − 1)ρe, then, a possible invariant set

would be,

B := {u ∈ Rd+2 : ρ > 0, e(u) > 0, s(u) ≥ smin}. (1.21)

Note s(u) ≥ smin is the minimum principle on the speci�c entropy and is discussed more in

Chapter 2. Furthermore, the sets, B := {u ∈ Rd+2 : ρ > 0, e(u) > 0}. and B := {u ∈ Rd+2 :

ρ > 0} are also invariant sets.

If the EOS is given by the covolume EOS, p(ρ, e) = (γ − 1) ρe
1−bρ then an invariant set

involves the maximum compressibility constant, b−1 (for b 6= 0). That is,

B(b) := {u ∈ Rd+2 : 0 < ρ < b−1, e(u) > 0, s(u) ≥ smin}. (1.22)

As we will see through the course of this thesis, we will be working with the Nobel-Abel

Sti�ened Gas EOS (see Section 2.2). An invariant set for this EOS is,

B(b, q, p∞) := {u ∈ Rd+2 : 0 < ρ < b−1, e(u)− q > p∞(ρ−1 − b)}. (1.23)
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Lastly, we would also like to present the Rankine-Hugoniot conditions for the compressible

Euler equations for reference.

De�nition 1.5.1. The Rankine-Hugoniot conditions for the compressible Euler equations

are given by,

S(ρL − ρR) = ρLvL − ρRvR, (1.24a)

S(ρLvL − ρRvR) = ρLv
2
L + pL − (ρRv

2
R + pR), (1.24b)

S(EL − ER) = vL(EL + pL)− vR(ER + pR). (1.24c)
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2. THE EQUATION OF STATE

In this chapter we cover speci�c topics pertaining to the many di�erent EOS.

The equation of state (EOS) is one of the most important aspects of the Euler equations,

it is an equation which relates three thermodynamic quantities; for example, the density,

temperature and pressure or volume, speci�c internal energy, and speci�c entropy. The

choice of the EOS is chosen based on the physical problem of interest. In particular, the

EOS models the material. The EOS are often designed to accurately model speci�c materials

under certain conditions. Typically, the Euler equations are numerically solved using the

ideal gas law as it is the simplest. In addition, most theoretical results for the Euler equations

are proven for the ideal gas law. There are, in fact, hundreds of di�erent EOS and numerically

solving the Euler equations with invariant domain preserving properties becomes a highly

non-trivial task for each of these equations. To further exacerbate the issue, many industrial

and research laboratories rely on EOS which are tabulated; that is, there is no analytic

function, but rather, thermodynamic quantities are generated from a database.

We begin by reviewing some essential principles in thermodynamics. The �rst law of

thermodynamics states that the change in energy in a non-adiabatic system; that is, a

system for which energy can be transferred through the walls of the system, is equal to the

change in heat plus the work done on that system. Letting Q denote the heat, the �rst law

of thermodynamics is written as,

de = dQ− pdV. (2.1)

Since the EOS can be written in terms of many di�erent thermodynamic variables, it is

often convenient to overload the notation. For example, we may use the same symbol p to

write p = p(τ, e) and p = p(ρ, s). The context should be clear context but comments will

be made when necessary to avoid confusion. To further emphasize the variables being used,

the notation for partial di�erentiation is written in the form
(
∂f
∂x

)
y
, where

(
·
)
y
emphasizes
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that the variable held constant is y. This also displays that f is a function of x and y.

A common assumption for the EOS is the existence of a physical entropy. That is, the

assumption that there is a function s = s(τ, e) which satis�es the second law of thermody-

namics

T ds = de+ p dτ. (2.2)

We must assume that the entropy, s(τ, e), is strictly convex (as a function of (τ, e)). Other-

wise, the pressure can be multivalued as a function of τ and s. Furthermore, from Clairaut's

theorem we have
∂

∂τ

(∂s
∂e

(τ, e)
)

=
∂

∂e

(∂s
∂τ

(τ, e)
)
. (2.3)

Using appropriate identities for
(
∂s
∂e

)
τ
and

(
∂s
∂τ

)
e
, (2.3) gives us the so-called, Maxwell's

relation, see Callen [36, Chapter 7]. However, the existence of an entropy is not always

guaranteed.

De�nition 2.0.1 (Incomplete EOS). An incomplete equation of state is a relation of the

form, p = p(ρ, e). It is called incomplete as the equation cannot completely describe all of

the thermodynamical properties of the system.

De�nition 2.0.2 (Complete EOS). A complete equation of state is one for which a concave

entropy, s = s(τ, e), exists such that p = p(τ, s). Or equivalently, the mapping (τ, e) 7→

−s(τ, e), is convex. This equation of state completely describes all of the thermodynamic

properties of the system.

So an incomplete EOS makes no assumption on the existence of a convex entropy. Any

given complete EOS describes a unique incomplete EOS; however; the converse is not true,

there can be more than one complete EOS corresponding to the same incomplete EOS. For

more on this, see Meniko� & Plohr [37, Sec. II. F.]. Note that the �rst order method

described in Chapter 4 does not require a complete EOS. However, the second order method

in some way requires the use of an entropy (which may not exist), this is resolved in Chapter 5

and Chapter 6.
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We now review some important facts regarding the entropy. First, concavity of s(τ, e)

requires that

( ∂2s

∂τ 2

)
e
< 0,

(∂2s

∂e2

)
τ
< 0, and

( ∂2s

∂τ 2

)
e

(∂2s

∂e2

)
τ
−
( ∂2s

∂τ∂e

)2

< 0, (2.4)

i.e., the Hermitian matrix of −s(τ, e) is positive de�nite.

Remark 2.0.1 (Convex Entropy in the Literature). In the literature, concavity of the en-

tropy is often framed as (τ, e) 7→ −s(τ, e) being convex.

Remark 2.0.2 (Assumptions on the Oracle). Throughout the course of this Thesis, the only

assumption we make on the oracle, is that there exists a minimum bound on the pressure,

−p∞, for p∞ ≥ 0. Furthermore, we make no assumption on the existence of an entropy for

the oracle. Other remarks will be made regarding the oracle when relevant.

Note that a convex entropy From Equation (2.2), we have the following identities,

(∂s
∂e

)
τ

= T−1, and
(∂s
∂τ

)
e

= pT−1. (2.5)

The pressure can then be de�ned by,

p(τ, e) =

(
∂s
∂τ

)
e(

∂s
∂e

)
τ

(2.6)

or by,
∂s

∂τ
− p(τ, e)∂s

∂e
= 0. (2.7)

We also have
(
∂e
∂τ

)
s

= −p(τ, s) and
(
∂e
∂s

)
τ

= T from Equation (2.2). It is also assumed that

the EOS must satisfy
(
∂e
∂s

)
τ

= T > 0.
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2.1 Relevant Thermodynamic Relations

The material speed of sound is de�ned by,

a :=

√(∂p
∂ρ

)
s

=

√
−τ 2

(∂p
∂τ

)
s
. (2.8)

As with the pressure, we also leave the independent variables of the speed of sound unspec-

i�ed; the appropriate variables should be clear from context. Finding the speci�c entropy,

s, is not always an easy task. For an incomplete EOS the sound speed can more easily be

computed by applying the chain rule and (2.2), to (2.8) to �nd,

a =

√
−τ 2

[(∂p
∂τ

)
e

+
(∂p
∂e

)
τ

(∂e
∂τ

)
s

]
=

√
−τ 2

[(∂p
∂τ

)
e
− p
(∂p
∂e

)
τ

]
. (2.9)

The speci�c heat of a �uid is de�ned by dQ
dT
. From the �rst law of thermodynamics, we

have, dQ = de+p dτ = T ds. We then are able to de�ne the speci�c heat at constant volume

and constant pressure using the �rst law of thermodynamics by,

cv :=
( ∂e
∂T

)
τ

= T
( ∂s
∂T

)
τ

cp := T
( ∂s
∂T

)
p

=
(∂(e+ pτ)

∂T

)
p

=
( ∂h
∂T

)
p
. (2.10)

2.2 The Noble-Abel Sti�ened Gas EOS

A large portion of the material in this thesis relies on the use of the Noble-Abel Sti�ened

Gas EOS (NASG EOS). This equation of state was �rst introduced by Le M`etayer & Saurel

in [38] and has been extended to more general form in [39]. The NASG EOS can also be

viewed as an extension of the Noble-Abel (or covolume) EOS (see [40] for a more recent

discussion and use of the Noble-Abel EOS).

The NASG EOS is de�ned by the incomplete EOS,

p(τ, e) = (γ − 1)
e− q
τ − b

− γp∞ (2.11)
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where q is some reference internal energy, p∞ is also a reference pressure state, and b repre-

sents the maximum compressibility of the �uid; that is, the �uid cannot be compressed to

an in�nitely small volume. It can be shown that the speci�c entropy is given by,

s(τ, e) = log
((
e− q − p∞(τ − b)

) 1
γ−1 (τ − b)

)
. (2.12)

That is, s(τ, e) satis�es equation (2.7). It is important to note that this equation of state is

convex, see [38, Appendix B], which is necessary in the solution to the extended Riemann

problem in Section 4.2.

2.3 The van der Waals EOS

The van der Waals thermal EOS is given by,

p(τ, T ) :=
RT

τ − b
− a

τ 2
, (2.13)

where b represents the maximum compression of the �uid; that is, τ > b, a is a material

dependent constant describing the attractive forces of �uid and should not be confused with

the speed of sound, a, and R is the universal gas constant. This EOS was �rst derived by van

der Waals in [41]. In order to �nd the complete EOS, more information must be provided.

In particular, we suggest that the temperature be de�ned by

T =
γ − 1

R

(
e+

a

τ

)
. (2.14)

The reasoning behind this follows from Maxwell's relation (2.3). The details can be found

in [36, Sec. 3.5]. From this de�nition, we �nd the caloric EOS to be,

p(τ, e) = (γ − 1)
e+ a/τ

τ − b
− a

τ 2
(2.15)
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One also sees that, under the above de�nitions of T and p, the speci�c entropy,

s(τ, e) = R log
((
e+ a

τ

) 1
γ−1 (τ − b)

)
− s0, s0 ∈ R, (2.16)

satis�es the second law of thermodynamics, (2.2). Using (2.15) and (2.16) we can eliminate

e and �nd the complete EOS for p,

p(τ, s) =
γ − 1

(τ − b)γ
exp

(γ − 1

R
(s− s0)

)
− a

τ 2
. (2.17)

Recall the sound speed is,

a2 =
(γ − 1)γτ 2

(τ − b)γ+1
exp

(γ − 1

R
(s− s0)

)
− 2a

τ
. (2.18)

Using (2.17) we can compute the sound speed in terms of p and ρ.

a2 = γ
p+ aρ2

ρ(1− bρ)
− 2aρ. (2.19)

2.4 The Cubic EOS

There is a general class of EOS referred to as the cubic EOS as the pressure is a cubic

function of
√
T . A general from of this EOS is can be de�ned as,

p(τ, T ) =
RT

τ − b
− α(T )

(τ − br1)(τ − br2)
, (2.20)

where α(T ) is referred to as the attractive term. We refer to [42] for a survey of this general

class of EOS. Note that the van der Waals EOS for the pressure is recovered if one sets

α(T ) = a and r1 = r2 = 0. Next, we suppose that the speci�c internal energy is given by,

e(τ, T ) = cvT +
α(T )− Tα′(T )

b(r1 − r2)
log
(τ − br1

τ − br2

)
+ e0, (2.21)
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where e0 is a reference speci�c internal energy and r1 6= r2. This assumption follows from

the relation, de = cvdT +
(
T
(
∂p
∂T

)
τ
− p
)
dτ .

2.4.1 The Redlich-Kwong EOS

The Redlich-Kwong EOS was �rst introduced in by Redlich and Kwong in [43]. It can be

obtained from the general cubic EOS by setting α(T ) = a/
√
T , r1 = 0, and r2 = −1. The

parameters a and b are the same parameters from the van der Waals EOS. The equation of

state is thus,

p(τ, T ) =
RT

τ − b
− a√

Tτ(τ + b)
, (2.22a)

e(τ, T ) = cvT +
3a

2b
√
T

log
( τ

τ + b

)
+ e0. (2.22b)

Note that an explicit expression for p = p(τ, e) cannot be written. Instead, one must �rst

solve a cubic equation and then use that solution in p(τ, T ) or e(τ, T ) depending on the desired

quantity. The two cubic equations to solve for temperature, given p or e, respectively, are,

T̃ 3 − p(τ − b)
R

T̃ − a(τ − b)
τ(τ + b)

= 0, (2.23a)

T̃ 3 − e− e0

cv
T̃ +

3a

2bcv
log
( τ

τ + b

)
= 0, (2.23b)

for T̃ :=
√
T . We can also see that the speci�c entropy de�ned by,

s(τ, T ) := cv log(T ) +
a

2bT 3/2
log
( τ

τ + b

)
+R log(τ − b), (2.24)

satis�es the 2nd law of thermodynamics, (2.2).

Remark 2.4.1 (Solving the Cubic). For completion, we brie�y describe how to compute

the roots for a cubic equation of the form, x3 + c1x+ c0 = 0. De�ne ∆ :=
c31
27

+
c20
4
. If ∆ ≥ 0,

23



then this cubic equation has one real root,

x1 = 3

√
−c0

2
+
√

∆ + 3

√
−c0

2
−
√

∆. (2.25)

If ∆ < 0, then there are three real roots and they are de�ned by,

xk := 2

√
−c1

3
cos
[1

3
arccos

(3c0

2c1

√
−3

c1

)
− 2π(k − 1)

3

]
, for k = 1, 2, 3. (2.26)

Note, in both cases, (2.23a)�(2.23b), for T = 0, the cubic equation is negative, and since the

coe�cient of T̃ 3 is positive, we must have at least one positive root. In the event that there

are multiple positive roots, then we simply take the largest root.

Equations of State in p = p(ρ, e) Form
Ideal

p = (γ − 1)ρe (2.27)

Covolume
p = (γ − 1)

ρe

1− bρ
(2.28)

van der Waals

p = (γ − 1)
ρe+ aρ2

1− bρ
− aρ2 (2.29)

Redlich-Kwong No explicit formula
Jones-Wilkins-Lee

p = A
(

1− ω

R1

ρ

ρ0

)
e−R1

ρ0
ρ +B

(
1− ω

R2

ρ

ρ0

)
e−R2

ρ0
ρ + ωρe (2.30)

Table 2.1: A quick reference for common equations of state in p = p(ρ, e) form. More
information on these EOS can be found in Chapter 2.
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Sound Speeds for Di�erent EOS in a = a(ρ, p) Form
Ideal

a2 =
γp

ρ
(2.31)

Covolume
a2 =

γp

ρ(1− bρ)
(2.32)

van der Waals

a2 = γ
p+ aρ2

ρ(1− bρ)
− 2aρ (2.33)

Redlich-Kwong No explicit formula
Jones-Wilkins-Lee

a2 =
(ω + 1)p

ρ
+ A

(R1ρ0

ρ2
+
ω(ω + 1 + ρ)

R1ρ0

− 1
)

exp
(
−R1

ρ0

ρ

)
+B

(R2ρ0

ρ2
+
ω(ω + 1 + ρ)

R2ρ0

− 1
)

exp
(
−R2

ρ0

ρ

)
(2.34)

Table 2.2: A quick reference for common sound speeds for several EOS a = a(ρ, p) form.
More information on these EOS can be found in Chapter 2.

2.5 The Jones-Wilkins-Lee EOS

The Jones-Wilkins-Lee (JWL) EOS is an empirical EOS used to model detonation prod-

ucts in multi-material reactive �ow. The ideal gas law is often used to model the surrounding

ambient �uid. As the purpose of this thesis is only for single material compressible Euler

equations, we use the JWL EOS as a demonstration of the numerical method. The original

paper for the development of this EOS can be found in [44].

The pressure is de�ned by,

p(ρ, e) := A
(

1− ω

R1

ρ

ρ0

)
exp

(
−R1

ρ0

ρ

)
+B

(
1− ω

R2

ρ

ρ0

)
exp

(
−R2

ρ0

ρ

)
+ωρ(e− e0), (2.35)

where A, B, R1 and R2 are parameters speci�c to the model or experiment, ρ0 and e0 are
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some reference density and speci�c internal energy, and ω is also a chosen constant depending

on the material, and is related to the Grüneisen coe�cient.

Remark 2.5.1 (JWL Misinterpretation). There is a lot of confusion surrounding the exact

de�nition of the JWL EOS. In some cases in the literature, the JWL EOS is taken as an

isentrope and not an EOS by replacing e − e0 with e0. The technical report, [45], provides

an overview of this confusion.

2.6 The Mie-Gruneisen EOS

The Mie-Gruneisen EOS is an incomplete EOS de�ned by,

p(ρ, e) := pref(ρ) + ρΓ(ρ)(e− eref(ρ)) (2.36)

where pref and eref are some reference pressure and speci�c internal energy curves, respec-

tively. For example the reference curve could be shock locus, an isotherm, an isentrope and

so on. A quick overview of this incomplete EOS as well as a means to complete it, is given

in [46].

For our numerical demonstrations we use the linear Hugoniot locus, de�ned by,

pref(ρ) := P0 + ρ0c
2
0

1− ρ0
ρ(

1− s(1− ρ0
ρ

)
)2 , (2.37a)

eref(ρ) := e0 +
P0 + pref(ρ)

2ρ0

(
1− ρ0

ρ

)
, (2.37b)

where s > 1 and ρ0, c0, e0, and P0 are reference density, sound speed, speci�c internal energy,

and pressure, respectively. This particular equation of state is used for modeling solids under

high pressures. More details on this particular equation of state can be found in [47, Sec.

4.4].
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3. FINITE ELEMENT APPROXIMATION OF THE EULER EQUATIONS

The numerical method that we outline in this thesis is actually discretization indepen-

dent. However, our numerical simulations are computed using the �nite element method;

in particular, P1 and Q1 continuous �nite elements. There is a wealth of literature on the

�nite element method. Some recommended resources for this topic are: Grossman et. al.

[48], Larsson & Thomèe [49], Ciarlet [50], and the three volume series on the �nite element

method by Ern & Guermond [51], [52], and [53].

Therefore, in this chapter, we present some of the fundamentals regarding the continuous

�nite element method.

3.1 The Continuous Galerkin (cG) Framework

We use a continuous Galerkin method for solving the compressible Euler equations.

We start by de�ning the geometric �nite element (using the notation of Ciarlet, [50])

(K̂geo, P̂geo, Σ̂geo). Here, K̂geo is the reference element composed with the vertices {âi}i∈N̂geo ,

P̂geo is the geometric polynomial space used to construct the geometric mapping, and Σ̂geo

are the nodal Lagrange degrees of freedom (dofs). Let {θ̂i}i∈N̂geo denote the collection of

reference shape functions. That is, σ̂i(θ̂j) = θ̂j(âi) = δij for i, j ∈ N̂geo and σ̂i ∈ Σ̂geo.

We use this reference geometric �nite element to construct a collection of mappings, of

which, de�nes our mesh. Let Th = {Ki}i∈Nshape denote a sequence of shape regular non-

overlapping elements which exactly covers our domain D. Then
⋃
i∈Nshape Ki = D. Let

(K,P,Σ) be a local �nite element where K is polytope with vertices {ai}i∈Ngeo . Then the

a�ne geometric mapping, TK : K̂geo → K is de�ned by,

TK(x̂) =
∑
i∈N

θ̂i(x̂)ai, for x̂ ∈ K̂geo. (3.1)

Therefore, if our domain, Ω, is polygonal, we can exactly triangulate the domain. That is,

Ω =
⋃
K∈Th K.
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However, since we will be using the �rst order Lagrange �nite element for the approx-

imation space, this means that the geometric and the approximation �nite elements will

coincide. Nevertheless, we will still make the distinction between the two elements. For

the numerical method described in Chapters 4 and 5 we use the following �nite element

approximation space for the discretization of the PDE,

P (Th) := {v ∈ C0(Ω) : v ◦ TK ∈ P̂ , ∀K ∈ Th}, (3.2)

where Th consists of either simplices or quadrangles, P̂ = P1(K̂) or P̂ = Q1(K̂) (that is, �rst

order multivariate polynomials de�ned on the reference element K̂), and TK is de�ned in

(3.1). Let {xi}i∈V be the collection of nodes of our mesh Th, where V is the index set for the

nodes. A basis for P (Th) is given by span{ϕi(x)}i∈V, where

ϕi(x) =


θ̂j_dof−1(i)(T

−1
K (x)), if x ∈ K ∈ Th(i)

0, otherwise

(3.3)

where Th(i) ⊂ Th such that K ∈ Th contains the vertex {xi} and j_dof : Th × N̂geo → V

and is de�ned so that j_dof identi�es the corresponding global degree of freedom from a cell

K ∈ Th and local node j ∈ N̂geo from the reference element. Note that j_dof−1(i) is well

de�ned since the element K is �xed. The ϕi are often referred to as tent functions based on

their shape in two dimensions, see Figure 3.1. These tent functions share the nice property

that ϕi(x) ≥ 0 for all i ∈ V and that they form a partition of unity ; that is,
∑

i∈V ϕi(x) = 1.

28



Figure 3.1: A typical P1 basis function.

3.1.1 Semi-discrete Scheme

Numerically solving the Euler equations is done through the conserved variables: ρ, m,

and E. The semi-discretization of these variables is given as,

ρh(x, t) :=
∑
i∈V

ρi(t)ϕi(x), mh(x, t) =
∑
i∈V

Mi(t)ϕi(x), Eh(x, t) =
∑
i∈V

Ei(t)ϕi(x). (3.4)

The unknowns are the ρi(t), Mi(t), and Ei(t), and the global shape functions ϕi(x) are

the usual tent functions which for a basis for our �nite dimensional space P (Th). This

approximation can be written in the more compact form,

uh(x, t) :=
∑
i∈V

ui(t)ϕi(x), (3.5)

where ui(t) = (%i(t),Mi(t),Ei(t))
T. Thus, our problem can be written as,

∂tuh +∇ · f(uh) = 0. (3.6)

3.2 The Fully Discrete Scheme

For computer implementation, it is not feasible to solve the semi-discrete problem. So

we further discretize in time. We approximate the time derivative with the forward Euler
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method.

Remark 3.2.1 (Time Stepping Methods). In the numerical results the actual time stepping

is performed using the strong stability preserving 3rd order Runge-Kutta method (SSP

RK3). However, a much more e�cient time stepping method has been introduced in Ern &

Guermond [54]. It uses an explicit Runge-Kutta method which applies a nonlinear limiting

process on the high order update at each stage of the method. This allows for a less restrictive

time step while still being conservative and invariant-domain preserving (see De�nition 3.2.1).

Let tn+1 := tn + ∆t where tn is the time at the nth time step and ∆t is the time

step. Let unh(x) := uh(x, t
n) be the approximate solution at time tn and Un

i := ui(t
n) be the

coe�cient of the ith basis function ϕi(x) at time tn. That is, Un
i = (ρi(t

n),Mi(t
n),Ei(t

n))T =:

(ρni ,M
n
i ,E

n
i )T, hence

unh(x) =
∑
i∈V

Un
i ϕi(x). (3.7)

As will be necessary later on, we approximate the �ux, f(unh) by projecting it onto

the discrete �nite element space. We de�ne this projection Πh : C0(Rd+2;R(d+2)×d) →

[P (Th)]
(d+2)×d by,

f(unh) ≈ Πhf(u
n
h) =

∑
i∈V

f(Un
i )ϕi(x). (3.8)

Putting this altogether with the forward Euler method, we arrive at the following numerical

method: �nd un+1
h such that,

un+1
h − unh

∆t
+∇ · (Πhf(u

n
h)) = 0. (3.9)

Solving this equation is done in the weak sense by testing the equation with ϕi for all

i ∈ V. That is, multiply equation (3.9) by ϕi and integrate over D. Doing so gives the
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following system of card(V) equations,

1

∆tn

∑
j∈I(i)

(Un+1
j −Un

j )mij +
∑
j∈I(i)

f(Un
j )cij = 0, for all i ∈ V, (3.10)

where

mij :=

∫
D

ϕi(x)ϕj(x) dx, (3.11)

cij :=

∫
D

ϕi(x)∇ϕj(x) dx. (3.12)

Equation (3.10) is the so-called Galerkin method, see Ern & Guermond [52, Sec. 26.1].

Unfortunately, this method can be unstable if any discontinuities develop in the solution,

a method for resolving this issue is to introduce an arti�cial viscosity, see von Neumann &

Richtmyer [3].

Remark 3.2.2 (Partition of Unity). Recall that the basis functions {ϕi}i∈V form a partition

of unity hence
∑

j∈Vmij =
∑

j∈I(i) mij =
∫

Ω
ϕi(x) dx. We refer to mi :=

∫
Ω
ϕi(x) dx

as the lumped mass. Furthermore, from the partition of unity, we have that
∑

j∈V cij =∑
j∈I(i) cij = 0.

Remark 3.2.3 (Stability of the Galerkin Approximation). It is well known that the Galerkin

approximation is stable as long as u0(x) is smooth and the solution u(x, t) remains smooth

up to some �nal time, t�nal. Furthermore, for P1 or Q1 continuous �nite elements, we can

achieve second order convergence. However, if the solution develops a discontinuity, then

the approximate solution produces wild non-physical oscillations.

The method by which we resolve this issue is to supply a graph viscosity. That is, we

modify the scheme, (3.10), to be,

1

∆tn

∑
j∈I(i)

mij(U
n+1
i −Un

i ) +
∑
j∈I(i)

f(Un
j )cij −

∑
j∈I(i)

dnij(U
n
j −Un

i ) = 0, (3.13)
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for all i ∈ V. We also assume that dnij satis�es the following properties,

dnij ≥ 0 for i 6= j, dnij = dnji, and dii := −
∑
j∈I(i)

dnij. (3.14)

This speci�c discrete scheme with the graph viscosity is �rst introduced by Guermond &

Popov in [16, Sec. 3.2]. We now introduce the de�nition of an invariant-domain preserving

method.

De�nition 3.2.1 (Invariant-Domain Preserving Method). Let B be a convex invariant set.

For U0
i ∈ B for all i ∈ V, if the updated states satisfy Un

i ∈ B for all i ∈ V and n ∈ N, then we

say the numerical method which provides the states {Un
i }i∈V is said to be invariant-domain

preserving.
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4. THE FIRST ORDER APPROXIMATION*

In this chapter, we outline the �rst order method and prove that it is invariant do-

main preserving for an arbitrary equation of state. We �rst approximate the mass matrix,

{mij}i,j∈V, by the lumped mass matrix, {mi}i∈V. We can rewrite, (3.13), as an explicit

equation,

UL,n+1
i = Un

i −
∆t

mi

( ∑
j∈I(i)

f(Un
j )cij −

∑
j∈I(i)

dnij(U
n
j −Un

i )
)

for all i ∈ V. (4.1)

Note we also use L superscript to signify that this is the low order update. This will be

necessary for distinguishing between the high order update in the chapters to come.

Remark 4.0.1 (Discretization Independent Method). Note that the numerical method de-

scribed in (4.1) can be made discretization independent. The quantities mi and cij will

vary depending on the speci�c discretization. More on this can be found in Guermond et.

al. [55].

4.1 Invariant Domain Preserving Method

With a bit of rearrangement and using the fact that
∑

j∈I(i) cij = 0, we rewrite (4.1) as

a convex combination of states under the CFL condition, (4.7),

UL,n+1
i =

(
1−

∑
j∈I(i)\{i}

2∆tnd
L,n
ij

mi

)
Un
i +

∑
j∈I(i)\{i}

2∆tnd
L,n
ij

mi

U
n

ij

(‖cij‖`2
2dL,nij

)
, (4.2)

where

U
n

ij(t) =
1

2
(Un

i + Un
j )− t(f(Un

j )− f(Un
i ))

cij
‖cij‖`2

. (4.3)

Throughout this thesis, we refer to U
n

ij as the bar states.

* A majority of this chapter is a modi�cation of the work done in [1] and is reprinted with permission
from [1].
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The bar states are a fundamental ingredient in proving that the numerical method is

invariant domain preserving (see De�nition 3.2.1). Since for a large enough dL,nij , we claim

that U
n

ij ∈ B(b). We de�ne dL,nij to be,

dL,nij := max{λmax(Un
i ,U

n
j ,nij)‖cij‖`2 , λmax(Un

j ,U
n
i ,nji)‖cji‖`2}, (4.4)

for i 6= j, where nij := cij/‖cij‖`2 and λmax(Un
i ,U

n
j ,nij) is the max wave speed to the local

Riemann problem,

∂tu + ∂x(f(u)nij) = 0, u0(x) =


Un
i , if x < 0,

Un
j , if x > 0.

(4.5)

Notice that the bar states, (4.3), are the average of the solution to the Riemann problem,

(4.5), at the �arti�cial� time t =
‖cij‖`2
2dL,nij

≤ 1
2λmax

; see Theorem 1.3.1.

Remark 4.1.1 (Choice of Larger Arti�cial Viscosity). Notice that, taking larger values of

dL,nij ; that is, �nding an upper estimate on the maximum wave speed, still preserves the

desired structure of the bar states. Since if λ̂max is an upper bound on λmax and d̂ L,n
ij is

simply dL,nij with λmax replaced with λ̂max, then

t =
‖cij‖`2
2d̂ L,n

ij

≤ 1

2λ̂max

≤ 1

2λmax

(4.6)

Hence the bar states, (4.3), are still the averages of the Riemann solution for (4.5) at a

di�erent �fake� time.

Remark 4.1.2 (Justi�cation for the Flux Approximation). Recall that the approximation of

f(unh) is
∑

i∈V f(U
n
i )ϕi(x) which was de�ned in (3.8). This approximation was necessary to

justify the bar states as being the average of the solution to the Riemann problem (4.5).

The challenge is now to determine λmax for an arbitrary EOS or a su�ciently close upper

bound. This is not a simple task and will be investigated in Chapter 4. Note that, once dL,nij
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has been determined, this gives us the following CFL constraint which guarantees a convex

combination in of states in (4.2),

∆t ≤ mi

2
∑

j∈I(i)\{i} d
L,n
ij

= − mi

2dL,nii
, for all i ∈ V. (4.7)

Theorem 4.1.1 (Invariant-Domain Preservation). [16]] If dL,nij is de�ned by (4.4) and Un
i ∈

B(b) for all i ∈ V, then the update provided by (4.1) is invariant domain preserving under

the CFL condition, ∆t ≤ mini∈V(− mi
2dL,nii

).

Proof. From the choice of dL,nij we have from Theorem 1.3.1 that U
n

ij ∈ B(b) for each j ∈

I(i) \ {i} and from the assumption, Un
i ∈ B(b). Thus the update provided in (4.2) is a

convex combination of states in the convex set B(b) (under the CFL condition (4.7)). Hence

Un+1
i ∈ B(b).

4.2 Extended Riemann Problem

If the pressure is given by the ideal gas law, then the solution to the Riemann problem

an exact self-similar weak solution can be determined. This was originally done by Lax in

[34]; for other useful resources regarding the exact solution to this Riemann problem, see

[56, Chapter 4], [31, Chapter II, Section 3], and [57, Section 5.6]. However, for an arbitrary

or tabulated equations of state, computing the max wave speed, λmax, is extremely di�cult

if not impossible. In order to solve this issue, we propose extending the Riemann problem

with an auxiliary equation in terms of a new variable, Γ. This idea is motivated by the paper

by Abgrall & Karni [58] in the context of multi-�uids. We also change the EOS given by the

oracle to an equation of state based on the Noble-Abel Sti�ened-Gas (NASG) EOS which

interpolates the left and right pressure, pL and pR, respectively. Recall the NASG EOS is

de�ned by p(ρ, e) := (γ − 1)ρ(e−q)
1−bρ + γp∞. Alternatively, we write this equation of state as,

p+ p∞ = (γ − 1)(ρ(e−q)
1−bρ − p∞). This method is �rst introduced in [2] but uses the covolume

EOS instead of the NASG EOS.
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De�nition 4.2.1. The extended Riemann problem is, ∂tũ + ∂x(f̃(ũ)n) = 0, where

ũ := (u,Γ)T =



ρ

m

m⊥

E

Γ


, f̃(ũ)n :=



m

m2

ρ
+ p̃nasg(ũ)

m
ρ
m⊥

m
ρ

(E + p̃nasg(ũ))

m
ρ

Γ


, (4.8)

with left and right data ŨZ := (UZ,ΓZ) = (ρZ,mZ · n,m⊥
Z ,EZ,ΓZ)T with

ΓZ := ρZ

(
pZ + p∞

ρZ(e(UZ)−q)
1−bρZ

− p∞
+ 1

)
(4.9)

where Z ∈ {L,R} and the pressure is de�ned by

p̃nasg(ũ) :=
(Γ

ρ
− 1
)(E − 1

2
m2/ρ− ρq

1− bρ
− p∞

)
+

Γ

ρ
p∞. (4.10)

It is often easier to work with the primitive variables, so let γ := Γ/ρ then p̃nasg can

be rewritten as pnasg(ρ, e, γ) := p̃nasg(ũ) = (γ − 1)
(ρ(e−q)

1−bρ − p∞
)
− p∞ which is simply the

NASG EOS with a variable γ. The left and right states are then (ρZ,vZ ·n,v⊥Z , pZ, γZ) where

γZ := (pZ+p∞)(1−bρZ)
ρZ(e(ρZ,pZ)−q)−p∞(1−bρZ)

+ 1 and v⊥Z := ρ−1
Z m⊥

Z for Z ∈ {L,R}.

Remark 4.2.1 (Interpolating with pnasg). The reason for this choice of γZ is because

pnasg(ρZ, e(ρZ, pZ), γZ) = pZ for Z ∈ {L,R}. That is, pnasg interpolates the left and right

pressures.

De�nition 4.2.2 (Extended Invariant Domain). We de�ne the extended invariant domain

as,

B̃(b, q, p∞) := {ũ ∈ Rd+3 : u ∈ B(b, q, p∞), Γ > ρ}. (4.11)
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to account for the new variable Γ.

Remark 4.2.2 (Extended Bar States). Notice that f̃(ũZ) = (f(uZ),vZΓZ)T since p̃nasg(ũZ) =

pZ = p(uZ). Let uLR := U
n

ij. Then, the bar state for the extended Riemann problem is,

ũLR =

 uLR

1
2
(ΓL + ΓR)− 1

2λ
(vRΓR − vLΓL) · n

 , (4.12)

where λ = − mi
2dL,nii

. Its important to note that the density, momentum, and total energy of

the state ũLR is the same as the state uLR. Thus, if we can prove positivity of the density

and speci�c internal energy of the extended Riemann problem, then this immediately carries

over to the original Riemann problem. This is remark is critical in the justi�cation of the

invariant-domain preserving method.

4.2.1 The Wave Structure

We begin by �rst deriving the wave structure of this Riemann problem. This is done by

computing the Jacobian matrix of f̃(ũ)n. However, the computation is simpler if we make

a change of variables. Let θ : B̃ ⊂ Rd+3 → B̃ be a smooth di�eomorphism, de�ned by

θ(ũ) =
(
ρ,
m

ρ
,
m⊥

ρ
, e(u),

Γ

ρ

)T
=: w̃. (4.13)

That is, θ maps to the primitive variables, θ(ũ) = w̃ = (ρ, v,v⊥, e, γ)T. Then the extended

Riemann problem is formulated as,

∂tρ+ v∂xρ+ ρ∂xv = 0, (4.14a)

∂tv + v∂xv + ρ−1∂xpnasg = 0, (4.14b)

∂tv
⊥ + v∂xv

⊥ = 0, (4.14c)

∂te+ ρ−1pnasg∂xv + v∂xe = 0, (4.14d)

∂tγ + v∂xγ = 0, (4.14e)
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Thus, the Jacobian matrix of the system (4.14a)�(4.14e), is,

B(w̃) =



v ρ 0T 0 0

1
ρ

∂pnasg
∂ρ

v 0T 1
ρ

∂pnasg
∂e

1
ρ

∂pnasg
∂γ

0 0 vId−1 0 0

0 pnasg
ρ

0T v 0

0 0 0T 0 v


. (4.15)

The eigenvalues of this matrix are, µ1(w̃) = v − ã(w̃), µ2(w̃) = v (with multiplicity d+ 1),

and µ3(w̃) = v + ã(w̃), where

ã(w̃)2 =
γ(p̃nasg(θ

−1(w̃)) + p∞)

ρ(1− bρ)
= γ(γ − 1)

( e− q
(1− bρ)2

− p∞
ρ(1− bρ)

)
. (4.16)

Thus, the solution to the Riemann problem is composed of 3 waves. We denote them by the

L-wave, C-wave, and R-wave.

Remark 4.2.3 (No Entropy for pnasg). The interpolatory pressure, pnasg, is not a real equa-

tion of state since it is also a function of the extra variable, γ. Therefore, we have not

made a change of variable to the speci�c entropy which is usually done when computing the

eigenvalues of the Jacobian matrix. However, in Section 4.3, the restriction of pnasg to each

wave, will de�ne an equation of state.

Note that the change of variables does not a�ect the eigenvalues of the Jacobian matrix

of the original system. That is, if A(ũ) is the Jacobian matrix for the �ux, f̃(ũ)n, given in

(4.8), then the eigenvalues of A(ũ) and B(w̃) are the same. Furthermore, let ri(ũ) denote

an eigenvector of A(ũ) with corresponding eigenvalue, λi(ũ) and si(w̃) an eigenvector of

B(w̃), with its corresponding eigenvalue, µi(w̃). Note also, eigenvectors are related by the

following identity, ri(ũ) = (Dũθ(ũ))−1si(θ(ũ)). Then it can be shown that, Dλi(ũ) ·ri(ũ) =

Dµi(w̃) · si(w̃). The details on the change of variables regarding the Jacobian matrix can

be found in [31, Section 2.1.1]
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We now present the left and right eigenvectors for completeness. Note, that the associated

eigenvectors are s1(w̃) = (1,−a/ρ,0d−1, 0, 0)T, s3(w̃) = (1, a/ρ,0d−1, 0, 0)T, and

s2(w̃) ∈ span





1

0

0d−1

− e−q
ρ(1−bρ)

0


,



0

0

e1

0

0


, · · · ,



0

0

ed−1

0

0


,



ρ(e−q)
1−bρ − p∞

0

0d−1

0

− (γ−1)(e−q)
(1−bρ)2

.




, (4.17)

where ei are the standard basis vectors in Rd−1. We have chosen speci�c eigenvectors for s1

and s3 since the dimension of their respective eigenspaces is only one.

Lemma 4.2.1 (Wave Structure of the Extended Riemann Problem). The L- and R-waves

are genuinely nonlinear and the C-wave is linearly degenerate. That is, Dλi(ũ) · ri(ũ) 6= 0

for i = 1, 3 and Dλ2(ũ) · r2(ũ) = 0 for all ũ ∈ B̃.

Proof. As mentioned above regarding the change of variables, we can equivalently work

with eigenpairs (µi, si). Then we see that Dµ1(w̃) · s1(w̃) = −∂a
∂ρ

(w̃) − a(w̃)
ρ
6= 0 and

Dµ3(w̃) ·s3(w̃) = ∂a(w̃)
∂ρ

+ a(w̃)
ρ
6= 0 for all w̃ ∈ B̃. Similarly, Dµ2(w̃) = (0, 1,0d−1, 0, 0)T and

is orthogonal to the space of eigenvectors de�ned in (4.17).

Lemma 4.2.2 (Continuity on the Contact). The pressure and velocity are continuous across

the contact.

Proof. To prove this we show that p and v are 2-Riemann invariants and hence are continuous

across the contact. Note the following identity holds for a i-characteristic wave,

Dũp(w̃) · ri(ũ) = Dũp(θ(ũ)) · (Dũθ(ũ))−1si(θ(ũ))

=
(
(Dw̃p(w̃))TDũθ(ũ)

)
·
(
(Dũθ(ũ))−1si(w̃)

)
= Dw̃p(w̃) · si(w̃)
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Therefore, we only need to show that Dw̃p(w̃) ·s2(w̃) = 0 for p to be a 2-Riemann invariant.

Computing the derivative of p, we have,

Dw̃p(w̃) =
((γ − 1)(e− q)

(1− bρ)2
, 0,0T,

(γ − 1)ρ

1− bρ
,
ρ(e− q)
1− bρ

− p∞
)
. (4.18)

Then it is a quick check to see that Dw̃p(w̃) · s2(w̃) = 0 for any s2(w̃) de�ned in (4.17).

Therefore, p is a 2-Riemann invariant and hence is constant across the contact.

For the velocity, v is automatically a 2-Riemann invariant by Lemma 4.2.1, since λ2(ũ) =

v. Thus the velocity is constant across the contact.

4.3 The Solution to the Extended Riemann Problem

We suppose that the solution to the extended Riemann problem must be a self similar

solution composed of three waves where the Z-wave (Z ∈ {L,R}) is either a shock or an

expansion and the C-wave is a contact. Since γ is being transported (∂tγ + v∂xγ = 0), we

propose that the γ = γL left of the contact and γ = γR right of the contact, Hence, the

solution for γ is,

γ(x, t) =


γL,

x
t
< v∗,

γR,
x
t
> v∗,

(4.19)

where v∗ is the speed of the contact. See Figure 4.1 for a visual description of this solution.

The solution on each wave can be constructed with the NASG EOS for γ = γZ for each

respective wave. For the sake of completion, we derive the solution to this extended Riemann

problem.
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Figure 4.1: An example solution for γ(x, t) in the extended Riemann problem

The solution to the Riemann is �rst constructed for the problem,

∂t



ρ

m

E

Γ


+ ∂x



m

1
ρ
m2 + pnasg

m
ρ

(E + pnasg)

m
ρ

Γ


, (4.20)

with left and right data, (ρZ,mZ · n,EZ,ΓZ)T for Z ∈ {L,R} where E = E − ‖m
⊥‖2

`2

2ρ
. Then

the complete solution is found for m⊥ by solving ∂tm⊥ + ∂x(vm
⊥) = 0, see [16, Sec. 2.5].

However, the solution for m⊥ is never needed, as we are only interested in the maximum

wave speed to the problem, (4.20). This extended Riemann problem (4.20), is the focus of

the remainder of this Chapter.

Remark 4.3.1 (Internal Energy Change of Basis). The internal energy can be written as

ρe = E − ‖m‖
2
`2

2ρ
= E− m2

2ρ
. Hence the internal energy does not depend on the basis, which is

what we expect.

Now let c := (ρ, v, p, γ)T be the primitive state and set cZ := (ρZ, vZ, pZ, γZ)T. Recall

that γZ = (pZ+p∞)(1−bρZ)
ρZ(eZ−q)

+ 1 and based on the assumption that the oracle provides positive

pressure, see Remark 1.4.1, we have that min(γL, γR) > 1. Furthermore, notice that the

oracle is only invoked to compute the left and right Riemann data pL and pR.

41



We now de�ne an important function that will appear in the solution to the Riemann

problem,

fZ(p) :=


f expZ (p) := 2aZ(1−bρZ)

γZ−1

((
p+p∞
pZ+p∞

) γZ−1

2γZ − 1
)
, if − p∞ ≤ p < pZ,

f shockZ (p) := (p− pZ)
√

AZ

p+p∞+BZ
, if p ≥ pZ.

(4.21)

where AZ := 2(1−bρZ)
(γZ+1)ρZ

and BZ := γZ−1
γZ+1

(pZ + p∞).

We also introduce the wave speeds for the Riemann problem which are essential for the

estimation of the maximum wave speed. They are as follows:

λ−L (p∗) := vL − aL

(
1 +

γL + 1

2γL

(
p∗ − pL
pL + p∞

)
+

) 1
2

, (4.22a)

λ+
L (p∗) :=


vL − fL(p∗)− aL

1−bρL
1−bρ∗L

(
p∗+p∞
pL+p∞

) γL−1

2γL , if p∗ < pL,

λ−L (p∗), if pL ≤ p∗,

(4.22b)

λ+
R(p∗) := vR + aR

(
1 +

γR + 1

2γR

(
p∗ − pR
pR + p∞

)
+

) 1
2

, (4.22c)

λ−R(p∗) :=


vR + fR(p∗) + aR

1−bρR
1−bρ∗R

(
p∗+p∞
pR+p∞

) γR−1

2γR , if p∗ < pR,

λ+
R(p∗), if pR ≤ p∗,

(4.22d)

The derivation of these waves speeds is shown in the following sections.

4.3.1 Shock Wave

Assume the L-Wave is a shock. Then the solution with a shock wave must satisfy the

Rankine-Hugoniot conditions. Let SL denote the speed of the shock and we denote the state

across the shock by `∗L' subscript. De�ne, v̂L := vL − SL and v̂∗L := v∗L − SL. Then the
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Rankine Hugoniot conditions become,

ρLv̂L = ρ∗Lv̂∗L, (4.23)

ρLv̂
2
L + pL = ρ∗Lv̂

2
∗L + p∗, (4.24)

v̂L(ÊL + pL) = v̂∗L(Ê∗L + p∗), (4.25)

where ÊL = ρLeL + 1
2
ρLv̂

2
L and Ê∗L = ρ∗Le∗L + 1

2
ρ∗Lv̂

2
∗L. From the Rankine-Hugoniot condi-

tions, one can also derive,

e∗L − eL =
1

2
(p∗ − pL)

(ρ∗L − ρL
ρ∗LρL

)
, (4.26)

see [56, Section 3.1.3]. Note also that this identity is independent of the EOS. The goal is to

determine an equation which relates the two unknowns, p∗ and ρ∗L. So, applying the NASG

EOS, we have,

p∗ − γLp∞
γL − 1

1− bρ∗L
ρ∗L

− pL − γLp∞
γL − 1

1− bρL
ρL

=
1

2
(p∗ − pL)

(ρ∗L − ρL
ρ∗LρL

)
. (4.27)

Now multiply the equation by (γL − 1)ρ∗L and expand,

(p∗ + γLp∞)− ρ∗Lb(p∗ + γLp∞)− (pL + γLp∞)
ρ∗L
ρL

+ ρ∗Lb(pL + γLp∞)

=
γL − 1

2
(p∗ + pL)

(ρ∗L
ρL
− 1
) (4.28)

We rearrange the equation so that all of the ρ∗L are on one side,

ρ∗L

(
b(pL + γLp∞)− 1

ρL
(pL + γLp∞)− b(p∗ + γLp∞)− γL − 1

2ρL
(p∗ + pL)

)
= −(p∗ + γLp∞)− γL − 1

2
(p∗ + pL).

(4.29)
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More rewriting yields,

−ρ∗LpL
2ρL

(
(γL − 1+2bρL)

p∗

pL
+

2γLp∞
pL

+ (γL + 1− 2bρL)
)

= −1

2
(γL + 1)p∗ − γLp∞ −

1

2
(γL − 1)pL.

(4.30)

Solving for ρ∗L,

ρ∗L =
ρL((γL + 1)p∗ + 2γLp∞ + (γL − 1)pL)

pL
(
(γL − 1 + 2bρL)

p∗

pL
+

2γLp∞
pL

+ (γL + 1− 2bρL)
) (4.31)

Dividing by ρL and rewriting, we have,

ρ∗L
ρL

=

 p∗+p∞
pL+p∞

+ γL−1
γL+1(

γL−1+2bρL
γL+1

)
p∗+p∞
pL+p∞

+ γL+1−2bρL
γL+1

 . (4.32)

From (4.24) we have,

ρ2
Lv̂

2
L = − p∗ − pL

1
ρ∗L
− 1

ρL

= ρL
p∗ − pL
1− ρL

ρ∗L

. (4.33)

In addition, using (4.23) and (4.24), we can also derive the identity, ρLv̂L = p∗−pL
vL−v∗L which we

can equate with (4.33), to �nd,

v∗ = vL −
√

p∗ − pL
√

1

ρL

(
1− ρL

ρ∗L

)
. (4.34)

Finally, we substitute (4.32) into (4.34) to �nd,

v∗ = vL − f shockL (p∗) (4.35)

where f shockL is de�ned in (4.21). Thus the solution across the shock wave is,

u∗L :=

(
ρL((γL + 1)p∗ + 2γLp∞ + (γL − 1)pL)

pL
(
(γL − 1 + 2bρL) p∗

pL
+ 2γLp∞

pL
+ (γL + 1− 2bρL)

) , v∗ − f shockL (p∗), p∗, γL

)T

.

(4.36)
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The density across the shock can be written in the following alternative form,

u∗L :=

(
ρL
(
p∗

pL
+ 2γLp∞

(γL+1)pL
+ γL−1

γL+1

)
γL−1+2bρL

γL+1
p∗

pL
+ 2γLp∞

(γL+1)pL
+ γL+1−2bρL

γL+1

, v∗ − f shockL (p∗), p∗, γL

)T

. (4.37)

Next, we derive the shock speed. From (4.33), we can solve for shock speed, SL,

SL(p∗) = vL −
√

p∗ − pL
ρL(1− ρL

ρ∗L
)
. (4.38)

Using in (4.32) again and with a lot of simpli�cation, we �nd,

SL = vL − aL
√
γL + 1

2γL

( p∗ − pL
pL + p∞

)
+ 1, (4.39)

where aL =
√

γL(pL+p∞)
ρL(1−bρL)

is the sound speed for the NASG EOS. The shock speed is the wave

speed for the L-wave. That is, we de�ne λ−1 (p∗) = λ+
1 (p∗) := SL.

The R-wave can be computed similarly. Doing so, we �nd,

v∗ = vR + f shockR (p) (4.40)

and

SR(p∗) = vR + aR

√
γR + 1

2γR

( p∗ − pR
pR + p∞

)
+ 1. (4.41)

The wave speed on the R-wave is then λ−R(p∗) = λ+
R(p∗) = SR and the solution across the

shock is given by,

u∗R :=

(
ρR((γR + 1)p∗ + 2γRp∞ + (γR − 1)pR)

pR
(
(γR − 1 + 2bρR) p∗

pR
+ 2γRp∞

pR
+ (γR + 1− 2bρR)

) , v∗ + f shockR (p∗), p∗, γR

)T

.

(4.42)
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or in the alternative form,

u∗R :=

(
ρR
(
p∗

pR
+ 2γRp∞

(γR+1)pR
+ γR−1

γR+1

)
γR−1+2bρR

γR+1
p∗

pR
+ 2γRp∞

(γR+1)pR
+ γR+1−2bρR

γR+1

, v∗ + f shockR (p∗), p∗, γR

)T

. (4.43)

4.3.2 Rarefaction Wave

Now assume that the left wave is a rarefaction. Since the left wave uses the NASG EOS

for γ = γL, we can use the existence of the speci�c entropy, s, for the NASG EOS. This is

due to the NASG EOS being a convex equation of state; see Section 2.2. Since the speci�c

entropy is constant along expansions, we use (2.12) to write the isentropic pressure law for

the NASG EOS (with a slight abuse of the notation) as,

p(ρ) = C
( ρ

1− bρ

)γL
− p∞, (4.44)

where C is some constant depending on the speci�c entropy. Thus across the wave, for any

state on the expansion connected to the left state, we have the following parametrization of

the density,
1

ρ(p)
− b =

( 1

ρL
− b
)(pL + p∞

p + p∞

) 1
γL (4.45)

Using this parametrization, we can also parametrize the sound speed on the expansion, call

it aexp
L . Using (4.45) in the de�nition of the sound speed, (4.16), we see that,

a
exp
L (p) = aL

ρL
ρ(p)

( p + p∞
pL + p∞

) γL+1

2γL = aL
1− bρL

1− bρ(p)

( p + p∞
pL + p∞

) γL−1

2γL . (4.46)

In order to determine the solution on the expansion we make use of the generalized 1-

Riemann invariant on this wave. Recall the de�nition of the generalized Riemann invariant

given in De�nition 1.2.6. The corresponding right eigenvector for the 1-characteristic is

s1 = (ρ,−aexp
L (p),0d−1, 0, 0)T. The generalized 1-Riemann invariant, W1, can be found by

solving, DW1(z) · s1 = 0 where z = (ρ, v, p) is the vector of primitive variables. This gives
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us the di�erential equation,

∂W1

∂ρ
(z) +

a
exp
L (p)

ρ

∂W1

∂v
(z) = 0. (4.47)

A solution to this di�erential equation is,

W1(z) = v +

∫ ρ

ρ0

a
exp
L (z)

%
d% (4.48)

Using the sound speed de�nition, (4.16), and the isentropic pressure law, (4.44), the Riemann

invariant becomes,

W1(z) = v −
√
CγL

∫ ρ

ρ0

%
1
2

(γL−3)

(1− b%)
1
2

(γL+1)
dρ = v − 2

√
CγL

γL − 1

( %

1− b%

) 1
2

(γL−1)
∣∣∣∣ρ
ρ0

(4.49)

Furthermore, the sound speed on the expansion can be written as, aexp
L (p(ρ)) =

√
CγLρ

γL−1

(1−bρ)γL+1 .

Hence the Riemann invariant takes the form,

W1(z) = v +
2aexp

L (z)

γL − 1
(1− bρ) + const. (4.50)

Note that the 1-Riemann invariant is constant along the 1-wave if the 1-wave is an expansion.

Hence, W1(zL) = W1(z∗L). Therefore, we have the relationship for any state, z on the

expansion,

v +
2aexp

L (z)

γL − 1
(1− bρ) = vL +

2aL
γL − 1

(1− bρL) (4.51)

We now introduce the self similarity parameter, ξ := x/t. Hence, along the rarefaction, we

have ξ = v − a = v − a
exp
L (p). Using (4.51) we have the equation,

ξ(p) = vL −
2aL
γL − 1

(1− bρL)− 2aexp
L (p)

γL − 1
(1− bρ(p))− a

exp
L (p). (4.52)

Using the de�nition of aexp
L , (4.46), in (4.52) and with a lot of algebra, we arrive at the
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following,

ξL(p) = vL −
2aL(1− bρL)

γL − 1

(( p + p∞
pL + p∞

) γL−1

2γL − 1
)
− aL(1− bρL)

1− bρ(p)

( p + p∞
pL + p∞

) γL−1

2γL . (4.53)

Using the notation from (4.21), we write,

ξL(p) = vL − f expL (p)− aL(1− bρL)

1− bρ(p)

( p + p∞
pL + p∞

) γL−1

2γL . (4.54)

Notice that ξL(p) is a strictly decreasing function for p ∈ [p∗, pL]. Hence by the inverse

function theorem, ξ(p) is invertible, and thus p can be expressed as a decreasing function of

ξ for ξ ∈ [ξL(pL), ξL(p∗)] = [λ−L (pL), λ+
L (p∗)] where λ−L and λ+

L are de�ned in (4.22). Similarly,

if an expansion on the R-wave occurs, then the parametrization of ξ is given by,

ξR(p) = vR + f expR (p) +
aR(1− bρR)

1− bρ(p)

( p + p∞
pR + p∞

) γR−1

2γR . (4.55)

Then it can be seen that ξR(p) is a strictly increasing function for p ∈ [p∗, pR]. And again,

ξR(p) is invertible, and so we can conclude that p = p(ξ) is a strictly increasing function for

ξ ∈ [ξR(p∗), ξR(pR)] = [λ−R(p∗), λ+
R(pR)]. Note however, we cannot �nd an explicit equation

for p(ξ).

In short, we can say that the pressure, p, decreases across expansions. Thus the solution

for an expansion on the L-wave is,

uLL(ξ) :=



(
b+

(
1
ρL
− b
)(

pL+p∞
p(ξ)+p∞

) 1
γL

)−1

vL − f expL (p(ξ))

pnasg(ξ)

γL


, (4.56)
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and similarly, the solution on the R-wave is,

uRR(ξ) :=



(
b+

(
1
ρR
− b
)(

pR+p∞
pnasg(ξ)+p∞

) 1
γR

)−1

vR + f expR (p(ξ))

pnasg(ξ)

γR


, (4.57)

4.4 Connecting the L- and R-waves

Using the fact that the velocity and pressure are constant across the contact, we have

that,

v∗ = vL − fL(p∗) = vR + fR(p∗), (4.58)

which de�nes the following nonlinear equation to solve for p∗,

ϕ(p) := fR(p) + fL(p) + vR − vL = 0, for p ∈ (−p∞,∞), (4.59)

where fZ is de�ned in (4.21) for Z ∈ {L,R}.

Lemma 4.4.1 (Properties of ϕ). The function ϕ de�ned in (4.59) is C2((−p∞,∞)), strictly

increasing, concave, and ϕ′′′(p) > 0 a.e.

Proof. To see the proof, we must compute the derivative of the functions, f expZ and f shockZ .

Recall, f expZ (p) = 2aZ(1−bρZ)
γZ−1

((
p+p∞
pZ+p∞

) γZ−1

2γZ − 1
)
and f shockZ = (p − pZ)

√
AZ

p+p∞+BZ
. Then we

have,

df expZ

dp
(p) =

aZ(1− bρZ)

γZ(pZ + p∞)

( p + p∞
pZ + p∞

)− γZ+1

2γZ > 0, (4.60a)

d2f expZ

dp2
(p) = −aZ(γZ + 1)(1− bρZ)

2γ2
Z(pZ + p∞)2

( p + p∞
pZ + p∞

)− 3γZ+1

2γZ < 0, (4.60b)

d3f expZ

dp3
(p) =

aZ(3γZ + 1)(γZ + 1)(1− bρZ)

4γ3
Z(pZ + p∞)3

( p + p∞
pZ + p∞

)− 5γZ+1

2γZ > 0, (4.60c)
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and

df shockZ

dp
(p) =

√
AZ

p + p∞ +BZ

(
1− p− pZ

2(p + p∞ +BZ)

)
> 0, (4.61a)

d2f shockZ

dp2
(p) = −

√
AZ(p + p∞ + 3(pZ + p∞) + 4BZ)

4(p + p∞ +BZ)5/2
< 0, (4.61b)

d3f shockZ

dp3
(p) =

3
√
AZ(p + p∞ + 5(pZ + p∞) + 6BZ)

8(p + p∞ +BZ)7/2
> 0. (4.61c)

Based on the de�nition of ϕ(p), (4.59), we see that ϕ is monotonically increasing, concave

down and ϕ′′′(p) > 0. Lastly, we need to show that ϕ ∈ C2((−p∞,∞)). As f shockZ and

f expZ are both C3 functions, we just need to show that continuity of the derivatives holds

at pZ. Using the fact that aZ(1−bρZ)
γZ(pZ+p∞)

=
√

AZ

pZ+p∞+BZ
, we see that dfexpZ

dp
(pZ) =

df shockZ

dp
(pZ),

d2fexpZ

dp2
(pZ) =

d2f shockZ

dp2
(pZ), but

d3f expZ

dp3
(pZ) =

aZ(3γZ + 1)(γZ + 1)(1− bρZ)

4γ3
Z(pZ + p∞)3

6= 9
√
AZ

4(pZ + p∞ +BZ)5/2
=

d3f shockZ

dp3
(pZ). (4.62)

This completes the proof.

Remark 4.4.1 (The Nonvacuum Condition). Since the function ϕ(p) is strictly increasing, a

root to the equation (4.59) only exists if ϕ(−p∞) < 0. This gives us the so-called nonvacuum

condition

vR − vL <
2aL(1− bρL)

γL − 1
+

2aR(1− bρR)

γR − 1
. (4.63)

If ϕ(−p∞) ≥ 0, then we set p∗ := −p∞ and the solution of the Riemann problem consists of

two expansions into vacuum.

Lemma 4.4.2 (Unique Root for ϕ(p) = 0). If (4.63) holds, then ϕ has a unique root,

p∗ ∈ (−p∞,∞).

Proof. Note that condition if (4.63) holds, then that implies ϕ(−p∞) < 0 and since ϕ is

C3((−p∞,∞)) and strictly increasing, this implies the existence of a unique root.
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Remark 4.4.2 (Fast Root Finding Method). Since ϕ has nice properties from Lemma 4.4.1,

we can use the quadratic Newton method to quickly �nd the root of the equation. This fast

estimation method was �rst introduced by Guermond & Popov in [59]. To avoid the nonlinear

solver, we also propose an upper bound on the root in Section 4.6.

4.5 A Weak Solution to the Extended Riemann Problem

For Z ∈ {L,R}, de�ne,

u∗Z :=


uZZ(ξ(p∗)), if p∗ < pZ,

u∗Z, if pZ ≤ p∗.

(4.64)

For reference, uZZ is de�ned in (4.56) and (4.57) and u∗Z is de�ned in (4.37) and (4.43). We

claim that,

ũ(x, t) :=



uL if x
t
< λ−L ,

uLL(x
t
) if λ−L ≤ x

t
< λ+

L ,

u∗L if λ+
L ≤ x

t
< v∗

u∗R if v∗ < x
t
< λ−R,

uRR(x
t
) if λ−R ≤ x

t
< λ+

R,

uR if λ+
R ≤ x

t

(4.65)

is a weak solution to the Riemann problem.

Lemma 4.5.1 (Upper Bound on the Density). For b > 0, if ũL, ũR ∈ B̃(b, q, p∞), then the

solution to the extended Riemann problem, ũ(x, t) given in (4.65) satis�es, ρ < b−1.

Proof. If the Z-wave is an expansion, then the parametrization of the density as a function

of p, seen in (4.56) or (4.57) is an increasing function of p. As seen in Section 4.3.2, we

know that the pressure decreases across an expansion hence, the density decreases across an

expansion. Thus, ρ(x, t) ≤ ρZ < b−1 on an expansion wave.
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Now assume that the Z-wave is a shock. From (4.37) or (4.43) we see that

ρ∗Z =
ρZ
(
p∗

pZ
+ 2γZp∞

(γZ+1)pZ
+ γZ−1

γZ+1

)
γZ−1+2bρZ

γZ+1
p∗

pZ
+ 2γZp∞

(γZ+1)pZ
+ γZ+1−2bρZ

γZ+1

. (4.66)

Using that γZ > 1 and ρZ < b−1, we can see through elementary calculus that ρ∗Z is an

increasing function of p∗. Taking p∗ →∞, we see that

lim
p∗→∞

ρ∗Z(p∗) =
γZ + 1

γZ − 1 + 2bρZ
ρZ. (4.67)

Thus, the upper bound is now seen as a decreasing function of γZ. Taking γZ → 1+, we �nd

that,

lim
γZ→1+

γZ + 1

γZ − 1 + 2bρZ
ρZ = b−1. (4.68)

Since γZ > 1, we have that ρ∗Z < b−1 and therefore, ρ < b−1 in the solution to the extended

Riemann problem for a.e. x ∈ R and t > 0.

Lemma 4.5.2 (Weak Solution to the Extended Riemann Problem). Assume the nonvacuum

condition holds, (4.63). Then ũ(x, t) de�ned by (4.65), is a weak solution to the extended

Riemann problem, (4.20). Moreover, ũ(x, t) ∈ B̃(b, q, p∞).

Proof. In the domain {x < v∗t}, we have that γ = γL and hence Γ = γLρ. Therefore, the

last equation in (4.20), ∂tΓ + ∂x(vΓ) is equivalent to the conservation of mass. Then by

construction, the �rst three equations in (4.20) hold are satis�ed in the weak sense since

with the EOS de�ned by p = (γL − 1)ρ(e−q)
1−bρ − γLp∞.

The result is the same in the domain {x > v∗t} but with γ = γR. In order to complete

the proof, we need the two states, ũ∗L = (ρ∗L, v
∗
L, p
∗
L, γ

∗
R) and ũ∗R = (ρ∗R, v

∗
R, p

∗
R, γ

∗
R) on the

left and right of the contact, {x = v∗t} to satisfy the Rankine-Hugoniot condition. Since

the nonvacuum condition holds, we have that v∗L = v∗R = v∗ and p∗L = p∗R = p∗. The

Rankine-Hugoniot conditions are immediately satis�ed.

Since there is no vacuum state, the density remains strictly positive and by Lemma 4.5.1.
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By the de�nition of p∗ as the root of (4.59), we have that p∗ > −p∞ in the nonvacuum

case. In particular, in the case of a double expansion, we always have that p > −p∞. From

the NASG EOS, we have that (γZ − 1)
(
ρ(e−q)
1−bρ − p∞

)
= p + p∞ > 0 on either the left or

right of the contact. This implies the invariant-domain constraint that e − q > p∞(τ − b),

since γZ − 1 > 0. Lastly, Γ > ρ is equivalent to γL > 1 left of the contact and γR > 1 right

of the contact. These again both hold since the Riemann data satisfy uZ ∈ B(b, q, p∞) for

Z ∈ {L,R}. Therefore, we conclude that ũ(x, t) ∈ B̃(b, q, p∞).

This brings us to the main result from Clayton et. al. [2], which has been modi�ed to

hold for the NASG interpolatory EOS.

Theorem 4.5.1. (i) Let Un
i ,U

n
j ∈ B(b, q, p∞) where B(b, q, p∞) is de�ned in (1.23). Let p∗

be the root of the equation ϕ(p) = 0 de�ned in (4.59) and let p̂∗ be any upper bound on p∗;

i.e., p̂∗ ≥ p∗. Let,

λ̂(nij,U
n
i ,U

n
j ) := max(−λ−L (p̂∗), λ+

R(p̂∗)) (4.69a)

dL,nij := max(λ̂(nij,U
n
i ,U

n
j )‖cij‖`2 , λ̂(nji,U

n
j ,U

n
i )‖cji‖`2). (4.69b)

Let U
n

ij(t0) be de�ned in (4.3) with t0 =
‖cij‖
2dL,nij

. Then U
n

ij(t0) ∈ B(b, q, p∞).

(ii) Let i ∈ V and Un
j ∈ B(b, q, p∞) for all j ∈ I(i). Let dL,nij be de�ned by (4.69b) and

assume ∆t is small enough so that ∆t
∑

j∈I(i)\{i}
2dL,nij
mi
≤ 1. If UL,n+1

i is de�ned by (4.1), then

UL,n+1
i ∈ conv{Un

ij : j ∈ I(i)} ⊂ B(b, q, p∞).

Proof. First notice that −λ−L (p) and λ+
R(p) are both increasing functions of p. Therefore,

for p̂∗ ≥ p∗, we have that λ̂(nij,U
n
i ,U

n
j ) ≥ max(−λ−L (p∗), λ+

R(p∗)). This implies that,

(
0,

1

2λ̂(nij,U
n
i ,U

n
j )

]
⊂
(

0,
1

2 max(−λ−L (p∗), λ+
R(p∗))

]
. (4.70)

Thus by de�nition of dL,nij and t0, we have that t0 ∈ (0, 1/(2λ̂(nij,U
n
i ,U

n
j ))]. In order to

apply Lemma 1.3.1, we use g(u) := f̃(ũ)nij with the left and right Riemann data Ũ
n

i and
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Ũ
n

j , respectively. Then we must show that the solution ũ(x, t) ∈ B̃(b, q, p∞) for a.e. x ∈ R

and all t > 0.

Note, the solution given in (4.65) satis�es ρ > 0 in every case and by Lemma 4.5.1,

ρ < b−1 (if b > 0). For the constraint, e − q > p∞(τ − b) recall that e − q = p+γp∞
γ−1

(τ − b).

By construction of the solution, p∗ ∈ (−p∞,∞) and hence e − q > p∞(τ − b). Lastly,

since γ(x, t) = γL if x < v∗t, γ(x, t) = γR if x > v∗t and γL, γR > 1, this implies that

Γ(x, t) > ρ(x, t) for a.e. x ∈ R and all t > 0. Therefore, ũ ∈ B̃(b, q, p∞).

From Lemma 4.5.1, 2., we conclude that Ũ
n

ij(t0) ∈ B̃(b, q, p∞). But from (4.12), the

density, momentum and total energy are the same for U
n

ij(t0) and Ũ
n

ij(t0). So, de�ning,

Ψ̃1(ũ) := ρ, Ψ̃2(ũ) := 1−bρ, and Ψ̃3(ũ) := e(u)−q−p∞(ρ−1−b). We have that Ψl(U
n

ij(t0)) =

Ψ̃l

(
Ũ
n

ij(t0)
)
> 0 for all l = 1, 2, 3. Therefore, we conclude that U

n

ij(t0) ∈ B(b, q, p∞).

4.5.1 Weak solution with Vacuum state

In the case that the nonvacuum condition, (4.63), fails, then p∗ := −p∞ and the velocity

in Riemann fan is no longer continuous. That is,

v∗L := vL − f expL (−p∞) = vL +
2aL(1− bρL)

γL − 1
, (4.71a)

v∗R := vR + f expR (−p∞) = vR −
2aR(1− bρR)

γR − 1
. (4.71b)

De�ne ũ∗Z := ũZZ(v∗Z) = (0, v∗Z,−p∞, γZ)T for Z ∈ {L,R}. Then we claim that the solution

to the extended Riemann problem in the presence of vacuum is,

ũ(x, t) :=



ũL if x
t
< vL − aL,

ũLL(x
t
) if λ−L ≤ x

t
< v∗L,

v∗R−
x
t

v∗R−v
∗
L
ũ∗L +

x
t
−v∗L

v∗R−v
∗
L
ũ∗R if v∗L ≤ x

t
< v∗R

ũRR(x
t
) if v∗R ≤ x

t
< vR + aR,

ũR if vR + aR ≤ x
t

(4.72)
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Lemma 4.5.3 (Weak Solution with Vacuum). Assume that the nonvacuum condition (4.63)

fails, i.e., p∗ = 0. Then the following is true

1. The solution ũ given by (4.72) is a weak solution to (4.20).

2. If x
t
∈ (vL − aL, v

∗
L
) ∪ (v∗

R
, vR + aR), then ũ ∈ B̃(b, q, p∞).

3. ũ ∈ B̃(b, q, p∞); that is, ũ is in the closure of B̃(b, q, p∞).

Proof. 1. We have already established that ũ is a weak solution to (4.20) from Lemma 4.5.2

in the region {x < v∗Lt} ∪ {v∗Rt < x}. In the region {v∗Lt < x < v∗Rt}, the solution de�ned by

(4.72) is a weak solution since all of the conservative variables are all zero. We only need to

show to show that ũ is continuous on the line {x = v∗Lt} and {x = v∗Rt}. From the de�nition of

ξL(p) given in (4.54), we see that ξL(−p∞) = vL − f exp
L (−p∞) = v∗L therefore, p(v∗L) = −p∞.

Hence limξ↑v∗L ũLL(ξ) = (0, v∗L,−p∞, γL)T. Similarly, taking limξ↓v∗L
v∗R−

x
t

v∗R−v
∗
L
ũ∗L +

x
t
−v∗L

v∗R−v
∗
L
ũ∗R =

(0, v∗L,−p∞, γL)T. Hence the solution is continuous on the line {x = v∗Lt}. A similar proof

holds for the line {x = v∗Rt}.

2. This proof follows identically to what is given in the proof of Lemma 4.5.2.

3. We only need to show that the state in the region {v∗Lt < x < v∗Rt} lies in B̃(b, q, p∞).

First note that,
v∗R−

x
t

v∗R−v
∗
L
Γ∗L +

x
t
−v∗L

v∗R−v
∗
L
Γ∗R = 0 for x

t
∈ (v∗L, v

∗
R) since ρ = 0. Hence Γ(x, t) ≥ ρ(x, t)

for a.e. x ∈ R and all t > 0.

In the case that p∞ > 0, then p = −p∞ implies that ρ(e−q)
1−bρ = p∞. In particular, as ρ ↓ 0,

we have that e→∞. Nevertheless, we have that, ũ ∈ B̃(b, q, p∞).

For p∞ = 0, we see that e ↓ q as ρ ↓ 0. Hence ũ ∈ {w̃ ∈ Rd+3 : ρ ≥ 0, 1− bρ > 0, e− q ≥

0, Γ ≥ ρ} ⊂ B̃(b, q, p∞).

4.6 Upper Bound on the Max Wave Speed

We now have the following important result regarding the max wave speed.

Theorem 4.6.1 (Upper Bound on the Max Wave Speed). Let λ̂max := λmax(p̂∗), where p̂∗

is any upper bound on p∗, where p∗ is the root of equation (4.59). Then λ̂max ≥ λmax(p∗)
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and the update (4.1) is invariant domain preserving with λ̂.

Recall that the equation to �nd p∗ requires the solution of a nonlinear equation. This

requires the use of a root �nding method such as the Newton-Raphson method or the Newton-

Secant method. One can also use a quadratic Newton method since ϕ′′′(p) > 0 for all

p ≥ −p∞, details on this can be found in [59]. Unfortunately, despite this, it is still expensive

to solve this nonlinear equation. We can alternatively use an upper estimate, p̂∗ on p∗

to compute the max wave speed since the invariant-domain preserving properties remain

unchanged. In this section, we outline the details for the computation of a close upper

bound.

We begin by �rst introducing the double-rarefaction approximation of the function ϕ(p),

ϕRR(p) :=
2aL(1− bρL)

γL − 1

(( p + p∞
pL + p∞

) γL−1

2γL − 1

)

+
2aR(1− bρR)

γR − 1

(( p + p∞
pR + p∞

) γR−1

2γR − 1

)
+ vR − vL,

(4.73)

Lemma 4.6.1 (Approximation of ϕ). If max(γL, γR) ≤ 5
3
, then ϕRR(p) ≤ ϕ(p) for all

p ≥ −p∞. In particular, ϕRR(p) = ϕ(p) for p ∈ [−p∞,min(pL, pR)].

Proof. The proof for the case when p∞ = 0 can be seen in [59, Theorem 4.1]. For p∞ 6= 0,

the proof is just a translation of the original.

Note that the current approximation with ϕRR fails for γZ > 5
3
. To address this we have

the following lemma,

Lemma 4.6.2 (Approximation of f shockZ (p)). For all p > pZ, we have that f shock(p) ≥

c(γZ)f exp(p), where

c(γZ) :=


1, if 1 < γZ ≤ 5

3(
1
2

+ 4
3(γZ+1)

) 1
2
, if 5

3
≤ γZ ≤ 3,(

1
2

+ 2
γZ−1

3
4−2γZ
γZ−1

) 1
2
, if 3 ≤ γZ .

(4.74)
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Proof. The proof can be found in the supplementary material to [2] at [local/web 319KB]

Notice in passing that γZ 7→ c(γZ) is continuous and c(γZ) ∈ ( 1√
2
, 1]. Lemma 4.6.2 enables

us to get an alternative double-rarefaction approximation of the ϕ(p) as we will see shortly.

To simplify upcoming notation we de�ne the following subscripts. Let

min :=

{
L, if pL ≤ pR,

R, if pL > pR,

max :=

{
R, if pL ≤ pR,

L, if pL > pR.

(4.75)

With this notation we have that pmin = min(pL, pR) and pmax = max(pL, pR). Or in other

words, min = arg minZ∈{L,R}(pZ) and max = arg maxZ∈{L,R}(pZ). Similarly, we de�ne the

following subscripts in relation to γZ,

m :=

{
L, if γL ≤ γR,

R, if γL > γR,

M :=

{
R, if γL ≤ γR,

L, if γL > γR.

(4.76)

So γm = min(γL, γR) and γM = max(γL, γR). It is important to notice that the subscripts m

and min do not have to coincide (similarly for M and max). It is worth emphasizing that

�min� and �max� are subscripts representing either L or R.

We are now ready to de�ne the approximation p̂∗ for p∗.

4.6.1 Case 0: Vacuum

In the case of vacuum, i.e., vR − vL ≥ 2aL(1−bρL)
γL−1

+ 2aR(1−bρR)
γR−1

, there is no root ϕ(p) = 0

and hence p∗ := 0. This implies that λ−1 (0)vL − aL and λ+
3 (0) = vR + aR, which is what we

expect as vacuum only occurs for a double expansion. Hence, we simply set p̂∗ = 0.

4.6.2 Case 1: p∗ > 0 and ϕ(pmin) > 0

In this case the solution to the Riemann problem is composed of two expansions and

therefore, the equation to solve is ϕRR(p) = 0. However, for γL 6= γR, the equation is

nonlinear. Fortunately for us, we only need the maximum wave speed, therefore an estimate
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for p∗ is not necessary since, λ−1 (p∗) = vL − aL and λ+
3 (p∗) = vR + aR. If one does need an

approximation to p∗, then one can solve the equation ϕ̂(p) = 0 where,

ϕ̂RR(p) := αL

(( p + p∞
pL + p∞

) γM−1

2γM − 1

)
+ αR

(( p + p∞
pR + p∞

) γM−1

2γM − 1

)
+ vR − vL. (4.77)

Note that ϕ̂RR(p) ≤ ϕRR(p) = ϕ(p) for all p ∈ [−p∞, pmin]. The associated root of ϕ̂(p) = 0

is,

p̃∗ =

(
max(αR + αL − (vR − vL), 0)

αR(pR + p∞)
− γM−1

2γM + αL(pL + p∞)
− γM−1

2γM

) 2γM
γM−1

− p∞ (4.78)

Note that p̃∗ ≥ p∗, but by assumption, we also have that pmin ≥ p∗. Therefore, we de�ne the

upper estimate by p̂∗ := min(p̃∗, pmin).

4.6.3 Case 2: ϕ(pmin) ≤ 0 ≤ ϕ(pmax)

In this case, we have that p∗ ∈ [pmin, pmax] and therefore, the �min� wave is a shock; that

is fmin(p) = f shockmin (p) and the �max� wave is an expansion; i.e., fmax(p) = f expmax(p). Therefore,

using Lemma 4.6.2 we approximate f shockmin by, c(γmin)f expmin(p) ≤ f shockmin (p) for p ∈ [pmin, pmax]

and leave f expmax unchanged. That is, the lower bounding function is,

ϕ̂RR(p) := α̂min

(( p + p∞
pmin + p∞

) γmin−1

2γmin −1

)
+αmax

(( p + p∞
pmax + p∞

) γmax−1
2γmax −1

)
+vR−vL. (4.79)

Unfortunately, this is still a nonlinear equation. So we need to coarsen our approximation a

bit more. Two do this we declare two sub cases.
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4.6.3.1 Case 2a: γmin = γm

De�ne,

ϕ̂1(p) := α̂min

(
δ
( p + p∞
pmin + p∞

) γM−1

2γM − 1

)
+ αmax

(( p + p∞
pmax + p∞

) γM−1

2γM − 1

)
+ vR − vL,

(4.80a)

ϕ̂2(p) := α̂min

(( p + p∞
pmin + p∞

) γm−1
2γm − 1

)
+ αmax

(
δ
( p + p∞
pmax + p∞

) γm−1
2γm − 1

)
+ vR − vL,

(4.80b)

where δ :=
(
pmin+p∞
pmax+p∞

) γM−γm
2γmγM . Observe that,

( p + p∞
pmin + p∞

) γm−1
2γm ≥

( p + p∞
pmax + p∞

) γM−1

2γM

(pmax + p∞
pmin + p∞

) γm−1
2γm

= (p + p∞)
γM−1

2γM (pmax + p∞)
γm−1
2γm

− γM−1

2γM (pmin + p∞)−
γm−1
2γm

=
( p + p∞
pmin + p∞

) γM−1

2γM

( pmin + p∞
pmax + p∞

) γM−γm
2γmγM .

Therefore, ϕ̂1(p) ≤ ϕ̂(p) for p ∈ [pmin, pmax]. We can apply the same reasoning to show

ϕ̂2(p) ≤ ϕ̂(p). Thus max(ϕ̂1(p), ϕ̂2(p)) ≤ ϕ̂(p) for p ∈ [pmin, pmax]. The roots of (4.80a) and

(4.80b) are,

p̃∗1 =

(
α̂min + αmax − (vR − vL)

δα̂min(pmin + p∞)
− γM−1

2γM + αmax(pmax + p∞)
− γM−1

2γM

) 2γM
γM−1

− p∞ (4.81a)

p̃∗2 =

(
α̂min + αmax − (vR − vL)

α̂min(pmin + p∞)−
γm−1
2γm + δαmax(pmax + p∞)−

γm−1
2γm

) 2γm
γm−1

− p∞ (4.81b)

Thus, our approximation for p∗ is p̂∗ := min(p̃∗1, p̃
∗
2, pmax).
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4.6.4 Case 2b: γmin = γM

This case is very similar to Case 2a. Since γmin = γM and γmax = γM we have that the

following lower bounds on ϕ̂,

ϕ̂1(p) := α̂min

(( p + p∞
pmin + p∞

) γm−1
2γm − 1

)
+ αmax

(( p + p∞
pmax + p∞

) γm−1
2γm − 1

)
+ vR − vL,

(4.82a)

ϕ̂2(p) := α̂min

(( p + p∞
pmin + p∞

) γM−1

2γM − 1

)
+ αmax

(( p + p∞
pmax + p∞

) γM−1

2γM − 1

)
+ vR − vL,

(4.82b)

and they have the corresponding roots,

p̃∗1 =

(
α̂min + αmax − (vR − vL)

α̂min(pmin + p∞)−
γm−1
2γm + αmax(pmax + p∞)−

γm−1
2γm

) 2γm
γm−1

− p∞, (4.83a)

p̃∗2 =

(
α̂min + αmax − (vR − vL)

α̂min(pmin + p∞)
− γM−1

2γM + αmax(pmax + p∞)
− γM−1

2γM

) 2γM
γM−1

− p∞. (4.83b)

Therefore our upper bound on p∗ is p̂∗ := min(p̃∗1, p̃
∗
2, pmax).

4.6.4.1 Case 3: ϕ(pmax) < 0

In this case, we have f shockmin (p) ≥ c(γmin)f expmin and f shockmax (p) ≥ c(γmax)f expmax for all p ≥ pmax.

Therefore, a lower approximation of ϕ is,

ϕ̂RR(p) := α̂min

(( p + p∞
pmin + p∞

) γm−1
2γm − 1

)
+ α̂max

(( p + p∞
pmax + p∞

) γm−1
2γm − 1

)
+ vR − vL, (4.84)

with the corresponding root,

p̃∗1 =

(
α̂min + α̂max − (vR − vL)

α̂min(pmin + p∞)−
γm−1
2γm + α̂max(pmax + p∞)−

γm−1
2γm

) 2γm
γm−1

− p∞. (4.85)
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Alternatively, we can make use of the fact that ϕ is composed of the two shock curves,

f shockL and f shockR and derive an alternative lower bound. For p ∈ (pmax,∞) we have that

BZ ≤ BZpp
−1
max. Therefore,

f shockZ (p) = (p− pZ)

√
AZ

p +BZ

≥ p− pZ√
p

√
AZ

1 +BZp−1
max

(4.86)

and hence we can de�ne the following lower bound on ϕ,

ϕ̂SS(p) :=
p− pL√

p

√
AL

1 +BLp−1
max

+
p− pR√

p

√
AR

1 +BRp−1
max

+ vR − vL. (4.87)

Solving ϕ̂SS(p) = 0 is equivalent to solving the quadratic equation,

(xL + xR)p + (vR − vL)
√
p−

(
pLxL + pRxL

)
= 0, (4.88)

where xZ =
√

AZ

1+BZp
−1
max

. De�ne a := xL + xR, b := vR − vL, c := −pLxL − pRxR. Then the

root of this equation is,

p̃∗2 =
(−b+

√
b2 − 4ac

2a

)2

(4.89)

Therefore, the upper bound on p∗ is p̂∗ := min(p̃∗1, p̃
∗
2).

This completes all possible cases for determining p̂∗ such that p̂∗ ≥ p∗. The psuedocode

for computing the maximum wave speed with p̂∗ is given in Algorithm 1.
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5. HIGH ORDER APPROXIMATION OF THE EULER EQUATIONS WITH

TABULATED EOS*

In this chapter, we develop a second order method for the Euler equations with a tabu-

lated EOS. This builds on the �rst order method described in Chapter 4. The foundations

of this high order method are based on Guermond et. al. [60] and we will extend the ideas

presented there to hold for a tabulated or arbitrary equation of state. This extension is taken

from Clayton et. al. [1].

5.1 The Use of the Consistent Mass Matrix

In the low order method we used the lumped mass matrix, (mi)i∈V as opposed to the

consistent mass matrix, (mij)i,j∈V, in order to prove the method was invariant-domain pre-

serving. Furthermore, it was shown in [61], that the use of the consistent mass matrix always

violates the maximum principle in a scalar conservation law. However, it is necessary to use

the consistent mass matrix for the high order method as using the lumped mass matrix

increases dispersion errors. This can be seen in [62]. Additionally, the use of the consistent

mass matrix can provide superconvergence e�ects; see [63]. See also [64]. The high order

update is,

1

∆tn

∑
j∈I(i)

mij(U
n+1
j −Un

j ) +
∑
j∈I(i)

f(Un
j )cij − dH,nij (Un

j −Un
i ) = 0, (5.1)

where we use a higher order graph viscosity, dH,nij . The choice of this graph viscosity is

discussed in Section 5.3. A problem with the use of the consistent mass matrix is that it

requires numerical matrix solvers to determine the solution. This can increase the compu-

tational time even with the use of a preconditioner. We avoid the use of matrix solvers, by

using a Neumann series expansion.

* A majority of this chapter is a modi�cation of the work done in [1] and is reprinted with permission
from [1].
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Proposition 5.1.1 (Neumann Series Expansion). Let (X, ‖ · ‖) be a Banach space and

T : X → X a bounded linear operator. If ‖T‖ < 1, then

(I − T )−1 =
∞∑
n=0

T n (5.2)

where I is the identity map and T 0 = I.

The application of the Neumann series to (5.1) can be seen in [65, Sec. 3.4]. We review

this application of the Neumann series expansion. Rewrite (5.1) as,

∑
j∈I(i)

mij

mj

mj

∆tn
(Un+1

j −Un
j ) +

∑
j∈I(i)

f(Un
j )cij − dH,nij (Un

j −Un
i ) = 0, (5.3)

Let M be the matrix with entries (mij/mj)i,j∈V. Then the solution, Un+1
i , can be found

inverting M. By Proposition 5.1.1, we have M−1 = (I− (I−M))−1 =
∑∞

n=0(I−M)n, since.

This series converges if ‖I −M‖ < 1. Note for small enough mesh size, h, we have that

sup‖x‖`∞=1 ‖(I −M)x‖`∞ < 1. We approximate this Neumann series expansion by taking

only the �rst two terms of the summation; that is, M−1 ≈ I + B where B = (bij)i,j∈V with

bij := δij − mij
mj

. Next, let I := card(V) and R ∈ RI . Then we have the following,

(M−1R)i ≈ (R + BR)i = Ri +
∑
j∈I(i)

bijRj = Ri +
∑
j∈I(i)

(bijRj − bjiRi), (5.4)

Notice that
∑

j∈I(i) bjiRi = 0 since
∑

j∈I(i) mji = mi implies
∑

j∈I(i) bji = 0. Applying this

to (5.3) the second order update is given by,

mi

∆t
(UH,n+1

i −Un
i ) = Rni +

∑
j∈I(i)

(bijR
n
j − bjiRni ), (5.5a)

where Rni :=
∑
j∈I(i)

(
− f(Un

j )cij + dH,nij (Un
j −Un

i )
)

(5.5b)

A more generalized version of the Neumann series approximation is proved by Guermond
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& Pasquetti in [62, Sec. 3.1] in the context of transport type problems.

5.2 A Review of the Entropy Solution

In order to de�ne a higher order graph viscosity, we are motivated by the method of the

�entropy viscosity commutator� introduced in Guermond et. al. [60, Section 3.4]. The idea is

to measure the discrete relative error in the entropy commutator, ∇·F (u)−(Dη(u))T∇·f(u)

where (η,F ) is the entropy pair, see Theorem 5.2.1. We �rst review some results regarding

entropy solutions.

De�nition 5.2.1 (Entropy, Entropy-Flux Pair). We say that (η(u),F (u)) is an entropy,

entropy-�ux pair for the Euler equations, (1.14) if

∇ · F (u) = (Dη(u))T∇ · f(u), ∀u ∈ B(b). (5.6)

De�nition 5.2.2. A weak solution u ∈ [L∞(Rd × R+)]m to the conservation law,

∂tu +∇ · f(u) = 0, (5.7)

for g ∈ C1(Rm;Rm×d) is said to be an entropy solution if,

∂tη(u) +∇ · F (u) ≥ 0, (5.8)

holds in the sense of distributions for every concave entropy η : Rm → R and associated

entropy-�ux, F : Rm → Rd.

Theorem 5.2.1 (Smooth Entropy Solutions). Every smooth solution to the compressible

Euler equations, (1.14), is also an entropy solution.

Remark 5.2.1 (Mathematical Entropy). De�nition 5.2.2 can be equivalently framed by

assuming ∂tη(u) +∇ · F (u) ≤ 0 holds in the sense of distributions for η convex. See [66].
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For numerical purposes, the distinction is not necessary as we will be measuring the discrete

error of the quantity, ∇ · F (u)− (Dη(u))T∇ · f(u).

For the compressible Euler equations with ideal gas law, it is unknown if there is a

characterization of all the entropy pairs (η,F ) like the class of Kruzhkov entropies for scalar

conservation laws, see Kruzhkov [29]. However, we will exploit a class of known entropy,

entropy-�ux pairs. They are the so-called generalized entropy pairs, de�ned by η(u) =

−ρf(s(u)) where f ∈ C2(R), F (u) = m
ρ
η(u), where f ′(s) > 0, f ′(s)c−1

p − f ′′(s) > 0 for all

(ρ, e) ∈A. In this case η is convex (see [67] and [66]).

The simplest non-trivial entropy pair is when f(s) = 1; that is, η(u) = −ρ and F (u) =

m. However, the entropy, η is not strictly convex. For f(s) = s, η(u) = −ρs(u) which is

the mathematical entropy (the negative of the physical entropy). Another example is the

so-called Harten entropy given by η(u) = ρ exp( γ−1
γ+α

s(u)) for α > 0. This was shown for the

ideal EOS in [67]; however, it also holds for the covolume and NASG as cp = γ
γ−1

for each of

these EOS. It should be noted that these examples are not entropy pairs for every equation

of state. Notably, if the equation of state is non-convex, then the entropies proposed are not

convex.

If the interpolatory EOS is covolume, then the speci�c entropy is given by, s(u) :=

log
(
(e(u)

1
γ−1 (ρ−1 − b)

)
. Then the Harten entropy can be written in the form,

η(u) =
( ρα+1e(u)

(1− bρ)1−γ

) 1
γ+α

. (5.9)

Note that a nice choice for the Harten entropy is to set α = 1, since ρ2e(u) = ρE − 1
2
‖m‖2

`2 ,

which is a quadratic function of the conserved variables.
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5.3 The Entropy Viscosity Method

Motivated by notion of the entropy commutator, ∇·F (u)−(Dη(u))T∇·f(u), we propose

to �nd a local entropy ηn,i at every node i ∈ V and every time tn. We de�ne the local �ux,

fn,i(u) :=


m

v ⊗m + pn,inasg(u)Id

v(E + pn,inasg(u))

 (5.10)

where pn,inasg(u) := (γmin,n
i − 1)

(
ρ(e(u)−q)

1−bρ − p∞
)
− p∞, γmin,n

i := minj∈I(i) γ
n
j , and

γnj :=
(pnj + p∞)(1− b%nj )

%nj (e(Un
j )− q)− (1− b%nj )p∞

+ 1. (5.11)

Note that, pn,inasg is the NASG EOS with γ = γmin,n
i . Then two possible entropy pairs for the

Euler equations with �ux fn,i are,

ηi,n1 (u) := −ρ log
(
(e(u)− q − p∞(ρ−1 − b))

1

γ
min,n
i

−1 (ρ−1 − b)
)
− ρ

ρni
ηi,nref,1, (5.12a)

F n,i
1 (u) := vηn,i1 (u), (5.12b)

where ηi,nref,1 := −ρni log
(
(eni − q − p∞((ρni )−1 − b))

1

γ
min,n
i

−1 ((ρni )−1 − b)
)
and

ηn,i2 (u) :=
(ρα+1(e(u)− q)− p∞ρα(1− bρ)

(1− bρ)1−γmin,n
i

) 1

γ
min,n
i

+α − ρ

ρni
ηn,iref,2, (5.13a)

F n,i
2 (u) := vηn,i2 (u), (5.13b)

where ηn,iref,2 =
(

(ρni )α+1(e(Uni )−q)−p∞(ρni )α(1−bρni )

(1−bρni )1−γ
min,n
i

) 1

γ
min,n
i

+α , for α > 0. Note that each entropy

has been shifted by ρηn,iref,k/ρ
n
i so that ηn,ik (Un

i ) = 0 for k = 1, 2. This shift is valid since

η(u) = ρ(f(s(u))− c) is also an entropy for any constant c with the corresponding entropy-

�ux, F (u) := m(f(s(u))− c).
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Remark 5.3.1 (Remarks on ηn,i and γmin,n
i ). Note that ηn,i2 is the (shifted) Harten entropy.

The choice of α = 1 is also convenient as ρ2(e(u)−q)−p∞ρ(1−bρ) = ρE− 1
2
‖m‖2

`2−p∞ρ(1−

bρ) which is a quadratic function of the conserved variables; this simpli�es the computation

of Dηn,i.

In the de�nition of the entropy pairs, (5.12) and (5.13), we could have alternatively used

γmax,n
i or simply γni , as each of these choices will recover the expected Harten entropy if

the pressure is given by the ideal, covolume, or NASG equations of state. We choose γmin,n
i

as it is already necessary to compute for the limiting of the surrogate physical entropy, see

Theorem 6.4.3.

We may select either of the two entropy, entropy-�ux pairs, so we drop the subscript

notation for ηi,nk . With this collection of entropy pairs, {(ηn,i,F n,i)}i∈V for n ∈ N, we can

measure the local error in the entropy viscosity commutator by approximating

∫
Ω

(
(∇ · F n,i(u)− (Dηn,i(u))T∇ · fn,i(u)

)
ϕi(x) dx (5.14)

with our numerical solution unh =
∑

i∈V U
n
i ϕi. As mentioned in Section 3.2, the divergence

of the �ux is approximated by, ∇ · fn,i(unh) ≈
∑

i∈V f
n,i(Un

i )∇ϕi. Similarly, for the entropy

�ux, ∇ · F n,i(unh) ≈
∑

i∈V F
n,i(Un

i ) · ∇ϕi. The discretization of (5.14) is thus given by,

Nn
i :=

∑
j∈I(i)

(F n,i(Un
j )− (Dη(Un

i ))Tfn,i(Un
j )) · cij. (5.15)

We now de�ne the entropy residual as

Rn
i :=

|Nn
i |

Dn
i + εmaxj∈VDn

j + ε
, ε = 10−1, ε = 10−14, (5.16)

Dn
i :=

∑
j∈I(i)

|F n,i(Un
j ) · cij|+

∑
j∈I(i)

|(Dηn,i(Un
i ))Tf(Un

i ) · cij|. (5.17)

The parameter ε is a machine precision parameter used to avoid division by zero.
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Remark 5.3.2 (Concave/Convex Entropy). Note that there is no assumption made on the

concavity or convexity of ηn,i(u) need not be a concave entropy. We only need that (η,F )

be an entropy, entropy-�ux pair so as to measure the smoothness of the solution. Therefore

a non-convex entropy is valid in the construction of the entropy residual.

The high order viscosity is then de�ned as,

dH,nij := max(Rn
i , R

n
j )dL,nij . (5.18)

Another alternative for the de�nition can be,

dH,nij :=
Rn
i +Rn

j

2
dL,nij . (5.19)

Remark 5.3.3 (Thresholding Function). One can further emphasize the result of the resid-

ual. That is, de�ne the function,

ψ(x) :=
4x3

0 − (x+ x0)(x− 2x0)
(
(x− 2x0)− ReLU(x− 2x0)

)
4x3

0

(5.20)

where ReLU(x) = (x + |x|)/2 and x0 ∈ (0, 0.5] parameter. Note that ψ satis�es, ψ(0) = 0,

ψ(x0) = 1
2
, and ψ(x) = 1 for all x ∈ [2x0, 1]. The �xed point, ψ(x∗) = x∗ is computed by

x∗ = x0(3
2
− 1

2

√
9− 16x0). Thus we can alternatively de�ne the high order viscosity as,

dH,nij = max(ψ(Rn
i ), ψ(Rn

j ))dL,nij . (5.21)

or using an average of the residuals,

dH,nij := 1
2
(ψ(Rn

i ) + ψ(Rn
j ))dL,nij . (5.22)
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To conclude, the high order viscosity, dH,nij detects whether the solution is not smooth

and if so, takes on values close to the low order arti�cial viscosity.

69



6. QUASICONCAVE LIMITING*

Since the second order method is not invariant-domain preserving, we must perform a

limiting process on the solution to keep it in the invariant domain. The concept of limiting

was originally developed by Boris & Book, named the Flux Corrected Transport (FCT)

method. This development took course over the three papers [68, 69, 70] and was also

extended to multiple dimensions Zalesak in [71]. Numerous work has been done on this

methodology; for more resources, see [72].

For this chapter, the limiting is done with respect to some local bounds (see Section 6.1)

that are satis�ed by the �rst order method. This limiting process is performed on quasi-

concave functionals which was �rst developed by Guermond et. al. in [60]. We justify in

Section 6.3 that limiting with respect to these local bounds preserves the invariant domain

properties.

6.1 Local Bounds

Since the high order update is known to violate the invariant domain properties, we need

to limit our solution so that it is no longer non-physical. For example, if ρH,n+1
i < 0, then we

would like to somehow, pull this high order solution closer to the low order solution. That

is, a mapping, L : ρH,n+1
i 7→ ρn+1

i , such that ρn+1
i > 0. The challenge is to do this globally,

e�ciently and only when necessary. The technique we employ is based on local bounds that

are satis�ed by the low order solution, which consequently preserve the invariant-domain

properties.

Theorem 6.1.1. The low order update, UL,n+1
i , de�ned in (4.2), satis�es the following local

* A majority of this chapter is a modi�cation of the work done in [1] and is reprinted with permission
from [1].
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bounds,

ρmin,n
i := min

j∈I(i)
(ρnij) ≤ ρL,n+1

i ≤ max
j∈I(i)

(ρnij) =: ρmax,n
i (6.1)

Emin,n
i := min

j∈I(i)
(E

n

ij) ≤ EL,n+1
i ≤ max

j∈I(i)
(E

n

ij) =: Emax,n
i (6.2)

Υmin
i := min

j∈I(i)
(ρe)(U

n

ij) ≤ (ρe)(UL,n+1
i ) (6.3)

for all i ∈ V.

Proof. The result for (6.1)�(6.2) immediately follows from the de�nition of the low order

states as a convex combination of bar state and that ρnij > 0 and E
n

ij > 0 for all i ∈ V and

j ∈ I(i). The internal energy minimum, (6.3), is due to the fact that internal energy is a

concave function of of the conservative variables, therefore,

(ρe)(UL,n+1
i ) = (ρe)

( ∑
j∈I(i)

αjU
n

ij

)
≥
∑
j∈I(i)

αj(ρe)(U
n

ij) ≥ min
j∈I(i)

(ρe)(U
n

ij), (6.4)

where αj are the coe�cients of the bar states shown in (4.2).

Remark 6.1.1 (Local Upper Bound on the Density). Note from Theorem 6.1.1, if the oracle

has a maximum compression constant, b−1; for example, the van der Waals or covolume EOS,

then we also have that 0 < 1 − bρmax,n
i ≤ 1 − bρL,n+1

i ≤ 1 − bρmin,n
i . This follows since B(b)

is an invariant domain.

6.1.1 Relaxation on the Density Bounds

When performing limiting on the density as described in Section 6.2 or Section 6.3.4 the

high order solution can actually be reduced to �rst order. The methodology for correcting

this issue to loosen the local bounds (6.1). That is, the solution after the limiting process

can violate these bounds. This relaxation of the bounds is done so that the error is second

order and still preserves ρ > 0 and 1− bρ > 0.

First, we have the following lemma in regards to the maximum value of ρ in the solution
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to the Riemann problem, (4.8).

Lemma 6.1.1 (Maximum Density Bound). The following is true.

1. The density in the solution the extended Riemann problem (4.8) satis�es the following

ρ ≤ max
Z∈{i,j}

1

τ∞
Z

= max
Z∈{i,j}

(γZ + 1)ρZ
(γZ − 1) + 2bρZ

(6.5)

2. Under the CFL condition stated in Theorem 4.1.1, the low order update satis�es

ρL,n+1
i ≤ (γmin,n

i + 1)ρmax,n
i

(γmin,n
i − 1) + 2bρmax,n

i

(6.6)

Proof. 1. Assume the Z wave is an expansion, then the density decreases across the ex-

pansion, hence ρ ≤ ρZ. If the Z wave is a shock, then from Lemma 6.4.1, we know that

τ ∈ (τ∞Z , τZ]. Hence ρ ∈ ( 1
τZ
, 1
τ∞Z

]. This completes the proof.

2. From (6.1) we have that

ρL,n+1
i ≤ max

j∈I(i)
ρnij ≤ max

j∈I(i)

(γj + 1)ρj
(γj − 1) + 2bρj

(6.7)

where we have also applied (6.5) to ρnij as the average of the solution to the Riemann prob-

lem must also satisfy that inequality. Since (γ+1)ρ
(γ−1)+2bρ

is an increasing function of ρ and a

decreasing function of γ, we conclude that,

ρL,n+1
i ≤ (γmin,n

i + 1)ρmax,n
i

(γmin,n
i − 1) + 2bρmax,n

i

. (6.8)

Next we introduce an approximation of the local curvature of the density which will also
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be used in the relaxation. For each i ∈ V, de�ne the following,

∆2ρni :=

∑
j∈I(i)\{i} βij(ρ

n
i − ρnj )∑

j∈I(i)\{i} βij
(6.9a)

∆2ρni :=
1

2card(I(i))

∑
j∈I(i)\{i}

(1

2
∆2ρni +

1

2
∆2ρnj

)
, (6.9b)

where βij :=
∫
D
∇ϕi ·∇ϕjdx are the sti�ness coe�cients of the Laplace operator. Recall that

ϕi are the global shape functions; see Chapter 3. These de�nitions are well de�ned since from

the partition of unity property, we have that
∑

j∈I(i)\{i} βij = −βii = −
∫
D
‖∇ϕi‖2

`2 dx 6= 0.

Notice that ∆2ρni is an estimate of the local curvature in a neighborhood of node i.

The relaxation on the density is now de�ned as,

ρ̃min,n
i := max((1− rh)ρmin,n

i , ρmin,n
i −∆2ρni ), (6.10a)

ρ̃max,n
i := min

(
(1 + rh)ρ

max,n
i , ρmax,n

i + ∆2ρni ,
(γ+1)ρmax,n

i

γ−1+2bρmax,n
i

)
, (6.10b)

where rh := (mi/|D|)1.5/d.

6.2 The Flux Corrected Transport Method

To demonstrate the FCT method, we apply it to the update on the density, ρ. Let the

low order and high order update be given as ρL,n+1
i and ρH,n+1

i , respectively. These two

quantities are computed using �rst and second order methods described in Chapters 4 and

5, respectively. Note that the high order update is related to the low order update by,

ρH,n+1
i = ρL,n+1

i +
∑
j∈I(i)

Pρij. (6.11)

From Section 6.1 we know that the �rst order update satis�es, ρmin
i ≤ ρL,n+1

i ≤ ρmax
i and

the second order update does not necessarily satisfy these local bounds. The FCT method

begins by splitting
∑

j∈I(i) P
ρ
ij into the negative and positive parts. That is, let I(i)+ :=

{j ∈ I(i) : Pρij > 0} and I(i)− := {j ∈ I(i) : Pρij < 0}. Then the goal is to �nd `+
i , `

−
i ∈ [0, 1]
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so that new update de�ned by,

ρn+1
i = ρL,n+1

i + `+
i

∑
j∈I(i)+

Pρij + `−i
∑

j∈I(i)−

Pρij, (6.12)

satis�es, ρmin
i ≤ ρn+1

i ≤ ρmax
i .

Note that for any `+
i , `

−
i ∈ [0, 1] the new update satis�es,

ρL,n+1
i + `−i

∑
j∈I(i)−

Pρij ≤ ρn+1
i ≤ ρL,n+1

i + `+
i

∑
j∈I(i)+

Pρij. (6.13)

Thus under the choice of,

`−i := min
(ρmin

i − ρL,n+1
i∑

j∈I(i)− P
ρ
ij

, 1
)

and `+
i := min

(ρmax
i − ρL,n+1

i∑
j∈I(i)+ P

ρ
ij

, 1
)
, (6.14)

we have that ρmin,n
i ≤ ρn+1

i ≤ ρmax,n
i . For more recent work in the FCT literature, in the

context of the compressible Euler equations, see [73].

Remark 6.2.1 (Limitations of the FCT Method). The FCT method is inherently linear.

This is perfectly �ne for preserving positivity of the density; however, if one attempts to

apply it to the speci�c internal energy, e(Ui), then di�culties immediately arise as e is a

nonlinear functional.

6.3 Quasiconcave Limiting

In this section we discuss a new method introduced in [60] which allows us to perform

limiting on quasiconcave functionals. This methodology allows us to address the issue of

maintaining positivity of the internal energy.

6.3.1 Quasiconcave Functionals

De�nition 6.3.1 (Quasiconcavity). For C a convex set, Φ : C → R is said to be quasi-

concave if Lλ(Ψ) := {U ∈ C : Ψ(U) ≥ λ} is a convex set for any λ ∈ R. That is, the upper

level sets are convex.
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As might be inferred from the name �quasiconcave�, a functional which is quasiconcave

may not be concave. For example, if C = [−1, 1] then f(x) = x3 is certainly not concave, but

it is quasiconcave since for any λ ∈ Range(f), we have, Lλ(f) = [ 3
√
λ, 1] which is a convex

set. However, every concave functional is also quasiconcave.

Lemma 6.3.1 (Concave Implies Quasiconcave). Let C ⊂ Rm be convex and Ψ : C → R be

a concave functional, then Ψ is quasiconcave.

Proof. Assume that λ is in the range of Ψ; that is, Lλ(Ψ) 6= ∅, otherwise the result is vacuous.

Let U1,U2 ∈ Lλ(Ψ) and 0 ≤ t ≤ 1. Then since Ψ is concave, we have,

Ψ(tU1 + (1− t)U2) ≥ tΨ(U1) + (1− t)Ψ(U2) ≥ λ. (6.15)

Therefore tU1 + (1 − t)U2 ∈ Lλ(Ψ) for all t ∈ [0, 1] hence Lλ(Ψ) is convex and so Ψ is

quasiconcave.

6.3.2 The Abstract Scheme

Similar to the FCT method, we estimate the di�erence in the low and high order methods,

UH,n+1
i −UL,n+1

i . Speci�cally, we look at the di�erence,
∑

j∈I(i)mij(U
H,n+1
j −Un

j )− (UL,n+1
i −

Un
i ). Substituting in the de�nition of the �rst and second order updates, (4.1) and (5.5),

respectively, we have

∑
j∈I(i)

mij(U
H,n+1
j −Un

j )−mi(U
L,n+1
i −Un

i ) = ∆tn
∑
j∈I(i)

(dH,nij − d
L,n
ij )(Un

j −Un
i ). (6.16)

Now, add and subtract mi(U
H,n+1
i −Un

i ) and refactor as,

mi(U
H,n+1
i −UL,n+1

i )−mi(U
H,n+1
i −Un

i ) +
∑
j∈I(i)

mij(U
H,n+1
j −Un

j )

= ∆tn
∑
j∈I(i)

(dH,nij − d
L,n
ij )(Un

j −Un
i ).

(6.17)
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This can all be combined into a nice expression by de�ning ∆ij := miδij −mij where δij = 1

if i = j and 0 if i 6= j. Thus we have,

mi(U
H,n+1
i −UL,n+1

i ) =
∑
j∈I(i)

∆ij(U
H,n+1
j −Un

j ) + ∆tn(dH,nij − d
L,n
ij )(Un

j −Un
i ). (6.18)

It is important to note that the right hand side of this equation can be expressed as a

skew-symmetric matrix. Using that
∑

j∈I(i) ∆ij = 0, we can write the following,

mi(U
H,n+1
i −UL,n+1

i ) =
∑
j∈I(i)

An
ij (6.19a)

An
ij := ∆ij(U

H,n+1
j −Un

j − (UH,n+1
i −Un

i )) + ∆tn(dH,nij − d
L,n
ij )(Un

j −Un
i ), (6.19b)

from which it is readily seen to be skew-symmetric (An
ij = −An

ji).

Lemma 6.3.2 (Consistent Conservation). The total mass of the high order scheme is the

same as the low order scheme; that is,

∑
i∈V

miU
H,n+1
i =

∑
i∈V

miU
L,n+1
i . (6.20)

Proof. The result is proven if we can show that

∑
i∈V

mi(U
H,n+1
i −UL,n+1

i ) =
∑
i∈V

∑
j∈I(i)

An
ij = 0. (6.21)

Using that An
ij is skew-symmetric, we have,

∑
i∈V
∑

j∈I(i) A
n
ij =

∑
i∈V
∑

j∈I(i)−A
n
ji. Using

Fubini's theorem, we �nd that,
∑

i∈V
∑

j∈I(i) A
n
ij +

∑
j∈V
∑

i∈I(j) A
n
ji = 0. But the indices are

arbitrary hence, 2
∑

i∈V
∑

j∈I(i) A
n
ij = 0 and the result is proven.
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6.3.3 The Limiter

The idea now, is to introduce a symmetric matrix (`ij) which provides an �intermediate�

solution between UH,n+1
i and UL,n+1

i . In particular we de�ne,

Un+1
i := UL,n+1

i +
1

mi

∑
j∈I(i)

`ijA
n
ij. (6.22)

where 0 ≤ `ij ≤ 1 for all i, j ∈ V and (`ij) is symmetric. The reason for enforcing symmetry

on (`ij), is that `ijA
n
ij is still skew-symmetric, hence the total mass of Un+1

i is the same as

UL,n+1
i . Note, if `ij = 0 for all j ∈ I(i), then Un+1

i = UL,n+1
i and similarly, if `ij = 1 for all

j ∈ I(i), then Un+1
i = UH,n+1

i . All of the discussion so far on the limiter is still a part of the

FCT method as described in, [71].

We now move towards the quasiconcave limiting theory as described in [60, Sec. 4.2].

Introduce {λij}j∈I(i)\{i} such that
∑

j∈I(i)\{i} λ
i
j = 1 and λij > 0 for all j ∈ I(i). The

superscript i is just used to indicate the dependence on i. Then, (6.22) can be written as,

Un+1
i =

∑
j∈I(i)\{i}

λij

(
Un
i + `ijP

n
ij

)
, where Pnij :=

1

miλij
An
ij. (6.23)

Note that j = i is omitted since An
ii = 0 for all i ∈ V since An

ij is skew-symmetric. For the

remainder of this thesis, we set λij = 1
card(I(i))−1

.

Recall that we would like to preserve some physical quantity represented by a quasi-

concave functional, Ψ. Therefore, the goal is to determine `ij so that Ψ(Un+1
i ) ≥ 0. The

following two lemmas set the stage for the upcoming numerical algorithms.

Lemma 6.3.3. Let Ψ : C → R be a quasiconcave functional. Assume `ij ∈ [0, 1] are such

that Ψ(UL,n
i + `ijPij) ≥ 0 for all j ∈ I(i) \ {i}, then

Ψ
( ∑
j∈I(i)\{i}

λij(U
L,n
i + `ijPij)

)
≥ 0. (6.24)

77



Proof. The proof of this follows from the de�nition of quasiconcavity. Note that UL,n+1
i +

`ijPij ∈ L0(Ψ) where L0(Ψ) = {U ∈ C : Ψ(U) ≥ 0}. Since L0(Ψ) is a convex set, then the

convex combination de�ned in (6.23) must also belong to L0(Ψ), hence the result.

Lemma 6.3.4 (Symmetrization of `ij). De�ne,

lij :=


1 if Ψ(UL,n+1

i + Pij) ≥ 0

max{` ∈ [0, 1] : Ψ(UL,n+1
i + `Pij) ≥ 0} otherwise

(6.25)

for all i ∈ V and j ∈ I(i). Then the following holds,

1. Ψ(UL,n+1
i + `Pij) ≥ 0 for all ` ∈ [0, lij].

2. Let `ij := min{lij, l
j
i }, then Ψ(UL,n+1

i + `ijPij) ≥ 0 for all i ∈ V and all j ∈ I(i).

Remark 6.3.1 (Comments on the Limiter `ij). From Lemma 6.3.3 we see that the deter-

mination of `ij only needs to be found for each j ∈ I(i) independently. From Lemma 6.3.4

(i) we see that smaller values of the limiter do not violate the non-negativity of the quasi-

concave functional. This is intuitively expected, since we are �pulling� our solution closer to

the invariant-domain preserving update, UL,n+1
i . Lastly, from Lemma 6.3.4 (ii) we see that

(`ij) is symmetric.

6.3.4 Limiting on the Density

Limiting on the density is performed exactly as done in [60, Sec 4.4]. We de�ne, Ψρ
+(U) :=

ρ− ρmin,n
i and Ψρ

−(U) := ρmax,n
i − ρ. The limiter is then,

`i,ρj :=


min

(
|ρmin,n
i −ρL,n+1

i |
|Pρij |+εi

, 1
)

if ρL,n+1
i + Pρij < ρmin,n

i ,

1 ρmin,n
i ≤ if ρL,n+1

i + Pρij ≤ ρmax,n
i ,

min
(
|ρmax,n
i −ρL,n+1

i |
|Pρij |+εi

, 1
)

if ρmax,n
i < ρL,n+1

i + Pρij,

(6.26)

78



where εi := ερmax,n
i with ε := 10−14. It bears repeating that, limiting on the density also

implies preservation of the maximum compressibility. That is, the high order solution satis�es

1− bρn+1
i > 0.

6.3.5 Limiting on the Internal Energy

In order to secure that our high order method is invariant domain preserving, we would

like to enforce limiting on the internal energy. However, this is not necessary to do as

limiting on the surrogate entropy will enforce this condition, see Section 6.4. Still, we brie�y

recount the method for limiting the internal energy. That is, we require e(Un+1
i ) > 0. The

details provided in this section are not new and are outlined in [60, Section 4.5]. De�ne

Ψe
i (U) := (ρe)(U)−Υmin

i = E− ‖M‖
2
`2

2ρ
−Υmin

i . The goal is to �nd the largest t0 ∈ [0, `i,ρj ] such

that Ψe(UL,n+1
i + t0Pij) ≥ 0 for all j ∈ I(i). This can equivalently be solved using with the

functional, ψei (U) : {U ∈ Rd+2 | ρ > 0} where,

ψei (U) := ρΨe
i (U) = ρE− 1

2
‖M‖`2 − ρΥmin

i . (6.27)

The advantage of working with this functional is that it is quadratic with respect to the

conserved variables.

The derivatives of this functional are,

Dψei (U) =


E−Υmin

i

−M

ρ

 Hψei (U) =


0 0T 1

0 −Id 0

1 0T 0

 . (6.28)

Note that ψei (U
L,n+1
i + tPij) is a quadratic function of t; in particular, set ψei (U

L,n+1
i + tPij) =

at2 + bt + c where a = 1
2
PT
ijHψei (U

L,n+1
i )Pij, b = Dψei (U

L,n+1
i ) · Pij, and c = ψei (U

L,n+1
i ). Let

t0 be the smallest positive root of ψei (U
L,n+1
i + tPij) = 0 and set t0 = 1 if no such roots exist.

We de�ne,

`i,ej = min(t0, `
i,ρ
j ). (6.29)
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Lemma 6.3.5. If ` ∈ [0, `i,ej ], then Ψe
i (U

L,n+1
i + `Pij) ≥ 0.

Proof. Since ψei (U
L,n+1
i + `Pij) is a quadratic function with ψei (U

L,n+1
i ) > 0. By de�nition of

t0, ψei (U
L,n+1
i + `Pij) ≥ 0 for all ` ∈ [0, `i,ej ], otherwise, if there existed 0 < ˜̀< `i,ej , such that

ψei (U
L,n+1
i + ˜̀Pij, then t0 would not be the smallest root. Lastly, ρL,n+1

i + `P ρ
ij > 0 for all

` ∈ [0, `i,ej ] ⊂ [0, `i,ρj ]. Hence, we must have that Ψe
i (U

L,n+1
i + `Pij) ≥ 0 for all ` ∈ [0, `i,ej ].

6.4 The Entropy Surrogate

It is well known that the Euler equations with the ideal EOS preserve the minimum

principle on the physical entropy, s(x, t), see [74].

Theorem 6.4.1 (Minimum Principle on the Speci�c Entropy). Let u be an entropy solution

to the Euler equations supplied with the ideal EOS, then the speci�c entropy satis�es

ess inf
‖x‖`2≤R

s(x, t) ≥ ess inf
‖x‖`2≤R+tvmax

s(x, 0) (6.30)

where R > 0, and vmax := max(x,t)∈D×[0,t] ‖v(x, t)‖`2

However, as mentioned in Chapter 2, we may not have access to the physical entropy for

an arbitrary or tabulated EOS. The novel idea of this section which was originally proposed

in Clayton et. al. [1], is the introduction of a local surrogate entropy functional, which

maintains some similar properties to a physical entropy. In particular, the surrogate entropy

functional increases across shocks, see Theorem 6.4.1.

In this section we outline some known facts regarding the physical entropy and approx-

imate these principles with a surrogate physical entropy for our tabulated EOS. This is all

done in the context of the Riemann problem as that is where our application lies.

6.4.1 The Entropy for the NASG EOS

Recall, the NASG EOS is given by p(ρ, e) = (γ− 1)ρ(e−q)
1−bρ − γp∞. The speci�c entropy is,

s(τ, e) = log
((
e − q − p∞(τ − b)

) 1
γ−1 (τ − b)

)
. Sometimes, we may abuse the notation and

write s = s(u). We will also need to work with the variables, ρ and e. So we may express
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the entropy as s(ρ−1, e). Note that one can express the physical entropy in an equivalent

form, that is,

exp((γ − 1)s(τ, e)) = (e− q − p∞(τ − b))(τ − b)γ−1. (6.31)

We now de�ne S(u; γ) = exp((γ − 1)s(ρ−1, e)); that is,

S(u; γ) :=
(
ρ(e− q)− p∞(1− bρ)

)(1− bρ)γ−1

ργ
. (6.32)

In order to preserve some notion of a minimum principle on the speci�c entropy, we will

introduce a local functional Ψs
i which behaves similar to a physical entropy.

Theorem 6.4.2 (Equivalence of the Minimum Principle on the Speci�c Entropy). If the ora-

cle for the Riemann problem 1.8a�1.8b is given by the NASG EOS, p(u) := (γ−1)ρ(e(u)−q)
1−bρ −

γp∞. Then, the minimum principle on the speci�c entropy in the Riemann problem is equiv-

alent to

Ψs(u(x, t)) ≥ min(Ψs(uL),Ψs(uR)) (6.33)

for all (x, t) ∈ R× [0,∞).

Proof. First assume that the Riemann solution contains no vacuum states. From the de�ni-

tion of the speci�c entropy, we have the expression,

S(u) = exp((γ − 1)s(u)) =
(
ρ(e(u)− q)− p∞(1− bρ)

)(1− bρ)γ−1

ργ
(6.34)

De�ne, Smin := min{exp((γ−1)s(uL)), exp((γ−1)s(uR))}. Let u be on a Z-wave, Z ∈ {L,R}.

If the Z-wave is an expansion, then the speci�c entropy is constant which implies that

S(uZ) = exp((γ − 1)s(uZ)) = S(u(x, t)) for all (x, t) belonging to the expansion wave.

If the Z-wave is a shock, then the entropy increases, hence, exp((γ − 1)s(uZ)) ≤ exp((γ −

1)s(u(x, t))) = S(u(x, t)) for all (x, t) on the shock wave. We conclude that S(u(x, t)) ≥ Smin

for any (x, t) on a Z-wave. By continuity, this inequality also holds across the contact, hence

Ψs(u(x, t)) ≥ 0 for all (x, t) ∈ R× [0,∞).
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In the case of vacuum (ρ = 0), we have that Ψs(u(x, t)) = 0 for (x, t) in the vacuum

region. Note also that

Smin = min
Z∈{L,R}

(
ρZ(eZ − q)− p∞(1− bρZ)

)(1− bρZ)γ−1

ργZ
, (6.35)

and therefore min(Ψs(uL),Ψs(uR)) = 0. Hence the result also holds for vacuum states.

We now prove a result regarding the behavior of these kind of functionals across shock

waves.

Lemma 6.4.1 (Behavior across Shocks). For all i ∈ V, assume Un
i ∈ B(b). For all i ∈ V

and j ∈ I(i) let γij ∈ [1,min(γni , γ
n
j )]. Given left and right data (ρni ,m

n
i ,E

n
i ,Γ

n
i )T and

(ρnj ,m
n
j ,E

n
j ,Γ

n
j )T, respectively, the functional,

Ψs
ij(u) := ρ(e(u)− q)− p∞(1− bρ)− Smin

ij ργij(1− bρ)1−γij , (6.36)

with Smin
ij := min(S(Un

i ; γij), S(Un
j ; γij)), increases across shock in the solution to the ex-

tended Riemann problem (if a shock wave exists).

Proof. To simplify the notation, we omit the supscript n. The solution to the extended

Riemann problem, (ρ,m,E,Γ)T(x, t) is described in Chapter 4. Recall that γ(x, t) = γi for

x/t < v∗ and γ(x, t) = γj for x/t > v∗ where v∗ is the speed of the contact. Let Z ∈ {i, j}

and assume that the Z-wave is a shock wave. Let uZ ∈ B(b) be the state before the shock

and u ∈ B(b) be an arbitrary state connected to uZ through a shock wave. Since we are

concerned with the Z-wave, γ = γZ is constant, and therefore the interpolatory pressure

pnasg is an EOS. We abuse the notation by writing, pnasg(τ, e) = pnasg(τ
−1, e, γZ) to simplify

the notation. From the Rankine-Hugoniot equations, we have the following relationship

involving only the thermodynamic quantities, see [31, Chapter III, Lemma 2.2].

e(u)− eZ +
1

2
(pnasg(τ, e(u)) + pnasg(τZ, eZ))(τ − τZ) = 0 (6.37)
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Substituting in the de�nition of pnasg; that is, pnasg = (γZ − 1) e(u)−q
τ−b − γp∞, we �nd,

e(u)− q = (eZ − q)
1− (γZ−1)(τ−τZ)

2(τZ−b)

1 + (γZ−1)(τ−τZ)
2(τ−b)

=: r(τ). (6.38)

As we can see, e(u) − q is only a function of τ along the shock curve. For e(u) to be well

de�ned, we must have that τ ∈ (τ∞Z ,∞) where

τ∞Z :=
(γZ − 1)τZ + 2b

γZ + 1
. (6.39)

Furthermore, e(u) > 0, for τ ∈ (τ∞Z , τ
0
Z) where τ 0

Z := (γZ+1)τZ−2b
γZ−1

. Since UZ ∈ B(b) we have

that b < τ∞Z < τ < τ 0
Z.

The goal now is to show that

B(b) 3 u 7→ ρ(e(u)− q)− p∞(1− bρ)− cργ(1− bρ)1−γ (6.40)

is an increasing function across the shock wave for all γ ∈ (1, γZ] and c ∈ (0, ((eZ − q) −

p∞(τZ−b))(τZ−b)γ−1]. This will complete our proof since, setting γ = γij ≤ γZ and c := Smin
ij

we see that

0 ≤ Smin
ij ≤

(
ρZ(eZ − q)− p∞(1− bρZ)

)(1− bρZ)γij−1

ρ
γij
Z

= ((eZ − q)− p∞(τZ − b))(τZ − b)γ−1.

(6.41)

Now de�ne, q(τ) := (γZ − 1) r(τ)
τ−b − γZp∞ which is the pressure along the shock curve. Then

q′(τ) = −4(eZ−q)γZ(γZ−1)
(τ+τZ−2b+γZ(τ−τZ))2

< 0. So q is a decreasing function of τ ; i.e., the pressure is a strictly

monotonic function of ρ along the shock curve. That is, for ρ ∈ [ρZ, b
−1). In particular, the

pressure is �nite only in the range, τ ∈ (τ∞Z , τZ].

Next note from equations (6.38) and (6.40), it is equivalent to prove that the following
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function is a nonnegative decreasing function on shock curves,

(τ∞Z , τZ] 3 τ 7→ g(τ) := τ−1r(τ)− p∞(1− bτ−1)− cτ−1(τ − b)1−γ. (6.42)

We will use the fact that the physical entropy, s(τ, e) = log
((
e− q−p∞(τ − b)

) 1
γZ−1 (τ − b)

)
,

increases across the shock curves. That is, s(τ, r(τ)) is a decreasing function for τ ∈ (τ∞Z , τZ].

Furthermore, this also implies that (τ∞Z ,Z] 3 τ 7→ ς(τ) := exp((γZ − 1)s(τ, r(τ))) = (r(τ)−

p∞(τ − b))(τ − b)γZ−1 is a decreasing function. We will use this fact to prove that g(τ) is a

decreasing function. So notice that

g(τ) = ς(τ)τ−1(τ − b)1−γZ − cτ−1(τ − b)1−γ. (6.43)

We further simplify the calculus by de�ning ς̃(τ) = ς(τ)(τ − b)γ−γZ . Then,

g(τ) =
(τ − b)1−γ

τ
(ς̃(τ)− c). (6.44)

Computing the derivative we �nd,

g′(τ) =
(τ − b)1−γ

τ
ς̃ ′(τ)− (γ − 1)τ + (τ − b)

τ 2(τ − b)γ
(ς̃(τ)− c), (6.45)

where

ς̃ ′(τ) = (τ − b)γ−γZς ′(τ) + (γ − γZ)(τ − b)γ−γZ−1ς(τ). (6.46)

Note that ς̃ ′(τ) ≤ 0, since ς ′(t) ≤ 0 and ς(τ) ≥ 0 for all τ ∈ (τ∞Z , τZ] and γ ≤ γZ. Also

infτ∈(b,τZ] ς̃(τ) = ς̃(τZ) = eZ(τZ − b)γ−1 ≥ c since ς̃ is a decreasing function. Thus for

γ = γij and c = Smin
ij we have that g(τ) ≥ 0 and g′(τ) ≤ 0. Therefore the mapping

[ρZ,
1
τ∞Z

) 3 ρ 7→ ρe(u) − p∞(1 − bρ) − cργ(1 − bρ)1−γ is a nonnegative increasing function

along the shock curves.

We now present one of the main theorems of this chapter.
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Theorem 6.4.3 (Surrogate Entropy). Let

γmin,n
i := min

j∈I(i)
γnj , Smin,n

i := min
(

min
j∈I(i)

S(Un
j ; γmin,n

i ), min
j∈I(i)

S(U
n

ij; γ
min,n
i )

)
, (6.47a)

Ψs
i (u) := ρ(e(u)− q)− p∞(1− bρ)− Smin,n

i ργ
min,n
i (1− bρ)1−γmin,n

i . (6.47b)

Then the following hold for all i ∈ V:

1. Ψs
i : B(b)→ R is a concave functional.

2. For UL,n+1
i de�ned in (4.1), we have that Ψs

i (U
L,n+1
i ) ≥ 0 under the CFL constraint,

τ
∑

j∈I(i)\{i}
2dL,nij
mi
≤ 1.

3. Consider the extended Riemann problem 4.20 with left data, (ρni ,m
n
i · nij,E

n
i ,Γ

n
i ) and

right data, (ρnj ,m
n
j · nij,E

n
j ,Γ

n
j ). If the solution to the extended Riemann problem has

a shock wave, then Ψs
i (u) increases across the shocks.

Proof. 1. The function, u 7→ ρ(e(u)− q) is a concave functional and p∞(1− bρ) is a linear

function of u. Then notice that f(x) := xγ
min,n
i (1 − bx)1−γmin,n

i = x( 1
x
− b)γ

min,n
i . A quick

exercise in calculus shows that f(x) is a convex for γmin,n
i , hence −Smin,n

i ργ
min,n
i (1−bρ)1−γmin,n

i

is a concave functional since Smin,n
i ≥ 0. Since the sum of concave functionals is concave, we

have that Ψs
i (u) is concave.

2. From Theorem 4.1.1, under the CFL condition, ∆t ≤ − mi
2dL,nij

we have that UL,n+1
i is

in the convex hull of the bar states {Un

ij}j∈I(i) and since Ψs
i is a concave functional we have

that Ψs
i (U

L,n+1
i ) ≥ minj∈I(i) Ψs

i (U
n

ij). To see this is nonnegative, consider,

Ψs
i (U

n

ij) = ρ(e(U
n

ij)− q)− p∞(1− bρnij)− S
min,n
i (ρnij)

γmin,n
i (1− bρnij)1−γmin,n

i

=
(
S(U

n

ij; γ
min,n
i )− Smin,n

i

)
(ρnij)

γmin,n
i (1− bρnij)1−γmin,n

i ,

where S(U; γ) is de�ned in (6.32). By de�nition of Smin,n
i we have that Ψs

i (U
n

ij) ≥ 0, hence

Ψs
i (U

L,n+1
i ) ≥ 0.

85



3. This immediately follows from, Lemma 6.4.1.

6.4.2 Limiting on the Surrogate Entropy

Let A(b) := {u ∈ Rd+2 : 0 < 1 − bρ < 1}. From the limiting on the density described

in Section 6.3.4, we have `i,ρj ∈ [0, 1]. This implies that the ρL,n+1
i + `Pij ∈ A(b) for all

j ∈ I(i) \ {i} and ` ∈ [0, `i,ρj ]. Therefore, we can perform the quasiconcave limiting of Ψs
i

on A(b) since Ψs
i is concave and A(b) is a convex set. In particular, we seek the largest

`0 ∈ [0, `ρij] such that Ψs
i (U

L,n+1
i +`0Pij) ≥ 0. If Ψs

i (U
L,n+1
i +`ρijPij) ≥ 0, then we set `0 := `ρij.

If this is not the case, then we must solve h(`) := Ψs
i (U

L,n+1
i + `Pij) = 0. In particular, since

h(0) = Ψs
i (U

L,n+1
i ) ≥ 0, and Ψs

i is continuous and concave, there exists at least one solution.

If Ψs
i is strictly concave, then the solution set is a singleton; otherwise, the solution set is

connected.

Remark 6.4.1. Note that Ψn
i (UL,n+1

i ) = 0 occurs when γni = γmin,n
i .

Remark 6.4.2 (Speci�c Internal Energy). It is not necessary to perform any limiting on the

internal energy. To see this, let Un+1
i to be the �nal update after limiting on the surrogate

entropy. Then Ψs
i (U

n+1
i ) ≥ 0 implies the following,

e(Un+1
i )− q ≥ p∞(τn+1

i − b) + Smin,n
i ργ

min,n
i (1− bρ)1−γmin,n

i

≥ p∞(τn+1
i − b).

(6.48)

This is the invariant domain property that we expect when interpolating with the NASG

EOS. As a reminder, if b, q, and p∞ are unknown then we take b = q = p∞ = 0 which results

in positivity of the speci�c internal energy.

6.5 The Quadratic Newton Method

For computational e�ciency, the limiting is not actually performed on Ψs
i but rather,

Φs
i (u) := ρΨs

i (u) as this functional has some nicer properties. This is valid, as the solution

sets for Ψs
i (U

L,n+1
i + `Pij) = 0 and Φs

i (U
L,n+1
i + `Pij) = 0 are identical since ρL,n+1

i + `Pρij > 0

for all ` ∈ [0, `ρij].

86



Lemma 6.5.1 (Sign of f ′′′(`)). Let u0 ∈ A(b) := {u ∈ Rd+2 : 0 < 1 − bρ < 1} and

p = (p1, . . . , pd+2)T ∈ Rd+2. Let `0 ∈ [0, 1] such that u0 + `0p ∈ A(b). De�ne f(`) : [0, `0] 3

` 7→ f(`) := Φs
i (u0 + `p). Then the sign of f ′′′(`) is constant over [0, `0].

Proof. Using that E = ρe+
‖m‖2

`2

2ρ
, we write,

Φs
i (u) = ρΨs

i (u) = ρE − 1
2
‖m‖2

`2 − p∞ρ(1− bρ)− Sminρ
γ+1(1− bρ)1−γ. (6.49)

Note that f(`) is well de�ned for all ` ∈ [0, `0] since u0 + `0p ∈ A(b) and A(b) is a convex

set. Hence u0 + `p ∈A(b) for all ` ∈ [0, `0].

Next notice that ρE − 1
2
‖m‖2

`2 − p∞ρ(1− bρ) is only quadratic in ρ, hence only the last

term Smin,n
i ργ+1(1− bρ)1−γ remains when computing the third derivative. In particular, we

have that,

f ′(`) = DΦs
i (u + `p)p and f ′′(`) = pTHΦs

i (u + `p)p. (6.50)

In particular, note that the Hessian of Φs
i is,

HΦs
i =


2p∞b− Smin,n

i
ργ−1

(1−bρ)γ+1

(
γ(γ + 1)− 2bρ(γ + 1− bρ)

)
0T 1

0 −Id 0

1 0T 0

 . (6.51)

Therefore, when computing the f ′′′(`) the only term that remains when applying the chain

rule is ∂3
ρΦ

s
i . Thus,

f ′′′(`) = (p1)3∂Φs
i

∂ρ
(u + `p) = −(p1)3Smin,n

i

γ(γ2 − 1)(ρ+ `p1)γ−2

(1− b(ρ+ `p1))γ+2
. (6.52)

Since u + `p ∈ A(b), for all ` ∈ [0, `0] we see that sgn(f ′′′(`)) has the same sign as −(p1)3;

i.e., sgn(f ′′′(`)) is constant.
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6.5.1 Review of Divided Di�erences

For the sake of clarity, we brie�y review the notation and some results in regards to the

Newton divided di�erences. Let f ∈ Cn([a, b]), then for x0, x1 ∈ [a, b] with x0 6= x1, we

de�ne the following,

f [x0] := f(x0), f [x0, x1] :=
f [x1]− f [x0]

x1 − x0

, f [x0, x0] := f ′(x0). (6.53)

So in general for {xi}ni=1 ⊂ [a, b] we have,

f [x0, . . . , xn] =


1
n!
f (n)(x0), if x0 = x1 = · · · = xn,

f [x1,...,xn]−f [x0,...,xn−1]
xn−x0 , otherwise.

(6.54)

In addition, notice that f [x0, . . . , xn] is unchanged by permutation. That is, given a permu-

tation, σ ∈ S(n), we have that f [xσ(0), . . . , xσ(n)] = f [x0, . . . , xn].

6.5.2 The Quadratic Newton Method

The quadratic Newton method was �rst introduced by Guermond & Popov in [59] and

has been adapted for �nding the root of Φs
i (U

L,n+1
i + `Pij) = 0. We Using the divided

di�erence notation, we de�ne the �left� and �right� interpolating polynomials,

PL(`) := f(`L) + f ′(`L)(`− `L) + f [`L, `L, `R](`− `L)2 (6.55a)

PR(`) := f(`R) + f ′(`R)(`− `R) + f [`L, `R, `R](`− `R)2 (6.55b)

For PL, we see that PL(`L) = f(`L), PL(`R) = f(`R), and P ′L(`L) = f ′(`L). Similarly for PR

we have PR(`L) = f(`L), PR(`R) = f(`R), and P ′R(`R) = f ′(`R).

Let `∗ denote the root Φs
i (U

L,n+1
i + `Pij) = 0. For the quadratic Newton method, we

will show that we can always �nd ˜̀ ≤ `∗ for which ˜̀ ↑ `∗. Hence, we guarantee that

Φs
i (U

L,n+1
i + ˜̀Pij) > 0 at each step in the quadratic Newton method. Then we have the

88



following, Lemma 6.5.2, in regards to the approximation of f(`) with PL(`) and PR(`). The

pseudo-code for the quadratic Newton method is given in Algorithm 2 in Appendix B.

Lemma 6.5.2 (Interpolation Properties of PL and PR). The following holds true:

1. The polynomials PL(`) and PR(`) bound the function f(`) in the following sense:

min
(
PL(`), PR(`)

)
< f(`) < max

(
PL(`), PR(`)

)
, ∀` ∈ (`L, `R). (6.56)

2. PL(`) and PR(`) each have a unique zero over the interval (`L, `R) respectively given by

`L(`L, `R) :=


`L − 2f(`L)

f ′(`L)+
√
f ′(`L)2−4f(`L)f [`L,`L,`R]

, if f [`L, `L, `R] < 0,

`L − 2f(`L)

f ′(`L)−
√
f ′(`L)2−4f(`L)f [`L,`L,`R]

, if f [`L, `L, `R] ≥ 0,

(6.57a)

`R(`L, `R) :=


`R − 2f(`R)

f ′(`R)+
√
f ′(`R)2−4f(`R)f [`L,`R,`R]

, if f [`L, `R, `R] < 0,

`R − 2f(`R)

f ′(`R)−
√
f ′(`R)2−4f(`R)f [`L,`R,`R]

, if f [`L, `R, `R] ≥ 0.

(6.57b)

3. Properties 1. and 2. imply that

min
(
`L(`L, `R), `R(`L, `R)

)
< `∗ < max

(
`L(`L, `R), `R(`L, `R)

)
. (6.58)

Proof. Without loss of generality, let PL ≤ PR and f ′′′(`) > 0. Then, with a hefty amount

of rewriting, one can show that,

f(`)− PL(`) = f [`R, `L, `L, `](`R − `)(`− `L)2 (6.59)

1. Notice that, f [`R, `L, `L, `R] = f ′′′(ξ) > 0 for some ξ ∈ (`L, `R). Then we want to show
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Figure 6.1: Two example visual descriptions of limiting using the quadratic newton method.
Left: quasiconcave function that is not concave. Right: concave function.

that f [`R, `L, `L, `] > 0 for ` ∈ [`L, `R). Also note that,

f [`R, `L, `L, `] =
f [`L, `L, `]− f [`R, `L, `L]

`− `R
=
f [`L, `L, `R]− f [`, `L, `L]

`R − `
. (6.60)

Since f ′′′(`) > 0, then f ′′(`) is an increasing function, and therefore, f [`L, `L, `R] ≥ f [`, `L, `L]

for all ` ∈ [`L, `R). Therefore, f [`R, `L, `L, `] ≥ 0 for all ` ∈ [`L, `R]. Dropping this right hand

side this implies that, f(`) > PL(`). Showing that PR(`) > f(`) is similar, and if f ′′′(`) < 0

then the PR is the lower bound and PL is the upper bound.

2. Note the formula is simply the quadratic formula but rationalizing the numerator to

avoid division by zero in the degenerate case. Since both quadratic functions interpolate a

positive and a negative values, the function must have a single root. The root which lies in

the interval (`L, `R) depends on the concavity or convexity of the quadratic function. Hence

the result.

3. This follows immediately from 1. and 2.
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6.6 Relaxation on the Surrogate Entropy

We also perform relaxation on the surrogate entropy exactly as described in [60, Sec.

4.7.2]. Speci�cally, we relax the bound, Smin,n
i . Speci�cally, we de�ne the new bound,

S̃min,n
i := max((1− rh)Smin,n

i , Smin,n
i −∆Sni ) (6.61)

where ∆Sni := maxj∈I(i)\{i}(
1
2
(Sni + Snj ) − Smin,n

i ) and rh := (mi/|D|)1.5/d. This type of

relaxation was originally done by Khobalatte & Perthame in [75, Sec. 3.3] in order to

guarantee second order convergence of their numerical method. Since the entropy is constant

in regions of smooth �ow, we loosen the bound on the order of O(h2). However, for the

surrogate entropy, we cannot say that S(u; γmin,n
i ) will be constant in the region of smooth

�ow and in fact it may even decrease. If there is a shock wave then the relaxation is irrelevant

as the �rst order scheme is used based on the entropy viscosity method outlined in Chapter 5.
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7. NUMERICAL RESULTS*

In this chapter we present a variety of numerical illustrations to demonstrate the ro-

bust e�ectiveness of the proposed methods. This chapter is broken up into two parts one-

dimensional and two-dimensional problems. When relevant, �rst order and second order

solutions will be compared.

The numerical results for the one-dimensional problems have been performed on an in-

house code written in Fortran originally developed by Dr. Jean-Luc Guermond and uses P1

�nite elements. This code base will be referred to as the TAMU code. The two-dimensional

problems have been performed on a software named Ryujin which can be found at https:

//github.com/conservation-laws/ryujin. Ryujin is an e�cient multithreaded massively

parallel C++ code which uses the deal.II �nite element library, [76]. The design of the

e�cient and parallel algorithms for Ryujin is done by Maier & Kronbichler in [65]. The

two-dimensional simulations were performed on the Texas A&M Mathematics department's

cluster, nicknamed Whistler, which used anywhere between 10 and 32 compute nodes.

The time step for the TAMU code was computed by the following,

∆t := CFLmin
i∈V

(
− mi

2dL,nii

)
. (7.1)

In the 2D simulations, the boundary conditions we enforce are Dirichlet, slip, and out�ow.

For the slip condition, we want to enforce v · n = 0. This is achieved by rede�ning the

momentum on the slip boundary with,

Mn+1
i := Mn+1

i − (Mn+1
i · ni)ni. (7.2)

where i ∈ V is the index of a node on the boundary, ∂D, and ni is the outward normal

* A majority of the simulations presented in this section are also reported in [2] and [1] and is reprinted
with permission from [2] and [1].
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at node xi. Since the domain is polygonal, we de�ne ni = 1
2
(n−i + n+

i ) where n−i and

n+
i are the outward normals on the boundary edges which connect to xi. For the out�ow

condition, we use an approximate solution to the Riemann problem, the details of which

can be found in Appendix B.3. This is by no means a perfect out�ow implementation, but

in certain circumstances, it can work properly. It should be noted that the solution can

blow up on the boundary with this implementation. However, e�ective implementations of

out�ow boundary conditions are not the focus of this thesis nor on the speci�c numerical

demonstrations.

Lastly, the Schlieren plots mentioned in the 2D section are computed with the following

formula,

exp
(
− β

rni −minj∈V r
n
j

maxj∈V rnj −minj∈V rnj

)
, where rni :=

1

mi

‖
∑
j∈I(i)

cijρ
n
j ‖`2 . (7.3)

We use β = 15 for all 2D simulations. Generally speaking, this formula plots the gradient

of the pressure and is constructed so as to mimic the photography style known as �Schlieren

photography.�

7.1 Convergence Tests

Let (ρh(t),mh(t), Eh(t)) denote the approximate solution at time t. We de�ne the con-

solidated error indicator as the sum of the relative errors for the density, momentum, and

total energy; that is,

δq(t) :=
‖ρh(t)− ρ(t)‖Lq(D)

‖ρ(t)‖Lq(D)

+
‖mh(t)−m(t)‖Lq(D)

‖m(t)‖Lq(D)

+
‖Eh(t)− E(t)‖Lq(D)

‖E(t)‖Lq(D)

, (7.4)

for q ∈ [1,∞].

7.1.1 The Fan-Jump-Fan Composite Wave

We begin by verifying that our numerical method converges. In particular, we show

convergence for a Riemann problem with the van der Waals equation of state. Recall the
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van der Waals equation of state is, p(ρ, e) = (γ − 1)ρe+aρ
2

1−bρ − aρ
2. We use γ = 1.02, a = 1,

and b = 1. The left and right states are chosen to be,

(ρL, vL, pL) := (0.10,−0.475504638574729, 0.022084258693080), (7.5)

(ρR, vR, pR) := (0.39,−0.121375781741349, 0.039073167077590), (7.6)

and the computational domain is D = (−1, 1) and we use CFL = 0.5. The solution to

this Riemann problem is a fan-jump-fan composite wave. That is, the solution is a single

wave (3-wave) and is composed of an expansion, immediately followed by a shock and into

another expansion. The construction of the exact solution to this problem can be found in

the supplementary material of Clayton et. al. [2] at [local/web 319KB]. The exact solution

to this problem has also been constructed in [77] and [78]; similar constructions can also be

seen in [79].

Convergence rates are reported in Table 7.1 and plots of the approximate and exact

solutions are shown in Figure 7.1 for the density and pressure.

#dof δ1(t) rate δ2(t) rate

101 2.14E-01 � 2.67E-01 �
201 1.44E-01 0.58 2.07E-01 0.37
401 9.40E-02 0.62 1.58E-01 0.39
801 5.96E-02 0.66 1.20E-01 0.40
1601 3.66E-02 0.70 8.96E-02 0.42
3201 2.18E-02 0.75 6.66E-02 0.43
6401 1.27E-02 0.78 4.93E-02 0.43
12801 7.26E-03 0.81 3.66E-02 0.43
25601 4.09E-03 0.83 2.72E-02 0.43

Table 7.1: Consolidated errors and convergence rates for the fan-jump-fan composite wave.
Solution computed at t = 5.0. Reprinted with permission from [2].

Remark 7.1.1 (Existence of Composite Waves). For the van der Waals EOS, the composite
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Figure 7.1: Comparison of the exact solution for density (left) and pressure (right) for the
fan-jump-fan composite wave. Approximate solutions are computed using 400 and 1600
DoFs and the corresponding mesh sizes are h = 0.005 and h = 0.00125, respectively.

waves can only exist if γ < 1.06. This condition implies there is a region in the thermo-

dynamic phase space where the isentropes are non-convex in the (p, τ) diagram. Hence

composite waves can emerge. This has been shown in [80, Section 3.1], [78], and [79, Section

6.3]; more information on composite waves can also be found in [37].

7.1.2 Smooth Wave with Various EOS

To further demonstrate the robustness, we show convergence rates for the �rst and second

order methods of a smooth travelling wave. The exact solution for the smooth wave is,

ρ(x, t) =


ρ0 + 26(x1 − x0)−6(x− v0t− x0)3(x1 − x+ v0t)

3 if x0 ≤ x− v0t ≤ x1,

ρ0 otherwise,

(7.7a)

v(x, t) = v0, p(x, t) = p0, (7.7b)

where x0 and x1 are arbitrary constants with x0 < x1. The constants, ρ0, v0, and p0 are

chosen depending on the EOS being used. For our simulations we choose the computational

domain to be D = (0, 1) with x0 = 0.1 and x1 = 0.3. All tests were performed using
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CFL = 0.1. Note that the solution to this problem is independent of the EOS since the

exact solution has constant pressure.

7.1.2.1 Ideal EOS

This problem has been performed before in [60] but we repeat it here for comparison.

We the parameters, γ = 1.4, ρ0 = v0 = p0 = 1, and for the interpolation parameters, we set

b = q = p∞ = 0. The �nal time is run to t = 0.6.

7.1.2.2 Van der Waals EOS

We set the parameters for the van der Waals EOS to be, a = 1, b = 0.075, γ = 1.4 and

ρ0 = v0 = p0 = 1. The interpolation parameters are set to be b = 0.075 and q = p∞ = 0.

The �nal time is run to T = 0.6.

7.1.2.3 Jones-Wilkins-Lee EOS

We set the parameters for the Jones-Wilkins-Lee EOS to be, A = 1, B = −1, R1 = 2,

R2 = ω = ρ0 = v0 = p0 = 1. The interpolation parameters are set to be b = q = p∞ = 0 and

the �nal time is run to t = 0.6.

7.1.2.4 Mie-Gruneisen EOS

We set the parameters for the Mie-Gruneisen EOS to be, ρ̃0 = 2790, c0 = 5330, s = 1.34,

P0 = 0, e0 = 0, Γ0 = 2.00, ρ0 = 3500, v0 = 1 × 104 and p0 = 1 × 1011. The interpolation

parameters are set to b = q = p∞ = 0 and the �nal run time is t = 6× 10−5.

The convergence results for the second order method are reported in Table 7.2.

7.1.3 The Isentropic Vortex with van der Waals EOS

To demonstrate the convergence of the high and low order methods in 2D, we run a

simulation for the isentropic vortex using the van der Waals equation of state. The exact
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Ideal VdW JWL MG

|V| δ∞(t�nal) δ∞(t�nal) δ∞(t�nal) δ∞(t�nal)

101 1.94e-02 � 1.24e-01 � 7.93e-02 � 1.24e-05 �
201 4.03e-03 2.27 6.24e-03 4.30 2.53e-02 1.65 2.56e-06 2.28
401 7.91e-04 2.35 9.92e-04 2.65 3.61e-03 2.81 5.03e-07 2.35
801 1.44e-04 2.46 1.75e-04 2.51 1.31e-04 4.78 9.17e-08 2.46
1601 2.75e-05 2.39 3.29e-05 2.41 2.51e-05 2.38 1.75e-08 2.39
3201 5.18e-06 2.41 6.17e-06 2.41 4.73e-06 2.41 3.29e-09 2.41
6401 9.69e-07 2.42 1.16e-06 2.42 8.87e-07 2.42 6.22e-10 2.41

Table 7.2: δ∞(t�nal) error de�ned in equation (7.4) and corresponding convergence rates with
various EOS for the one-dimensional smooth traveling wave problem with exact solution (7.7)
under uniform re�nement of the interval D = (0, 1). Reprinted with permission from [1].

solution is given by,

ρ(x, t) =

[
3C

8a
− 1

2

√
9C2

16a2
+

2

a

(
F +

1

2r2
0

ψ(x)2
)]2

, x ∈ R2, t > 0, (7.8a)

v(x, t) = v∞ + ψ(x)
(
− x̄2, x̄1

)
, x ∈ R2, t > 0, (7.8b)

p(x, t) = C(γ − 1)ρ(x, t)γ − aρ(x, t)2, x ∈ R2, t > 0. (7.8c)

where x := x − x0 − v∞t = (x1, x2), C := (p∞ + aρ2
∞)/ρ

3/2
∞ , F := −aρ∞ − 3p∞/ρ∞. Here

ρ∞ and p∞ are the density and pressure in the far �eld, and ψ(x) := β
2π

exp
(

1
2
(1 − ‖x‖

2
`2

r20
)
)
.

We set the far �eld conditions to ρ∞ = 0.1, p∞ = 1 and v∞ = (1, 1). We also set γ = 3
2

and a = 1. This gives C = 101√
10

and F = −301
10
. The rest of the constants are set as follows:

x0 = (−1,−1), r0 = 1, β = 20. The derivation of the exact solution is shown in Appendix

A.1 for the ideal and van der Waals EOS.

The numerical simulation is performed on the square domain, D = (−5, 5)× (−5, 5). We

impose Dirichlet boundary conditions on all sides of D, since the solution decays rapidly to

the far �eld state, (ρ∞,v∞, p∞), away from x0. Convergence results are reported in Table 7.3.
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|V| δ1(t�nal) δ2(t�nal) δ∞(t�nal)

289 1.17e-01 � 2.01e-01 � 6.82e-01 �

1089 1.18e-02 3.46 2.65e-02 3.06 1.05e-01 2.82

4225 7.92e-04 3.98 1.96e-03 3.84 7.87e-03 3.82

16641 5.57e-05 3.87 1.32e-04 3.93 5.50e-04 3.88

66049 5.07e-06 3.48 1.20e-05 3.48 7.79e-05 2.83

263169 7.55e-07 2.76 2.25e-06 2.42 2.03e-05 1.95

1050625 1.64e-07 2.20 5.51e-07 2.04 5.52e-06 1.88

4198401 4.08e-08 2.01 1.38e-07 2.00 1.51e-06 1.87

Table 7.3: The consolidated error de�ned in equation (7.4) and convergence rates for the
isentropic vortex problem with the Van der Waals EOS. The exact solution is given in (7.8).
Reprinted with permission from [1].

7.2 The Two-Expansion Wave Speed Estimate

As mentioned in Chapter 4 the computation of the max wave speed for a local Riemann

problem is extremely di�cult if the EOS is complicated. A common heuristic approach is

to use the so-called two-expansion approximation (or two-rarefaction approximation) for the

wave speed. That is, an approximate wave speed is de�ned by,

λexp := max{|vL − aL|, |vR + aR|}. (7.9)

Note that aL and aR are the material sound speed for the oracle and should not be confused

with the sound speed used in the NASG EOS used in the interpolation in Chapter 4. We

display several test problems for which this heuristic estimation is not robust. It can lead

to an overestimation or underestimation of the arti�cial viscosity which leads immediate

problems.

The test problems in this section all use the van der Waals EOS with γ = 1.02, a = 1,

and b = 1 as in Section 7.1.1.
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7.2.1 Underestimation of Max Wave Speed: Test 1

In this problem we show that the two-expansion approximation leads to an underestima-

tion of the viscosity which leads to non-physical results. The Riemann data is,

(ρL, vL, pL) := (0.2450, 0, 2.9123894332846005× 10−2), (7.10)

(ρR, vR, pR) := (0.1225, 0, 2.0685894810791836× 10−2), (7.11)

with corresponding sound speeds (aL, aR) ≈ (0.00399, 0.306). The computational domain is

D = (−0.5, 1) and we use CFL = 0.5. The simulation is run up to t = 1.25. The results for

the low order method using Algorithm 1 for computing an upper bound on the max wave

speed are seen in Figure 7.2. When we use λexp for the max wave speed, the computation

generates complex sound speed after a few time steps. A comparison of these methods can

be seen in Figure 7.3.

7.2.2 Underestimation of Max Wave Speed: Test 2

For the second test, we use the following Riemann data,

(ρL, vL, pL) := (2.5× 10−1, 0, 3× 10−2), (7.12)

(ρR, vR, pR) := (4.9× 10−5, 0, 5× 10−8), (7.13)

The computational domain is D = (−0.5, 1) and we use CFL = 0.5. The �nal time is t = 0.4.

As before, using the estimation of p̂∗ from Section 4.6 we have the physically relevant solution

shown in Figure 7.4. When we use λexp as the estimate, the simulation immediately crashes,

generating negative speci�c internal energy; this crash occurs no matter the CFL number.

7.2.3 Overestimation of Max Wave Speed: Test 3

For the third test, we demonstrate that λexp can be a gross overestimate of the max wave

speed resulting in a dramatic increase in computational time. This is due a decrease in the
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Figure 7.2: Plots for Test 1 of the underestimation problem using p̂∗ for computing the
maximum wave speed. (Top left): density, (top right): pressure, (bottom left): velocity,
(bottom right): sound speed.
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Figure 7.3: Comparison of the sound speed for our method versus the two expansion ap-
proximation. This test was run with 800 DoFs up to time t = 1.2. The simulation using the
two-expansion estimate immediately crashes after t = 1.2 generating complex sound speed.

possible range of time step sizes. The Riemann data is,

(ρL, vL, pL) := (0.9932, 3, 2), (7.14)

(ρR, vR, pR) := (0.9500,−3, 2). (7.15)

The corresponding sound speeds are (aL, aR) ≈ (21.2, 7.77). The computational domain is

D = (−1.7, 1) and the simulation is run to t�nal = 0.005. When using λexp we �nd that the

simulation requires a CFL of at most 0.12 in order to maintain positive internal energy. The

maximal CFL number we were able to use, using the wave speed, λ̂max = λmax(p̂∗), computed

by Algorithm 1, while still preserving positive internal energy and real sound speed was 1.42.

R (The sound speed and internal energy are checked at every node and at every time step.)

Plots of the solution are shown in Figure 7.5. In this case, using the method with λexp results

in a computational time approximately 12 times greater than the method using λmax(p̂∗).
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Figure 7.4: Plots for Test 2 of the underestimation problem using p̂∗ for computing the
maximum wave speed. (Top left): density, (top right): pressure, (bottom left): velocity,
(bottom right): speci�c internal energy. Final time is t = 0.4.
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7.3 The SESAME Database

In order to demonstrate the robustness of our method, we use the SESAME database. The

SESAME database is a tabulated EOS developed by the Mechanics of Materials Equation

of State group (T-1) at Los Alamos National Lab [81]. The SESAME database houses data

on a large variety of materials from argon to cesium. The construction of such a database

relies on experimental data and EOS models �tted to the material. However, such details

are beyond the scope of this thesis. Access to this database can be acquired by contacting

sesame@lanl.gov. The database alone is not usable by itself, we need a way to interface

with it. This is done with EOSPAC6 [82]; all versions of this software can also be found at

https://laws.lanl.gov/projects/data/eos/eospacReleases.php.

The general process by which EOSPAC6 functions, is that we provide a material identi�-

cation number and �table type�. The �table type� indicates the thermodynamic relationship;

that is, it speci�es the two thermodynamic input quantities and the corresponding output

quantity. For our purposes, we provide {(ρni , eni )}i∈V and EOSPAC6 returns {pni }i∈V. Recall

for density, pressure and speci�c internal energy in the compressible Euler equations are,

kg/m3, Pa, and J/kg, respectively. However, EOSPAC6 works with the following respective

units, Mg/m3, GPa, and MJ/kg. A full description of the functionality of EOSPAC6 can be

found in the user manual in Pimentel [83]. Additionally, the list of the available materials in

the SESAME database with their corresponding identi�cation numbers are found on the last

pages of [81].

We conduct a series of tests utilizing the SESAME database. The Riemann problems all

use x = 0 as the initial discontinuity. Furthermore, we o�er comparisons of the di�erent

values of λ̂max(nij,Ui,Uj). As λ̂max(nij,Ui,Uj) depends on the Riemann problem we use

the de�nition,

λ̃max
i := max

j∈I(i)\{i}
λ̂max(nij,Ui,Uj), (7.16)

in order to plot the maximum wave speed.
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7.3.1 Expansion-Contact-Shock Comparison

For the �rst problem, we run a Riemann problem using dry air (material id: 5030), alu-

minum (material ID: 3720), vanadium (material ID: 2552), and sulfur hexa�ouride (material

ID: 7010) with data which generates a wave pro�le similar to the Sod shock tube. The

Riemann data is,

(ρL, vL, eL) := (0.01 Mg/m3, 0 m/s, 4000 MJ/kg), (7.17)

(ρR, vR, eR) := (0.003 Mg/m3, 0 m/s, 3400 MJ/kg). (7.18)

The problem is simulated on D = (−1 m, 1 m) to a �nal time of t = 1.2× 10−5 s and CFL =

0.5. See Figure 7.6 for the results.

7.4 Benchmark Con�gurations

7.4.1 EOS Comparison in a Riemann Problem

In this simulation we compare the di�erent e�ects an EOS has the solution to a Riemann

problem. The initial discontinuity is at x = 0, the Riemann data we use is,

(ρL, vL, pL) := (1, 1, 2), (7.19)

(ρR, vR, pR) := (1,−1, 1), (7.20)

on D = (−0.5, 0.5) with CFL = 0.5 to the �nal time of t�nal = 0.1. We compare results with

the ideal, covolume, van der Waals and EOS. The parameters we use are, γ = 1.4, a = 0.5,

b = 0.5, R = 0.4, and cV = 1 for each of the associated EOS. The results are shown in

Figures 7.7.

7.4.2 The Woodward-Colella Blast Wave

A common test problem in the literature is the Woodward-Colella blast wave which was

originally proposed in [84]. The initial con�guration is composed of three constant states
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Figure 7.6: Comparison of ρ (top left), p (top right), max wave speed, λ̃max (bottom left),
and γ (bottom right), for the various materials at the �nal time, t = 1.2× 10−5 s.
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which result in the collision of two waves. This collision produces an emergent complex

structure. This test problem is normally performed with the ideal EOS; we instead perform

two experiments, both using the Jones-Wilkins-Lee EOS. The �rst experiment uses the

parameters proposed in [23, Section 5.1] and the second experiment uses the parameters in

[44, Table 2. �HMX�], see Table 7.4 for the values.

The computational domain is D = (0, 1) and the initial state is,

(ρ0(x), v0(x), p0(x)) =


(1, 0, 103) if x ∈ [0, 0.1],

(1, 0, 10−2) if x ∈ (0.1, 0.9),

(1, 0, 102) if x ∈ [0.9, 1].

(7.21)

and the Jones-Wilkins-Lee parameters for the two experiments are given in Table 7.4.

A B R1 R2 ω ρ0 t�nal

Case 1 6.321× 102 −4.472 11.3 1.13 0.8938 1 0.038
Case 2 7.7828× 1011 7.071428×109 4.2 1.00 0.3000 1891 0.038

Table 7.4: JWL parameters for Woodward-Colella interacting blast wave benchmark.
Reprinted with permission from [1].

We use CFL = 0.9. The results are recorded in Figure 7.8 and Figure 7.9.

7.4.3 Shock Collision with Triangular Obstacle

The next benchmark problem is referred to in the literature as the Schardin's problem,

see Schardin [85] for the original physical experiment. This problem is for studying the

e�ects of a shock wave colliding with a triangular obstacle. This physical experiment has

been recreated in [86] with a detailed description of the experimental setup.

For our numerical demonstration we use the setup by Toro et. al. in [23, Sec. 5.4]. The

computational domain is D = (−0.65, 0.5)× (−0.5, 0.5) \K, where K is the triangle formed
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Figure 7.8: Case 1 of the Woodward-Colella blast wave with the JWL EOS. (Left) density,
(right) pressure.
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Figure 7.9: Case 2 of the Woodward-Colella blast wave with the JWL EOS. (Left) density,
(right) pressure.

by the vertices (−0.2, 0), (0.1, 1/6), and (0.1,−1/6). We enforce Dirichlet conditions on the

left boundary, dynamic out�ow conditions on the right boundary and slip conditions on the

remaining boundaries. Note however that the simulation is stopped before the wave reaches

the out�ow boundary so one could alternatively enforce Dirichlet on the right boundary.

The EOS is van der Waals with γ = 864.7/577.8, a = 0.14 and b = 3.258 × 10−5. For the
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interpolation parameters, we use the given b and set q = p∞ = 0.

The ambient state in front of the shock is set to uR = (1.225, 0, 0, 101325)T. We de�ne

the Mach speed of the shock to be MS := 1.3 and then compute the state across the shock

using the Rankine-Hugoniot conditions, (1.24). The complete initial state is given by,

(ρ0(x),v0(x), p0(x)) :=


(1.82039, 148.597, 0, 185145), if x ≤ −0.55,

(1.225, 0, 0, 101325), if x > −0.55.

(7.22)

Schlieren plots of the solution can be seen Figure 7.10.

Figure 7.10: Schlieren plot of a shock wave interacting with a triangular obstacle at t = 1 ms,
1.6 ms, and 2.2 ms. Reprinted with permission from [1].

7.4.4 Shock Bubble Interaction

The next test problem we simulate is the shock-bubble interaction. Much like the

Schardin problem done in Section 7.4.3, we again simulate a shock colliding with an ob-

stacle. This time, the obstacle is not a solid boundary but a bubble. The density of the

bubble. This problem is normally performed in the context of multi-�uids, where the bubble

is a separate material from the ambient �uid. The ambient �uid is typically chosen to be air

and the bubble to be helium. More information on the physical experiments can be found
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in [87]. We also point out the paper, by Quirk & Karni [88], where they provide comparison

between the numerical and physical experiments.

In our case the bubble only di�ers from the ambient �uid by a di�erence in density. We

use the setup given Wang & Li in [89, Sec. 5.2.2]. The domain is D = (0, 3) × (0, 1). The

left boundary is Dirichlet, the right boundary is dynamic out�ow, and the top and bottom

boundaries are slip. Let B denote the bubble centered at (0.5, 0.5) with radius 0.25. We use

the Jones-Wilkins-Lee EOS with the following parameters,

A = 8.545× 1011, B = 2.05× 1010, R1 = 4.6, R2 = 1.35, ω = 0.25, ρ0 = 1.84× 103. (7.23)

The primitive states for the ambient �uid and the bubble are,

(ρR,vR, pR) = (1000, 0, 0, 5× 1010) (7.24a)

(ρB,vB, pB) = (2000, 0, 0, 5× 1010) (7.24b)

We prescribe the pressure across the shock wave to be pL = 4.369 × 1011 and determine

the remaining variables ρL and vL through the Rankine-Hugoniot conditions, (1.24). The

primitive initial state is,

(ρ0(x),v0(x), p0(x)) :=


(3778.85, 16867.6, 0, 4.369× 1011), if x < 0.05,

(1000, 0, 0, 5× 1010), if x ≥ 0.5 and x 6∈ B,

(2000, 0, 0, 5× 1010), if x ∈ B.

(7.25)

A diagram of this initial state is shown in Figure 7.11. The simulation is run to �nal time

t�nal = 100 µs with CFL = 0.5. Schlieren plots of the density are shown in Figures 7.12,

7.13, and 7.13 at times t = 40 µs, 70 µs, and 100 µs, respectively. The simulation was run

with 50,348,033 Q1 nodes. Our numerical results match well with experiment results shown

in [89].
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Figure 7.11: Visual description of the initial state for the shock bubble interaction.

7.4.5 Shock Di�raction

This problem involves shock di�racting around a 90◦ wedge. Physical experiments for a

plethora of geometric wedges can be found in [90]. This problem has been studied extensively

in the literature for an ideal polytropic gas, see the collection of posters from the 18th

International Symposium on Shock Waves (ISSW) [91]. However the results for a non-ideal

�uid are much more sparse. Most notably this problem has been simulated for Bethe-

Zel'dovich-Thompson (BZT) �uids with the van der Waals equation of state in [92, Problem

TD3].

Remark 7.4.1 (BZT Fluids). The Bethe-Zel'dovich-Thompson (BZT) �uids are �uids for

which there exists a thermodynamic region where the fundamental derivative,

G := −τ
2

[( ∂2p

∂τ 2

)
s
/
(∂p
∂τ

)
s

]
= 1 +

ρ

a

(∂a
∂ρ

)
s

=
τ 3

2a2

( ∂2p

∂τ 2

)
s
, (7.26)

is negative. Fluids that exhibit a negative fundamental region behave in an unusual way.

For one, the speed of sound increases as the density decreases. This causes the existence of

expansion shocks, also called composite waves, where a single wave consists of an expansion
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Figure 7.12: Schlieren plots for the shock-bubble interaction benchmark for t = 40µs.
Reprinted with permission from [1].

immediately followed by a shock or vice-versa. For more information see [93] and [94].

All problems are simulated on the domain Ω = [0, 2]2\([0, 0.5)×[0, 1)). The �rst test is run

with the van der Waals equation of state where a = 2.2 Pa m6 kg−2, b = 7.25× 10−4 m3 kg−1,

and γ = 1.0125. We follow the same setup of Brown & Argrow [92, Problem TD3]; however,

they use the nondimensionalized forms and we instead work with dimensional variables. It

should also be noted that, despite their claim, the left and right states of Problem TD3 do

not satisfy the Rankine-Hugoniot conditions. We choose the right state and the left pressure,

and derive the remaining state variables through the Rankine-Hugoniot conditions (1.24).

The initial condition is,



ρ0(x)

v1
0(x)

v2
0(x)

p0(x))


:=


(373.108 kg/m3, 18.4156 m/s, 0 m/s, 156 568 Pa)T, x < 0.5

(128.736 kg/m3, 0 m/s, 0 m/s, 89 910.6 Pa)T, x ≥ 0.5.

(7.27)

Schlieren plots of the solution are shown in Figure 7.15.
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Figure 7.13: Schlieren plots for the shock-bubble interaction benchmark for t = 70µs.
Reprinted with permission from [1].

Figure 7.14: Schlieren plots for the shock-bubble interaction benchmark for t = 100µs
(bottom). [1].
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Figure 7.15: Comparison of numerical Schlieren plots for �rst-order accurate (top row) and
second-order accurate (bottom row) solutions at time t�nal = 0.02 s. The mesh resolu-
tion increases from left to right as follows: 1,116,289, 4,460,801, and 17,834,497 Q1-nodes.
Reprinted with permission from [1].
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APPENDIX A

Derivation of Exact Solutions for the Euler Equations

We detail the derivation of several exact solutions for the Euler equations.

A.1 Isentropic Vortex*

Theorem A.1.1. Consider the van der Waals equation of state (2.15) with a > 0, b := 0,

and γ := 3
2
or γ := 2. Let x0 ∈ R2, β > 0, r0 > 0. Let ρ∞ > 0, v∞ ∈ R2, p∞ > 0 and

assume that

p∞ > 1
3
aρ2
∞, aρ∞ +

3p∞
ρ∞

>
β2e1

8r2
0π

2
(A.1)

if γ = 3
2
. The following density, velocity, and pressure �elds solve the compressible Euler

equations (1.14a)�(1.14c) with the van der Waals equation of state:

ρ(x, t) :=


(

3C
4a
− 1

2

√
9C2

4a2
+ 2

a

(
F + 1

2r20
ψ(x)2

))2

, if γ = 3
2
,

ρ∞ − ρ2∞
4p∞r20

ψ(x), if γ = 2,

(A.2a)

v(x, t) := v∞ + ψ(x)(−x̄2, x̄1)T, (A.2b)

p(x, t) := Cρ(x, t)γ − aρ(x, t)2, (A.2c)

with ψ(x) := β
2π

exp(1
2
(1 − 1

r20
‖x‖2

`2)), (x̄1, x̄2) = x := x − x0 − v∞t, C = (p∞ + aρ2
∞)/ρ

3/2
∞ ,

and F = −aρ∞ − 3p∞/ρ∞.

Proof. The derivation of the isentropic vortex begins with the additional assumption that

the velocity �eld is divergence free. That is, ∇ · v = 0. Under this assumption the Euler

equations take the following simpli�ed form:

This theorem and proof are reprinted with permission from [1].
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∂tρ(x, t) + v(x, t) · ∇ρ(x, t) = 0, x ∈ R2, t > 0, (A.3)

∂tv(x, t) + (v(x, t) · ∇)v(x, t) = − 1

ρ(x, t)
∇p(x, t), x ∈ R2, t > 0 (A.4)

∂te(x, t) + v(x, t) · ∇e(x, t) = 0, x ∈ R2, t > 0, (A.5)

with x := (x1, x2), boundary conditions, (ρ∞,v∞ := (v1,∞, v2,∞)T, p∞) and yet to be deter-

mined initial conditions (ρ0(x),v0(x), p0(x)). To keep things general, we make no assump-

tion on the equation of state for p = p(ρ, e).

We write the solution as a perturbation of the far-�eld state; i.e. we de�ne v := v∞+ δv

with

δv(x, t) :=

 ∂x2ψ(x− x0 − v∞t)

−∂x1ψ(x− x0 − v∞t)

 , (A.6)

with the stream function ψ(x) := β
2π

exp(1
2
(1 − ‖x‖

2
`2

r20
)). Here x0 := (x0

1, x
0
2) ∈ R2, β, and r0

are free parameters. To further simplify notation, de�ne (x̄1, x̄2) = x := x − x0 − v∞t and

r2 := ‖x‖2
`2 . Note the following identities which will be used later on:

∂xiψ(x) = − x̄i
r2

0

ψ(x), (A.7)

∂xixjψ(x) =
1

r2
0

(
− δij +

x̄ix̄j
r2

0

)
ψ(x), (A.8)

∂txiψ(x) =
1

r2
0

(
vi,∞ −

x̄iv∞ · x
r2

0

)
ψ(x), (A.9)

where δij is the Kronecker symbol and i, j ∈ {1, 2}.

Using that v = v∞ + δv, the left hand side of (A.4) becomes,

∂tv + v · ∇v = ∂t(δv) + (v∞ · ∇)δv + (δv · ∇)δv. (A.10)
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From the de�nition of δv and the identities (A.7), (A.8) and (A.9), we have,

(δv · ∇)δv =

 (∂x2ψ)(∂2
x1x2

ψ)− (∂x1ψ)(∂2
x2
ψ)

−(∂x2ψ)(∂2
x1
ψ) + (∂x1ψ)(∂2

x1x2
ψ)

 = − x

r4
0

ψ(x)2 (A.11)

(v∞ · ∇)δv =
1

r2
0

(
−

 v2,∞

−v1,∞

+
v∞ · x
r2

0

 x̄2

−x̄1

)ψ(x) (A.12)

∂t(δv) =
1

r2
0

( v2,∞

−v1,∞

− v∞ · x
r2

0

 x̄2

−x̄1

)ψ(x) (A.13)

Thus equation (A.4) becomes − x
r40
ψ(x)2 = −1

ρ
∇p. This identity is furthermore written as,

− 1

2r2
0

∇(ψ(x)2) =
1

ρ(t,x)
∇p(ρ(t,x)). (A.14)

Up to this point, we have not made any assumption on the equation of state. We recover

the well known isentropic vortex solution if we assume the pressure is given by the ideal gas

law; i.e. p(ρ) = Cργ for the isentropic �ow where C = p∞/ρ
γ
∞. We now proceed with the

van der Waals equation of state. For isentropic �ows we have

p(ρ) =
Cργ

(1− bρ)γ
− aρ2, (A.15)

where C is some constant. (Note, we work with an arbitrary b to keep things general in the

beginning.) Following the same process as in the ideal gas case, we compute the inde�nite

integral,
∫

1
ρ
∂xip(ρ) dxi:
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− 1

2r2
0

∫
∂xiψ(x)2 dxi =

∫
1

ρ
∂xip(ρ) dxi =

p(ρ)

ρ
+

∫
p(ρ)

ρ2
∂xiρ dxi

=
p(ρ)

ρ
+

∫ ( Cργ−2

(1− bρ)γ
− a
)
ρxidxi =

p(ρ)

ρ
+

∫
∂

∂xi

[ C

γ − 1

( ρ

1− bρ

)γ−1

− aρ
]
dxi

=
Cργ−1(γ − bρ)

(γ − 1)(1− bρ)γ
− 2aρ+ F.

Hence, ρ(x) can be found by solving the equation,

− 1

2r2
0

ψ(x)2 =
Cργ−1(γ − bρ)

(γ − 1)(1− bρ)γ
− 2aρ+ F. (A.16)

We have two immediate cases for solutions that can be found explicitly.

Case 1: γ = 3/2 and b = 0: In this case, (A.16) becomes a quadratic equation for
√
ρ,

ρ− 3C

2a

√
ρ− 1

2a

(
F +

1

2r2
0

ψ(x)2
)

= 0. (A.17)

The constants C and F are determined by applying the far �eld condition to (A.15) and

(A.17):

C =
p∞ + aρ2

∞

ρ
3/2
∞

and F = −aρ∞ −
3p∞
ρ∞

. (A.18)

However, care must be taken in the choice of p∞ and ρ∞ so that the sound speed remains

real. Recall that the sound speed for the van der Waals EOS is,

c(ρ, p) =

√
γ
p+ aρ2

ρ(1− bρ)
− 2aρ. (A.19)

The hypothesis p∞ > 1
3
aρ2
∞ guarantees that c(ρ∞, p∞)2 > 0.

The physical root for equation (A.17) is,

√
ρ = 3C

4a
− 1

2

√
9C2

4a2
+ 2

a

(
F + 1

2r20
ψ(x)2

)
. (A.20)
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Furthermore, for the root to be real we require that −F > 1
2r20
ψ(x)2 for all x ∈ R2. In

particular,

aρ∞ +
3p∞
ρ∞

>
β2e1

8r2
0π

2
. (A.21)

Lastly, we must justify that the system remains hyperbolic; that is, the sound speed is

real for all (x, t) ∈ R2 × [0,∞). Since the �ow is isentropic, the sound speed for the van

der Waals EOS (with γ = 3/2 and b = 0) is, f(ρ) := c(p(ρ), ρ)2 = 3
2
C
√
ρ − 2aρ. Note that

limρ→0+ f(ρ) = 0, f ′(ρ) = 3C
4
√
ρ
−2a, and limρ→0+ f

′(ρ) =∞. Therefore, f(ρ) has a maximum

at ρ =
(

3C
8a

)2
and hence f(ρ) > 0 for ρ ∈ (0,

(
3C
8a

)2
). From the de�nition of ρ, (A.2a), we see

that 0 < ρ <
(

3C
4a

)2
. Thus the sound speed is always real.

Case 2: γ = 2 and b = 0: For these choices of parameters, (A.16) becomes,

2(C − a)ρ+ F +
1

2r2
0

ψ(x) = 0. (A.22)

Using the far �eld boundary conditions for (A.2c) and (A.22) we �nd that C = p∞
ρ2∞

+ a and

F = −2p∞/ρ∞, respectively. Solving for ρ in (A.22) we have,

ρ = ρ∞ −
ρ2
∞

4p∞r2
0

ψ(x). (A.23)

Note the sound speed is c(p(ρ), ρ)2 = 2(C − a)ρ = 2p∞
ρ∞

ρ > 0.

129



APPENDIX B

Numerical Algorithms

B.1 Upper Bound on Maximum Wave Speed

In this section we provide the algorithm which computes an upper bound to the max

wave speed. The details are discussed in Section 4.6.

Algorithm 1 Computing λmax(p̂∗)

Require: uL, uR, nLR, pL, pR
compute ϕ(pmin), ϕ(pmax) from (4.59)
if 0 ≤ ϕ(pmin) then

compute p̃∗ from (4.78)
p̂∗ = max(pmin, p̃

∗) . One may also set p̂∗ = 0
else if 0 ≤ ϕ(pmax) then

if γmin = γm then
compute p̃∗1 and p̃∗2 from (4.81a) and (4.81b) resp.

else
compute p̃∗1 and p̃∗2 from (4.83a) and (4.83b) resp.

end if
p̂∗ = min{pmax, p̃

∗
1, p̃
∗
1}

else
compute p̃∗1 and p̃∗2 from (4.85) and (4.89) resp.
p̂∗ = min{p̃∗1, p̃∗2}

end if
return λmax(p̂∗) := max{−λ−L(p̂∗), λ+

R(p̂∗)}
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B.2 The Quadratic Newton Method for Limiting the Surrogate Entropy

The algorithm for computing the limiting Φs
i is given Algorithm 2.

Algorithm 2 Limiting Φs
i with the Quadratic Newton Method

Require: UL,n+1
i , Pij, `

i,ρ
j , ε

1: set `0
L = 0 and `0

R = `i,ρj
2: compute f(`0

Z) = Φs
i (U

L,n+1
i + `0

ZPij) for Z = L and Z = R.
3: compute f ′(`0

Z) = DΦs
i (U

L,n+1
i + `0

ZPij) · Pij for Z = L and Z = R.
4: compute f [`0

L, `
0
L, `

0
R] and f [`0

L, `
0
R, `

0
R].

5: compute `L(`0
L, `

0
R) and `R(`0

L, `
0
R) from (6.57a) and (6.57b), resp.

6: set `L = min{`L(`0
L, `

0
R), `R(`0

L, `
0
R)} and `R = max{`L(`0

L, `
0
R), `R(`0

L, `
0
R)}

7: while |`R − `L|/|`L| > ε do
8: compute f(`Z) = Φs

i (U
L,n+1
i + `ZPij) for Z = L and Z = R.

9: compute f ′(`Z) = DΦs
i (U

L,n+1
i + `ZPij) · Pij for Z = L and Z = R.

10: compute f [`L, `L, `R] and f [`L, `R, `R].
11: compute `L(`L, `R) and `R(`L, `R) from (6.57a) and (6.57b), resp.
12: set `L = min{`L(`L, `R), `R(`L, `R)} and `R = max{`L(`L, `R), `R(`L, `R)}
13: end while
14: set `i,sj := min{`L, `R}
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B.3 Approximate Godunov-type Solver

There are several methods for handling out�ow boundary conditions in the literature.

One way to do this is to exactly solve the Riemann problem at x = 0, which requires another

state on the interface. This method is referred to as the Godunov method, see Godunov [6]

which is used in a vast amount of numerical methods for conservation laws. Due to the

costly nature of solving the Riemann problem, we instead propose an approximate solution

at x = 0.

B.3.1 The Method

In order to solve the extended Riemann problem for the Euler equations we must compute

p∗ by solving ϕ(p∗) = 0, see (4.59). The velocity, v∗ is then computed by v∗ = vL− fL(p∗) =

vR + fR(p∗). We instead propose to use p̂∗ ≥ p∗ computed using Algorithm 1. Then, we

de�ne the velocity in the star domain by v̂∗L = vL − fL(p̂∗) and v̂∗R = vR + fR(p̂∗), and

assuming p̂∗ 6= p∗ then v∗L 6= v∗R. For a state across a shock wave, we compute the density,

ρ̂∗L or ρ̂∗R from (4.37) or (4.43); respectively, using p̂∗ instead of p∗. In this case, we have

that ρ̂∗Z ≥ ρ∗Z for Z ∈ {L,R}.

Lemma B.3.1. If p̂∗ ≥ p∗, then v̂∗
L
≤ v̂∗

R
where v̂∗

L
:= vL − fL(p̂∗) and v̂∗R := vR + fR(p̂∗).

Proof. The proof follows immediately from the fact that ϕ(p) is monotonically increasing

(see Lemma 4.4.1); that is,

ϕ(p̂∗) = fR(p̂∗) + fL(p̂∗) + vR − vL ≥ ϕ(p∗) = 0. (B.1)

Hence v̂∗R ≥ v̂∗L.

B.3.2 The Algorithm

The choice of solution at x = 0 is best described through diagrams as the exact solution

can be seen in the algorithm. See Figure B.1 for several di�erent wave pro�les that deter-
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mine di�erent solutions at x = 0 and Algorithm 3 for the full context. Since we need the

approximate solution at x = 0, we must look at the wave structure.

Algorithm 3 Approximate Riemann Solution

Require: uL, uR, nLR, pL, pR
1: compute p̂∗ from Algorithm 1
2: compute ϕ(pL) and ϕ(pR)
3: if ϕ(pL) ≥ 0 and ϕ(pR) ≥ 0 then
4: compute λ−L := vL − aL and λ+

R := vR + aR
5: else if ϕ(pL) ≥ 0 and ϕ(pR) < 0 then
6: compute λ−L := vL − aL and λ+

R := SR(p̂∗) from (4.41)
7: else if ϕ(pL) < 0 and ϕ(pR) ≥ 0 then
8: compute λ−L := SL(p̂∗) and λ+

R := vR + aR from (4.38)
9: else

10: compute λ−L := SL(p̂∗) and λ+
R := SR(p̂∗) from (4.38) and (4.41)

11: end if . Continued on next page
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Figure B.1: Figures describing di�erent solutions of u(0, t). (Top): the solution in this case
is u(0, t) = 1

2
(û∗L + û∗R). (Middle): u(0, t) is the solution on the expansion wave which

connects the two states, uR to û∗R at x/t = 0. (Bottom): u(0, t) = û∗L.
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12: if λ−L ≥ 0 then
13: set u := uL

14: else if λ+
R ≤ 0 then

15: set u := uR

16: else
17: compute v̂∗L and v̂∗R from Lemma B.3.1
18: if v̂∗L > 0 then
19: compute ρ̂∗L from (4.37)
20: if ϕ(pL) < 0 then
21: set u := (ρ̂∗L, v̂

∗
L,v

⊥
L , p̂

∗)
22: else
23: compute â∗L
24: if v̂∗L − â∗L > 0 then
25: set Riemann fan solution
26: else
27: set u := (ρ̂∗L, v̂

∗
L,v

⊥
L , p̂

∗)
28: end if
29: end if
30: else if v̂∗R < 0 then
31: compute ρ̂∗R from (4.43)
32: if ϕ(pR) < 0 then
33: set u := (ρ̂∗R, v̂

∗
R,v

⊥
R , p̂

∗)
34: else
35: compute â∗R
36: if v̂∗R + â∗R < 0 then
37: set Riemann fan solution
38: else
39: set u := (ρ̂∗R, v̂

∗
R,v

⊥
R , p̂

∗)
40: end if
41: end if
42: else
43: if v̂∗L + v̂∗R < 0 then
44: set u := (1

2
(ρ̂∗L + ρ̂∗R), 1

2
(v̂∗L + v̂∗R),v⊥L , p̂

∗)
45: else
46: set u := (1

2
(ρ̂∗L + ρ̂∗R), 1

2
(v̂∗L + v̂∗R),v⊥R , p̂

∗)
47: end if
48: end if
49: end if
50: return u
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