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ABSTRACT 

The number and intensity of flood events have been on the rise in many regions of the 

world. In some parts of the U.S., residential properties, transportation networks, and major 

infrastructure are at risk of failure caused by floods. The vulnerability to flooding, 

particularly in coastal areas and among marginalized populations is expected to increase 

as the climate continues to change, thus necessitating more effective flood management 

practices that consider various data modalities and innovative approaches to monitor and 

communicate flood risk. With the goal of improving the quality of decisions made during 

flood events to evacuate people or move goods and services while avoiding flooded areas, 

this study first conducted a community needs assessment that highlighted the need for 

real-time data on floodwater conditions, risk-informed evacuation plans, and safe and 

shortest transit routes. Research points to the importance of reliable information about the 

movement of floodwater as a critical decision-making parameter in flood evacuation and 

emergency response. Existing flood mapping systems, however, rely on sparsely installed 

flood gauges that lack sufficient spatial granularity for precise characterization of flood 

risk in populated urban areas. To address these needs, this study utilizes crowdsourced 

photos of submerged stop signs to generate street-level flood maps with high spatial 

resolution (compared to flood gauge data), and develop risk-informed evacuation plans 

during floods by comparing sign’s pole length in a paired photo (before and after a flood). 

To enable crowdsourced data collection, a web application, called Blupix, is designed and 

launched. Images collected by the Blupix app are analyzed using two developed computer 
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vision models (Computer Vision Model I and Computer Vision Model II) and validated. 

Next, two route optimization algorithms are implemented and compared based on the 

generated inundation map to determine the shortest flood-free evacuation route. Next, a 

mobile application (called Blupix Mobile) is developed with embedded computing 

functionality for on-demand floodwater depth estimation from geocoded photos of 

submerged stop signs which provide ordinary people and first response teams with 

reliable, ad-hoc flood water depth information. Finally, a user study is conducted to assess 

human’s perception of flood risk using immersive virtual reality (VR). 
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CHAPTER I 1 

INTRODUCTION  

Flood: The Most Prevalent Natural Hazard 

Historical Perspective of Floods 

Flooding is the most frequent weather threat and costliest natural hazard in the world 

(Mizutori & Guha-Sapir, 2018). The United States National Flood Insurance Program 

(NFIP) estimates the cumulative damage cost of floods to be over $1.75 trillion since 1980 

(Smith, 2020b). Over the past two decades, there have been close to 5,000 flood events in 

the U.S. alone, leading to approximately 2,000 deaths (American Climate, 2019). Flooding 

can happen as a result of excess rainfall, tropical depressions or storms, hurricanes, or 

typhoons (Texas General Land Office, 2021). Between 1851 and 2019, the continental 

U.S. has experienced around 310 hurricane landfalls, averaging to almost 2 hurricanes per 

year (Texas General Land Office, 2021), including major hurricanes such as Harvey in 

2017 which brought unprecedented rainfall and windstorms, and flooded more than 

 

1 Some of the materials presented in this chapter have been previously appeared in the following 

publications by the author: 

Kharazi, B. A., Behzadan, A. H. (2021). Flood depth mapping in street photos with image processing and 

deep neural networks. Computers, Environment and Urban Systems, 88, 101628. 

https://doi.org/10.1016/j.compenvurbsys.2021.101628. 

Alizadeh, B., Behzadan, A. H. (2022). Crowdsourced-based deep convolutional networks for urban flood 

depth mapping. 2022 European Conference on Computing ion Construction 

https://doi.org/10.48550/arXiv.2209.09200. 

Alizadeh, B., Behzadan, A. H. (In Press) Scalable flood inundation mapping using deep convolutional 

networks and traffic signage. Computational Urban Science. (Accepted on 03/12/2023) 

https://doi.org/10.1007/s43762-023-00090-1. 

Alizadeh, B., Li, D., Hillin, J., Meyer, M. A., Thompson, Courtney M., Zhang, Z., and Behzadan, A. H. 

(2022). Human-centered flood mapping and intelligent routing through augmenting flood gauge data with 

crowdsourced street photos. Advanced Engineering Informatics 54 (2022): 101730. 

https://doi.org/10.1016/j.aei.2022.101730 

https://doi.org/10.48550/arXiv.2209.09200
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150,000 homes, 46% of which were outside the 500-year floodplain zones of the Federal 

Emergency Management Agency (FEMA) (Galloway et al., 2018). Figure I-1 

demonstrates areas affected by large flood events in the world from 2001 to 2016. More 

recently, more frequent patterns of flooding were observed around the globe. Figure I-2 

shows the distribution of flood events in the world from January 2016 to July in 2021. As 

an example of more recent floods, a major rainfall event spurred a series of floods in 

northern parts of the U.S. state of Washington and southern parts of the Canadian province 

of British Columbia in November 2021. In British Colombia, this flood caused record-

breaking insured damage of $450 million (Insurance Bureau of Canada, 2021). In 

Germany, severe flooding resulted in $40 billion of economic loss in 2021. The 2021 

flooding in Belgium was the worst flooding over the past 100 years with estimated damage 

of $3 billion approximately (Rodriguez Castro et al., 2022).  In central China, the July 

2021 flooding killed almost 100 people and resulted in more than $11 billion economic 

losses (T. Wang, 2021). In Europe, more than 200 million people live in coastal regions 

(within 50 km from coastal lines) (Vousdoukas et al., 2020). Among European countries, 

the Netherlands has the highest relative population (58%) living in flood-prone areas 

(Rentschler & Salhab, 2020).   
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Figure I-1 Map of major flood events in the world (2001-2016) (Courtesy of 

Maptitude). 

 

 

Figure I-2 Map of flood events from January to July in 2021 (Courtesy of 

FloodList). 

 



 

4 

 

Current Patterns and Future Outlook of Floods 

In the U.S., there has been, on average, 16.2 weather and climate disasters annually 

between 2015 to 2020 (Smith, 2020a), and nearly one-third of people who live in coastal 

areas are exposed to elevated coastal hazard risks (United States Census Bureau, 2019). 

However, in 2021 alone, 223 flood events occurred which surpasses the reported annual 

average. Asymmetric urbanization, growing coastal population, climate change, and 

deforestation are the main drivers of increased flooding worldwide (Alizadeh et al., 2021; 

Bjorvatn, 2000; Sahin & Hall, 1996), and are expected to contribute to a tenfold increase 

in the annual flood loss over the next several decades, from $6 billion in 2005 to $60 

billion by 2050 (Arnell & Lloyd-Hughes, 2014; Mills, 2005). Currently, more than one 

billion people around the world live in areas just 10 meters above high tide lines, which 

may be inundated in the near future due to changes in the hydrological cycle (Kulp & 

Strauss, 2019). According to a recent study, by the year 2100, the amount of land in the 

U.S. that is vulnerable to a 100-year flood event may increase by 45% in riverine 

floodplains, and 55% in coastal floodplains with fixed shorelines (e.g., stabilized through 

beach nourishment and other activities) (AECOM, 2013). As sea levels rise (Church & 

White, 2011), many communities, especially those in coastal areas, will experience 

growing risks and differential vulnerability to floods and storm water surge (Alfieri et al., 

2017; Ford et al., 2019; Hauer et al., 2016; Rachel, 2013).  

A study by Forizeri et al. (2017) also showed that weather-related natural hazards could 

affect about two-thirds of the Europe’s population annually over the next century (Forzieri 

et al., 2017). Huang et al. (2015) investigated the combination of different climate 
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scenarios in the five large basins in Germany, and showed that most rivers in the study 

area could experience more 50-year floods (S. Huang et al., 2015). In Europe, strong 

mitigation incentives are expected to lead to a double increase in the average risk-based 

flood insurance premium between 2015 to 2050 (Hudson et al., 2019). Research also 

indicates that by 2100, at least 190 million people globally will experience flooding for 

the first time (Kulp & Strauss, 2019). 

Flood Management and Response by Rescue Operators 

In the aftermath of large-scale natural hazard events such as floods and hurricanes, having 

access to timely and accurate information is key not only to successful response and 

recovery (Gebrehiwot et al., 2019; Pi et al., 2020a), but also to mitigation, which aims to 

protect the health and safety of people, and limit damage to property or the environment 

(Federal Emergency Management Agency, 2016; Public Safety Canada, 2010). When a 

disaster strikes, a wide range of rescue groups with various levels of competence and 

resources attempt to organize themselves quickly and distribute available resources to 

perform crucial activities (Altay, 20085; Eller et al., 2015). Disaster response actors 

include government agencies, nongovernmental organizations (NGOs), private sectors, 

and volunteer residents (Chikoto et al., 2013; Cvetkovic & Martinović, 2020). First 

responders and emergency managers deployed from different jurisdictions to a disaster-

affected area mainly follow their own command structure, abide by different standard 

operational procedures, and more importantly, use various communication and data 

exchange platforms which may not be compatible with one another or accessible to all 

participating teams (Texas General Land Office, 2021).  
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Different countries have different disaster management systems, such as the National 

Incident Management System (NIMS) in the U.S. (Annelli, 2006), the Australasian Inter-

service Incident Management System (AIIMS), the Coordinated Incident Management 

System (CIMS) in New Zealand (Dwyer & Owen, 2009), and the Joint Emergency 

Services Interoperability Program (JESIP) in the UK (Flanagan, 2014). These systems 

serve as a disaster collaboration model between different agencies and guide approaches 

for federal, state, and local governments to prepare, respond to and recover from disasters. 

However, rescue operators still need real-time and accurate information about local 

conditions during disasters since different groups of people have different needs that must 

be considered in rescue mission decision-making. Geographic Information Systems (GIS) 

is one of the most common tools used to identify risk areas and available resources in 

order to support disaster response. Yet, GIS-based approaches do not provide knowledge-

sharing and communication support among decision-makers (W. Zhang et al., 2018). 

Therefore, cyberinfrastructure is needed for sharing data and knowledge in addition to 

geospatial visualization tools to provide integrated and unified information to be utilized 

by different decision-makers. 

Access to Information in Flood Evacuation 

During flood events, beside the missions of rescue operators, ordinary people try to utilize 

the information distributed by various sources to determine their best course of action 

(e.g., evacuate or shore up). Unfortunately, much of the information from the field remains 

unseen by ordinary people who are the most affected, leading them to seek help through 

other channels, thus quickly overwhelming the telecommunication network. For instance, 
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during Hurricane Harvey, trapped people dialed non-emergency numbers such as 2-1-1 or 

3-1-1 which only connected them to community services and information, or municipal 

government services (Texas General Land Office, 2021). Of the 19% world population at 

risk of substantial flooding, 89% live in low and middle-income communities with 

undeveloped or poorly developed disaster risk management practices (Rentschler & 

Salhab, 2020). However, the anticipated elevated risk of flooding in many parts of the 

world also necessitates innovative risk management approaches that can effectively 

navigate uncertainty, remove duplication, and utilize various publicly available resources 

and data (World Bank Group, 2021). A decentralized yet authenticated platform for 

collecting immediate multi-faceted data about the unfolding hazard event, and exchanging 

timely and accurate information with all stakeholders could potentially remedy this 

problem. 

Flood Risk Perception 

Due to various stakeholder groups, timely access to unified and reliable flood information 

is of the essence (Mai et al., 2020). Effective disaster management and response require 

clear communication with accurate information between citizens and rescue personnel. 

Also, effective and accurate communication depends on having effective and functional 

tools for sharing disaster-related information. Effective communication of flood risks 

helps raise public awareness and plays a critical role in increasing community resilience 

against natural hazards (Becker et al., 2008; Beggs, 2018; Brown et al., 2018; Buchecker 

et al., 2013; Fuchs et al., 2017; Nunn et al., 2014; Reser et al., 2012; Tyler & Sadiq, 2018). 

In this regard, having access to flood information and mitigation resources at multiple 
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levels (e.g., educational content and training programs offered by state and local 

governments, reports and evidence collected by rescue teams and emergency managers, 

documented stories and lived experiences of residents in flood-prone areas) can contribute 

significantly to improved risk perception and communication (Fitzpatrick-Lewis et al., 

2010; Sansom et al., 2021). The means and the frequency by which people gather, access, 

process, and prioritize risk information influence how they make important decisions 

about sheltering, evacuation, and relocation during disasters (M. Lindell & Perry, 2004; 

Sansom et al., 2021). People’s perceptions and expectations of disaster risks can also vary 

over time. For example, it was found that flood risk perception was significantly altered 

for some residents after being struck by severe flooding (Brown et al., 2018).  

Traditionally, one-way risk communication from the authorities down to the public (i.e., 

experts informing residents of potential risks of natural hazards) has been used for alerting 

communities about flood risks. However, to promote trust in data and resulting policies 

and actions, recent research strongly favors two-way risk communication (Bennett et al., 

2010; Bradbury, 1994), where members of the community actively participate in creating, 

sharing, and utilizing information about hazard risks, state of the environment affected by 

the hazard, and forthcoming decisions concerning sheltering, evacuation, and relocation 

(Alsnih & Stopher, 2004). Recently, various technologies have been used to develop 

disaster mitigation information systems. However, studies focusing on the technology 

acceptance model (TAM) in the context of disaster mitigation indicate that gaps still exist 

between the services provided by the system and the community’s real needs (Siswanto et 

al., 2018; Thompson et al., 2006). For example, as discussed by Thompson et al. 
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(Thompson et al., 2006), the implementation of most of the currently available decision 

support systems such as CEMPS (designed by (Hernández & Serrano, 2001) for damage 

assessment) and ARTEMIS (designed by (de Silva & Eglese, 2000; Mishra et al., 2022) 

for floods) is limited. Integrating community input in technology design can be a potential 

solution to the lack of acceptance of and trust in flood mitigation and risk communication 

technologies (Mishra et al., 2022). Crowdsourcing the data collection, for instance, can 

promote data transparency, as well as technology usefulness at the time of a disaster 

(Kankanamge et al., 2019; Mehta et al., 2017; Song et al., 2020). 

Research Context 

Gaps in Knowledge and Practice 

Disaster management and response are complex and challenging. Specifically, flood 

management and response currently face several limitations that affect their effectiveness. 

Some of the limitations are as follows: 

• Traditional flood monitoring techniques have limitations in their spatial coverage. 

For instance, flood gauges and sensors are typically installed outside of residential 

areas, which result in incomplete flood monitoring especially in urban areas. In 

some regions, FEMA flood maps have not been updated for several years, which 

makes them unreliable and inadequate for flood risk assessment (AECOM, 2013). 

While light detection and ranging (LiDAR), Synthetic-aperture radar (SAR), and 

hydrological modeling techniques have the potential to improve flood depth 

mapping in urban areas, it is important to note that these methods are often 

associated with significant time and computational costs (Kwan & Ransberger, 
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2010). Additionally, proper data acquisition and processing are required to ensure 

accurate and reliable results (McDougall & Temple-Watts, 2012). Accurately 

mapping flood depths in urban areas is essential for effective flood management 

and response which highlight the need for a cost-effective, and high spatial 

resolution flood depth map. 

• A high spatial resolution flood inundation map should be accompanied by an 

accurate and real-time route planning system for facilitating safe and effective 

evacuation of individuals during a flood event (Lu, 2006). The development of a 

safe route optimization systems enables individuals to make informed decisions 

about their evacuation plans and enable safe and efficient evacuation of all affected 

individuals, including those with mobility challenges. 

• Real-time flood depth information is critical for individuals and first responders to 

make informed decisions and take appropriate measures during a flood event 

(Salmoral et al., 2020). However, currently this information is not readily available 

in all geographical regions, making it difficult for people to understand flood risk 

in their area (Salmoral et al., 2020). This lack of information can lead to delays in 

response, loss of property, and even loss of life. 

• With the growing prevalence of social media and other digital platforms, critical 

and operationally relevant information is now commonly exchanged through these 

channels, enabling direct communication between citizens and emergency 

management organizations. Although few crowdsourcing applications have been 

developed for sharing disaster related information, they may not always adhere to 
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the standard process of information verification, challenging the ways in which 

both citizens and governments accept, process, and act on the information 

exchanged (Garcia-Molina et al., 2016). This presents a critical challenge to 

disaster management, which must balance the need for rapid response and action 

with the imperative of ensuring that the information upon which decisions are 

based is trustworthy and accurate. A concerted effort to overcome these challenges 

and leverage crowdsourced data could enhance the efficacy of flood management 

and response systems, resulting in improved preparedness and response during 

flood events. 

• Different people have different perceptions of flood risk, and this perception can 

affect their level of exposure to such risk. In response, both local and national 

agencies are placing more emphasis on the role of risk perception to inform the 

development of new policies and technologies, as highlighted by Sjöberg in 2002. 

There is insufficient research on how individuals interpret and obtain flood risk in 

urban areas during evacuations. Findings of such studies can be used to inform the 

development of more effective flood management and response systems.  

Dissertation Outline 

This study first provides a background on current flood monitoring methods (Chapter II) 

with proposing a methodology as follow: First, a community needs assessment is 

conducted that highlighted the need for (near) real-time data on floodwater conditions, 

risk-informed evacuation plans, and safe and shortest transit routes (Chapter III). To 

address community’s needs, a crowdsourcing application (called Blupix) was 
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subsequently developed to collect photos of traffic signs which are analyzed by computer 

vision models to estimate flood depth at the location of traffic signs. Then, to help people 

gain ad-hoc situation awareness, an intelligence wayfinding was implemented on 

generated flood depth map using crowdsource photos to determine the shortest flood-free 

evacuation route and a mobile device implementation of the decision support system 

(called Blupix Mobile) is designed to access real-time flood depth data and automate the 

data collection process (Chapter V). In the last Chapter, a user study is conducted to assess 

human’s perception of flood risk during a flood evacuation (Chapter VI) (Figure I-3). 
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Figure I-3 The study roadmap. 
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CHAPTER II 2 

EXISTING FLOOD MONITORING AND DATA PROCESSING CAPACITIES 

 

As discussed earlier, knowing the depth of floodwater in urban roads is critical to the 

success of response and recovery operations that follow. Traditional and advanced flood 

depth monitoring tools especially in urban areas have certain limitations which make them 

inefficient to provide highly granular and real-time flood depth data in urban roads. In this 

Chapter, most common flood depth measurement methods are presented with their 

advantages and disadvantages. 

FEMA Flood Maps 

Historically, the most common tool to inform communities about the local flood risk has 

been FEMA flood maps (Federal Emergency Management Agency, 2010). A sample 

FEMA flood map showing all water (normal and flooding) on August 29th, 2017 (during 

Hurricane Harvey) in Houston, Texas is presented in Figure II-1. In this figure, highlighted 

areas with blue color show the water extent after Hurricane Harvey and highlighted areas 

in yellow correspond to national flood hazard layer. A sample small area in near downtown 

area is enlarged in the figure to show the resolution of the flood map. Flood maps set 

minimum floodplain standards and serve as the basis for determining the cost of flood 

 

2 Some of the materials presented in this chapter have been previously appeared in the following 

publications by the author: 

Alizadeh, B., Li, D., Hillin, J., Meyer, M. A., Thompson, Courtney M., Zhang, Z., and Behzadan, A. H. 

(2022). Human-centered flood mapping and intelligent routing through augmenting flood gauge data with 

crowdsourced street photos. Advanced Engineering Informatics 54 (2022): 101730. 

https://doi.org/10.1016/j.aei.2022.101730 
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insurance, which provides property owners with some level of financial protection 

(Federal Emergency Management Agency, 2010). However, approximately 75% of 

FEMA flood maps are older than 5 years, and 11% date back to the 1970s and 80s (First 

Street Foundation, 2019). A 2017 report by the U.S. Department of Homeland Security’s 

Office of Inspector General found that only 42% of the total flood map miles in FEMA’s 

inventory were updated and valid, falling short of FEMA’s internal performance goal of 

80% (Department of Homeland Security, 2017). At present, many parts of the U.S. do not 

have flood maps or have maps that are 15-30 years old (First Street Foundation, 2019). 

 

Figure II-1 FEMA flood map showing all water (normal and flooding) on August 

29th, 2017 (during Hurricane Harvey) in Houston, Texas (Courtesy of Federal 

Emergency Management Agency). 

 

Flood Gauges and Water Level Sensors 

Conventional methods of flood depth calculation utilize data from water depth sensors or 

water wells in predefined locations. The United States Geological Survey (USGS), for 

example, operates a little more than 9,500 flood gages nationwide that transmit rainfall 
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amounts and/or stream levels (National Oceanic and Atmospheric Administration, 2022) 

(Figure II-2). However, these gauges are dispersedly distributed which result in 

insufficient data acquisition during floods in many regions (Z. Li et al., 2018). For 

example, Figure II-3 demonstrates a comparison between the number of USGS flood 

gauges in Houston, Austin, Dallas, Waco, San Antonio and College Station in Texas. As 

shown in this figure, while there are several of these gauges available in major cities (e.g., 

Houston, Austin and Dallas), there are few or none in small towns (e.g., Waco and College 

Station) which is determined as “data deserts” and has been also addressed in many studies 

(McCoy, 2017; Stahl et al., 2023). An example of data desert in major cities is 

demonstrated in Figure II-4, which shows that no USGS flood gauge is installed in San 

Francisco, California. Other than USGS based flood maps, researchers have also used 

hydrostatic pressure, mechanical float systems, thermal conductivity, and radiation-based 

water level measurement methods (Chetpattananondh et al., 2014). Previous work has 

attempted to predict flooding by detecting the rise or fall of water levels by comparing 

sensor readings with predefined thresholds (Chetpattananondh et al., 2014; Odli et al., 

2016; Töyrä et al., 2002). These sensors, however, have limited coverage area (primarily 

in and around riverine or coastal lands), can be washed away in heavy rain, and need major 

effort for installation, calibration, and maintenance in flood susceptible locations. 
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Figure II-2 USGS flood gauges in the United States (Courtesy of National Water 

Information System, USGS). 

 

 

Figure II-3 Comparison of the number of USGS flood gauges in different cities in 

Texas (Courtesy of National Water Information System, USGS). 
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Figure II-4 USGS flood gauges in San Francisco, California. 

 

Advanced Flood Mapping Tools 

Researchers have also used computer models to estimate flood depth and flow 

characteristics. However, surface variability and inconsistency coupled with the difficulty 

in differentiating saturated surface soil and standing water in aerial images makes it 

difficult for these models to achieve accurate results especially in urban areas 

(Salmonsson, 2015; United States Geological Survey, 2019). Additionally, most existing 

global digital elevation models (DEMs) used for flood mapping are dated and insensitive 

to reshaped surface topography, and acquisitions are not routinely repeated (Hawker et al., 

2018). DEMs tend to result in large vertical errors especially over complex topography 

(e.g., urban areas), exhibit little microtopographic variations in relatively flat terrain, and 

suffer from vegetation bias (Baugh et al., 2013; O’Loughlin et al., 2016), rendering them 
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unreliable for resolving key terrain features that control flood characteristics (Schumann, 

2014). In a study that assessed several large-scale DEMs for hydrologic runoff prediction, 

it was concluded that different DEMs can lead to almost 10% in runoff prediction error 

(Kenward, 2000). In developing Floodwater Depth Estimation Tool (FwDET), based 

solely on an inundation map with an associated DEM, researchers reported an average 

difference of 18 cm and 31 cm for selected coastal (using a 1-m DEM) and riverine (using 

a 10-m DEM) areas compared to physically-based hydrodynamic simulations (Cohen et 

al., 2019). In some cases, even high-accuracy DEMs from aerial photogrammetry may be 

significantly different from ground-truth, especially when looking at smaller catchments 

or applications for which localized elevation errors can be detrimental to local scale 

applications (Walker & Willgoose, 1999). 

Computer Vision for Flood Depth Estimation 

More recently, advancements in artificial intelligence (AI) for object detection have led to 

new opportunities for remotely estimating water level depth using computer vision 

algorithms. Yang et al. (2014), for instance, used visual recognition to read water levels 

from a video camera set up alongside a river embankment in order to predict flood due to 

rising water levels. They utilized Laplacian method (Vincent & Folorunso, 2009) for 

detecting the edges of different objects and probabilistic Hough transform (Z. Zhu & 

Brilakis, 2009) for detecting the straight waterline. Testing this method on an indoor water 

channel and in simulated rainfall resulted in less than 1.2% and 2.5% in average absolute 

error, respectively. Dong et al. (2020) simulated the failure cascade process and flood 

control network vulnerability with a Bayesian method based on the topological structure 
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of the flood control network (Dong et al., 2020). Pan et al. (2018) calculated water level 

by remotely monitoring the length of a measuring ruler (in pixels) in footage obtained 

from a video camera installed next to a river, and found that convolutional neural networks 

(CNNs) outperformed traditional image processing algorithms with an average error of 9 

mm and a standard deviation of 6.69 mm (Pan et al., 2018). Park et al. (2021) estimated 

the depth of flood through detecting submerged vehicles in flood photos using Mask R-

CNN (K. He et al., 2017b), and comparing them with the most similar 3D rendered objects 

based on feature maps extracted by VGGNets (Simonyan & Zisserman, 2014)(Park et al., 

2021). Using features extracted from the 4th pooling layer of VGG16, they achieved mean 

absolute error (MAE) values as lows as 6.49 cm. Other than cameras, drone and satellite 

imagery have been used for detecting floods using visual information. For example, in a 

study by Gebrehiwot et al. (2019), flooded areas were found from videos captured by a 

drone using four object detection methods based on different variations of fully 

convolutional networks (FCN-16, FCN-18, and FCN-32) (Long et al., 2015a) and support 

vector machines (SVM) (Cortes & Vapnik, 1995) with an accuracy of 95%, 95.52%, 92% 

and 87.45%, respectively (Gebrehiwot et al., 2019). Pi et al. (2020) trained a CNN model 

on VOC dataset (Everingham et al., 2010) to detect flooded areas with a mean average 

precision (mAP) of 80.69% in aerial videos (Pi et al., 2020a). 

Remote Sensing 

Besides the high cost of sensor installation and operation for real time data acquisition, a 

key challenge in floodwater depth analysis especially in urban settings is the lack of 

granularity of flood information in comparison with roads and neighborhood data, which 
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makes it extremely difficult to contextualize the relationship between the road network 

and flooded areas (Federal Emergency Management Agency, 2016). Recently, LiDAR 

(Kwan & Ransberger, 2010; McDougall & Temple-Watts, 2012), structure from motion 

(SfM) (Meesuk et al., 2017), and the U.S. Geological Survey (USGS) National Water 

Information System (United States Geological Survey, 2019) have been used to map flood 

events and determine the flow path to estimate floodwater depth, albeit their application 

is limited to places that are fully visible from air and not obscured by vegetation or bridges 

(United States Geological Survey, 2019). At present, precise measurement of water depth 

(i.e., with centimeter-level accuracy) from aerial views is mostly done with highly 

sophisticated instruments and expensive computations that are not readily available for 

large-scale adoption (United States Geological Survey, 2019). An example of generated 

flood maps of Hurricane Harvey in Houston, Texas between August 28th and September 

8th in 2017 using satellite observatory method is presented in Figure II-5. In this figure, 

blue is the reference normal water extent and red is the maximum observed flooding from 

satellites observatory method (using data from the satellites of NASA MODIS, ESA 

Sentinel 1, ASI Cosmo SkyMed, and Radarsat 2). Also, light gray in the figure 

corresponds to all previously mapped floods. 
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Figure II-5 Maximum observed flooding from satellite observatory in Houston, 

Texas during Hurricane Harvey (28th August-8 September 2017) (Courtesy of 

Dartmouth Flood Observatory). 
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CHAPTER III 3 

DATA NEEDS IN FLOOD EMERGENCIES 

 

In this research, a survey was designed to identify information characteristics demanded 

by rescue operators and regular citizens for rescue missions and evacuation processes. The 

goal of this survey was to enable the incorporation of local knowledge and decision-

making needs at the public citizen and rescue operator level into designing a spatial 

decision support system (SDSS) for flood events.  

Survey Design 

The focus groups of the survey were public citizens and rescue operators. Both regular 

citizens and first responders were asked questions about their flood experiences in the past, 

whether they have ever needed rescue assistance during flooding events, and what 

information they would like to have to help them evacuate. Also, first responders were 

asked questions about their challenges during rescue operations, the information they 

needed, and the information they wished they had to get to people in need. Thirteen 

questions were designed as multiple-choice, select all that apply, and short answers. The 

online version of the survey was implemented using Qualtrics. The survey and the related 

consent materials were approved by the Institutional Review Board (IRB2019-1506D). 

All survey questions along with their multiple choices are presented in Appendix A. 

 

3 Some of the materials presented in this chapter have been previously appeared in the following 

publications by the author: 

Hillin, J., Kharazi, B. A., Li, D., Thompson, C. M., Meyer, M., Zhang, Z., & Behzadan, A. H. (In Press) 

Designing user-centered decision support systems for climate disasters: What information do communities 

and rescue responders need during floods? Journal of Emergency Management. (Accepted 9/7/2022).  
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Survey Sampling 

The survey was conducted using the convenience sampling method. The survey link was 

distributed through email listservs and social media accounts of community partners (e.g., 

Hazard Reduction and Recovery Center (HRRC), Texas Target Communities (TTC), and 

disaster relief NGOs of Cajun Navy Relief and Crowdsource Rescue). Additionally, 

surveys were distributed to participants in community meetings, research presentations, 

and through community partners’ outreach networks and campuswide university emailing 

lists.  

Survey Data 

Survey responses were first cleaned by dismissing incomplete responses or those that 

refused consent. Among 13 questions, 4 short answers were determined as the focus of the 

analysis. Responses for each of the four questions were then imported as distinct projects 

into Atlas.ti (version 9) and then analyzed using the descriptive coding method (Saldaña, 

2021). The type of information (evacuation; built environment) and information 

characteristics (real-time, accuracy) needed were specified in the pattern coding.  

Survey Results Analysis 

Demographic of Respondents 

A total number of 218 responses were collected through the Qualtrics survey. The first 

response was submitted on April 30, 2020 and the last response was submitted on Feb 11, 

2021. Out of 218 responses, 118 responses were female, 94 were male, 1 non-binary and 

5 did not wish to answer. Respondents were 73.73% White or Caucasian, 10.14% 

Hispanic, 5.53% Asian, 1.84% Black or African American, and 8.76% had other ethnicity 
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or multi-ethnicities. At the end of the survey, the youngest responder was 21 years old and 

the oldest was 80 years old. A 50% of respondents (majority) aged between 20 to 40 years 

(1983-2003) years old, 28.44% respondents aged between 40 to 60 years old (1963-1983), 

and 20.62% respondents aged between 60 to 80 years old (1943-1963), and finally 0.92% 

respondents aged more than 80 years old (1937-1943). From all who responded to the 

survey, 212 (97.25% of respondents) were based in Texas, with 2 responses from New 

York, 1 from North Carolina, 1 from Georgia, 1 from Ohio, and 1 from Colorado. Figure 

III-1 presents the distribution of the 212 Texas-based participants in each region of the 

State based on the flood planning regions specified by The Texas Water Development 

Board (TWDB) (The Texas Water Development Board, 2020). As this Figure shows, the 

majority of the participants resides in region 6 – San Jacinto (in/near Houston, N = 107) 

and region 8 – Lower Brazos (in/near College Station and Bryan, N = 73). The income 

level for the 218 respondents is presented in Table III-1. This Table shows that 30 

respondents were first responders (based on their answers to the questions related to flood 

rescue experience) and the rest were ordinary people. Among all respondents, only one 

person did not have mobile device. Based on responses, 33.49% had an Android device, 

62.33% had an iPhone device, and 4.19% had both Android and iPhone devices. Only 

3.72% of respondents had no access to mobile data (without Wi-Fi). 
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Figure III-1 Distribution of respondents in Texas based on TWDB flood planning 

regions (Base map courtesy of Texas Water Development Board). 
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Table III-1 The distribution of income level among respondents. 

Income Level Percentage of Respondents (N = 218) 

Below $14,000 3.21% 

$14,001 … $31,000 8.26% 

$31,001 … $63,000 15.63% 

$63,001 … $113,000 23.85% 

$113,001… $184,000 16.51% 

$184,001 … $248,000 8.72% 

$248,001 … $475,000 7.34% 

Above $475,000 1.38% 

Did not wish to answer 15.14% 

 

Respondents’ Flood Experience 

Out of 218 responses, 32 people stated that they had no first-hand experience with floods, 

and 184 people declared that they had first-hand experience with floods, and 2 people did 

not know. Two respondents (which were based in Texas) reported that they do not know 

if they had first experience with floods. All respondents from states other than Texas had 

first-hand experience with floods. Respondents were asked to provide the number of flood 

events they had experienced (0-5 or more). Table III-2 demonstrates the distribution of 

responses based on the number of flood experiences. Out of 218 responses, only 160 

people answered the question related to evacuation experience, in which 35% indicated 
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that they evacuated). Out of 30 rescue operators, 73.33% declared that they had challenges 

in estimating the depth of floodwater in roads during rescue operations.  

 

Table III-2 Number of flood events experienced by respondents. 

Number of Flood Event Percentage of Respondents (N = 218) 

0 26.73% 

1 19.82% 

2 18.89% 

3 13.36% 

4 6.91% 

5 or more 14.29% 

 

Information Used by Respondents 

For regular citizens, the types of information used during a flood were organized into six 

themes (e.g., notification systems, physical conditions, government sources, online 

sources, social networks, and personal knowledge.) For rescue operators, the types of 

information used during a flood were organized into six themes (e.g., physical conditions, 

real-time information, evacuee information, emergency management organizations, local 

resources, and government sources. For regular citizens, the types of information used 

during a flood were organized into six themes (e.g., notification systems, physical 

conditions, government sources, online sources, social networks, and personal 

knowledge.)  
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Information Desired by Respondents 

For rescue operators, the types of information used during a flood were organized into six 

themes (e.g., physical conditions, real-time information, evacuee information, emergency 

management organizations, local resources, and government sources.) For regular 

citizens, the types of information desired were organized into five broad categories: 

accurate information, advanced warning, evacuation destination/resources, evacuation 

process, and safety.  The type of information desired by rescue operators was grouped into 

categories: rescue information, real-time information, evacuee information, physical 

conditions, and accurate information. 

Community Engagement 

The development of an effective system for flood response requires a thorough 

understanding of the community's needs and perspectives. To gain insight into the 

community's flood risk awareness and gather input on technology development, several 

community meetings were held in addition to the surveys. These meetings provided a 

platform for community members to share their concerns, experiences, and feedback on 

the potential system's design and functionality. During these meetings, the research team 

engaged with community leaders, local officials, and residents to discuss the current state 

of flood response in the area and explore potential solutions. A picture of a meeting with 

a community partner from Port Arthur, Texas is presented in Figure III-2. The team 

presented their developed tools and research findings and sought additional input from the 

attendees. The discussions focused on topics such as the accessibility and usability of the 

flood risk assessment tool, the types of information that should be included, and how the 
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tool could be integrated into the existing emergency response system. Through these 

community meetings, the research team was able to raise awareness about flood risk and 

its potential impacts on the community. The meetings also helped to foster a sense of 

collaboration and trust between the research team and the community, which is essential 

for the successful implementation of any technology or intervention. Overall, the 

community meetings were an essential component of this study, helping to ensure that the 

developed technology would meet the community’s needs and be effective in improving 

flood response and management in the area. 

 

 

Figure III-2 Meeting with students and community partner from Port Arthur, 

Texas. 
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Summary and Conclusions 

Based on survey results, both regular citizens and first responders rely on information 

distributed by the government and physical conditions during flood events. However, the 

sources for getting this information varied between respondents. Based on the identified 

themes of the survey responses, citizens and first responders needed information on 

available local resources, evacuees, emergency management organizations, and real-time 

data. The survey results mainly highlighted a need for accurate, real-time data during flood 

events which differs from the general disaster information distributed by the government 

that takes hours to process. As an example, first responders are more in need of accurate 

information to perform rescues rather than having more data. This finding also complies 

with the study by Salmoral et al. (Salmoral et al., 2020) and Blum et al. (Blum et al., 2014), 

stating that rescue operators require accurate and real-time information. 

On the other hand, responses from regular citizens demonstrated that they mostly rely on 

information from less formal channels or specifically designated for the public, such as 

existing notification systems, social networks, online sources, and personal knowledge. In 

fact, regular citizens tend to need more dependent and accessible communication from 

various sources. That can be the reason behind the increasing use of social media by 

regular citizens for information access. However, according to Mihunov et al. (Mihunov 

et al., 2020), disparities in social media make it more useful for populations less vulnerable 

to disaster impacts (e.g., well-education, employed, higher income, etc.), and not all 

people. 
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It should be noted that this is an ongoing survey, however, the responses received so far 

pointed out clearly to the direction that community and disaster management professional 

both looked for accurate, real-time flood depth information during flood events. In 

conclusion, the number of complete responses so far is sufficiently large for the purpose 

of this study although more responses are expected in the future.  
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CHAPTER IV 4 

COMPUTER VISION FOR FLOOD DEPTH ESTIMATION IN URBAN 

ENVIRONMNETS 

 

In flood events, knowing the depth of floodwater is of critical importance to first 

responders, emergency managers, and ordinary people involved in search and rescue 

operations and community evacuation. This information, however, is not readily available 

or shared in many jurisdictions particularly in the immediate flood aftermath when it is 

most needed. Additionally, current flood mapping methods such as those relying on DEMs 

fail to capture reshaped surface topography and microtopographic variations in flat terrain 

especially in urban areas, leading to large vertical errors. New digital media capture and 

data exchange platforms coupled with advancements in ML, image processing, and 

computer vision for object detection have created new opportunities for remotely 

estimating water level depth in flooded areas. In this Chapter, a new approach to 

 

4 Some of the materials presented in this chapter have been previously appeared in the following 

publications by the author: 
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deep neural networks. Computers, Environment and Urban Systems, 88, 101628. 

https://doi.org/10.1016/j.compenvurbsys.2021.101628. 

Alizadeh, B., Behzadan, A. H. (2022). Crowdsourced-based deep convolutional networks for urban flood 

depth mapping. 2022 European Conference on Computing ion Construction 

https://doi.org/10.48550/arXiv.2209.09200. 

Alizadeh, B., Behzadan, A. H. (2023). Scalable flood inundation mapping using deep convolutional 

networks and traffic signage. Computational Urban Science. (Accepted on 03/12/2023) 

https://doi.org/10.1007/s43762-023-00090-1. 

Alizadeh, B., Li, D., Hillin, J., Meyer, M. A., Thompson, Courtney M., Zhang, Z., and Behzadan, A. H. 

(2022). Human-centered flood mapping and intelligent routing through augmenting flood gauge data with 

crowdsourced street photos. Advanced Engineering Informatics 54 (2022): 101730. 

https://doi.org/10.1016/j.aei.2022.101730 

https://doi.org/10.48550/arXiv.2209.09200
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estimating floodwater depth in street photos using stop signs as measurement benchmark 

was introduced and validated. To estimate flood depth in street photos, two computer 

vision models (Computer Vision Model I and Computer Vision Model II) were developed 

and their performance were evaluated and compared with each other. 

Flood Depth Estimation Using Street Photos 

In this study, image processing technique and computer vision models are utilized to 

measure floodwater depth. The model input is a pair of pre- and post-flood street photos 

taken by ordinary handheld devices (e.g., smartphones, tablet computers, digital cameras), 

and the output is the depth of floodwater in the location where the photos were taken. 

While images can be taken from different angles and different distances from the water 

surface, to measure the depth of the flood, the model relies on the dimensions of a known 

benchmark visible in the image, for which the real size (e.g., in inches) is known. Image 

processing and computer vision are then used to determine the size of this benchmark in 

pixels and calculate a constant measurement ratio (e.g., inches to pixel), which in turn, is 

used to convert all other measurements from pixel to standard units (e.g., inches). 

Past research has investigated the use of various objects for flood depth estimation. For 

instance, Barz et al. (2019) proposed an image retrieval approach with relevance feedback 

to find flood images on social media (Barz et al., 2018). Sazara et al. (2019) trained deep 

neural networks to recognize flooded roads in photos taken by mobile devices (Sazara et 

al., 2019). In another research, the size of submerged objects in water was used to estimate 

the depth of flood with an MAE of approximately 10 cm (Chaudhary et al., 2019). In 

contrast to past work that has used objects with arbitrary shapes and sizes as benchmarks, 
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to increase the practicality of this work in real world flood response operations, the visual 

benchmark selected in this research is ubiquitous (i.e., existing in many places), and have 

standardized shape and dimensions that are known to the model beforehand. In addition, 

to maximize scalability and increase technology adoption among users, the benchmark 

should be relatable, and easy to find and access. This last requirement is of particular 

importance when crowdsourcing is the main source of flood data collection, as past 

research has indicated that participants should be continuously kept motivated and 

engaged to complete delegated tasks with expected quality (Puttinaovarat & Horkaew, 

2020; Sazara et al., 2019). Considering these factors, traffic signs are used in this study as 

standard visual benchmarks. Unlike sophisticated flood measurement sensors, traffic signs 

are omnipresent and easy to identify. In a study by Shinar et al., 78% of local traffic signs 

were perfectly identified by people (regardless of age or group) (Shinar et al., 2003). Stop 

signs, in particular, can be found in many intersections in urban and rural areas. Boeing 

(2018) used OpenStreetMap to analyze 27,000 U.S. street networks and counted 

approximately 50 intersections (~56% three-way and 27.5% four way) per 1 km2 of 

neighborhood-scale street network (Boeing, 2020). While the exact number of stop signs 

in the U.S. is a matter of debate, it is a fact that many intersections feature two-way or 

four-way stop signs to control traffic flow especially when there is high-speed traffic, 

restricted view, or pedestrian crossing (Federal Highway Administration, 2009). In many 

parts of the world, a stop sign is easily recognizable by its octagonal shape with 

standardized equal height and width. In the U.S., traffic sign shapes and dimensions are 

laid out in the Manual on Uniform Traffic Control Devices (MUTCD) and its companion 
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volume, Standard Highway Signs (SHS) (Federal Highway Administration, 2004). The 

size of a stop sign may slightly vary depending on the location it is installed; 30 × 30 

inches in single-lane roads (almost all residential neighborhoods), and 36 × 36 inches in 

multi-lane conventional roads and expressways. While the shape and dimensions of the 

sign itself is standardized, the pole that holds it may or may not be regulated and can be 

made of different material and have different length. 

As shown in Figure IV-1, the depth of floodwater, i.e., 𝑑_𝑤, can be calculated as the 

difference between pole lengths in a pair of pre- and post-flood photos. In Figure IV-1(a), 

knowing the height of the sign octagon in both pixels (𝑠) and in inches (30"), the constant 

ratio 𝑟 is obtained as 30 ⁄ 𝑠 , indicating the number of inches corresponding to one pixel 

in the post-flood photo. Using this ratio, the length of the pole above waterline is calculated 

as 𝑟 × 𝑝, in which 𝑝 is the pole length in pixels. Similarly, In Figure IV-1(b), knowing the 

height of the sign octagon in pixels (𝑠′) and inches (30", same as before), the constant 

ratio 𝑟′ is obtained as 30 ⁄ 𝑠′, indicating the number of inches corresponding to one pixel 

in the pre-flood photo. Using this ratio, the full length of the pole (with no floodwater) is 

calculated as 𝑟′ × 𝑝′, in which 𝑝′ is the pole length in pixels. Note that ratios 𝑟 and 𝑟′ are 

not necessarily equal since the two photos could be taken at different angles and distances 

from the stop sign. The following Subsections describe how pixel dimensions 𝑠, 𝑝, 𝑠′, and 

𝑝′ are extracted with image processing.  
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Figure IV-1 Paired pre- and post-flood photos showing the same stop sign in a 

residential neighborhood. 

 

Computer Vision Model I: Image Processing and Convolutional Neural Networks 

Convolutional Neural Networks for Stop Sign Detection in Photos 

In the first part of this research, the first flood depth estimation model (Computer Vision 

Model I), e.g., a modified version of Mask R-CNN (K. He et al., 2017b), which uses 

RetinaNet (T. Y. Lin et al., 2017)for regression, classification, and mask estimation, is 

implemented based on Keras open-source library (Gulli & Pal, 2017)to detect and generate 

a mask (pixel boundaries) of the stop sign in the input image. Mask R-CNN is a deep 

neural network that is pre-trained on the COCO image dataset (containing 80 classes) for 

instance segmentation (T.-Y. Lin et al., 2014). For this research, any classes other than 

stop signs are filtered out during mask detection. As shown in Figure IV-2, the Mask R-

CNN architecture internally combines two smaller networks, Faster R-CNN (Ren et al., 
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2015) for detecting objects, and an FCN (T. Y. Lin et al., 2017)for understanding the 

image context. The loss function of Mask R-CNN is therefore the sum of the loss functions 

of these two networks. 

Faster R-CNN utilizes region proposal network (RPN) (Ren et al., 2015)to generate region 

proposals, followed by a secondary network that uses these proposals to detect objects and 

draw bounding boxes. The output of the RPN consists of proposed regions with different 

sizes, leading to differently sized feature maps. Prior to classification and bounding box 

regression, these feature maps should be reduced to the same size. For this purpose, region 

of interest (RoI) pooling (Girshick et al., 2014)is used which splits the input feature map 

into a fixed number of roughly equal regions, followed by max pooling on every region. 

The final output of the Faster R-CNN is class labels (classification) and bounding boxes 

(localization). In order to generate object masks inside each bounding box, FCN 

decompresses the image to 1/32 of its original size with blocks of convolution and max 

pooling layers to capture contextual and semantic information. Next, class prediction is 

made, and the image is rescaled to its original size with deconvolution layers and 

upsampling to return spatial information that were lost during downsampling. To 

minimize information loss, spatial data is transferred before downsampling with a skip 

connection (Long et al., 2015b). Figure IV-2 shows the overall architecture of the Mask-

RCNN consisting of two internal networks and the flow of image processing through each 

part. 
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Figure IV-2 Overall architecture of the Mask R-CNN implementation in this 

research. 

 

Image Processing for Pole Detection in Photos 

Pole detection is performed in a two-step process using pre- or post-flood photos with 

generated stop sign masks from previous section. First, all edges in the grayscale input 

image are discovered using Canny edge detector (Liang, 2020), and next, probabilistic 

Hough transform for straight line detection is utilized to create a list of pole candidates by 

selecting edges that form lines. To implement Canny edge detector (R. Wang, 2013), 

images are first converted from the original red-green-blue (RGB) color space to grayscale 

using Equation IV-1, in which 𝑝𝑖𝑥𝑐, 𝑝𝑖𝑥𝑟, 𝑝𝑖𝑥𝑔, and 𝑝𝑖𝑥𝑏 represent the grayscale, red, 

green, and blue values of each pixel, respectively.  

𝑝𝑖𝑥𝑐 = 0.3 × 𝑝𝑖𝑥𝑟 + 0.59 × 𝑝𝑖𝑥𝑔 + 0.11 × 𝑝𝑖𝑥𝑏   Equation IV-1 

The raw output of the Canny edge detector is an edge map which consists of all detected 

edges (regardless of angle and position) in the image. To reduce the noise in the image, a 
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5 × 5 Gaussian filter is used to replace the value of each pixel with the weighted average 

of its adjacent pixels. This eliminates false positives (FPs) and edges that are the least 

consequential (e.g., lines that appear too small, or are too far away). As shown in Equation 

IV-2, the 5 × 5 Gaussian filter is applied (through a convolution operation, *) to the input 

image 𝐼𝑚𝑔𝑖 to generate an output image 𝐼𝑚𝑔𝑜 with smoothened noise. Evidently, the size 

of the Gaussian filter can affect the outcome of edge detection. Generally, while a larger 

filter size lowers the sensitivity to noise, it may as well increase the localization error 

(Pedersini et al., 1997). However, previous work has shown that a 5 × 5 filter is suitable 

in most cases (Delgado, n.d.; Pei-Yung Hsiao et al., 2006). 

𝐼𝑚𝑔𝑜 =
1

159

[
 
 
 
 
2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2]

 
 
 
 

∗ 𝐼𝑚𝑔𝑖    Equation IV-2 

Next, the intensity gradient of each detected edge in 𝐼𝑚𝑔𝑜 is determined by a Sobel filter  

(Sobel, 1978) which returns a value for the first derivative in the horizontal direction (𝐺𝑥) 

and vertical direction (𝐺𝑦). Using these two values, the edge gradient (𝐺) and direction (𝜃) 

are determined using Equations IV-3 and IV-4. The calculated gradient is always 

perpendicular to the edge. 

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2       Equation IV-3 

𝜃 = tanh−1(𝐺𝑥 𝐺𝑦⁄ )       Equation IV-4 

Following the gradient calculation, an edge thinning technique called non-maximum 

suppression is used to compare the edge strength of each pixel with that of the pixel in the 
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positive and negative gradient directions, and subsequently remove pixels that are not 

local maximums in the direction of the edge gradient (Rong et al., 2014). The output of 

this stage is a binary (i.e., grayscale) image of remaining edge pixels providing a more 

accurate representation of real edges in the image. This image is processed with hysteresis 

thresholding, a noise reduction step to determine if weak edge pixels (e.g., pixels detected 

as edges because of noise or color variation) should be kept or eliminated from the final 

image. The literature on Canny edge detector has proposed different values for minimum 

and maximum thresholds based on image type and application. Some have used fixed 

values of 100 and 300 for lower and upper thresholds, respectively (OpenCV Dev Team, 

2019; R. Wang, 2013). Alternatively, threshold values can be determined based on the 

pixel values of an image (Farras A. W., 2020; Liang, 2020). More advanced methods 

involve automated Canny edge thresholding using a Gaussian Kernel, and fuzzy logic-

based threshold selection (Incetas et al., 2019; Powers, 2011; Tanyeri et al., 2019). 

Considering the content and diversity of flood photos used in this study, upper and lower 

thresholds for edge detection are constructed based on percentages of the median of pixel 

intensities in the image. Minimum and maximum threshold values serve as the basis to 

determine whether a pixel belongs to an edge (if its intensity gradient is more than the 

upper threshold) or must be discarded (if its intensity gradient is less than the lower 

threshold). A pixel with an intensity gradient between the lower and upper thresholds is 

assessed in the context of its neighboring connections; if it is connected to a strong edge 

pixel, it will be kept as part of that edge, and otherwise it will be marked as a non-edge 
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pixel. Figure IV-3 shows the steps of the Canny edge detection process applied to a sample 

flooded stop sign image. 

 

Figure IV-3 Canny edge detection process applied to a sample flood image. 

 

Next, probabilistic Hough transform is utilized to detect straight lines in the output image 

of Canny edge detector, as potential pole candidates. Probabilistic Hough transform is 

commonly used to isolate features of a parametrically defined shape (e.g., line, circle, 

ellipse) within an image by a voting procedure (Li et al., 2020). Using this technique, the 

image coordinate system is transformed from the Cartesian space (𝑥, 𝑦) to a polar space 

(𝜌, 𝜃) using Equation IV-5 in which, 𝜌 > 0 and 0 ≤ 𝜃 ≤ 2𝜋. 

𝜌 = 𝑥 cos 𝜃 + 𝑦 cos 𝜃       Equation IV-5 



 

43 

 

The premise of probabilistic Hough transform is that if values defined by each edge pixel 

are plotted, points in the Cartesian space map to curves in the polar Hough parameter 

space. This point-to-curve transformation denotes the Hough transformation for straight 

lines. When viewed in Hough parameter space, points that are collinear in the Cartesian 

space become apparent as they form curves which intersect a common (𝜌, 𝜃) point. Four 

thresholds are defined, i.e., minimum line length (𝐿𝑚𝑖𝑛), maximum allowed gap between 

points on the same line to link them (𝐿𝑔𝑎𝑝), accumulator threshold parameter that 

represents the number of votes for each line candidate (𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), and distance resolution 

of the accumulator in pixels (𝐿𝑟ℎ𝑜). In this research, subsets of candidate points are 

randomly picked, and threshold values are empirically selected as 𝐿𝑚𝑖𝑛 = 30, 𝐿𝑔𝑎𝑝 =

10, 𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 30, and  𝐿𝑟ℎ𝑜 = 1 for pre-flood photos, and 𝐿𝑚𝑖𝑛 = 30, 𝐿𝑔𝑎𝑝 =

10, 𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 80, and  𝐿𝑟ℎ𝑜 = 1 for post-flood photos. The primary reason behind 

selecting two different 𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 values for pre- and post-flood photos is the background 

noise; in pre-flood photos, more line segments are needed to approve the pole line, while 

in post-flood photos, pole line can be identified with fewer line segments. The output of 

this step is a vector of matched endpoints of the detected straight and curved lines. For 

best results, tilt correction (will be discussed later) is later applied to all photos to ensure 

poles are in near vertical position prior to the application of Hough transform for detecting 

straight lines. With stop sign poles in near vertical position, only detected lines that are 

almost vertical are kept. Note that for a given image, the 𝑥-axis runs from left to right, and 

the 𝑦-axis runs from top to bottom with the origin in the top left corner. Several other 

problem-specific assumptions are made to reduce noise and confine the solution space to 
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a desired region within the image (i.e., pole is expected to appear under the sign), 

ultimately leading to an improved output. In particular,  

a. The top of the pole is attached to the midpoint of the bottom edge of the octagon 

sign. The coordinates of this point, (𝑥𝑐𝑜𝑜 , 𝑦𝑐𝑜𝑜), are calculated from the geometry 

of the bounding box detected by the Mask R-CNN model. In particular, 𝑥𝑐𝑜𝑜 

(measured along the horizontal axis of the image) is calculated by taking the 

average of the 𝑥 coordinates of the lower corners of the bounding box (i.e., 𝑥3 and 

𝑥4), while 𝑦𝑐𝑜𝑜 is equal to the 𝑦 coordinate of one of the lower corners of the 

bounding box (𝑦𝑐𝑜𝑜 = 𝑦3 = 𝑦4). This is shown in Figure IV-4. 

b. The bottom of the pole always touches the ground (in pre-flood photos) or the 

waterline (in post-flood photos). If the pole is not titled, then the 𝑥 coordinates of 

the top and bottom points of the pole are (almost) the same. In this case, the 

solution space (i.e., where pole is likely to be located) is horizontally confined 

along the 𝑥 axis to (𝑥𝑐𝑜𝑜 − 𝑤, 𝑥𝑐𝑜𝑜 + 𝑤). The value of 𝑤 can be empirically 

selected without excessively lowering the accuracy of line detection. In this 

research, 𝑤 is set equal to the octagon side (𝑆𝑜𝑐𝑡), as shown in Figure IV-5. 

c. The vertical length of the solution space (ℎ) extends from the bottom edge of the 

octagon sign down to the bottom edge of the image, as shown in Figure IV-5. 

d. In some cases, multiple vertical lines are detected under the octagon sign as pole 

candidates in close proximity from one another (e.g., due to visual inconsistencies 

such as different shades, colors, or textures). This situation is reconciled by directly 

connecting (𝑥𝑐𝑜𝑜, 𝑦𝑐𝑜𝑜) to the endpoint that has the maximum 𝑦 coordinate value 
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among all detected endpoints, i.e., 𝑦 = 𝑦𝑚𝑎𝑥. The pole length is then calculated by 

measuring the distance between 𝑦𝑐𝑜𝑜 and 𝑦𝑚𝑎𝑥, as shown in Figure IV-6. 

 

Figure IV-4 Determining the intersection point of the sign and pole from the stop 

sign bounding box 

 

 

Figure IV-5 Confining the line detection solution space along horizontal axis. 
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Figure IV-6 Approximating the stop sign pole from multiple close line candidates. 

 

Data Description 

A large number of flood photos are taken by people, emergency managers, and rescue 

teams in the aftermath of flood events. Many of these photos (especially those taken in 

urban areas) depict various traffic signs including stop signs that are submerged in 

floodwater. To test the methodology described in the previous section, publicly available 

flood photos that contain at least one visible stop sign are web-mined using keywords such 

as “street”, “stop sign”, and “flood” among others. For each photo, available geotag 

information including location (country, state/province, city, global coordinates), flood 

event name (if known), dates photo was taken and saved, and source (web link) is also 

extracted. Next, each post-flood photo is paired with a pre-flood photo of the same location 

containing the same stop sign, taken from Google Street View (GSV) API. The average 

time to pair a post-flood photo with the correct pre-flood photo can range from a few 

minutes (easy pairing, when geotag information is available) to 30 minutes (difficult 

pairing through excessive manual search or personal experience, with no geotag 
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information). For each pre-flood photo, longitude and latitude data, as well as a link to the 

exact location on Google Maps are stored as meta-data.  

The dataset, named BluPix v.2020.1 contains 186 paired photos of submerged stop signs 

that are processed by Mask R-CNN and Canny edge detector and probabilistic Hough 

transform. Of these, 173 photos depict U.S. locations, and the remaining 13 photos are 

from locations in Canada. Table IV-1 show the geographical distribution of these photos 

across 10 FEMA regions (Ogawa et al., 2010) and Canada. As shown in this Table, the 

majority of paired photos (46%) in the U.S. belongs to FEMA region IV which covers 

locations in Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South 

Carolina, Tennessee, followed by region VI which contains Arkansas, Louisiana, New 

Mexico, Oklahoma, and Texas. A temporal analysis of BluPix v.2020.1 dataset reveals 

that 136 paired photos were taken from flood events that took place between 2011 and 

2020, while 12 were taken from flood events that took place between 2000 and 2010, and 

1 was taken prior to 2000, with the remaining missing date information. In particular, 93 

flood photos were taken since 2017 which coincides with several highly active water-

related events including Hurricane Harvey in Texas (FEMA Region VI) during which 

many people-contributed photos were posted on social media. 
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Table IV-1 Number of paired flood photos in BluPix v.2020.1 dataset in each 

FEMA region and Canada. 

Region Paired 

photos 

Locations included 

I 7 Connecticut, Maine, Massachusetts, New Hampshire, Rhode 

Island, Vermont 

II 13 New Jersey, New York, Puerto Rico, U.S. Virgin Islands 

III 17 Delaware, Maryland, Pennsylvania, Virginia, West Virginia, 

District of Columbia 

IV 42 Alabama, Florida, Georgia, Kentucky, Mississippi, North 

Carolina, South Carolina, Tennessee 

V 17 Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin 

VI 38 Arkansas, Louisiana, New Mexico, Oklahoma, Texas 

VII 21 Iowa, Kansas, Missouri, Nebraska 

VIII 4 Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming 

XI 13 Arizona, California, Hawaii, Nevada, American Samoa, Guam, 

Northern Mariana Islands, Marshall Islands, Micronesia 

X 1 Alaska, Idaho, Oregon, Washington 

Canada 13 Alberta, British Columbia, Ontario, Quebec, Queensland 

 

Furthermore, 91% of flood photos were published on Google image repository (a.k.a., 

Google Images), 6% were accessed from Facebook, and other social media sites (i.e., 

Twitter, Pinterest) accounted for 1% or less of all photos in BluPix v.2020.1 dataset. An 
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interesting observation that in part motivated this research is that aside from Google, 

which is considered a search engine rather than a crowdsourcing platform, there is no 

dedicated online tool or website for ordinary people to upload flood photos, which adds 

to the already complex problem of collecting and analyzing these photos for the purpose 

of calculating and sharing floodwater depth information.  

Results and Analysis 

To prepare the ground-truth information, all stop signs and pole objects in the dataset are 

separately labeled. Figure IV-7 shows ground-truth examples in pre- and post-flood 

photos. This information is later used to determine the accuracy of Mask R-CNN in 

detecting stop sign masks, and Canny edge detector and probabilistic Hough transform in 

estimating pole lengths. Data processing is conducted on a Lenovo ThinkPad laptop 

computer with 7 cores, 9750H CPU, 16 GB RAM, and Nvidia Quadro T1000 GPU with 

a 4 GB memory.  

 

Figure IV-7 Ground-truth information in (a) a pre-flood photo, and (b) its post-

flood paired photo. 
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To evaluate the performance of Mask R-CNN, the intersection over union (IoU) of 

detected and ground-truth masks is calculated by dividing the overlapping area between 

the two masks by their union area. IoU is a validated accuracy metric in object detection 

(K. He et al., 2017a; Z. Huang et al., 2019; Pi et al., 2020b). In addition to IoU, precision 

and recall are determined using Equations IV-6 and IV-7. In these Equations, true positive 

(TP) and true negative (TN) refer to the number of correct detections; TP indicates positive 

detections that are correct, while TN indicates negative detections that are correct. On the 

other hand, FP and false negative (FN) refer to the number of incorrect detections; FP 

indicates positive detections that are incorrect, while FN indicates negative detections that 

are incorrect (Powers, 2011). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP 
       Equation IV-6  

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP+FN
        Equation IV-7 

Next, average precision (AP) is calculated by plotting precision as a function of recall and 

calculating the area under the curve (Dunham, 2006). From all 186 photos in BluPix 

v.2020.1 dataset, 27 are excluded since they only depict partially visible stop sign or sign 

pole. In the remaining 159 paired photos, stop signs are successfully detected in 142 pre-

flood and 151 post-flood photos, resulting in 89.31% and 94.97% recall, respectively. 

Table IV-2 summarizes the performance of stop sign detection task in pre- and post-flood 

photos. 
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Table IV-2 Performance of stop sign detection in pre- and post-flood photos. 

Metric Pre-flood Post-flood 

𝒏 = 𝟏𝟓𝟗 𝒏 = 𝟏𝟓𝟗 

IOU (%) 93.36 92.29 

Precision (%) 100 100 

Recall (%) 89.31 94.97 

AP (%) 89.31 94.97 

Processing time (s) 2.23 2.85 

 

To evaluate the performance of Canny edge detector and probabilistic Hough transform 

for straight line detection, estimated pole length is compared with ground-truth length, and 

the root mean square error (RMSE) is calculated using Equation IV-8, in which, 𝑝 and 𝑝′ 

are detected and ground-truth lengths in pixels, respectively (Figure IV-1). Several visual 

features in analyzed photos lead to misdetection or highly erroneous pole detection. For 

pre-flood photos, for example, the top three sources of error include image background 

(𝐸𝑟𝑝 = 50.78" for 6 photos with cluttered background), pole sideways tilt (𝐸𝑟𝑝 = 33.90" 

for 4 photos with excessive pole tilt), and pole shape (𝐸𝑟𝑝 = 33.73" for 8 photos with 

unusual pole shape). Similarly, for post-flood photos, the top three sources of error include 

wavy water surface (𝐸𝑟𝑝 = 69.80" for 45 photos), water reflection (𝐸𝑟𝑝 = 55.53" for 47 

photos with pole reflection in water), and pole sideways tilt (𝐸𝑟𝑝 =  16.93" for 5 photos 

with excessive pole tilt). Detection error due to the pole sideways tilt is further investigated 

in another section since this source of error is a common issue in both categories of pre- 
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and post-flood photos. A discussion of other error types, i.e., water reflection, pole shape, 

background effects, and image resolution, is beyond the scope of this study, and will be 

pursued as part of the future work in this research. 

𝐸𝑟𝑝 = √
1

𝑁
∑ (𝑝 − 𝑝′)2𝑁

𝑚=1        Equation IV-8 

Table IV-3 summarizes the performance of pole detection task in a subset of 42 pre-flood 

and 42 post-flood photos that were ultimately selected. To isolate and further study the 

effect of sideways tilt, photos in this subset do not depict unusual pole shapes, excessively 

cluttered background, water reflection, and wavy water surface. Each selected photo 

contains a detected stop sign (by Mask R-CNN) and at least one detected line (by edge 

and line detectors), and is assigned to one of the two groups of qualified photos showing 

a stop sign without tilt, or those showing a stop sign with excessive sideways tilt (e.g., 

±25°).  

 

Table IV-3 Performance of pole detection in pre- and post-flood photos before tilt 

correction. 

Metric Pre-flood (all, no-tilt, tilted) Post-flood (all, no-tilt, tilted) 

𝒏 = 𝟒𝟐 𝒏 = 𝟑𝟖 𝒏 = 𝟒 𝒏 = 𝟒𝟐 𝒏 = 𝟑𝟕 𝒏 = 𝟓 

RMSE (in.) 21.67  20.38 33.90 15.30 15.08 16.93 

Processing time (s) 1.78 1.76 1.93 2.07 1.94 2.19 
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Pole Tilt Correction 

The general approach to tilt correction is to apply a reverse rotation to the image to visually 

rectify tilt. Given the standard shape of the stop sign, the amount of tilt (expressed in the 

3D space by yaw, pitch, and roll angles, as in Figure IV-8) is determined based on the 

appearance of the octagon sign. The positive direction of rotations about each axis is 

determined using the right-hand grip rule (Cutnell & Johnson, 1998). First, a template 

octagon of 200 × 200 pixels is created in a binary color space and rotated along 𝑥, 𝑦, and 

𝑧 axes. The range of rotations for pitch and yaw angles is set to (−45°, +45°) with 2° 

increments, because above this region the stop sign is hardly visible to Mask R-CNN. 

Since an octagon has rotational symmetry of order 8 with an internal angle of 135° and a 

central angle of 45°, the shape of the octagon repeats in every 45° of rotation along the 𝑧 

axis. By limiting the range of the central rotation angle (i.e., roll) to (−35°, +35°) with 2° 

increments, a total of 283,500 rotation combinations in the 3D space are created and used 

as benchmarks to approximate yaw, pitch, and roll angles of the detected stop sign mask. 

Next, the mask is resized to the template octagon and laps over each benchmark octagon. 

As shown in Figure IV-9, in each case, the pixel overlap (shown as 𝑂𝑙) of the stop sign 

mask and the benchmark octagon is calculated. The comparison leading to the maximum 

overlap area (i.e., 𝑂𝑙𝑚𝑎𝑥) is selected as the one with closest rotation angles (in the 3D 

space) to the detected stop sign mask. Applying the reverse rotation to the image corrects 

the tilt problem by bringing the pole closer to vertical position. Since the size of the mask 

and the location of the bounding box may change as a result of this operation, the image 
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is reprocessed by Mask R-CNN to detect the stop sign mask, and Canny edge detector and 

probabilistic Hough transform to estimate pole length. 

 

Figure IV-8 Three different directions for rotation. 

 

 

Figure IV-9 Title angle detection using template stop signs. 

 

Table IV-4 summarizes the performance of pole detection task in pre- and post-flood 

photos after tilt correction. Comparing Table IV-3 and Table IV-4, it is evident that 
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applying tilt correction reduces the error of pole detection in both pre- and post-flood 

photos. In particular, the overall error in pole detection after tilt correction is 17.43" 

(compared to 21.67" in Table IV-3) in pre-flood photos and 8.61" (compared to 15.30" 

in Table IV-3) in post-flood photos. It can thus be concluded that the designed tilt 

correction method improves the accuracy of pole detection, especially in post-flood photos 

where the presence of sideways tilt is more apparent. 

 

Table IV-4 Performance of pole detection in pre- and post-flood photos before tilt 

correction. 

Metric Pre-flood (all, no-tilt, tilted) Post-flood (all, no-tilt, tilted) 

𝒏 = 𝟒𝟐 𝒏 = 𝟑𝟖 𝒏 = 𝟓 𝒏 = 𝟒𝟐 𝒏 = 𝟑𝟕 𝒏 = 𝟓 

RMSE (in.) 17.43 16.49 26.39 8.61 9.56 1.62 

Processing time (s) 3.34 3.35 3.31 3.56 3.32 3.71 

 

Floodwater Depth Estimation 

Knowing the pole length in paired pre- and post-flood photos taken from the same 

location, the depth of floodwater 𝑑𝑤 is calculated as the difference between the two pole 

lengths. Figure IV-10 shows sample results from floodwater depth calculation. In Figure 

IV-10(a), pole lengths in pre- and post-flood photos are estimated as 47.26 inches 

(compared to the ground-truth of 47.81 inches) and 23.61 inches (compared to the ground-

truth of 24.88 inches), indicating 23.65 inches of floodwater. 
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Figure IV-10 Examples of floodwater depth estimation for paired pre- and post-flood 

photos. 

 

Overall, floodwater depth estimation leads to an MAE of 12.63 inches. In comparison, 

Cohen et al. (2019) reported an average absolute difference of 18-31 cm (approximately 

7-12 inches) in estimating the depth of flood for coastal (using a 1-m DEM) and riverine 

(using a 10-m DEM) locations (Cohen et al., 2019), Chaudhary et al. (2019) obtained an 

MAE of 10 cm (approximately 4 inches) using social media images that depict submerged 

objects of various sizes (Chaudhary et al., 2019), and Park et al. (2021) presented an MAE 

value of 6.49 cm (approximately 2.5 inches) using images of flooded vehicles (Park et al., 

2021). However, it must be noted that the real added value of the developed technique in 

this study is its generalizability to new scenarios (stop signs are omnipresent and easy to 

locate), as well as its scalability by significantly increasing the number of points where 

floodwater depth estimation can be calculated. 
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Computer Vision Model II: Training Convolutional Neural Networks for Flood 

Depth Estimation 

Object Detection Model for Pole Detection 

For visual recognition of stop signs and their poles, a robust and accurate object detection 

model is desired. Moreover, to implement the flood depth estimation technique on mobile 

devices, the model should be computationally light. To satisfy these two design 

conditions, You Only Look Once (YOLO) v4 (Bochkovskiy et al., 2020) was utilized for 

stop sign and pole detection. YOLOv4 is fast and accurate, and features a light version 

(a.k.a., Tiny YOLO) for implementation on mobile devices. Other object detection models 

such as RetinaNet-101-500 (T. Y. Lin et al., 2017), R-FCN, Single Shot Detector (SSD) 

321 (W. Liu et al., 2016), and Deconvolutional Single Shot Detector (DSSD) 321  (Fu et 

al., 2017) achieve mAP of 53.1% (at 11 frames per second (FPS)), 51.9% (at 12 FPS), 

45.4% (at 16 FPS), and 46.1% (at 12 FPS) on the Microsoft COCO dataset (T.-Y. Lin et 

al., 2014), respectively. By comparison, YOLOv3-320, YOLOv3-416, and YOLOv3-608 

models (Redmon & Farhadi, 2018) yield mAP of 51.5% (at 45 FPS), 55.3% (at 35 FPS), 

and 57.9% (at 20 FPS) on the same dataset, respectively. YOLOv4 surpasses YOLOv3 in 

terms of speed and accuracy, by achieving 65.7% mAP at 65 FPS on the Microsoft COCO 

dataset. This superior performance is primarily the result of using a different backbone in 

the YOLOv4 model. Particularly, the model utilizes the cross-stage-partial-connections 

(CSP) network with Darknet-53 (Bochkovskiy, 2020) as the backbone for more efficient 

feature extraction. As shown in Figure IV-11, this backbone extracts essential features 

from the input image, which are then fused in the neck of the YOLO model. The neck is 
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comprised of layers that collect feature maps from different stages. This part of the model 

consists of two networks, namely spatial pyramid pooling (SPP)  (K. He et al., 2015)and 

path aggregation network (PANet) (Liu S. et al., 2018). The neck consists of several top-

to-bottom paths and bottom-to-top paths that better propagate layer information. Similar 

to the head of YOLOv3, the head of YOLOv4 adopts the feature pyramid network (FPN) 

(T. Y. Lin et al., 2017), predicts object bounding boxes, and outputs the coordinates along 

with the widths and heights of detected (Redmon & Farhadi, 2018) through three YOLO 

layers. 

 

Figure IV-11 The architecture of the YOLOv4 network adopted in this research. 

 

Pre-trained model 

The YOLOv4 model is pre-trained on the publicly available Microsoft COCO dataset to 

detect 80 object classes. To train the adopted model on the target dataset in this study, 

transfer learning is used, which is a validated approach for training a CNN model on a 

relatively small dataset (a.k.a., target dataset) by transferring pre-defined weights (that the 

network has learned when trained on a large dataset) to allow the model to detect relevant 
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intermediate features (Gao & Mosalam, 2018; Han et al., 2018; Hussain et al., 2019; 

Tammina, 2019). The dataset used for training has images containing two classes: stop 

sign and pole. This reduces the output size of YOLO layers from 80 classes to 2 classes. 

Using transfer learning, all network weights except those of the last three YOLO layers 

are kept constant (i.e., frozen). At the beginning of the training process, the weights of the 

three YOLO layers are randomly selected, and then constantly optimized with the goal of 

maximizing the mAP for pole and stop sign detections. At these optimal values, the model 

is neither overfitting (i.e., unable to detect objects in new data due to overly learned 

features in the training set and forgetting general features) nor underfitting (i.e., unable to 

detect objects in training data and new data due to limited features that were learned).   

Clustering The Training Set 

YOLO models use pre-defined anchor boxes, which are a set of candidate bounding boxes 

with fixed width and height initially selected based on the dataset, and subsequently scaled 

and shifted to fit the target objects (Ju et al., 2019). The YOLOv4 model, in particular, 

utilizes nine anchor boxes. Therefore, all 1,262 ground-truth boxes in the training set 

(containing instances of both stop sign and pole classes), shown in Figure IV-12(a), are 

clustered into nine groups using k-means clustering (k = 9) (Redmon & Farhadi, 2018). 

The centroids of these nine clusters are used to define nine anchor boxes, as illustrated in 

Figure IV-12(b). 
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Figure IV-12 (a) Nine clusters (k = 9) corresponding to the training set, and (b) 

Recalculated anchor boxes for the in-house dataset 

 

Training the Model 

Following Bochkovskiy (2020), the adopted YOLOv4 model is trained for 4,000 iterations 

(2,000 iterations for each class), with a learning rate of 0.001 using Adam optimizer 

(Kingma & Ba, 2014), with a batch size of 1 and subdivision of 64. The Darknet-53 

(backbone of this model) is built in Windows on a Lenovo ThinkPad laptop computer with 

7 cores, 9750H CPU, 16 GB RAM, and Nvidia Quadro T1000 GPU with a 4 GB memory. 

The network resolution (i.e., image input size) is reduced to the size of 320 × 320 × 3 to 

lower computational cost and time. The total processing time for training the model is 

approximately 12 hours, with an average loss of 0.567. 

Random and real-time data augmentation is automatically applied to the training set to 

increase the size of training data by creating slightly modified copies of existing images. 
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Past studies have investigated various approaches to data augmentation. In particular to 

the YOLO architecture, Kang et al. (2019) changed the hue, saturation and exposure of 

images for training a Tiny YOLO model to detect fire (Kang et al., 2019). Ma et al. (2020) 

applied color jittering and saturation, exposure, and hue change for augmenting images of 

thyroid nodules for training a YOLOv3 model (Ma et al., 2020). Koirala et al. (2019) 

augmented images of fruits for training a YOLO model by modifying hue, saturation, jitter 

and multiscale (Koirala et al., 2019). Lastly, Niu et al. (2020) applied image mosaic, 

horizontal flipping, and image fusion for augmenting images of sanitary ceramics for 

training a Tiny YOLO model (Niu et al., 2020). In this study, hue, saturation, and exposure 

of training samples are changed within [-18…+18], [0.66…1.5], and [0.66…1.5], 

respectively as recommended by Bochkovskiy et al. (2020). Also, a Jitter (random image 

cropping and resizing by changing the aspect ratio) of 0.3 is implemented for data 

augmentation. The maximum jitter allowed in data augmentation is 0.3 (R. Hu et al., 2020; 

Ma et al., 2020). Moreover, 50% of images are flipped horizontally but no image is flipped 

vertically (R. Hu et al., 2020). Lastly, 50% of images are augmented with a mosaic by 

combining four different images into one image (Hao & Zhili, 2020).  

Validating the Model 

To prevent overfitting (i.e., a model that is exactly fitted to the training data, preventing it 

from correctly detecting new data), model performance is monitored on validation sets 

using a 5-fold cross validation approach (Browne, 2000; Islam et al., 2020; Lyons et al., 

2018; Seyrfar et al., 2021). Using this approach, 160 photos are randomly drawn (without 

replacement) from the training set (20% of the total of 800 images in the training set) for 
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five times as validation sets, and the remaining photos are used for model training. The 

model is then trained on each training set for 4,000 iterations and validated on the 

corresponding validation set. The number of epochs is the number of iterations divided by 

the number of images over the batch size. With the batch size of 1, there are a total of 5 

epochs in 4,000 iterations. During the training process, the highest mAPs on the validation 

sets along with the corresponding number of iterations are saved. Next, average 

performance is calculated as the average of obtained mAP values across all validation sets. 

The optimum number of iterations is also computed as the average of the best number of 

iterations (corresponding to the highest mAP) in all validation sets. In this study, the 

average mAP and average iteration numbers achieved in 5-fold cross validation are 

97.04% and ~3,000 (since model weights are saved at every 1,000 iterations, the optimum 

number of iterations is rounded to 3,000 to be exact). This means that after 3,000 iterations, 

the model shows a tendency to overfit to the training data. Ultimately, the model is trained 

on the entire training and validation sets for the obtained optimum number of iterations 

(i.e., 3000), and the mAP at 3000th iteration is reported. The set of network weights saved 

at this number of iterations is marked as optimum and used for testing the model. Table 

IV-5 shows the validation output of the trained model on each validation set.  
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Table IV-5 The highest average performance of the trained model on five 

validation sets using 5-fold cross validation (S: Stop sign; P: sign pole; S+P: stop 

sign and sign pole). 

Metric Class 

Validation set Average of 

5 validation 

sets 

1 2 3 4 5 

Average IoU S+P 83.74% 85.05% 86.82% 85.92% 84.75% 85.26% 

Precision @ 

0.25 conf 

S+P 

95.00% 97.00% 97.00% 96.00% 97.00% 96.40% 

Recall @ 

0.25 conf 

S+P 

94.00% 97.00% 96.00% 95.00% 94.00% 95.20% 

AP 

S 97.37% 97.37% 97.37% 97.37% 97.37% 97.37% 

P 97.37% 97.37% 97.37% 97.21% 94.20% 96.70% 

mAP @ 0.50 S+P 97.37% 97.37% 97.37% 97.29% 95.78% 97.04% 

No. of 

iterations 

S+P 

3,000 3,500 2,800 3,500 2,400 

3,025 

 

Tilt Correction 

Over time or as a result of floodwater flow, traffic signs can be tilted in any direction, 

leading to the underestimation of the submerged pole height by the YOLOv4 model (since 

detected bounding boxes are not tilted), and eventually erroneous floodwater depth 

calculation. In cases where both pre- and post-flood photos are tilted by the same angle, 

floodwater depth calculation is not impacted by the tilt. However, if the degrees of tilt 



 

64 

 

differ between pre- and post-flood photos of the stop sign, pole length estimation should 

be adjusted prior to calculating the floodwater depth. In Figure IV-13, pre-flood and post-

flood stop signs are presented with unequal tilt degrees (α degrees for pre-flood stop sign 

and β degree for post-flood stop sign). For each photo, the actual pole length is the reverse 

projection of the height of the detected bounding box (𝑃 and 𝑃′) by the degree of tilt (α 

and β). Equation IV-9 presents the calculation of flood depth considering unequal degrees 

of tilt for a given paired stop sign photo. 

𝑊 = 𝑃 (
cos𝛼

cos𝛽
) − 𝑃′        Equation IV-9 

 

 

Figure IV-13 Adjusting flood depth estimation for pre-flood and post-flood stop 

signs with unequal degrees of tilt. 

 

To automatically detect the degree of sideways tilt, a tilt correction technique is 

implemented and applied before stop sign and pole detection. By visually inspecting the 

photos in the dataset, it is observed that the maximum tilt does not exceed 25º. Thus, a 

range of [-25º…+25º] was selected for tilt correction. Next, as shown in Figure IV-14, the 

input image is rotated from 0 to -25º clockwise (in 5º intervals) and from 0 to +25º 
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counterclockwise (in 5º intervals). Generated images are then processed by the trained 

YOLO model for stop sign and pole detection. The image with the minimum width of the 

pole detection bounding box is ultimately selected as the one containing the most vertical 

pole. Consequently, the degree of tilt that was applied to the original image to generate 

this image is calculated as the tilt angle (β degrees for pre-flood stop sign and α degree for 

post-flood stop sign). 

 

 

Figure IV-14 Tilt detection approach (base photo is courtesy of 

KjzPhotos/Shutterstock). 
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Model Performance 

In object detection, a commonly used metric for measuring model performance is mAP 

(Ren et al., 2017; Turpin & Scholer, 2006). The basis of mAP calculation across all classes 

is the average precision for each individual class. In turn, the AP for any given class is 

measured using IoU (Javadi et al., 2021; Kido et al., 2020; Nath & Behzadan, 2020), which 

is calculated for each detection based on the overlap between the predicted bounding box 

(𝐵′) and the ground-truth bounding box (𝐵) (Equation IV-10). Following this, the detected 

object is classified as correct (if the IoU is above a predefined threshold, typically 50%), 

or incorrect (if the IoU is below the threshold) (Nath & Behzadan, 2020; L. Zhu et al., 

2021). Based on the correctness of the detected object, TP (correct classification to a 

class), FP (incorrect classification to a class), and FN (incorrect classification to other 

classes) cases are counted. Next, Equation IV-11 and Equation IV-12 are used to calculate 

precision (model’s ability to detect only relevant objects) and recall (model’s ability to 

detect all relevant classes) based on TP, FP and FN for each class (Guo et al., 2021; Mao 

et al., 2021; Padilla et al., 2020; Xu et al., 2021). It must be noted that true negative (TN) 

cases are not considered in object detection when measuring model performance, as there 

are countless number of objects (belonging to a large number of classes) that should not 

be detected in the input image (Padilla et al., 2020). 

𝐼𝑜𝑈 =
𝐵′∩𝐵

𝐵′∪𝐵
         Equation IV-10 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
        Equation IV-11 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
       Equation IV-12 
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To calculate the AP of any object class, all detections are initially sorted based on their 

confidence scores in descending order, and Equation IV-13 is then applied. In this 

Equation, 𝑁 refers to the total number of detected bounding boxes, 𝑖 refers the rank of a 

particular detection in the sorted list, 𝑃𝑖 refers to the precision of the 𝑖th detection, and 𝛥𝑟 

is the change in recall between two consecutive detections 𝑖th and (𝑖 + 1)th. Finally, mAP 

is calculated as the AP over all classes, as formulated by Equation IV-14 (Lyu et al., 2019; 

Nath & Behzadan, 2020).  

𝐴𝑃 =
1

𝑁
 ∑ 𝑃𝑖∆𝑟𝑖

𝑁
𝑖=1         Equation IV-13 

𝑚𝐴𝑃 = ∑ 𝐴𝑃𝑖
𝑁
𝑖=1         Equation IV-14 

Flood Depth Estimation 

Flood depth is estimated using the YOLOv4 model trained on photos of stop signs taken 

before and after flood events. The general framework for detecting stop signs and their 

poles in pre- and post-flood photos and estimating flood depth is illustrated in Figure IV-

15. As shown in this Figure, paired pre-flood and post-flood photos of a stop sign are 

processed by presenting them to the model as two separate inputs. The model then detects 

the stop sign and its pole in each image, and measures the length of the visible part of the 

detected poles using geometric calculations based on the size of stop signs. Next, the depth 

of floodwater at the location of the stop sign is estimated as the difference between pole 

lengths in pre- and post-flood photos. 
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Figure IV-15 Workflow for estimating flood depth in a sample paired pre- and 

post-flood photos (base post-flood photo is courtesy of Erich Schlegel/Getty Image). 

 

In addition to evaluating the model performance in stop sign and pole detection, its ability 

to estimate flood depth must be assessed. The literature in this field has used MAE as an 

informative metric to describe the discrepancy in flood depth estimation (Alizadeh & 

Behzadan, 2022; Alizadeh Kharazi & Behzadan, 2021a; Chaudhary et al., 2019; Cohen et 

al., 2019; Park et al., 2021). In this study, the error of pole detection in pre-flood and post-

flood photos is determined as the difference between ground-truth pole length (𝑙𝑔) and 

detected pole length (𝑙𝑑). The absolute error in a single image is then calculated as the 

cumulative error in pre-flood and post-flood photos. Since the depth of flood is measured 

based on the difference between pole lengths in 𝑀 paired pre- and post-flood photos, the 

MAE for flood depth estimation can be determined as the average of absolute errors in all 

paired photos (Equation IV-15). 

𝑀𝐴𝐸 =
1

𝑀
∑ ⃒ (𝑙𝑔𝑝𝑟𝑒 − 𝑙𝑑𝑝𝑟𝑒) + (𝑙𝑔𝑝𝑜𝑠𝑡 − 𝑙𝑑𝑝𝑜𝑠𝑡)⃒

𝑀
1   Equation IV-15 
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Data Description 

Table IV-6 shows a detailed breakdown of the image datasets used to train and test the 

model. The data used for training the adopted YOLO model to detect stop signs and sign 

poles consists of two image datasets: pre-flood photos and post-flood photos (Blupix 

v.2021.2). Each dataset is described in detail in the following sections. The data used for 

testing the YOLO model comprises 176 pre-flood and 172 post-flood photos drawn from 

the Blupix v.2021.1 dataset (containing 224 pairs of pre- and post-flood photos, i.e., 448 

photos in total), by filtering out photos with very low resolution or those in which entire 

poles are not captured. The Blupix v.2021.1 dataset is an expanded version of the Blupix 

v.2020.1 (Alizadeh Kharazi & Behzadan, 2021b) which contained 186 pairs of pre- and 

post-flood photos; i.e., 372 photos in total. 
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Table IV-6 Overview of the training and test datasets. 

Dataset Subset Source Language Count Total 

Training 

set 

(Blupix 

v.2021.2) 

Post-flood Web-mining English 196 800 

Spanish 6 

French 55 

Turkish 13 

Synthetic English 64 

Non-labeled English 61 

Pre-flood COCO English, Spanish, 

French, Turkish, 

Arabic, etc. 

334 

Non-labeled English 71 

Test set 

(Blupix 

v.2021.1) 

Post-flood Web-mining English 164 348 

French 8 

Pre-flood Web-mining English 168 

French 8 
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Pre-flood training dataset 

There are publicly available large-scale datasets containing images of stop signs. The pre-

flood training dataset is generated by extracting a subset of photos of stop signs with the 

entire stop sign poles in the photo from the Microsoft COCO dataset. Figure IV-16 shows 

examples of stop sign photos in different countries, with different forms and pole shapes, 

extracted from the Microsoft COCO dataset. Although all stop sign objects were already 

annotated in the Microsoft COCO dataset, it was found that some annotations were not as 

accurate as expected. For example, shapes of masks drawn over stop signs were not always 

octagonal. To resolve this problem, all extracted images were re-annotated by the author. 

Ground-truth bounding boxes were determined by manual labeling, e.g., outlining stop 

signs and poles by polygons using LabelMe software (Wada, 2016), which for each photo 

took approximately 45 seconds. Although annotating images with rectangular bounding 

boxes was sufficient for implementing the YOLO model, it was ultimately decided to 

annotate using masks to achieve more accurate shapes (octagonal masks over stop signs 

and quadrilateral masks over sign poles) and to facilitate the generalizability of the 

annotations for future studies. At the conclusion of the annotation step, all masks were 

converted to bounding boxes which is the required input format of the YOLO model. 

Sample annotated pre- and post-flood photos are shown in Figure IV-17. These photos 

depict a stop sign at the intersection of Tumbling Rapids Dr. and Hickory Downs Dr. in 

Houston, Texas. The post-flood photo was obtained via crowdsourcing after Hurricane 

Harvey (2017), and the pre-flood photo was taken by the authors on January 23, 2021. 
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Figure IV-16 Photos of various stop signs in different forms and languages 

available from the Microsoft COCO dataset. 
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Figure IV-17 Sample annotated (a) pre-flood photo, and (b) post-flood photo (base 

photo in (b) is courtesy of Erich Schlegel/Getty Images). 

 

Post-flood training dataset 

For post-flood photos, an in-house dataset is created which contains 270 web-mined 

photos of flooded stop signs. Web-mining is conducted using related keywords such as 

“flood stop sign”, “flood warning sign”, and their translations in three other languages 

(i.e., Spanish, French, Turkish). To increase the generalizability of the model, also photos 

taken from the back side of the sign, those depicting tilted poles or reflections in water, as 

well as photos taken in daylight or nighttime, photos with clear or noisy backgrounds, and 

photos taken in different weather conditions were included. Additionally, to minimize 

detection error, the dataset is further balanced by generating synthetic training data 

(FEINGERSH et al., 2007; T. Y. Hu et al., 2021; Shaghaghian & Yan, 2019; Tremblay et 
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al., 2018). In particular, a new set of post-flood photos depicting flooded traffic signs 

(other than stop signs) is imported in a photo editing tool where the depicted traffic signs 

are replaced with stop signs (keeping the pole unchanged). Using this method, 64 synthetic 

images are added to the dataset which results in a total of 334 post-flood photos.  

Non-labeled objects 

Since the model is trained on stop signs in different languages (with white text on a red 

octagonal shape), it could learn overly detailed features that may not be generalizable, 

resulting in potentially FP cases. To resolve this problem, the training set is further 

enriched with samples that are visually proximal to stop signs but are not stop signs, to 

force the model to learn distinctive characteristics specific to stop signs while avoiding 

FPs. In particular, 71 web-mined pre-flood photos and 61 web-mined post-flood photos 

of other traffic signs similar to stop signs (such as “Do Not Enter” signs) are added to the 

training dataset. 

Results and Analysis 

Performance of the trained model 

In this section, the performance of the trained YOLOv4 model is evaluated on the test 

dataset, and results are discussed. For the test set, 176 pre-flood and 172 post-flood photos 

were extracted from the Blupix v.2021.1 dataset by filtering out photos with significantly 

low resolution or those in which parts of poles and/or stop signs were not visible. Of these 

pre- and post-flood photos, 163 photos are paired. Table IV-7 summarizes model 

performance with the optimum trained weights when tested on the test set. As shown in 

this Table, the AP calculated for stop sign and pole detection in pre-flood photos is 100% 
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and 99.41%, respectively. Similarly, the AP calculated for stop sign and pole detection in 

post-flood photos is 99.73%, and 98.73%, respectively. The mAP for pre- and post-flood 

photos is 99.70% and 99.23%, respectively. The relatively higher mAP for pre-flood 

photos can be attributed to less noise in these photos compared to post-flood photos. The 

average detection times for all detections in pre-flood and post-flood photos are 0.05 and 

0.07 seconds, respectively, which is close to real-time. 

 

Table IV-7 Performance of the trained model in detecting stop signs and poles in 

pre- and post-flood photos of the test set (S: Stop sign; P: sign pole; S+P: stop sign 

and sign pole). 

Metric Class Pre-flood 

(n = 176) 

Post-flood 

(n = 172) 

All photos 

(n = 348) 

Average IoU S+P 93.85% 86.25% 90.05% 

Precision @ 0.25 conf S+P 0.99 0.94 0.96 

Recall @ 0.25 conf S+P 0.99 0.95 0.97 

AP S 100.00% 99.73% 99.84% 

P 99.41% 98.73% 99.16% 

mAP @ 0.50 S+P 99.70% 99.23% 99.50% 

F1-score S+P 0.99 0.94 0.97 

Average detection 

time (sec) 

S+P 0.05 0.07 0.05 
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Without considering the uneven degrees of tilt for few paired photos, the model can 

calculate pole lengths in test images with an MAE of 1.856 in. and 2.882 in. for pre- and 

post-flood photos, respectively. The slightly higher error corresponding to post-flood 

photos can be primarily attributed to the presence of visual noise in post-flood scenes. To 

examine the tilt correction method, 37 images of stop signs in the test set with uneven pole 

tilt degrees in pre- and post-flood photos are identified. After implementing the tilt 

correction technique, the MAE of the trained YOLOv4 model on the Blupix v.2021.1 

dataset is reduced to 1.723 in. and 2.846 in. for pre- and post-flood photos, respectively, 

showing a slight improvement in flood depth estimation outcome as a result of 

implementing the tilt correction technique. However, it is anticipated that with more paired 

photos depicting uneven degrees of tilt, the reduction in error becomes more significant. 

Table IV-8 summarizes model performance on the test set. To calculate the error of flood 

depth estimation, ground-truth floodwater depth (i.e., the difference between ground-truth 

pole lengths in paired pre- and post-flood photos) is compared with the estimated 

floodwater depth (i.e., the difference between detected pole lengths in paired pre- and post-

flood photos). The MAE of the model for flood depth estimation on 163 paired photos 

were achieved as 4.737 in. and 4.710 in. before and after implementing the tilt correction 

technique, respectively. 
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Table IV-8 Performance of the trained model in estimating pole lengths in pre- and 

post-flood photos of the test before and after tilt correction. 

Source Metric Pre-flood 

(n = 176) 

Post-flood 

(n = 172) 

Paired 

photos 

(n = 163) 

Before tilt 

correction 

RMSE (in.) 3.924 5.557 7.847 

MAE (in.) 1.856 2.882 4.737 

Average processing 

time (s) 

0.05 0.08 0.08 

After tilt 

correction 

RMSE (in.) 3.355 5.544 7.857 

MAE (in.) 1.723 2.846 4.710 

Average processing 

time (s) 

0.05 0.08 0.08 

 

Model verification using baseline methods 

In this section, the developed model is verified by comparing its performance with two 

baseline methods. Model verification is the process of checking that the model has been 

implemented correctly and that the calculations are accurate (Carson, 2003). In particular, 

this step helps verify whether the performance of the YOLOv4 model exceeds that of two 

intuitive baseline methods, referred to herein as dummy methods I and II, which return 

some average values given a set of pole length values. In dummy method I, for a given 

pre-flood (post-flood) test image, the model returns the average pole length of all pre-

flood (post-flood) images in the training set. The average pole length for pre-flood and 



 

78 

 

post-flood photos in the training set is 76.98 in. (n = 334) and 53.38 in. (n = 395), 

respectively. Using dummy method I, the MAE for the pre-flood photos and post-flood 

photos in the test set is thus determined as 44.628 in. (n = 176) and 49.804 in. (n = 172). 

In dummy method II, for a given pre-flood (post-flood) test image, the model returns the 

running average pole length of all previously seen pre-flood (post-flood) images in the test 

set. Running average is a common method for extracting an overall trend from a list of 

values, by continuously updating an average value considering all data points in the set 

until the calculation point (Crager & Reitman, 1991; Du et al., 2008; PIERCE, 1971). To 

reduce the order effect and allowing for a thorough examination of the variability and 

accuracy of the model across a range of randomized data sets, pole length values are 

recorded in 100 iterations each containing a randomized order of test images. 

Consequently, the performance of dummy method II is calculated as the MAE of all 100 

obtained running averages. The MAE achieved for dummy method II for pre-flood and 

post-flood photos is 13.271 in. and 20.469 in., respectively. Also, the minimum and 

maximum MAE achieved for pre-flood (post-flood) is found to be 0.056 in. and 42.830 

in. (0.344 and 45.824), respectively. Our results show that dummy method II is able to 

reduce the pole length estimation error to less than 1 in. in only one randomized set. 

However, dummy method II outperforms dummy method I, yet is highly sensitive to the 

order of values. Comparing the MAE of the proposed YOLOv4 model, (i.e., 1.723 in. for 

pre-flood photos and 2.846 in. for post-flood photos) with the MAEs of dummy methods 

I and II, it is clear that our proposed model outperforms the two baseline methods. Table 



 

79 

 

IV-9 summarizes the MAE and root mean squared error (RSME) obtained using dummy 

methods I and II. 

Table IV-9 Performance of dummy methods I and II on the test set. 

Baseline 

method 

Category  

(Test set) 

MAE (in.) RMSE (in.) 

Dummy 

method I 

Pre-flood  

(n = 176) 

44.628 51.884 

Post-flood  

(n = 172) 

49.804 60.165 

Dummy 

method II 

Pre-flood  

(n = 176) 

13.271* * MAE reported over 

100 randomized 

iterations Post-flood  

(n = 172) 

20.469* 

 

Impact of stop sign language on model performance 

To analyze the performance of the model in different languages, MAE and RMSE values 

are calculated for various subsets of photos (after implementing tilt correction), with 

results summarized in Table IV-10. The analysis indicates that in pre-flood photos, the 

MAE for stop signs in French is 4.628 in., which is higher than the MAE of 1.585 in. for 

stop signs in English. On the other hand, in post-flood photos, the MAE for stop signs in 

French is 1.565 in., which is lower than the MAE of 2.908 in. for stop signs in English. 

Further investigation reveals that the MAE for pole length estimation is impacted by image 

quality rather than stop sign language. For example, web-mined post-flood photos of stop 
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signs in French language are in high-resolution (taken by professional cameras), thus 

lowering the corresponding MAE. In contrast, the quality of one of the French pre-flood 

photos was significantly low which led to a higher MAE for pole length estimation in the 

corresponding subset.  

 

Table IV-10 The performance of the flood depth estimation model based on stop 

sign language. 

Category Language 

MAE 

(in.) 

RMSE  

(in.) 

Pre-flood 

English (168) 1.585 3.078 

French (8) 4.628 6.977 

Total (176) 1.723 3.355 

Post-flood 

English (164) 2.908 5.662 

French (8) 1.565 1.876 

Total (172) 2.846 5.544 

 

Benchmarking 

In this section, model validation (assessing how well the model represents the real-world 

phenomenon it is intended to model (Carson, 2003)) is conducted by benchmarking with 

similar research in this domain. As stated earlier, the model achieved an MAE of 4.710 in. 



 

81 

 

on 163 paired images in the test set after implementing tilt correction. By comparison, 

Cohen et al. (2019) obtained an average absolute difference of 18-31 cm (approximately 

7-12 in.) for flood depth estimation in coastal and riverine areas, Chaudhary et al. 

(2019) reported an MAE of 10 cm (approximately 4 in.) in estimating flood depth based 

on comparing submerged objects in social media images with their predefined sizes, and 

Park et al. (2021) presented an MAE value of 6.49 cm (approximately 2.5 in.) by 

comparing visible parts of submerged vehicles with their estimated size. As summarized 

in Table IV-11, a comparison of the flood depth estimation error obtained in this research 

to previous studies indicates the reliability and generalizability of the developed technique 

in measuring floodwater depth with acceptable accuracy.   

 

 

 

 

 

 

 

 

 

 

 

 

https://www.sciencedirect.com/science/article/pii/S0198971521000351?casa_token=3aSz0BW_HtwAAAAA:w0kAw0GBvS8A8-9GJZJ41pkhb_gpI-Hb9YQV8q5Z1JQ_xFIwT23lTHvGTekUZQYrWGWQ7OsFM5k#bb0055
https://www.sciencedirect.com/science/article/pii/S0198971521000351?casa_token=3aSz0BW_HtwAAAAA:w0kAw0GBvS8A8-9GJZJ41pkhb_gpI-Hb9YQV8q5Z1JQ_xFIwT23lTHvGTekUZQYrWGWQ7OsFM5k#bb0035
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https://www.sciencedirect.com/science/article/pii/S0198971521000351?casa_token=3aSz0BW_HtwAAAAA:w0kAw0GBvS8A8-9GJZJ41pkhb_gpI-Hb9YQV8q5Z1JQ_xFIwT23lTHvGTekUZQYrWGWQ7OsFM5k#bb0305
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Table IV-11 Comparison of the results of this study with the literature on 

floodwater depth estimation. 

Study MAE Method Practical 

Considerations 

Cohen  

et al. (2019) 

18-31 cm 

(7-12 in.) 

Augmenting DEM data 

for Coastal and riverine 

areas. 

Challenges in obtaining 

high-spatial-resolution 

DEMs, high uncertainty 

in highly fragmented 

flooded areas. 

Chaudhary et 

al. (2019) 

10 cm 

(4 in.) 

Submerged objects in 

social media images with 

their predefined sizes. 

Assuming predefined 

sizes for different 

objects. 

Park  

et al. (2021)  

6.49 cm 

(2.5 in.) 

Flooded vehicle images 

in ground-level view. 

Finding submerged 

vehicles, assuming 

predefined sizes for 

different vehicles. 

This study 

(Computer 

Vision Model I) 

12.65 in. 

(32.13 cm) 

Paired stop signs in 

crowdsourced photos, 

using pre-trained Mask 

R-CNN and line 

detection models. Tested 

on Blupix v.2020.1. 

Computationally not 

efficient, challenges in 

pairing photos. 
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Table IV-11 Continued. 

Study MAE Method Practical 

Considerations 

This study 

(Computer 

Vision Model II) 

4.710 in.  

(11.96 cm) after 

tilt correction 

[4.737 in.  

(12.03 cm) 

before tilt 

correction] 

Paired stop signs in 

crowdsourced 

photos, using a 

trained YOLOv4 

model on an in-

house dataset. 

Tested on Blupix 

v.2021.1 dataset. 

Relies on citizen science 

as a means for data 

collection. 

 

Model Validation on a Case Study 

In this section, the model is validated in a case study of the 2021 flood in the Pacific 

Northwest was collected. During this flood event, the U.S. Geological Survey (USGS) 

stream gauge at Nooksack River in Ferndale, WA reported a peak stage height of 150.35 

ft., indicating an increase of 5 ft. in water level (National Oceanic and Atmospheric 

Administration, 2021). The flood stage at the USGS Skagit River stream gauge near Mt. 

Vernon, WA was also rising above the major flood stage (32 ft.), logging 37 ft. of 

floodwater at this location (Center for western weather and water extremes, 2021), before 

being destroyed by flood debris (National Oceanic and Atmospheric Administration, 

2021). To create the test set, 11 crowdsourced photos containing 3 stop signs in the U.S. 

state of Washington and 8 stop signs in the Canadian province of British Colombia are 
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web-mined. The locations of these stop signs are shown on the map in Figure IV-18. Each 

of the 11 post-flood images is first paired with its corresponding pre-flood photo 

(depicting the same stop sign), and then annotated with two classes of stop sign and pole. 

As stated before, the MAE for pole length estimation can be calculated as the average of 

the absolute difference between detected pole length and ground-truth pole length over 𝑁 

photos (including pre- and post-flood photos). The Computer Vision Model II obtains 

MAE of 3.916 in. and 6.769 in. for pole length estimation in pre- and post-flood photos of 

the test set, respectively. The MAE of flood depth estimation is 6.978 in. Table IV-12 

shows the MAE achieved by the model for flood depth estimation for each photo in the 

test set. 

 

Figure IV-18 Map of 11 test data related to the 2021 Pacific Northwest flood 

(numbers refer to IDs shown in Table IV-12). 

 

 

 



 

85 

 

Table IV-12 Performance of the model on flood depth estimation. 

ID Location Flood depth 

Detection  

(in.) 

Ground-truth  

(in.) 

∆ 

(in.) 

1 CAN/Abbotsford 25.486 27.162 -1.676 

2 CAN/Merritt 13.949 9.759 4.190 

3 CAN/Merritt 18.722 13.436 5.286 

4 CAN/Abbotsford 20.292 20.157 0.135 

5 CAN/Princeton 0.463 6.844 -6.381 

6 CAN/Princeton 51.243 15.780 35.463 

7 CAN/Abbotsford 4.871 3.968 0.903 

8 CAN/Abbotsford 9.331 6.679 2.652 

9 USA/Ferndale 44.342 41.342 3.000 

10 USA/Ferndale 26.217 10.923 15.295 

11 USA/Bellingham 9.820 8.038 1.782 

 MAE  6.978 

 

Techniques to Overcome Other Challenging Cases 

Model training on street view images poses unique challenges that need to be addressed 

to improve the outcome. One such issue occurs when the model detects more than one 

stop sign in the input image, with one appearing closer to the viewpoint and other(s) at a 
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farther distance, as shown in Figure IV-19(a). While the object detection model is robust 

enough to detect multiple stop signs, the problem arises since each photo bears only a 

single geolocation tag which, by default, is used to map the detected stop sign. In the 

presence of multiple detected stop signs, however, this one-to-one correspondence will no 

longer be valid. To remedy this problem, when multiple stop signs are detected, the largest 

stop sign (appearing closest to the camera viewpoint) is selected as the target output. 

Among detected poles, the one with the closest center of 𝑥 coordinates to the center of 𝑥 

coordinates of the candidate stop sign is then selected as the target pole.  

text.  

Figure IV-19 Demonstration of challenging cases in post-flood photos: (a) multiple 

detections (base photo courtesy of Steve Zumwalt/FEMA), and (b) reflection in 

water (base photo courtesy of TSGT Mike Moore, USAF). 
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Another challenge is reflection in water, which is a common problem in object detection. 

Simple solutions for reflection removal are based on the analysis of multiple input images, 

including pairs of images that are taken from different orientations, or with different 

polarizations (Naejin Kong et al., 2014; Sarel & Irani, 2004). By comparison, single-image 

reflection removal is more challenging. Wan et al. (2016) proposed a multi-scale depth of 

field (DoF) strategy to classify edge pixels and remove reflection in the image background 

(Wan et al., 2016). Fan et al. (2017) addressed the reflection issue using a deep learning 

model that extracts edge information to identify low-level vision tasks, and demonstrated 

high quality layer separation (Fan et al., 2017). Specifically in the post-flood image 

dataset, there are several cases where the stop sign is reflected in water, as shown in Figure 

IV-19 (b). To remedy this, the strategy is to not label the reflected stop sign and pole, thus 

forcing the model to learn from the difference between color intensity of pixels in actual 

and reflected objects. 

Designing an Evacuation Decision Support Platform Based on the Identified Needs 

To enable large scale crowdsource data collection, a crowdsourcing application was 

developed, named Blupix, using web-based GIS. The backbone of this platform is a CNN 

architecture that estimates the depth of floodwater in user-contributed photos by detecting 

stop signs and comparing pole lengths in pre- and post-flood photos of the same sign. 

Figure IV-20 illustrates the graphical user interface of Blupix, which gives users the ability 

to upload images of flooded stop signs, and view previously uploaded photos that are 

either paired (with corresponding pre-flood images of the same sign) or unpaired. Each 

photo pair also displays the calculated floodwater depth at the location of the stop sign.   
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Figure IV-20 The graphical user interface of the Blupix crowdsourcing application. 

 

To host the Blupix application, an advanced cyberinfrastructure was developed using 

container technology. As shown in Figure IV-21, the Model View Controller (MVC) 

software design pattern was used, where the View displays information (e.g., user profile, 

flood information, collected stop sign images), and the Controller processes the users’ 

connection. The user interface is developed using a modern front-end framework named 

React J.S. (a.k.a., React). Once the React application is developed and ready to deploy, a 

Webpack middleware is designed to bundle the entire system to a set of static assets, 

significantly reducing loading time on the browser for viewing the application (Ruby et 

al., 2020). Unlike traditional web development technologies such as HTML and 

JavaScript, React supports large and complex web development with seamless data 

manipulation without subsequent page refreshes when users view dynamic pages 

(Aggarwal, 2018).  
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Figure IV-21 The Model View Controller (MVC) framework of the Blupix 

crowdsourcing application. 

 

Except for back-end and front-end modules deployed on a Kubernetes Cluster, several 

cloud-native services were adopted to support the application development (Figure IV-

22). The front-end components construct the requests made by users and send them to the 

Google Cloud Platform (GCP). Next, the components render the user interface based on 

the response received from GCP. A PostgreSQL database is designed to support a back-

end server to store relational data (e.g., user profile, flood height, flood date). However, 

non-relational data in the image cannot be easily stored in PostgreSQL. Thus, after 

converting the image data to binary data, Microsoft Azure was integrated to store large 

amounts of unstructured pre-flood and post-flood data. The last part of this software 
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architecture consists of a Docker Hub to mount the code. With this image library, a 

development automation workflow was built to speed up the application deployment. 

 

Figure IV-22 Illustration of the system architecture of the Blupix crowdsourcing 

application. 

 

The Blupix app has the following pages: “Upload Photo”, “Map”, “Approval”, “My 

Profile”, “Our Team”, “Help”, and “Take Survey”. Using the “Upload Photo” page, users 

can upload a photo of a flooded traffic signs (post-flood photos). Figure IV-23 illustrates 

the process of uploading and pairing crowdsourced photos on the Blupix app. By knowing 

the location of the photo, user can find the same traffic sign (pre-flood photos) using the 

GSV API enabled in the app and pair it with the post-flood photo, and then upload it. The 

paired photo will be manually reviewed by admin (the author) to make sure the uploaded 



 

91 

 

data is appropriate and accurate (using the “Approval” page which is specifically available 

for the admins). Upon approval, the paired photo will be shown as a pin on the map 

(available in the “Map” page). Users can also create an account in the Blupix app (“My 

Profile” page) although it is not necessary to have one to be able to upload a photo. The 

“Help” page contains instructions on the photo requirements (stop sign in full view, 

waterline in view, and pole fully visible) and uploading process. More information about 

the Blupix team is also provided on the “Our Team” page. Lastly, using the “Take Survey” 

page, users will be guided to take the community needs assessment survey which was 

covered in Chapter III. Collected paired photos are analyzed using the developed 

Computer Vision Model II to estimate flood depth, and are added to the pins on the map 

to generate a flood depth map.  
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Figure IV-23 Uploading and pairing crowdsourced photos on the Blupix app. 

 

Summary and Conclusion 

Flooding is one of the most prevalent natural hazards that results in significant loss of life, 

and disrupts properties and infrastructure. Due to the constant change in water levels on 

the road network during a flood, reliable and real-time flood depth information at the street 

level is critical for decision-making in evacuation and rescue operations. Current methods 

of obtaining flood depth (including water gauges, DEMs, hydrological models, and SAR 

imagery) often suffer from shortage of data, inherent uncertainties, high installation and 

maintenance costs, and the need for heavy computing power. Recent advancements in 
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computer vision and AI have created new opportunities for remotely estimating the flood 

depth based on comparing submerged objects with their predefined sizes. In this part, a 

deep learning approach, based on the YOLOv4 architecture, was proposed for estimating 

floodwater depth in crowdsourced street photos using traffic signs. Since traffic signs have 

standardized sizes, the difference between pole lengths in paired pre- and post-flood 

photos of the same sign can be computed and used as the basis for estimating the depth of 

floodwater at the location of the sign. An in-house training set comprising web-mined 

photos and photos extracted from the Microsoft COCO dataset, was used for training the 

YOLOv4 model. To generate ground-truth information, all images were manually 

annotated by the author using an annotation software. However, in the future direction of 

this research, the annotation process itself can be also crowdsourced using online sources 

(e.g., Amazon Mechanical Turk (MTurk) or AI-enabled labeling software), to attain larger 

training sample size. The trained model was then validated using 5-fold cross validation, 

and subsequently tested for flood depth estimation on 163 paired photos from our in-house 

test set. Results indicate an MAE of 1.723 and 2.846 in. for pole length estimation in pre- 

and post-flood photos, respectively, and an MAE of 4.710 in. for floodwater depth 

estimation. Also, the performance of the proposed model surpassed that of two baseline 

approaches (dummy method I, which returns the average pole length of all images in the 

training set for each image in the test set; and dummy method II, which calculates the 

running average of pole lengths in all previously seen images in the test set). In addition, 

a tilt correction method was developed to minimize the pole length estimation error in 

paired photos of stop signs with uneven degrees of tilt. The model’s performance was also 
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evaluated on 11 crowdsourced photos taken during the Pacific Northwest flood in 2021 

which achieved the MAE of 6.978 in. To enable large-scale data collection, a 

crowdsourcing application (called Blupix) was designed. The Blupix app enables users to 

upload photos of flooded traffic signs and pair them with the same traffic sign before the 

flood using the built-in GSV API. Then all crowdsourced photos were analyzed with the 

Computer Vision Model II to estimate flood depth and used to generate a flood depth map.  
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CHAPTER V 5 

HUMAN-CENTERED FLOOD MAPPING AND INTELLIGENT ROUTING 

THROUGH AUGMENTING FLOOD GAUGE DATA WITH CROWDSOURCED 

STREET PHOTOS 

 

The first motivation of this Chapter was to generate high spatial resolution flood maps for 

intelligent routing in and around residential neighborhoods by incorporating user-

contributed flood photos. Two route optimization approaches were proposed in this 

Chapter and their effectiveness were assessed on sample test data. In the second approach 

(enhanced approach), floodwater depth data obtained through the visual analytics of 

crowdsourced photos were augmented with live stream flood gauge with the goal of 

improving the quality of evacuation routing optimization. In the second part of this 

Chapter, a mobile app was developed to calculate flood water depth using geolocated 

photos of submerged stop signs with the goal of providing ad-hoc situational awareness 

for people through a simple, reliable, and affordable mobile platform. 

 

5 Some of the materials presented in this chapter have been previously appeared in the following 

publications by the author: 

Alizadeh, B., Li, D., Hillin, J., Meyer, M. A., Thompson, Courtney M., Zhang, Z., and Behzadan, A. H. 

(2022). Human-centered flood mapping and intelligent routing through augmenting flood gauge data with 

crowdsourced street photos. Advanced Engineering Informatics 54 (2022): 101730. 

https://doi.org/10.1016/j.aei.2022.101730 

Alizadeh, B., & Behzadan, A. H. (2022). Blupix: citizen science for flood depth estimation in urban roads. 

In Proceedings of the 5th ACM SIGSPATIAL International Workshop on Advances in Resilient and 

Intelligent Cities 16-19. Seattle, Washington. 

https://doi.org/10.1145/3557916.3567824 

Alizadeh, B., Li, D., Zhang, Z., & Behzadan, A. H. (2021). Feasibility study of urban flood mapping using 

traffic signs for route optimization. EG-ICE 2021 Workshop on Intelligent Computing in Engineering 572-

581. https://doi.org/10.48550/arXiv.2109.11712 
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Route Optimization for Intelligent Wayfinding in Flood Events 

Evacuation planning is a major component of flood management as it guides the 

movement of people and goods from at-risk places to safe areas (Cova & Johnson, 2003; 

Stepanov & Smith, 2009). In recent studies, optimization- and simulation-based models 

have been used for evacuation routing (Lim Jr et al., 2013). Flood evacuation has been 

increasingly recognized as being a critical component of disaster management adaptation 

to floods (M. He et al., 2021). Previous research has particularly focused on formalizing 

the evacuation process into different stages including the warning stage, withdrawal stage, 

and shelter stage, and finding separate solutions to each stage (Gomes & Straub, 2017; M. 

He et al., 2021). However, recent research by Insani et al. shows that complex evacuation 

solutions may not work well in no-notice or short-notice evacuation situations that could 

occur immediately after a disaster strikes (Insani et al., 2022). As there is only limited 

information (e.g., velocity and spread of floodwater movement) within a short response 

time, researchers have also considered interpolation techniques (Viavattene et al., 2022; 

X. Wang et al., 2017) or buffer decay function (X. Huang et al., 2018) to compensate for 

limited data and support large-scale flood mapping. To date, however, the literature on 

interpolation techniques for flood mapping in real-world route optimization scenarios is 

limited. Stepanov and Smith (Stepanov & Smith, 2009) utilized multi-objective route 

optimization and M/G/C/C state-dependent queuing networks to minimize travel time, 

distance, and traffic delays. In another study, single-objective optimization and evacuation 

simulation were used to maximize the number of evacuees and minimize travel time 

during flood events (Huibregtse et al., 2010). Researchers have also utilized route 
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optimization and CPLEX, a high-performance optimization software, to optimize 

evacuation time and route for no-notice evacuation of transit-dependent citizens (Sayyady 

& Eksioglu, 2010).  

The routing problem is one of the most studied combinatorial optimization problems, first 

mentioned in 1959 as the “truck dispatching problem” to determine an optimal route for a 

fleet of gasoline delivery trucks between a terminal and several service stations (Dantzig 

& Ramser, 1959). One important variant of the routing problem is emergency evacuation 

planning (Lu, 2006), which aims to evacuate residents from a hazard-inundated region to 

a safe place in the shortest possible time and on the safest path. In this work, a flood depth 

map is generated using the stop sign flood depth data. To overcome data scarcity in the 

flood depth map generation, a distance decay function can be applied using a Gaussian 

buffering function to approximate floodwater depth in areas surrounding a point with 

field-verified floodwater depth reading (Alizadeh et al., 2021). Previous work has utilized 

various interpolation methods to map flood hazard. Berens et al (Berens et al., 2021), for 

instance, used the inverse distance weight method to plot the flood map in a riverine area. 

Another common way to plot a flood map is the kriging interpolation method (Chokmani 

& Ouarda, 2004; Marche et al., 1990; Sun et al., 2000). For example, Nezhad et al. 

(Nezhad et al., 2010) used residual kriging with flood gauge data to estimate regional flood 

frequency. In another study, Zhang et al. (K. Zhang et al., 2019) used empirical Bayesian 

kriging to interpolate ground pixels for mapping the digital terrain model (DTM) for flood 

vulnerability mapping. 
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Proposed Methodology for Using Enhanced Flood Depth Data for Risk-Informed 

Route Optimization 

In this research initially a flood depth map is generated using AI-calculated flood depth 

using stop sign data and then an A* search algorithm is used for route optimization. Later, 

the flood depth map generation is improved by augmenting flood gauge data with AI-

calculated flood depth data and then the Dijkstra route optimization is utilized for 

intelligence wayfinding.  

Routing Approach I: Flood Depth Mapping Using Stop Sign Data and Route 

Optimization Using A* Search Algorithm 

Simulate Flooded Areas Using GIS and Stop Sign Detection Results. 

Volunteered Geographic Information (VGI) has been utilized in flood studies (Goodchild, 

2009; X. Huang et al., 2018). Huang et al. (2018) used an inverse distance weighted height 

filter to build a probability index distribution (PID) layer from the high-resolution DEM 

data (X. Huang et al., 2018). Inspired by that work, a distance-decay function was used 

along with isohypse information to transform point-by-point floodwater depth data into 

area-wide flood inundation maps. Several forms of this function are widely used to 

describe systematic spatial variations where spatial information has the tendency to vanish 

with distance (Haining, 2001). In this research, a flooding confidence area is created 

around detected floodwater depth points to simulate flooded regions. In the future, this 

approach can be compared and validated using hydrological-based modeling (Y. Liu et 

al., 2006) to improve the accuracy of flood inundation mapping. Suppose an estimated 

flooded area A that is defined by a discrete point grid {𝑋_1, 𝑋_2, . . . , 𝑋_𝑖  , . . . , 𝑋_𝑗}. The 
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Gaussian buffering function shown in Equation V-1 is applied to approximate the depth 

of floodwater at point 𝑋_𝑗  in area A. In this Equation, 𝑋_0 is the detected floodwater depth 

at the center point of area 𝐴, 𝐼_0   is the elevation at the center point of area 𝐴, 𝐼_𝑗 is the 

elevation in point 𝑗, 𝑑_𝑗  is the geographic distance between the center point of area 𝐴 and 

𝑋_𝑗, and b is a fixed bandwidth for the Gaussian function. As the distance 𝑑_𝑗 varies 

around area A, the estimated floodwater depth also changes with distance-decay and 

isohypse information. This approach is commonly used in GIS research such as social-

media flood mapping (X. Huang et al., 2018) and distance-decay weight regression model 

(Gutiérrez et al., 2011). 

𝑋𝑗  = 𝑋0 𝑒𝑥𝑝 [−1/2(𝑑𝑗/𝑏)2] + (𝐼0 − 𝐼𝑗)    Equation V-1 

Description of The Routing Problem.  

Given the flood inundation information, the routing problem from an origin to a 

destination point can be modeled as a multi-stage decision process, where each decision 

stage includes the location of the current decision point as well as the time needed to 

complete the remainder of the process. The designed optimization-based algorithm 

proposes a routing solution that avoids flood inundated areas and supports search and 

rescue operations during a flood event. The routing problem is further modified by 

including several decision objectives, and transforming the otherwise single-objective 

optimization into a multi-objective decision process. From the taxonomy of navigation for 

emergency response (Z. Wang & Zlatanova, 2013), this problem can be defined using 𝑋 =

 < 𝑋_1, 𝑋_2, 𝑋_3, 𝑋_4, . . . >, where 𝑋_𝑖 denotes an environment factor, and contains the 

quantity (one or many), and the type (e.g., destination, responder object, obstacle) of that 
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factor. For example, for a person whose goal is to go back home while avoiding flooded 

roads, the navigation route can be defined as <

{𝑜𝑛𝑒 𝑚𝑜𝑣𝑖𝑛𝑔 𝑜𝑏𝑗𝑒𝑐𝑡},{𝑜𝑛𝑒 𝑠𝑡𝑎𝑡𝑖𝑐 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛},{𝑜𝑛𝑒 𝑠𝑡𝑎𝑡𝑖𝑐 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠} > . In this 

section, since the traditional Dijkstra algorithms may not work well for 𝑋 that contains 

obstacle factors, using the A* search algorithm (Lerner et al., 2009; Russell & Norvig, 

2002) was proposed. For this purpose, the following concepts are adopted before each 

iteration of the A* search algorithm were formalized as: 

1. Search area: Given a prepared base map that contains spatial entities, each entity 

is represented as a graph node in the search area. 

2. Open vs. closed list: All nearest nodes waiting to be searched are stored in an 

open list; and those already searched are stored in a closed list. 

3. Path sorting: To define the direction of the next movement, a path sorting 

function was used, expressed by Equation V-2. 

𝐹(𝑛)  =  𝐺 + 𝐻       Equation V-2 

In this Equation, H denotes a heuristic function, and 𝐺 is the moving cost from the initial 

location to the next node in the open list. The heuristic function takes the Manhattan 

distance to calculate the cost of moving from each of the candidate next nodes in the open 

list to the final destination node. Figure V-1 presents the pseudo algorithm for the A* 

search. A demonstration of how this algorithm is used in a flooded area (routing with 

obstacles) is shown in Figure V-2. In this Figure, different shades of blue represent 

different floodwater depth values, diamonds stand for start and destination points, and 

orange pixels mark the simulated routing path. The cost value is displayed in each searched 
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pixel. This information is used as threshold conditions to check whether a vehicle can pass 

through a particular area. 

 

Figure V-1 Pseudo algorithm for A* Search. 

 

 

Figure V-2 sample output of A* Search algorithm with obstacles. 
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Results and Discussion 

Case Study Description 

As shown in Figure V-3, for the flood scenario presented in this part, six paired photos 

from the 2017 Hurricane Harvey in Houston, Texas, taken approximately on the same date 

in the month of September, are selected from BluPix v.2020.1, a crowdsourcing platform 

developed in this research to collect user-contributed photos of flooded stop signs. 

 

Figure V-3 locations of selected paired flood photos in Houston, TX after Hurricane 

Harvey (2017). 

 

Calculation of Flood Depth Using Sample Photos of Stop Signs 

Table V-1 shows a summary of floodwater depth calculations applied to pre- and post-

flood photos. As shown in this Table, the RMSE of the flood depth estimation model on 

the six pairs of pre- and post-flood photos is 4.69 inches, and the average processing time 

for floodwater depth calculation is 11.6 seconds.  
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Table V-1 Performance of floodwater depth estimation on paired pre- and post-

flood photos. 

Calculation Metric Pre-flood 

photos (n = 6) 

Post-flood 

photos (n = 6) 

Stop sign 

detection 

Intersection over union (IOU) % 96.73 95.24 

Precision % 100 100 

Recall % 100 100 

Average precision (AP) % 100 100 

Average processing time (s) 1.08 1.26 

Pole detection RMSE (in.) 2.64 5.80 

Average processing time (s) 0.13 0.10 

Flood depth 

estimation 

Average total processing time (s) 2.57 

RMSE (in.) 4.69 

 

Implementation of Flood Depth Mapping and Route Optimization on Sample Photos 

Floodwater depth estimates are subsequently used to generate a flood inundation map with 

depth grids. Figure V-4 demonstrates the application of A* search algorithm to calculate 

the shortest flood-free route. In this example, each of the previously selected six paired 

points is taken as the central point of a flooded area. To implement the distance-decay 

function (Equation V-1), elevation data is queried from Google Elevation API. The 

Graphhopper library (Karich & Schröder, 2014) is used for route search, and 
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Openrouteservice is utilized to overlay the base map with generated flooded areas. The 

basic spatial information for building the base map is taken from OpenStreetMap (Planet 

OpenStreetMap., 2021). 

 

 

Figure V-4 Illustration of the routing algorithm using buffered points that 

represent estimate floodwater depths collected from inundated areas. 

 

Routing Approach II: Flood Depth Mapping Using Augmented Stop Sign Data with 

Flood Gauge Data and Route Optimization Using Dijkstra Routing Algorithm 

In this section, the Dijkstra routing algorithm (Dijkstra, 1959) is applied to calculate a 

flood-free evacuation route. To this end, a flood risk map is first built for route 

optimization by overlaying gauge data with floodwater depth data. Generally, values 

between two closely located points can be predicted through point interpolation. The 

accuracy of this interpolation, however, is affected by the sparseness of the interpolation 

points. Using stop sign points in addition to gauge data can enhance the density of 

interpolation observations. Empirical Bayesian Kriging (EBK) (Krivoruchko, 2012) was 
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used as a geospatial interpolation method to generate a flood risk map for route 

optimization. EBK is different from other kriging methods as it reduces the tendency to 

attain the overall mean value of variables and allows large deviations for predicted values 

over space (Gupta et al., 2017). Spatial autocorrelation (i.e., increasing similarity of spatial 

features with decreasing distance) is assumed in all geostatistical methods (Goodchild, 

2009). Particularly, EBK was utilized with semivariogram to evaluate the diminishing 

similarity among flood data points over distance (Gupta et al., 2017). Equation V-3 is used 

to interpolate flood depth values for gauge points and stop sign points using the EBK 

method with a power semivariogram model. In this Equation, ℎ is the distance, 𝑎 and 𝑏 

are positive constant parameters, and 𝑛 denotes the parameter of nugget effect as an 

intercept of variogram function. The parameters in Equation V-3 are estimated by 

restricted maximum likelihood (REML) (Krivoruchko, 2012). 

𝛾(ℎ)  =  𝑛 +  𝑏|ℎ|𝑎       Equation V-3 

According to the EBK implementation by Krivoruchko et al. (Krivoruchko, 2012) the 

main kriging method can be simplified as in Equation V-4, where K denotes the number 

of observation points, 𝑧𝑖  is the observation point in location 𝑠𝑖, 𝑦(𝑠𝑖) is the transformed 

Gaussian in the same location, 𝜖𝑖 is the normally distributed measurement error of 𝑧𝑖, and 

function 𝑡(∙ |𝛩) is a transformation to Gaussian process with parameter 𝛩. EBK estimates 

the semivariogram through repeated simulations of residuals (Giustini et al., 2019). 

𝑧𝑖  = 𝑡−1(𝑦(𝑠𝑖) + 𝜖𝑖|𝛩) =  𝑧(𝑠𝑖) + 𝜖𝑖
2,            𝑖 = 1…𝐾    Equation V-4 
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Results and discussion 

Case Study Description 

To demonstrate the applicability of the proposed methodology, 20 paired photos is 

selected, uploaded on the Blupix app, that were taken during Hurricane Harvey (August 

27 – September 1, 2017) in Houston, Texas. These photo pairs are then analyzed by 

Computer Vision Model II (the trained YOLOv4) model for floodwater depth estimation. 

In addition to stop sign data, gauge data are leveraged to compute flood depth for the areas 

without paired stop sign photos, and to demonstrate our interpolation method and routing 

algorithm. The gauge height (a.k.a., stage) is the height of the water in the stream above a 

reference point, and refers to the water surface elevation in the specific pool or low-lying 

terrain near the gauge station. For our experiment area, the gauge records in all 1,321 

gauge stations in Texas are scraped via the National Weather Service (National Oceanic 

and Atmospheric Administration, 2022). The average gauge height is calculated by 

comparing the gauge heights during Hurricane Harvey and the annual mean gauge heights 

of other years during the same time period of August 27 to September 1, 2017.  

Calculation of Flood Depth Using Sample Photos of Stop Signs 

The mAP of the model on the validation set is calculated as 97.04%, by taking the average 

mAP in each of the five training sets. The optimum number of iterations obtained (when 

the highest mAP is achieved) is 3,000, which is equal to the average number of optimum 

iterations in the five training sets. The AP of the model on test data (20 paired photos) is 

calculated as 100% and 96.54% for the stop sign and pole classes, respectively. The MAE 

for floodwater depth estimation is 3.80 in. Results are summarized in Table V-2. 
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Table V-2 Performance of the trained YOLOv4 model on 20 selected paired photos 

in Hurricane Harvey (August 27 – September 1, 2017) in Houston, Texas (S=stop 

sign; P=pole). 

Metric Class Pre-flood 

(n = 20) 

Post-flood 

(n = 20) 

All photos 

(n = 40) 

Average IoU (%) S+P 83.10 79.69 81.44 

Precision @ 0.25 conf (%) S+P 93 93 93 

Recall @ 0.25 conf (%) S+P 100 95 98 

AP (%) S 100 100 100 

P 100 92.30 96.54 

mAP @ 0.50 (%) S+P 100 96 98.27 

Average detection time (sec) S+P 0.10 0.10 0.10 

MAE of pole length estimation (in.) P 2.73 2.64 3.80 

 

Flood Map augmentation Using Stop Sign Data and Gauge Data 

Using ArcGIS API for Python (ArcGIS Developer, 2021), a comparison experiment is 

created with gauge only and gauge and stop sign floodwater depth data. Contour lines are 

used to represent variations in interpolated flood depth values. The changes between those 

contour line intervals are assumed to be consistent, where each class follows a geometric 



 

108 

 

series with approximately the same number of interpolated flood depths. Figure V-5 

demonstrates the distribution of stop sign points and gauge points used in this experiment. 

 

Figure V-5 Location of start and end points (black pins), flood gauges (green 

squares), and stop sign points (red circles) in the experiment area. 

 

Figure V-6(a) shows the calculated route under the non-flood scenario obtained by regular 

Dijkstra routing, while Figure V-6 (b) and Figure V-6 (c) show optimized evacuation paths 

with flood depth consideration using EBK and Dijkstra algorithms simultaneously. For 

best comparison, Figure V-6 (b) is calculated with only flood gauge data, and Figure V-6 

(c) shows the resulting route when stop sign data is added to flood gauge data. To ensure 

date/time consistency between flood gauge data and stop sign data, time information 

retrieved from metadata of flooded stop sign photos is used to query flood gauge data 

(National Weather Service Team, 2021). The highlighted blue polygons in Figure V-6 
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represent the estimated flooded area, and thick dark blue lines represent suggested routes 

under no-flood and flood scenarios. Using a 100-inch distance threshold for avoiding 

flooded areas, the optimized evacuation path with only gauge data, shown in Figure V-6 

(b), conservatively detours several potentially high flood risk areas before reaching the 

destination safely. In contrast, the route shown in Figure V-6 (c) generated using the EBK 

method is a shorter (yet still safe) alternative. Table V-3 compares the three routes 

considering the estimated travel time (driving) and distance obtained using ArcGIS API. 

Each column represents a routing scenario corresponding to Figures V-6 (a), (b), and (c). 

As shown in this Table, using only gauge data will increase the user’s travel time and 

distance, possibly exposing them to more flood risk over time (since floodwaters move). 

 

Figure V-6 Flood mapping and risk-informed evacuation route optimization using 

EBK and Dijkstra algorithms: (a) regular route planning with Dijkstra algorithm; 

(b) EBK method with Dijkstra algorithm using only flood gauge data; (c) EBK 

method with Dijkstra algorithm using flood gauge data and stop sign data. 
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Table V-3 Comparison of three routing scenarios in the experiment area. 

Metric A B C 

Estimated travel time (driving) (min.) 22 26 22 

Total travel distance (miles) 9.99 11.53 9.60 
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Mobile Device Implementation for Ad-hoc Situation Awareness. 

Background 

As mentioned earlier, citizen science and crowdsourcing have the potential to contribute 

to increasing the spatial and temporal availability of flood depth information for disaster 

response and management (See, 2019). Moreover, crowdsourced data collected in a flood 

event can be used to improve situational awareness, decrease response time, and assess 

the severity of the damage. Crowdsourcing or citizen science refers to the involvement of 

ordinary people in parts of a scientific process such as data collection (See, 2019). In recent 

disaster events, the public has already vastly utilized social media platforms such as 

Twitter and Facebook to share disaster-related information such as photos, videos, or texts 

(Saroj & Pal, 2020). Several researchers have developed customized crowdsourcing data 

collection platforms for disaster response and mitigation. GISCorps, for example, is a 

crowdsourcing platform for collecting and mapping photos of disaster-affected areas 

(Saroj & Pal, 2020). Crowd4Ems is another crowdsourcing platform that uses data mining 

to estimate the geolocation of social media photos and videos of areas affected by 

earthquakes, and validates them with the help of volunteer users (Ravi Shankar et al., 

2019). Another example is Sahana, which allows users to share disaster-related 

information and request help (Careem et al., 2006). 

Effective information and communication technology (ICT) solutions consider 

communities’ most critical needs while providing a simple and easy-to-use interface for 

collecting valuable information required for analysis. Current disaster-related 

crowdsourcing platforms enable data sharing and provide functionalities for informing 
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first responders and communities; however, the majority of these solutions do not provide 

instantaneous, on-demand information to the users.  

Using Convolutional Neural Networks for Stop Sign Detection 

Since most mobile devices have limited computing power and memory, employing flood 

depth estimation models on these devices necessitates using a lightweight object detection 

model. Therefore, this study develops a flood depth estimation model by training an 

EfficientDet03 on an in-house training set. EfficientDet is a lightweight object detection 

model designed by the Google Brain specifically for resource constrained edge devices, 

and can achieve high accuracy (Tan et al., 2020). EfficientDet uses the backbone of 

EfficientNet (Tan & Le, 2019) for extracting features from input images and a weighted 

bi-directional feature pyramid network (BiFPN) as the fusion layer for extracting the 

context information from those features. Several studies have implemented different 

versions of the EfficientDet network on mobile devices for real-time object detection. For 

example, in a study (Ulil et al., 2021), EfficientDet0 was utilized to detect and calculate 

the final answer of a handwritten equation which achieved an mAP of 63.17%, and an 

average accuracy (AP) of 81.9%. In another study (Ayachi et al., 2021), researchers 

trained EfficientDet0 model to detect drivers’ fatigue by detecting eye closure and mouth 

yawning, yielding 96.05% accuracy on the test data.  

In this study, considering the accuracy and speed tradeoff, EfficientDet03 in the 

TensorFlow Model Zoo was used. EfficientDet03, achieves an AP of 47.2% on the COCO 

dataset and 25B floating point operations per second (FLOPs) (Tan et al., 2020). This 

network is pre-trained on the ImageNet dataset (Russakovsky et al., 2015) and re-trained 
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on an in-house training set of 800 photos of stop signs (334 pre-flood photos of stop signs 

from the COCO dataset, 334 web-mined post-flood photos of stop signs and 132 zero-

label photos of other traffic signs). The network was trained for 50 epochs with a batch 

size of 8, using TensorFlow Model Maker Library, achieving a detection loss of 0.051 and 

a class loss of 0.038. The training process took approximately 35 hours on an HP ZBook 

17 G6 with 7 cores, 9850H CPU, 64 GB RAM, and Nvidia Quadro RTX5000 GPU with 

16 GB memory. Subsequently, the model was converted to a TensorFlow Lite which is 

optimized to run on mobile devices. 

Using Google Street View to Obtain Pre-flood Imagery of a Test Photo 

In the developed methodology, in order to estimate the floodwater depth, a submerged 

stop sign photo needs to be visually compared with a photo of the same stop sign before 

the flood. To this end, GSV is used to obtain the pre-flood photo of stop signs in the test 

phase, given the geographical location of the post-flood photo. GSV is a commonly used 

online service which began in 2007 and covers approximately 10,000,000 miles of roads 

and streets across 100 countries and territories (Google, 2022). GVS images have been 

used in several studies in computer vision applications. As an example, in a study 

(Campbell et al., 2019), GSV images were utilized for traffic sign detection using SSD 

MobileNet. In another study (Ning et al., 2022), aerial and GSV images were used for 

extracting sidewalks using a trained You Only Look at CoefficientTs (YOLACT) model. 
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Mobile Device Implementation 

The Android Studio version 4.2 was subsequently used to develop an Android app in 

Kotlin programming language to automate the process of taking a post-flood photo of a 

stop sign, geolocating the captured sign and finding its pre-flood view in GSV, running 

object detection on the photo pair, and estimating the floodwater depth at the location of 

the stop sign. In the developed app, when a user captures a camera image, the GPS location 

(longitude and latitude) and the azimuth angles (pitch and roll) of the mobile device are 

also obtained from the built-in accelerometer and magnitude sensors. The user is then 

directed to a GSV screen that displays an interactive view of the location of the sign, 

considering the GPS and angle readings of the camera device. As the user navigates in this 

scene by moving or rotating the view, or searches for a specific location, the latest 

positional information is queried from GSV and replaces the previously stored location of 

the camera. The Static API of GSV enables the user to capture a snapshot of the stop sign 

from the most desirable location and angle. 

The next step is to determine the sign pole length in both pre- and post-flood images using 

the trained EfficientDet03. For each image, there are three APIs to load and run the object 

detection model: (1) Preparing the image (Tensor image), (2) Creating a detector object, 

and (3) Connecting 1 and 2. The captured image is decoded into the Bitmap format and 

passed to the object detection model. Using the Bitmap image as input, the object detector 

returns a list of detection results. The outcome is then filtered to retain only the detected 

stop sign and pole with a detection confidence higher than 50% threshold. 
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Next, using the “Calculate” button, the user will be asked to enter the real-world size of 

the stop sign (in a residential area, the user will enter 30 in., and in a non-residential area, 

the user will enter 36 in.). Giving this flexibility to the user in this version of the app will 

guarantee that the correct real-world size is used for calculating the inch-to-pixel ratio. 

Then, two pole lengths (one in the pre-flood photo and another one in the post-flood photo) 

are calculated and compared, to obtain an approximation of the floodwater depth. If stop 

signs or poles are not detected in either of the photos, the app will show the message: 

“Stop sign or pole is not detected.”. To avoid inaccurate results, if the pole is completely 

submerged in water, the app will not generate any outcome. Figure V-7 illustrates the 

schematic representation of the proposed approach. Figure V-8 demonstrates the Blupix 

mobile app interface along with a real example of flood depth estimation on a sample 

photo in Houston, Texas during Hurricane Harvey (2017) which calculated the flood depth 

of 20.79 inches. 
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Figure V-7 Schematic representation of the Blupix app. 
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Figure V-8 Sample flood depth estimation on the Blupix app. 

 

 

Blupix Preflood Crowdsourcing Platform 

Following a few of the community meetings, it was identified that people have concerns 

about areas without GSV data and also mobile data connectivity interruption during 

floods. Thus, to enable the Blupix app to be implemented in offline mode, an additional 

crowdsourcing platform (called Blupix Preflood) was created specifically for the 

collection of pre-flood photos of stop signs. This platform allows users to upload photos 

of stop signs in their immediate surroundings which are then mapped onto the Blupix app's 
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map as crowdsourced pre-flood photos. The crowdsourced pre-flood photos are then used 

in combination with photos of flooded stop signs that are uploaded to the app when a flood 

occurs. This allows the app to pair the pre-flood photos with the newly uploaded flooded 

photos and instantly calculate the flood depth even in offline mode. The platform was 

designed with the aim of increasing the reliability of the app by eliminating the reliance 

on mobile data and enabling the app to function effectively even in areas with low or no 

network connectivity. This approach helps to ensure that the app can be used during flood 

emergencies, when mobile network connectivity is often disrupted or limited. Figure V-9 

presents the interface of the designed crowdsourcing platform.  

 

 

Figure V-9 The interface of the Blupix Preflood crowdsourcing application. 
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The Connection Between Blupix App, Blupix Mobile App, and Blupix Preflood 

App 

This study developed three crowdsourcing platforms: Blupix, Blupix Preflood, and Blupix 

Mobile. Figure V-10 illustrates the connection between these three platforms. In this 

design, the Blupix app serves as the main platform, accessible via a dedicated website 

(https://blupix.geos.tamu.edu/), where people can upload photos of flooded traffic signs 

using their mobile devices or computers. Users can manually pair uploaded photos with 

corresponding pre-flood photos by entering the location of the traffic sign in GSV. The 

app admin reviews uploaded photos, and subsequently feeds them to a computer vision 

model for further analysis. The output of this step is the estimate of flood depth, which is 

also reported on the map alongside the pre- and post-flood photos of the stop sign. Given 

an uploaded photo pair, if only the post-flood photo is approved by the admin, only the 

post-flood photo will be pinned on the map which can be paired with the correct pre-flood 

photo later by the same or other users. 

Blupix Mobile, on the other hand, is a mobile app that enables users to take a photo of a 

flooded traffic sign while the app automatically pairs it with the GSV view of the same 

traffic sign using GPS and accelerometer data of the mobile device. Upon the completion 

of the pairing process (which takes only a few seconds), the mobile app provides instant 

flood depth information through its built-in computer vision model. Users can also upload 

their paired photo with the calculated flood depth to a cloud database, which is then 

reviewed by the admin and pinned on the map. The Blupix Mobile app is available for 

https://blupix.geos.tamu.edu/
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Android devices and can be downloaded from the research lab’s GitHub page 

(https://github.com/ciber-lab/blupix). 

Finally, Blupix Preflood is a crowdsourcing app for collecting pre-flood photos of stop 

signs prior to a flood event, accessible via a website (https://blupix-

image.geos.tamu.edu/). Collecting pre-flood photos is useful for future pairing with post-

flood photos in locations with limited GSV data or mobile data connectivity interruptions 

during floods. User-uploaded photos on this app are stored on a cloud database and pinned 

on the map as pre-flood photos. The app extracts the geospatial metadata of the uploaded 

photo (if any) to automatically populate the location field. If the metadata is not available, 

users should enter the location of the photo in the app. The app admin reviews all uploaded 

photos before they are pinned on the map. 

 
Figure V-10 The relationship and information flow between the Blupix app, Blupix 

Mobile app, and Blupix Preflood app. 

 

 

https://github.com/ciber-lab/blupix
https://blupix-image.geos.tamu.edu/
https://blupix-image.geos.tamu.edu/
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CHAPTER VI  

FLOOD RISK PERCEPTION ASSESSMENT USING VIRTUAL REALITY 

 

Introduction 

 

Informed decision-making during flood evacuation, search and rescue, and sheltering 

depends on the availability of reliable information about the depth of floodwater in 

affected areas. While underestimating the water depth can be catastrophic, overestimating 

it may severely delay the deployment of goods and services. To better understand the ways 

in which individuals perceive flood risk and make decisions related to evacuation, in this 

section a user study is conducted using survey questionnaires and a simulated flooded 

town in a VR environment. Findings of this study provide valuable insights into the 

challenges that people face when making decisions related to flood risk and evacuation, 

and can inform the development of more effective communication strategies and 

evacuation planning protocols. 

Risks Associated with Floodwater Depth 

A series of laboratory-based experimental studies have investigated human stability with 

respect to water level and flow (Abt et al., 1989; Cox, 2004; Cox, 2010). According to 

Cox et al. (2010) the stability of individuals in floodways is influenced by multiple factors, 

with flow depth and velocity being the most crucial. A high flow depth increases buoyancy 

and decreases friction, leading to a higher likelihood of tumbling failure. On the other 

hand, low flow depth with high velocity may result in sliding instability. The study by Cox 

et al. in 2004 indicates that high flow depth and low velocity can be even more hazardous, 
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as it increases the chances of being swept away and drowned. The study by Cox et al. in 

2010 indicates that the low hazard range for untrained and equipped adults (with a height 

and mass product of more than 50) exists for water depth lower than 1.2 meters (~3 ft and 

11 inch) and maximum velocity of 0.3 m/s.  

Flood Risk Perception 

The risk assessment process involves the measurement of actual risk by experts, taking 

into account factors such as hazard, community exposure, sensitivities, and capacities 

(Aerts et al., 2018; Rana & Routray, 2018). On the other hand, perceived risk is determined 

by various factors, including exposure, previous experiences, community/individual 

understanding, cognitive thinking, and socio-political influences (Wachinger, 2010). 

Flood risk perception refers to the way in which individuals, communities, and 

organizations understand and respond to the risk of flooding (GREEN et al., 1991). 

Perceptions of flood risk vary among people, influencing their exposure to risk. In light of 

this, local and national agencies are paying increasing attention to the role of risk 

perception in order to navigate the development of new policies and technologies (Sjöberg 

& Wåhlberg, 2002). Studies on risk perception have proposed two approaches: rationalism 

and constructivism. The rationalist approach views risk perception as a cognitive process 

through which individuals assess the benefits and costs of a decision by using their mental 

construct of risk to arrive at a decision. The two theories of heuristics and psychometric 

paradigm are established under rationalism approach (Birkholz et al., 2014; Slovic, 2000). 

The heuristics theory sheds light on the decision-making processes used by individuals in 

uncertain situations, taking into account the potential gains and losses (Bustillos Ardaya 
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et al., 2017). Conversely, the psychometric paradigm focuses on the individual's cognitive 

variables and how they influence risk perception (Birkholz et al., 2014). These two 

theories provide a complementary perspective on how individuals form their opinions and 

make decisions regarding risk, offering insight into the complexities of risk perception. In 

contrast, the constructivism approach considers risk perception from a sociological 

perspective (Wachinger, 2010). The theories established under the constructivism 

approach include social construction of risk (the influence of socio-political factors on risk 

perception) and cultural theory (the impact of social structure and cultures on risk 

perception) (Ren et al., 2017; Short, 1984).Few studies have found a correlation between 

flood risk perception and socioeconomic factors including past flood experience (Botzen 

et al., 2009; M. K. Lindell & Hwang, 2008; O’Neill et al., 2016; Rana & Routray, 2018), 

age and gender (Babcicky & Seebauer, 2017; Siegrist & Gutscher, 2006), education and 

knowledge (Qasim et al., 2015), income and occupation (Peacock et al., 2005; Sullivan-

Wiley & Short Gianotti, 2017). Previous research has primarily examined how various 

demographic factors influence risk perception. Nevertheless, to the author’s best 

knowledge, immersive flood evacuation environments have been widely investigated to 

examine flood depth perception by humans. Furthermore, there is a dearth of research on 

using urban landmarks to estimate flood depth when flood gauges are not present. To 

address this gap, a user study was conducted in a virtual reality environment by simulating 

a flooded town to evaluate human perception of flood risk. 
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Disaster Risk Assessment Using Virtual Reality 

With the advancements in VR technology, researchers have utilized it for improving 

disaster preparedness and response. By creating a simulated environment that accurately 

replicates the experience of being in a flooded area, VR can provide a safe and controlled 

space for individuals to develop a better understanding of the challenges and risks 

associated with different natural hazards. Also, unlike traditional tabletop experiments, by 

immersing individuals in a realistic flood scenario, VR can help convey the severity of the 

situation and increase awareness of the potential consequences of flood-related hazards. 

Several researchers have utilized VR in the field of disaster preparedness and response. 

For example, Ooi et al. (2019) developed a VR-based educational training system focusing 

on fire disasters and concluded that participants’ fire extinguishing start time was reduced 

by 10 seconds using this system (Ooi et al., 2019). Nakamoto et al. (2017) proposed a VR-

based disaster experience system to improve disaster consciousness for people (Nakamoto 

et al., 2017). As a disaster material, Ryu et al. (2007) developed a real-disaster video by 

combining real-time physical simulation and VR (Ryu & Ohno, 2007). Xi et al. (2014) 

enhanced the realism of VR-based fire evacuation training using gaming technology (Xi 

& Smith, 2014). Sermet and Demir (2019) developed a multi-player and voice-enabled 

VR gaming framework (called Flood Action VR) for improving flood risk awareness 

(Sermet & Demir, 2019). Mol et al. (2022) utilized immersive VR to explore whether 

exposure to a simulated disaster can motivate individuals to invest in risk reduction 

measures for flooding, and found that participants who experienced the virtual flood, 

invested significantly more in a designed flood risk investment game (Mol et al., 2022). 
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Methodology 

VR Environment 

First a virtual town was simulated in Unity (a game engine commonly known as Unity3D) 

(Figure VI-1). The environment was programmed in C Sharp. To facilitate an immersive 

VR experience, a background noise of relaxing water flow was played in low volume 

through the Oculus Rift headphones. A map was also provided in the VR environment 

which helped the participants to locate themselves in the virtual town. The red dot on the 

map (Figure VI-1) was set as the starting point of the VR experiment. In the virtual town, 

5 types of urban landmarks (e.g., cars, buildings, stop signs, fire hydrants, and trees) were 

simulated and placed in various locations. Furthermore, standing water was simulated to 

submerge the virtual town. The VR equipment consisted of an Oculus Rift headset with 

internal headphones and controllers (Figure VI-2). Figure VI-3 presents a screenshot of 

the first-person view of the VR environment using the VR headset. 

  

Figure VI-1 The simulated town in Unity. 
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Figure VI-2 Virtual reality headset (Oculus) and controllers. 

 

 
Figure VI-3 First-person view of the VR environment using the VR headset. 

 

Participants 

Participants were recruited from Texas A&M University using university-wide emails and 

advertisements. This selection restricted participation to respondents who have access to 
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the university email. Moreover, the survey included an informed consent form and 

excluded respondents under 18 years old. After sending the campus-wide email, 62 people 

expressed initial interest, and 47 people participated in the study. A reminder was sent to 

the participants 1 day prior to the experiment. Data collection in the lab started on 3 

February 2023 and the last participant was scheduled for 28 February 2023. All 

participants completed all the three parts of the study (the pre-survey, the VR experiment, 

and the post-survey). 

Procedure 

The study protocol was approved by the Texas A&M Institutional Review Board (IRB). 

All surveys and lab experiments were conducted in the Department of Construction 

Science (Francis Hall) at Texas A&M University. At the beginning of the study, 

participants were seated behind a laptop computer to fill in the pre-survey (Appendix B), 

available in the online supplemental material. The pre-survey included questions on their 

demographic factors (e.g., age, gender, ethnicity, and zip code), their past flood 

experience, pas flood evacuation form, sources of information used to get flood depth, 

whether they have a mobile device, and whether they experience a major interruption in 

the mobile data during floods. Lastly, they were asked to provide their opinion on required 

features for computer/mobile apps for personal evacuation navigation or flood rescue 

operation. Participants completed the pre-survey in approximately 10 minutes. 

After completing the pre-survey, the VR experiment was conducted. First, participants 

received instructions on how to operate the VR equipment for approximately two minutes. 

In the practice phase, participants found themselves in a virtual flooded town, where they 
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were instructed to walk and look around in the environment using the VR headset and the 

controllers. After the practice phase, the VR experiment re-started, and participants found 

themselves in the starting point. Participants were asked to walk freely in the VR 

environment and explore the areas. Then, at random locations, participant was asked to 

stop and report an estimate of water depth at their location. The number and locations of 

the points were selected randomly by the study personnel for each individual. The study 

personnel logged each reported water depth with its corresponding location on the map in 

a data collection sheet. Participants were also said that they can use any urban landmark 

in the environment (e.g., trees, buildings, stop signs, fire hydrants, vehicles) for estimating 

water depth at their location. Figure VI-4 shows sample photographs of the VR 

experiments performed in the user studies. After five minutes of the VR experiment, the 

study personnel announced the end of the VR experiment and helped the participant to 

remove the VR headset and controllers. After the VR intervention, participants were 

seated behind a laptop computer to fill in the post-survey (Appendix B), and were asked 

to rank the urban landmarks (trees, buildings, stop signs, fire hydrants, vehicles) based on 

their visibility in the environment and also based on their frequency of use as a benchmark 

for water depth estimation.  
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Figure VI-4 Virtual reality experiments in the user studies. 
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Preliminary Results 

Pre-survey Results 

The pre-survey results showed that the age of participants ranged from 18 to 62 years old, 

with 62.5% falling equal or between 20 and 30 years old. Gender distribution was almost 

equal among participants, with 43.75% female and 54.17% male (2.08% did not disclose 

their gender). In terms of ethnicity 43.75% of participants identified as White/Caucasian, 

6.25% as Black or African American, 43.75%, as Asian/Pacific Islander, and 4.17% as 

multiple ethnicity/other, and 2.08% did not disclose their ethnicity. Only 25% of 

participants reported prior first-hand experience with flood events, while the majority 

(72.92%) had no prior experience, and 2.08% of participants did not remember. Past flood 

experiences included Hurricane Harvey (2017), Hurricane Ike (2008), a flood in Miami, 

flash floods in College Station and Amarillo, and Ontario, a 2021 flood in Maharashtra 

(India), a Typhoon Mangkhut in Hong Kong, a 2021 flood in Namur (Belgium), a flood 

in Mumbai (India), floods in Baton Rouge, Mandeville (Louisiana) between 1970 and 

2001, and a flood in Guadalajara (Mexico). Of those who evacuated, 5 participants did so 

on foot, 4 used some type of boat, 2 used trucks, and 2 used cars. Participants used various 

methods to obtain information about flood depth, including watching news (N = 16), flood 

gauges (N = 7), local measurements (N = 7), social media (N = 9), and FEMA flood maps 

(N = 5), highlighting that watching news and social media were among the most used 

sources for accessing flood information. Also, 7 participants did not obtain any 

information about flood depth, while 1 participant relied on their pre-existing knowledge 

of flooded areas. All participants had mobile devices. Among those with past flood 
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experience, 50% reported experiencing major interruption in mobile data connectivity 

during their most recent first-hand flood experience, while 50% did not experience any 

interruption.  

Post-survey Results 

Based on the results of the post-survey, on a 5-point Likert scale, cars received the highest 

score of 4.43 in terms of being recognized in the environment by participants. Next on the 

list were stop signs with a score of 3.36, buildings with a score of 2.96, trees with a score 

of 2.25 and fire hydrants with a score of 1.70. The same survey also revealed that 

participants most frequently used cars as a benchmark to estimate flood depth (score of 

4.57) likely due to their prominence and familiarity with their shapes and sizes. Stop signs 

were the second most utilized object (score of 3.19), likely because they were also highly 

noticeable in participants' routes. In contrast, fire hydrants were the least frequently used 

objects (score of 2.00) mostly due to their limited visibility in high flooded areas. Table 

VI-1 presents the recognizability and the frequency of use of the urban landmarks by the 

participants.  

 

Table VI-1 Results of the post-survey on a 5-point Likert scale. 

Object Car Stop Sign Fire 

Hydrant 

Building Tree 

Most recognized 4.43 3.36 1.70 2.96 2.25 

Most used 4.57 3.19 2.00 2.60 2.64 



 

132 

 

Distribution of Data in Different Groups 

According to the data, participants under 25 years old achieved the mean absolute water 

depth estimation error of 0.359 m. (14.161 in.) while participants above 25 years old 

achieved 0.362 m. (14.269 in.). With respect to gender, the average absolute error for flood 

depth estimation achieved as 0.352 m. (13.877 in.) and 0.374 m. (14.743 in.) for male and 

female, respectively. Also, the analysis of collected data indicates that the average water 

depth estimation error for White or Caucasian was 0.340 m. (13.383 in.), for Black or 

African American was 0.450 m. (17.718 in.), for Asian or Pacific Islander was 0.371 m. 

(14.610 in.), and for Multiethnicity or Other was 0.380 m. (14.979 in.). Average absolute 

water depth estimation based on the most used object achieved 0.372 m. (14.651 in.) for 

cars, 0.249 (11.220 in.) for stop signs, 0.330 (12.992 in.) for buildings, and 0.404 (15.906) 

for fire hydrants. With respect to past flood experience, the average absolute error for 

flood depth estimation was achieved as 0.315 m. (12.386 in.) and 0.379 m. (14.930 in.) 

for with and without past flood experience, respectively. The average absolute flood depth 

estimation error for those participated in the VR experiment with low average water level 

(less than 1 meter) was 0.413 m. (16.260 in.), and for those with medium average water 

level (between 1 and 1.15 meters) 0.343 m. (13.504 in.), and for those with high average 

water level (more than 1.15 meters) 0.352 m. (13.858 in.). The flood depth estimation 

error was calculated as the difference between ground-truth flood depth and estimated 

flood depth, which was logged in range of -1.725 m. and +1.350 m. with average of 0.119 

m and MAE of 0.361 m. Positive flood depth estimation error value indicates 

underestimation while negative value refers to overestimation. 
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Difference Between Flood Depth Estimation Error Between Various Groups 

Further statistical analysis was conducted (using SPSS software) on parameters including 

age, gender, ethnicity, past flood experience, the most used object (to estimate flood 

depth), average flood level, and flood depth estimation error. The normality test was 

conducted on flood depth estimation error using skewness and kurtosis test as well as 

graphical test using histogram normal curve indicate that data is normal as skewness is 

within -1 and +1 (Hair, 2010) and kurtosis within -2 and +2 (Garson, 2012), and majority 

of the data was dispersed under normal/bell curve in histogram (Field, 2013). Pearson 

correlations were performed to determine the relationship between flood depth estimation 

error and other variables, which indicates that mathematically there is a high correlation 

between flood depth estimation error the two variables of ethnicity and most used object 

(𝑃<0.01). Also, there is a correlation between flood depth estimation error and gender 

(𝑃<0.05).  

Table VI-2 Pearson correlations. 

 

Age Gender Ethnicity Past 

flood 

exp. 

Most 

used 

object 

Average 

flood 

level 

Flood 

depth est. 

error 

Pearson 

Correlation 

0.005 0.040 0.051 -1.04* -0.024 0.066 

Sig. 

(2-tailed) 

.927 .419 .316 .036 .626 .0.186 

N 406 406 389 406 406 406 

* Correlation is significant at the 0.05 level (2-tailed). 
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The t-test was implemented to determine whether there was any difference in absolute 

flood depth estimation error between groups of age, gender, and past flood experience. 

The ANOVA test was performed to determine whether there was any difference in 

absolute flood depth estimation between groups of ethnicity, most used objects, and 

average flood level. At 95% confidence level (𝛼 = 0.05), no significant difference was 

found in flood depth estimation error for age under 25 (𝑚𝑒𝑎𝑛 = 14.161 𝑖𝑛. , 𝑆𝐷 =

 11.552) and age above 25 (𝑚𝑒𝑎𝑛 = 14.268 𝑖𝑛. , 𝑆𝐷 =  12.056 𝑖𝑛.) no significant 

difference was observed (𝑝 = 0.849). At 95% confidence level (𝛼 = 0.05), no significant 

difference was found in flood depth estimation error for male (𝑚𝑒𝑎𝑛 = 13.878 𝑖𝑛. , 𝑆𝐷 =

 11.223) and female (𝑚𝑒𝑎𝑛 = 14.744, 𝑆𝐷 = 12.683 𝑖𝑛.) no significant difference was 

observed (𝑝 = 0.188). Meanwhile, at 95% confidence level (𝛼 = 0.05), no significant 

difference can be observed in flood depth estimation error between ethnicity groups, e.g., 

White or Caucasian (𝑚𝑒𝑎𝑛 =  13.382 𝑖𝑛. , 𝑆𝐷 = 11.567 𝑖𝑛.), Black or African American 

(𝑚𝑒𝑎𝑛 = 17.720 𝑖𝑛. , 𝑆𝐷 = 3.825 𝑖𝑛.), Asian or Pacific Islander (𝑚𝑒𝑎𝑛 =

14.610 𝑖𝑛. , 𝑆𝐷 = 0.827 𝑖𝑛.), and Multiethnicity or Other (𝑚𝑒𝑎𝑛 =

14.980 𝑖𝑛. , 2.606 𝑖𝑛.) (𝑝 = 0.429). Among different most used objects of cars (𝑚𝑒𝑎𝑛 =

14.650 𝑖𝑛. , 𝑆𝐷 = 12.041 𝑖𝑛.), stop signs (𝑚𝑒𝑎𝑛 = 9.787 𝑖𝑛. , 𝑆𝐷 = 9.357 𝑖𝑛.), 

buildings (𝑚𝑒𝑎𝑛 = 12.976 𝑖𝑛. , 𝑆𝐷 = 6.290 𝑖𝑛.), and fire hydrants (𝑚𝑒𝑎𝑛 =

15.898 𝑖𝑛. , 𝑆𝐷 = 14.825 𝑖𝑛.), no significant difference was obtained in terms of flood 

depth estimation error (𝑝 = 0.116). Although participants who mostly used stop signs as 

a measurement benchmark had made lower flood depth estimation errors, the statistical 

analysis did not indicate any significant difference among these groups.  Further analysis 



 

135 

 

is conducted by separating groups of participants into three groups: over-estimators, 

under-estimators, and none (neither under-estimator nor over-estimator). To do so, 

participants who mostly over-estimated flood depth (negative error) were grouped as over-

estimators, and participants who mostly under-estimated flood depth were grouped as 

under-estimators (positive error), and each group were analyzed separately. Results 

indicate that there is no significant difference in flood depth estimation error with respect 

to most used object for none of the three groups. 

Additionally, participants with no flood experience (𝑚𝑒𝑎𝑛 = 14.929 𝑖𝑛. , 𝑆𝐷 =

12.466 𝑖𝑛.) reported higher flood depth estimation error compared to those with past flood 

experience (𝑚𝑒𝑎𝑛 = 12.386 𝑖𝑛. , 𝑆𝐷 = 9.741), and there is a significant difference 

between these two groups (𝑝 = 0.014). Also, no significant difference was obtained in 

terms of flood depth estimation error with respect to average ground-truth flood depth (one 

value per participant) of less than 1 m. (39.37 in.) (𝑚𝑒𝑎𝑛 = 4.677 𝑖𝑛. , 𝑆𝐷 = 18.622 𝑖𝑛. ) 

and equal or above 1 m. (39.37 in.) (𝑚𝑒𝑎𝑛 = 17.362 𝑖𝑛. , 𝑆𝐷 = 1.142 𝑖𝑛.) (𝑃 = 0.307). 

Table VI-3 presents the results of the tests in determining significant difference between 

flood depth estimation errors with respect to other variables. 
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Table VI-3 Results of identifying significant difference between flood depth 

estimation errors with respect to variables. 

 Variable Groups N Asymp. 

Sig. 

T-test Age Under 25 181 0.849 

Above 25 225 

T-test Gender Male 226 0.188 

Female 172 

ANOVA test Ethnicity White or Caucasian 168 0.429 

Black or African 

American 

18 

Asian or Pacific Islander 186 

Multiple ethnicities or 

Other 

17 

T-test Past flood 

experience 

No 300 0.014* 

Yes 97 

ANOVA test Most used 

object 

Car 328 0.116 

Traffic sign 34 

Building 22 

Fire Hydrant 22 

* Indicates 𝑝 < 0.05 
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Table VI-3 Continued. 

 Variable Groups N Asymp. 

Sig. 

ANOVA test Average 

flood level 

Less than 1 m. (39.37 

inch.) 

178 0.307 

More than 1 m. (39.37 

inch.) 

228 

 

Summary and Conclusions 

Previous research has focused on how demographics affect risk perception, but there is 

little research on how immersive flood evacuation environments and urban landmarks can 

affect human perception of flood risk. In this section immersive VR was utilized to 

simulate a flooded environment to assess human’s perception of flood risk. Simulating a 

flooded region in a VR environment mimic risks and consequences in a controlled lab 

experiment which can improve individuals flood risk perception as discussed by (Mol et 

al., 2022). At the beginning of the study, participants were asked to fill out a pre-survey, 

asking participants’ demographic information and past flood experience. Then a 5-minutes 

VR experiment was conducted in which participants were asked to walk in a virtual 

flooded town and estimate water depth at random locations. Participants were guided to 

use any of the benchmarking objects in their surroundings (e.g., cars, stop signs, buildings, 

fire hydrants, and trees). Upon the completion of the VR experiment, participants were 

asked to fill out a post-survey in which they had to rank the benchmarking objects in terms 

of their visibility and their frequency of use for water depth estimation.  
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The objective of the VR experiment was twofold: first, to identify the primary 

benchmarking object used by participants to estimate flood depth, and secondly, to 

examine the impact of various factors on flood risk perception during the evacuation 

process in the absence of additional decision support tools. The results indicated that the 

majority of participants used cars as their primary benchmarking object due to their 

familiarity with their sizes and shapes. However, using cars as a benchmarking object may 

not be the best option since they may not be readily visible in all places, can easily float 

away in floods, and their sizes can vary. The statistical analysis found no significant 

difference in the estimation errors made when using different objects to estimate flood 

depth. These findings suggest that visually estimating flood depth using a benchmarking 

object alone may not be sufficient, thus justifying the need for a reliable and accurate 

decision support tool to estimate flood depth on urban roads. 

Moreover, the study also found a significant difference in flood depth estimation errors 

between participants with past flood experience and those without such experience. 

Specifically, individuals with past flood experience made fewer errors in flood depth 

estimation than those without such experience. Consequently, it can be inferred that 

exposing participants to virtual flood events has the potential to enhance their flood risk 

perception in the real world. In conclusion, this VR experiment highlights the importance 

of having access to decision support tools for flood depth estimation and the potential 

benefits of exposure to flood events to improve flood risk perception. The statistical 

analysis revealed a significant difference in flood depth estimation errors with respect to 

past flood experience, and indicate that participants with past flood experience had lower 
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flood depth estimation error. Thus, it can be inferred that exposing participants to virtual 

flood events has the potential to enhance their flood risk perception in the real world. Due 

to time constraint only limited preliminary analysis is done, and more data should be 

collected to improve the generalizability of the results. In general, with more data 

collected, findings of the study can be used to assess human’s perception of flood risk with 

the goal of informing the development of flood risk communication strategies to improve 

stakeholder perceptions of flood risks. In addition, conducting this experiment with a 

larger number of community participants (outside the university setting) will allow a more 

rigorous analysis with respect to certain confounding factors such as proximity to 

disasters, level of education, and socioeconomic status. In the current study, all 

participants were either students or faculties in a university setting, which may not be 

representative of the broader population. Therefore, by involving a larger and more diverse 

sample of participants in future direction of this study, it could better assess the impact of 

these factors on flood perception and provide more reliable insights into how different 

groups may perceive and respond to flood risks. 
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CHAPTER VII  

CONCLUSION 

 

Summary  

The number and intensity of flood events is expected to increase globally due to 

asymmetric urbanization, growing coastal population, and climate change. During urban 

floods, emergency managers, search and rescue teams, and evacuees make decisions based 

on available data, which may not necessarily represent how floodwaters move in the 

surrounding areas, especially in and around residential neighborhoods. With the goal of 

improving the quality of decisions made during flood events to evacuate people or move 

goods and services while avoiding flooded areas, this study first conducted a community 

needs assessment that highlighted the need for (near) real-time data on floodwater 

conditions, risk-informed evacuation plans, and safe and shortest transit routes.  

Based on the results of the community survey and according to many studies, knowing the 

depth of floodwater during flood events, is of critical importance to first responders, 

emergency managers, and ordinary people involved in search and rescue operations and 

community evacuation. This information, however, is not readily available or shared in 

many jurisdictions particularly in the immediate flood aftermath when it is most needed. 

Additionally, current flood mapping methods such as those relying on DEMs fail to 

capture reshaped surface topography and microtopographic variations in flat terrain 

especially in urban areas, leading to large vertical errors. New digital media capture and 

data exchange platforms coupled with advancements in ML, image processing, and 
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computer vision for object detection have created new opportunities for remotely 

estimating water level depth in flooded areas. However, Effective information and 

communication technology solutions consider communities’ most critical needs while 

providing a simple and easy-to-use interface for collecting valuable information required 

for analysis. The goal of the community survey in this study was to inform the design of 

technology and ensure that the final outcome serves the needs of people who are affected 

by floods. 

Next, a novel flood depth estimation method was developed using visual analysis of 

crowdsourced photos of submerged stop signs and comparing them with photos of the 

same signs before the flood (using GSV) to estimate flood depth in real-time. Since traffic 

signs have standard sizes, the difference between pole lengths in paired pre- and post-

flood photos of the same sign can be computed and used as the basis for estimating the 

depth of floodwater at the location of the sign. Also, the advantage of using stop signs as 

measurement benchmarks is that their shapes and sizes are standardized, and a large 

number of these signs are installed and easily recognizable in urban areas (compared to 

the relatively fewer number of conventional flood gauges). Next, two computer vision 

models (Computer Vision Model I and Computer Vision Model II) were developed and 

validated for estimating floodwater depth in street photos using stop signs as measurement 

benchmark. In the first part of the methodology development, Computer Vision Model I 

was developed which consists of Mask R-CNN for detecting the octagon shape of stop 

signs, and the Canny edge detection and probabilistic Hough transform for detecting 

vertical edges and discovering potential pole candidates. An in-house dataset, named 
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BluPix v.2020.1 consisting of paired web-mined photos of submerged stop signs across 

10 FEMA regions (for U.S. locations) and Canada was generated and used to test the 

performance of Computer Vision Model I. To limit the error in pole length detection, a tilt 

correction method was designed and applied to all photos to ensure poles are in near 

vertical position prior to the application of Hough line transform. Overall, pole length was 

estimated with and RMSE of 17.43 and 8.61 inches in pre- and post-flood photos, 

respectively, leading to an MAE of 12.63 inches in floodwater depth estimation. Then, a 

route optimization algorithm was implemented based on the generated inundation map to 

determine the shortest flood-free evacuation route.  

Next, in the second part of the study, the Computer Vision Model II was developed by 

training a YOLOv4 model on an in-house dataset of annotated stop signs and poles. An 

in-house training set comprising web-mined photos and photos extracted from the 

Microsoft COCO dataset, were used for training the YOLOv4 model (Blupix v.2021.2). 

The trained model was then validated using 5-fold cross validation, and subsequently 

tested for flood depth estimation on 147 paired photos from our in-house test set (Blupix 

v.2022.1). Results indicate MAE of 1.723 and 2.846 in. for pole length estimation in pre- 

and post-flood photos, respectively, and an MAE of 4.710 in. in flood depth estimation 

which shows a significant improvement compared to the previous model.  

To evaluate the efficacy of the flood depth estimation using photos of stop signs, 20 paired 

pre- and post-flood photos of stop signs from Hurricane Harvey (2017), in Houston, Texas 

were selected. In the first part, the A* search route optimization was implemented on the 

generated flood depth map using interpolated stop sign data. In the next part, the flood 
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depth map was generated using Computer Vision Model II and augmented by USGS 

gauges flood depth data during Hurricane Harvey and the route optimization was 

implemented using Dijkstra’s algorithm. Both results indicated the effectiveness of the 

proposed methods in determining shorter transit routes during flood events compared to 

the routes generated based on gauge data only. However, the second approach proposed a 

more accurate and reliable method for flood depth mapping and route planning. 

To enable crowdsourced data collection, a web application, called Blupix, was designed 

and launched. A key challenge in using crowdsourced data for flood mapping is that 

technology users might upload incorrect photos (Garcia-Molina et al., 2016). In this study, 

to remedy potential cases where user-contributed photos are not of expected quality, all 

image uploads were initially inspected by trained project personnel (a.k.a., app admin), 

prior to being approved or rejected. Only approved photos were shown on the map. To 

facilitate data collection at large scale, and provide ad-hoc information for people to gain 

situational awareness during flood events, a mobile application with a built-in TensorFlow 

Lite EfficientDet model (trained on the in-house dataset of annotated stop signs and poles) 

was developed for estimating flood water depth using geolocated photos of submerged 

stop signs. The main goal of developing this app was to provide a simple, reliable, and 

affordable mobile platform for the general public to access real-time flood depth data in 

their surrounding area. The use of this app is scalable to most geographical locations (even 

in data deserts) with GSV data. To ensure the functionality of the developed app in offline 

mode, an additional crowdsourcing platform was developed to collect pre-flood photos of 

stop signs. This platform enables users to upload photos of stop signs in their local 
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environment, which are then mapped on the Blupix app map as crowdsourced pre-flood 

photos. When a flood occurs, users can upload photos of flooded stop signs to the app, 

which can be paired with the crowdsourced pre-flood photos to instantly estimate the flood 

depth, even in offline mode. Lastly, immersive VR was utilized to reconstruct urban flood 

scenes and conduct a series of user studies to assess the human perception of flood risk on 

urban roads during an evacuation process. The user study included a pre-survey (asking 

about demographic questions), a 5-minutes VR experiment, and a post-survey (asking 

about the recognizability of the urban landmarks (e.g., cars, stop signs, buildings, fire 

hydrants, and trees) and their frequency of use as a reference point for flood depth 

estimation). The study found that cars were the most commonly used benchmarking 

object, but may not be the best option due to limitations such as visibility and size 

variability. Also, statistical analysis of results revealed that relying solely on visual 

estimation is insufficient, and there is a need for accurate decision support tools to estimate 

flood depth on urban roads. Preliminary results of the user study indicated that there was 

a significant difference for flood depth estimation error with respect to past flood 

experience, indicating that participants with past flood experience had lower absolute 

flood depth estimation error on average. Therefore, exposing participants to flood 

evacuation experience using immersive VR has the potential to improve flood risk 

perception. In order to more accurately assess the impact of various factors on flood 

perception and gain more reliable insights into how different groups may perceive and 

respond to flood risks, future directions of this study should involve a larger and more 

diverse sample of participants.  
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In summary, the proposed decision support system in this research, proposed a simple, 

reliable, and affordable tool for both first responders and regular citizens to access real-

time and accurate flood depth information in their surroundings and find the shortest 

flood-free route during flood events to the target destination. The crowdsource based data 

collection in the developed approach enables large scale and timely data collection when 

a disaster strikes, and the collected flood depth data can be utilized to generate high spatial 

resolution flood maps. The proposed system works in undeveloped areas, data deserts, and 

low-income communities when FEMA flood maps or flood sensors are not available. A 

major benefit of the developed app is that it is not limited to any geographical location and 

does not require large scale installation and maintenance of physical sensors. 

Collectively, these processes can provide an end-to-end platform for obtaining floodwater 

depth information and conducting intelligent wayfinding. Ultimately, users will be able to 

instantly estimate flood depth in and around their locations using the Blupix Mobile app, 

and inform others by uploading flood photos from their neighborhoods to the Blupix app.  

Research Contributions 

Technical Contributions 

This study has made significant contributions in several key areas. First, a user study was 

conducted to assess the community’s needs during flood events (Chapter III). The study 

then developed a method to use traffic signs as standard flood depth sensing stations for 

accurate street-level flood depth estimation by comparing sign’s pole length in a photo of 

a traffic sign before (from GSV) and after a flood (crowdsourced photo) (Chapter IV). 

Additionally, two computer vision models (Computer Vision Model I and Computer 
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Vision Model II) were developed using traditional image processing techniques and CNNs 

to estimate flood depths using photos of traffic signs (Chapter IV). To enable human-

centered and large-scale data collection, a crowdsourcing platform (called Blupix) was 

designed and developed to collect photos of flooded traffic signs (Chapter IV). 

Furthermore, an additional crowdsourcing platform was designed and developed (called 

Blupix Preflood) to collect pre-flood photos of traffic signs, which enables offline access 

to the flood depth data in any geographical location even when GSV data is not available 

(Chapter IV). Then, a high spatial resolution flood depth map was generated by combining 

USGS flood gauge data with crowdsourced data (Chapter V). The study also developed 

two risk-informed decision support systems for intelligent wayfinding in flood events 

using two route optimization algorithms (Chapter V). Additionally, the study developed a 

mobile app with a built-in computer vision model for estimating real-time flood depth 

estimation and providing ad-hoc situational awareness of floods for communities (Chapter 

V). Lastly, the study conducted a user study to understand human’s perception of risk in 

a controlled environment by simulating a flooded town in a VR setting (Chapter VI). As 

a result of this research, so far four journal papers and three conference papers have been 

published and two additional journal papers and two conference paper are in preparation. 

Also, three crowdsourcing apps were developed, e.g., Blupix, Blupix Mobile, and Blupix 

Preflood. Moreover, three publicly available datasets (namely, Blupix datasets) of 

annotated photos of stop signs before and after floods are created 

(https://github.com/ciber-lab/blupix) 

 

https://github.com/ciber-lab/blupix
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Societal Contributions 

Numbers show that 75% of FEMA flood maps are older than 5 years, and 11% date back 

to the 1970s and 80s (Eby, 2019). This poses a significant challenge to communities that 

reside in and around floodplains and flood-prone areas. To address this issue, this study 

developed an affordable and reliable tool that can be utilized by community members to 

access real-time flood depth information at their location and also inform other 

communities and first responders by sharing this information on the Blupix platform. 

Continuous community engagement throughout the study helped identify community’s 

real needs which in turn informed the technology development process. Members of the 

community were involved in several aspects of the study, which spanned over three years. 

Input was actively sought from the community during the development, testing, and 

launch phases of the Blupix app. For example, findings from the community needs 

assessment survey (Chapter III) were used in the development of the Blupix app to provide 

essential user functionalities. During the testing phase, community meetings provided 

feedback that led to specific improvements such as enabling Blupix to work in offline 

mode by adding the option for users to upload pre-flood photos of stop signs prior to a 

flood event (thus, eliminating the need to connect to the internet during a flood event to 

access GSV). Community engagement efforts continued in the post-development phase to 

collect feedback on the functionality and usability of the app during its launch phase, and 

identify areas for improvement. For example, during a community meeting with a disaster 

non-profit organization, participants requested the addition of voice recognition to the 

Blupix app. This feature would enable them to use the app while wearing gloves or with 
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wet hands, and is one of the future directions of this research. Additionally, studies show 

that people are becoming more complacent regarding natural hazards, leading them stay 

or to move into high-risk areas (Colten & Sumpter, 2009; Tellman et al., 2021). This study 

recognized this challenge and engaged with communities to increase public awareness of 

future flood risks, by helping them access reliable tools to get information about flood risk 

at their locations during a flood event. As an example, a community partner in Port Arthur 

volunteered its constituents to help identify and prioritize their specific needs, as well as 

collect and share photos of stop signs in flood-prone spots in their neighborhoods. This 

collaboration ensured that the developed tool was tailored to the ’community’s 

expectations, leading to an improved overall flood risk assessment and management 

process. Overall, the design of the technology was justified by an actual societal need, and 

moving forward, the implementation and improvements to this technology will continue 

to benefit from continuous engagement with the members of the general public, disaster-

related practitioners, and policymakers. Figure VII-1, Figure VII-2, and Figure VII-3 are 

examples of various community engagements (including crowdsourced data collection, 

involvement in the design and testing phases of the technology, and raising public 

awareness of floods). Overall, the true value of this study goes beyond the mere design of 

a tool, rather, it will facilitate and encourage the inclusion of different population groups 

(e.g., homeowners, policymakers, disaster professionals, researchers) in a conversation 

that aims to improve the status quo of disaster resilience in U.S. communities. This will 

also open the gate for people to work hand in hand with professionals to make impactful 

disaster policy changes. 
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Figure VII-1 Screenshots of KHOU (CBS Houston) news segment covering the 

Blupix app (August 2020) (KHOU 11, 2020). 
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Figure VII-2 Community meetings with students from Port Arthur, Texas, who 

carried out tabletop experiments using the Blupix app to estimate floodwater depth 

(March 2022). 
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Figure VII-3 Community data collection in Port Arthur, Texas (November 2022). 
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Practical Limitations and Future Work 

Standardized Urban Landmarks as Flood Depth Sensing Stations. 

To enhance the applicability and generalizability of the AI-based flood depth estimation 

model, the computer vision model should be trained on all standardized traffic signs, 

including but not limited to yield signs, one-way signs, and parking signs. By training the 

model to detect traffic signs, and knowing their sizes in inches, it can locate them on GSV 

images and estimate the water depth around them. Additionally, the model can be trained 

to detect and analyze other standardized urban landmarks for flood depth estimation, such 

as fire hydrants, traffic lights, bridges, lights, etc. These landmarks can be used as 

reference points to estimate flood depth accurately in a given area. The comprehensive 

model will be capable of estimating flood water depth in any area close to these 

standardized urban landmarks with known sizes. 

Data Augmentation Using Various Resources. 

To enhance the density of interpolation observations, various forms of data can be 

converted to a single format and overlayed. In fact, incorporating different types of data, 

such as satellite imagery, weather data, and historical flood data, and crowdsourced data 

can enhance the accuracy and generalizability of flood depth maps. In this study, 

augmentation of crowdsourced photos with flood gage data was explored. Flood gauges 

mostly provide information on the rural flood-prone areas. However, in future direction 

of work, researchers should explore incorporating different sources of data, such as 

satellite imagery, DEMs, LiDAR data, with crowdsourced photos to generate a high 

spatial resolution flood depth map (McDougall & Temple-Watts, 2012). Satellite imagery 
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can provide an overview of the flood-affected area (Cian et al., 2018), while DEMs can 

be used to estimate the topography of the region (Hawker et al., 2018). However, these 

sources may not provide precise information about flood depth in specific locations. On 

the other hand, crowdsourced images and data can be analyzed to generate flood depth in 

areas where none of the previously mentioned measurements are available. By 

incorporating data analyzed by computer vision from crowdsourced photos with data from 

other resources, the model can provide a high spatial resolution flood depth map in urban 

and rural areas, predict flooding patterns and potential flood zones, making it an essential 

tool for emergency response and planning. Moreover, other than visual analysis of the 

crowdsourcing photos, relevant data can be extracted from social media contents. It is 

noteworthy to say that data integration from multiple sources pose certain challenges in 

terms of data formats, data quality, and data management systems which makes it difficult 

to combine and analyze the data effectively (Li et al., 2018; Meesuk et al., 2017). To 

address these challenges, a standardized data format and data management system should 

be developed to be utilized across different sources of data.  

Water Level Change and Flowing Water 

The developed model in this study provides static flood depth information at one location 

at the time of capturing image. In case of flowing water or rapid water change due to 

drainage system or permeable surfaces, the flood estimated flood depth may change. In 

fact, the developed model is mostly applicable in the aftermath of a flood event in urban 

areas with standing water over impermeable surfaces, which helps users to utilize access 

the real-time flood depth information during the evacuation process.  As a part of future 



 

154 

 

work, terrain data and hydrological modeling can be incorporated with the developed 

model to predict floodwater depth in areas with varying surface permeability, such as rural 

or natural areas, as well as predicting the floodwater level in downstream areas (Campana 

& Tucci, 2001). To predict the downstream condition from the upstream flood depth, 

terrain data (such as DEMs) can be used to provide information on the elevation and slope 

of the land, as well as the location of waterways and other natural features. These models 

take into account the terrain and the topography of the area, as well as other factors such 

as the presence of structures or other obstructions that may affect the flow of water. 

Moreover, hydrological models can simulate the flow of water through a given area 

(Kenward, 2000). By inputting flood depth information obtained upstream into these 

models, flood conditions downstream can be predicted. Combining the real-time flood 

depth estimation models with DEM and hydrological models can be particularly useful 

for emergency response and flood planning, as it allows for the prediction of flood 

conditions in areas that may be downstream from a flood event.  

Human-Technology Interaction 

This study has developed crowdsourcing web applications (Blupix and Blupix Preflood) 

hosted on a cyberinfrastructure for collecting crowdsourced photos of traffic signs and 

generate a flood depth map as well as a mobile app (Blupix Mobile) to provide real-time 

flood depth information. The success of these software depends on their user interface and 

functionality, which in turn, relies on the principles of Human-Computer Interaction 

(HCI). In the future, it is important to explore the user interface and functionality of these 

apps from the perspective of HCI, which includes evaluating the usability of the apps, 
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their user-friendliness, and the overall experience of users interacting with them 

(Marincioni, 2007; Thüring & Mahlke, 2007). HCI for the three developed apps in this 

study can be investigated by conducting usability tests and user surveys, which will 

provide valuable feedback on the current design of the apps and suggestions for 

improvements, which will help in identifying new features that can enhance the overall 

functionality and usefulness of the apps. For example, incorporating augmented reality 

features that can overlay flood depth information on top of the camera view can be a useful 

addition to the mobile app. Additionally, integrating voice commands to input and receive 

information on the app can improve accessibility and ease of use for users.  

Citizen Science 

Citizen science has been recognized as a cost-effective approach to collect large-scale 

data; however, it also presents certain limitations. For instance, the accuracy and reliability 

of the data collected through citizen science can be affected by various factors, such as 

user bias, user error, and differences in data collection techniques. To address this 

challenge, the developed tool in this study incorporates a review process by Blupix app 

administrators to ensure data quality. Nevertheless, to operate the tool in real-time during 

flood events, an automatic review process using AI algorithms should be implemented to 

expedite the data cleaning process. This can improve the speed and efficiency of the tool 

and ultimately enhance the reliability of the collected data. Another challenge is the 

reliability of the model on crowdsourced data from citizens. To increase the spatial 

resolution of the flood depth map, the model relies on the availability of a larger and more 

diverse dataset. As the number of crowdsourced images increases, the accuracy and 
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precision of the generated flood depth map can be enhanced, providing a more detailed 

representation of the flood event. To overcome this challenge, crowdsourced data 

collection can be conducted using different tools. For example, installing cameras on 

emergency vehicles or flood sensors at strategic locations can provide more crowdsourced 

images of urban roads. By integrating data from multiple sources, the spatial resolution of 

the flood depth map can be increased, and the accuracy of the flood depth estimates can 

be improved. 

 The Effect of Drainage Systems on Flood Depth Mapping 

The limited intake capacity of a drainage system may result in the partial flow of the water 

through the pipes, leading to a large volume of runoff flowing on the surface during and 

after heavy rainfall (Palla et al., 2018). In instances where the pipe system's capacity is 

insufficient, the water in the pipes may return to the street system, leading to surface 

flooding caused by the flow of water from the pipe system to the street system. The 

drainage system is an important factor in flood depth mapping as it can significantly affect 

the accuracy of the flood depth information (Mark et al., 2004). The developed app 

provides real-time flood depth information that can be useful in monitoring the impact of 

drainage systems on flood depth. By comparing photos of the same traffic signs taken at 

different times, the functionality of the drainage system can be assessed. However, relying 

solely on crowdsourced data and citizen science can limit the accuracy and reliability of 

the flood depth mapping results. Therefore, it is important to incorporate additional urban 

elements into the flood depth mapping process, such as the physical characteristics of 

buildings, roads, and infrastructure. This approach can provide a more comprehensive and 
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accurate representation of the flood depth in urban areas, which can aid in the development 

of effective flood management strategies.  

Human Perception of Risk 

Chapter VI contained preliminary results of a use study on human’s perception of flood 

risk using VR. While a user study using VR can provide valuable insights into human 

perception of flood risks, it also has several limitations. For example, VR may not 

accurately replicate the real-world experience of a flood event, and participants may not 

react to virtual scenarios in the same way they would to a real flood event. Assessing the 

realisticness of a simulated environment in a user study using VR is needed to ensure that 

the study provides accurate and reliable results (Yadav et al., 2019). There are several 

ways to assess the realisticness of the simulated environment. One common approach is 

to assess participants' subjective perception of the simulated environment. This can be 

done by asking participants to rate the simulated environment's realisticness or by using 

physiological measures such as heart rate and skin conductance to assess participants' 

emotional responses to the simulated environment (Yadav et al., 2019). Furthermore, the 

study may not reflect the diversity of experiences and perceptions across different 

populations and geographic regions. Despite these limitations, the study highlights the 

importance of understanding human risk perception during flood events and opens doors 

for further research on this domain for future researchers. 
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APPENDIX A 

A SURVEY FOR COMMUNITY NEEDS ASSESSMENT IN FLOOD EVENTS 

 

In this section, the questions designed for the community survey are presented which are 

approved by Institutional Review Board (IRB) IRB2019-1506 on January 22, 2020. 

 

1. What is your date of birth? (Note: you must be 18 years or older to participate in 

this study.)  

2. Please enter you ZIP code. 

3. Do you have prior first-hand experience with any type of flood event (i.e., 

hurricane, tropical storm,  flood, storm surge, ...)? 

a. Yes 

b. No 

c. Don’t know 

4. How many flood events have affected you personally (e.g., place of residence or 

work was impacted by flood waters) in the last 5 years?  

a. None 

b. 1 

c. 2 

d. 3 

e. 4 

f. 5 or more 
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5. Please describe those flood events in more detail (e.g., name, date, location, etc.)?  

6. Did flood waters enter your home?  

a. Yes 

b. No 

c. Don’t recall 

7. How high was the flood waters in your home? Estimate as best as you can recall.  

a. 2 inches or less 

b. 3 - 6 inches 

c. 7 - 12 inches 

d. 1 - 2 feet 

e. 3 - 4 feet 

f. 5 - 6 feet 

g. more than 6 feet 

8. Did you evacuate?  

a. Yes 

b. No 

9. How did you evacuate?  

a. I evacuated on my own with no further help 

b. I evacuated, but required rescue assistance 

10. What information did you use to help you evacuate? 

11. Did any of the following limit your ability to evacuate from a flood event, whether 

you did or did not evacuate? Please select all that apply. 
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a. I didn’t have enough time to evacuate to a safer location 

b. I didn’t have enough money to evacuate to a safer location 

c. I didn’t know where to go 

d. I didn’t know what evacuation routes existed 

e. I had no access to transportation 

f. I felt I could ride out the storm 

g. I stayed to protect my home or business 

h. My pets/animals made it difficult to evacuate 

i. A medical condition or disability (either myself or a family member) made 

it difficult to evacuate 

j. I had to stay for work 

k. I stayed to care for family members 

l. Other. Please specify: 

m. No, I didn’t experience any of these barriers 

12. What information do you wish you had or wanted to help you evacuate? 

13. Did you need help from first responders or volunteers to evacuate? Please check 

all that apply.  

a. Yes, I asked for evacuation information or directions 

b. Yes, I eventually required rescue assistance after evacuation 

c. No 

14. How fast did rescue personnel arrive after you sent out a message or called for 

help?  
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a. Less than 30 minutes 

b. Between 30 minutes to 1 hour 

c. 1-2 hours 

d. More than 2 hours 

e. More than 6 hours 

f. More than 12 hours 

g. 1 day or more 

h. Never 

15. How long did it take for your household to recover from physical damages to your 

property? 

a. No major damages 

b. 1 week or less 

c. 2-4 weeks 

d. 4-8 weeks 

e. 2-3 months 

f. 4-6 months 

g. 7-12 months 

h. 1-2 years 

i. More than 2 years 

16. In the last 5 years, did you participate in rescuing others during the flood event 

either by boat or car? 

a. Yes 
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b. No 

17. Please describe those flood events in more detail (e.g., name, date, location, etc.)? 

18. How high was the flood water in the areas of rescue operations you were involved 

in? If floodwater depths were variable, please check all that apply. 

19. How did you get to people in need?  

a. On foot 

b. Surface drive boat (e.g., gator tail) 

c. Flat or short bottom boat 

d. Air boat 

e. Car 

f. Truck 

g. SUV 

h. Other (please specify): 

20. What kind of information did you use when trying to get to people in need? 

21. What challenges did you experience while conducting rescue operations? Check 

all that apply. 

a. Didn't know depth of floodwaters 

b. Didn't know where to take people after rescue 

c. Had trouble finding exact locations of victims 

d. Ran into debris 

e. Other (please specify) 
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22. What information do you wish you had or wanted to help you carry out rescue 

operations? 

23. Do you have a mobile device (smartphone or tablet computer)? 

a. Yes 

b. No 

24. Is it Android or iPhone? If you have multiple mobile devices, please check all 

that apply. 

a. iPhone (Apple) 

b. Android (such as Samsung, LG, Motorola) 

25. Do you have access to data without WiFi (only through cellular network) on your 

mobile device? 

a. Yes 

b. No 

26. On a daily basis, how much time do you spend on your mobile device? 

a. Less than an hour 

b. 1-2 hours 

c. 3 or more hours 

27. In your opinion, what features should a mobile/computer app have in order to be 

useful for personal evacuation navigation or flood rescue operation? 

28. What is your gender? 

a. Male 

b. Female 
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c. Non-binary 

d. Do not wish to answer 

29. What is your race/ethnicity? Please select all that apply. 

a. White or Caucasian 

b. Black or African American 

c. Hispanic 

d. Asian 

e. American Indian or Alaska Native 

f. Native Hawaiian or other Pacific Islander 

g. Other 

h. Do not wish to answer 

30. What is your annual household income? 

a. Below $14,000 

b. $14,001 … $31,000 

c. $31,001 … $63,000 

d. $63,001 … $113,000 

e. $113,001… $184,000 

f. $184,001 … $248,000 

g. $248,001 … $475,000 

h. Above $475,000 

i. Do not wish to answer 

31. What is your highest level of education? 
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a. High school graduate 

b. Some college 

c. Associate’s degree (2-year college) 

d. Bachelor’s degree (4-year college) 

e. Master’s degree 

f. Doctoral or other professional degree 

g. Do not wish to answer 
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APPENDIX B 

PRE-SURVEY AND POST-SURVEY FOR FLOOD RISK PERCEPTION IN 

IMMERSIVE VIRTUAL REALITY 

In this section, the pre-survey and post-survey designed for the study on human’s risk 

perception are presented which are approved by Institutional Review Board (IRB) IRB 

#2023-0010D on January 24, 2023. 

Pre-survey 

1. What is your age? (Note: you must be 18 years or older to participate in this study.) 

[               ] 

2. What is your gender? 

o Male 

o Female 

o Other 

o Prefer not to answer 

3. Which race or ethnicity best describes you? (Please choose only one.) 

o American Indian or Alaskan Native 

o Asian / Pacific Islander 

o Black or African American 

o Hispanic 

o White / Caucasian 

o Multiple ethnicity/ Other  

o Prefer not to answer 
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4. Please enter the 5-digit ZIP code of your place of residence. 

[               ] 

5. Do you have prior first-hand experience with any type of flood event (i.e., hurricane, 

tropical storm, or flood)?  

o Yes 

o No 

o Do not know 

6. If you had any first-hand flood experience, please describe those flood events in more 

detail (e.g., event name, date, location/zip code)? (If not, please report N/A) 

[               ] 

7. If you had evacuation experience during floods, how did you evacuate?  (Please check 

all that apply.) 

o On foot 

o Surface drive boat (e.g., gator tail) 

o Flat or short bottom boat 

o Airboat 

o Car 

o Truck 

o SUV 

o Other (please specify): 

o N/A 
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8. How do you get information regarding flood depth for evacuation purposes and 

choosing the right type of vehicle?  (Please check all that apply.) 

o FEMA flood maps 

o Dialing 911 

o Watching news 

o Social media 

o Flood gauges 

o Local measurement 

o Not getting flood depth information 

o Other (please specify): 

o N/A 

9. Do you have a mobile device (smartphone or tablet computer)? 

o Yes 

o No 

10. Was there any major interruption in your mobile data connectivity during the most 

recent flood you experienced (if any)? 

o Yes 

o No 

o N/A 

11. In your opinion, what features should a mobile/computer app have in order to be 

useful for personal evacuation navigation or flood rescue operation? 

[               ] 
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Post-survey 

1. Rank the objects in the VR environment based on how they were easily recognizable? 

(1: “least recognizable”; 5: “most recognizable”) 

[ ] Car 

[ ] Stop sign 

[ ] Fire hydrant 

[ ] Buildings 

[ ] Tree 

 

2. Rank the objects in the VR environment based on how frequently you used them to 

estimate the depth of water? (1: “used the least”; 5: “used the most”) 

[ ] Car 

[ ] Stop sign 

[ ] Fire hydrant 

[ ] Buildings 

[ ] Tree 

  

 




