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ABSTRACT

Adaptive control is a field of control theory dedicated to addressing uncertain and time-varying

system models. Multiple-timescale control is dedicated to addressing systems with some states

evolving quickly and others evolving slowly. Multiple-timescale control has been shown to

have difficulty with uncertain systems and adaptive control has been shown to have difficulty

with multiple-timescale systems. This dissertation describes a novel control methodology called

[K]control of Adaptive Multiple-timescale Systems (KAMS). KAMS seeks to address systems that

simultaneously exhibit uncertain and multiple-timescale behaviors. Unlike traditional multiple-

timescale control literature, KAMS uses adaptive control to stabilize the subsystems. The refer-

ence models and adapting parameters used in adaptive control significantly complicate the stability

analysis. KAMS is a flexible theory and framework. The stability proofs apply to a wide array of

adaptive algorithms and multiple-timescale fusion techniques. The examples in this dissertation

include the adaptive control methods Model Reference Adaptive Control and Adaptive Nonlinear

Dynamic Inversion. The multiple-timescale fusion techniques of Composite Control, Sequential

Control, and Simultaneous Slow and Fast Tracking are all used. The primary novel contributions of

this dissertation are 1.) a formal development and analysis of KAMS theory and its design method-

ology; 2.) a set of theoretical tools for stability analyses of KAMS including proofs of sufficient

conditions for asymptotic stability; 3.) demonstration of the benefits of KAMS, including formal

and numerical validation of how KAMS can relax the minimum phase assumption for a multitude

of common adaptive control methods. KAMS is demonstrated and evaluated on examples consist-

ing of stabilization and attitude control of a quadrotor Unmanned Air System; fuel-efficient orbital

transfer maneuvers; and preventing inlet unstart on hypersonic aircraft. Results presented in the

dissertation demonstrate that KAMS has better performance overall, and improved robustness to

uncertainty in the time scale separation parameter than traditional approaches like adaptive control

alone, or multiple-timescale control alone.
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1. INTRODUCTION

Two control techniques, adaptive control and multiple-timescale control, are active areas of re-

search and address the complexities of physical systems. Multiple-timescale control is intended for

systems that have both fast and slow modes. The controller must be able to simultaneously stabilize

the fast and slow modes of the system. Adaptive control was developed for systems with uncertain

and time-varying parameters. For such systems, the control objective must be achieved despite

imperfections in the model. However, relatively little research has addressed multiple-timescale

systems and uncertain models simultaneously. This dissertation introduces a novel control method-

ology that addresses uncertain multiple-timescale systems. This methodology is called [K]control

of Adaptive multiple-timescale Systems (KAMS). KAMS builds upon the first principles of adap-

tive control and multiple-timescale control. KAMS expands the set of systems to which adaptive

control and multiple-timescale control can apply. Prior work has used elements of each of these

methods, but it has stopped short of fully and rigorously combining them. KAMS is more extensi-

ble, simpler, and leads to greater insight into the physics of the system.

This dissertation is organized as follows. The remainder of this chapter introduces multiple-

timescale control and adaptive control individually, defines the KAMS methodology, and contextu-

alizes this dissertation within the prior literature. Chapter 2 develops several theoretical tools (i.e.

theorems) for stability analysis when KAMS is used including sufficient conditions for asymptotic

stability. Chapter 3 briefly describes how KAMS can be used to relax the non-minimum phase

assumption. Chapter 4 Discusses two potential alternatives to KAMS and directly compares the

three methods with a simple numerical example. Chapters 5, 6, and 7 give examples of KAMS

on aerospace systems and explore the various fascists of the theorems from Chapter 2. Chapter 5

performs attitude stabilization and control on a linearized model of a quadrotor Uncrewed Air Ve-

hicle (UAV). Chapter 6 performs an orbital transfer maneuver of a satellite by tracking a Hohmann

transfer trajectory. Chapter 7 performs inlet unstart prevention by adaptive regulation of a hyper-

sonic vehicle angle-of-attack. Finally, Chapter 8 describes the conclusions from this dissertation,
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and Chapter 9 describes the recommendations from this dissertation.

1.1 Multiple-Timescale Control

Many systems have coupled fast and slow modes which occur simultaneously. Examples exist

in nearly every engineering field. For example, multiple-timescale models have been published

for robotic arms [1], electric circuits [2], chemical processes [3], factory logistics [4], and even

pandemics [5]. Many aerospace systems are multiple-timescale systems. For example fixed wing

aicraft [6], hypersoinc vehicles [7], satalites [8], rotorcraft [9], UAV [10], and trajectory optimiza-

tion [11]. For more examples see [12]. A general two-timescale system can be represented as the

following system of dynamic equations.

x́ = fx(x, z,u) (1.1a)

ϵź = fz(x, z,u, ϵ) (1.1b)

In this system of equations x is the slow state, z is the fast state, u is the system input, and fx and

fz can be any nonlinear function as long as they are the same order of magnitude. The variable

ϵ is called the timescale separation parameter. It represents the ratio between the timescale of the

slow states (ts) and the fast states (tf ) such that 0 < ϵ ≜ ts/tf ≪ 1. This can be thought of as a

unit conversion. For example, if ts = 1 minute and tf = 60 seconds then ϵ = 1/60. Applying this

to Eq. (1.1) it is found that typically ź ≫ x́. The accent above x and z is the time derivative with

respect to the slow timescale (́·) ≜ d(·)/dts.

Singular perturbation theory is a branch of mathematics dedicated to functions with limits that

do not equal the value of the function [13]. The system in Eq. (1.1) is an example of such a system

[14]. Setting ϵ = 0 gives

x́ = fx(x, zs,u) (1.2a)

0 = fz(x, zs,u, 0) (1.2b)
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This is known by multiple-timescale control theorists as the reduced slow system or the outer

system. It is called this because it describes how the slow states evolve after the fast states have

reached steady state. Using the definition of x́ a new derivative of time (̀·) ≜ 1/ϵ(́·) can be defined

such that

x̀ = ϵfx(x, z,u) (1.3a)

z̀ = fz(x, z,u, ϵ) (1.3b)

Once again setting ϵ = 0 reveals a new reduced system

x̀ = 0 (1.4a)

z̀ = fz(x, z,u, 0) (1.4b)

This is known as the reduced fast system or the boundary system because it describes how the fast

states evolve before the slow states begin to change. The true system is somewhere between the

reduced fast system and the reduced slow system. Taking the limit as ϵ goes to zero necessarily

discounts some aspects of the dynamics. Sometimes, Eq. (1.2b) can be solved for z so that the

steady-state trajectory of the fast states is known. Let this steady-state trajectory be zs. This

trajectory is called the fast state manifold. In this dissertation, the error between the manifold and

the fast states is denoted z̃ ≜ z− zs. If the manifold can be found algebraically then the system is

called standard. Physically, nonstandard systems are more common. Aircraft are a good example

of a nonstandard system because coupling in the fast dynamics makes fz intractable.

In multiple-timescale control literature, the current state of the art is Composite Control [15,

p. 94-102], Sequential Control [9], and Simultaneous Slow and Fast Tracking [16]. In Composite

Control the input is selected to be u = us(x) + uf (x, z) where us(x) is a control signal that is

used to stabilize the reduced slow system, and uf (x, z) is a control signal that is used to stabilize

the reduced fast system. Importantly, uf is chosen such that uf (x, zs) = 0. This allows the slow

input to be the only influence on the system when the fast state has converged to its manifold.
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Notably, this requires knowledge of the manifold. The literature describes three ways to obtain the

manifold. For standard systems the manifold can be derived from the system dynamics [9, p. 42-

54]. For a nonstandard system, the manifold can be approximated [17]. In Sequential Control, the

manifold is specified [9, p. 78-91]. The manifold is used as an input for the slow subsystem. Then

the control input is used to drive the fast states to the manifold. This is very related to Cascaded

Control. However, Sequential Control is slightly more rigorous because the timescale separation is

formally defined as ϵ, and Sequential Control theory allows the engineers to calculate exactly how

much timescale separation is required for the approach to be successful. Finally, Simultaneous

Slow and Fast Tracking are best suited for fully actuated systems. The inputs can then be selected

so that the slow and fast states simultaneously converge to an arbitrary trajectory. For this method,

the manifold is again specified because the steady state trajectory of the fast states is arbitrary. All

three of these control approaches are frameworks for fusing the control signals for the reduced

subsystems. The control for the subsystems is typically selected via a Lyapunov analysis of the

reduced-order systems [18, p. 97-154]. However, other approaches (e.g. Feedback Linearization)

is perfectly allowable [9] (to foreshadow slightly, KAMS uses adaptive control).

The control fusion techniques described above ensure that the reduced-order models are stable

under u. However, the true full-order system is a coupled version of the slow and fast subsystems.

It is possible for this coupling to incite instability [9, p. 46]. Thus, the closed-loop behavior of

the full-order model would still be unknown. Saberi and Khalil showed full-order stability for a

multiple-timescale system via a third Lyapunov analysis [19] (i.e. one for each reduced subsystem

and one for the full-order model). They then extended that result to a system under Composite

Control [20]. Saberi and Khalil’s result is highly general and essential in multiple-timescale control.

It is restated here because it is foundational to this dissertation

Theorem 1.1 - [20] Using the variable definitions above. Let V (x) and W (x, z̃) be Lyapunov

functions. Choose the input to be Composite Control. Let 0 < α1, α2, β1, β2, β3, γ1, γ2 ∈ R be

arbitrary. Let Ψ(x) and Φ(z̃) be arbitrary continuous scalar functions such that Ψ(0) = Φ(0) = 0.
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IF the following conditions are met:

∂V

∂x
f(x, zs,us) ≤− α1Ψ

2(x) (1.5)

∂W

∂z̃
g(x, z,u, 0) ≤− α2Φ

2(z̃) (1.6)

∂V

∂x
[f(x, z,u)− f(x, zs,us)] ≤β1Ψ(x)Φ(z̃) (1.7)

∂W

∂z̃
[g(x, z,u, ϵ)− g(x, z,u, 0)] ≤ϵβ2Ψ(x)Φ(z̃) + ϵγ1Φ

2(z̃) (1.8)[
∂W

∂x
− ∂W

∂z̃

∂zs

∂x

]
f(x, z,u) ≤β3Ψ(x)Φ(z̃) + γ2Φ

2(z̃) (1.9)

ϵ <
α1α2

(γ1 + γ2)α1 + β1(β2 + β3)
(1.10)

THEN the full-order closed-loop system is asymptotically stable about the origin.

Proof. Proof of Theorem 1.1 can be found in [20].

Condition (1.7)-(1.9) are called the interconnection conditions. Each condition in Theorem 1.1

has a physical meaning. Condition (1.5) stipulates that the reduced slow system be stable. Condi-

tion (1.6) stipulates that the reduced fast system be stable. Condition (1.7) is a bound on the effect

of the manifold on the slow subsystem. Condition (1.8) is a bound on the effect of the reduced slow

system on the reduced fast system. Condition (1.9) is a bound on the effect of the reduced slow

system on the reduced fast system. Multiple-timescale control breaks down for single-timescale

systems because the timescale separation parameter can no longer be approximated as 0. Hence,

condition (1.10) is an acceptable range for the timescale separation parameter. Often, the timescale

separation parameter is difficult to determine exactly. It is much more common for control engi-

neers to have a rough estimate of the timescale separation parameter. Therefore, an important

aspect of most multiple-timescale control stability proofs is deriving an acceptable range for this

parameter. Multiple-timescale control methods have been extended to allow output feedback [21],

state observers [22], and an arbitrary number of timescales [9, p. 109-127].

A block diagram for multiple-timescale control (including all three fusion methods described

above) is given in Fig. 1.1. The empty spaces in this diagram are reserved for blocks that will
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be added later. Notably, the multiple-timescale control stability proofs discussed above are all

developed under the assumption that the system model is exactly known. In the literature, standard

practice when deriving multiple-timescale control for an uncertain system is to assume that any

errors in the system model are negligible [23]. Static estimates of the uncertain parameters are

required. Steady-state error can occur if the system model is incorrect. Relatively little research has

addressed multiple-timescale systems with uncertain parameters. The research in this dissertation

does so.

Slow  
Control

Fast  Control

Slow  
Subsystem

Fast  
Subsystem

Mani fold

Fusion

Figure 1.1: A block diagram of multiple-timescale control.
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1.2 Adaptive Control

Adaptive control is an effective method of accounting for time-varying parameters and uncer-

tain models [24, p. 4]. Adaptive control has particular application to aircraft which are frequently

uncertain and nonlinear [25, 26, 27, 28]. The inertias and control derivatives are the two biggest

sources of parametric uncertainty in aircraft dynamic modeling. Measuring these parameters can

be an expensive and time-consuming process. Adaptive control can address several different types

of uncertainty. This uncertainty is divided into structured uncertainty, unstructured uncertainty,

and unmodeled dynamics. Structured uncertainty, also known as parametric uncertainty, applies

to systems where individual parameters are unknown [29]. Unstructured uncertainty applies to

systems where an entire section of the dynamics is an unknown [30]. This creates an unspecified

function in the differential equations. Unmodled dynamics applies to systems when there is a cou-

pled differential equation in the dynamics that is either unknown or discounted [31]. The types of

uncertainties can further be divided into three more categories: Matched uncertainty, unmatched

uncertainty, and control input uncertainty. Matched uncertainty can be completely canceled out by

the control if it is known [32]. Unmatched uncertainty cannot be directly canceled out because of

singularities encountered while inverting the dynamics [33]. Control input uncertainty is an uncer-

tain parameter that is directly multiplied by the input [34]. Examples of each type of uncertainty

can be found in [35, p. 86-88]. Finally, adaptive control can also apply to time-varying parameters

[36]. Each of these applications of adaptive control has extensive research in the literature.

Adaptive control techniques are typically divided into two broad categories: direct and indirect.

Indirect adaptive control uses the adaptive laws to estimate the uncertain or time-varying values

[37]. The control gains are then calculated using the estimated values. On the other hand, direct

adaptive control estimates the control gains directly without ever obtaining the uncertain or time-

varying parameters [38]. Because the control gains are functions of the uncertain or time-varying

values, the difference between direct and indirect adaptive control can often be thought of as a

change of variables.

Implementation of adaptive control typically proceeds by selecting a suitable control law that
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stabilizes the idealized model. Then, parameter estimators are chosen which ensure stability for

the uncertain systems. These parameter estimators are typically dynamic equations that are func-

tions of the system’s states and inputs. Conceptually the parameter estimates converge to the true

parameter value. However, in practice, parameter estimators are not required (or desired) to drive

the estimation error to zero. It is usually sufficient to ensure that the estimation error is bounded

and the control objective is achieved. Stability and convergence are often proved using a Lyapunov

analysis and Barbalat’s Lemma [39].

There are several methods of choosing adaptive laws and control laws. The control laws must

be chosen such that the control objective would be achieved if the parameters were known perfectly.

A common method is dynamic inversion because it can be applied to nonlinear systems [40]. How-

ever, more traditional methods such as proportional, integral, derivative (PID) control [41] or full

state feedback are possible [42, Section 4]. A common consideration when choosing a control law

is to ensure the uncertain or time-varying values appear in the closed-loop system such that the

system fits one of the parametric models that are used in the derivation of adaptive laws. In other

words, the system must be formatted such that it fits a generic model (called a parametric model)

used by standard adaptive laws. The adaptive laws can then be chosen from the list of adaptive

laws that fit that parametric model. Some common standard adaptive laws include Strictly Positive

Real (SPR) Lyapunov [43], Gradient Descent [44], and Least Squares [45]. Alterations such as

normalization [46] or projection [47] can be used to ensure the parameter estimates are bounded.

Model Reference Adaptive Control (MRAC) is the most common version of adaptive control

[48, p 221-222]. MRAC chooses adaptive laws and control laws such that the system tracks a the-

oretical reference system. Many other "flavors" of adaptive control have been studied throughout

the years including L1 Adaptive Control [49], Structured Adaptive Model Inversion (SAMI) Con-

trol [50], and Intelligent Adaptive Control [51]. A comprehensive review of adaptive techniques is

beyond the scope of this work. The reader is referred to a survey paper such as [52] for an in-depth

summary.

While adaptive control is advantageous for uncertain systems, it has been shown to struggle
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with multiple-timescale systems [24, p. 549-552] [35, p. 5]. All of the adaptive control research

described above is applied solely to single-timescale systems. In the literature, there are two pri-

mary ways to apply adaptive control to a multiple-timescale system. They are Full-Order Adaptive

Control (FOAC) and Reduced Order Adaptive Control (ROAC) [53]. This dissertation proposes a

novel third method - KAMS. FOAC and ROAC will be discussed in more detail in Chapter 4.

1.3 [K]control of Adaptive Multiple-Timescale Systems Architecture

This section details this dissertation’s research from a high-level perspective. It describes the

KAMS methodology and lists the expected benefits. Then several research questions are listed

which his dissertation answers. Finally, the scope of this dissertation is discussed.

1.3.1 Methodology

The multiple-timescale control fusion techniques described previously are characterized by

selecting a controller for both of the reduced systems and then fusing them. For Composite Control,

as long as the assumptions and conditions of Theorem 1.1 are met any method can be used to select

the control for the reduced subsystems. KAMS uses adaptive control on the reduced subsystem.

The problem definition and assumptions of Theorem 1.1 do not hold for adaptive control. The

reason for this is the complex interactions between the fast reference model and manifold. This

will be discussed in more detail in Chapter 2. A major contribution of this dissertation is a novel

theorem that is equivalent to Theorem 1.1 but for KAMS. Using this novel theorem, the design

procedure for KAMS is

1. Derive the reduced fast and reduced slow subsystems.

2. Select a multiple-timescale fusion technique and obtain the system manifold(s) using the

reduced slow system or by specifying it. Which method is used depends upon the control

objective and the system type (standard or nonstandard).

3. Select an adaptive control or traditional control to drive the reduced slow system to the

control objective. Which type of control is used depends upon the location of uncertainties
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and time-varying parameters.

4. Select an adaptive control or traditional control to drive the reduced fast system to the control

objective. Which type of control is used depends on the location of uncertainties and time-

varying parameters.

5. Confirm full-order stability by checking the sufficient conditions of the novel theorem.

Figure 1.2 shows a block diagram for KAMS. As will be seen in Chapter 2 the fast adaptive

control is allowed to be a function of the slow states. This uncommon case is excluded from the

block diagram for readability. If the uncertain parameters do not appear in one of the subsystems

then a traditional (i.e. non-adaptive) form of control can be used for that subsystem. This still

fits within the framework of KAMS. Figures 1.3 and 1.4 show block diagrams for KAMS with

adaptive control in only the slow and fast subsystems respectively. If adaptive control is not neces-

sary for either subsystem then the system is reduced to traditional multiple-timescale control and

theroem 1.1 is sufficient.

1.3.2 Benefits

KAMS expands the applicability of multiple-timescale control and adaptive control to uncer-

tain multiple-timescale systems. It also provides several important benefits over prior methodolo-

gies. For example, KAMS is generalized and simplified when compared to [54]. This and other

related research are discussed in the literature review to follow. KAMS is also agnostic to the

type of adaptive control used. This allows KAMS to take advantage of the most recent research

in adaptive control and multiple-timescale control. In summary, KAMS provides the following

benefits:

1. Extends both adaptive control and multiple-timescale control to a wider class of systems.

2. Method is generalized.

3. Underlying physics inherent in the timescale separation are evident in the control law. This

allows for improved analysis.
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Figure 1.2: A block diagram of KAMS.

4. Derivation and implementation are simplified.

5. KAMS is agnostic to the type of adaptive control and multiple-timescale control used. This

means the new technique can take advantage of the most recent research.

These fascets make KAMS an attractive choice when working with uncertain systems with

timescale separation. However, if the system is deterministic then traditional multiple-timescale

control should be used. If the timescale separation is small then traditional adaptive control should

be used.

1.3.3 Research Questions

There are several important research questions that this dissertation addresses.
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Figure 1.3: A block diagram of KAMS with adaptive control only used for the slow subsystem.

1. What is a generalized method for control of multi-input multi-output (MIMO), uncertain,

nonlinear, nonstandard, adaptive multiple-timescale systems?

2. How can stability and convergence be proved for this generalized method? What is the

acceptable range for the timescale separation parameter?

3. How does this method and the associated stability proof change when the adaptive control

is used for only one subsystem as opposed to both?

4. What timescale do the adaptive parameters adapt in? Is it the fast timescale, the slow

timescale, or a new timescale?

5. How does this method perform on aerospace systems?
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Figure 1.4: A block diagram of KAMS with adaptive control only used for the fast subsystem.

1.3.4 Scope

This dissertation primarily addresses slow state tracking of a reference signal for two-timescale

systems using full state feedback, although Simultaneous Slow and Fast Tracking is investigated

in Chapter 6. The multiple-timescale control fusion techniques considered are Composite Con-

trol, Sequential Control, and Simultaneous Slow and Fast Tracking. The methodology proposed

herein applies to many adaptive methodologies and types of uncertainty that currently exist in the

literature. However, exhaustive testing of all adaptive control methods is beyond the scope of this

dissertation. Traditional MRAC and Adaptive Nonlinear Dynamic Inversion (ANDI) are chosen

to demonstrate the approach and results. Direct adaptive control is used and the adaptive laws

are selected via a Lyapunov analysis. Parametric uncertainty is assumed and certain assumptions
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about the uncertain parameters are imposed. Collectively, these techniques are chosen because

their simplicity elucidates the advantages and disadvantages of the approach.

1.3.5 Contributions of This Dissertation

This dissertation develops and analyses a generalized method of adaptive control for uncertain,

nonlinear, nonstandard, multiple-input multiple-output, multiple-timescale systems. As discussed

in the next section, several researchers have addressed subsets of this problem, but this is the first

work that addresses all of these components simultaneously. The KAMS methodology itself is

novel; as are the related theories that are proven and studied in Chapter 2. These theories give

proof of conditions that are sufficient for the asymptotic stability of the full-order system under

KAMS. The stability proof was significantly complicated by complex interactions between the

fast-state reference model and the manifold. These proofs show that if the conditions are met then

the coupling which is eliminated during the model reduction is insufficient to destabilize the sys-

tem. This work also contributes analysis of KAMS. This analysis includes a direct comparison of

performance and robustness with a few notable alternative approaches. The analysis also includes

evidence for the versatility of KAMS through several first-of-kind demonstrations with a variety

of

1. Adaptive control methods

(a) MRAC

(b) ANDI

2. Multiple-timescale fusion techniques

(a) Composite Control

(b) Sequential Control

(c) Simultaneous Slow and Fast Tracking

3. Plants
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(a) Linear and nonlinear

(b) Small and large timescale separation

(c) Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO)

(d) With and without the timescale separation parameter appearing on the right-hand side

of the fast states’ equations of motion

This dissertation also includes the first demonstration of how KAMS can be used to relax the min-

imum phase assumption. This contribution is particularly significant because the minimum phase

assumption has been a notable drawback to adaptive control since its inception. Finally, the prac-

tical examples at the end of this dissertation use KAMS to develop new approaches for quadrotor

attitude stabilization, orbital transfer maneuvers, and inlet unstart prevention for hypersonic air-

craft. The approaches used in these practical examples are novel. Each of these contributions

individually and collectively represent significant novel additions to societal knowledge.

1.4 Literature Review

There is some prior work that addresses the issues of uncertain multiple-timescale systems.

Prior work begins with either adaptive control or multiple-timescale control and then applies ele-

ments of the other method. KAMS approaches the problem from a more fundamental first princi-

ples approach. Thus, the following literature review is divided into two sections: adaptive control

with elements of multiple-timescale control and multiple-timescale control with elements of adap-

tive control.

1.4.1 Adaptive Control with Elements of Multiple-Timescale Control

The literature reports three ways to incorporate multiple-timescale methods into adaptive con-

trol. They are assumed model reduction, Tikhonov’s Theorem, and singular perturbation in the

control.
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1.4.1.1 Assumed Model Reduction

One common method to apply adaptive control to a multiple-timescale system is to apply the

adaptive control to the reduced slow model and assume the neglected dynamics are stable (e.g.

[9, p. 41-42]). This method is called Reduced-Order Adaptive Control (ROAC) herein. Under

ROAC, if the input accidentally excites the dynamic modes in the discounted dynamics then the

full-order system can be driven unstable [55]. For a deterministic linear time-invariant (LTI) sys-

tem this problem has been solved [56], but the proposed research addresses uncertain and nonlinear

systems. Wahdan and Tawfik said, "It has been established that standard adaptive control algo-

rithms would likely become unstable, in the presence of unmodeled plant dynamics and external

sinusoidal disturbances" [57]. Wahdan and Tawfik attempted to reduce the effects of this problem

by regularly resetting the adaptive parameters to their initial conditions, but they stopped short of

proving full-order stability. Rohrs et al. acknowledged the difficulty of applying adaptive control

to a subsystem of the dynamics. They said, "...sinusoidal reference inputs at specific frequencies...

can cause the loop gain to increase without bound, thereby exciting the unmodeled high-frequency

dynamics, and yielding an unstable control system" [58]. Rohrs et al. concluded that "existing

adaptive control algorithms as they are presented in the literature referenced in this paper, can-

not be used with confidence in practical designs where the plant contains unmodeled dynamics

because instability is likely to result" [58]. Later Rohrs said, "These theoretical assumptions are

too restrictive from an engineering point of view. Real plants always contain unmodeled high-

frequency dynamics..." [59]. Some researchers have disputed Rohrs’ claim [60] and demonstrated

adaptive controllers which are robust to unmodeled dynamics (e.g. [61]). Another common ap-

proach is to treat the unmodeled fast dynamics as a time delay (e.g. [62]). However, the class

of systems discussed in this research implicitly assume that at least some subset of the fast dy-

namics are known. If these dynamics are known then discounting them only puts the engineer at a

greater disadvantage. Stability guarantees and robustness can only be strengthened by including all

known dynamics. KAMS improves upon ROAC by considering both reduced subsystems. KAMS

is directly compared to ROAC in chapter 4.
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A related approach is to use Cascaded Control (also known as Sequential Loop Closure) [63,

p. 58-60]. Cascaded Control segments the system into a slow and fast subsystem and then uses the

fast states as an input to the slow states. As previously mentioned, this is related to the multiple-

timescale control fusion technique of Sequential Control. Indeed, the control signals for Cascaded

Control and Sequential Control are often identical. However, Sequential Control carries with it

additional tools from singular perturbation theory. A common rule of thumb for Cascaded Control

is that the fast dynamics must be about ten times faster than the slow dynamics and the coupling

between subsystems is ignored in stability proofs. On the other hand, singular perturbation theory

allows Sequential Control to provide an analytical bound on the allowable timescale separation.

This bound is derived from the system dynamics. Additionally, singular perturbation theory allows

Sequential Control to rigorously account for the coupling between subsystems in the stability proof.

Rollins, Famularo, and Valasek gave several examples of adaptive control within the framework

of Cascaded Control [30, 34, 64, 65, 66, 67]. They applied their work to a hypersonic aircraft.

Chapter 7 of this dissertation gives a comparison between their work and KAMS. The comparison

demonstrates how KAMS can be used to obtain more rigorous stability guarantees. Further, KAMS

also allows for more exotic fusion techniques like sequential control and simultaneous fast and slow

tracking.

1.4.1.2 Tikhonov’s Theorem

Vasil’eva built upon Tikhonov’s work [68] and showed that after finite time the full-order sys-

tem approximates the reduced slow system [69]. This is known as Tikhonov’s Theorem and can

be found in English in [18, Theorem 9.1]. Via Tikhonov’s Theorem, the full-order model can

sometimes be shown to be stable when a reduced subsystem is under adaptive control. However,

Tikhonov’s theorem requires several restrictive assumptions. For example, the system must be

standard. The several examples below discuss systems that are structured such that Tikhonov’s

Theorem is sufficient to prove stability, but a more general method such as KAMS is needed.

Al-Radhawi et al. modeled the progression of the COVID-19 pandemic as a multiple-timescale

system [5]. The input to the system was the public’s perception of the danger of the disease. Al-
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Radhawi demonstrated that the efforts to suppress the contagion can be modeled as an adaptive

control law. Using Tikhonov’s Theorem, Al-Radhawi showed both stability and that the model cor-

rectly matched ground truth data from the pandemic. Macchelli et al. modeled a leaking hydraulic

press as a multiple-timescale system [70]. Using singular perturbation theory, Macchelli was able

to demonstrate that the adaptive controller selected for the fast dynamics, was still able to track the

reference model despite the unmodeled slow dynamics of leaking hydraulic fluid.

Nguyen et al. studied a particularly interesting case. Nguyen used Tikhonov’s Theorem to

apply adaptive control to a general linear system with matched uncertainty. Nguyen’s work builds

upon a modification of adaptive control that is derived from optimal control [71]. Nguyen then

derived a controller for a system with actuator dynamics using this modified adaptive control [72].

Interestingly, Nguyen assumed the actuator dynamics were significantly slower than the system

dynamics. The actuator dynamics and system dynamics were together modeled as a multiple-

timescale system. Nguyen used the reduced-order model to obtain the manifold. Nguyen then

differentiated the manifold and used it to supplement the slow dynamics. In other words, only the

transient response of the fast dynamics is discounted. Finally, Nguyen performed two validating

numerical examples including a simulation of the pitch dynamics of an aircraft. These numerical

examples showed that Nguyen’s technique can achieve better performance than MRAC for this

class of system. This is a promising result because Nguyen showed that adaptive control can be

improved by considering the steady-state response of the fast dynamics. This implies that also

including the transient response will improve performance even more. KAMS considers both the

transient and steady-state dynamics of the full-order model.

1.4.1.3 Singular Perturbation Control

Singular perturbation theory applies to any system with states that evolve in different

timescales. The adaptive laws convert the control law into a differential equation. The adap-

tive gains have a large influence on the timescale of control input. Thus, depending on the control

structure the input equation can augment the dynamics of a single-timescale system to create a two-

timescale system. Singular perturbation theory applies to this augmented two-timescale system just
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as it does to a system that is inherently multiple-timescale. In this case, singular perturbation the-

ory can be useful to enforce convergence criteria on the control and adaptation. This methodology

is related to KAMS through its use of singular perturbation theory. However, research using singu-

lar perturbation theory in the control has only been applied to single-timescale dynamic systems.

Thus, using singular perturbation in the control does not address the class of problems addressed by

KAMS. For completeness, research papers using singular perturbation in the control are discussed

below.

Hovakimyan et al. derived a control law that numerically converges to a dynamic inversion

controller for a nonlinear system that is algebraically intractable [73]. Lavretsky et al. merged

traditional adaptive control techniques into this method [74]. Hovakimyan et al. extended this

technique to multivariable systems [75] and added a state estimator [76]. All of this research used

singular perturbation theory to ensure the control law converges faster than the system dynamics.

This research also used adaptive control to account for uncertainties in the system dynamics.

Early adaptive control researchers used averaging theory to address periodic signals. Averaging

theory postulates that the convergence of a function f(t, x) can be proven by showing that an

average function fav(x) is stable. Here, fav(x) is defined as

fav(x) ≡ lim
t→∞

1

t

∫ t

0

f(τ, x)dτ (1.11)

It is relevant to the present discussion that adaptive control with averaging theory requires the adap-

tive parameters to change slowly. This essentially filters out the oscillations. The slow adaption is

modeled by a timescale separation parameter and singular perturbation theory can be applied. A

tutorial and literature review on averaging techniques can be found in [77, p. 158-208].

Timescale separation in adaptive control can also cause problems when the control is in a slow

timescale. Extremum Seeking (ES) is a method of adaptive control that regularly applies very small

changes to the control and then checks for improved performance. If performance improves then

the control law is updated. Deese and Vermillion said, "Although rigorous convergence guarantees
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exist for ES, convergence times can be slow due to the assumptions of timescale separation between

system dynamics and the ES perturbation period" [78].

Several other researchers have used singular perturbation theory in conjunction with adaptive

control. Sun et al. applied singular perturbation to adaptive control on a subset of underactuated

Euler-Lagrange systems [79]. Rayguru et al. [80] and Yang et al. [81] both used singular pertur-

bation in adaptive control to ensure closed-loop stability despite input saturation. Krishnamurthy

and Khorrami generalized the use of singular perturbation in adaptive control for a class of sys-

tems with nonlinear input uncertainty [82]. Asadi and Khayatian [83] as well as Chakrabortty and

Arcak [84] examined different methods where singular perturbation in the adaptive control leads

to provable stability for a generalized class of systems with matched and unmatched uncertainty.

The work described in this section only applies to single-timescale systems and does not ad-

dress multiple-timescale systems. Instead, timescales are imposed on the control, not the system,

to meet stability criteria. Thus, the research in this section does not apply to the class of systems

for which KAMS is tailored.

1.4.2 Multiple-Timescale Control with Elements of Adaptive Control

Several multiple-timescale control researchers have postulated the benefits of a KAMS-like

approach. For example, when analyzing a multiple-timescale controller Li et al. said, "It is worth

noting that the more accurate system model will yield the higher control accuracy... For future

work, we will introduce adaptive mechanisms to further improve the control performance" [23].

Some researchers have approached the multiple-timescale adaptive control problem by applying

elements of adaptive control to multiple-timescale control. These methods are described here. First

observers for multiple-timescale systems are related to KAMS. Then a few foundational works

which used adaptive control in multiple-timescale control are described. These works are the most

related to this dissertation but have several important differences.

Adaptive control has its origins in state estimators for systems with uncertain parameters [46].

The uncertain parameters were needed for the observers. Astrom and Wittenmark [85] discovered

that it was possible to use the parameter estimates directly in the control. Estimation and adaptive
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control have since diverged, but there remain some marked similarities. Saha et al. applied a

nonlinear observer to their control of a multiple-timescale spring-mass-damper [86]. The work by

Jing et al. [87] is similar in form to the multiple-timescale adaptive control example in Chapter 4

except that state estimation is the goal. Ren et al. derived a nonlinear observer for a multiple-

timescale model of a hypersonic aircraft [7]. In each of these examples, the estimator is estimating

the states. The control is not robust to uncertainty in the model, so KAMS is needed to address

multiple-timescale systems with uncertain models.

After the initial discovery of Composite Control Ioannou and Kokotovic demonstrated a

method of using adaptive control within the context of Composite Control [88]. Ioannou and

Kokotovic used adaptive control in the control for the subsystems. Their method is an example

of KAMS. However, they assumed that each subsystem had a separate input, and their work only

considered linear systems. Similarly, Li and Sun integrated an adaptive controller into a control

algorithm for fuzzy logic systems using a method based upon Composite Control [89]. In contrast

to both of these works, this dissertation applies to generalized highly coupled nonlinear systems

and applies to a wide class of adaptive control methods and multiple-timescale fusion techniques.

Saha et al. encountered structured uncertainty while deriving multiple-timescale controllers

for several systems including an F-16 aircraft [90, 91], a spring-mass-damper [92], and a satellite

[8]. Later work added state observers [86] and output feedback [54]. To resolve the problems

created by uncertain parameters Saha derived adaptive estimators from the full-order Lyapunov

analysis. Saha’s method is inherently a multiple-timescale control method developed from se-

quential multiple-timescale control. It is also an adaptive control method because the uncertain

parameter estimates are used in the multiple-timescale control laws. Therefore, this technique is

adaptive multiple-timescale control. However, KAMS is different from Saha’s methodology in two

important ways.

1. Because Saha’s adaptive laws are derived from the full-order stability analysis, they are

necessarily separated from the reduced-order model control laws to which they are applied.

The implications of this are that the adaptive laws can be very different from the generalized
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adaptive laws that are commonly found in adaptive control research. This separates Saha’s

work from the most recent adaptive control research. KAMS is agnostic to the adaptive

control technique chosen thus allowing it to take advantage of state-of-the-art research.

2. Saha’s method is not generalized and must be re-derived for each unique system consid-

ered. As mentioned above, Saha considered several specific dynamic systems. Each system

considered produced different control and adaptive laws. KAMS has a generalized and sim-

plified procedure.

Collectively these two differences mean that KAMS has a greatly simplified implementation and

analysis compared to Saha’s method.

22



2. TOOLS FOR STABILITY ANALYSES

Singularly perturbed differential equations can be used to model systems with elements that

evolve at different rates. Singular perturbation theory is a more precise method of dealing with

timescale behavior, but adaptive control research lacks a rigorous analytical method to check for

stability in the presence of singularly perturbed plants. Singular perturbation theory is a broad

mathematical field. The singularly perturbed nature of the plant causes a subset of the states to

evolve significantly faster than the other states. The general premise of KAMS is that the fast

states converge to the fast state reference model much faster than the slow states converge to their

reference model. This difference in speed implies that the coupling between the fast and slow

states is minor. As is done in multiple-timescale control, geometric singular perturbation theory is

used to fully decouple the fast and slow states [9]. Two different adaptive controllers can then be

designed for these two independent subsystems in isolation. The independent control signals are

fused using a wide class of methods from the field of multiple-timescale control. These multiple-

timescale control fusion techniques have not been studied in the presence of adaptive control. This

dissertation addresses that gap in the literature.

The novel contribution of this chapter is a formal proof that under certain sufficient condi-

tions, the coupling present in the more accurate full-order model is insufficient to destabilize these

adaptive controllers even though they are designed in isolation. This chapter considers systems

that require adaptive control in both the fast and the slow subsystems. Allowing adaptive control

in both the fast and slow subsystem is a challenging problem because of complex interactions

between the manifold and the fast state reference model.

Section 2.1 mathematically defines the KAMS control method and associated singular perturba-

tion analysis that is used to decouple the subsystems. In section 2.2, a set of conditions are derived

that are sufficient to show that the states converge to their reference models. Finally, in section 2.3

an example of KAMS on a nonlinear nonstandard system is given. This example demonstrates how

methods common in the literature - Sequential Control and Adaptive Nonlinear Dynamic Inversion
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(ANDI) - can be used on singularly perturbed systems within the framework of KAMS.

2.1 Control Synthesis

This section introduces KAMS, explains the assumptions, and describes the notation. For more

details, the reader is referred to [24, 48, 35] for adaptive control, [9, 15] for multiple-timescale

control, [93] for singular perturbation theory, and [94] for differential geometry in the context of

control theory.

2.1.1 System Description

This work addresses singularly perturbed systems that model multiple-timescale plants. A sin-

gularly perturbed system is a system that is a function of a small scalar ϵ but not well approximated

by the limit as that scalar approaches zero. This scalar is called the singular perturbation parameter.

The timescale of a system is a measure of how quickly a system’s states evolve. The systems con-

sidered in this dissertation have two timescales. The slow states (x ∈ Dnx
x ⊆ Rnz ) evolve on the

slow timescale (ts) and the fast states (z ∈ Dnz
z ⊆ Rnz ) evolve on the fast timescale (tf ). Conver-

sion between fast time and slow time is a change of units. Let the timescale separation parameter

be the ratio of the two timescales ϵ ≜ ts/tf . It can be shown that 0 < ϵ ≪ 1. The derivative with

respect to the fast timescale is denoted d(·)/dtf ≜ (̀·) and the derivative with respect to the slow

timescale is denoted d(·)/dts ≜ (́·). Using the above definitions it can be shown that (̀·) = ϵ(́·). As a

general rule ź ≫ x́ and ϵź ≈ x́. Whereas these relationships are not always true, they provide good

intuition behind the meaning of the timescale separation parameter. Multiple-timescale plants can

be modeled using singular perturbation theory by making the timescale separation parameter a

singular perturbation parameter.

This work is generalized to uncertain, nonlinear, multiple-input multiple-output (MIMO) plants

of the form

x́ = fx(x, z,u) (1.1a revisited)

ϵź = fz(x, z,u, ϵ) (1.1b revisited)
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where u ∈ Rnu is the system input. This system is singularly perturbed because the functions fx

and fz are defined such that O(fx) = O(fz) = O(1). The order of a function (i.e. the output of the

O operator) is a measure of the rate of change of that function as ϵ → 0. See [9, Appendix A.2]

for a more formal definition. The system in Eq. (1.1) is singularly perturbed because 0 < ϵ≪ 1.

2.1.2 Singular Perturbation Analysis

Geometric singular perturbation theory suggests that the system can be approximated by two

different asymptotic solutions. The first system is found by taking the limit as ϵ→ 0

x́ = fx(x, zs,u) (1.2a revisited)

0 = fz(x, zs,u, 0) (1.2b revisited)

This is called the reduced slow subsystem and is only a valid approximation when t ≫ 0. Note

that the fast states are constrained to a subset of their domain zs ∈ Dnz
zs ⊆ Dnz

z where zs is the

root of Eq. (1.2b). In multiple-timescale control, zs is called the manifold. Notably zs is also the

equilibrium of Eq. (1.1b). If Eq. (1.1b) can be solved for zs then the system is called standard.

The second asymptotic solution for Eq. (1.1) is found by performing a change of timescales (recall

that (̀·) = ϵ(́·)) and again taking the limit as ϵ→ 0

x̀ = 0 (1.4a revisited)

z̀ = fz(x, z,u, 0) (1.4b revisited)

This is called the reduced fast subsystem and is only a valid approximation when t is very close to

0.

2.1.3 Adaptive Control

The control objective of this dissertation is to choose the input as a function of the states so that

the full-order system asymptotically tracks a reference model. The first step in this process is to de-

sign two separate adaptive control algorithms which individually stabilize the reduced subsystems.
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The input to the slow subsystem is us ∈ Rnu and the input to the fast subsystems is uf ∈ Rnu . The

variables xm ∈ Dnx
x and zm ∈ Dnz

z are reference model states. The parameters θ̂x ∈ Pnθx
θx

⊆ Rnθx

and θ̂z ∈ Pnθz
θz

⊆ Rnθz are adaptive estimates of the true parameters θx and θz respectively. The

true parameters are allowed to be time-varying. Let

θx = gθx(ts) (2.4a)

θz = gθz(tf ) (2.4b)

θ́x = fθx(ts) (2.4c)

θ̀z = fθz(tf ) (2.4d)

Define rx ∈ Rnrx to be the bounded input to the slow state reference model. rx is a function of

time. This function and its derivative are

rx = grx(ts) (2.5a)

ŕx = frx(ts) (2.5b)

The reference models and adaptation laws must be selected in tandem with the control input so that

the control objective is achieved. The differential equations describing the motion of the reference

models and parameter estimates are of the form

x́m = fxm(x,xm, θ̂x, ts) (2.6a)

´̂
θx = fθ̂x(x,xm, θ̂x, ts) (2.6b)

z̀m = fzm(x,xm, θ̂x, z, zm, θ̂z, tf ) (2.6c)

`̂
θz = fθ̂z(x,xm, θ̂x, z, zm, θ̂z, tf ) (2.6d)

Keep in mind that rx is implicitly included as a possible input to these functions because it is fully

described by time. A wide array of adaptive methods fit this format (e.g. [24, 65]). The role of the
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timescale separation parameter is important in these equations. If the control input is incorrectly

designed then the timescale analysis in the previous section could be invalidated. The following

two assumptions are made to ensure that doesn’t happen.

Assumption 2.1 - The manifold is an asymptotically stable equilibrium of the fast reference model

in the reduced fast subsystem.

Assumption 2.2 - The timescale of the reference models, the slow state reference model input, and

the adaptation laws all match the timescale of the subsystem to which they are applied. Mathemat-

ically this means that O(fxm) = O(fθ̂x) = O(fθx) = O(fzm) = O(fθ̂z) = O(fθz) = O(frx) =

O(1)

These assumptions are intuitive. For example, if the reference model for the slow states evolved

on the fast timescale then the slow states would not be able to keep up - or, more precisely, their

evolution could not be decoupled from the fast states.

2.1.4 Multiple-Timescale Fusion

The inputs to the reduced subsystems have been chosen, but the reduced subsystems only exist

on paper. The inputs to the reduced-order subsystems will form the building blocks of the full-order

system input. Let the full-order input take the form

u = gu(x,xm, θ̂x, z, zm, θ̂z, ts) (2.7)

The stability analysis in the next section depends on the reduced-order models being stabilized by

their inputs us and uf . The control objective is to select u so that both reduced-order systems

are simultaneously stabilized. Several different multiple-timescale control techniques accomplish

this objective by fusing the control signals for the two reduced subsystems. In this section, three

possible methods are summarized. See [9] for more information on each of these methods.
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2.1.4.1 Composite Control

Composite Control [15, p. 94-102] selects the control input to be u = us + uf where uf = 0

when z = zs. The engineer first selects us so that the reduced slow model is stable. Then the

engineer selects uf so that us +uf drives the fast states to z = zs. This requires prior knowledge

of the system’s open-loop manifold so the system must be standard.

2.1.4.2 Sequential Control

In Sequential Control [9] the fast states are used as the input to the slow subsystem. The

manifold is selected such that the slow states converge to their reference model. Then the input u

can be selected to drive the fast states to the manifold. Thus Sequential Control uses u = uf .

2.1.4.3 Simultaneous Slow and Fast Tracking

Simultaneous Slow and Fast Tracking [16] uses the input u = us = uf . The control is chosen

to stabilize both reduced-order systems simultaneously. As such this method is not suitable for

underactuated systems. The advantage of this method is that the slow states and the fast states

can both be commanded to any arbitrary trajectory within the state space (constrained only by

smoothness). Unlike Composite Control and Sequential Control, Simultaneous Slow and Fast

Tracking allows an arbitrary manifold.

2.2 Stability Analysis

Whereas the adaptive controllers have been designed so that the reduced-order systems are well-

behaved, these properties might not extend to the coupled full-order system. This section develops

tools for the stability analysis of the full-order system. The system of equations is rewritten as a

single augmented system in terms of the error coordinates. This is primarily done for notational

simplicity. Examining the differential geometric nature of the augmented system leads to important

insights into the behavior of the full-order system.
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2.2.1 Augmented Error Dynamics

Adaptive control adds additional states (i.e. the reference model and adapting parameters)

to the closed-loop system. These states evolve over time (see Eq. (2.6)) and effectively create

a coupled augmented closed-loop system with control states and system states. The augmented

closed-loop system is defined in this section.

The variables which describe the state of the system are x, xm, θ̂x, z, zm, and θ̂z. For nota-

tional simplicity, these states are concatenated together. Let

ξ ≜
[
xT xT

m θ̂T
x

]T
∈ Dnξ

ξ (2.8a)

η ≜
[
zT zT

m θ̂T
z

]T
∈ Dnη

η (2.8b)

ϕ ≜
[
ξT ηT

]T
∈ Dnϕ

ϕ (2.8c)

The differential equations describing the evolution of ϕ are found in Eqs. (1.1) and (2.6). These

differential equations are dependent upon the system state variables, the input, and time. However,

the input is also a function of the system state variables and time (see Eq. (2.7)). Therefore, the

system’s dynamics are entirely described by the system’s state and time. Similarly, the manifold is

a function of the slow states and the input (see Eq. (1.2b)). So it too can be described by a function

of the system state and time. Let that function and its time derivative be

zs = gzs(x,xm, θ̂x, θ̂z, ts) (2.9a)

źs = fzs(x,xm, θ̂x, z, zm, θ̂z, ts) (2.9b)

Section 2.2.3 discusses the manifold in detail, but for now, the following assumption is made:

Assumption 2.3 - gzs is a diffeomorphism and the manifold evolves in the slow timescale. Math-

matically this means that O(fzs) = O(1).

If the control objective for the full-order system is successfully achieved then three things occur
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as t → ∞. First z → zm → zs. This is followed by x → xm. Additionally, if the subsystems are

persitantly exciting then θ̂x → θx and θ̂z → θz. These goals imply a set of error variables. Let

ex ≜ x− xm ∈ Bnx(rex) (2.10a)

x̃m ≜ xm − rx ∈ Bnx(rxm) (2.10b)

θ̃x ≜ θ̂x − θx ∈ Bnθx (rθ̃x) (2.10c)

z̃ ≜ z − zs ∈ Bnz(rz̃) (2.10d)

z̃m ≜ zm − zs ∈ Bnz(rz̃m) (2.10e)

ez ≜ z − zm ∈ Bnz(rez) (2.10f)

θ̃z ≜ θ̂z − θz ∈ Bnθz (rθ̃z) (2.10g)

where rex , rxm , rθ̃x , rz̃, rz̃m , rez , rθ̃z ∈ R+. Whereas xm doesn’t necessarily converge to rx their

relationship is nonetheless important. Note that

ez = z̃ − z̃m (2.11)

A change of variables is now performed to describe the system in terms of the error variables.

The new system state variables are

eξ ≜
[
eT
x x̃T

m θ̃T
x

]T
∈ Bnξ(reξ) (2.12a)

eη ≜
[
eT
z z̃T

m θ̃T
z

]T
∈ Bnη(reη) (2.12b)

eϕ ≜
[
eT
ξ eT

η

]T
∈ Bnϕ(reϕ) (2.12c)

where reξ ≜ max({rex , rxm , rθ̃x}), reη ≜ max({rez , rz̃m , rθ̃z}), and reϕ ≜ max({reξ , reη}). Let the

mapping h : Bnϕ(reϕ) × R+ → Dnϕ

ϕ × R+ be the diffeomorphism between the two sets of state
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variables

(ϕ, ts) = h(eϕ, ts) (2.13)

where ϕ is

ϕ =



ex + x̃m + grx(ts)

x̃m + grx(ts)

θ̃x + gθx(ts)

ez + z̃m + gzs(·)

z̃m + gzs(·)

θ̃z + gθz(ts/ϵ)


(2.14)

and

gzs(·) = gzs(ex + x̃m + grx(ts), x̃m + grx(ts), θ̃x + gθx(ts), θ̃z + gθz(ts/ϵ), ts) (2.15)

Eqs. (1.1) and (2.6) can be rewritten in terms of the new state variables

éx =fx ◦ h(eξ, eη, ts)− fxm ◦ h(eξ, ts) (2.16a)

´̃xm =fxm ◦ h(eξ, ts)− frx(ts) (2.16b)

´̃θx =fθ̂x ◦ h(eξ, ts)− fθx(ts) (2.16c)

ϵéz =fz ◦ h(eξ, eη, ts, ϵ)− fzm ◦ h(eξ, eη, ts) (2.16d)

ϵ´̃zm =fzm ◦ h(eξ, eη, ts)− ϵfzs ◦ h(eξ, eη, ts) (2.16e)

ϵ´̃θz =fθ̂z ◦ h(eξ, eη, ts)− fθz(tf ) (2.16f)

This system can be written simply as

éξ = feξ(eξ, eη, ts) (2.17a)

ϵéη = feη(eξ, eη, ts, ϵ) (2.17b)
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or even simpler

éϕ = feϕ(eϕ, ts, ϵ) (2.18)

where feξ , feη , and feϕ are defined such that Eqs. (2.17) and (2.18) are identitically equal to the

vector field in Eq. (2.16). This last option obscures the timescale behavior because O(feϕ) ̸= O(1).

Equation (2.17) is recognizable as a singularly perturbed system of the type typically studied by

multiple-timescale control researchers. Traditional analysis tools are applicable. However, because

the form of Eq. (2.16) is available, additional insights are available.

Let the subscript s be used to denote a variable or vector field on the slow subsystem manifold.

For example eη,s represents eη when z = zm = zs. Similarly, let the subscript f represent a

variable or vector field on the fast subsystem manifold.

The augmented reduced slow subsystem in error coordinates can be found by setting ϵ = 0 and

z = zm = zs

éx =fx ◦ h(eξ, eη,s, ts)− fxm ◦ h(eξ, ts) (2.19a)

´̃xm =fxm ◦ h(eξ, ts)− frx(ts) (2.19b)

´̃θx =fθ̂x ◦ h(eξ, ts)− fθx(ts) (2.19c)

This reduced slow subsystem can be written simply as

éξ = feξ,s(eξ, eη,s, ts) (2.20)

where feξ,s is defined such that Eq. (2.20) is identitically equal to the vector field in Eq. (2.19).

Equation (2.20) looks very similar to Eqs. (2.17) and (2.18), but it represents a fundamentally

different vector field. This vector field is only defined on a subset of the full-order domain (i.e

where z = zm = zs).
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The augmented reduced fast subsystem in error coordinates is

èx =0 (2.21a)

`̃xm =0 (2.21b)

`̃θx =0

èz =fz ◦ h(eξ, eη, ts, 0)− fzm ◦ h(eξ, eη, ts) (2.21c)

`̃zm =fzm ◦ h(eξ, eη, ts)− 0 (2.21d)

`̃θz =fθ̂z ◦ h(eξ, eη, ts)− fθz(tf ) (2.21e)

This reduced fast subsystem can be written simply as

èξ = feξ,f (eξ, eη, tf ) (2.22a)

èη = feη ,f (eξ, eη, tf ) (2.22b)

or even simpler

éϕ = feϕ,f (eϕ, tf ) (2.23)

where feξ,f , feη ,f , and feϕ,f are defined such that Eqs. (2.22) and (2.23) are identitically equal to

the vector field in Eq. (2.21). Finally, in the reduced fast subsystem

r̀x = 0 (2.24a)

θ̀x = 0 (2.24b)

z̀s = 0 (2.24c)

by assumptions 2.2 and 2.3
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2.2.2 Differential Geometry

Differential geometry is a natural fit for the analysis of singularly perturbed systems. The

differential equations which describe these systems form nonautonomous vector fields on a topo-

logical manifold. To this point, the term manifold has been used somewhat informally. The term

manifold will continue to be used to refer to zs, but it is worth noting that the reduced subsystems

form differential submanifolds embedded within the full-order system manifold in the topological

sense. In this light, it is clear that gs is a diffeomorphic chart between the full-order manifold (M)

and the reduced slow manifold (Ms). The chart between the full-order manifold and the reduced

fast manifold (Mf ) is the trivial automorphism. The stability analysis to follow will involve the

time derivative of Lyapunov functions along a vector field that is a subset of the tangent bundle of

one of these topological manifolds. The notation L(·) is used to represent the Lie derivative along

the vector field given in the parentheses (the traditional subscript notation is not used to ensure the

subscripts on the functions are readable). Let |(·)|p be the lp norm of a vector or the induced lp

norm of a matrix and let ∥(·)∥p be the Lp norm over time where p ∈ [1,∞]. If the Lp norm is

applied to a vector then it means the Lp norm of each component of the vector. Unless otherwise

specified, all sets are subsets of the Euclidean Hilbert space with the dimension given in the super-

script. An integer subscript (·)i on a variable (not to be confused with the subscript on the p-norms)

represents the ith element of the vector.

2.2.3 The Manifold and The Reference Model

The stability proofs in the next section are significantly complicated by the relationship be-

tween the manifold and the fast reference model. Traditional multiple-timescale control and adap-

tive control both use a feedback loop to ensure closed-loop stability. These feedback loops still

exist in the KAMS control architecture. Figure 2.1 is a copy of the block diagram for KAMS from

Fig. 1.2 except the traditional feedback loop has been highlighted. All paths which contribute to

this loop are bolded but the primary loop is blue. However, KAMS has a second unconventional

feedback loop. This occurs because the fast reference model uses the manifold as an input (see
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Figure 2.1: The primary feedback loop of KAMS.

Fig. 1.2), the manifold is a function of the slow states (see Eq. (2.9)), the slow states are coupled

with the fast states, and the control objective is for the fast states to track the fast reference model

which is itself a function of the manifold. This creates a feedback loop that is typically not seen

in adaptive control. Figure 2.2 highlights this feedback loop. Again, all paths which contribute to

this loop are bolded but the primary unconventional loop is red.

The reference model adds a complication that is not observed in multiple-timescale control. If

the fast reference model is not asymptotically stable then the steady state trajectory for the slow

states may not be the slow subsystem. This calls into question the validity of the slow subsystem

and means that the multple timescale fusion stability proofs in prior work are not applicable (e.g.

Theorem 1.1). These effects are unavoidable because the full-order stability analysis works by

extending the stability of the reduced subsystems to the full-order system. The slow subsystem
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Figure 2.2: The unconventional feedback loop of KAMS.

assumes that the fast states have reached their manifold. Therefore, if the stability of the reduced

slow subsystem is to have any bearing on the full-order system then the fast reference model

must converge to that manifold. This is the purpose of Assumption 2.1. Reference models are

rarely asymptotically stable when their input is time-varying. (Reference models are typically type

1 linear systems so they are only capable of tracking a step input with zero steady-state error.)

However, closer examination reveals that Assumption 2.1 is not as restrictive as it seems. Recall

that the manifold is assumed to evolve on the slow timescale. Equation (2.24c) shows that in the

fast timescale z̀s = 0. Thus the manifold is stationary in the reduced fast subsystem, and even

a type 1 reference model can be asymptotically stable. Assumption 2.1 is usually satisfied. The

full-order system does not benefit from this simplification. The steady-state value of z̃m influences

the form and function of the full-order stability proofs in section 2.2.4. Three cases are studied:
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Case 1: No prior assumptions about the stability of the fast reference model in relation to the full-

order manifold. This is the most general case considered, but also has the most restrictive

conditions. This case often requires the control objective to be downgraded to a regulation

problem.

Case 2: The fast reference model is always on the manifold. This case most commonly occurs

when adaptive control is not necessary for the fast subsystem. In this case, the fast control

drives the fast states directly to the manifold. This type of control can be modeled by

setting z̃m = 0 and ´̃θz = 0. (A parallel simplification exists where there the slow control

is non-adaptive, x̃m = 0, and ´̃θx = 0 but this still falls within Case 1 above.)

Case 3: The manifold is an asymptotically stable equilibrium of the fast state reference model

in the context of the full-order system. This is possible but requires an unusual reference

model. This case is a slightly stricter version of Assumption 2.1 which only requires

asymptotic stability in a subset of the domain.

Remark 2.1 - In this dissertation, stating that the slow subsystem does not require adaptive control

will be equivalent to saying x̃m = 0 and ´̃θx = 0. Similarly, stating that the fast subsystem does

not require adaptive control will be equivalent to saying z̃m = 0 and ´̃θz = 0. This terminology

may be slightly misleading because there exists model-free adaptive control algorithms (e.g. [78])

and there exists non-adaptive control methods which require reference models (e.g. Feedback

Linearization [18]). However, the intricacies of these methods are not in the scope of this work.

2.2.4 Full-Order System Stability

In this section, the stability of KAMS is analyzed in the context of the full-order system. The

goal is to develop conditions that, if met, extend the stability of the reduced subsystems to the

full-order system. To that end, four related theorems are proven in this section. Each theory falls

into one of the three cases described in the previous section. All of the theorems in this work will
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make use of the vector v ∈ R4
≥0 which is defined as

v ≜
[
|ex|2 |x̃m|2 |ez|2 |z̃m|2

]T
(2.25)

2.2.4.1 Foundation Of Reduced-Order Stability

The proofs in this section are similar to the proof proposed by [19, 20]. However, they have

been significantly altered to account for adaptive control. The general process begins by generating

a composite Lyapunov function using Lyapunov functions for the reduced-order subsystems. This

composite Lyapunov function is then differentiated along the vector field describing the evolution

of the full-order subsystem. Using the stability of the reduced subsystems it is shown that the

differences between reduced subsystems and the full-order system are insufficient to violate the

negative definiteness. This implies that ex, ez ∈ L∞ by Lyapunov’s direct’s method [24, Theorem

3.4.1]. The following four Lyapunov functions form the basis of this approach

Vex(ex, θ̃x, ts) : Bnx(rex)× Bnθx (rθ̃x)× R+ → R≥0 (2.26a)

Vx̃m(x̃m, ts) : Bnx(rxm)× R+ → R≥0 (2.26b)

Vez(ez, θ̃z, tf ) : Bnz(rez)× Bnθz (rθ̃z)× R+ → R≥0 (2.26c)

Vz̃m(z̃m, tf ) : Bnz(rz̃m)× R+ → R≥0 (2.26d)

These Lyapunov functions are positive definite functions of class C1 (i.e. the function and its

derivative are continuous) where Vex(0, 0, ts) = Vx̃m(0, ts) = Vez(0, 0, tf ) = Vz̃m(0, tf ) = 0. Let

the adaptive control for the reduced subsystems be defined such that

∂Vex
∂ts

+ L(feξ,s)Vex ≤ −α1|ex|22 (2.27a)

∂Vez
∂tf

+ L(feη ,f )Vez ≤ −α3|ez|22 (2.27b)

∂Vz̃m
∂tf

+ L(fzm,f )Vz̃m ≤ −α4|z̃m|22 (2.27c)
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for some α1, α3, α4 ∈ R+. The following assumption is now made:

Assumption 2.4 - The Lyapunov functions Vex , Vez , and as needed Vz̃m are known and exist such

that Eq. (2.27) is satisfied.

Note that the existence of Vz̃m such that Eq. (2.27c) holds is sufficient to guarantee that Assump-

tion 2.1 is satisfied. After the Lyapunov analysis, Barbalet’s Lemma is used to prove convergence

[24, Lemma 3.2.5]. To that end, the following assumption is made to ensure that the conditions of

Barbalet’s Lemma are satisfied:

Assumption 2.5 - The functions defined in this chapter are sufficiently smooth and bounded. Suf-

ficiently smooth means that the function is continuously differentiable as many times as necessary.

Sufficiently bounded means that, as necessary, the domain of a function being in L∞ is sufficient

to imply that the function’s range is also in L∞.

The definitions above are a formal way of saying, and indeed imply that the adaptive control for

the reduced subsystems is well designed. This conclusion only applies to the reduced subsystems.

2.2.4.2 Case 1

No prior assumptions about the stability of the fast reference model in relation to the

full-order manifold.

Theorem 2.1 - Assume ∃α2 ∈ R+, ∃β ∈ R≥0, and ∃γ, δ ∈ R4
≥0 such that

∂Vx̃m

∂ts
+ L(fx̃m)Vx̃m ≤ −α2|x̃m|22 (2.28a)

L(fx − fx,s)Vex ≤ β|ex|2|z̃|2 (2.28b)

L(fz − fz,f )Vez ≤ ϵγTv|ez|2 (2.28c)

−L(fzs)Vz̃m ≤ δTv|z̃m|2 (2.28d)
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Let the matrix K = KT be defined as

K ≜



d∗α1 0 −1
2
(d∗β + dγ1) −1

2
(d∗β + dδ1)

d∗α2 −1
2
dγ2 −1

2
dδ2

d
ϵ
α3 − dγ3 −1

2
(dδ3 + dγ4)

Symmetric d
ϵ
α4 − dδ4


(2.29)

If ∃d ∈ (0, 1) and d∗ ≜ (1− d) such that K is positive definite, then ex, ez → 0 as t→ ∞.

Proof. Define a composite Lyapunov function

V ≜ d∗(Vex + Vx̃m) + d(Vez + Vz̃m) (2.30)

Differentiate along the full-order system

V́ = d∗
(
∂Vex
∂ts

+
∂Vx̃m

∂ts

)
+ d

(
∂Vez
∂ts

+
∂Vz̃m
∂ts

)
(2.31a)

+ d∗L(feϕ)(Vex + Vx̃m) + dL(feϕ)(Vez + Vz̃m) (2.31b)

Add and subtract d∗L(feϕ,s)(Vex + Vx̃m) + dL(feϕ,f )(Vez + Vz̃m)

V́ = d∗
(
∂Vex
∂ts

+
∂Vx̃m

∂ts

)
+ d

(
∂Vez
∂ts

+
∂Vz̃m
∂ts

)
+ d∗L(feϕ,s)(Vex + Vx̃m)

+ d∗L(feϕ − feϕ,s)(Vex + Vx̃m)

+ dL(feϕ,f )(Vez + Vz̃m)

+ dL(feϕ − feϕ,f )(Vez + Vz̃m) (2.32)

Conceptually this is the derivative in the subsystems plus some errors due to inaccuracies in the
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model reduction. Rearranging gives

V́ = d∗
(
∂Vex
∂ts

+ L(feϕ,s)Vex +
∂Vx̃m

∂ts
+ L(feϕ,s)Vx̃m

)
+ d∗L(feϕ − feϕ,s)Vex + d∗L(feϕ − feϕ,s)Vx̃m

+ d

(
∂Vez
∂ts

+ L(feϕ,f )Vez +
∂Vz̃m
∂ts

+ L(feϕ,f )Vz̃m
)

+ dL(feϕ − feϕ,f )Vez + dL(feϕ − feϕ,f )Vz̃m (2.33)

Some of these terms can be simplified because each Lyapunov function is not a function of all state

variables (i.e. its partial derivative is zero). In doing so, ϵ must be carefully accounted for.

V́ = d∗
(
∂Vex
∂ts

+ L(feξ,s)Vex +
∂Vx̃m

∂ts
+ L(fx̃m,s)Vx̃m

)
+ d∗L(feξ − feξ,s)Vex + d∗L(fx̃m − fx̃m,s)Vx̃m

+
d

ϵ

(
∂Vz̃m
∂tf

+ L(feη ,f )Vez +
∂Vz̃m
∂tf

+ L(fz̃m,f )Vz̃m

)
+
d

ϵ
L(feη − feη ,f )Vez +

d

ϵ
L(fz̃m − fz̃m,f )Vz̃m (2.34)

Some of the vector fields are the same in the reduced subsystem and the full-order subsystem. This

allows further simplification

V́ = d∗
(
∂Vex
∂ts

+ L(feξ,s)Vex +
∂Vx̃m

∂ts
+ L(fx̃m)Vx̃m

)
+ d∗L(fx − fx,s)Vex

+
d

ϵ

(
∂Vz̃m
∂tf

+ L(feη ,f )Vez +
∂Vz̃m
∂tf

+ L(fz̃m,f )Vz̃m

)
+
d

ϵ
L(fz − fz,f )Vez − dL(fzs)Vz̃m (2.35)
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Table 2.1: Proof that the conditions of Barbalat’s Lemma are met.

Condition Argument

eϕ, V́ ∈ L∞ Lyapunov’s Direct Method

éϕ ∈ L∞ Assumption 2.5

∃λ ∈ R+ s.t. ν́ ≤ −λ|v|22 K is positive definite

|ex|2, |x̃m|2, |ez|2, |z̃m|2 ∈ L2 Lemma A.1

|ex|2, |x̃m|2, |ez|2, |z̃m|2 ∈ L1 Lemma A.2

ex,xm, ez, z̃m ∈ L2 Lemma A.2

ex,xm, ez, z̃m → 0 as t→ ∞ Barbalat’s Lemma

Substituting the conditions from Eqs. (2.27) and (2.28) gives:

V́ ≤ −d∗α1|ex|22 − d∗α2|x̃m|22

+ d∗β|ex|2|z̃|2

− d

ϵ
α3|ez|22 −

d

ϵ
α4|z̃m|22

+
d

ϵ
ϵγTv|ez|2 + dδTv|z̃m|2 (2.36)

The triangle inequality shows that |z̃|2 ≤ |ez|2 + |z̃m|2. Using this and rearranging gives

V́ ≤ −vTKv (2.37)

Thus, by Lyapunov’s direct method, eϕ ∈ L∞ The goal now is to show that the conditions of

Barbalat’s Lemma are satisfied. This is done by showing that ex, ez, éx, éz ∈ L∞ and ex, ez ∈ L2.

By the arguments in table 2.1 it can be concluded that these conditions are met. Note that the order

of the lines in this table is significant. See the appendix for proof of Lemmas A.1 and A.2. Thus,

via Barbalat’s Lemma, it is known that ex, ez → 0 as t→ ∞.

Corollary 2.1 - Let the plant exist such that the reduced slow subsystem does not require adaptive
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control (i.e. x̃m = 0 and ´̃θx = 0). Assume that conditions (2.28b), (2.28c), and (2.28d) of

Theorem 2.1 are true. Let the matrix K = KT be defined as

K ≜


d∗α1 −1

2
(d∗β + dγ1) −1

2
(d∗β + dδ1)

d
ϵ
α3 − dγ3 −1

2
(dδ3 + dγ4)

Symmetric d
ϵ
α4 − dδ4

 (2.38)

If ∃d ∈ (0, 1) and d∗ ≜ (1− d) such that K is positive definite, then ex, ez → 0 as t→ ∞.

Proof. The proof proceeds exactly as Theorem 2.1 except Vx̃m = 0. Also, because x̃m = 0 it

follows that γ2 = 0 and δ2 = 0.

Each of the following proofs assumes that fz − fz,f = 0 which occurs when ϵ does not appear

on the right side of Equation (1.1b). This is very common and making this assumption will aid in

interpreting the results.

2.2.4.3 Case 2

The fast reference model is always on the manifold.

Corollary 2.2 - Let the plant exist such that the reduced fast subsystem does not require adaptive

control (z̃m = 0 and ´̃θz = 0) and ϵ does not appear on the right side of Equation (1.1b). Assume

that condition (2.28b) of Theorem 2.1 is true. Then ∀ϵ it is true that ex, ez → 0 as t→ ∞.

Proof. The proof proceeds exactly as Theorem 2.1 except γ = 0 and z̃m = 0. This reduces the

matrix K = KT to

K ≜

 d∗α1 −1
2
d∗β

−1
2
d∗β d

ϵ
α3

 (2.39)

where Vx̃m has been dropped because all of the cross terms of x̃m have been removed. This is

simple enough for additional conclusions. By Sylvester’s Criterion K is positive definite if and

only if the leading principle minors (LPM) are positive [95]. This gives rise to the following two
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inequalities which, if satisfied, imply that K is positive definite.

0 < d∗α1 (2.40a)

0 <
d(1− d)α1α3

ϵ
− 1

4
(1− d)2β2 (2.40b)

Inequality Eq. (2.40a) is satisfied by definition. Rearranging inequality Eq. (2.40b) gives

ϵ <
4dα1α3

(1− d)β2
(2.41)

when β ̸= 0. When β = 0 then inequality Eq. (2.40b) is satisfied by definition. Recall that d is

arbitrary. So, ∀ϵ ∃d such that inequality Eq. (2.41) is satisfied. Continuing with Barbalet’s Lemma

as in Theorem 2.1 gives that ex, ez → 0 as t→ ∞.

2.2.4.4 Case 3

The manifold is an asymptotically stable equilibrium of the fast state reference model

in the context of the full-order system.

Corollary 2.3 - Assume that ϵ does not appear on the right side of Equation (1.1b). Assume that

condition (2.28b) of Theorem 2.1 is true. If ∃α4 ∈ R+ such that

L(fz̃m)Vz̃m ≤ −α4|z̃m|22 (2.42)

Then ∀ϵ it is true that ex, ez → 0 as t→ ∞.

Proof. The proof largely follows Theorem 2.1 except Vx̃m is removed from the composite Lya-

punov function. Before reaching Eq. (2.35), Eq. (2.34) can be rewritten using L(fz̃m − fz̃m,f )Vz̃m+
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L(fz̃m,f )Vz̃m = L(fz̃m)Vz̃m . Continuing to follow the proof of Theorem 2.1 gives

K ≜


d∗α1 −1

2
d∗β −1

2
d∗β

−1
2
d∗β d

ϵ
α3 0

−1
2
d∗β 0 d

ϵ
α4

 (2.43)

This is simple enough for additional conclusions. By Sylvester’s Criterion K is positive definite

if and only if the LPMs are positive. This gives rise to the following three inequalities which, if

satisfied, imply that K is positive definite.

0 < d∗α1 (2.44a)

0 <
d(1− d)α1α3

ϵ
− 1

4
(1− d)2β2 (2.44b)

0 <
d2(1− d)

ϵ2
α1α3α4 −

d(1− d)2

4ϵ
(α3 + α4)β

2 (2.44c)

Inequality Eq. (2.40a) is satisfied by definition. Rearranging the other two inequalities gives

ϵ <
4dα1α3

(1− d)β2
(2.45a)

ϵ <
4dα1α3α4

(1− d)(α3 + α4)β2
(2.45b)

when β ̸= 0. When β = 0 then inequalities (2.44b) and (2.44c) are satisfied by definition. Recall

that d is arbitrary. So, ∀ϵ ∃d such that the inequalities in Eq. (2.45) are satisfied. Continuing with

Barbalet’s Lemma as in Theorem 2.1 gives that ex, ez → 0 as t→ ∞.

Remark 2.2 - Assumption 2.2 places bounds on the acceptable range of the adaptation gains. Note

that ϵ is not required to implement the control. This is advantageous because ϵ can be difficult to

determine. However, a rough approximation of ϵ allows the engineer to design the adaptive laws

and reference models so that they evolve on the correct timescale. Beyond these conditions, ϵ is

allowed to be uncertain.
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Remark 2.3 - The condition that K be positive definite limits the range of acceptable timescale

separation parameters (e.g. see [19]). However, for Theorem 2.1 and Corollary 2.1 the analytical

solution would be complex.

Remark 2.4 - Corillaries 2.1 and 2.2 study the case where only one subsystem requires adaptive

control. If neither subsystem requires adaptive control then Theorem 2.1 reduces to Theorem 1.1.

Remark 2.5 - Systems which use adaptive control are likely to be nonstandard because adaptive

control is specifically designed for systems with model uncertainties. Thus it is common for the

open-loop manifold to be uncertain even if the system is standard in the traditional sense. Let

the term uncertain nonstandard refer to this condition. Recent multiple-timescale control research

has addressed nonstandard systems [9]. Both Sequential Control and Simultaneous Slow and

Fast Tracking are nonstandard methods because the manifold is specified. Composite Control, on

the other hand, requires that the open-loop manifold be known apriori. The manifold must be

measured or analytically available. Thus Composite Control is well suited for systems that do not

require adaptive control in the fast subsystem.

2.3 Validation

An example demonstrates and validates this method. Consider the following nonlinear non-

standard uncertain dynamical system

x́ = −(x2 + 1)z (2.46a)

ϵź = θxz + u (2.46b)

where θ ∈ R+ is an uncertain parameter. The control objective is for x to track the following

reference model

x́m = −ax(xm − rx) (2.47)

where ax ∈ R+.
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2.3.1 Control Synthesis

The reduced slow subsystem is

x́ = −(x2 + 1)zs (2.48a)

and the reduced fast subsystem is

x̀ = 0 (2.49a)

z̀ = θxz + u (2.49b)

This system is uncertain nonstandard. Sequential Control is used to fuse the control signals [9].

The slow subsystem is deterministic. Using zs as the input to the slow subsystem the manifold is

chosen using Nonlinear Dynamic Inversion (NDI).

zs = −(x2 + 1)−1(x́m − kxex) (2.50)

where kx ∈ R+ is a constant control gain. The closed-loop dynamics of the reduced slow subsys-

tem are

x́ = x́m − kxex (2.51)

or equivalently

éx = −kxex (2.52)

The input can now be chosen so that it drives the fast states to this manifold. The fast subsystem is

parametrically uncertain. ANDI is chosen to stabilize the fast subsystem

u = z̀m − θ̂xz − kzez (2.53)
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where kz ∈ R+ is a constant control gain. The adaptive law for θ̂ is

`̂
θ = γ Proj(θ̂, xzez) (2.54)

where γ ∈ R+ is an adaptation rate gain. For more information on ANDI see [65, p. 6-12]. The

fast state reference model is chosen to be asymptotically stable about the manifold

`̃zm = −az z̃m (2.55)

or equivalently

z̀m = −az z̃m + z̀s (2.56)

where az ∈ R+. The time derivative of the manifold is

z̀s =
2xzϵ

x2 + 1
(axx̃m + kxex) +

ϵ

x2 + 1
(−ax(axx̃m + ŕx) + kx(−(x2 + 1)z + axx̃m)) (2.57)

2.3.2 Confirmation of Full-Order Stability

Consider the candidate Lyapunov functions

Vex =
1

2
e2x (2.58a)

Vez =
1

2
e2z +

1

2γ
θ̃2 (2.58b)

Vz̃m =
1

2
z̃2m (2.58c)
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Differentiating gives

L(feξ,s)Vex = −kxe2x ≤ −α1|ex|22 (2.59a)

L(feη ,f )Vez ≤ −kze2z ≤ −α3|ez|22 (2.59b)

L(fz̃m)Vz̃m = −az z̃m ≤ −α4|z̃m|22 (2.59c)

L(fx − fx,s)Vex = −(x2 + 1)exz̃ ≤ β|ex|2|z̃|2 (2.59d)

where α1 = kx, α3 = kz, α4 = az, and β = 1. See [65, Eqs. 1.20 to 1.23] for a derivation of

Eq. (2.59b). By Corollary 2.3, ex, ez → 0 as t→ ∞.

2.3.3 Numerical Results

A numerical simulation validates the control. The following system parameters are used

θ = 0.5 (2.60a)

ϵ = 0.1 (2.60b)

The control parameters are

rx = sin(ts) (2.61a)

ax = kx = az = kz = γ = 1 (2.61b)

The initial conditions are

x = z = 0.5 (2.62a)

xm = zm = 0 (2.62b)

θ̂ = 0.44 (2.62c)

The time evolution of the slow state is shown in Fig. 2.3 and the fast state is shown in Fig. 2.4. The

time evolution of the adapting gain is shown in Fig. 2.5. The states and gain evolve on the proper
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Figure 2.3: Evolution of the slow state.
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Figure 2.4: Evolution of the fast state.

timescales and the system converges asymptotically with zero steady-state error. The adapting gain

also converges to the true value because the reference input is chosen to be persistently exciting,

but KAMS does not require this. When implementing KAMS it is important to keep track of

the timescale. For example, if the numerical integration is occurring in the slow timescale then

Eqs. (2.54) and (2.56) must be scaled by a factor of ϵ−1. This effectively scales the adaptation gain

and reference model parameters.
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Figure 2.5: Evolution of the adapting gain.

2.3.4 Alternate Approach

Corollary 2.1 is also applicable because adaptive control is only required for the fast subsystem.

To demonstrate this the problem is downgraded to a regulation problem and the fast reference

model is redefined so that it is no longer asymptotically stable about the manifold

z̀m = −az z̃m (2.63)

Note that the manifold is still a stable equilibrium. It is even asymptotically stable when the

manifold is constant with respect to time. However, it is not asymptotically stable in the context

of the full-order system. Reference models such as this are useful if ŕx is not known apriori or the
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manifold is difficult to differentiate. From Eq. (2.57) it can be shown that

−L(fzs)Vz̃m =

(
− 2xz

x2 + 1
kxex + kxz

)
z̃m (2.64a)

≤ (2kx|ex|2 + kx|z|2) |z̃m|2 (2.64b)

≤
[
2kx + k2x 0 kx kx

]
v|z̃m|2 (2.64c)

≤ δTv|z̃m|2 (2.64d)

where the domain has been restricted to x < 1 and z < 1. Note that δ1 = 2kx+k
2
x, δ2 = 0, δ3 = kx,

and δ4 = kx. Substituting the values from the previous numerical example gives

K ≜


d∗ −1

2
d∗ −1

2
(d∗ + 3d)

−1
2
d∗ d

ϵ
−1

2
d

−1
2
(d∗ + 3d) −1

2
d d

ϵ
− d

 (2.65)

From Corollary 2.1 it is known that if ∃d ∈ (0, 1) and d∗ ≜ (1− d) such that K is positive definite

then ex, ez → 0 as t→ ∞. By Sylvester’s Criterion K is positive definite if and only if the LPMs

are positive. The first LPM is positive by definition. The second and third LPMs depend upon ϵ

and d. Fig. 2.6 plots this relationship. If both LPMs are positive for a given ϵ then the conditions of

Corollary 2.1 are satisfied. In Fig. 2.6, note that as ϵ increases there is a point after which ∄d such

that both LPMs are positive simultaneously. At this point, the timescale separation is insufficient

for Corollary 2.1 to guarantee convergence.

From Fig. 2.6 it can be seen that when ϵ = 0.1 (as in the previous example) ∃d such that all

of the LPMs are positive. Thus by Corollary 2.1 it is known that ex, ez → 0 as t → ∞. The

time evolution of the slow state for this alternate approach is shown in Fig. 2.7. The fast state is

shown in Fig. 2.8. The time evolution of the adapting gain is shown in Fig. 2.9. This example

demonstrates how the manifold evolves on the slow timescale per Assumption 2.3.
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Figure 2.6: Effects of varying ϵ and d on the applicablility of Corollary 2.1.
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Figure 2.7: Evolution of the slow state for the alternate approach.
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Figure 2.8: Evolution of the fast state for the alternate approach.

0 1 2 3 4 5
t - Time (sec)

0.4

0.5

0.6

A
d
ap

ti
n
g

G
a
in

3̂

3

Figure 2.9: Evolution of the adapting gain for the alternate approach.

2.4 Chapter Summary

In this chapter sufficient conditions for asymptotic stability were proven. A wide class of adap-

tive control and multiple-timescale control methods fit within this framework. Coupling effects

between the manifold and the fast reference model were identified. The stability of the full-order

system was connected to the stability of the reduced-order systems through Theorem 2.1 and its

corollaries. Finally, a nonlinear nonstandard system was used to demonstrate KAMS. The follow-

ing conclusions are drawn from the results presented in this chapter:

1. Complex interactions between the fast reference model and the manifold significantly com-

plicate the stability analysis when adaptive control is used to stabilize the fast subsystem.

The theorems proven in this chapter account for these interactions.
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2. KAMS is judged to be a feasible control approach for uncertain nonstandard singularly per-

turbed systems.

When designing a KAMS controller the following criteria can be used to determine which of

the theorems in this chapter are applicable:

1. Theorem 2.1 requires that the slow reference model be asymptotically stable to the refer-

ence model input. Three special cases of Theorem 2.1 were studied which do not have this

limitation.

(a) Corollary 2.1 is applicable when adaptive control is only used for the fast subsystem.

(b) Corollary 2.2 is applicable when adaptive control is only used for the slow subsystem.

(c) Corollary 2.3 allows adaptive control in both subsystems, but the manifold must be

an asymptotically stable equilibrium of the fast reference model in the context of the

full-order system.

Theorem 2.1 and Corollary 2.1 both allow the timescale separation parameter to appear on the right

side of the fast states’ equations of motion and require checking the positive definiteness of a matrix.

Corollaries 2.2 and 2.3 do not. KAMS typically requires differentiation of the manifold. In The-

orem 2.1 and Corollary 2.1 the derivative of the manifold is used to ensure that condition (2.28d)

is satisfied. The derivative of the manifold is not explicitly required for Corollary 2.3, but it is

required to ensure the manifold is an asymptotically stable equilibrium of the fast reference model.

It is therefore significant that Corollary 2.2 does not require differentiating the manifold.
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3. RELAXING THE NON-MINIMUM PHASE ASSUMPTION *

One advantage of KAMS is that it allows adaptive control to be used on some non-minimum

phase systems even though many adaptive algorithms assume the system is minimum phase. Ioan-

nou and Sun illustrated the significance of the non-minimum phase adaptive control problem. "The

assumption of minimum phase... has often been considered as one of the limitations of adaptive

control in general..." Further, "The minimum phase assumption is one of the main drawbacks of

[MRAC] for the simple reason that the corresponding discrete-time plant of a sampled minimum

phase continuous-time plant is often nonminimum [sic] phase" [24, p. 412-413]. Goodwin and Sin

showed local stability for MRAC on a class of discrete non-minimum phase systems [97]. John-

stone, Shah, and Fisher used control weighting to overcome the non-minimum phase problem [98].

Previously researchers have shown that feedforward terms can make the problem minimum phase

[99, 100]. Some model-free adaptive control methods do not require the non-minimum phase

assumption [101, 102, 103, 104, 105, 106]. For a general treatise on adaptive methods for non-

minimum phase systems sees [107]. Unlike related work, the method demonstrated in this chapter

utilizes model reduction to simplify implementation and provide insights into the dynamics of the

plant.

3.1 Problem Formulation

Consider nonlinear MIMO systems of the form

χ̇ = fχ(χ,µ) (3.1a)

y = gy(χ) (3.1b)

where fχ : Dnχ
χ × Rnµ → Rnχ and h : Dnχ

χ → Rny are sufficiently smooth (i.e. continuously

differentiable as many times as needed) on the domain Dnχ
χ . χ is the system state, µ is the system

*Portions of this chapter are reprinted with permission from “Adaptive Control for Non-Minimum Phase Systems
Via Time Scale Separation” by Kameron Eves and John Valasek, 2023. American Control Conference, Copyright
2023 by American Automatic Control Council [96].
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input, and y is the system output.

This work is specifically applicable to systems with unstable zero dynamics. The zero dynamics

of a system can be determined by setting the output and its time derivatives (of orders up to the

relative degree) equal to zero and solving for the remaining dynamics. The relative degree is the

number of times the output must be differentiated before the input appears. The variable ρ ∈ N is

used to represent the sum of the relative degrees of the system outputs such that nχ > ρ ≥ ny. If the

zero dynamics are unstable then the system is called non-minimum phase. This is a generalization

of linear system zeros. Indeed the poles of a linear system’s zero dynamics are equivalent to the

zeros of the full-order system. The zero dynamics are sometimes called the internal dynamics

and the output dynamics are sometimes called the external dynamics. The majority of adaptive

control literature assumes that within the domain of interest, the zero dynamics are stable about

some equilibrium (i.e. minimum phase) (e.g. [65, 24, 35]). This chapter demonstrates how KAMS

can be used to relax that assumption.

This chapter proceeds as follows. Section 3.2 describes a diffeomorphism that is used to man-

ifest the timescales of the system and separate the internal and external dynamics. Section 3.3

gives an example of KAMS on a nonlinear non-minium phase system. This example demonstrates

how methods common in the literature - ANDI in this case - can be used on non-minimum phase

systems within the framework of KAMS even though these methods assume the plant is minimum

phase.

3.2 Diffeomorphism

The first step is to apply a transformation to the system called R. The purpose of R is to

accomplish the following two tasks which enable the analysis and control:

1. To effectively control a non-minimum phase system with KAMS the internal and external

dynamics must be identified. R separates the internal dynamics from the external dynamics

using a change of variables.

2. For this method to be valid, the internal dynamics must evolve on a timescale that is different
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from the external dynamics. R identifies the relative timescales of the internal dynamics and

the external dynamics. The stability analysis later in this chapter will specify how much

timescale separation is necessary for KAMS to be applicable.

This section formally defines R by describing the form of the system after the transformation. An

example of R is then given.

Let the transformation R be set of three diffeomorphisms - one on the states, one on the input,

and one on the time

R(χ,µ, t) : Dnχ
χ × Rnu × R+ → Dρ

x × Dnχ−ρ
z × Rnu × R+ (3.2)

The variables x ∈ Dρ
x and z ∈ Dnχ−ρ

z are the state variables after the transformation R. The

variable u ∈ Rnu represents the input after this transformation. The variable ts ∈ R+ represents

the time after this transformation. Let R be defined such that it transforms Eq. (3.1) into the

following format :

x́ = fx(x, z,u) (3.3a)

ϵź = fz(x, z,u, ϵ) (3.3b)

y = Cxx+ Czz (3.3c)

The output is a linear combination of the states through the matrices Cx ∈ Rg×ρ and Cz ∈

Rg×(nχ−ρ). By definition, either Cx = 0 or Cz = 0 but not both. The small positive constant

0 < ϵ ≪ 1 is the timescale separation parameter as defined in previous chapters. The notation (́·)

is the derivative with respect to the new time variable ts as defined in previous chapters. Lastly, by

definition O(fx) = O(fz) = O(1) for the variable ϵ. The following example is provided to further

clarify the diffeomorphism R. Consider a linear time-invariant (LTI) single-input single-output
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(SISO) plant in the Laplace domain

y(s) =
s− 49

s2 − 248− 49
u(s) (3.4)

This system is non-minimum phase because the zero is in the right-half plane. In controllable

canonical form, this plant is

χ̇ =

 0 1

49 248

χ+

0
1

µ (3.5a)

y =

[
−49 1

]
χ (3.5b)

This matches the form of Eq. (3.1). Let the new state variables x and z be defined as a linear

transformation of χ. Let the new input u be identically equal to the original input µ. Let the slow

timescale ts be defined as identically equal to the original timescale t. These three transformations

are the diffeomorphism R

R



x
z

 ≜

−49 1

0 100

χ

u ≜ µ

ts ≜ t

(3.6)

Applying R to the original system from Eq. (3.5) gives

 x́
ϵź

 =

−1 2

−1 2.49


x
z

+

1
1

 u (3.7a)

y = x (3.7b)

where ϵ = 0.01. This form now matches Eq (3.3) and Assumption 3.1 is meet.

In summary, the first step of this approach is to use a diffeomorphism (R) to reformat the
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system so that it matches the form of Eq. (3.3). The two primary characterizing features of this

form are:

1. The timescale properties as indicated by the appearance of the timescale separation parame-

ter ϵ and the order of the functions fx and fz.

2. The output is linearly dependent upon x or z but not both.

The transformation R, by definition, must be a diffeomorphism on the states and time such that

these two properties are met. The following assumption is now made:

Assumption 3.1 - The diffeomorphism R as defined above exists and is known.

Now that the timescales of the system have been identified theorem 2.1 is applicable and KAMS

can be used to stabilize the system. The control input to the original system can be found by

selecting u and then inverting R. This works because KAMS applies the adaptive control to the

reduced subsystems, not the full-order system. Thus the minimum phase assumption is imposed

upon the subsystems and not the full-order system.

Remark 3.1 - There is currently no systematic method to find the diffeomorphism R. However,

transformations that are similar to R have been studied in several other contexts. For example,

R is related to the diffeomorphism used to separate the internal and external dynamics when

implementing input-output feedback linearization [18, Section 12.2]. R is also related to timescale

identification which is an open area of research (e.g. [11]). These other transformations can be

informative and even serve as building blocks for R. The author of this work has found success

by applying the input-output feedback linearization diffeomorphism and then nondimensionalizing,

but other approaches may be valid.

Remark 3.2 - The existence and uniqueness of R are worth considering. Existence: If f is affine

and the timescale separation is ignored then the transformation R is guaranteed to exist [18, p.

566]. This work is not limited to affine systems, but affine systems are common in adaptive control

applications. Thus the existence of R is likely. The applicability of KAMS will depend upon how
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large the timescale separation is. Uniqueness:R is not typically unique. Unlike [18] no constraints

are placed upon z. Thus it is possible for ϵź to be dependent upon the input.

Remark 3.3 - Consider the case when the output is solely dependent upon x. This implies that

y = Cxx and Cz = 0. Referring to Eq. (3.3) it can be seen that the internal dynamics are

analogous to the reduced fast subsystem and the external dynamics are analogous to the reduced

slow subsystem. The zero dynamics are analogous to the manifold. This realization is the linchpin

that makes this approach possible.

3.3 Numerical Demonstration

Consider the nonlinear system

x́ = θ1 [arctan(x) + π] z + θ2 (cos(x) + 1) u (3.8a)

ϵź = x2z − u (3.8b)

y = x (3.8c)

where θ1, θ2 ∈ R+ are uncertain model parameters. The zero dynamics are:

ź =
θ1π

2θ2ϵ
z (3.9)

which are unstable because θ1π/2θ2ϵ > 0. Thus the system is non-minimum phase. The control

objective is for the slow states to track the following reference model

x́m = −axmxm (3.10)

where axm ∈ R+. The transformation R is an automorphism. The reduced slow subsystem is

x́ = θ1 [arctan(x) + π] zs + θ2 (cos(x) + 1) us (3.11)
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and the reduced fast subsystem is

x́ = 0 (3.12a)

ϵź = x2z − u (3.12b)

Sequential Control is selected to fuse the control signals for the reduced subsystems. Accordingly,

z is treated as the input to the reduced slow subsystem. The manifold zs is selected such that the

reduced slow subsystem converges to a reference model. ANDI is selected for this purpose [65, p.

6-12]. Now u must be selected to make the reduced fast subsystem track zs. The input is selected

by inspection to ensure the fast subsystem is Lyapunov sense stable. This yields the following

manifold and control signal

zs =
−axmxm − θ̂2 (cos(x) + 1) u− kxex

θ̂1 (arctan(x) + π)
(3.13a)

u = x2z + kzez (3.13b)

where kx, kz ∈ R+ are control gains. By definition zm ≜ zs for all time. Note that the manifold

is an asymptotically stable equilibrium of the fast subsystem, but not the full-order subsystem. zs

appears on both sides of Eq. (3.13a) so it must be solved. Recall that in the reduced slow subsystem

z = zs. Substituting Eq. (3.13b) into Eq. (3.13a) and solving for zs gives

zs =
−axmxm − kxex

θ̂1 (arctan(x) + π) + θ̂2 (cos(x) + 1) x2
(3.14)

The adaptation laws are

´̂
θ1 = γ1Proj

(
θ̂1, (arctan(x) + π) zsex

)
(3.15a)

´̂
θ2 = γ2Proj

(
θ̂2, (cos(x) + 1) usex

)
(3.15b)

where us = x2zs is the input when z = zs and γ1, γ2 ∈ R+ are gains for the adaptation laws.
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Consider the following Lyapunov functions for the reduced slow subsystems:

Vex =
1

2

(
e2x + γ−1

1 θ̃21 + γ−1
2 θ̃22

)
(3.16a)

Vez =
1

2
e2z (3.16b)

Per [65, Eq. 1.23] the time derivatives are

V́ex ≤ −kxe2x (3.17a)

V̀ez = −kze2z (3.17b)

Now that the reduced subsystems have been proven independently stable, the interconnection con-

dition must be checked. From Eq. (2.28b)

L(fx − fx,s)Vex = (θ1 [arctan(x) + π] z̃s + θ2 (cos(x) + 1) (u− us)) ex (3.18)

Substituting in for the input gives

L(fx − fx,s)Vex =
(
θ1 [arctan(x) + π] z̃s + θ2 (cos(x) + 1)

(
x2z + kzez − x2zs

))
ex (3.19)

rearranging and using the fact that zm = zs

L(fx − fx,s)Vex =
(
θ1 [arctan(x) + π] + θ2 (cos(x) + 1)

(
x2 + kz

))
z̃ex (3.20)

Assume that the domain is limited to |x| < xmax for some xmax ∈ R+ and x is initialized within

this region. Note that due to the projection operator, θ1 and θ2 are bounded. Let θ1,max and θ2,max

respectively be those bounds. Using these facts it can be shown that

L(fx − fx,s)Vex ≤
[
θ1,max

3

2
π + θ2,max2

(
x2max + kz

)]
z̃ex (3.21)
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Figure 3.1: Evolution of the external dynamics for a non-minimum phase system.

Thus there exists some constant parameter

β = θ1,max
3

2
π + θ2,max2

(
x2max + kz

)
(3.22)

such that Eq. (2.28b) is satisfied. Thus the conditions of Corollary 2.2 are satisfied. By Corol-

lary 2.2 ez, ex → 0 as ts → ∞.

The values used in this simulation are ϵ = 0.1, θ1 = θ2 = 1, γ1 = 10, and γ2 = 10. The initial

conditions are x = xm = 1 and z = 0. The initial error of the adapting parameters θ̃ is randomly

selected from a 0 mean normal distribution with a standard deviation of 10% their true value. The

timescale separation parameter ϵ is also simulated to be uncertain. As such its error is sampled

from the same distribution. Note that the estimate of the timescale separation parameter is not an

adapting parameter. The parameter for the reference model is ax = 1. The control gains are kx = 1

and kz = 10. Figure 3.1 shows the time evolution of the external dynamics. Figure 3.2 shows

the time evolution of the internal dynamics. Figure 3.3 shows the time evolution of the adapting

parameters. It is worth noting that ANDI alone is incapable of stabilizing this system because it

non-minimum phase. Thus KAMS is a significant improvement.

3.4 Chapter Summary

This chapter presents a method of adaptive control for a wide class of systems which may be

both nonlinear and non-minimum phase. The method requires some timescale separation between

the internal and the external dynamics. Further, it does not matter if the internal dynamics are faster
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Figure 3.2: Evolution of the internal dynamics for a non-minimum phase system.
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Figure 3.3: Evolution of the adapting parameters for a non-minimum phase system.
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or the external dynamics are faster. In both cases, the system has been converted into a singularly

perturbed system suitable for multiple-timescale control. This was done using a simple diffeomor-

phism that is shown to be likely to exist. KAMS is then used to control the system. Finally, a

validating example was presented. From this chapter, it can be concluded that KAMS allows adap-

tive control to be effectively applied to non-minimum phase systems provided there is at least some

timescale separation. Non-minimum phase systems have been a challenging problem for adaptive

control since its inception. The conclusions of this chapter bring the scientific community one step

closer to solving this problem.
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4. COMPARISONS WITH OTHER APPROACHES *

In this chapter, Reduced-Order Adaptive Control (ROAC) and Full-Order Adaptive Control

(FOAC) are formally defined and generalized for the first time. ROAC and FOAC are both alterna-

tives to KAMS. ROAC and FOAC have been used but not formalized in prior work. Both ROAC

and FOAC use elements of adaptive control and multiple-timescale control. On the other hand,

KAMS fully and rigorously merges these two fields. Section 4.1 describes FOAC. Section 4.2

describes ROAC. Section 4.4 directly compares ROAC, FOAC, KAMS, and Composite Control

using a numerical analysis of the multiple-timescale pitch rate dynamics of a Boeing 747-100/200

with actuator dynamics. This example highlights the similarities and differences between the four

methods. As will be seen, KAMS performs better than the alternatives and demonstrates increased

robust to uncertainties in the timescale separation. However, all three multiple-timescale adaptive

control methodologies are effective, and each method has its benefits and detriments. Composite

Control on the other hand fails to converge to the reference model due to model uncertainty

4.1 Full-Order Adaptive Control

The most intuitive solution to multiple-timescale adaptive control is to treat multiple-timescale

systems like other systems. Equation (1.1) can be rewritten as

x́ = fx(x, z,u) (4.1a)

ź =
1

ϵ
fz(x, z,u, ϵ) (4.1b)

Now x and z can be concatenated into a single state vector. If a valid adaptive control methodology

exists for the resulting system then there is no reason that the adaptive control algorithm won’t

work. However, proving that a given adaptive control methodology is valid can be problematic and

will depend on the given system. Figure 4.1 shows a bloack diagram for FOAC. The following

*This chapter is reprinted with permission from “Introduction to Adaptive Control for Multiple Time Scale Sys-
tems” by Kameron Eves and John Valasek, 2023. Scitech Conference and Exposition, Copyright 2023 by American
Institute of Aeronautics and Astronautics, Inc. [53].
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theorem formalizes this conceptual definition of FOAC.

Control

Slow  
Subsystem

Fast  
Subsystem

Reference 
Model

Adapting 
Parameter s

Figure 4.1: A block diagram of FOAC.

Theorem 4.1 - Consider the system in Eq. (1.1). If there exists an adaptive controller which ac-

complishes the control objective for the equivalent system in Eq. (4.1) and assuming said adaptive

control problem is well posed, then the adaptive controller for Eq. (4.1) is also valid for Eq. (1.1).

Proof. The timescale separation parameter, whereas often unknown, is simply a fixed scalar value.

Additionally, the timescale separation parameter is very small, but not zero. Thus dividing by the

timescale separation parameter is valid. Further, dividing by the timescale separation parameter

does not affect the time evolution the system states x and z.
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Theorem 4.1 seems simple and obvious, but the results are significant to FOAC. Effectively,

Theorem 4.1 states that the singularly perturbed nature of Eq. (1.1) does not inhibit the use of the

normal adaptive control techniques. Theorem 4.1 seems to imply that multiple-timescale systems

are no different from traditional systems and can be controlled in the same manner. However,

the application of Theorem 4.1 can lack robustness to uncertainties in the timescale separation

parameter. The timescale separation parameter is frequently unknown. This is particularly true

for systems with model uncertainties because the timescale separation parameter is a function of

system parameters and is related to the form of the dynamics. In other words, multiple-timescale

systems which require adaptive control are even more likely to have large uncertainty bounds on the

timescale separation parameter. This problem is exacerbated by the ϵ−1 term in Eq. (4.1). Small

inaccuracies in an estimate of the timescale separation parameter can cause large discrepancies

between the predicted and actual system response because 0 < ϵ ≪ 1. Traditional multiple-

timescale control methodologies account for this problem by giving a range of valid timescale

separation parameters. However, Theorem 4.1 does not give rise to any such valid range. A

valid range might be found by application of the assumptions from the chosen adaptive control

methodology, but this must be determined on a case-by-case basis.

Consider the following parametrically uncertain multiple-timescale system

x́ = a1x+ a2z + b1u (4.2a)

ϵź = a3x+ a4z − a5ϵz + b2u (4.2b)

where a1, a2, a3, a4, a5, b1, and b2 are uncertain system parameters. Converting to the format of

Eq. (4.1) gives

x́ = a1x+ a2z + b1u (4.3a)

ź =
a3
ϵ
x+

(a4
ϵ
− a5

)
z +

b2
ϵ
u (4.3b)

where x and z can be concatenated into a combined state vector. Adaptive laws and control laws
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can then be derived by following a standard MRAC methodology (e.g. [24, Table 6.4]). This

is FOAC. Figure 4.2 shows the closed-loop response of Eq. (4.2) under FOAC. The reference

model is x́m = −amx̃m with a constant input of r = 1. The parameters used in the creation of

Fig. 4.2 are a1 = a3 = am = −1, a2 = 2, a4 = 2.1, and a5 = b1 = b2 = 1. To highlight

the effect of the timescale separation parameter, the initial values for the gains are chosen to be

the true Model Reference Control value. The adaptation gains are all identity. Several different

timescale separation parameters are shown for comparison. As can be seen, small changes in the

timescale separation parameter can have a large effect on the system performance and can even

incite instability.
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Figure 4.2: Evolution of a simple linear system under FOAC for several different timescale sepa-
ration parameters.

Because this system is linear, a brief analytical analysis clearly explains why adjusting the
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timescale separation parameter induced instability. The input-output transfer function for this sys-

tem is

x(s)

u(s)
= b1

s+
(
−a4

ϵ
+ a5 +

b2a2
b1ϵ

)
s2 +

(
−a1 − a4

ϵ
+ a5

)
s+

(
a1a2
ϵ

− a1a5 − a2a3
ϵ

) (4.4)

Thus the system is minimum phase if

−a4
ϵ
+ a5 +

b2a2
b1ϵ

> 0 (4.5)

Substituting the parameters and solving for the timescale separation parameter gives

ϵ > 0.1 (4.6)

Thus, when the timescale separation parameter is decreased below 0.1 then the system becomes

non-minimum phase. This violates assumption P1 of [24, p. 332]. Therefore, to apply FOAC,

the assumptions of the chosen control method must be carefully observed. This can be difficult to

guarantee if the timescale separation parameter is unknown. ϵ > 0.1 gives a valid range for the

timescale separation but such a range is not usually readily apparent when using FOAC. Notably,

this range is somewhat constrictive because by definition 0 < ϵ≪ 1.

4.2 Reduced-Order Adaptive Control

If either the reduced fast model or the reduced slow model is stable, then one intuitive approach

to adaptive multiple-timescale control is to apply adaptive control to the other reduced-order model

and rely on the inherent stability of the discounted dynamics to assure convergence. This technique

is ROAC. All models which discount fast actuator dynamics inherently apply ROAC. Figure 4.3

shows a bloack diagram for ROAC.

The problems incurred by reducing a model have been studied in the adaptive control literature.

Discounted dynamics are often treated as a time delay (e.g. [62]) or unmodeled dynamics (e.g.

[31]). The primary challenge is that inputs to one reduced-order model can excite dynamic modes

in the other reduced-order model. It has been shown that even stable discounted dynamics can be
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Figure 4.3: A block diagram of ROAC.

driven unstable in this manner [24, p. 549-552] [55]. Narang-Siddarth and Valasek demonstrated

this problem with multiple-timescale systems [9, p. 46].

Theorem 4.2 - Consider the singularly perturbed system as defined in Chapter 2. Let uf = 0. As-

sume that in the context of the closed-loop full-order dynamics, the manifold zs is an asymptotically

stable equilibrium of the fast states and the initial conditions are within the region of attraction for

that equilibrium. Under these conditions, ∃ a timescale separation parameter 0 < ϵ∗ ≪ 1 and ∃

a time after the initial time t0 < t∗(ϵ∗) such that ∀ϵ < ϵ∗ the difference between the closed-loop

full-order system and the closed-loop reduced slow subsystem is on the order of ϵ∗ after t∗.

Proof. As described in Chapter 2 the system can be written as a time-varying vector field (see

Eq. (2.17)). Note that the manifold for this new multiple-timescale system representing the closed-
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loop dynamics is the same as the manifold for the open-loop dynamics. All of the conditions of

Tikhonov’s Theorem [9, Theorem 1] are satisfied. Thus, via Tikhonov’s Theorem, ∃ a timescale

separation parameter 0 < ϵ∗ ≪ 1 and ∃ a time after the initial time t0 < t∗(ϵ∗) such that ∀ϵ < ϵ∗ the

difference between the closed-loop full-order system and the closed-loop reduced slow subsystem

is on the order of ϵ∗ after t∗.

Two corollaries follow directly from Theorem 4.2

Corollary 4.1 - If the conditions of Theorem 4.2 are met and the closed-loop reduced slow system

is bounded, then the closed-loop full-order system is also bounded.

Corollary 4.2 - If the conditions of Theorem 4.2 are met and the reference model is an asymptot-

ically stable equilibrium of the closed-loop reduced slow system with the initial conditions being

in the region of attraction for this equilibrium, then after time t∗ the error between the reference

model and the slow states of the closed-loop full-order system is on the order of the timescale

separation. Succinctly the system is stable about the reference model in the sense of Lyapunov.

In a general sense, Theorem 4.2 and its associated corollaries state that an adaptive controller

designed for the reduced slow model also stabilizes the full-order model if the system can be

rewritten such that Tikonov’s Theorem applies. Theorem 4.2 as written only applies to systems

with adaptive control in the reduced slow system. Applying a similar derivation to adaptive control

for the reduced fast model makes the closed-loop system nonstandard and as a result, Tikonov’s

Theorem does not apply. However, some researchers have managed to use a similar process to

prove boundedness for specific systems with adaptive control on the reduced fast model (e.g. [5,

70, 72]).

Notably, Tikhonov’s Theorem, and by association Theorem 4.2, implies stability in the sense of

Lyapunov, but not convergence. This is interesting to consider in the common case of discounted

actuator dynamics. Recall from Theorem 4.2 that the bound on the slow state tracking is of the

order of the timescale separation parameter. This means that speeding up the actuators (effectively
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increasing the timescale separation by decreasing the timescale separation parameter) can improve

tracking performance. This formalizes the common wisdom that faster actuators are preferable.

The most difficult condition to satisfy in Theorem 4.2 is usually that the closed-loop manifold

is an asymptotically stable equilibrium of the fast states. This gets back to the heart of the problem

discussed at the beginning of this section. That is that controlling a subset of the dynamics can

drive the discounted dynamics unstable. Sometimes, a Lyapunov function can be found for the

system which proves the manifold is asymptotically stable (see [24, Theorem 3.4.1 Statment iii]).

However, valid Lyapunov functions can prove evasive for some systems.

4.3 [K]control of Adaptive Multiple-Timescale Systems

ROAC requires that the discounted reduced model be stable. Further, the difficulty of applying

ROAC stems from proving that the closed-loop manifold is an asymptotically stable equilibrium

of the fast dynamics. If some method could be found to increase the stability of the discounted

dynamics without affecting the primary reduced-order model it could simplify and expand the ap-

plicability of ROAC. This was the original motivation behind KAMS. If the fast control is selected

to be a non-adaptive controller then Theorem 4.2 still applies. More formally

Theorem 4.3 - Let all of the conditions of Theorem 4.2 be satisfied except let uf be a non-adaptive

control method. Then the conclusions of Theorem 4.2 and its associated corollaries 4.1 and 4.2

are still valid.

Proof. The proof is identical to Theorem 4.2. The logic of Corollaries 4.1 and 4.2 are not affected.

Because KAMS specifically designs a controller for the dynamics of both reduced systems,

the assumption that one of the two reduced subsystems is inherently stable is relaxed. Another

benefit of KAMS is that the stability of the reduced fast subsystem is asserted instead of assumed.

Therefore it is easier to prove that the manifold of the closed-loop system is an asymptotically

stable equilibrium. In fact, for some forms of nonlinear control, a valid Lyapunov function could
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be directly implied by the control design. The third benefit of KAMS is that the range of valid

timescale separation parameters is often larger.

The conclusions of Theorem 2.1 are equivalent to Theorem 4.2 except Theorem 2.1 implies

asymptotic stability instead of stability in the sense of Lyapunov. However, Theorem 2.1 offers a

few other unique benefits. First, Theorem 2.1 gives a bound on the timescale separation parameter.

This gives a measure of the robustness to timescale separation uncertainties. Second, the conditions

of Theorem 2.1 are more practical. Note that the condition in Eq. (2.27c) is the same condition that

was difficult to address in Theorems 4.2 and 4.3, namely that the manifold of the closed-loop model

be an asymptotically stable equilibrium of the fast states. However, in the case of Theorem 2.1

there is a simple way to verify this condition is met. A third benefit is that in some cases Barbalat’s

Lemma [39] can be used to show convergence. The following Corollary to Theorem 2.1 is also

notable.

Corollary 4.3 - Theorem 2.1 also applies to ROAC.

Proof. ROAC is equivalent to KAMS when the fast control is selected to be uf = 0. Thus, Theo-

rem 2.1 can be used to find a valid range for the timescale separation parameter of a system under

ROAC.

4.4 Numerical Comparision

Consider the pitch dynamics of a fixed-wing aircraft. The actuator dynamics of the elevator

can be modeled as a first-order low-pass filter [108]. The time evolution of the pitch rate can be

found in [109, p. 84]. Thus the dynamics are described by the following system of equations

q̇ =Mqq +Mδeδe (4.7a)

δ̇e = −τδe + τδe,c (4.7b)

The dimensional stability and control derivatives Mq, Mδe , and τ are uncertain system parameters.

q is the body-axis pitch rate. δe is the elevator deflection and δe,c is the commanded elevator
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deflection. q and δe are taken to be 0 at trim. As an abstract system of equations, Eq. (4.7) does

not obviously exhibit multiple-timescale characteristics since the timescale separation parameter

is not apparent. However, with an understanding of actuator dynamics, it is clear that the system

can be multiple-timescale. This behavior can be made explicit by non-dimensionalizing Eq. (4.7).

Three-dimensional parameters must be chosen for this purpose: Mq has units of s−1 and will be

the first of these three values. The magnitude of the other two-dimensional parameters is arbitrary

and will not affect the outcome of the following development so long as their units match q and δe.

As such arbitrary positive reference values qref and δe,ref are used. The non-dimensional variables

are, therefore:

q̄ ≜ q

qref
δ̄e ≜

δe
δe,ref

δ̄e,c ≜
δe,c
δe,ref

t̄ ≜ t|Mq| (4.8)

Substituting into Eq. (4.7) and simplifying gives

dq̄

dt̄
= sign(Mq)q̄ + sign(Mδe)

|Mδe |δe,ref
|Mq|qref

δ̄e (4.9a)

|Mq|
|τ |

dδ̄e
dt̄

= −sign(τ)δ̄e + sign(τ)δ̄e,c (4.9b)

Assuming that |Mq| ≪ |τ | then this system exhibits multiple-timescale characteristics. Let ϵ =

|Mq |
|τ | and ts = t̄

´̄q = sign(Mq)q̄ + sign(Mδe)
|Mδe |δe,ref
|Mq|qref

δ̄e (4.10a)

ϵ´̄δe = −sign(τ)δ̄e + sign(τ)δ̄e,c (4.10b)

This is the full-order multiple-timescale system. The reduced slow model is

´̄q = sign(Mq)q̄ + sign(Mδe)
|Mδe |δe,ref
|Mq|qref

δ̄e,c (4.11a)

δ̄e,s = δ̄e,c (4.11b)
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and the reduced fast model is

`̄q = 0 (4.12a)

`̄δe = −sign(τ)δ̄e + sign(τ)δ̄e,c (4.12b)

with the fast timescale being tf = t|τ |. It is useful to redimensionalize these equations. The

dimensional reduced slow model

q̇ =Mqq +Mδeδe,c (4.13a)

δe,s = δe,c (4.13b)

and the dimensional reduced fast model

q̇ = 0 (4.14a)

δ̇e = −τδe + τδe,c (4.14b)

4.4.1 Control Synthesis

In this section, a FOAC, a ROAC, and a KAMS adaptive controller are designed. The reference

model is

q̇m = −amq̃m (4.15)

where am ∈ R+. The reference model transfer function is strictly positive real (SPR). MRAC is

used. For KAMS Composite Control will be used to fuse the control signals.

4.4.1.1 Full-Order Adaptive Control

The full-order system from Eq. (4.7) has a transfer function of

q(s)

δe,c(s)
=

τMδe

s2 + (τ −Mq) s+ (−Mqτ)
(4.16)
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This is minimum phase and satisfies assumptions P1-P4 of [24, page 332]. The reference model

given in Eq. (4.15) is not valid here because the transfer function in Eq. (4.16) has a relative degree

of 2. Therefore, a new reference model is selected to be

q̈m = −2amq̇m − a2mq̃m (4.17)

This satisfies assumptions M1 and M2 of [24, page 332]. Therefore, an adaptive controller can be

selected directly from [24, Table 6.2]. Defining ω ≜
[
ωT

1 ωT
2 q r

]T

ω̇1 = −ω1 + θ̂Tω + ϕT ˙̂
θ (4.18a)

ω̇2 = −ω2 + q (4.18b)

ϕ̇ = amϕ+ ω (4.18c)

˙̂
θ = −Γeqϕ sign (τMδe) (4.18d)

δe,c = θ̂Tω + ϕT ˙̂
θ (4.18e)

where ω1(t = 0) = 0, ω2(t = 0) = 0, and ϕ(t = 0) =

[
0 0 0 0

]T
. The initial conditions of θ̂

can be chosen to take advantage of prior knowledge (i.e. an initial guess of the optimal gains). Γ is

the adaptive gain. The assumptions in [24, Table 6.2] are not affected by the timescale separation

parameter. Thus, by Theorem 4.1, the error eq converges to 0 and the system is bounded. Further,

again by Theorem 4.1, all timescale separation parameters are valid for this system under FOAC.

4.4.1.2 Reduced-Order Adaptive Control

The dimensional reduced slow model from Eq. (4.13) has a transfer function of

q(s)

δe,c(s)
=

Mδe

s−Mq

(4.19)

This is minimum phase and satisfies assumptions P1-P4 of [24, page 332]. The relative degree is

1 so the first-order reference model is valid. This satisfies assumptions M1 and M2 of [24, page

78



332]. Therefore, an adaptive controller can be selected directly from [24, Table 6.1].

ώ1 = −ω1 + θ̂Tω (4.20a)

ώ2 = −ω2 + q (4.20b)

´̂
θ = −Γeqω sign (Mδe) (4.20c)

δe,c = θTω (4.20d)

where ω1(t = 0) = 0 and ω2(t = 0) = 0. The initial conditions of θ̂ can be chosen to take

advantage of prior knowledge (i.e. an initial guess of the optimal gains). Γ is the adaptive gain.

By Theorem 4.2 and Corollary 4.2, there exists a set of timescale separation parameters such that

the closed-loop tracking error eq is bounded by a bound on the order of the timescale separation

parameter. The set of valid timescale separation parameters for ROAC will be discussed in the next

section. However, the following Lyapunov function for the reduced slow subsystem will be useful

Veq̄ =
1

2amq2ref
e2q +

1

2q2ref
θ̃TΓ−1θ̃

|Mδe |
am

(4.21)

By [24, equation 6.4.8] the error dynamics for the reduced slow system (i.e. not considering the

fast states) are

feq ,s = −ameq + am
Mδe

am
θ̃Tω (4.22)

Differentiating Eq. (4.21) and substituting in Eqs. (4.20c) and (4.22) gives

L(feq ,s)Veq̄ =
1

amq2ref
eq

(
−ameq + am

Mδe

am
θ̃Tω

)
+

1

q2ref
θ̃TΓ−1 (−Γeqω sign (Mδe))

|Mδe |
am

(4.23)

Using eq̄ ≜ eq
qref

this simplifies to

L(feq ,s)Veq̄ = −e2q̄ (4.24)
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4.4.1.3 KAMS

The adaptive controller designed in the previous section can be extended to be a KAMS con-

troller by selecting the slow control δe,c,s to be the control from ROAC (Eq. (4.20)) and designing

an additional controller for the fast states. Consider the following candidate Lyapunov function for

the reduced fast system in Eq. (4.12)

Veδe =
1

2
˜̄δ2e (4.25)

Differentiating

L(feδe ,f )Veδe = ˜̄δe
`̄̃
δe (4.26)

Substituting Eq. (4.12b) and recalling that in the fast timescale the manifold is constant with respect

to time gives

L(feδe ,f )Veδe = ˜̄δe
(
−sign(τ)δ̄e + sign(τ)δ̄e,c

)
(4.27)

By definition of Composite Control

L(feδe ,f )Veδe = ˜̄δe
(
−sign(τ)δ̄e + sign(τ)

[
δ̄e,c,s + δ̄e,c,f

])
(4.28)

Some algebra gives

L(feδe ,f )Veδe = −sign(τ)˜̄δe
(
δ̄e − δ̄e,c,s

)
+ sign(τ)˜̄δeδ̄e,c,f (4.29)

Because the manifold is δ̄e,c,s so ˜̄δe =
(
δ̄e − δ̄e,c,s

)
can be substituted. Therefore

L(feδe ,f )Veδe = −sign(τ)˜̄δ2e + sign(τ)˜̄δeδ̄e,c,f (4.30)

The left side of this equation is negative definite if the fast control is selected to be

δ̄e,c,f = (1− sign(τ)kf )
˜̄δe (4.31)
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where kf > 0 is a non-adaptive gain. Notably, this meets the condition that δ̄e,c,f (δ̄e = δ̄e,c) = 0.

Substituting this fast control into Eq. (4.30) gives

L(feδe ,f )Veδe = −kf ˜̄δ2e (4.32)

Applying the definition of Composite Control:

δe,c = δe,c,s + δe,c,f (4.33)

Substituting Eq. (4.20) and the dimensional version of Eq. (4.31) gives:

ώ1 = −ω1 + θ̂Tω (4.34a)

ώ2 = −ω2 + q (4.34b)

´̂
θ = −Γeqω sign (Mδe) (4.34c)

δe,c = θ̂Tω + (1− sign(τ)kf ) δ̃e (4.34d)

By Theorem 4.3 there exists a set of timescale separation parameters such that the closed-loop

tracking error eq is bounded by a bound on the order of the timescale separation parameter. The

set of valid timescale separation parameters will now be found by applying Corollary 2.2. By

Eq. (4.24)

α1 = 1 (4.35)

By Eq. (4.32)

α3 = kf (4.36)
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Now consider the interconnection condition Eq. (2.28b). Substituting Eq. (4.10a), Eq. (4.11a), and

the partial of Eq. (4.21) gives

L(fq̄ − fq̄,s)Veq̄ =
1

am
eq̄

[(
sign(Mq)q̄ + sign(Mδe)

|Mδe |δe,ref
|Mq|qref

δ̄e

)
−
(
sign(Mq)q̄ + sign(Mδe)

|Mδe |δe,ref
|Mq|qref

δ̄e,c,s

)]

Simplifying gives

L(fq̄ − fq̄,s)Veq̄ =
1

am
sign(Mδe)

|Mδe |δe,ref
|Mq|qref

eq̄
[
δ̄e − δ̄e,c,s

]
(4.37)

Using ˜̄δe = δ̄e − δ̄e,c,s

L(fq̄ − fq̄,s)Veq̄ =
1

am
sign(Mδe)

|Mδe |δe,ref
|Mq|qref

eq̄
˜̄δe (4.38)

Because β is the upper bound

β =
|Mδe |δe,ref
am|Mq|qref

(4.39)

Thus ∃α1, α3, β such that the conditions of Corollary 2.2 are satisfied. By Corollary 2.2, the

closed-loop system under KAMS is asymptotically stable for all values of the timescale separation

parameter.

Now consider Corollary 4.3 for ROAC. KAMS is equivalent to ROAC when kf = sign(τ)

(i.e. the fast control is always zero). Thus, there are two cases. First, if sign(τ) > 0 then all

of the logic for the KAMS stability analysis holds. In this case, ROAC is also asymptotically

stable for all values of the timescale separation parameter. The second case is when sign(τ) < 0.

In this case, Eq. (4.32) becomes positive definite. Thus the conditions of Corollary 4.3 are not

satisfied. Thus the boundedness of the closed-loop system can not be guaranteed by Theorem 2.1.

This makes sense because sign(τ) < 0 is the case where the neglected fast dynamics are unstable.

Intuitively, ROAC can not account for this. In this case, the manifold is not an asymptotically
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stable equilibrium of the fast states, so Theorem 4.2 is also not valid. Because the theorems in

Chapter 2 only give sufficient conditions, no conclusions about the stability of the system when

sign(τ) < 0 can be drawn. However, because the fast subsystem is unstable and left unregulated

the full-order system would likely be unstable as well.

4.4.1.4 Summary of Control Laws

The adaptive control equations for FOAC, ROAC, and KAMS are summarized and compared

in Table 4.1. The equations for ROAC and KAMS have been converted to the original timescale t.

This is done using the previously defined relationship ts = t|Mq|. This adds |Mq| to the differential

equations for the extra states and the adaptive law. However, Mq is an unknown and constant

parameter so it must be eliminated from the control. This is done by absorbing the extra |Mq|

terms into the adaptive law gains. Notably, Γ must be chosen to ensure the adaptation occurs in the

slow timescale.

Table 4.1 allows the three methods to be directly compared. The significant differences are

highlighted in red. The most notable difference between FOAC and ROAC is that FOAC is a

second-order method. This makes sense because ROAC is a reduced-order method. Thus FOAC

has a second-order reference model and additional terms in the extra states, adaptive law, and

control law. See [24] for more details. The other notable difference between FOAC and ROAC

is that ROAC can not guarantee the stability of the system when τ ≤ 0 (i.e. the fast dynamics

are unstable). ROAC assumes that the fast dynamics are stable. Finally, Table 4.1 makes it clear

that KAMS is an extension of ROAC. The only difference between the two is the addition of a fast

control term in the control law. This one change allows the fast dynamics to be inherently unstable

without destabilizing the closed-loop system. Thus KAMS is found to be simpler than FOAC and

more capable than ROAC.

4.4.2 Numerical Results

In this section, the performance of FOAC, ROAC, KAMS, and Composite Control are com-

pared (i.e. rise time and overshoot). To that end, a numerical simulation of the linearized pitch
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Table 4.1: Comparison of ROAC, FOAC, and KAMS control methodologies.

FOAC ROAC KAMS

Model q̈m = 2amq̇m − a2mq̃m q̇m = amq̃m q̇m = amq̃m

Extra States

ω̇1 = −ω1 + θ̂Tω + ϕT ˙̂
θ

ω̇2 = −ω2 + q

ϕ̇ = amϕ+ ω

ω̇1 = −ω1 + θ̂Tω

ω̇2 = −ω2 + q

ω̇1 = −ω1 + θ̂Tω

ω̇2 = −ω2 + q

Adaptive Law ˙̂
θ = −Γeqϕ sign (τMδe)

˙̂
θ = −Γeqω sign (Mδe)

˙̂
θ = −Γeqω sign (Mδe)

Control Law δe,c = θ̂Tω + ϕT ˙̂
θ δe,c = θ̂Tω

δe,c = θ̂Tω

+(1− sign(τ)kf ) δ̃e

Stability Asymptotically Stable Asymptotically Stable Asymptotically Stable

Valid ϵ ∀ϵ ∈ (0, 1) τ > 0 =⇒ ∀ϵ ∈ (0, 1) ∀ϵ ∈ (0, 1)
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dynamics is performed using parameters from a Boeing 747-100/200. The system is linearized

about trim during an approach for landing (0 ft altitude, 131 knots true airspeed, 8.5◦ angle of at-

tack, and a standard atmosphere). An analysis of a Boeing 747-100/200 on approach can be found

in [110, Appendix B Airplane J]. Using this information, the parameters needed in Section 4.4 can

be found

Mq =
ρV ∗

a Sc
2Cmq

2Jy
(4.40a)

Mδe =
ρV ∗2

a ScCmδe

Jy
(4.40b)

where ρ is the air density, V ∗
a is the aircraft airspeed, S is the wing area, c is the mean aerodynamic

chord (mac), Cmq the nondimensional pitch damping stability derivative, Cmδe
nondimensional

elevator effectiveness control derivative and Jy is the mass moment of inertia of the aircraft about

the body frame right axis. The time constant 1
τ

for the actuator dynamics is not known. However,

it has been published that the elevator rate saturates at δ̇e = 37◦ s−1 [111]. Therefore, τ = 80 s−1

is chosen so that the elevator moves quickly but does not saturate. θ̂ is initialized at the Model Ref-

erence Control gains. However, uncertainty is added to the system parameters before calculating

the Model Reference Control gains. Uncertainty is created by sampling the estimated parameter

values from a normal distribution with a mean of the true value and a standard deviation of 20% of

the true value. All other states are initialized at 0. am is chosen to be −1 and 1 respectively. Γ and

kf are each tuned for optimal performance. The diagonal entries of Γ are found to be 0.05 deg−2.

kf is found to be 4. The reference model input is chosen to be r = sin(0.1 ∗ t) + 2 degrees per

second.

Figure 4.4 shows the evolution of the body axis pitch rate, Fig. 4.5 shows the evolution of the

elevator deflection, and Figs. 4.6, 4.7, 4.8, and 4.9 show the time histories of the adapting param-

eters. All three multiple-timescale adaptive control methodologies - FOAC, ROAC, and KAMS

- are shown for comparison. All three methodologies converge to the reference model. KAMS

drives the fast actuator dynamics to the manifold the quickest and with the least overshoot of the
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Figure 4.4: Slow state evolution comparison of FOAC, ROAC, and KAMS.

0 5 10 15 20
t - Time (sec)

-6
-4
-2
0

E
le
va

to
r

D
e.

ec
ti
o
n

(d
eg

)

/e FOAC
/e;c FOAC
/e ROAC
/e;c ROAC
/e KAMS
/e;c;s KAMS

0 1 2 3 4 5

-6
-4
-2
0

Figure 4.5: Fast state evolution comparison of FOAC, ROAC, and KAMS.

three methodologies. This leads to improved accuracy in tracking the slow state reference model.

The KAMS adapting gains do not overshoot their steady-state value because KAMS converges

more quickly to the manifold. Effectively, this means that the evolution of the gains relies more

on q and is not misled by the actuator dynamics. See specifically θ̂2 in Fig. 4.7 where this effect is

especially clear. For completeness, Figs. 4.10 and 4.11 show the slow state evolution and fast state

evolution of this system under Composite Control. The Composite Control control laws used here

are the same as KAMS except the parameters are constant with respect to time. As can be seen,

Composite Control has steady-state error in the slow states.
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Figure 4.6: First adapting gain evolution comparison of FOAC, ROAC, and KAMS.
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Figure 4.7: Second adapting gain evolution comparison of FOAC, ROAC, and KAMS.
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Figure 4.8: Third adapting gain evolution comparison of FOAC, ROAC, and KAMS.
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Figure 4.9: Fourth adapting gain evolution comparison of FOAC, ROAC, and KAMS.
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Figure 4.10: Slow state evolution of Composite Control on a parametrically uncertain plant.
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Figure 4.11: Fast state evolution of Composite Control on a parametrically uncertain plant.
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Figure 4.12: Slow state evolution comparison with large timescale uncertainty.

4.4.3 Robustness Test

In this subsection, the robustness of FOAC, ROAC, and KAMS is compared. This is done

by performing the same numerical simulation as the previous section but changing the timescale

separation. In the previous section, the timescale separation parameter was ϵ = 0.38. In this

section, the nondimensional pitch damping stability derivative is increased to Cmq = 51.4 per

radian (as opposed to Cmq = 21.4). This increases the timescale separation parameter to ϵ =

0.92. To allow for slightly more precision, the initial estimate of the adapting parameters is set

to be exactly 80% of the Model Reference Control value (instead of being drawn from a normal

distribution with a standard deviation of 20% away from the Model Reference Control value as was

done in the previous section). Figure 4.12 shows the evolution of the body axis pitch rate, Fig. 4.13

shows the evolution of the elevator deflection, and Figs. 4.14, 4.15, 4.16, and 4.17 shows the time

histories of the adapting parameters. All three multiple-timescale adaptive control methodologies

- FOAC, ROAC, and KAMS - are shown for comparison. As can be seen, ROAC fails to converge

to the reference model (or at least converges slowly with significant transient oscillations). This

is because the timescale separation is small enough to induce a time delay between a commanded

input and the actual response. Both FOAC and KAMS converge to their reference models, but

the transient response of KAMS deviates the least from the performance in the prior section. This

demonstrates robustness to uncertainties in the timescale separation. Again KAMS demonstrates

the best rise time.
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Figure 4.13: Fast state evolution comparison of FOAC, ROAC, and KAMS.
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Figure 4.14: First adapting gain evolution comparison of FOAC, ROAC, and KAMS.
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Figure 4.15: Second adapting gain evolution comparison of FOAC, ROAC, and KAMS.
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Figure 4.16: Third adapting gain evolution comparison of FOAC, ROAC, and KAMS.
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Figure 4.17: Fourth adapting gain evolution comparison of FOAC, ROAC, and KAMS.

4.5 Chapter Summary

This chapter presented and developed two additional adaptive control methodologies for

multiple-timescale systems. Full-Order Adaptive Control (FOAC) uses traditional adaptive con-

trol on the full-order model. Reduced-Order Adaptive Control (ROAC) uses adaptive control on

one of the reduced-order models. Both methods were shown to be asymptotically stable under

the conditions described by Theorem 2.1, Theorem 4.1, Theorem 4.2, and Theorem 4.3 respec-

tively. An example with numerical results was given to demonstrate and compare these methods to

KAMS. Two conclusions can be drawn from the theoretical and numerical results of this chapter.

1. Small changes in the timescale separation parameter can have a large effect on the system

response. Thus, a method of adaptive control tailored specifically for multiple-timescale

systems is needed.

2. FOAC, ROAC, and KAMS are all valid adaptive multiple-timescale control methodologies.

(a) FOAC is the most straightforward because little to no additional work is needed to

reformat the plant. However, FOAC is also the most sensitive to uncertainties in the

timescale separation parameter and one must be careful to ensure that none of the

stability criteria for the chosen adaptive control method are violated.

(b) ROAC allows the designer to take advantage of model reduction. The reduced-order

model simplifies the control synthesis, but ROAC requires that the discounted dynam-
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ics be asymptotically stable. Because of this ROAC often has the most stringent stabil-

ity criteria of the three.

(c) KAMS also takes advantage of model reduction but does not require the fast dynamics

to be stable (unlike ROAC). KAMS also tends to have the best performance because

each reduced-order model is stabilized separately and the fast dynamics converge to

the manifold more quickly than other methods. This can also lead to improved robust-

ness. KAMS tends to have a more complicated design process because two separate

controllers must be designed.

While all three methods are valid, KAMS is judged to provide the best balance between

performance and robustness.
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5. QUADROTOR ATTITUDE STABILIZATION USING ADAPTIVE REGULATION OF A

LINEAR MULTIPLE-TIMESCALE MODEL

From military [112] to industry [113] and from competitive racing [28] to recreation [114]

- quadrotor UAV are becoming more and more essential to the future. UAVs must operate in

increasingly complex and dynamic environments. At the same time, the drive for low development

costs can lead to large uncertainties in system parameters. From the author’s experience, many

UAV manufacturers don’t even bother finding stability and control derivatives for their products.

Adaptive control is well suited for these parametric uncertainties. UAVs are excellent testbeds

for adaptive control because they are cheap, uncertain, and carry less risk than crewed vehicles.

The stabilization of a quadrotor is not a new challenge. Several commercial and open-source

solutions exist (e.g. [109, 115]). The most common approach is Proportional-Integral-Derivative

(PID) control with sequential loop closure. This chapter proposes and validates a novel method of

adaptive attitude stabilization for quadrotors using KAMS. This is the first evaluation of KAMS on

a multiple-input multiple-output (MIMO) system. Adaptive control has a long history in aerospace

[25] and has been frequently evaluated on quadrotor (e.g. [26, 28, 40]). However, these works did

not consider the timescales of the system. Multiple-timescale control has also been evaluated

on quadrotor [10], but adaptive control for multiple-timescale systems has not been applied to

quadrotors. This chapter fills that gap in the literature. This is done in three stages. First, a multiple-

timescale model of a quadrotor is developed in section 5.1. Second, the control architecture is

synthesized in section 5.2. Finally, the control is numerically validated in section 5.3.

5.1 Multiple-Timescale Model

The dynamics of a rigid body quadrotor have been published in several sources (e.g. [116]).

These differential equations differ from a fixed-wing aircraft primarily in the aerodynamic and

control forces. The present work will address the dynamics of a quadrotor linearized about hover.
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The state space form is



h́

ú

v́

ẃ

ṕ

q́

ŕ

ϕ́

θ́

ψ́



=



0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −g 0

0 0 0 0 0 0 0 g 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0





h

u

v

w

p

q

r

ϕ

θ

ψ



+



0 0 0 0

0 0 0 0

0 0 0 0

−2bωt
m −2bωt

m −2bωt
m −2bωt

m

−
√
2blωt
Jxx

−
√
2blωt
Jxx

√
2blωt
Jxx

√
2blωt
Jxx

√
2blωt
Jyy

−
√
2blωt
Jyy

−
√
2blωt
Jyy

√
2blωt
Jyy

2dωt
Jzz

−2dωt
Jzz

2dωt
Jzz

−2dωt
Jzz

0 0 0 0

0 0 0 0

0 0 0 0





ω1

ω2

ω3

ω4



(5.1a)

y ≜
[
h ϕ θ ψ

]T
(5.1b)

A traditional body-fixed forward-right-down (1,2,3) coordinate frame is used with the origin at the

center of mass. the quadrotor is assumed to be in the X configuration (i.e the x axis is in-between

two motors). u, v, and w are the body frame velocities in the 1, 2, and 3 directions respectively.

p, q, and r are the body frame angular velocities about the 1, 2, and 3 axes respectively. ϕ, θ, and

ψ are the Euler angles for a 3-2-1 rotation sequence about the 1, 2, and 3 axes respectively. h is

the vehicle’s altitude. ωi is the angular velocity of the ith motor. The motor indexes begin at 1 in

the top right corner and increase clockwise around the vehicle. The front-right motor is assumed

to spin counter-clockwise and the direction of rotation alternates for each motor in the sequence.
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b and d are motor parameters describing the thrust and torque respectively of each motor through

the following relationships

Ti = bω2
i (5.2a)

τi = dω2
i (5.2b)

where T is thrust and τ is torque. ωt is the angular velocity of the motors at hover. l > 0 is the

distance between the center of gravity and each motor. It is assumed that the motors are radially

symmetric across the x and y axes. g is the acceleration due to gravity. m is the mass of the

quadrotor. Finally, Jxx, Jyy, and Jzz are the body frame mass moments of inertia about the 1, 2,

and 3 axes respectively. This system can be rewritten as individual equations (i.e. not in vector-

matrix form)

h́ = −w (5.3a)

ϕ́ = p (5.3b)

θ́ = q (5.3c)

ψ́ = r (5.3d)

ẃ = −2bωt

m
(ω1 + ω2 + ω3 + ω4) (5.3e)

ṕ =

√
2blωt

Jxx
(−ω1 − ω2 + ω3 + ω4) (5.3f)

q́ =

√
2blωt

Jyy
(ω1 − ω2 − ω3 + ω4) (5.3g)

ŕ =
2dωt

Jzz
(ω1 − ω2 + ω3 − ω4) (5.3h)

u and v have been dropped because they are internal dynamics.

The goal is to write these differential equations as a set of singularly perturbed differential

equations where the timescales of the system have been made evident. Syrcos and Sannuti sug-

gested one way to do this [117]. Ren, Jaing, and Yang used a variation of Syrcos and Sannuti’s
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method [7]. In this chapter the timescale separation parameter is choosen to be

ϵ = meani,j

(
zj,max − zj,min

xi,max − xi,min

ẋi,max

żj,max

)
(5.4)

where xi and zj are the ith and jth components of x and z respectively. Max and min here indicate

the maximum and minimum possible values over the system’s domain. This is a slight variation

on Ren, Jaing, and Yang’s method (mean is used instead of max). Intuitively, this is the average

value of the ratio between the time rate of change of the fast states and the time rate of change of

the slow states normalized by the size of the range across which the respective states are allowed

to vary. For this chapter, it is assumed that the mission and system inputs are tuned such that the

slow states are h, ϕ, θ, and ψ and the fast states are w, p, q, and r. Multiplying both sides by ϵ

gives

h́ = −w (5.5a)

ϕ́ = p (5.5b)

θ́ = q (5.5c)

ψ́ = r (5.5d)

ϵẃ = −ϵ2bωt

m
(ω1 + ω2 + ω3 + ω4) (5.5e)

ϵṕ = ϵ

√
2blωt

Jxx
(−ω1 − ω2 + ω3 + ω4) (5.5f)

ϵq́ = ϵ

√
2blωt

Jyy
(ω1 − ω2 − ω3 + ω4) (5.5g)

ϵŕ = ϵ
2dωt

Jzz
(ω1 − ω2 + ω3 − ω4) (5.5h)

Because the inputs and the domain are tuned so that there is a timescale separation between the

fast and slow states it can be concluded that

O (fw) = O (fp) = O (fq) = O (fr) = O (1) (5.6)
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This is now a singularly perturbed set of differential equations. To simplify notation, let x ≜

[h ϕ θ ψ]T , z ≜ [w p q r]T , and u ≜ [ω1 ω2 ω3 ω4]
T . Therefore

x́ = Bxz (5.7a)

ϵź = Bzu (5.7b)

where

Bx =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(5.8a)

Bz = ϵωt



−2b
m

−2b
m

−2b
m

−2b
m

−
√
2bl

Jxx
−

√
2bl

Jxx

√
2bl

Jxx

√
2bl

Jxx

√
2bl

Jyy
−

√
2bl

Jyy
−

√
2bl

Jyy

√
2bl

Jyy

2d
Jzz

− 2d
Jzz

2d
Jzz

− 2d
Jzz


(5.8b)

The system is now in the proper format for the application of KAMS.

5.2 Control Synthesis

The control objective is for the slow states to track a reference model. The reduced slow

subsystem is

x́ = Bxzs (5.9)
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The reduced fast subsystem is

x̀ = 0 (5.10a)

z̀ = Bzu (5.10b)

The inertias and engine parameters (i.e. b and d) are uncertain. Note that the slow dynamics are

deterministic. In the following sections Adaptive Nonlinear Dynamic Inversion (ANDI) will be

used to stabilize the reduced slow subsystems and Sequential Control will be used to fuse the

control signals. The pilot will be given influence over the system by allowing them to control the

input signal for the slow subsystem. Finally, the error between the reference models and the full-

order systems will be shown to asymptotically converge to zero using Theorem 2.1 from KAMS.

5.2.1 Control and Adaptation Laws

The reference model for the slow subsystem is

x́m = Axmx̃m (5.11)

where Axm ∈ R4×4 is hurwitz. The pilot is given control over the system through r. This slow

reference model can also be written as

´̃xm = Axmx̃m − ŕ (5.12)

Only Nonlinear Dynamic Inversion (NDI) is needed for the slow subsystem because Bx is known

perfectly. The manifold is selected to be

zs = B−1
x (Axmx̃m +Kxex) (5.13)
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where Kx ∈ R4×4 is hurwitz. The fast subsystem does require adaptive control because it is

parametrically uncertain. The reference model for the fast subsystem is

z̀m = Az,mz̃m (5.14)

where Azm ∈ R4×4 is hurwitz. The input is selected to be

u = B̂−1
z (Az,mz̃m +Kzez) (5.15)

where Kz ∈ R4×4 is hurwitz. The adaptation law is

`̂
Bz = ΓProj

(
B̂z, ezu

T
)

(5.16)

where Γ ∈ R4×4 is a symmetric positive definite adaptation rate gain matrix.

5.2.2 Stability Analysis

Consider the following Lyapunov functions

Vex =
1

2
eT
xPxex (5.17a)

Vx̃m =
1

2
x̃T
mPxmx̃m (5.17b)

Vez =
1

2

(
eT
z Pzez + tr

(
B̃zΓ

−1B̃T
z

))
(5.17c)

Vz̃m =
1

2
z̃T
mPzm z̃m (5.17d)

where 0 < Px, Pxm , Pz, Pzm ∈ R4×4
+ are symmetric positive definite matrices and the solutions to

the Lyapunov equationsKT
x Px+PxKx = −Qx,AT

xPxm+PxmAx = −Qxm ,KT
z Pz+PzKz = −Qz,

and AT
z Pzm + PzmAz = −Qzm for some symmetric positive matrices 0 < Qx, Qxm , Qz, Qzm ∈
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R4×4
+ . Differentiating along the trajectories of the subsystems

L(feξ,s)Vex ≤ −eT
xQxex (5.18a)

L(fx̃m)Vx̃m = −x̃T
mQxmx̃m −

[
x̃T
mPxm ŕ

]
(5.18b)

L(feη ,f )Vez ≤ −eT
zQzez (5.18c)

L(fzm,f )Vz̃m = −z̃T
mQzm z̃m (5.18d)

Eqs. (5.18a) and (5.18c) are derived in [65, Eqs. 1.20 to 1.23]. Taking the 2-norm gives

L(feξ,s)Vex ≤ −λmin(Qx) |ex|22 (5.19a)

L(fx̃m)Vx̃m ≤ −λmin(Qxm) |x̃m|22 + [σmax (Pxm) |x̃m|2 |ŕ|2] (5.19b)

L(feη ,f )Vez ≤ −λmin(Qz) |ez|22 (5.19c)

L(fzm,f )Vz̃m ≤ −λmin(Qzm) |z̃m|22 (5.19d)

where λmin(·) is the minimum eigenvalue of the matrix in the parentheses and σmax(·) is the maxi-

mum singular value of the matrix in the parentheses. The time derivative of the manifold is needed

to evaluate the interconnection conditions

źs = B−1
x

(
A2

xm
x̃m − Axm ŕ +K2

xex

)
(5.20)

Evaluating the left side of the interconnection conditions (Eq. (2.28)) gives

L(fx − fx,s)Vex = eT
xPxBxz̃ (5.21a)

L(fz − fz,f )Vez = 0 (5.21b)

−L(fzs)Vz̃m = −z̃T
mPzmB

−1
x

(
A2

xm
x̃m − Axm ŕ +K2

xex

)
(5.21c)
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Again taking the 2-norm and rearranging slightly gives

L(fx − fx,s)Vex ≤ σmax (PxBx) |ex|2 |z̃|2 (5.22a)

L(fz − fz,f )Vez ≤ 0 (5.22b)

−L(fzs)Vz̃m ≤ σmax

(
PzmB

−1
x K2

x

)
|ex|2 |z̃m|2 + σmax

(
PzmB

−1
x A2

xm

)
|x̃m|2 |z̃m|2

+
[
σmax

(
PzmB

−1
x Axm

)
|z̃m|2 |ŕ|2

]
(5.22c)

These functions are in the proper format for the application of Theorem 2.1 except for the terms

that are proportional to ŕ (i.e. the terms in square brackets in Eqs. (5.18b) and (5.22c)). Two cases

will be considered. If ŕ = 0 then Theorem 2.1 may be applied as is. In this case, by Theorem 2.1,

the system is asymptotically stable if K is positive definite. If ŕ ̸= 0 then additional work is

necessary. It can be seen by referring back to the proof for Theorem 2.1 that for the quadrotor

under consideration, the final form of the composite Lyapunov function (V ) at the end of the proof

for Theorem 2.1 is

V́ ≤ −vTKv +
[
σmax (Pxm) |x̃m|2 |ŕ|2 + σmax

(
PzmB

−1
x Axm

)
|z̃m|2 |ŕ|2

]
(5.23)

Let

v∗ ≜
[
vT

∣∣∣B̃z,1

∣∣∣
2

∣∣∣B̃z,2

∣∣∣
2
. . .

∣∣∣B̃z,nz

∣∣∣
2

]T
(5.24a)

K∗ ≜


K 0

0 Inz

 (5.24b)

where B̃z ≜ [B̃z,1 B̃z,2 . . . B̃z,nz ] and nz is the dimension of z. Note that K is positive definite if

and only if K∗ is positive definite. Adding and subtracting
∣∣∣B̃z

∣∣∣2
2

to Eq. (5.23) gives

V́ ≤ −v∗TK∗v∗ +
∣∣∣B̃z

∣∣∣2
2
+
[
σmax (Pxm) |x̃m|2 |ŕ|2 + σmax

(
PzmB

−1
x Axm

)
|z̃m|2 |ŕ|2

]
(5.25)

101



The 2-norm of the adapting parameters |Bz|2 is bounded by the projection operator. Let |Bz,max|2

be this bound. It is now assumed that the pilot flies in such a way that r and ŕ are bounded. Let

rmax and ŕmax be those bounds. Finally, the objective is to show that the system is stable within a

subset of the domain. Let the input r be choosen so that |x|2 ≤ |rmax|2 and |xm|2 ≤ |rmax|2. This

implies that |ex|2 ≤ 2|rmax|2 and |x̃m|2 ≤ 2|rmax|2. From Eq. (5.13)

|zs|2 ≤ 2|B−1
x |2 (|Axm |2 + |Kx|2) |rmax|2 (5.26)

The fast states z and zm are constrained to the same domain. In summary, the following limits on

the domain are imposed

|ex|2 ≤ 2|rmax|2 (5.27a)

|x̃m|2 ≤ 2|rmax|2 (5.27b)

|ez|2 ≤ 4|B−1
x |2(|Axm |2 + |Kx|2)|rmax|2 (5.27c)

|z̃m|2 ≤ 4|B−1
x |2(|Axm |2 + |Kx|2)|rmax|2 (5.27d)

|B̃z|2 ≤ 2|Bz,max|2 (5.27e)

Substituting these bounds into Eq. (5.25)

V́ ≤ −v∗TK∗v∗ +
[
2 |Bz,max|2

+
(
σmax (Pxm) + σmax

(
PzmB

−1
x Axm

)
2
∣∣B−1

x

∣∣
2
(|Axm |2 + |Kx|2)

)
2 |rmax|2 |ŕmax|2

]
(5.28)

Again, everything in the square brackets is constant. Let this constant be defined as L. Let λ3 =

λmax(K
∗). Note that |v∗|22 = |eϕ|22. Therefore

V́ ≤ −λ3 |eϕ|22 + L (5.29)
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Let Γ be restricted to diagonal matrices. The initial composite Lyapunov function from the proof

of Theorem 2.1 can be written as

λ1 |eϕ|22 ≤ V ≤ λ2 |eϕ|22 (5.30)

where

λ1 ≜
1

2
min

(
d∗λmin(Px), d

∗λmin(Pxm), dλmin(Pz), dλmin(Pzm), d min
i∈{1,2,...,nz}

(
|Γ−1

ii |
))

(5.31a)

λ2 ≜
1

2
max

(
d∗λmax(Px), d

∗λmax(Pxm), dλmax(Pz), dλmax(Pzm), d max
i∈{1,2,...,nz}

(
|Γ−1

ii |
))

(5.31b)

Recall that d ∈ (0, 1) and d∗ ≜ 1 − d as defined in Theorem 2.1. Lyapunov-like functions of the

form described by Eqs. (5.29) and (5.30) were studied by Raffoul. Theorem 2.2 of [118] concludes

that

|eϕ|2 ≤

√
1

λ1

(
λ2 |eϕ(t = 0)|22 +

Lλ2
λ3

)
(5.32)

If this bound is within the domain previously specified then the system is stable in the sense of

Lyapunov.

In summary, using Theorem 2.1 it has been shown that when ŕ = 0 the system is asymptotically

stable if K is positive definite. It has also been shown that when ŕ ̸= 0 the system is Lyapunov

sense stable if K is positive definite and Eq. (5.32) is satisfied. In the next section, it will be

shown that these conditions are satisfied for the numerical values of the test aircraft. To do so, the
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following parameters of K will be needed

α =

[
λmin(Qx) λmin(Qxm) λmin(Qz) λmin(Qzm)

]T
(5.33a)

β = σmax (PxBx) (5.33b)

γ = 0 (5.33c)

δ =

[
σmax(PzmB

−1
x K2

x) σmax(PzmB
−1
x Axmx

2) 0 0

]T
(5.33d)

These paramters are obtained from Eqs. (5.19) and (5.22).

Remark 5.1 - If the steady-state error of the reference models is known then more precise bounds

on the domain may be available. This system is linear and the slow subsystem is deterministic.

So several conclusions can be drawn about the steady-state error. The transfer functions from the

reference model inputs to the reference model errors are

x̃m(s) = (sI − Axm)
−1sr(s) (5.34a)

z̃m(s) = (sI − Azm)
−1szs(s) (5.34b)

Assuming that the slow error is asymptotically stable then the steady state value is ex = 0 (this

assumption is only applicable to the analysis of this remark). The Laplace Transform of Eq. (5.13)

is

zs(s) = B−1
x Axmx̃m(s) (5.35)

Solving for z̃m(s) in terms of r(s) gives

x̃m(s) = (sI − Axm)
−1sr(s) (5.36a)

z̃m(s) = (sI − Azm)
−1sB−1

x Axm(sI − Axm)
−1sr(s) (5.36b)

For this remark, let the zeros be in the open left half plane and let all of the components of r(s)
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be equivalent. Define r1 ≜ [1 1 1 1]T . Using the final value Theorem the steady-state error can

be determined for several different input types. Table 5.1 shows this. Note that the steady-state

error of ∞ will never actually come to fruition because r is bounded. However, as the order of the

input increases the maximum error will approach 2|rmax|2. Similar conclusions can be drawn for

a sinusoidal input. The maximum steady-state error can be calculated from the phase lag. Again,

the maximum error will approach 2|rmax|2.

Table 5.1: Reference model steady state error.

Input Slow Steady State Error Fast Steady State Error

Step x̃m(s) = 0 z̃m(s) = 0

Ramp x̃m(s) = −A−1
xm

r1 z̃m(s) = 0

Parabola x̃m(s) = −∞ z̃m(s) = −A−1
xm
B−1

x r1

Cubic x̃m(s) = −∞ z̃m(s) = −∞

Remark 5.2 - This system does not require adaptive control in the slow subsystem. Corollary 2.1

is intended for just such a case. However, Corollary 2.1 is not applicable because there is a slow

state reference model. Thus the full-strength Theorem 2.1 is used instead.

5.3 Numerical Results

A numerical simulation was performed with the parameters for a Da-Jiang Innovations (DJI)

F450 quadrotor [119, 116]. The objective of this simulation is to validate the control architecture

that is presented above. The effects of a MIMO system on KAMS are also studied. Consistent

with the stability analysis above, asymptotic stability is achieved for constant pilot commands and

bounded tracking is achieved for time-varying pilot commands. One representative test case is

given. The trim condition is hover at sea level and in a standard atmosphere. The parameters for

this vehicle are summerized in table 5.2. Table 5.3 gives the control gains which were chosen
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Table 5.2: Quadrotor vehicle parameters.

Variable Value Units Name

b 1.6 ∗ 10−5 kg m Motor Thrust Coefficent

d 1.6731 ∗ 10−6 kg m2 Motor Torque Coefficient

l 0.32 m Motor Position Radius

m 2.5 kg Vehicle Mass

Jxx 1.6 ∗ 10−2 kg m2 Mass Moment of Inertia About Bodyframe x Axis

Jyy 1.6 ∗ 10−2 kg m2 Mass Moment of Inertia About Bodyframe y Axis

Jzz 1.7 ∗ 10−2 kg m2 Mass Moment of Inertia About Bodyframe z Axis

through tuning. The slow reference model input was chosen to be a set of sinusoids with a phase

offset

r =
π

8



0

sin
(

t
10

+ 2
5
π
)

sin
(

t
10

+ 3
5
π
)

sin
(

t
10

+ 4
5
π
)


(5.37)

The motor paramters (b and d) and the mass moment of inertias (Jxx, Jyy, and Jzz) are assumed

to be uncertian. The estimates for these parameters are drawn from a normal distribution with the

mean being the true value and the standard deviation being 20% of the true value. These values are

used to initialize the estimates of Bz and ϵ which are uncertain by implication. Note that ϵ̂ is not

an adapting parameter. It is only used to ensure the timescales of the control states are correct. The

system states are initialized at hover. The fast reference model is also initialized at 0. The initial

conditions for the slow reference model are randomly initialized from a normal distribution with a

mean of zero and a standard deviation of 20% of 2|rmax|2 (see Eq. (5.27)).

Using these parameters and Eq. (5.4) the timescale separation parameter is found to be ϵ = 0.46.
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Table 5.3: Quadrotor vehicle control gains.

Variable Value Name

Axm −0.7I4 Slow Reference Model State Matrix

Kx −2I4 Slow Subsystem Closed-Loop State Matrix

Azm −10I4 Fast Reference Model State Matrix

Kz −500I4 Fast Subsystem Closed-Loop State Matrix

Γ 10I4 Adaptation Rate Gain

The LPM of K are shown in Fig. 5.1 for a range of d. The solid dark blue line indicates values of d

where all LPM are positive and Eq. (5.32) is satisfied. Notably, there is a region where the LPMs

are positive but Eq. (5.32) is not satisfied. The size of this region is influenced by the control gains.

For example, Qz and its magnitude compared to Kz were found to have a significant effect. The

system was not tuned for optimal performance, but instead, so that the trends are visible in each

of the following plots. Regardless, it is known that KAMS is a valid approach because ∃d ∈ (0, 1)

such that the sufficient conditions are satisfied. Because the slow reference model input is time-

varying the system is Lyapunov sense stable (as opposed to asymptotically stable which occurs

when the slow reference model input is constant).

The results of the numerical simulation are displayed in the following time histories. First

Figs. 5.2, 5.3, 5.4, and 5.5 show the time histories of the slow states. There are a few interesting

trends. First, note the phase lag. This is expected. Recall that x̃m is only guaranteed to be

bounded (as opposed to asymptotically stable) when r is time-varying as is the case here. More

powerful results may be avaliable if x̃m and z̃m could be removed. However, this would require

prior knowledge about the time derivative of the slow reference model input which is not available

when a pilot is operating the vehicle. See remark 5.1 for more information related to the steady

state error of the slow reference model. The second interesting trend in the slow states is that the

altitude briefly diverges from 0 despite the commanded value of 0. This occurs because of incorrect
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Figure 5.1: LPM over a range of possible d.
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Figure 5.2: Evolution of the altitude.

mixing due to an incorrect estimate of the control influence matrix. However, the adaptive control

rectifies the problem over time. Figures. 5.6, 5.7, 5.8, and 5.9 show the time histories of the fast

states. For both the fast and slow states note that the system converges to the reference model.

Figure 5.10 shows the evolution of the various components of B̃z. The parameters adapt in the fast

timescale. Figure 5.11 shows the evolution of the control inputs.
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Figure 5.3: Evolution of the roll attitude angle.
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Figure 5.4: Evolution of the pitch attitude angle.
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Figure 5.5: Evolution of the yaw attitude angle.
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Figure 5.6: Evolution of body axis down velocity.
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Figure 5.7: Evolution of body axis roll rate.
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Figure 5.8: Evolution of body axis pitch rate.
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Figure 5.9: Evolution of body axis yaw rate.

0 50 100 150 200
t - Time (sec)

-0.02
0

0.02

C
om

p
on

en
ts

of
~ B

z 0 0.05 0.1 0.15 0.2

-0.02

0

0.02
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Figure 5.11: Evolution of the motor angular velocities.

5.4 Chapter Summary

The control objective of this chapter is to provide attitude stabilization for a quadrotor. A

secondary objective was for the pilot to be given influence over the system. These objectives were

both accomplished using KAMS. KAMS was recently proposed as a method of adaptive control

for multiple-timescale systems. First, a multiple-timescale model of a quadrotor was developed.

Second, the system was separated into two subsystems using singular perturbation theory. Third,

two separate control laws were developed for the subsystems. Fourth, these control signals were

fused using Sequential Control. Fifth, the system was shown to be asymptotically stable when the

input to the slow state reference model is constant and Lyapunov sense stable otherwise. Sixth and

finally, the control was validated using a numerical simulation. The inertia and motor parameters

were allowed to be uncertain. Based on the results presented in this chapter, two conclusions are

drawn.

1. KAMS is a promising approach to attitude stabilization for quadrotors. The system was

shown to be asymptotically stable for constant inputs and bounded for time-varying inputs.

The numerical example demonstrated how the system is dynamically well-behaved and can

asymptotically track a reference model. Controller performance can be improved if the
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pilot selects slow smooth commands because the magnitude of the bound on the closed-

loop trajectory is a function of the time derivative of the slow subsystem input. This further

constrains the range of d which satisfies the sufficient conditions of KAMS.

2. KAMS is shown to be an effective approach for multiple-input multiple-output systems. The

numerical example demonstrated this. The coupling between the multiple inputs and outputs

caused some small (< 10−9 m) deviations in the altitude due to parametric uncertainty, but

the adaptive elements of the control were able to recover quickly.
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6. ORBITAL TRANSFER MANEUVERS USING ADAPTIVE CONTROL OF A

MULTIPLE-TIMESCALE MODEL

Few environments are as challenging to engineering as outer space. Spacecraft are required

to operate at the very edge of physical limits. For example, launch vehicle capabilities require

reduced mass, vibration hardening, and compact form factors. The uninhibited solar effects require

computational power concessions, reduced electrical power, and thermodynamic extremes. From a

guidance, control, and dynamics perspective space systems are frequently highly coupled nonlinear

systems with limited fuel. Furthermore, the distances make repair infeasible and communication

slow. In such an environment autonomy and redundancy are essential. Adaptive control is well

suited for uncertain and time-varying environments like space [24]. This chapter presents a novel

method of orbital transfer using adaptive control for multiple-timescale systems. First, a multiple-

timescale model of orbital dynamics is developed. Then KAMS is presented as a potential solution.

Orbital transfers are essential components of almost all space missions (e.g. [120]). Many

different control architectures have been proposed for orbital transfers (e.g. [121, 122]). Fuel and

time requirements have frequently necessitated some form of optimal control in this application.

For example, Wiesel and Alfano studied an optimal low thrust minimum time transfer maneuver

[123]. Kechichain studied an optimal minimum time transfer maneuver to geostationary orbit with

an intermediate control input [124]. Avendaño et al. studied minimum-cost multi-impulse orbit

transfers [125]. The Hohmann transfer has been proven to be the minimum impulse transfer ma-

neuver [126, 127, 128]. Instantaneous impulses are not possible in physical systems. However,

they are commonly assumed because of the large timescale separation between the angular ve-

locity and radial velocity of spacecraft. The present work derives a multiple-timescale model of

orbital dynamics which rigorously models the timescale separation and also allows for finite time

continuous inputs. The timescale model is similar to the one proposed by Saha and Valasek [8].

However, this chapter analytically derives the timescale behavior instead of assuming it. Zhong

and Zhu derived a similar timescale model and also used nondimensionalization, but they studied
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the timescales of tethered dynamics instead of the actual orbital maneuver [129]. Williams devel-

oped a numerical method of optimal control in the presence of timescales and applied it to orbital

dynamics [130]. In a more general sense, perturbation theory has a rich history in orbital mechan-

ics. For example, Muñoa and Scheeres studied perturbation of Hamiltonian’s [131]. McGrath and

Macdonald used a perturbation technique to reconfigure satellite constellations [132]. These stud-

ies look at the effects of small perturbations on the forces and do not study the singularly perturbed

differential equations that are addressed by multiple-timescale control [9]. A few researchers have

applied adaptive control to space systems. Ma et al. proposed a form of MRAC as a method of

accounting for actuator faults of spacecraft [133]. McInnes proposed a method of adaptive control

for gravity turns during reentry [134]. Junkins, Akella, and Robinett also used adaptive control for

orbital transfer maneuvers but did not consider the timescales of the system [135].

This chapter presents the first application of Simultaneous Slow and Fast Tracking within the

framework of KAMS. This chapter is organized as follows. Section 6.1 derives the multiple-

timescale model used in this work. Section 6.2 proves stability for the control and guidance laws

using the KAMS framework. Section 6.3 demonstrates the control using a numerical simulation

of an orbital transfer from medium earth orbit to geostationary orbit.

6.1 Multiple-Timescale Model

The dynamics of an orbital craft are well known

r̈ = rω2 −G
M

r2
+

Λr

m
Fr (6.1a)

θ̇ = ω (6.1b)

ω̇ = −2

r
ṙω +

Λθ

mr
Fθ (6.1c)

r is the radius from the planetary body, ω is the angular velocity of the satellite around the planetary

body, and θ is the true anomaly. M is the mass of the planetary body and m is the mass of the

satellite. G is the universal gravitational constant. Fθ is the force of a thruster that is tangential to

the vehicle’s orbit and Fr is the force of a thruster that is pointed radially away from the planetary
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body. Finally, Λr ∈ R+ and Λθ ∈ R+ are control effectiveness parameters. All parameters

are assumed to be known or perfectly measured except Λr, Λθ, and the satellite mass m. These

parameters are uncertain justifying the use of adaptive control.

The first step in developing a timescale model is to nondimensionalize the system. This is the

same tactic as the one used by [9]. The following nondimensional parameters are chosen using

Buckingham Pi Theorem [136]

r̄ ≜ r − r2
r2

ω̄ ≜ ω

√
r32
GM

ts ≜ t

√
GM

r32
F̄r ≜

Frr
2
2

GM2
F̄θ ≜

Fθr
2
2

GM2
(6.2)

where r2 is the new desired orbital radius. So the control objective is to drive r̄ to zero. Note that

ω̄ is always positive. Substituting these into the equations of motion gives

GM

r22

d2r̄

dt2s
= (r̄r2 + r2)

GM

r32
ω̄2 − GM

(r̄r2 + r2)
2 +

GM2

r22m
ΛrF̄r (6.3a)√

GM

r32
θ́ =

√
GM

r32
ω̄ (6.3b)

GM

r32
ώ = − 2

(r̄r2 + r2)

√
GM

r2
´̄r

√
GM

r32
ω̄ +

1

m (r̄r2 + r2)

GM2

r22
ΛθF̄θ (6.3c)

Simplifying

d2r̄

dt2s
= (r̄ + 1) ω̄2 − 1

(r̄ + 1)2
+ Λr

F̄r

ϵ
(6.4a)

θ́ = ω̄ (6.4b)

ϵ ´̄ω = − 2ϵ´̄rω̄

(r̄ + 1)
+

ΛθF̄θ

(r̄ + 1)
(6.4c)

where ϵ = m
M

is the timescale separation parameter. Intuitively it is a ratio of the mass of the satel-

lite and the mass of the planetary body. If the satellite’s mass is much smaller than the planetary

body’s mass then the system exhibits multiple-timescale behavior. One final adjustment is now

made. The appearance of ϵ on the right side of Eq. (6.4a) implies that F̄r plays a disproportionately
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large role in the evolution of r. However, Fr is an input so it can be scaled up or down as necessary.

Fr is an inefficient method to change the orbital radius. So it is valid to assume F̄r is small. Let

F̄rϵ ≜ F̄r

ϵ
. Another way to state this assumption is that O(ϵ−1F̄r) = O(1). Using this change the

system becomes

d2r̄

dt2s
= (r̄ + 1) ω̄2 − 1

(r̄ + 1)2
+ ΛrF̄rϵ (6.5a)

θ́ = ω̄ (6.5b)

ϵ ´̄ω = − 2ϵ´̄rω̄

(r̄ + 1)
+

ΛθF̄θ

(r̄ + 1)
(6.5c)

6.2 Control Synthesis

The system model is now suitable for KAMS control synthesis. The system is nonstandard and

the timescale separation parameter appears on the right-hand side of Eq. (6.5). Adaptive Nonlinear

Dynamic Inversion (ANDI) is used to stabilize the subsystems. The multiple-timescale technique

of Simultaneous Slow and Fast Tracking is used to fuse the subsystem control signals. The reduced

slow subsystem is

d2r̄

dt2s
= (r̄ + 1) ω̄2

s −
1

(r̄ + 1)2
+ ΛrF̄rϵ (6.6a)

θ́ = ω̄s (6.6b)

The reduced fast subsystem is

d2r

dt2f
= 0 (6.7a)

θ̀ = 0 (6.7b)

`̄ω =
ΛθF̄θ

(r̄ + 1)
(6.7c)
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Note that the fast subsystem does not include the − 2ϵ´̄rω̄
(r̄+1)

term. KAMS allows a control law to be

designed without this term because it is of order O(ϵ). The stability analysis to follow will show

that the full-order system is stable even though this term is neglected. Define

˜̄r ≜ r̄ − r̄c ˜̄rm ≜ r̄m − r̄c er̄ ≜ r̄ − r̄m ˜̄ω ≜ ω̄ − ω̄c ˜̄ωm ≜ ω̄m − ω̄c eω̄ ≜ ω̄ − ω̄m (6.8)

where the subscript m indicates a reference model state and the subscript c indicates a commanded

value.

6.2.1 Control and Adaptation Laws

Let x ≜ [r̄ ´̄r]T and C ≜ [0 1]. In previous chapters r has been used for the reference

model input. In this chapter, the subscript c is used to indicate the reference model input to avoid

confusion with the orbital radius r. The reference models are

x́m = Axx̃m + x́c (6.9a)

`̄ωm = −aω̄ ˜̄ωm + `̄ωc (6.9b)

where Ax ∈ R2×2 is hurwitz and aω̄ ∈ R+. From ANDI the inputs are

F̄rϵ = Λ̂−1
r

(
C (Axx̃m + x́c)− (r̄ + 1) ω̄2

s +
1

(r̄ + 1)2
+ CKxex

)
(6.10a)

F̄θ =

(
2ω̄

(r̄ + 1)
Λ̂θ

)−1 (
−aω̄ ˜̄ωm + `̄ωc − kω̄eω̄

)
(6.10b)

where Kx ∈ R2×2 is hurwitz and kω̄ ∈ R+ are design variables. Furthermore, let the top row of Ax

and Kx be [0 1]. Note that Eq. (6.10a) is more precisely a form of adaptive feedback linearization.

The adaptation laws are

´̂
Λr = γrProj

(
Λ̂r, F̄rϵer̄

)
(6.11a)

`̂
Λθ = γθProj

(
Λ̂θ,

1

(r̄ + 1)
F̄θeω̄

)
(6.11b)
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where γr, γθ ∈ R+ are adaption gains.

6.2.2 Guidance

The trajectory (r̄c and ω̄c) is chosen to be an orbital transfer between two circular orbits. Let

r1 and ω1 be respectively the radius and angular velocity for the initial orbit and r2 and ω2 be the

same for the final orbit. It is out of the scope of this work to minimize fuel usage. However, a

Hohmann transfer is used to ensure the control inputs remained feasible. Let t1 be the time when

the transfer is initiated and let t2 be the time when the transfer ends. The Hohmann transfer is a

constant energy maneuver (other than the impulses at the beginning and end). So the sum of the

kinetic and potential energy is always equal to one-half of the potential energy at r = a where a is

the transfer orbit’s semi-major axis

mr2cω
2
c

2
+
mṙ2c
2

− GMm

rc
= −GMm

2a
(6.12)

The boundary conditions are found by solving for the angular velocity at apsis

ω̄c(t
+
1 ) =

1

r1

√
2GM

r1
− GM

a
(6.13a)

ω̄c(t
−
2 ) =

1

r2

√
2GM

r2
− GM

a
(6.13b)

where t+1 is the time immediately after the Hohmann transfer begins and t−2 is the time immediately

before the Hohmann transfer ends. After t+1 , the commanded values follow a trajectory along the
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unforced equations of motion. In summary, the guidance law is

rc =


r1 t ≤ t1

r̈c = rcω
2
c −GM

r2c
t1 < t < t2

r2 t2 ≤ t

(6.14a)

ωc =



ω1 t < t1

1
r1

√
2GM
r1

− GM
a

t = t+1

ω̇c = − 2
rc
ṙcωc t1 < t < t2

1
r2

√
2GM
r2

− GM
a

t = t−2

ω2 t2 < t

(6.14b)

Note that there is a discrete step change in the commanded angular velocity at t1 and t2, but the

commanded radius is a continuous function.

6.2.3 Stability Analysis

In the previous sections, control was designed for the reduced subsystems. In this section, it is

shown that the full-order system is also stable under this control. Consider the following Lyapunov

functions

Vex =
1

2

(
eT
xPxex +

1

γr
Λ̃2

r

)
(6.15a)

Vx̃m =
1

2
x̃T
mPxmx̃m (6.15b)

Veω̄ =
1

2

(
e2ω̄ +

1

γθ
Λ̃2

θ

)
(6.15c)

V ˜̄ωm
=

1

2
˜̄ω2
m (6.15d)

where 0 < Px = P T
x ∈ R2×2

+ and 0 < Pxm = P T
xm

∈ R2×2
+ are solutions to KT

x Px + PxKx = −Qx

and AT
xPxm + PxmAx = −Qxm respectively for some 0 < Qx = QT

x ∈ R2×2
+ and 0 < Qxm =
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QT
xm

∈ R2×2
+ . Differentiating along the subsystems’ trajectories

L(feξ,s)Vex ≤ −eT
xQxex (6.16a)

L(fx̃m)Vx̃m = −x̃T
mQxmx̃m (6.16b)

L(feη ,f )Veω̄ ≤ −kω̄e2ω̄ (6.16c)

L(fω̄m,f )V ˜̄ωm
= −aω̄ ˜̄ω2

m (6.16d)

Eqs. (6.16a) and (6.16c) are derived in [65, Eqs. 1.20 to 1.23]. The interconnection conditions are

L(fx − fx,s)Vex = eT
xPx


0

(r̄ + 1) (ω̄2 − ω̄2
s)

 (6.17a)

L(fω̄ − fω̄,f )Veω̄ = − 2ϵ´̄rω̄

(r̄ + 1)
eω̄ (6.17b)

Rearranging gives

L(fr̄ − fr̄,s)Ver̄ =

[
0 (r̄ + 1) (ω̄ + ω̄s)

]
Pxex ˜̄ω (6.18a)

L(fω̄ − fω̄,f )Veω̄ = −ϵ 2ω̄

(r̄ + 1)

(
e´̄r +

´̄̃rm + ´̄rc

)
eω̄ (6.18b)

Taking the 2-norm gives

L(fr̄ − fr̄,s)Ver̄ ≤ |r̄ + 1| (|ω̄|+ |ω̄s|) |Px|2|ex|2| ˜̄ω| (6.19a)

L(fω̄ − fω̄,f )Veω̄ ≤ ϵ
2|ω̄|

|r̄ + 1|

(
|e´̄r|+ |´̄̃rm|+ |´̄rc|

)
|eω̄| (6.19b)

The desire is to show asymptotic stability within a subset of the domain. So it is sufficient to limit

the domain and show that the time evolution of the Lyapunov function is negative definite within
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those bounds. For this purpose assume that the domain is

|r − rc| < µrrc (6.20a)

|ω − ωc| < µωωc (6.20b)

where µr, µω ∈ (0, 1) are arbitrary constants. Nondimentionalizing

|r̄ − r̄c| < µrr̄c + µr (6.21a)

|ω̄ − ω̄c| < µωω̄c (6.21b)

Another way to write these inequalities is

(1− µr)r̄c − µr < r̄ < (1 + µr)r̄c + µr (6.22a)

(1− µω)ω̄c < ω̄ < (1 + µω)ω̄c (6.22b)

Therefore

(1− µr)(r̄c + 1) < (r̄ + 1) < (1 + µr)(r̄c + 1) (6.23a)

(1− µω)ω̄c < ω̄ < (1 + µω)ω̄c (6.23b)

Assuming that the reference models are bounded by the same bounds as the system states

(1− µω)ω̄c < ω̄m < (1 + µω)ω̄c (6.24)
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Combining Eqs. (6.23) and (6.24)

(1− µr)(r̄c + 1) < (r̄ + 1) < (1 + µr)(r̄c + 1) (6.25a)

(1− µω)ω̄c < ω̄ < (1 + µω)ω̄c (6.25b)

2µωω̄c < eω̄ < 2µωω̄c (6.25c)

The commanded angular velocity is at a maximum when t = t+1 and minimum when t = t−2 .

Similarly, the maximum commanded radius is r2 and the minimum is r1. Recall that r̄2 = 0.

(1− µr)(r̄1 + 1) < (r̄ + 1) < (1 + µr) (6.26a)

(1− µω)ω̄c(t
−
2 ) < ω̄ < (1 + µω)ω̄c(t

+
1 ) (6.26b)

2µωω̄c(t
−
2 ) < eω̄ < 2µωω̄c(t

+
1 ) (6.26c)

ω̄c(t
−
2 ) < ω̄s ≜ ω̄c < ω̄c(t

+
1 ) (6.26d)

r̄1 < r̄s ≜ r̄c < 0 (6.26e)

Substituting these relationships into Eq. (6.19) gives

L(fr̄ − fr̄,s)Ver̄ ≤
[
(1 + µr) (2 + µω) ω̄c(t

+
1 )σmax(Px)

]
|ex|2| ˜̄ω| (6.27a)

L(fω̄ − fω̄,f )Veω̄ ≤
[
ϵ
2(1 + µω)ω̄c(t

+
1 )

(1− µr)(r̄1 + 1)

]
(|ex|2 + |x̃m|2) |eω̄|+

[
4ϵµω(1 + µω)ω̄

2
c (t

+
1 )

(1− µr)(r̄1 + 1)

]
|´̄rc|

(6.27b)

where σmax(Px) is the maximum singular value of Px and it has been used that |e´̄r| ≤ |ex|2 and

|´̄̃rm| ≤ |x̃m|2. All of the values in square brackets are constants. The second inequality is almost

in the format required by theorem 2.1. However, the second term must be eliminated. This is done

one of two ways depending on the value of ´̄rc. If ´̄rc = 0 then the troublesome term is eliminated.

In this case, the conditions of theorem 2.1 are met if K is positive definite. If ´̄rc ̸= 0 then the
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composite Lyapunov function, V , becomes

V́ (eϕ) ≤ −vTKv +

[
4ϵµω(1 + µω)ω̄

2
c (t

+
1 )

(1− µr)(r̄1 + 1)

]
|´̄rc| (6.28)

Adding and subtracting |Λ̃r|2 + |Λ̃θ|2

V́ (eϕ) ≤ −v∗TK∗v∗ + |Λ̃r|2 + |Λ̃θ|2 +
[
4ϵµω(1 + µω)ω̄

2
c (t

+
1 )

(1− µr)(r̄1 + 1)

]
|´̄rc| (6.29)

where v∗ = [vT |Λ̃r| |Λ̃θ|]T and K∗ ∈ R6×6 is K ∈ R4×4 after being augmented with rows and

columns for Λ̃r and Λ̃θ. Note that the only entries in these additional rows and columns are ones

on the diagonal. So this operation doesn’t change the positive definiteness. K is positive definite

if and only if K∗ is positive definite. The errors of the adapting parameters are bounded by the

projection operator. Let the subscript "max" indicate the upper bound. ´̄rc is also upper bounded.

This fact is demonstrated now. The radius as a function of θ is known from the geometry of conic

sections

r̄c =
a

r2

(1− e2)

(1 + e cos(θ))
− 1 (6.30)

where e is the eccentricity and a is the semi major axis. Differentiating gives

´̄rc =
a

r2

(1− e2)

(1 + e cos(θ))2
e sin(θ)ω̄c (6.31)

An upper bound is

´̄rc ≤
a

r2
(1− e2)eω̄c(t

+
1 ) (6.32)

Substituting these bounds into Eq. (6.29) gives

V́ (eϕ) ≤ −v∗TK∗v∗ +

[
Λ̃2

r,max + Λ̃2
θ,max +

4ϵµω(1 + µω)ω̄
3
c (t

+
1 )a(1− e2)e

(1− µr)(r̄1 + 1)r2

]
(6.33)
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Again everything in the square bracket is a constant. Let

L ≜
[
Λ̃2

r,max + Λ̃2
θ,max +

4ϵµω(1 + µω)ω̄
3
c (t

+
1 )a(1− e2)e

(1− µr)(r̄1 + 1)r2

]
(6.34)

Assuming that K is positive definite (note that this will be proven later and is the same condition

that is required when ´̄rc = 0) then Eq. (6.33) becomes

V́ (eϕ) ≤ −λ3|eϕ|22 + L (6.35)

where λ3 = λmax(K
∗) is the maximum eigenvalue of K∗. Also the fact that |v∗|22 =

|eϕ|22 has been used. Let λ1 ≜ 1
2
min(d∗λmin(Px), d

∗γ−1
r , d∗λmin(Pxm), d, dγ

−1
r ) and λ2 ≜

1
2
max(d∗λmax(Px), d

∗γ−1
r , d∗λmax(Pxm), d, dγ

−1
r ) (recall from theorem 2.1 that d ∈ (0, 1) and

d∗ ≜ 1− d). From the definition of V

λ1|eϕ|22 ≤ V ≤ λ2|eϕ|22 (6.36)

Raffoul studied Lyapunov functions which are of the form described by Eqs. (6.35) and (6.36). By

theorem 2.5 of [118], it is known that eϕ is bounded. If that bound is less than the bounds on the

domain (i.e. the state remains within the domain) then the transfer is well-behaved. In summary,

the following results are obtained

(
K = KT > 0

)
=⇒


ex, eω̄ ∈ L∞ 0 ≤ θ ≤ π

ex, eω̄ → 0 as t→ ∞ Otherwise
(6.37)

This is sufficient to show that the new orbit at radius r2 is asymptotically stable and the transfer

maneuver is well-behaved. The following constants related to theorem 2.1 have been obtained (see
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Eqs. (6.16) and (6.27))

α =

[
λmin(Qx) λmin(Qxm) kω̄ aω̄

]T
(6.38a)

β = (1 + µr) (2 + µω) ω̄c(t
+
1 )σmax(Px) (6.38b)

γ =

[
1 1 0 0

]T
2(1 + µω)ω̄c(t

+
1 )

(1− µr)(r̄1 + 1)
(6.38c)

Finally, δ = 0 by the same arguments as those used in Corollary 2.3. In the next section, it will be

shown numerically that these parameters make K positive definite.

6.3 Numerical Results

In this section, the KAMS control designed above is numerically validated. A 26,520 kg space-

craft is transferred from a 10,000 km earth orbit to a geostationary orbit in numerical simulation.

The effects of Simultaneous Slow and Fast Tracking are identified and the efficiency is examined

by comparing the magnitude of the radial and tangential inputs. One transfer is performed but this

one transfer has 5 distinct segments which were each simulated. First, a coast phase at the initial

orbit r2 is used to show asymptotic stability when rc is constant. Second, the vehicle transitions to

tracking a Hohmann transfer. This allows the control to be examined under a discrete change in

the guidance signal. Third, the system coasts along the Hohmann transfer trajectory. This allows

the system to be studied under a time-varying guidance signal. Fourth, the system transitions to a

constant radius orbit at r2. This is another opportunity to study the control after a discrete change in

the guidance signal. Finally, another coast phase is used to show that the system is asymptotically

stable at this new orbital radius. The vehicle is allowed to complete a quarter of an orbit before and

after the maneuver. Figure 6.1 shows an overview of the maneuver. As can be seen, the vehicle

tracks a Hohmann transfer well. The earth can be seen in the center of the figure. The x and the

star mark the beginning and end of the Hohmann transfer respectively. The time histories for the

first and last coast phases are neglected for brevity, but the trends can be seen in the time histories

describing the transition phases.
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Figure 6.1: Numerical simulation of the system trajectory.
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The timescale separation is found to be ϵ = 4.4 ∗ 10−21. The control effectiveness parameters

Λr and Λθ are set to 1. The uncertain estimates of control effectiveness parameters are initialized

by sampling from a normal distribution with a mean of the true value and a standard deviation of

20% of the true value. The estimated value of the spacecraft’s mass is also drawn from a similarly

defined normal distribution. Notably, this means that the timescale separation is uncertain. The

reference model is initialized as xm(t = 0) = x(t = 0) and ωm(t = 0) = ω(t = 0). The control

gains are tuned to maximize performance. The final gains are

Ax =


0 1

−100 −20

 (6.39a)

Kx =


0 1

−100 −20

 (6.39b)

aω̄ = 10−17 (6.39c)

kω̄ = 5 ∗ 10−16 (6.39d)

γr = 10 (6.39e)

γθ = 10 (6.39f)

The matrix K can be found using these parameters. Let d = 0.75

K =



0.25 0 −45 −16

0 2.5 −29 0

−45 −29 8.4 ∗ 104 0

−16 0 0 1.7 ∗ 103


(6.40)
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The LPMs of K are found to be

1stLPM = 0.25 (6.41a)

2ndLPM = 0.63 (6.41b)

3rdLPM = 4.7 ∗ 104 (6.41c)

4thLPM = 2.9 ∗ 107 (6.41d)

Thus, by Sylvester’s Criterion, K is positive definite [95]. This implies that the conditions of

Theorem 2.1 are satisfied. Therefore, the system is asymptotically stable to a circular orbit (i.e.

before and after the transfer).

6.3.1 Geostationary Transfer

At the time t1 a trans-geostationary injection (TGI) burn is performed. If the guidance law

wasn’t in place then the adaptive controller would implement the step change in radius using the

radial thrusts. This is a very inefficient way to change orbits. However, because the vehicle is com-

manded to track a Hohmann transfer the primary change during the TGI burn is angular velocity.

Figure 6.2 shows a evolution of the angular velocity. The cutout in this figure gives a zoomed-in

view of the angular velocity during the TGI burn. The guidance law has a step change in angular

velocity at time t1 but the vehicle must follow a continuous trajectory. Thus there is some initial

error in angular velocity and an initial build-up of radial position error. The radial position error

is corrected with the radial thrusters while the angular velocity is given time to catch up. The net

result is asymptotic stability to a Hohmann transfer. Figure 6.3 gives a evolution for the orbital

radius. Time histories of the tangential and radial inputs are given in Figs. 6.4 and 6.5 respectively.

Note that the radial thrust is significantly smaller than the tangential thrust. Figures 6.6 and 6.7

show the time evolution of the uncertain parameters. Finally, Fig. 6.8 shows a evolution of the true

anomaly during the transfer.
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Figure 6.2: Evolution of the angular velocity during the Hohmann transfer.
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Figure 6.3: Evolution of the radius during the Hohmann transfer.
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Figure 6.4: Evolution of the tangential thrust during the TGI burn.
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Figure 6.5: Evolution of the radial thrust during the TGI burn.
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Figure 6.6: Evolution of the radial control effectiveness parameter during the Hohmann transfer.
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Figure 6.7: Evolution of the tangential control effectiveness parameter during the Hohmann trans-
fer.

1 1.5 2 2.5 3
t - Time (sec) #104

0
1
2
3

T
ru

e
A

n
om

o
ly

3

3c

5220 5230 5240 5250 5260
0

0.02

0.04

Figure 6.8: Evolution of the true anomaly during the Hohmann transfer.
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6.3.2 Geostationary Orbit Insertion

At the time t2 a geostationary orbit insertion (GOI) burn is performed. A process occurs that

is similar to the TGI burn. A step change in the commanded angular velocity circularizes the orbit

while radial thrusts keep the radius at r2. Figure 6.9 shows a evolution of the angular velocity.

Similar to the TGI burn there is some initial error in angular velocity and an initial build-up of

radial position error. The radial position error is corrected with the radial thrusters while the

angular velocity is given time to catch up. The net result is asymptotic stability to a circular

geostationary orbit. Figure 6.10 gives a evolution for the orbital radius. Time histories of the

tangential and radial inputs are given in Figs. 6.11 and 6.12 respectively. Note that the radial thrust

is significantly smaller than the tangential thrust. Figures 6.13 and 6.14 show the time evolution

of the uncertain parameters. Finally, Fig. 6.15 shows a evolution of the true anomaly during the

circularization.

Notice the steady state error between the commanded and actual true anomaly. This is expected.

The control and guidance laws drive the angular velocity and radius to match the reference signal

from the commanded system. However, no guarantees are made about the phase angle between

the actual and the reference system. As previously discussed, the continuous system is unable to

track the instantaneous step change which occurs in the reference system angular velocity. This

leads to the use of radial thrusters. It also causes the phase lag in the true anomaly. As the system

accelerates to the reference angular velocity it begins to lag behind the reference system which has

already reached the reference angular velocity. The radial thrusters correct the radial error, but not

the phase lag. Thus the system arrives at geostationary orbit at the same time, but not at the same

place (i.e. true anomaly) as the reference system. This may or may not be problematic depending

upon the use case. For example, the phase lag would need to be accounted for in rendezvous

operations.
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Figure 6.9: Evolution of the angular velocity after reaching geostationary orbit.
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Figure 6.10: Evolution of the radius after reaching geostationary orbit.
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Figure 6.11: Evolution of the tangential thrust during the GOI burn.
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Figure 6.12: Evolution of the radial thrust during the GOI burn.
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Figure 6.13: Evolution of the radial control effectiveness parameter after reaching geostationary
orbit.
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Figure 6.14: Evolution of the tangential control effectiveness parameter after reaching geostation-
ary orbit.
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Figure 6.15: Evolution of the true anomaly after reaching geostationary orbit.
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6.3.3 Efficiency Analysis

The Delta-v (∆v) for the ideal Hohmann transfer (the optimal two-impulse maneuver) when

applied to the system described above is 1, 762 m/s. The ∆v using the control architecture de-

scribed above is 3, 519 m/s. During the primary burns (entering and exiting the maneuver) the

total thrust required is on on the order of 106 newton. During the coast phases, the thrust is on

the order of 1 newton. The ∆v for the control architecture described above becomes numerically

indistinguishable (within 0.25%) from the ideal Hohmann transfer if the integration is limited to

400-second windows around the primary burns. The remaining ∆v occurs during the coast phase.

This suggests that one possible way to improve fuel efficiency would be to swap from a traditional

rocket engine to a more efficient low-thrust Hall-effect thruster during the coast phase.

6.4 Chapter Summary

This chapter derived and validated a novel method of orbital transfer using a multiple-timescale

model of a satellite. It demonstrated the first example of the method KAMS on a system with the

timescale separation parameter appearing on the right side of the fast state differential equation. It

also demonstrated the first example of KAMS applied with Simultaneous Slow and Fast Tracking

fusion. This control architecture was proven to be asymptotically stable during station-keeping op-

erations and bounded during an orbital transfer maneuver. During the transfer, the angular velocity

and radius are driven to a reference signal which is tracking a Hohmann transfer. Numerical simu-

lations confirmed these results and also showed asymptotic stability during the transfer. Based on

the results presented in this chapter, it is concluded that

1. KAMS is flexible. This chapter showed that KAMS is effective when using Simultaneous

Slow and Fast Tracking. Prior work relied upon Sequential Control, but in this work, both

the slow and fast states are shown to converge to their respective trajectories. KAMS is

also shown to be robust to systems where the timescale separation parameter appears on the

right-hand side of the fast equations of motion. This complicated the stability analysis, but

guarantees on stability and boundedness are still obtained. The numerical example demon-
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strated the versatility of KAMS by showing how the fused control signal is effective even

though the singularly perturbed terms are not considered during the fast subsystem control

synthesis.

2. KAMS is a promising method of orbital transfer for satellites. It guarantees stability and

boundedness, and it ensures that the system is reasonably efficient. The radial thrust was

several orders of magnitude lower than the tangential thrust, and the vehicle asymptotically

converges to a Hohmann transfer trajectory. The adaptive element ensures that the system

is robust to model uncertainties. The closed-loop system was driven toward a precise time

of arrival, but it was unable to guarantee the precise location (i.e. true anomaly) of the

circularization burn because the true anomaly is allowed to drift.
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7. INLET UNSTART PREVENTION BY ADAPTIVE REGULATION USING A

NONLINEAR LONGITUDINAL TIMESCALE MODEL

Inlet unstart remains a challenging problem for supersonic and especially hypersonic aircraft.

Inlet unstart occurs when the shock wave is expelled from the inlet of a supersonic engine. This can

occur because of fluid dynamic effects but has also been linked to excessive angle-of-attack (AoA)

[137, 138]. Various methods have been developed to mitigate the risk of AoA-induced inlet unstart.

Rollins et al. demonstrated a method of Adaptive Nonlinear Dynamic Inversion (ANDI) for inlet

unstart prevention [34]. Famularo et al. extended this method to include state observers [66] and

state constraints [30]. Famularo also studied a sampled-data version of this control architecture

[67]. Many inlet unstart prevention methods utilize adaptive control. High-speed aerodynamics

and thermodynamics are particularly challenging to model. This means that the stability and con-

trol derivatives cannot be analytically determined due to uncertainties in the aerodynamics and

thrust. The empirical models which do exist often have large uncertainty bounds. Thus adaptive

control is a natural fit for hypersonic aircraft. Kuipers et al. applied adaptive linear quadratic con-

trol to a hypersonic aircraft [139]. Mooij performed a numerical study on MRAC for hypersonic

aircraft [140]. Banerjee et al. studied L1 adaptive control on a hypersonic aircraft [141]. In a

general sense adaptive control has seen extensive application in fixed-wing aircraft. For example,

Tandale and Valasek studied adaptive model inversion control for an F-16 [50]. Chowdhary et al.

demonstrated adaptive control on a UAV with extreme faults like loss of 50% of the right-wing

[27]. High-speed aircraft also exhibit multiple-timescale behavior. The high velocity causes some

states to evolve quickly. However, other states are constrained to evolve slowly to avoid damaging

the aircraft. For example, later in this chapter, it is formally shown that the high-speed airflow

induces high aerodynamic moments which result in high angular acceleration, but the AoA must

be kept low to limit inlet unstart. Singularly perturbed differential equations can be used to model

these multiple-timescale systems. Ren, Jiang, and Yang developed and used a timescale analysis of

a hypersonic aircraft [7]. More generally, Khalil and Chen published a multiple-timescale model
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of a generic fixed-wing aircraft [6]. Saha et al. studied multiple-timescale models of an F-16A [91]

and Narang-Siddarth et al. studied multiple-timescale models of an F/A-18A [17]. Ardema and

Rajan used a multiple-timescale model to perform trajectory optimization [11]. For more examples

see [12].

This chapter’s objective is to demonstrate how KAMS can be used for inlet unstart prevention

on hypersonic aircraft. This work is novel because it is the first method that simultaneously con-

siders the model uncertainties and system timescales. This work is the first time KAMS has been

applied to systems that require adaptive control in both timescales. This work also contributes a

new timescale model of a hypersonic aircraft. Ren, Jiang, and Yang also developed a timescale

model of a hypersonic aircraft [7], but they imposed the timescale separation after a comparative

analysis of the system’s domain. In contrast, the timescale model is derived in this work. This

chapter is organized as follows. Section 7.1 derives the multiple-timescale model of a hypersonic

aircraft. Section 7.2 derives the KAMS control and adaptation laws and proves that the system is

asymptotically stable. Section 7.3 reports the results of a numerical simulation that was used to

validate this control.

7.1 Multiple-Timescale Model

The present work addresses the longitudinal dynamics of a rigid-body aircraft which have been

published in numerous sources (e.g. [142, 109, 110, 143]) as

U̇ = −QW − g sin(θ) +
1

m
(T −D) (7.1a)

Ẇ = QU + g cos(θ)− 1

m
L (7.1b)

θ̇ = Q (7.1c)

Q̇ =
1

Jyy
M (7.1d)

Here U and W are the body frame 1 and 3 axes’ translational velocities respectively. Q is the body

axis pitch rate, θ is the pitch attitude angle, and α is the AoA. g is the acceleration due to gravity,
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m is the vehicle’s mass, and Jyy is its inertia about the body frame 2 axis. Finally, T is the engine

thrust, L is the lift force, and D is the drag force. The model assumes that the thrust is colinear

with the stability frame 1 axis and that the aerodynamic coupling between U and W is negligible

(i.e. L doesn’t appear in Eq. (7.1a) and D doesn’t appear in Eq. (7.1b)). These are appropriate

assumptions for a hypersonic aircraft trimmed in cruise flight.

This longitudinal model is rewritten as a multiple-timescale system. As recommended by [9]

the timescales are identified by non-dimensionalizing using Buckingham Pi Theorem [136, p. 346-

360]. First, the following non-dimensional parameters are defined

ū ≜ U − U1

U1

α ≜ W −W1

U1

θ̄ ≜ θ − θ1 q̄ ≜ Q
mU1

q∞S
(7.2a)

ts ≜ t
q∞S

mU1

CT ≜ T

q∞S
CL ≜ L

q∞S
CM ≜ M

q∞Scmac

(7.2b)

where q∞ is the free stream dynamic pressure, S is wing area, and cmac is the mean aerodynamic

chord. The subscript 1 indicates a variable that is evaluated at the trim condition. If the stability

coordinate frame is used and the aircraft is trimmed about straight and level flight then W1 = 0

and θ1 = 0. Substituting these non-dimensional parameters into Eq. (7.1) gives

q∞S

m
´̄u = − q∞S

mU1

q̄αU1 − g sin(θ̄) +
q∞S

m
(CT − CD) (7.3a)

q∞S

m
ά =

q∞S

mU1

q̄ (ūU1 + U1) + g cos(θ̄)− q∞S

m
CL (7.3b)

q∞S

mU1

´̄θ =
q∞S

mU1

q̄ (7.3c)(
q∞S

mU1

)2

´̄q =
mU2

1

mU2
1

q∞Scmac

Jyy
CM (7.3d)
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Simplifying gives

´̄u = −q̄α− mg

q∞S
sin(θ̄) + (CT − CD) (7.4a)

ά = q̄ (ū+ 1) +
mg

q∞S
cos(θ̄)− CL (7.4b)

´̄θ = q̄ (7.4c)

ϵ´̄q =
q∞Scmac

mU2
1

CM (7.4d)

where

ϵ ≜ Jyy
q2∞S

2

m3U4
1

(7.5)

For notational simplicity let

CG =
mg

q∞S
(7.6a)

CR =
q∞Scmac

mU2
1

(7.6b)

When numerical values are substituted into these equations it will be seen that ϵ ≪ CR, CG. So ϵ

can be treated as a singular perturbation parameter. The aerodynamic and thrust forces are derived

from those recommended by [142]. They are

CL = CL1 + CLαα (7.7a)

CD = CD1 + CDαα + CDα2α
2 (7.7b)

CM = CM1 + CMαα + CMα2α
2 + CMδe

δe (7.7c)

CT = CT1 + CTαα + CTα2α
2 + CTα3α

3 (7.7d)

Where variables of the form Cab ≜ ∂Ca

∂b
are non-dimensional stability and control derivatives. The

throttle input is assumed to be constant, but the thrust is allowed to vary with AoA. Substituting

144



into Eq. (7.1) gives

´̄u = −q̄α− CG sin(θ̄) + (CT1 − CD1) + (CTα − CDα)α + (CTα2 − CDα2 )α
2 + CTα3α

3 (7.8a)

ά = q̄ (ū+ 1) + CG cos(θ̄)− CL1 − CLαα (7.8b)

´̄θ = q̄ (7.8c)

ϵ´̄q = CR(CM1 + CMαα + CMα2α
2 + CMδe

δe) (7.8d)

At the trim condition, these equations reduce down to

CD1 = CT1 (7.9a)

CL1 = CG (7.9b)

CM1 = 0 (7.9c)

This leads to the following simplification of Eq. (7.8):

´̄u = −q̄α− CG sin(θ̄) + (CTα − CDα)α + (CTα2 − CDα2 )α
2 + CTα3α

3 (7.10a)

ά = q̄ (ū+ 1)− CG(1− cos(θ̄))− CLαα (7.10b)

´̄θ = q̄ (7.10c)

ϵ´̄q = CR(CMαα + CMα2α
2 + CMδe

δe) (7.10d)

Using the trigonometric identity 1− cos(α) = 2 sin2(α/2) gives

´̄u = −q̄α− CG sin(θ̄) + (CTα − CDα)α + (CTα2 − CDα2 )α
2 + CTα3α

3 (7.11a)

ά = q̄ (ū+ 1)− 2CG sin2

(
θ̄

2

)
− CLαα (7.11b)

´̄θ = q̄ (7.11c)

ϵ´̄q = CR(CMαα + CMα2α
2 + CMδe

δe) (7.11d)
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This is the form of the equations of motion that is used for control synthesis. This form is beneficial

for two reasons. First, the system is singularly perturbed because ϵ appears on the left side of

Eq. (7.11d). This enables the application of KAMS. Second, there are no constant terms. While

this is not strictly necessary, it will simplify the stability analysis.

7.2 Control Synthesis

The control objective is for the AoA to track a slow timescale reference model. This is done

by designing a regulator using KAMS. All aerodynamic stability and control derivatives are taken

to be uncertain. Note that CG and CR are not aerodynamic properties and are deterministic. ANDI

[65] is used to control the subsystems and Sequential Control [9] is used to fuse the control signals.

The reduced slow subsystem is

´̄u = −q̄sα− CG sin(θ̄) + (CTα − CDα)α + (CTα2 − CDα2 )α
2 + CTα3α

3 (7.12a)

ά = q̄s (ū+ 1)− 2CG sin2

(
θ̄

2

)
− CLαα (7.12b)

´̄θ = q̄s (7.12c)

The reduced fast subsystem is

`̄u = 0 (7.13a)

ὰ = 0 (7.13b)

`̄θ = 0 (7.13c)

`̄q = CR(CMαα + CMα2α
2 + CMδe

δe) (7.13d)

7.2.1 Zero Dynamics

One assumption of ANDI is that the zero dynamics are stable. Per Sequential Control design,

the input to the fast subsystem is δe and the output is q̄. Similarly, the input to the slow subsystem

is q̄s and the output is α. The zero dynamics of the fast subsystem are stable because the slow
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Figure 7.1: Phase diagram of the slow subsystem zero dynamics.

states are constant in time. However, the slow subsystem requires additional analysis. The zero

dynamics can be found by setting α = ά = 0. This gives

´̄u = − mg

q∞S
sin(θ̄) (7.14a)

´̄θ = 2CG sin2

(
θ̄

2

)
1

ū+ 1
(7.14b)

The phase diagram for the zero dynamics is given in Fig. 7.1 (numerical values as given in Sec-

tion 7.3). The terms related to gravity make the system weakly non-minimum phase. The non-

minimum phase effects are roughly proportional to the magnitude of the velocity and pitch per-

turbations. This implies that ANDI is not a valid approach. However, Hauser, Sastry, and Meyer

showed that asymptotic stability can still be achieved for weakly non-minimum phase systems by

neglecting the offending terms during the control synthesis [144]. Thus, the following reduced
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slow subsystem will be used for the control synthesis

´̄u = −q̄sα + (CTα − CDα)α + (CTα2 − CDα2 )α
2 + CTα3α

3 (7.15a)

ά = q̄s (ū+ 1)− CLαα (7.15b)

´̄θ = q̄s (7.15c)

7.2.2 Control Synthesis

Following the design process for Sequential Control [9], the manifold is first selected so that

the reduced slow subsystem is stable. The slow reference model is

άm = −aα(αm − r) (7.16)

where aα, r ∈ R+. The slow reference model input, r, will be set to 0 later but is included here

for generality. Per ANDI the following manifold is sufficient to accomplish the control objective

in the slow subsystem

q̄s = (ū+ 1)−1
(
−aα(αm − r) + ĈLαα− kα(α− αm)

)
(7.17)

where kα ∈ R+ is a constant control gain. The adaptation law is

´̂
CLα = γLαProj(ĈLα ,−α(α− αm)) (7.18)

where γLα ∈ R+ is an adaptation rate gain. A similar process is used to design the control for the

reduced slow subsystem using the fast-state reference model

`̄qm = −aq̄(q̄m − q̄s) (7.19)
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where aq̄ ∈ R+. The input is

δe =
(
CRĈMδe

)−1 (
−aq̄(q̄m − q̄s)− CR

(
ĈMαα + ĈMα2α

2
)
− kq̄(q̄ − q̄m)

)
(7.20)

where kq̄ ∈ R+ is a constant control gain. The adaptation laws are thus

`̂
CMα = γMαProj(ĈMα , CRα(q̄ − q̄m)) (7.21a)

`̂
CMα2 = γMα2Proj(ĈMα2 , CRα

2(q̄ − q̄m)) (7.21b)

`̂
CMδe

= γMδe
Proj(ĈMδe

, CRδe(q̄ − q̄m)) (7.21c)

where γMα , γMα2 , γMδe
∈ R+ are adaptation rate gains.

To implement this control the control states (i.e. αm, ĈLα , q̄m, ĈMα , ĈMα2 , and ĈMδe
)

must be integrated over time. This is easiest to do in the standard timescale t. Thus

Eqs. (7.16), (7.18), (7.19), and (7.21) need to be converted to the correct timescale

α̇m =
q∞S

mU1

(−aα(αm − r)) (7.22a)

˙̂
CLα =

q∞S

mU1

(
γLαProj(ĈLα ,−α(α− αm))

)
(7.22b)

˙̄qm =
1

ϵ

q∞S

mU1

(−aq̄(q̄m − q̄s)) (7.22c)

˙̂
CMα =

1

ϵ

q∞S

mU1

(
γMαProj(ĈMα , CRα(q̄ − q̄m))

)
(7.22d)

˙̂
CMα2 =

1

ϵ

q∞S

mU1

(
γMα2Proj(ĈMα2 , CRα

2(q̄ − q̄m))
)

(7.22e)

˙̂
CMδe

=
1

ϵ

q∞S

mU1

(
γMδe

Proj(ĈMδe
, CRδe(q̄ − q̄m))

)
(7.22f)

7.2.3 Full-Order Stability Analysis

In this section, it is shown that the full-order closed-loop system is asymptotically stable. The

objective is to ensure that the conditions of Theorem 2.1 are met. This requires a bound on the

time derivative of the manifold.
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7.2.3.1 Differentiation of the Manifold

From Eq. (7.17)

fq̄s ≜
d

dts

(
(ū+ 1)−1

(
−aα(αm − r) + ĈLαα− kα(α− αm)

))
(7.23)

Evaluating

fq̄s = −(ū+ 1)−2
(
−aα(αm − r) + ĈLαα− kα(α− αm)

)
´̄u

+ (ū+ 1)−1
(
(kα − aα)άm +

´̂
CLαα +

(
ĈLα − kα

)
ά
)

(7.24)

Using the system dynamics

fq̄s = −(ū+ 1)−2
(
−aα(αm − r) + ĈLαα− kα(α− αm)

)
´̄u

+ (ū+ 1)−1
(
(aα − kα)aα(αm − r) + γLαProj(ĈLα ,−α(α− αm))α

+
(
ĈLα − kα

)
(q̄ (ū+ 1)− CLαα)

)
(7.25)

Using the relationships from Eq. (2.10) it can be shown that

α = eα + α̃m + r (7.26a)

q̄ = eq̄ + ˜̄qm + q̄s (7.26b)

q̄s is known and a function of α (see Eq. (7.17)) so Eq. (7.26b) can be expanded further

q̄ = eq̄ + ˜̄qm + (ū+ 1)−1
(
−aαα̃m + ĈLα(eα + α̃m + r)− kαeα

)
(7.27)
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Substituting these relationships into Eq. (7.25) produces

fq̄s = −(ū+ 1)−2
(
−aαα̃m + ĈLα(eα + α̃m + r)− kαeα

)
´̄u

+ (ū+ 1)−1
(
(aα − kα)aαα̃m + γLαProj(ĈLα ,−αeα)α

+
(
ĈLα − kα

)((
eq̄ + ˜̄qm + (ū+ 1)−1

(
−aαα̃m + ĈLα(eα + α̃m + r)− kαeα

))
(ū+ 1)

− CLα(eα + α̃m + r))) (7.28)

Expanding and collecting like terms

fq̄s = (ū+ 1)−1
(
ĈLα − kα

)((
ĈLα − CLα − kα

)
− (ū+ 1)−1 ´̄u

)
eα

+ (ū+ 1)−1 γLαProj
(
ĈLα ,−αeα

)
α

+ (ū+ 1)−1
(
ĈLα − kα

)((
ĈLα − CLα − aα

)
− (ū+ 1)−1 ´̄u

)
α̃m

+ (ū+ 1)−1 (aα − kα) aαα̃m

+ (ū+ 1)−1
(
ĈLα − kα

)
eq̄ + (ū+ 1)−1

(
ĈLα − kα

)
˜̄qm

+ (ū+ 1)−1
((
ĈLα − kα

)(
ĈLα − CLα

)
− (ū+ 1)−1 ĈLα

´̄u
)
r (7.29)

Taking the 2-norm

fq̄s ≤ |ū+ 1|−1
∣∣∣ĈLα − kα

∣∣∣
2

(∣∣∣ĈLα − CLα − kα

∣∣∣
2
+ |ū+ 1|−1

∣∣´̄u∣∣
2

)
|eα|2

+ |ū+ 1|−1 γLα

∣∣∣Proj(ĈLα ,−αeα
)∣∣∣

2
|α|2

+ |ū+ 1|−1
∣∣∣ĈLα − kα

∣∣∣
2

(∣∣∣ĈLα − CLα − aα

∣∣∣
2
+ |ū+ 1|−1

∣∣´̄u∣∣
2

)
|α̃m|2

+ |ū+ 1|−1 |aα − kα|2 aα |α̃m|2

+ |ū+ 1|−1
∣∣∣ĈLα − kα

∣∣∣
2
|eq̄|2 + |ū+ 1|−1

∣∣∣ĈLα − kα

∣∣∣
2
|˜̄qm|2

+ |ū+ 1|−1
(∣∣∣ĈLα − kα

∣∣∣
2

∣∣∣ĈLα − CLα

∣∣∣
2
+ |ū+ 1|−1

∣∣∣ĈLα

∣∣∣
2

∣∣´̄u∣∣
2

)
|r|2 (7.30)
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Assuming that the domain is |ū| < 0.5, α, αm, θ, q̄ < 1 rad, and r = 0 (regulation)

fq̄s ≤ 2
∣∣∣ĈLα − kα

∣∣∣
2

(∣∣∣ĈLα − CLα − kα

∣∣∣
2
+ 2

∣∣´̄u∣∣
2

)
|eα|2

+ 2γLα

∣∣∣Proj(ĈLα ,−αeα
)∣∣∣

2

+ 2
∣∣∣ĈLα − kα

∣∣∣
2

(∣∣∣ĈLα − CLα − aα

∣∣∣
2
+ 2

∣∣´̄u∣∣
2

)
|α̃m|2

+ 2 |aα − kα|2 aα |α̃m|2

+ 2
∣∣∣ĈLα − kα

∣∣∣
2
|eq̄|2 + 2

∣∣∣ĈLα − kα

∣∣∣
2
|˜̄qm|2 (7.31)

Using the definition of the projection operator and recalling that α < 1

fq̄s ≤ 2
(∣∣∣ĈLα − kα

∣∣∣
2

(∣∣∣ĈLα − CLα − kα

∣∣∣
2
+ 2

∣∣´̄u∣∣
2

)
+ 2γLα

)
|eα|2

+ 2
(∣∣∣ĈLα − kα

∣∣∣
2

(∣∣∣ĈLα − CLα − aα

∣∣∣
2
+ 2

∣∣´̄u∣∣
2

)
+ 2 |aα − kα|2 aα

)
|α̃m|2

+ 2
∣∣∣ĈLα − kα

∣∣∣
2
|eq̄|2 + 2

∣∣∣ĈLα − kα

∣∣∣
2
|˜̄qm|2 (7.32)

Recall that the time derivative of ū in the full-order system is

´̄u = −q̄α + (CTα − CDα)α + (CTα2 − CDα2 )α
2 + CTα3α

3 (7.11a revisited)

Within the domain of interest (|q̄|, |α| ≤ 1) this function is bounded

´̄u ≤ 1 + |(CTα − CDα)|+ |(CTα2 − CDα2 )|+ |CTα3 | (7.33)

Let ´̄umax be equal to the right side of this equation so that ´̄u ≤ ´̄umax. Similarly, the adapting

parameter ĈLα is bounded due to the use of the projection operator. Let ĈLα ≤ ĈLα,max where
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ĈLα,max > 0. Substituting these inequalities into Eq. (7.32)

fq̄s ≤ 2
(∣∣∣ĈLα,max − kα

∣∣∣
2

(∣∣∣ĈLα,max − CLα − kα

∣∣∣
2
+ 2´̄umax

)
+ 2γLα

)
|eα|2

+ 2
(∣∣∣ĈLα,max − kα

∣∣∣
2

(∣∣∣ĈLα,max − CLα − aα

∣∣∣
2
+ 2´̄umax

)
+ 2 |aα − kα|2 aα

)
|α̃m|2

+ 2
∣∣∣ĈLα,max − kα

∣∣∣
2
|eq̄|2 + 2

∣∣∣ĈLα,max − kα

∣∣∣
2
|˜̄qm|2 (7.34)

Define

δ ≜



2
(∣∣∣ĈLα,max − kα

∣∣∣
2

(∣∣∣ĈLα,max − CLα − kα

∣∣∣
2
+ 2´̄umax

)
+ 2γLα

)
2
(∣∣∣ĈLα,max − kα

∣∣∣
2

(∣∣∣ĈLα,max − CLα − aα

∣∣∣
2
+ 2´̄umax

)
+ 2 |aα − kα|2 aα

)
2
∣∣∣ĈLα,max − kα

∣∣∣
2

2
∣∣∣ĈLα,max − kα

∣∣∣
2


(7.35)

Thus

fq̄s ≤ δTv (7.36)

7.2.3.2 Application of Theorem 2.1

The tools have now been developed to check the conditions of Theorem 2.1. Consider the

following Lyapunov functions for the reference models and subsystems

Veα =
1

2

(
e2α +

1

γLα

C̃2
Lα

)
(7.37a)

Vα̃m =
1

2
α̃2
m (7.37b)

Veq̄ =
1

2

(
e2q̄ +

1

γMα

C̃2
Mα

+
1

γMα2

C̃2
Mα2

+
1

γMδe

C̃2
Mδe

)
(7.37c)

V˜̄qm =
1

2
˜̄q2m (7.37d)
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The time derivatives of these Lyapunov functions are

L(feξ,s)Veα ≤ −kαe2α (7.38a)

L(fα̃m)Vα̃m = −aαα̃2
m (7.38b)

L(feη ,f )Veq̄ ≤ −kq̄e2q̄ (7.38c)

L(fq̄m,f )V˜̄qm = −aq̄ ˜̄q2m (7.38d)

For proof of Eqs. (7.38a) and (7.38c) see [65, Eqs. 1.20 to 1.23]. Note that Eqs. (7.38b) and (7.38d)

are derived using the fact that ŕ = 0 and in the slow subsystem ´̄qs = 0. This implies that the

reduced subsystems are stable, but additional work is necessary to extend these results to the full-

order system. The final three conditions of Theorem 2.1 are

L(fα − fα,s)Veα = 1.5˜̄qeα (7.39a)

L(fq̄ − fq̄,f )Veq̄ = 0 (7.39b)

−L(fq̄s)V˜̄qm ≤ δTv|˜̄qm|2 (7.39c)

The matrix K is now found by comparing Eqs. (7.38) and (7.39) with Eqs. (2.27) and (2.28) and

applying the results to Eq. (2.29):

K =



d∗kα 0 −3
4
d∗ −3

4
d∗ − 1

2
dδ1

0 d∗aα 0 −1
2
dδ2

−3
4
d∗ 0 d

ϵ
kq̄ −1

2
dδ3

−3
4
d∗ − 1

2
dδ1 −1

2
dδ2 −1

2
dδ3

d
ϵ
aq̄ − dδ4


(7.40)

If K is positive definite then the full-order system is asymptotically stable under the KAMS con-

troller. The positive definiteness of K is evaluated with the numerical example in the following
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section.

7.3 Numerical Results

A numerical simulation is performed on the hypersonic aircraft from [142]. The objective of

this numerical simulation is to show that Theorem 1 accurately predicts asymptotic stability. It

is also shown that the system is stable despite the weak non-minimum phase behavior. This vali-

dates the KAMS control architecture presented above. One representative test case is given. The

system has been tuned and the initial conditions have been selected to demonstrate relevant trends.

Whereas the notation used herein is slightly different from [142] each of the system parameters

used herein can be derived from [142] by solving for the stoichiometrically normalized fuel-to-air

ratio at trim and non-dimensionalizing the engine parameters. Also, a change of variables is per-

formed so that the trim conditions occur when α = δe = 0. The trim condition is 26, 000 m and

Mach 8 with a standard atmosphere. These system parameters are given in table 7.1. Using these

parameters the timescale separation parameter is found to be ϵ = 6∗10−6. The large timescale sep-

aration and aerodynamic uncertainties make this hypersonic vehicle an ideal candidate for KAMS.

The control gains are chosen through tuning and are given in table 7.2. The projection operator

limits the range of the adapting parameters to be between −10 and 10. The initial conditions are

given in table 7.3 The reference models are purposefully not initialized at the same locations as

their respective states so that the convergence trends can be seen in the time histories. The initial

conditions for the adapting parameters are randomly selected from a normal distribution with a

mean of the true value and a standard deviation of 10% of the true value. Recall that 0 < d < 1

is arbitrary. Let d = 0.04. The matrix K can now be found using the system parameters and
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Table 7.1: Hypersonic vehicle parameters adapted from [142].

Variable Value Units Name

m 136 kg Vehicle Mass

Jyy 21, 000 kg m2 Mass Moment of Inertia

S 1.58 m2 Reference Area

cmac 0.52 m Mean Aerodynamic Chord

CL1 0.0089 - Trim Lift Coefficient

CLα 4.7 1
rad

Lift Curve Slope

CD1 0.010 - Trim Drag Coefficient

CDα 0.023 1
rad

1st Order AoA Contribution to the Drag Coefficient

CDα2 5.8 1
rad2

2nd Order AoA Contribution to the Drag Coefficient

CM1 0.0 - Trim Pitching Moment Coefficient

CMα 2.2 1
rad

1st Order AoA Contribution to the Moment Coefficient

CMα2 6.3 1
rad2

2nd Order AoA Contribution to the Moment Coefficient

CMδe
−1.3 1

rad
Elevator Deflection Contribution to the Moment Coefficient

CT1 0.010 - Trim Thrust Coefficient

CTα −0.0043 1
rad

1st Order AoA Contribution to the Thrust Coefficient

CTα2 −0.49 1
rad2

2nd Order AoA Contribution to the Thrust Coefficient

CTα3 −1.9 1
rad3

3rd Order AoA Contribution to the Thrust Coefficient
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Table 7.2: Hypersonic vehicle control gains.

Variable Value Units Name

kα 5 1
rad

Rate of Convergence of eα

aα 2 1
rad

Rate of Convergence of α̃m

kq̄ 0.1 1
rad

Rate of Convergence of eq̄

aq̄ 0.01 1
rad

Rate of Convergence of ˜̄qm

γLα 100 1
rad3

Adaptation Rate for ĈLα

γMα 100 1
rad3

Adaptation Rate for ĈMα

γMα2 100 1
rad4

Adaptation Rate for ĈMα2

γMδe
100 1

rad3
Adaptation Rate for ĈMδe

control gains

K =



4.8 0 −0.72 −12.5

0 1.92 0 −4.83

−0.72 0 684 −0.2

−12.5 −4.83 −0.2 68.0


(7.41)

The leading principal minors (LPM) of K are

1stLPM = 4.8 (7.42a)

2ndLPM = 9.2 (7.42b)

3rdLPM = 6, 300 (7.42c)

4thLPM = 150, 000 (7.42d)
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Table 7.3: Hypersonic vehicle initial conditions.

Variable Value Units Name

U(t = 0) 2, 386 m
s

Translational Velocity in the Body Axes 1 Direction

α(t = 0) 5 deg Angle-of-Attack

αm(t = 0) 4 deg Angle-of-Attack Reference Model State

θ(t = 0) 0 deg Pitch Attitude Angle

Q(t = 0) 0 deg
s

Body Axis Pitch Rate

q̄m(t = 0) −4.3 deg Non-dimensional Body Axis Pitch Rate Reference Model State
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Figure 7.2: Evolution of the angle-of-attack.

Because the LPMs of K are positive Sylvester’s Criterion [95] implies that K is positive definite.

Thus all of the conditions of Theorem 2.1 are met. By Theorem 2.1 ex, ez → 0 as t→ ∞.

Figure 7.2 shows the evolution of the AoA and Fig. 7.3 shows the evolution of the body axis

pitch rate. As can be seen, the control objective is achieved since both AoA and body axis pitch

rate converge asymptotically to their respective reference models. The adapting parameters are

shown in Figs. 7.4 (ĈLα), 7.5 (ĈMα), 7.6 (ĈMα2 ), and 7.7 (ĈMδe
). Figure 7.8 shows the elevator

control inputs. The KAMS control architecture is effective on the given system, but it is not

recommended as the sole control technique for two reasons. First, the architecture as above is

only designed for regulation whereas a typical mission would require tracking a commanded flight

path angle. The architecture can be easily altered to allow for tracking a step input because the
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Figure 7.3: Evolution of the body axis pitch rate for a hypersonic aircraft.
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Figure 7.4: Evolution of the lift curve slope stability derivative estimate.
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Figure 7.5: Evolution of the lift static longitudinal stability derivative estimate.
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Figure 7.6: Evolution of the second order angle-of-attack stability derivative estimate.
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Figure 7.7: Evolution of the elevator effectiveness control derivative estimate.
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Figure 7.9: Evolution of the pitch attitude angle for a hypersonic aircraft.

only required change for this is to adjust the trim condition at a step change. Thus the control and

adaptation laws would not change. However, a step input is likely to be insufficient for a com-

plex mission. Second, as described previously the system is non-minimum phase. Famularo in

[65] also encountered this problem while also attempting to prevent inlet unstart prevention with

adaptive control, but it is important to note that Famularo did not consider the system timescales.

Figs. 7.9 and 7.10 show the system’s non-minimum phase behavior. It is a weak effect, so the

external dynamics still converge but the internal dynamics diverge slowly. For these two reasons,

long-term implementations of this method would be problematic. However, this method would

work well as a backup control mode which is triggered when the AoA approaches or exceeds the

point of concern for inlet unstart. The control in the present work is notably similar to Famularo’s

method, but Famularo used traditional Cascaded Control and did not account for the coupling be-

tween the subsystems. The singular perturbation analysis herein provides significant benefits. First,

it provides formal proof that the sequential loop closure approach is valid. Second, it does not rely

upon the rule of thumb that the inner loop is 10 times faster than the outer loop. The requirement

that K be positive definite provides a precise bound on the allowed timescale separation. Numer-

ical root-finding of the LPMs shows that KAMS is valid for all ϵ < 2.79 ∗ 10−5. This limit is

influenced by the adaptation gains (see Eq. (7.35)).
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Figure 7.10: Evolution of the vehicle’s Mach number.

7.4 Chapter Summary

This chapter presented a control architecture for the longitudinal dynamics of a hypersonic

aircraft that accounts for the timescale behavior. First, a nonlinear multiple-timescale model was

derived and used to design control and adaptation laws using the KAMS method. Adaptive Non-

linear Dynamic Inversion was used to regulate the reduced subsystems and Sequential Control was

used to fuse the control signals for the reduced subsystems. A numerical example was proven to

be asymptotically stable about the origin and simulated results supported the proof. Based upon

the results presented in this chapter it is concluded that

1. KAMS is a good method of inlet unstart prevention for hypersonic aircraft. It is asymptot-

ically stable and robust to weak non-minimum phase behavior in the subsystems. KAMS

was shown to provide significant benefits over traditional methods. For example, unlike

sequential loop closure, it provides a precise bound on the allowed timescale separation.

2. KAMS is effective for systems that require adaptive control in both subsystems. Prior work

only considered adaptive control in one of the two subsystems. This validates the versatility

of KAMS.
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8. CONCLUSIONS

This dissertation introduced a novel method of adaptive control for multiple-timescale systems.

This method is called [K]control of Adaptive Multiple-Timescale Systems (KAMS). KAMS begins

with the first principles of adaptive control and multiple-timescale control and builds them up

together. The general premise of KAMS is to separate the system into a fast and slow subsystem

using singular perturbation theory, to use adaptive control to stabilize the reduced subsystems,

and to use multiple-timescale control to fuse the separate control signals. KAMS can be used

to extend adaptive control to non-minimum phase systems even though many adaptive control

methods assume the system is the minimum phase. KAMS was compared to two other methods

of adaptive control for multiple-timescale systems called Full-Order Adaptive Control (FOAC)

and Reduced-Order Adaptive Control (ROAC). KAMS was demonstrated on quadrotor attitude

stabilization, fuel-efficient orbital transfer maneuvers, and inlet unstart prevention for hypersonic

aircraft. The results presented in this dissertation lead to the following conclusions:

1. KAMS is an effective and useful method of adaptive control for multiple-timescale systems.

The work in this dissertation proved sufficient conditions for asymptotic stability and ana-

lytical results were validated using several numerical examples with practical significance.

This is an improvement over prior work as it extends adaptive control to singularly perturbed

systems and it extends multiple-timescale control to systems with model uncertainty.

2. The methodology and theorems proved in this dissertation are generalized to a wide class

of plants. The plants used for demonstration in this dissertation included both linear and

nonlinear; large and small timescale separation; Single-Input Single-Output (SISO) and

Multiple-Input Multiple-Output (MIMO); and with and without the singular perturbation

parameter appearing on the right-hand side of the fast states’ equations of motion. In this

dissertation, KAMS was demonstrated with Model Reference Adaptive Control (MRAC)

and Adaptive Nonlinear Dynamic Inversion (ANDI). KAMS was also demonstrated with

163



Composite Control, Sequential Control, and Simultaneous Slow and Fast Tracking fusion

techniques. The theorems in this dissertation are generalized to a wide class of adaptive

algorithms and multiple-timescale fusion techniques. This collectively demonstrates the

flexibility of KAMS and the generalized nature of the theorems proved in this dissertation.

3. KAMS provides insights into the underlying physics of the system in question. These in-

sights are typically difficult to see in complex coupled models but become clear after the

model reduction. For example, in Chapter 6 one term was eliminated from the equations of

motion because the timescale analysis indicated it was insignificant. KAMS then uses these

insights to work with the timescales of the system instead of fighting them. For example,

this leads to fuel efficiency gains in Chapter 6.

4. In the context of uncertain multiple-timescale systems, KAMS is judged to be a better ap-

proach than FOAC, ROAC, and Composite Control. KAMS demonstrated better perfor-

mance (i.e. rise time and overshoot) and improved robustness to variations in the timescale

separation parameter. If the plant is deterministic or the timescale separation is negligible,

then these other methods may yield similar results without requiring the additional step of

checking the sufficient conditions. However, if the plant is uncertain and exhibits multiple-

timescale behavior then KAMS is a good option compared to prior work.

5. KAMS is capable of extending common adaptive control methods to non-minimum phase

systems even though these methods assume that the plant is minimum phase. This is because

KAMS transfers the minimum phase requirement to the subsystems rather than the full-order

system. If the external dynamics and internal dynamics evolve on a different timescale then

these adaptive algorithms can still be used within the framework of KAMS. This capability

was demonstrated in Chapter 3.
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9. RECOMMENDATIONS

The work presented in this dissertation represents a significant step forward toward adaptive

control for multiple-timescale systems. However, this is a new research field with many open

questions for future research. The following list gives several recommended directions for future

research:

1. This work used Lyapunov functions with quadratic first derivatives. However, this neces-

sarily limits the theories to system and control which are capable of asymptotic stability.

In this dissertation, additional theoretical tools [118] were used to show boundedness, but

more general results may be available by considering more exotic Lyapunov functions. For

example, Lyapunov functions with negative semidefinite time derivatives could be consid-

ered. Another option would be to consider Lyapunov functions of the type used in [20] by

replacing the 2-norms with unspecified functions of the state variables. It is recommended

that these possibilities be explored.

2. This work made no assumptions about the manifold for the fast adapting parameters. This

was done because consistent with adaptive control generally, there are no guarantees that

the fast adapting parameters converge to their true values. However, it is recommended that

future work consider what would happen if their manifold was identified or specified. The

manifold could be assumed to be the true value. This would create additional error terms

in the full-order Lyapunov analysis, but it might also lead to additional cancellations as is

seen in Model Reference Adaptive Control. It would also be interesting to study what would

happen if the manifold for the fast adapting parameters was assigned to be some value that

was beneficial for the slow subsystem. So the adapting parameters could transition between

a value that was ideal for the fast subsystem and a value that is ideal for the slow subsystem.

This would be an extension of KAMS with Sequential Control fusion.

3. In Chapter 2, an unconventional third feedback loop was identified. This was pointed out
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to motivate the complexities inherent in multiple-timescale adaptive control, but it is rec-

ommended that future work study this phenomenon. It would be particularly interesting to

determine if this unconventional feedback loop is parasitic or symbiotic to the other two

primary feedback loops and the overall stability of the system.

4. This dissertation focused on nonlinear systems. More powerful results may be possible for

linear systems. For example, see remark 5.1. It is therefore recommended that future work

give particular attention to linear systems.

5. This dissertation did not consider estimation or output feedback. It is recommended that

both of these be considered within the context of multiple-timescale adaptive control.

6. The analytical analysis and numerical demonstrations presented in this dissertation are

promising. However, the ultimate test of any control algorithm is hardware experimentation.

It is therefore recommended that future work include hardware demonstrations of KAMS. A

good testbed for this would be to extend the quadrotor work given in Chapter 5.
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APPENDIX A

PROOF OF LEMMAS *

A.1 Lemma 1

Lemma A.1 - Given V́ (t) : R≥0 → R−, x(t) : R≥0 → Rn, and α ∈ R+ where V́ ∈ L1 and

x ∈ L∞. Then ∀p ∈ [1,∞) it is true that V́ ≤ −α|x|pp =⇒ x ∈ Lp

Proof. Begin with V́ ≤ −α|x|pp. The value |x|p exists and is finite because x ∈ L∞ =⇒ x ∈ lp

for all p and t. Because both sides of the inequality are negative the following inequality also holds

∥V́ ∥1 ≥ ∥α|x|pp∥1 (A.1)

∥V́ ∥1/α exists and is finite because V́ ∈ L1. By Lemma A.2 x ∈ Lp.

A.2 Lemma 2

Lemma A.2 - Let x(t) : R≥0 → Rn. Then ∀p ∈ [1,∞) it is true that x ∈ Lp if and only if

|x|pp ∈ L1.

Proof. Begin with x ∈ Lp. By the definition of the Lp norm

lim
τ→∞

∫ τ

0

|xi|pdt <∞ (A.2)

Now note the following axiom: (|xi| < ∞ ∀i ∈ {1, 2, 3, . . . n}) ⇐⇒ (
∑n

i=1 |xi| <∞). This

leads to

lim
τ→∞

∫ τ

0

n∑
i=1

[|xi|p] dt <∞ (A.3)

*This appendix is reprinted with permission from “Adaptive Control for Non-Minimum Phase Systems Via Time
Scale Separation” by Kameron Eves and John Valasek, 2023. American Control Conference, Copyright 2023 by
American Automatic Control Council [96].
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Raising to the power of 1 = p/p

lim
τ→∞

∫ τ

0

( n∑
i=1

[|xi|p]

)1/p
p

dt <∞ (A.4)

By the definition of lp norms

lim
τ→∞

∫ τ

0

|x|ppdt <∞ (A.5)

Thus |x|pp ∈ L1. Each of these logical steps can be inverted. So, by working backward, it is also

true that |x|pp ∈ L1 =⇒ x ∈ Lp
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