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ABSTRACT 

 

Tropical cyclones (TCs) are dangerous weather events that cause significant damage to 

infrastructure and loss of life each year. TC track forecasting has improved considerably in 

recent decades, though improvements to intensity forecasts are not as significant. TCs gain 

energy through heat fluxes from warm ocean waters into the atmosphere. Cold wakes are trails of 

cooler waters observed beneath TCs that mitigate intensification by reducing these fluxes. This 

study uses TC data from Colorado State University, oceanic profile data from Argo floats, and 

satellite sea surface temperature data from NASA to quantify the parameters contributing to 

hurricane-induced oceanic cooling (ΔSST) in the North Atlantic Ocean. Results indicate that 

hurricane translation speed and minimum sea level pressure are the best predictors of ΔSST, 

followed by oceanic isothermal layer depth. A well-rounded knowledge of cold wakes is critical 

to better understanding TC intensity and ultimately improving the accuracy of TC intensity 

forecasts. 
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1. INTRODUCTION 

 

1.1 Tropical Cyclones 

 1.1.1 Overview of Tropical Cyclones 

Tropical cyclones (TCs) are powerful weather systems that can develop in several ocean 

basins around the world, and they are known by different names throughout these basins. TCs 

that develop in the North Atlantic and Northeast Pacific are referred to as hurricanes. In the 

Northwest Pacific they are called typhoons, and in the South Pacific and Indian Oceans, they are 

called cyclones (Shultz et al., 2005). The area of interest for this project is the North Atlantic 

basin, so the terms tropical cyclone, TC, and hurricane will be used interchangeably. 

 Per their name, TCs are storms that form over the warm ocean waters of the tropics and 

exhibit cyclonic rotation. Two notable features of TCs include a warm core and a low central 

pressure (Emanuel, 2003). Air moves from areas of high pressure to low pressure, so air masses 

around these systems are directed inwards. The cyclonic rotations of a TC’s wind field is a 

product of the Coriolis force that results from the rotation of the Earth. The Coriolis force causes 

fluids in motion to divert to the right in the Northern Hemisphere and to the left in the Southern 

Hemisphere. Because of this, TC’s experience counterclockwise winds in the Northern 

Hemisphere and clockwise winds in the Southern Hemisphere. 

 1.1.2 Origin and Genesis 

 The majority of hurricanes that develop over the North Atlantic arise from atmospheric 

disturbances that originate over Africa and travel west into the basin. These disturbances, 

commonly known as African Easterly Waves (AEWs), were the source of 75% of North Atlantic 
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hurricanes in 1994 and 91% in 1995 (Pasch et al., 1998). The mechanisms that allow for AEWs 

to form are complex, but the main contributing factor is the presence of baroclinic and barotropic 

instabilities within the African Easterly Jet during summer months (Thorncroft & Hoskins, 

1994). As these disturbances propagate west, they must meet a set of ideal conditions to undergo 

hurricane genesis. One condition is warm sea surface temperature (SSTs) beneath the 

disturbance. The role of SST for genesis is pivotal as hurricanes are fueled by the large latent and 

sensible heat fluxes associated with warm ocean waters (Kanada et al., 2017). Prior studies have 

put forth a threshold of 26 °C SSTs, below which genesis could not be maintained due to lack of 

fuel in the form of heat energy (Palmen, 1948; D’Asaro et al., 2007). 

 An atmospheric parameter that can disrupt hurricane genesis is vertical wind shear. A 

region experiencing low vertical wind shear has similar wind speeds and directions throughout 

the atmospheric column. Conversely, regions with high vertical wind shear see significant 

changes in wind speed and direction at varying altitudes. For genesis, ideal conditions are those 

in which vertical wind shear is minimal (Gray, 1975). Under these circumstances, heat uptake 

into the upper atmosphere continues relatively undisturbed allowing for the cyclone to maintain 

structure and intensify. When vertical wind shear is great, this process is disrupted and the 

vertical structure of the cyclone is likely to degrade. The amount of vertical wind shear present is 

particularly critical in the early stages of genesis as less developed cyclones are more vulnerable 

to its effects (Frank & Ritchie, 2001). 

 A third condition important for hurricane genesis is that the system stays within the 

latitudinal bounds that favor cyclonic rotation. As previously mentioned, the Coriolis force 

brought on by the rotation of the Earth directs airflow to the right in the Northern Hemisphere 

and to the left in the Southern Hemisphere. Because it is a product of Earth’s rotation, the 
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Coriolis force is a function of latitude, and can be expressed in the equation for the Coriolis 

parameter f: 

 f = 2Ωsin(φ) 

where Ω is the rotation of the Earth and is equal to 7.27x10-5 rad s-1, and φ is latitude in degrees. 

From this equation, it can be observed that the impact of the Coriolis force increases with 

latitude, and is not present at the equator where φ (and subsequently f) are equal to zero. It has 

been surmised that a latitude of at least 5° is necessary for the Coriolis force to be strong enough 

to support the cyclonic rotation of a disturbance (Gray, 1975). 

 1.1.3 Structure 

 Every hurricane is unique, but there are several structural characteristics that many have 

in common. One such characteristic is the presence of an eye, which is an area of relatively calm 

conditions, warm temperatures, and low pressures located near the center of the system (Smith, 

1980). There are several theories as to how the eye forms, but each come down to a combination 

of pressure gradients, the Coriolis force, convection, and the vertical movement of air near the 

hurricane center. The foundation of a hurricane is an area of low pressure, and air pressure 

gradients result in high pressure air moving inward toward this low pressure center. The inward 

movement of air, in conjunction with the Coriolis force, results in cyclonic rotation centered 

around the origin of low pressure. At some distance from the hurricane center, these cyclonic 

winds foster a continual upward movement of air, compounding the decreasing pressure at lower 

altitudes and creating a region of high pressure at upper altitudes. This region of high pressure 

often exhibits anticyclonic rotation as air moves outward and is deflected by the Coriolis force. 

However, some of this air is instead directed back inward where it builds up, increases pressure, 
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and travels back down the center of the storm, working to create a region of minimal rain and 

relative calm known as the eye (Vigh, 2010). 

 Surrounding the eye is a structure known as the eyewall, which is the region of the storm 

associated with the heaviest precipitation and the greatest intensities. Further out from the 

eyewall are a series of large convective clouds known as rainbands that migrate inwards towards 

the eyewall over time (Houze Jr. et al., 2007). In powerful hurricanes, as these rainbands develop 

and move inward, the eyewall begins to fall apart, at which points the storm weakens. Over 24 to 

48 hours, these rainbands can entirely take over the eyewall in a process known as an eyewall 

replacement cycle (Sitkowski et al., 2011). At this stage, there is a new well-structured eyewall 

and the storm can begin to regain intensity if other conditions are favorable. 

 1.1.4 Movement 

 The zonal and meridional movements of hurricanes are grouped into two categories: 

environmental steering and beta drift. Of the two, environmental steering is the leading 

mechanism for hurricane movement (Galarneau & Davis, 2013). The primary factor in relation 

to environmental steering is the speed and direction of regional wind patterns in the atmospheric 

column. Though these wind patterns differ with altitude, those at the 700 to 500 mbar level 

provide the best predictions for hurricane movement (Chan & Gray, 1982). In the North Atlantic, 

hurricanes are generally guided to the west by easterly trade winds. 

The second mechanism controlling hurricane movement is beta drift. A North Atlantic 

hurricane, for example, exhibits counterclockwise airflow at lower altitudes, fostering positive 

relative vorticity (Chan, 1982). On the western side of this hurricane, airflow is traveling towards 

the equator, subsequently decreasing planetary vorticity. As a result, the relative vorticity of the 
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hurricane increases to compensate. The opposite occurs on the eastern side of the hurricane. 

Airflow is poleward, increasing planetary vorticity resulting in a decrease in the relative 

vorticity. Hurricanes are predisposed to move towards areas where relative vorticity is 

increasing, thus resulting in an additional westward propagation. Furthermore, in the Northern 

Hemisphere, counterclockwise flow on the western side where relative vorticity is positive and 

clockwise flow on the eastern side where relatively vorticity is negative result in a channel that 

directs air northward from the center of the system. These two effects combine to produce the 

phenomenon of beta drift, causing hurricanes to propagate poleward and to the west. 

1.2 Cold Wakes 

 1.2.1 Overview of Cold Wakes 

 During the life of a hurricane, several oceanic and atmospheric factors contribute to a 

cooling of the upper ocean. These signatures of relatively cooler waters left in the paths of 

hurricanes are called cold wakes (Figure 1). There are several processes responsible for the 

oceanic cooling observed beneath hurricanes, one being vertical mixing and entrainment. 

Powerful winds within hurricanes transfer momentum into the sea surface, generating vertical 

mixing at the top of the water column. This vertical mixing results in the entrainment of cooler 

waters from beneath the thermocline into the mixed layer (Yablonsky & Ginis, 2012), leading to 

both a deepening and cooling of the mixed layer beneath the hurricane (Ginis, 2002). 
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Figure 1: Daily SSTAs in the North Atlantic Ocean from September 15th (left) and September 26th 

(right), 2022. Warm colors indicate higher than average SSTs and cold colors indicate colder 

than average SSTs. Image made by Joshua Stevens, NASA Earth Observatory. 

 

A second process that contributes to the oceanic cooling is upwelling. There are two 

mechanisms by which upwelling occurs beneath hurricanes, the first relating to wind direction 

and the Coriolis force. Cyclonic winds present within hurricanes often result in cyclonic surface 

currents beneath the storm. These surface currents are then deflected away from the hurricane 

center due to the Coriolis force, leading to the upwelling of cooler waters from below to replace 

those that have been deflected. The second mechanism, known as the inverse barometer effect, 

relates to pressure differences between the hurricane center and outer parts of the hurricanes. 

Because of the relatively low pressures at the hurricane center, waters there are not held down as 

much in comparison to outer parts of the storm where the atmospheric pressure at the air-sea 

interface in higher. This results in a bulging of waters beneath the low pressure center which then 

flow downhill towards the perimeter of the hurricane. A 1 mbar decrease in atmospheric pressure 
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at the air sea interface can result in a 1 cm increase in sea surface height (Murty & Neralla, 

1992). Waters flowing away from the hurricane center are then replaced with the upwelling of 

cooler waters from beneath the thermocline. The upwelling of these cooler waters from both of 

these processes often causes the oceanic mixed layer to shoal which further enhances 

entrainment by minimizing the vertical distance that waters need to be mixed in order for 

entrainment to occur (Greatbatch, 1985). 

 Air-sea fluxes, principally latent and sensible heat fluxes, also contribute to cold wake 

development (e.g., Price, 1981; Potter et al., 2017). The contribution of these fluxes to oceanic 

cooling is relatively minor (~10% of total cooling) compared to vertical mixing and upwelling. 

The latent heat flux, also referred to as a moisture flux, is associated with the transfer of energy 

between the ocean and atmosphere via phase changes of water molecules (e.g., evaporation). 

Heat energy is required for water molecules to evaporate from the ocean into the atmosphere. As 

such, the evaporation of surface waters which help fuel the hurricanes also result in a cooling of 

the sea surface from the same transfer of heat energy. The sensible heat flux relates to air-sea 

energy transfers through a combination of conduction and convection. During the warmer 

months of hurricane season, SSTs tend to be larger than air temperatures at the air-sea interface, 

which is the principal cause of heat fluxes between the two mediums. 

The cooling, spatial structure, and temporal evolution of cold wakes varies depending on 

local and regional conditions. Cooling can be less than 1 °C (Cione & Uhlhorn, 2003) or up to 10 

°C as observed under Typhoon Kai-Tak (2000) (Chiang et al., 2011). The greatest cooling 

typically occurs within the first few days of a hurricane’s passing, at which point the upper ocean 

begins a gradual return to pre-hurricane conditions (Mei & Pasquero, 2013). This exponential 

return of SSTs is confirmed by an analysis of North Atlantic hurricanes which revealed that 
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roughly 80% of oceanic cooling at the sea surface subsides after 20 days, with almost 100% 

subsiding after 60 days (Haakman et al., 2019). Although the return of the upper ocean to pre-

hurricane conditions typically takes a couple weeks, under late-season hurricanes, oceanic 

conditions may not return to pre-hurricanes levels for several months (Potter et al., 2017). 

The location of greatest cooling is typically observed to the right of the hurricane track in 

the Northern Hemisphere, and left-of-track in the Southern Hemisphere (Jordan & Frank, 1964). 

There are two mechanisms that cause this, one being the clockwise rotation of the wind stress 

vector right-of-track coinciding with the rotation of inertial currents within the mixed layer 

resulting in a resonation and amplification of vertical mixing and subsequent cooling (Gonella, 

1972). The other mechanism is the presence of larger, more powerful waves located in the front-

right quadrant relative to the hurricane track which transfer momentum deeper into the mixed 

layer, enhancing mixing (Collins III et al., 2018). 

 1.2.2 Development 

 Cold wake development is controlled by both oceanic and atmospheric conditions to 

varying degrees. One notable atmospheric contributor is storm strength, frequently defined as a 

function of a hurricane’s maximum sustained wind speed. In general, hurricanes with stronger 

winds are able to generate larger waves and stronger currents that result in more vertical mixing 

and cooling (Dare & McBride, 2011). Haakman et al. (2019) analyzed North Atlantic hurricane 

observations from 2002 through 2018 and found that while category-1 hurricanes caused the 

least amount of cooling, there was a difference of just ~0.1 ℃ in cooling beneath category-2 

hurricanes and major hurricanes (category-3 through category-5), with category-2 hurricanes 

resulting in greater cooling. These finding are supported by Michaels et al. (2006) and Lloyd and 

Vecchi (2011). Lloyd and Vecchi (2011) surmise that this is due to the effect of the oceanic 
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cooling feedback on hurricane intensity. They argue that hurricanes can only generate so much 

oceanic cooling before they restrict their ability to intensify further, so the minimal differences in 

cooling between category-2 and major hurricanes is simply because category-2 hurricanes could 

not have developed into major hurricanes had they caused greater cooling beneath them. The 

authors also put forth another potential explanation in that wind speeds within a category-2 

hurricane are strong enough to stir up waters of similar temperature as those stirred up by major 

hurricanes. Although major hurricanes may generate vertical mixing that penetrates deeper into 

the water column, the cooler waters brought to the surface are of comparable temperature to 

those brought to the surface by category-2 hurricanes, which could explain the insignificant 

difference in oceanic cooling between category-2 hurricanes and major hurricanes. 

A second atmospheric factor shown to impact oceanic cooling is a hurricane’s translation 

speed, which is the speed at which the system itself is moving. Hurricanes with slower 

translation speeds typically result in greater cooling, as slow-moving systems spend more time 

over fixed points in the ocean and therefore have greater time to generate vertical mixing and 

cooling (Bender et al., 1993). According to several studies, a hurricane’s translation speed seems 

to have a greater impact on oceanic cooling than any other parameter (e.g., Haakman et al., 2019; 

Price, 1981). Haakman et al. (2019) examined the impact of two hurricane parameters and two 

oceanic parameters on oceanic cooling. The hurricanes parameters were the 10-minute maximum 

sustained wind speed and translation speed with the oceanic parameters being the barrier layer 

thickness and barrier layer potential energy. For each hurricane in their study, the authors 

determined the change in the sea surface temperature anomaly (ΔSSTA) within a 500 km radius 

of the hurricane center. They then developed three composite ΔSSTA fields for each parameter 

based on percentiles. For example, a composite ΔSSTA field was developed for the lowest one-
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third, middle one-third, and highest one-third of maximum sustained wind speeds values to 

observe how oceanic cooling differed between the weakest, average, and most powerful 

hurricanes. The authors found that the greatest cooling occurred beneath the hurricanes with the 

highest maximum sustained wind speeds, the slowest translation speeds, and when the barrier 

layer thickness and barrier layer potential energy were lowest. The mean maximum ΔSSTA 

values from these composites were -1.94 ℃ (10-minute maximum sustained wind speed), -2.55 

℃ (translation speed), -2.14 ℃ (barrier layer thickness), and -2.29 ℃ (barrier layer potential 

energy). Low translation speeds caused the greatest amount of cooling, followed by low barrier 

layer potential energies and thin barrier layers. A hurricane’s 10-minute maximum sustained 

wind speed proved to be the least important of the four parameters in regard to oceanic cooling. 

An oceanic condition shown to affect oceanic cooling is the mixed layer depth (MLD). 

The MLD is the depth of uniformly mixed waters near the sea surface, and it can be defined by 

differences in temperature or density. The temperature defined MLD, or isothermal layer depth 

(ITLD), is often defined as the depth at which the ocean temperature is equal to the SST minus 

0.5 ℃ (e.g., Price et al., 1986; Kelly & Qiu, 1995; Obata et al., 1996). The density defined MLD, 

or isopycnal layer depth (IPLD), has been defined as the depth at which potential density is equal 

to the potential density as the sea surface plus 0.125 kg m-3 (e.g., Miller, 1976; Spall, 1991). A 

relatively shallow MLD is beneficial for cooling because mixing does not have to occur as deep 

to stir up cooler waters from beneath the thermocline (Mao et al., 2000). 

Greater cooling has also been shown to occur when the barrier layer thickness (BLT) is 

thin (Haakman et al., 2019). BLT is the vertical distance between the ITLD and IPLD. A larger 

BLT will mitigate the entrainment of cooler waters, thus limiting the overall cooling (Wang et al., 

2011). This is because thicker barriers layers are often associated with smaller vertical 
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temperature gradients which mitigates the upward movement of cooler waters (Foltz & 

McPhaden, 2009). As mentioned above, in their ~20 year study on North Atlantic hurricanes, 

Haakman et al. (2019) found BLT to have a greater impact on oceanic cooling than hurricane 

strength as a function of its 10-minute maximum sustained wind speed. 

An additional oceanic parameter that can impact cooling beneath hurricanes is the Brunt-

Vaisala frequency (N). Developed by Vilho Vaisala and David Brunt, N is a metric that can be 

used to quantify the stability of a fluid in a statically stable environment. When a fluid parcel in 

such conditions becomes vertically displaced, a buoyancy force acts upon the parcel in an effort 

to return it to its initial position (Stull, 2011). Typically, the parcel will overshoot its initial 

position and the buoyancy force will change direction in an attempt to return the parcel once 

again to its original position. This process repeats itself, resulting in an oscillation that is 

measured in cycles per unit time. In oceanography, N can be defined as: 

 N = √(-gρ-1)(Δρz-1) 

where g is gravity, ρ is water density, and z is depth, with N typically expressed in cycles per 

second, or simply s-1. N is thereby used to quantify the stratification of water with the column, 

with larger values denoting greater stratification. 

1.3 The Relationship Between Tropical Cyclones, Cold Wakes, & Climate 

 A well-rounded understanding of hurricanes and cold wakes is critical as both play a 

pivotal role in Earth’s climate system. Hurricanes gain energy from heat fluxes moving from 

warm ocean waters into the atmosphere. Thus, on a fundamental level, a hurricane’s intensity is a 

function of the SST beneath the system (Emanuel, 1986). As cold wakes develop, a negative 

feedback loop is introduced as heat fluxes begin to decrease. The cold wake of Hurricane 
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Frances (2004) resulted in a 5 m s-1 decrease in the storm’s maximum sustained wind speed 

(D’Asaro et al., 2007). Furthermore, Schade and Emanuel (1999) estimated that cold wakes have 

the potential to reduce hurricane intensity by up to 70%. It can take up to three weeks or more for 

SSTs to return to pre-storm levels following a hurricane (Mei & Pasquero, 2013). As such, cold 

wakes have the potential to impact both the hurricane that caused them, and any hurricane that 

passes in that region in the coming days, weeks, or months. Cold wakes have been shown to 

weaken future hurricanes (Cione & Uhlhorn, 2003), alter hurricane tracks (Bener et al., 2003), 

and shorten the hurricane season (Wendland, 1977). 

 One cold wake climate implication comes from the redistribution of heat within the water 

column. Though cold wakes are identified by the rising of cooler waters from beneath the 

thermocline, it is important to note the downward movement of warm surface waters that are 

transported below the mixed layer. Over time, the mixed layer returns to a state of equilibrium 

with surrounding waters through a combination of mixing and surface fluxes leading to an 

overall heating of the water column. Sriver and Huber (2007) surmise that this hurricane-induced 

heat redistribution contributes roughly 15% to the overall poleward transfer of heat. This 

additional heat transferred poleward thereby affects thermohaline circulation which is a critical 

and sensitive regulator of the broader climate system (Emanuel, 2001).  

Further effects of hurricanes on climate occur with changes in atmospheric properties that 

result from upwelling. During the upwelling process, nutrient-rich waters are brought to the 

surface from depth. The excess of nutrients near the surface often results in phytoplankton 

blooms (Babin et al., 2004) that alter the air-sea flux of carbon dioxide (CO2) (Bates et al., 1998). 

Another aspect of climate implications relates to the contribution of hurricanes to the efflux of 

CO2 from the ocean. Flux measurements of CO2 are important to understand because it is a 
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greenhouse gas (GHG) that has implications for the warming of Earth’s climate. Due to its 

unique chemical structure, molecules of CO2 absorb a considerable amount of long-wave 

radiation being emitted from the surface of the Earth, which they then redirect back towards 

Earth, resulting in greater warming (Mitchell, 1989). Since the onset of the industrial revolution 

in the late 18th century, concentrations of CO2 from anthropogenic sources have been on the rise. 

Since 1960, atmospheric concentrations of CO2 have risen from ~320 ppm to ~420 (NOAA 

Climate, 2022). This is critical because increases in these GHGs such as CO2 are likely to result 

in a continual warming of Earth’s climate (Intercontinental Panel on Climate Change, 2018). 

 The world’s ocean play a key role in the global carbon cycle as they act as a large sink 

for CO2, absorbing an estimated ~30% of anthropogenic CO2 since the beginning of the 

industrial revolution (Gruber et al, 2019). The determining factor for the direction and magnitude 

of air-sea CO2 fluxes is the partial pressure of CO2 (pCO2) in both mediums (Sarmiento & 

Gruber, 2006). When the atmospheric pCO2 is greater than the oceanic pCO2, the CO2 flux is 

directed from atmosphere into the ocean. Under these conditions, the ocean is undersaturated. If 

the oceanic pCO2 is greater than the atmospheric pCO2, the CO2 moves from the ocean to the 

atmospheric. In these situations, the ocean is oversaturated. 

 Oceanic pCO2 is highly dependent on temperature, with warmer ocean waters exhibiting 

larger pCO2 values (Koch et al., 2009). Because higher ocean temperatures yield higher pCO2 

values, there is a higher likelihood of the waters being oversaturated when temperatures are 

higher. This is important because hurricanes are most likely to occur in the summer and autumn 

months when SSTs are highest as they are fueled by ocean-atmosphere heat fluxes. Thus, 

hurricanes have a high likelihood of translating over oversaturated ocean waters in which the 

flux of CO2 is moving out of the ocean and into the atmosphere. Due to their anomalously high 
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wind speeds, hurricanes increase CO2 fluxes due to enhanced air-sea interaction. Since 

hurricanes are more likely be to translating above oversaturated waters, they contribute greatly to 

the efflux of CO2 from the ocean into the atmosphere. Although cooler waters exhibit lower 

partial pressures of CO2, the decreases in oceanic partial pressure associated with hurricane-

induced cooling are often not enough to reverse the direction of the flux, remaining an efflux 

from the ocean into the atmosphere (Bates et al., 1998). It is estimated that high wind speed 

events such as tropical storms and hurricanes are contributing between 0.042 and 0.509 Pg C y-1 

from the ocean to the atmosphere (Bates et al., 1998). 

1.4 Tropical Cyclone Forecasting 

Accurate hurricane forecasting is important because it allows for adequate preparation 

and the mobilization of resources to assist with relief efforts following the storm. Hurricane 

forecasting can be broken down into two categories: track forecasting and intensity forecasting. 

Hurricane track forecasting is the prediction of where hurricanes are going to go, while intensity 

forecasting pertains to predicting changes in hurricane intensity. With advancing technologies 

and a better understanding of the mechanisms that control hurricanes, improvements have been 

seen in both of these divisions of hurricane forecasting. Figures 2 and 3 show the errors 

associated with National Hurricane Center (NHC) track forecasts and intensity forecasts from 

1990 to 2021. 
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Figure 2:Error measurements associated with NHC hurricane track forecasts from 1990 to 

2021. Error measurements are distances in nautical miles (n mi). Different colors pertain to 

forecasts for varying timescales. Figure from the NHC. 

 

Figure 3: Error measurements associated with NHC hurricane intensity forecasts from 1990 to 

2021. Error measurements are maximum sustained wind speeds in knots (kt). Different colors 

pertain to forecasts for varying timescales. Figure from the NHC. 

 

One trend that can be identified from both these figures is the decrease in error associated 

with measurements closer out in time (e.g., lower errors in 24-hour forecasts vs. 120-hour 

forecasts). A second trend is the general decreases in both track forecast errors and intensity 
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forecast errors over the past three decades. However, it is well noted that while track forecast 

errors have seen significant improvement, intensity forecast errors have improved relatively little 

in comparison (Cangialosi & Franklin 2012; Demaria et al., 2014). Thus, a better understanding 

of mechanisms that influence hurricane intensity could potentially lead to improved intensity 

forecasts. Because cold wakes have direct impacts on hurricane intensity, further understanding 

of this oceanic cooling could ultimately lead to decreases in error measurements associated with 

hurricane intensity forecasts. 
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2. RESEARCH QUESTIONS & HYPOTHESES 

 

1) Which individual hurricane and/or oceanic parameters have the greatest effect on hurricane-

induced oceanic cooling? 

Hypothesis 1: Hurricane parameters, principally storm strength and translation speed, will have 

the greatest impact on oceanic cooling and be able to explain more variance in oceanic cooling 

than oceanic parameters. 

2) Which hurricane and/or oceanic parameters interact to result in greater oceanic cooling? 

Hypothesis 2: The greatest cooling will occur when the hurricane is strong, has a slow translation 

speed, and the underlying ocean has a shallow isothermal layer. 

3) The hurricane surface forcing is spatially nonuniform. How will the statistics change when 

using data that is closer to the hurricane center? 

Hypothesis 3: Hurricane parameters will be more important to cold wake formation near the 

hurricane center and oceanic parameters will become more important further from the hurricane 

center. 
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3. DATA & METHODS 

 

3.1 Tropical Cyclone Data 

 3.1.1 Background on Tropical Cyclone Data 

 The data used in this project comes from three sources. The first is Colorado State 

University’s (CSU’s) Extended Best Track (EBTRK) dataset, an expansive hurricane dataset that 

serves as an extension of the National Oceanic and Atmospheric Administration’s (NOAA’s) 

own hurricane dataset, HURDAT2. HURDAT2 contains records on North Atlantic hurricanes 

dating back to 1851, and is updated annually to include the most recent season’s storms. To 

understand EBTRK it is important to have an understanding of its main source, HURDAT2. The 

HURDAT2 dataset is freely available from the NHC. The file is a large matrix with rows of time 

intervals and columns pertaining to different parameters or meta information. During the life of a 

storm, these data are recorded at six-hour intervals (00:00, 06:00, 12:00, and 18:00 Coordinated 

Universal Time). Each row in the dataset, referred to hereinafter as a tropical cyclone 

observation point (TCOP), thereby acts as a snapshot of a hurricane at a given time and location, 

with single values for latitude, longitude, maximum sustained wind speed, etc. 

 Figure 4 is an example of the layout of HURDAT2 for Hurricane Katrina (2005). To 

mark the beginning of a new storm, there is a row containing the storm’s ID, name, and the 

number of rows to follow that pertain to that storm. For rows containing data, the parameters 

recorded are as follows: date; time; record identifier; storm status; latitude; longitude; maximum 

sustained wind speed; minimum pressure; radius of 34 kt sustained winds in the northeast, 

southeast, southwest, and northwest quadrants; radius of 50 kt sustained winds in the northeast, 

southeast, southwest, and northwest quadrants; and radius of 64 kt sustained winds in the 
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northeast, southeast, southwest, and northwest quadrants. In total, there are 20 parameters 

recorded for each TCOP. Missing data values for any of these columns are entered as “-999.” 

 

Figure 4: An example of the HURDAT2 data file from the NHC showing the first ten TCOPs of 

Hurricane Katrina (2005). 

 

 3.1.2 Explanation of Tropical Cyclone Parameters 

 Hurricane intensity within HURDAT2 is measured as a function of the one-minute 

maximum sustained wind speed at an altitude of 10 m. There are several methods in which these 

measurements are obtained, one is the Dvorak Technique (Figure 5) which utilizes satellite 

imagery to allow for experts to gauge the strength of a hurricane based on factors such as cloud 

band patterns, size of the central dense overcast (CDO), and more (Dvorak, 1975). 

 

Figure 5: A graphical representation of various hurricane structures and how they would be 

classified using the Dvorak Technique, along with a short list of frequent development patterns. 

Modified from Figure 2 in Dvorak (1975). 
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 Additional measurements of wind speeds via satellite are obtained from satellites 

equipped with a scatterometer. Scatterometers are active sensors that emit microwaves and 

record the backscatter which varies with the roughness of the sea surface. In general, wind speed 

and sea surface roughness are highly correlated with higher wind speeds being associated with 

rougher sea surfaces. Thus, scatterometers are useful instruments for estimating 10 m wind 

speeds (Chan & Chan, 2012). An advantage to determining wind speeds using scatterometers is 

that by using microwaves, cloud cover can be easily penetrated. This allows for relatively 

unobstructed observations (Tomiyasu, 1974). 

 A third method to obtain wind speed values comes from aircraft reconnaissance missions 

and dropsondes. As hurricanes approach land, specially equipped aircraft operated by the United 

States military or government agency such as NOAA are flown into the storm to gather real time 

data. These aircraft often carry dropsondes which are released from the aircraft and record wind 

speed, wind direction, temperature, pressure, and humidity as they descend to the sea surface 

(Halverson et al., 2006). Wind speed data from these missions can then be adjusted down to 10 

m (Franklin et al., 2003). 

 Six of the ten parameters of interest for this study are hurricane parameters. This includes 

the maximum sustained wind speed (Vmax), minimum sea level pressure (Pmin), translation speed 

(Uh), radius of maximum winds (RMW), time available for vertical mixing (LUh
-1), and tropical 

cyclone latitude (LatTC). Vmax, a function of hurricane strength, is included in this study because it 

has been previously correlated with oceanic cooling (Haakman et al., 2019; Price, 1981). A 

second metric of hurricane strength, Pmin, has not been explicitly studied in relation to cold 

wakes to the degree of Vmax. Since it is available within the EBTRK, Pmin has been included in 

this study to allow for a side-by-side comparison of both hurricane strength metrics on oceanic 
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cooling. As with Vmax, Uh has been included because it has also been shown to have an impact on 

oceanic cooling beneath hurricanes, even more so than Vmax (Haakman et al., 2019; Price, 1981). 

Also included in the study is RMW, a metric of hurricane size. This parameter has been included 

with the mindset that hurricane with a higher RMW (greater spatial coverage) will spend more 

time mixing the upper ocean, potentially resulting in greater cooling. Taking this a step further, 

LUh
-1 is a temporal metric of vertical mixing that takes both hurricane size and translation speed 

into consideration (Shay et al., 2000). 

Vmax, Pmin, RMW, and LatTC are all provided in the EBTRK dataset, with Uh and LUh
-1 

being calculated using information from EBTRK. Hurricane data in EBTRK is recorded in six-

hour intervals. Uh is calculated by taking the latitude and longitude of a TCOP, the latitude and 

longitude of the previous TCOP, finding the great circle distance between those two points, and 

dividing the distance by six hours (Kossin, 2018). This yields a translation speed in km hr-1. 

Given two successive TCOPs (a and b), the great circle equation used to solve for the Uh of 

TCOP b is: 

Uh = rEarth*acos((cos(90 – Lata)*cos(90 – Latb)) + (sin(90 – Lata)*sin(90 – 

Latb)*cos(Lona – Lonb))) / 6 

where rEarth is the radius of Earth (6,371 km) and with all latitude and longitude values being 

converted from degrees to radians. Multiplying this by 1,000 and dividing by 21,600 converts Uh 

from km hr-1 to m s-1. The second calculated metric, time available for vertical mixing, is given 

by the equation: 

 LUh
-1 = (2*RMW)/Uh 
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(Shay et al., 2000) which yields the time available for vertical mixing value in seconds. Dividing 

this by 3,600 gives the time available for vertical mixing in hours. Large, slow-moving 

hurricanes will have longer LUh
-1 meaning they have more time to generate vertical mixing.  

 3.1.3 Uncertainties of Tropical Cyclone Data 

 HURDAT2 contains roughly 170 years of data on hurricane activity in the North 

Atlantic. Because of this long record, it must be noted that data further back in time will have 

larger uncertainties and errors. These uncertainties are due to a variety of factors, but mainly the 

differences in technologies available throughout the record. The development and 

implementation of satellite remote sensing in the 1970s greatly improved the accuracy of 

hurricane measurement. Experts at the NHC estimate errors in wind speed measurements of 

minor hurricanes (category-1 and -2 on the Saffir-Simpson Hurricane Wind Scale (SSHWS)) to 

be 12 kt when only satellite data is used and 8 kt when a combination of satellite and aircraft 

reconnaissance data are used (Landsea & Franklin, 2007). These values increase to 14 kt and 11 

kt respectively for major hurricanes (category-3, -4, and -5 on the SSHWS). Errors in minimum 

central pressure values of minor hurricanes are 8 mbar, increasing to 10 mbar for major 

hurricanes. The data for this project range from 2003 through 2019 so larger errors associated 

with older measurements (pre-satellite) are not a concern. 

 3.1.4 Summary of Tropical Cyclone Data 

 The EBTRK dataset is a summation of HURDAT2, with the addition of four parameters: 

radius of maximum wind speed, eye diameter (if applicable), pressure of the outer closed isobar, 

and radius of the outer closed isobar, This dataset is freely available from CSU’s Regional and 

Mesoscale Meteorology Branch. Its structure is the same as HURDAT2, with additional columns 

for the new parameters. RMW first became available in EBTRK for hurricanes in 2003 which is 
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why the project begins with data from that year. Data for this project go through 2019 because 

this was the final year in which hurricane data was available within HURDAT2 and EBTRK at 

the beginning of data collection in spring 2021. 

3.2 Oceanic Data from Argo Floats 

 3.2.1 Background on Argo Floats 

 The second source of data for this project is Argo floats, for the purpose of understanding 

upper-ocean structure prior to the arrival of hurricanes. The Argo program consists of an array of 

floats that are scattered around the world’s oceans. It is an international collaboration headed by 

the Argo Steering Team. The program began in 2000, and as of September 2022 there are 3,885 

operational floats collectively maintained by 23 countries (NOAA Atlantic Oceanography 

Meteorological Laboratory (AOML) Physical Oceanography Division (PhOD)). Figure 6 shows 

the global spatial distribution of these floats, color coded by the individual country responsible 

for its deployment and upkeep. 

 

Figure 6: The global spatial distribution of all 3,885 operational Argo floats as of September 

2022. Floats are represented by dots that are color coded based on the country responsible for 

its operation. Image generated by ocean-ops.org. 
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3.2.2 Explanation of Argo Float Data Collection Process 

 The majority of Argo floats operate as conductivity, temperature, and depth (CTD) 

profilers. Other types of Argo floats include biogeochemical (BGC) floats. In addition to 

gathering CTD data, BGC floats are equipped with additional sensors to record parameters such 

as oxygen concentration, nitrogen concentration, pH, chlorophyll-a, suspended particles, and 

downwelling irradiance (Biogeochemical Argo, 2021). However, only data from standard CTD 

measurements are used in this study. 

 Argo floats are usually deployed into the ocean via ship, but can also be deployed from 

aircraft. Once deployed, the float descends to a depth of 1,000 m at a rate of around 10 cm s-1. 

Upon reaching this depth, the float maintains depth and travels along with ocean currents for 

roughly nine days. At this point, the float further descends to 2,000 m before beginning a slow 

ascent back to the sea surface. During its ascent, the float records data with onboard sensors. 

Conductivity measurements are used to derive salinity in practical salinity units (PSU), and 

pressure measurements are used to derive depth. Once a float reaches the surface, it is located via 

a global positioning system, at which points it transfers the data recorded during its ascent to a 

data acquisition center (DAC). After the transfer process is complete, the floats descends back to 

1,000 m to begin this process that it will repeat for the remainder of its life (Jayne et al., 2017). 

 The vertical movement of each float is controlled by an internal oil pumping mechanism 

(NOAA AOML PhOD). Each float is equipped with a compartment that stores oil. While this oil 

is located in the internal compartment, the float will descend as it is less buoyant than the 

surrounding waters. When the float reaches the depth where it is ready to begin its ascent, oil is 

pumped into an external bladder, increasing the float’s buoyancy and allowing it to rise to the sea 

surface. 
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 3.2.3 Quality Control Process of Argo Float Data 

 Once data from a float arrives at a DAC, it undergoes a strict quality control (QC) 

process consisting of 18 tests listed in Table 1. The primary goal of these tests is to ensure no bad 

data becomes available for download (Wong et al., 2013). Sensors and floats that return profiles 

with data that do not pass all these tests are flagged in case the float and/or sensor are no longer 

viable. The first 17 tests are automated and completed by computers at the DAC. The 18th and 

final test is a visual QC test performed by an expert. Since this test is more time consuming and 

the automated tests are more than likely to catch any errors, the visual QC test is performed as 

assurance once the data have already been made available. Once data from a profile has passed 

these tests, it is sent onward to both of Argo’s global data assembly centers (GDACs) located in 

Monterey, California and Brest, France. At this stage, data become available for download to the 

public. Ideally, data will make it through each of the first 17 QC tests and become available for 

download within 24 hours from the transmission from the float. CTD data from Argo float 

profiles is highly accurate. The error for temperature measurements is ±0.002 °C, and the 

pressure measurements having an error of ±2.4 dbar (University of California, San Diego). The 

error associated with salinity values from conductivity measurements is ±0.01 PSU. 
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Table 1: A list of the 18 QC tests completed on Argo data. The list is in chronological order of 

test completion. 

 

 

3.2.4 Calculation of Oceanic Parameters from Argo Floats  

There are no designated depths at which data is collected by an Argo float. As such, 

measurements of temperature and conductivity are taken at arbitrary depths about every two 

meters. For example, data within a profile may be collected at 10.26 m, 12.94 m, 14.68 m, and so 

on. To adjust for this unevenness, an interpolation was performed on each Argo float profile so 

that temperature and conductivity are at integer depths. Figure 7 shows an example Argo float 

profile with the interpolated depths and temperatures laid over the raw values. Due to the nature 

of the hardware, Argo floats are unable to record data right at the air-sea boundary. For the 

majority of profiles, the shallowest measurement ranges anywhere from about one to eight 

meters. After the interpolation of each profile was complete, the shallowest 1 m depth interval 



27 

 

was determined and any missing values between that depth and the surface were added on using 

values from that shallowest interval. 

 

Figure 7: An example Argo float profile with red circles showing the raw temperature/depth 

measurements and the black line with black dots showing the interpolated temperature/depth 

values (every one meter). 

Four of the ten parameters of interest are oceanic parameters calculated using data from 

Argo float profiles. These four parameters are the ITLD, IPLD, BLT, and N. The ITLD is often 

defined as the depth at which the ocean temperature is 0.5 ℃ lower than the SST (e.g., Price et 

al., 1986; Kelly & Qiu, 1995; Obata et al., 1996). In calculating this parameter, the first step was 

to determine the temperature of the ITLD which was done with the equation: 

 ITLDtemp = SST – 0.5 

where ITLDtemp is the temperature of the ITLD. The index of the ITLDtemp value in the 

temperature profile was then used to find the corresponding depth to determine the ITLD. The 

IPLD is defined as the depth at which the ocean potential density is equal to the sea surface 
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potential density plus 0.03 kg m-3 (Thomson & Fine, 2003). The potential density at the IPLD 

was calculated with the equation: 

 IPLDpdens = SSpdens + 0.03 

where IPLDpdens is the potential density at the IPLD and SSpdens is the potential density at the sea 

surface. The index of the IPLDpdens was then used to locate the associated depth to determine the 

IPLD. The BLT is equal to the vertical distance between the ITLD and IPLD, and was calculated 

with the equation: 

 BLT = ITLD – IPLD 

Figure 8 shows the upper 100 m of an Argo float profile with markings for the ITLD, IPLD, and 

BLT.  

 

Figure 8: An example of the temperature profile of an Argo float from the surface to 100 m 

depth. The black line represents temperature, the red line indicates the ITLD, the blue line 

indicates the IPLD, and the shaded yellow section shows the barrier layer. 
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3.3 Oceanic Data from Satellites 

3.3.1 Overview of Satellites 

 The development of satellite remote sensing in the early 1970s drastically altered the way 

scientists could observe the Earth, as satellites were able to record data over large areas in 

relatively short periods of time. While earlier satellites like Landsat-1 were focused on obtaining 

measurements over land, the National Aeronautics and Space Administration’s (NASA’s) Seasat 

became the first oceanographic-focused satellite when it was launched into orbit in 1978 (Born et 

al., 1979). Though Seasat was only operational for three months, it set a precedent for the 

capabilities of oceanographic satellites to come. 

 Satellites can carry a wide array of sensors to accomplish a multitude of tasks. Each of 

these sensors falls into one of two fundamental categories: active or passive. The difference 

between active and passive sensors is the source of the signal they receive. Active sensors emit 

their own signal and make observations based on the reception of that signal as it returns to the 

satellite. Passive sensors take measurements based on signals emitted or reflected by the Earth 

itself. The only satellite parameter used in this project is SST, used to determine oceanic cooling. 

SSTs are measured by a radiometer, a passive sensor which measures electromagnetic radiation 

emitted from the sea surface. From these measurements, SST is derived through a series of 

algorithms (Maurer, 2002). Notable radiometers include the Advance Very High Resolution 

Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the 

Visible Infrared Imaging Radiometer Suite. 

 3.3.2 NASA JPL GHRSST Level 4 SST Analysis Product 

 The third and final source of data for this project will be NASA’s Jet Propulsion 

Laboratory’s (JPL’s) Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 
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SST Analysis product. Data available from this product are nighttime skin measurements from 

an array of sensors including MODIS onboard Terra and AVHRR-3 onboard NOAA-19. The 

data recorded by these sensors is first gridded, then an optimal interpolation is performed to fill 

in any gaps (GHRSST Science Team, 2010). The dataset features global coverage of Earth’s 

surface with data available from 1 June 2002 onward (JPL Multi-scale Ultra-high Resolution 

(MUR) MEaSUREs Project, 2015). The spatial resolution of the data provided is 0.1 ° longitude 

by 0.1 ° latitude (111 km by 111 km), with a temporal resolution of one day. As with the last two 

sources, this data is free to access and can be obtained from NASA’s JPL’s Physical 

Oceanography Distributed Active Archive Center. 

3.4 Methods 

 3.4.1 Data Collection 

 The first step was to identify TCOPs in EBTRK where the maximum sustained wind 

speed was at least category-1 status (≥64 kt). This was necessary because EBTRK and 

HURDAT2 both contain data on tropical storms and tropical depressions in addition to 

hurricanes. Once these TCOPs had been isolated, if possible, they were matched with an Argo 

float profile that was used to provide the upper ocean conditions prior to the arrival of the 

hurricane. There were two criteria for an Argo float profile to be matched with a TCOP. The first 

being that the location of the Argo float must be within a distance of four times the radius of 

maximum winds (4xRMW) from a given TCOP. The second condition was that the Argo float 

recorded that profile no earlier than ten days before the arrival of the hurricane. These criteria 

ensured that the profiles used were representative of the oceanic conditions at the location of and 

leading up to the arrival of the hurricane. If multiple Argo float profiles matched with a single 

TCOP, only the float closest to the hurricane’s RMW was retained as waters closest to the RMW 
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are likely more influenced by the system. If an Argo float profile matched with multiple TCOPs, 

only the match with the shortest distance between the float and TCOP was kept. TCOPs that did 

not match with any Argo float profiles were discarded. 

 The final step in data collection was to gather satellites SSTs for the time and location of 

each Argo float profile that had been retained. SSTs were gathered for the seven days leading up 

to, the day of, and the seven days following each TCOP. These SSTs were used to derive surface 

cooling (ΔSST) at the location of the Argo profile. Following Zhang et al. (2019), ΔSST is 

defined as the post-storm SST minus the pre-storm SST, with the post-storm SST being the 

average SST from days -7 through -2, and the post-storm SST being the SST for day +2. For 

reference, day 0 is the day associated with the TCOP. 

SST and ΔSST were defined using satellite data instead of data from Argo float profiles 

for several reasons. For one, it allows for consistency among SST measurements across all of the 

data points. As mentioned above, the shallowest depth value in the Argo floats ranged from one 

to eight meters. If SSTs were to be derived from the Argo float profiles, then some SST 

measurements would be extrapolations from 8 m depth. Satellite data ensures an accurate, skin-

level temperature measurement of the sea surface. Additionally, if Argo SSTs were used to 

define pre-storm SSTs, then ΔSST values would be the difference of two different products: Argo 

float profiles (pre-storm SST) and satellites (post-storm SST). Since satellite SSTs are necessary 

to determine the post-storm SST, then it is best practice to also obtain the pre-storm SST using 

the same product so uncertainties associated with different products do not need to be 

considered. 

 A list of all the parameters gathered or calculated for this project is shown in Table 2. 

After data collection was complete, a dataset matrix was constructed to house all the data. Each 
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row in the matrix represented an individual event, with single values for each of the parameters 

from Table 2. Once the dataset had been constructed, linear regression, principal component 

analysis (PCA), analysis of variance (ANOVA), and multilinear regression (MLR) were 

performed to look for relationships between the parameters and ΔSST. To address Hypothesis 3 

regarding how the statistics would change with different distance metrics, three other datasets 

were constructed. The original dataset contained data within 4x the RMW (all data). The other 

three only contained the data within 3x, 2x, and 1xRMW. 

Table 2: A list of the parameters gathered or calculated from the three sources of data, along 

with respective abbreviations and units. 

 

 

3.4.2 Statistical Analysis 

 The preliminary method of statistical analysis was linear regression. For each TCOP, the 

ΔSST of that event was run against the remainder of the parameters listed in Table 2. These 

analyses provided the significance of the relationship between each parameters and ΔSST, as well 

as the amount of variance in ΔSST that could be attributed to each individual parameter. The 
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second method of statistical analysis was PCA, the purpose of which being to reduce the 

dimensionality of the datasets in an effort to simplify interpretation and identify parameters that 

work in tandem to contribute to oceanic cooling. When a PCA is performed, a series of modes 

are created, with the number of modes being equal to the number parameters being analyzed. 

Each mode is associated with an eigenvalue, as well as an eigenvector. An eigenvalue represents 

the amount of variance explained by a given mode. The first mode will have the largest 

eigenvalue and subsequent modes will have a lower eigenvalues. Each mode is also associated 

with an eigenvector, with each value in that vector acting as a loading for one of the parameters 

in the PCA. Parameter values from the original dataset can then be multiplied by their respective 

loading values for a given mode to yield a PCA score for said mode. A loading that is further 

from zero will have a greater impact on its respective PCA score. In addition to analyzing 

loading values for parameters within each mode, select mode scores form the PCA were 

scattered and color coded by hurricane category to identify any possible trends between 

hurricane category and mode scores. The spatial distributions of mode scores within the basin 

were also examined to identify potential relationships. Furthermore, ANOVA tests were 

performed to identify differences in mode scores between different months. The spatial 

distribution of different mode scores was also plotted to identify spatial trends of these scores 

within the North Atlantic basin. 

 The third method of statistical analysis on ΔSST was ANOVA. The benefit of an 

ANOVA test is that it allows for the testing of statistical differences among categorical data as 

opposed to quantitative data. In this project two ANOVA tests were run on ΔSST, one binning by 

month and the other binning by hurricane category. The purpose of these tests being to identify 

whether more cooling occurred during different times in the hurricane season, or between 
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hurricanes of different categories. The fourth and final method of statistical analysis came 

through the development of a MLR model, with ΔSST acting as the outcome variable. Chosen 

predictor variables were those that had the greatest influence on ΔSST based on the linear 

regressions and PCA. The goal was to develop a MLR model that could explain the most 

variance in ΔSST, using the fewest number of predictor parameters. 

3.5 Examination of Data 

 There are 275 TCOPs spanning 67 hurricanes in the North Atlantic basin between 2003 

and 2019 that are used in this study. The tracks of these hurricanes are presented in Figure 9. 

Each of these 67 hurricanes have at least one TCOP that was matched with an Argo float profile 

providing the pre-hurricane oceanic conditions. An example of the completed matching process 

for Hurricane Igor (2010) can be seen in Figure 10. The spatial distribution of all 275 TCOPs and 

their associated Argo float profiles is shown in Figure 11. The average distance between TCOPs 

and their associated Argo floats is 111.6 km with a standard deviation of 88.5 km. The median 

distance between TCOPs and their floats is 90.4 km. The shortest distance between a TCOP and 

Argo float is 12.5 km, which occurred with Hurricane Jeanne (2004). The greatest distance is 

716.4 km, associated with Hurricane Michael (2018). 
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Figure 9: Tracks of the 67 hurricanes in the North Atlantic basin that have at least one TCOP 

used in analysis. 

 

Figure 10:The track of Hurricane Igor (2010) along with the 13 Argo float profiles that matched 

with particular TCOPs. The blue line represents the track with blue squares indicating TCOPs. 

Argo float profiles are represented by red dots. 
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Figure 11: The spatial distribution of TCOPs and their associated Argo float profiles. Blue 

squares indicate TCOPs and red squares indicate Argo float profiles. 

 

The data points not only span a wide geographic area, but also a large timeframe. A 

histogram of the data points by year and month can be seen in Figures 12a and 12b respectively. 

There is at least one data points per year from 2003 through 2019. The average number of data 

points per year is 16.2 with a standard deviation of 9.9. The majority of data points are present in 

the years 2010 (37) and 2017 (36). Conversely, the years with the least data points are 2013 (1) 

and 2007 (2). The three months with the most data points are September, October, and August 

with 138, 67, and 51 data points each. This is followed by July with 9, November with 6, 

December with 3, and June with 1. The data also cover the full range of hurricane categories on 

the SSHWS, though the distribution is not even. A histogram of hurricane category is shown in 

Figure 13. Most of the data comes from minor hurricanes, with 158 data points belonging to 

category-1 hurricanes and 58 to category-2 hurricanes. The remaining 21.5% of data come from 
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major hurricanes with category-3, -4, and -5 hurricanes having 39, 19, and 1 data points 

respectively. 

 

Figure 12: A histogram of the number of data points by (a) year and (b) month. 

 

 

Figure 13: A histogram of the number of data points by hurricane category on the SSHWS. 
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 As mentioned prior, satellite SSTs were gathered at each data point for the seven days 

leading up to, the day of, and the seven days following each hurricane. Figure 14a shows a 

timeseries of the change in SST from day -7 for each data point to help visualize the onset and 

development of each cold wake. The average ΔSST of all the cold wakes was 1.1 °C with a 

standard deviation of 0.9 °C. The greatest cooling was 4.8 °C underneath Hurricane Danielle 

(2010) when it was a strong category-2 hurricane (Vmax = 95 kt). The least amount of cooling was 

actually 1.1 °C increase in SST after the passing of Hurricane Gordon (2006) which was also a 

category-2 hurricane at the time (Vmax = 85 kt). Figure 14b shows average SST change for the 

four datasets (4x, 3x, 2x, and 1xRMW), having 275, 205, 137, and 38 data points respectively.

 

Figure 14: (a) SST change and average SST change from day -7 for day -7 through +7 for all 

data. Different colored lines indicate the each of the 275 data points. The black line with white 

dots represents the average SST change of all 275 data points. (b) Comparison of the average 

SST change from day -7 for data within different distance ranges from the hurricane center. The 

blue line (4xRMW) is equal to the black line with white dots in 14a. 
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4. RESULTS 

 

4.1 Linear Regression 

 Table 3 shows the p-values and r2 values associated with linear regressions of ΔSST 

against each of the ten hurricane and oceanic parameters listed in Table 2. The 4x, 3x, and 

2xRMW datasets each have the same seven parameters that yield statistically significant 

relationships with ΔSST (p-value < 0.05). These are Vmax, Pmin, Uh, LUh
-1, ITLD, IPLD, and N. 

The three remaining parameters (RMW, LatTC, and BLT) do not have statistically significant 

relationships with ΔSST. In the 1xRMW dataset, just three parameters have statistically 

significant relationships with ΔSST. These three parameters are Pmin, Uh, and LUh
-1. Of the three 

datasets in which the same seven parameters have statistically significantly relationships with 

ΔSST (4x, 3x, 2xRMW), parameters in the 2xRMW dataset can explain the most variance in 

ΔSST. Because of this, the remaining results from statistical analyses are focused on this dataset. 

Comparison of how these results differ among the other datasets is touched on in the discussion. 

Table 3: P-values and r2 values from linear regressions on data within 4x, 3x, 2x, and 1xRMW. 

The numbers in parentheses indicate the number of datapoints in each dataset. The total r2 

values do not include Uh or RMW because those are considered in LUh
-1. 
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Figure 15 shows graphs of the linear regressions of ΔSST with the four hurricane 

parameters that have statistically significant relationships with ΔSST. Each of these regressions 

come from data in the 2xRMW dataset. The parameter that is able to explain the most variation 

in ΔSST is LUh
-1 with an r2 value of 0.173. The next two parameters that explain the most 

variance in ΔSST are Uh (which is considered in LUh
-1) and Pmin with r2 values of 0.158 and 0.093 

respectively. The other hurricane strength metric, Vmax, has an r2 value of 0.033 for comparison. 

Figure 16 depicts the linear regression graphs of all four oceanic parameters with ΔSST. Three of 

the four oceanic parameters considered have statistically significant relationships with ΔSST. 

This includes ITLD, N, and IPLD with r2 values of 0.058, 0.054, and 0.03 respectively. BLT 

yielded an insignificant p-value of 0.74, corresponding with an r2 value of << 0.001. 

 

Figure 15: Linear regression of ΔSST with the statistically significant hurricane parameters (a) 

Vmax, (b) Pmin, (c) Uh, and (d) LUh
-1. The red line represents the line of best fit, and the blue lines 

indicate the 95% confidence interval. 
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Figure 16: Linear regression of ΔSST with the oceanic parameters (a) ITLD, (b) IPLD, (c) BLT, 

and (d) N. The red line represents the line of best fit, and the blue lines indicate the 95% 

confidence interval. 

 

4.2 Principal Component Analysis 

 A PCA was performed on a matrix containing ΔSST, Pmin, LUh
-1, ITLD, and BLT. To 

minimize potential overlap, only certain parameters were selected for this analysis. For instance, 

only one of the two metrics for hurricane strength was included in the matrix. Because Pmin 

outperformed Vmax in the linear regressions, it was retained for the PCA. Similarly, between the 

two MLD metric, ITLD outperformed IPLD and thus was chosen for the PCA. Regarding 

hurricane size and speed metrics, either LUh
-1 alone could have been included, or both Uh and 

RMW could have been included. Since LUh
-1 performed best of the three, it was selected. 
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Although results presented in the linear regression indicate BLT does not have a statistically 

significant relationship with ΔSST, it was retained for the PCA because it has been previously 

shown to be a metric that can influence hurricane-included oceanic cooling (Haakman et al., 

2019). 

Figure 17 shows the percentage of variance explained by all five modes of the PCA. 

Mode 1 is able to explain 31.8% of the variance, with the first three modes combining to explain 

77.1%. Table 4 shows the loading values for each individual parameter for all five modes of the 

PCA. Mode 1 described the relationship between ΔSST, Pmin, LUh
-1, and ITLD. Principally, high 

mode 1 scores refer to conditions where significant cooling resulted from a strong hurricane that 

had a considerable amount of time to generate mixing in the upper ocean, and a shallow 

isothermal layer beneath the storm. Mode 2 describes the relationship between ΔSST, Pmin, ITLD, 

and BLT. High mode 2 scores refer to conditions where some cooling occurred to the presence of 

an exceptionally powerful hurricane over a thick barrier layer and a deep isothermal layer. 

 

Figure 17: The percentage of total variance explained by all five modes of the PCA. 
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Table 4: The loading values of each parameter for all five modes of the PCA. 

 

 

Similar to mode 1, mode 3 describes the relationship between ΔSST, Pmin, LUh
-1, and 

ITLD. High mode 3 scores refer to conditions where a strong hurricane with ample time to mix 

the upper ocean while translating over a deep isothermal layer had no effect on oceanic cooling. 

Similar to mode 2, mode 4 describes the relationship between ΔSST, LUh
-1, ITLD, and BLT. High 

mode 4 scores refer to conditions where an intense hurricane translating over a shallow 

isothermal layer and deep barrier layer also has no impact on oceanic cooling. Lastly, mode 5 

describes the relationship between ΔSST, Pmin, LUh
-1. High mode 5 scores refer to conditions 

where significant cooling occurred under a weak hurricane that had minimal time to mix the 

upper ocean. 

Figures 18 and 19 offer a visual comparison of different mode scores versus one another. 

Figure 18 shows the scatter plot of mode 1 scores versus mode 2 two scores, color coded by 

hurricane category. From this figure, it can be seen that category-1 and category-2 hurricanes 

cover the full range of mode 1 scores, although category-1 hurricanes are more concentrated 

towards the lower scores. Major hurricanes, particularly category-4 and category-5 storms, have 

little variation in mode 1 scores and are concentrated near the center. Regarding mode 2, it 

appears that scores increase with hurricane category, with the exception of a handful of category-

2 and category-3 hurricanes claiming the highest mode 2 scores. 
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Figure 18: Scatter plot of mode 1 and mode 2 scores from the PCA, color coded by hurricane 

category. 

 

 Similarly, Figure 19 is a scatter plot of mode 3 versus mode 4 scores, color coded by 

hurricane category. Unlike modes 1 and 2, less obvious trends exist with modes 3 and 4. This is 

more apparent with the minor hurricanes, as category-1 and category-2 storms cover a wide 

range of scores across both modes. The only exception to this potentially being that category-1 

hurricanes are slightly shifted towards having higher mode 3 scores. More identifiable trends 

exist for major hurricanes, and with category-4 and category-5 storms in particular. Major 

hurricanes appear to have lower scores across both modes, with this trend being more apparent in 

high category hurricanes, with the only category-5 hurricane in this dataset toting the lowest 

mode 3 score, and one of the lowest mode 4 scores. 
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Figure 19: Scatter plot of mode 3 and mode 4 scores from the PCA, color coded by hurricane 

category. 

 

 Additional analyses of the scores from PCA modes came in the form of ANOVA tests to 

look for statistically significant differences among across different months. The box and whisker 

plots of the ANOVA tests for the scores of mode 1, mode 2, mode 3, mode 4, and mode 5 are 

shown in Figure 20. Of the five modes, three yielded statistically significant p-values. This 

included mode 1, mode 4, and mode 5 with p-values of 0.04, <<0.01, and 0.03 respectively. 

Although the ANOVA tests revealed statistically significant p-values for mode 1 and mode 5, 

multiple comparisons tests showed there were no statistically significant differences in scores 

between any of the months. A multiple comparisons test of mode 4 revealed that scores were 

statistically different between October and July, and October and August. The p-values for mode 

2 and mode 3 scores were 0.44 and 0.34 respectively, and multiple comparisons also revealed no 

significant differences in mode scores between months. Regardless of p-values, the box and 
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whiskers plots for each of these modes indicate some identifiable trends between mode scores 

and months that will be touched upon in the discussion. 

 

Figure 20: Box and whiskers plot for the results of the ANOVA test of mode scores binning by 

month for (a) mode 1, p-value = 0.04, (b) mode 2, p-value = 0.44, (c) mode 3, p-value = 0.34, 

(d) mode 4, p-value << 0.01, and (e) mode 5, p-value = 0.03. Red lines show the median cooling 

value for each month. Horizontal blue lines on each box represent the 25th and 75th percentile 

values. Horizontal black lines show the maximum and minimum values that are not considered 

outliers. Red crosses are outlier values. 

 

4.3 Analysis of Variance on Oceanic cooling 

 ANOVA tests were performed on ΔSST to try and identify statistically significant 

differences in oceanic cooling between different months and hurricane categories on the 
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SSHWS. Figures 21 and 22 show the box and whiskers plots of these ANOVA tests for months 

and hurricane category respectively. Of the two, only the ANOVA test on ΔSST binning by 

hurricane category yielded a statistically significant result. A multiple comparisons tests revealed 

there are statistically significant differences in ΔSST between category-1 and -2 hurricanes, with 

category-2 hurricanes causing greater cooling. The ANOVA test on ΔSST binning by month 

yielded a p-value of 0.5 meaning there is no statistically significant difference in oceanic cooling 

between different months. 

 

Figure 21: Box and whiskers plot for the results of the ANOVA test of ΔSST binning by month. 

Horizontal blue lines on each box represent the 25th and 75th percentile values. Horizontal 

black lines show the maximum and minimum values that are not considered outliers. Red crosses 

are outlier values. P-value = 0.5. 
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Figure 22: Box and whiskers plot for the results of the ANOVA test of ΔSST binning by hurricane 

category. Red lines show the median cooling value for each month. Horizontal blue lines on each 

box represent the 25th and 75th percentile values. Horizontal black lines show the maximum and 

minimum values that are not considered outliers. Red crosses are outlier values. P-value << 

0.01. 

 

4.4 Multilinear Regression 

 The fourth method of statistical analysis was MLR. In an attempt to better predict ΔSST, a 

MLR model was developed using the fewest number of parameters that could explain the most 

variation in ΔSST. Figure 23 shows the percentage of variance explained in ΔSST from r2 values 

using MLR models constructed using a variety of the parameters in Table 2. Six MLRs were 

performed on ΔSST, each with an additional predictor parameters included. Parameters were 

added based on their r2 values from the single linear regressions, with those that could explain 

the most variance in ΔSST being selected first. Additionally, some parameters were not included 

as to avoid overlap (e.g., Pmin instead of Vmax, ITLD instead of IPLD). The first MLR, technically 

a single linear regression, contained one predictor parameter, LUh
-1. LUh

-1 was chosen as the first 
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parameter because based on the linear regressions, it was the single parameter that could explain 

the most variation in ΔSST (17.3%). The second MLR includes LUh
-1 and Pmin as predictor 

variables and can explain 27.4% of the variation in ΔSST. For the third, ITLD is added and the 

MLR explains 32.1% of the variation in ΔSST. The fourth, fifth, and sixth MLRs added BLT, 

then N, and finally LatTC, respectively, and explain 32.1%, 32.3%, and 32.4% of the variation in 

ΔSST. Because of the minimal increase in variance explained in the fourth, fifth, and sixth 

MLRs, the third is used to construct the MLR model with the equation: 

 ΔSSTpredict = 21.34 + 0.17(LUh
-1) – 0.021(Pmin) – 0.014(ITLD) 

where ΔSSTpredict is the predicted ΔSST value based on the input of data for the predictor 

parameters. 

 

Figure 23: The percentage of variance explained in ΔSST from MLR models containing 

increasing numbers of predictor parameters. 
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For comparison, Figure 24 shows a scatter plot of ΔSST values versus ΔSSTpredict values 

using real data plugged into the equation above. While there is still some agreement, it is clear 

that a considerable amount of variability remains in ΔSSTpredict. The average difference between 

ΔSST and ΔSSTpredict values is small at 0.006 ℃, however, the standard deviation is 0.8 ℃. 

Furthermore, there are clear differences in the range of values between ΔSST and ΔSSTpredict. The 

minimum and maximum ΔSST values from this study are -1.1 ℃ and 4.8 ℃ respectively, 

resulting in a range of 5.8 ℃. Comparatively, the minimum and maximum values of ΔSSTpredict 

are -0.1 ℃ and 2.8 ℃, yielding a range of just 2.9 ℃. 

  

Figure 24. Scatter plot of ΔSST versus ΔSSTpredict from the 2xRMW MLR with predictor 

parameters LUh
-1, Pmin, and ITLD. Blue circles indicate scattered data and the red line is a 1:1 

reference. 
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5. DISCUSSION 

 

5.1 Discussion of Linear Regression 

 Linear regressions reveal that select hurricane parameters have a larger contribution to 

oceanic cooling than each oceanic parameter considered. Focusing on 2xRMW from Table 2, the 

two parameters that can explain the most variance in ΔSST are hurricane parameters. This 

includes LUh
-1 (a function of hurricane size and translation speed) which explains the most 

variance in ΔSST, and Pmin (a function of hurricane strength) which explains the second-most 

variance. The parameters that explain the third- and fourth-most variance in ΔSST are oceanic, 

ITLD and N, respectively. The two remaining parameters with statistically significant 

relationships with ΔSST are Vmax and IPLD. Disregarding RMW because it is considered in LUh
-1, 

the two parameters that do not have statistically significant relationships with ΔSST and explain 

the least variance are LatTC and BLT. 

The trends present at 2xRMW also exist at 3x and 4xRMW, however, each parameter 

generally explains less variance at greater distances. As with 2xRMW, the parameters with 

statistically significant relationships with ΔSST at 4x and 3xRMW are LUh
-1, Pmin, ITLD, N, Vmax, 

and IPLD, with LatTC and BLT remaining insignificant yielding p-values above 0.4. Between 4x 

and 3xRMW, there is minimal difference in the percentage of variance explained in ΔSST. From 

4x to 3xRMW, the percentage of variance explained in ΔSST for LUh
-1 and Pmin increases by 

2.2% and 0.3% respectively. However, moving from 3x to 2xRMW, these values increase by 5% 

and 2.8% respectively. With ITLD and Vmax, there are actually decreases in the percentage of 

variance explained in ΔSST from 4x to 3xRMW. These decreases are 0.8% for ITLD and 0.2% 

for Vmax. As with LUh
-1 and Pmin, there are noticeable increases in these values moving from 3x to 
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2xRMW. In these scenarios, the percentage of variance explained in ΔSST increased by 1.3% for 

ITLD and 1% for Vmax. The trend of less variance explained at further distances is intuitive, 

because at some distance from the hurricane center the system will have no impact on the ocean. 

Based on data from 2x to 4xRMW, it seems there is a substantial decrease in the contribution of 

these parameters at distances greater than 2xRMW. When attempting to utilize hurricane and 

oceanic data to predict oceanic cooling, a higher level of accuracy can be achieved if the data 

used are within 2xRMW. 

  Results from 1xRMW vary greatly in comparison to those from 2x, 3x, and 4xRMW. At 

1xRMW, just two parameters had statistically significant relationships with ΔSST: LUh
-1 and 

Pmin, with LUh
-1 explaining 27.1% of the variance in ΔSST and Pmin explaining 16%. From 2x to 

1xRMW the percentage of variance explained in ΔSST for these parameters increases by 9.8% 

and 6.7% respectively. ITLD, the parameter that can explain the most variance in ΔSST of all 

oceanic parameters considered, had a significant decrease in variance explained from 2x to 

1xRMW, decreasing by 3.4%. In this study, just 38 data points are present within 1xRMW which 

could potentially lead to findings that may not fully encompass the relationship between the 

parameters of interest and ΔSST within 1xRMW. Considering data from 4x to 1xRMW, these 

values support the importance of utilizing hurricane data closer to the hurricane center to achieve 

the best predictions of oceanic cooling, and ultimately forecasting of hurricane intensity. 

 In all four scenarios, the hurricane parameters LUh
-1

 and Pmin are able to explain the most 

variance in ΔSST, supporting Hypothesis One that hurricane parameters have a greater impact on 

oceanic cooling than oceanic parameters. As such, accurate measurements of hurricanes 

parameters, principally strength and translation speed, should be prioritized in predictions of 

oceanic cooling. Data from these linear regressions also support Hypothesis Three, which stated 
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that hurricane parameters will have a greater influence on ΔSST closer to the hurricane center. As 

the data is limited to those closer to the hurricane center, LUh
-1 is consistently able to explain 

more variance in ΔSST indicating it has a greater contribution to oceanic cooling closer to the 

hurricane center. This is also the case for Pmin. Although there was a minimal decrease in the 

percentage of variance explained in ΔSST between 4x and 3xRMW (6.5% to 6.2%), there is a 

considerable increase from 2x to 1xRMW (9.3% to 16%). Although it explains less variance than 

LUh
-1 and Pmin, this trend also existed with Vmax. At 4x, 3x, 2x, and 1xRMW, Vmax explains 2.5%, 

2.3%, 3.3%, and 7.5% of the variance in ΔSST respectively. This supports the notion that 

hurricanes parameters can explain a greater amount of variance in ΔSST closer to the hurricane 

center, particularly within 2xRMW. 

 Hypothesis Three also stated that oceanic parameters would become more important 

further from the hurricane center. However, this does not appear to be the case. For the oceanic 

parameters considered, there were either minimal differences in r2 values from 4x to 1xRMW, or 

increases from the 4x to 1xRMW as with the hurricane parameters. Beginning with ITLD 

because it is the most important oceanic parameter to ΔSST, it explains 5.3%, 4.5%, 5.8%, and 

2.4% of the variance in ΔSST at 4x, 3x, 2x, and 1xRMW respectively. These values reveal no 

clear trend in the contribution of ITLD at varying distances from the hurricane center. Thus, if 

taking the three most important parameters LUh
-1, Pmin, and ITLD into consideration, any 

differences in the percentage of variance explained in ΔSST between different datasets (varying 

distances from the hurricane center) can only really be attributed to the hurricane parameters. 

The other two oceanic parameters with statistically significant relationships with ΔSST (IPLD 

and N), had similar trends to the hurricane parameters in that r2 generally increased moving 

closer to the hurricane center. Moving from 4x to 1xRMW, IPLD explains 2.3%, 2.3%, 3%, and 
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7% of the variance in ΔSST respectively. From 4x to 1xRMW, N explains 3.7%, 3.6%, 5.4%, and 

6% of the variance in ΔSST. 

 Within Table 2, there are two parameters used to define hurricane strength: Pmin and Vmax. 

Vmax is often the preferred metric for conveying the strength of a hurricane. The NHC, Japan 

Meteorological Agency, Fiji Meteorological Service, and India Meteorological Department all 

classify TCs into categories solely based on variations of Vmax. The results of the linear 

regressions in this study indicate that for cooling beneath hurricanes, Pmin is consistently a better 

metric than Vmax. At 1x, 2x, 3x, and 4xRMW, Pmin explains over twice as much variance in ΔSST 

as Vmax. One reason for this difference could be due to the accuracy in measurements of both Vmax 

and Pmin. Measurements of Vmax, particularly those obtained through aircraft reconnaissance, tend 

to much more variable in comparison to Pmin measurements from aircraft reconnaissance or 

dropsondes (Rosendal, 1982). As such, Pmin values being more reliable than those for Vmax is one 

possible explanation as to why Pmin exhibits a stronger statistical relationship with ΔSST 

compared to Vmax. Until more reliable Vmax values can be obtained within hurricanes, Pmin appears 

to be the best strength metric in relation to oceanic cooling, and therefore may be more useful in 

predicting changes in hurricane intensity.  

Also within Table 2 are two separate metrics of MLD, ITLD and IPLD. At 4x, 3x, and 

2xRMW, ITLD outperformed IPLD in explaining more variance in ΔSST. Although IPLD 

outperformed ITLD at 1xRMW, it should be noted that p-vales of these linear regressions with 

ΔSST were both greater than 0.05 (0.35 for ITLD and 0.11 for IPLD). Thus, it appears that the 

ITLD is better metric for determining oceanic cooling than IPLD. One possible explanation is 

that ITLD is a function of temperature while IPLD is a function of density. Because ΔSST is a 

measure of changes in surface temperature, the temperature defined mixed layer depth ITLD may 
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be expected to have a stronger correlation with ΔSST than the density defined mixed layer depth 

IPLD. 

The results of the linear regressions of N with ΔSST in all four datasets produced 

interesting results. At 4x, 3x, and 2xRMW, N has a statistically significant relationship with 

ΔSST, with r2 values inferring that it is the fourth-most important parameter in predicting ΔSST, 

and the second-most important oceanic parameter behind ITLD. Although the p-value for N at 

1xRMW is not statistically significant, the r2 value still denotes some importance (remains 

fourth-most parameter and second-most important oceanic parameter). Focusing on data at 4x, 

3x, and 2xRMW because of the statistical significance, the results are interesting because the 

trend of the linear regressions suggests that greater cooling occurs when N is larger, or more 

simply, when the water column is strongly stratified. This result is counterintuitive because on a 

fundamental level, increased stratification in the water column limits the vertical mixing of water 

masses (Guancheng et al., 2020). Therefore, the expected result would be greater cooling in 

situations where N is small, or when stratification is weak and vertical mixing is more likely to 

ensue. 

However, there are two main effects that stratification can have on oceanic cooling, only 

one of which is described above. While the first relates to physical mechanisms causing vertical 

mixing and subsequent cooling (or lack thereof), the second is founded on thermodynamics. 

When a water column experiences strong stratification, there is generally a large temperature 

difference between the surface and depth. In this scenario, for the same level of vertical mixing, 

there is a greater transfer of heat from surface to depth in more stratified waters resulting in an 

enhanced observed cooling at the sea surface. Therefore, in circumstances where there is 

stratification with a considerably large vertical temperature gradient, surface cooling can occur 
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even if vertical mixing from atmospheric forcing is limited. The results of the linear regressions 

suggest that although vertical mixing from surface forcing was reduced due to increased 

stratification denoted by larger N values, surface cooling was still observed and could potentially 

be due to an enhanced transfer of heat downward from the surface to depth. 

5.2 Discussion of Principal Component Analysis 

5.2.1 Discussion of Mode Scores 

 The PCA gives a closer look at which parameters work together to moderate oceanic 

cooling. In mode 1 of the PCA at 2xRMW which has a significantly large loading value for ΔSST 

(0.68), the parameter with the strongest loading value is the hurricane parameter LUh
-1, with a 

value of 0.52. Following this is the oceanic parameter ITLD with a loading value of -0.38. This 

result indicates that in situations where significant oceanic cooling occurs, the hurricane has a 

substantial time to mix the upper ocean in addition to the vertical mixing not having to occur as 

deep due to the presence of a shallow isothermal layer. Furthermore, a long LUh
-1 and a shallow 

ITLD contribute more to oceanic cooling than the storm strength Pmin which has a loading value 

of -0.29 in mode 1. The largest mode 1 score from the dataset is 3.86. This datapoint represents a 

scenario where an oceanic cooling of 4.8 ℃ occurred beneath a hurricane with a Pmin of 950 

mbar, an LUh
-1 eight hours, and over an ITLD of 23 m. For comparison, the average ΔSST, Pmin, 

LUh
-1, and ITLD values from this dataset are 1.2 ℃, 967 mbar, five hours, and 44 m respectively. 

These results generally support Hypothesis Two in that greater cooling occurs under strong 

hurricanes translating over shallower isothermal layers with ample time to generate mixing 

beneath them. Results from this mode also align with the linear regressions, with the only 

difference being greater emphasis placed on ITLD than Pmin. This mode, which can explain the 

most variance, confirms that LUh
-1 has the strongest relationship with ΔSST, and that Pmin and 
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ITLD are also of importance and should be taken into consideration for predictions of ΔSST and 

changes in hurricanes intensity. 

 In mode 2 of the PCA in which there is a moderate cooling response (ΔSST loading value 

= 0.17), Pmin is the dominant hurricane parameter (loading value = -0.63). Interestingly, the 

strongest loading value of all is 0.68 for BLT. The third most important parameter in this mode is 

ITLD with a loading value of 0.32. These results indicate that some degree of cooling may still 

occur where a powerful hurricane translates over a large barrier layer and deep isothermal layer. 

On a fundamental level, a larger barrier layer and deep isothermal layer are not conducive for 

oceanic cooling as greater vertical mixing would be required to stir up cooler waters from below. 

The highest mode 2 score is 3.59, associated with a stronger hurricane (Pmin = 957 mbar) that 

translated over a large barrier layer (BLT = 72 m) and deep isothermal layer (ITLD = 76 m) that 

caused a cooling of 1.1 ℃. For comparison, the average BLT in this dataset is 15 m. Here, the 

scenario with the highest mode 2 score actually resulted in a less than average cooling. Even 

though the hurricane was stronger than average, the cooling response was likely mitigated by the 

very thick barrier layer and deep isothermal layer. Taking a step back to examine the entire 

dataset, because there is a considerably strong loading value for Pmin, it can be inferred that 

significantly powerful hurricanes can overcome large barrier layers and deep isothermal layers to 

still yield some amount of cooling. It is important to note that when LUh
-1 is less important as 

inferred from its loading value of -0.11, the oceanic metrics BLT and ITLD can suppress the 

oceanic cooling beneath powerful hurricanes. In regard to ΔSST predictions and hurricane 

intensity forecasts, this mode emphasizes the importance of ocean metrics in addition to 

hurricane metrics. Even if the hurricane is powerful, if it does not have ample time to generate 
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mixing, the cooling response can be greatly suppressed by oceanic conditions such as a large 

barrier layer and a deep isothermal layer. 

 Mode 3 of this PCA tells of situations in which there was an insignificant cooling 

response (ΔSST loading value = 0.05). The contributing parameters to this mode are ITLD, LUh
-1, 

and Pmin with loading values of 0.66, 0.65, and 0.36 respectively. The interpretation of these 

mode scores is that even in situations where a hurricane has a considerably long time to mix the 

upper ocean, minimal cooling can occur if the hurricane is weaker and translating over a deep 

isothermal layer. Although results from the linear regression and mode 1 indicate that LUh
-1 is 

the most important parameter in regard to ΔSST, the results from mode 3 show that a long time to 

generate mixing can be balanced out by a deep isothermal layer, particularly if the hurricane is 

weaker. The highest mode 3 score from this dataset is 2.98. In this scenario, an oceanic cooling 

of 2.7 ℃ occurred beneath a hurricane with a Pmin of 960 mbar, an LUh
-1 of 11 hours, and over an 

ITLD of 79 m. This event differs from the mode 3 loading values in that the hurricane in this case 

was stronger than average and caused a greater than average cooling. Here, a stronger hurricane 

with a considerable amount of time to generate upper ocean mixing was able to overcome a deep 

isothermal layer to produce an oceanic cooling value in the 88th percentile. The results from this 

individual hurricane highlight the importance of the hurricane parameters LUh
-1 and Pmin over 

oceanic parameters like ITLD. However, taking the entire dataset into consideration, loading 

values support the notion from mode 2 in that while oceanic parameters may be less important 

than hurricane parameters on an individual level (as in the linear regressions), they must still be 

taken into consideration as deep isothermal layers appear to balance out hurricanes with long 

times to generate mixing in order to suppress cooling, especially in circumstances where the 

hurricane is weaker. 
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Mode 4 is another mode which tells of situations with minimal cooling responses (ΔSST 

loading value = 0.02). This mode is controlled by BLT, ITLD, and Pmin with loading values of 

0.7, -0.5, and 0.49 respectively. In circumstances where there is a shallow isothermal layer, 

insignificant cooling can occur if the hurricane is weak and the barrier layer is large. The highest 

mode 4 score from the dataset is 1.77, and is associated with a weaker hurricane (Pmin = 987 

mbar) that translated over a shallower isothermal layer (36 m) and deeper barrier layer (32 m) 

causing an oceanic cooling of 1.1 ℃. Even though the ITLD is close to average, this example 

still supports the overall interpretation of the mode. A considerably weaker hurricane translating 

over a large barrier layer is unable to produce a strong cooling response, even if the isothermal 

layer is shallower than average. Conversely, a powerful hurricane translating over a thin barrier 

may produce no noticeable cooling in the presence of a deep isothermal layer. As with modes 2 

and 3, and mode 3 in particular, there is a balancing of hurricane and oceanic parameters that 

contribute to ΔSST, and a combination of hurricane and oceanic parameters should be considered 

in predictions of ΔSST and forecasts of hurricane intensity. 

The final mode, mode 5, resulted in the largest ΔSST loading value of all modes (0.71). In 

this mode, the dominant parameters are LUh
-1, Pmin, and ITLD with loading values of -0.53, 0.39, 

and 0.26 respectively. These results indicate that substantial oceanic cooling can be observed in 

situations where a weak hurricane with minimal time to generate mixing is translating over a 

deeper isothermal layer. Interestingly, these are all circumstances which are not conducive for 

oceanic cooling. The highest mode 5 score from the dataset is 1.85. During this event, an oceanic 

cooling of 3.5 ℃ (96th percentile) occurred beneath a hurricane with a Pmin of 982 mbar (82nd 

percentile) and LUh
-1 of seven hours (78th percentile) while translating over an ITLD of 64 m 

(85th percentile). The only metric that differs from the mode in this example is the LUh
-1 value 
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which is longer than average, when compared to the mode which suggests higher scores being 

associated with shorter LUh
-1 values. The overarching interpretation of the mode is that even 

under non-ideal circumstances (e.g., weak hurricane, minimal time to generate mixing, deep 

isothermal layer), a large cooling response can occur which is the opposite of the expected 

outcome. While this appears to not be the case the majority of the time, it is something that 

requires consideration when predicting ΔSST and needs addressing in future research studies. 

With ΔSST playing a considerable role in hurricane intensity forecasting, a ΔSST opposite of the 

expectation could greatly flaw hurricane intensity forecasts that utilize an expected value. There 

is great need to determine the parameters/mechanisms that can explain the remaining variance in 

ΔSST, as there are clearly other processes contributing to these cooling responses. It should be 

noted, however, that mode 5 is able to explain the least variance in ΔSST among all the modes 

(8.7%), and thereby much of this result could potentially be due to noise within the dataset. 

5.2.2 Discussion of Mode Score Scattering 

Further analysis of the PCA came through scatter plots of mode scores against one 

another, color coded by hurricane category. The first of these scatter plots includes mode 1 

scores versus mode 2 scores as seen back in Figure 18. Starting with mode 1 scores, the main 

trend is the lack of deviation from the center score with increasing hurricane category. Minor 

hurricanes cover the full range of mode 1 scores, with category-1 hurricanes skewing towards 

lower scores. Comparatively, major hurricanes are much more concentrated around the center 

value, particularly category-4 and category-5 hurricanes. High mode 1 scores are those in which 

considerable cooling occurs as result of a stronger hurricane with ample time to generate mixing 

over a shallow isothermal layer. As supported by the linear regressions, this trend indicates that 

hurricane strength is not the utmost import factor relating to oceanic cooling, with the largest 
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mode 1 scores belonging to category-1, category-2, and category-3 hurricanes. Figure 25 takes 

this examination a step further by showing the scatter plot of mode 1 scores versus mode 2 

scores, color coded by different parameters within the PCA. Figure 25a is color coded by ΔSST, 

with the trend being greater cooling values associated higher mode 1 scores. Of the remaining 

subplots, the clearest trend among mode 1 scores is in LUh
-1 (Figure 25b), with longer values also 

associated with higher mode 1 scores. While trends with mode 1 scores still exist within Pmin 

(Figure 25c) and ITLD (Figure 25d), they are not as clear as that for LUh
-1. Because of the 

emphasis placed on ΔSST in this mode, trends here support the notion that LUh
-1 is the best 

indicator of oceanic cooling beneath hurricanes. 

 

Figure 25: Scatter plots of mode 1 scores versus mode 2 scores from the PCA, color coded by (a) 

ΔSST, (b) LUh
-1, (c) Pmin, and (d) ITLD. 
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5.2.3 Discussion of Analysis of Variance on Mode Scores 

ANOVA tests were performed on scores for each of the five modes to identify 

differences between months of the North Atlantic hurricane season. The box and whiskers plots 

of these tests are shown back in Figure 20. The ANOVA tests for scores from modes 1, 4, and 5 

resulted in statistically significant p-values (p-value < 0.05). However, multiple comparisons 

tests revealed that only scores from mode 4 had statistically significant differences between at 

least two months. For this mode, there were statistically significant differences in scores between 

July and October and August and October, with July and August having higher scores than 

October. Although the other ANOVA tests and multiple comparisons tests did not reveal 

statistically significant differences between months for other mode scores, some interesting 

trends were still identifiable. 

The box and whiskers plot of results from the ANOVA test for mode 1 scores by month 

is shown back in Figure 20a. This figure appears to show that mode 1 scores are low in July, 

peak in August, and decrease throughout the remainder of the season. The principal driving 

factor for this mode is LUh
-1, followed by ITLD and Pmin. Considering the large loading value for 

ΔSST, stronger cooling responses beneath powerful hurricanes with longer times to mix the 

upper ocean that are translating over shallow isothermal layers are more prevalent mid-season 

(August, September) than early (July) or in the late (October, November) to post-season 

(December). A closer look at the seasonality of LUh
-1 at 2xRMW revealed no discernable 

temporal trend. Breaking LUh
-1 apart, it appears that slower Uh values are concentrated in August 

and increase through November. However, no clear trend exists with RMW across the hurricane 

season. Looking at ITLD, trends show shallower values present earlier in the hurricane season 

that deepen moving into cooler months. This seasonal trend is often tied to calmer conditions and 
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subsequently less vertical mixing that occurs during summer months (Diaz et al., 2021). Data 

from 2xRMW reveal that the strongest hurricanes (those with lower Pmin values) were most 

likely to occur in September, followed by August and October where hurricanes had similar 

strengths and frequencies. Ocean temperatures tend to be warmest around those months which 

may be a contributing factor to the increased likelihood of powerful hurricanes during that span. 

The cooling response is compounded by shallower isothermal layers that exist earlier in the 

season, allowing for relatively cooler waters to be stored closer to the sea surface. Furthermore, 

shorter LUh
-1 values contributing to this mode are driven by hurricane translation speed Uh more 

than hurricane size RMW. The observed seasonality of mode 1 scores where strong cooling 

occurs is mainly driven by shifts in hurricanes translation speed, depths of isothermal layers, and 

hurricane strength. 

Figure 20b shows the box and whiskers plot of results of ANOVA scores by month for 

mode 2. Somewhat similar to mode 1, the trend here appears to show greater mode 2 scores mid-

season (August, September) with lower scores in the early season (July) and late (October, 

November) to post-season (December). In this mode, the loading values indicate that some 

cooling occurs in the presence of large barrier layers, powerful hurricanes, and deep isothermal 

layers. Data from 2xRMW reveal no clear trend in BLT throughout the hurricane season, 

indicating that isothermal layers and isopycnal layers are possibly changing in similar increments 

throughout the season, as BLT is defined as the difference between these two metrics. It has 

previously been shown that isothermal layer depths and isopycnal layer depths change at 

comparable levels in the Gulf of Mexico, with both deepening as the hurricane season progresses 

(Potter & Rudzin, 2021). As mentioned with mode 1, warmer ocean waters present from August 

through October attribute to the development of stronger hurricanes, helping give rise to the 
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more powerful hurricanes that occur during these months. Also mentioned above, a clear 

seasonality trend exists for ITLD, with shallower depths occurring early in the season and 

deepening into the winter, which aligns with previous findings (Zhang et al., 2018). However, 

results from this mode indicate the occurrence of cooling in the presence of deep isothermal 

layers. Thus, the seasonality in mode 2 scores where some cooling occurs cannot be attributed to 

seasonal changes in isothermal layers. With no seasonal trend apparent in the barrier layers, the 

seasonality of mode 2 scores could be partially attributed to changes in hurricane intensity 

fostered by the seasonal changes in ocean temperature. In the presence of larger barrier layers 

and deeper isothermal layers, powerful hurricanes generated in the middle of hurricane season 

can still cause notable oceanic cooling. 

 The box and whiskers plot of the ANOVA test on mode 3 scores by month is presented 

back in Figure 20c. The trend in this figure appears to show progressively increasing mode 3 

scores throughout the hurricane season. The lowest mode 3 scores are present in the early to mid-

season (July, August) with the highest scores seen in the late (November) to post-season 

(December). High mode 3 scores indicate the presence of deep isothermal layers, long times to 

generate upper ocean mixing, and weaker hurricanes, with oceanic cooling being negligible. As 

mentioned with modes 1 and 2, 2xRMW data reveal shallower isothermal layers in the summer 

months which deepen moving into winter. The observed trend with LUh
-1 seems to be controlled 

by Uh, with slower hurricanes more prevalent in August as speeds increase throughout the 

season. Lastly, mid-season months have the strongest hurricanes, with this likely partially due to 

warmer ocean temperatures and increased tropical cyclone heat potential (TCHP) during this 

span. The higher mode 3 scores observed later in the hurricane season are likely being driven by 

the deepening of isothermal layers which mitigates any cooling response. Additionally, the 
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negligible cooling response may be due to the occurrence of weaker hurricanes (category-1), 

which are less able to generate mixing and cooling beneath them in comparison to category 2 

through category-5 hurricanes. Contrary to the deeper isothermal layers and weaker hurricanes, 

the loading value indicating longer times to generate mixing is one that would result in greater 

cooling. The negligible oceanic cooling reflected in this mode is possibly due to the balancing of 

isothermal layer depths and hurricane strength with vertical mixing generation time. Early season 

observations where low mode 3 scores exist are potentially caused by relatively shallower 

isothermal layers and stronger hurricanes competing with a limited time to generate mixing 

compared to late-season conditions where deeper isothermal layers and weaker hurricanes 

balance longer times to generate mixing. 

Results from the ANOVA test of mode 4 scores by month are shown in a box and 

whiskers plot back in Figure 20d. These appear to trend downward throughout the season, 

opposite of the trend that appeared for mode 3. The highest mode 4 scores are in July, at which 

point subsequent decreases occur moving into August, September, and October, followed by a 

slight increase in November with little to no change into December. This mode is dominated by 

BLT, followed by ITLD and Pmin which have loading values of similar magnitude. More 

specifically, high mode 4 scores are associated with larger barrier layers, shallow isothermal 

layers, and weak hurricanes. Similar to mode 3, the loading value for ΔSST denotes negligible 

cooling under these conditions. With no discernable seasonal trend associated with barrier layers, 

the seasonality of this mode is likely controlled by both isotheral layer depth and hurricane 

strength. Although shallow isothermal layers, which are conducive for oceanic cooling, are 

present in the early season, the occurrence of large barrier layers combined with generally 

weaker hurricanes results in no identifiable cooling trend. Conversely, the low mode 4 scores 
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that occur later in the season are driven by deeper isothermal layers, stronger hurricanes, and 

smaller barrier layers. The interpretation here is that even in the presence of a stronger late 

season hurricane over a small barrier layer, oceanic cooling can be suppressed by the deepening 

of isothermal layers during these months. 

Lastly, the box and whiskers plot of the ANOVA test on mode 5 scores are shown in 

Figure 20e. There does not appear to be any significant trend with these scores, although a 

decrease from July to September is visible with an increase in October that remains steady 

through December. Scores from July are similar to those in October, November, and December. 

Thus, the lowest mode 5 scores occur in August and September. Mode 5 has the largest loading 

value for ΔSST between all five modes, and it is driven by LUh
-1, Pmin, and ITLD. High mode 5 

scores, where considerable cooling occurs, are associated with hurricanes that have less time to 

generate mixing, hurricanes that tend to be weaker, and deeper isothermal layers. As mentioned 

earlier, this makes for an interesting result as none of these conditions are conducive for mixing 

and oceanic cooling. Because higher mode 5 scores are present in the early and late hurricane 

season, the oceanic cooling that occurs in these typically less-active months must be attributed to 

parameters or mechanisms that were not considered in this study. The majority of results thus far 

have suggested that ideal conditions for oceanic cooling include powerful hurricanes with long 

times to generate mixing over shallow isothermal layers. In the case of August and September 

where low scores are present, scenarios that align with mode 5 indicate even under those 

circumstances, oceanic cooling can still be restricted. 

5.2.4 Discussion of the Spatial Distribution in Mode Scores 

Continuing with the PCA, there was interest in determining if any spatial pattern existed 

in mode scores throughout the North Atlantic basin. Of all five modes, only mode 2 scores 
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appear to have some visible spatial trend, with higher scores concentrated at lower latitudes. 

Figure 26 shows the spatial distribution of these scores in the North Atlantic basin. Figure 27a 

shows a linear regression run on mode 2 scores with LatTC. The linear regression yielded a p-

value of << 0.01 and an r2 value of 0.07, indicating there is a statistically significant relationship 

between mode 2 scores and LatTC. It can be inferred from this result that moderate cooling events 

resulting from powerful hurricanes over deep isotheral layers and thick barrier layers are more 

likely to occur at lower latitudes. To further identify the cause of this trend, linear regressions 

were performed on the main contributing parameters to mode 2 (BLT, Pmin, and ITLD), in 

addition to Vmax. Results from these linear regressions revealed that BLT (Figure 27d), Pmin 

(Figure 27b), and Vmax (Figure 27c) have statistically significant relationships with LatTC, with 

stronger hurricanes (lower pressures, higher wind speeds) and larger barrier layers occurring at 

lower latitudes. Between Pmin and BLT, which were considered in the PCA, Pmin has the strongest 

relationship with LatTC with a lower p-value, and a higher r2 value of 0.062 compared to 0.029 

for BLT. To further support this argument, a linear regression of the other hurricane strength 

metric, Vmax, was included as well. This linear regression also yielded a statistically significant 

result, with an r2 value of 0.234, indicating that 23.4% of the variance in a hurricane’s maximum 

sustained wind speed could be attributed to the system’s latitude. This trend could be partially 

due to the presence of warmer ocean waters at lower latitudes that support higher heat fluxes and 

hurricane intensification. These results support the notion that the observed relationship of higher 

mode 2 scores at lower latitudes is driven by the presence of more powerful hurricanes at lower 

latitudes, with some contribution from thicker barrier layers at lower latitudes as well. 
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Figure 26: The spatial distribution of mode 2 scores from the PCA in the North Atlantic basin. 

Warmer colors denote higher scores and cooler colors denote lower scores. 

 

Figure 27: Linear regression of LatTC with (a) Mode 2 Score, (b) Pmin, (c) Vmax, (d) BLT, and (e) 

ITLD. The red line represents the line of best fit, and the blue lines indicate the 95% confidence 

interval. The p-value is << 0.01 and the r2 value is 0.07. 
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 For comparison, the spatial distribution of scores from modes 1, 3, 4, and 5 are shown in 

Figure 28. As mentioned above, no clear trends in spatial distributions appear with any of these 

modes. High mode 1 scores are associated with substantial cooling that is driven by powerful 

hurricanes with long times to generate mixing over shallow isothermal layers. The most 

important of these being high LUh
-1 values. In the 2xRMW data, there is no discernable spatial 

trend in LUh
-1, however, some trends do exist with Uh and RMW individually. The spatial 

distributions of Uh and RMW can be seen in Figures 29a and 29b respectively. From these plots, 

it can be seen that the fastest hurricanes, as well as the largest, tend to be concentrated at higher 

latitudes, with slow-moving, smaller hurricanes more likely to occur at lower latitudes. This 

breakdown is likely the reason why there is not a strong spatial trend in LUh
-1. At lower latitudes, 

longer times to generate mixing are driven by slow translation speeds but hindered by hurricanes 

being small. Comparatively, at higher latitudes, longer mixing times are controlled by larger 

hurricanes but hindered by fast translation speeds. The relationship between RMW and Uh is 

supported by a linear regression which yielded a p-value of << 0.01 and an r2 value of 0.128 

(Figure 30). Increases in a hurricane’s RMW are correlated with increases in translation speed. 

While LUh
-1 outperforms Uh and RMW in the linear regressions, these trends indicate that a 

greater emphasis may need to be placed on either Uh or RMW when predicting oceanic cooling 

beneath a hurricane. 
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Figure 28: The spatial distribution of mode scores from the PCA for modes (a) 1, (b) 3, (c) 4, (d) 

and 5. 

 

Figure 29. The spatial distribution of (a) LUh
-1 and (b) RMW. 
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Figure 30. Linear regression of RMW with Uh. The red line indicated the line of best fit, while 

blue lines show the 95% confidence interval. P-value << 0.01. 

 

5.2.5 Discussion of Mode Scores Across Datasets 

The PCA results presented and discussed thus far pertain the primary dataset of interest, 

2xRMW. Table 5 shows the loading values associated with the PCA parameters from all four 

datasets (4x, 3x, 2x, and 1xRMW) for comparison. For mode 1, there are no major differences in 

loading values for any parameter between at 4x, 3x, and 2xRMW. There are large loading values 

for ΔSST, with the LUh
-1 and ITLD acting as the two parameters with the greatest effect on ΔSST. 

However, at 1xRMW, the loading value for Pmin decreases from -0.29 (2xRMW) to -0.49, with 

the ITLD loading value increasing from -0.38 to -0.02. Additionally, the loading value for BLT 

increases from -0.17 to 0.41. The new interpretation of this mode at 1xRMW is that substantial 

cooling occurs when there is a powerful hurricane with ample time to mix the upper ocean, 

translating over a thick barrier layer. This result supports the first part of hypothesis three in that 

hurricane parameters have a greater contribution to oceanic cooling closer to the hurricane 
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center. The second part of hypothesis three which states that oceanic parameters become more 

important for cooling further from the hurricane center is also supported by these results. At 4x, 

3x, and 2xRMW, a shallow ITLD is the second most important mechanism for cooling, with 

loading values also indicating the presence of thin barrier layers. However, at 1xRMW, the ITLD 

becomes negligible, and the BLT seems to be opposite of what is conducive for cooling. The 

interpretation here is that a powerful hurricane with considerable time to generate upper ocean 

mixing is able to overcome a thick barrier layer in order to produce a large cooling response. 

 The same trends from mode 1 can be observed in mode 2, with 1xRMW exhibiting 

different results than 4x, 3x, and 2xRMW. At 4x, 3x, and 2xRMW, moderate cooling is seen in 

powerful hurricanes translating over a deep isothermal layers and thick barrier layers. The 

interpretation is that a powerful hurricane can overcome oceanic metrics not conducive for 

mixing (e.g., deep isothermal layer, large barrier layer) and still generate a cooling response. At 

1xRMW, the loading value for ΔSST becomes negative, changing from 0.17 at 2xRMW to -0.29, 

indicating less of a cooling response. Additionally, loading values for hurricane parameter LUh
-1 

and Pmin become reduced (-0.01 and -0.18) in comparison to the oceanic parameters, ITLD and 

BLT with loading values of 0.91 and 0.24 respectively. These results indicate that slightly 

stronger hurricanes with average times to induce vertical mixing will have very little effect on 

oceanic cooling if there is an anomalously deep isothermal layer and a larger barrier layer 

beneath the hurricane. In opposition to mode 1, these results do not support hypothesis three. In 

moving closer to the hurricane center, hurricane parameters resulted in less cooling. Instead, the 

lack of response in ΔSST can be attributed to the presence of deep isothermal layers and larger 

barrier layers that restricted the ability for cool waters to be mixed up to the surface. 
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 For mode 3 scores, 1xRMW also yielded different results compared to the other three 

datasets. At 4x, 3x, and 2xRMW, a negligible cooling response is observed, which can be 

attributed to large, positive loading values for ITLD, LUh
-1, and ITLD. From these results, it can 

be inferred that even if a hurricane has a long time to generate upper ocean mixing, cooling will 

be minimal if the hurricane is weaker and translating over a deep isothermal layer. At 1xRMW, 

the loading value for ΔSST decreases from 0.05 to -0.23 indicating lower than average cooling 

responses. At 1xRMW, there is also a reversal of signs in the loading values for Pmin, LUh
-1, and 

ITLD, while the loading value for BLT increases significantly. These results mean that at 

1xRMW, the presence of a strong hurricane over a shallow isothermal layer can yield lower than 

average cooling responses if the hurricane had minimal time to generate mixing, and was also 

translating over a large barrier layer. 

 Unlike modes 1, 2, and 3, mode 4 yields similar resulted in all four datasets. Within each, 

a negligible or minimal cooling response occurs, mainly due to a weak hurricane translating over 

a thick barrier layer. At 4x, 3x, and 2xRMW, however, results indicate considerably shallow 

isothermal layers. These results mean that even if a hurricane is translating over a shallow 

isothermal layer, cooling will be minimal if the hurricane is too weak and the barrier layer is 

thick. For 1xRMW, the loading value for ITLD becomes negligible, while the loading value for 

Pmin increases. In a similar manner, this indicates that regardless of the ITLD, a weak hurricane 

translating over a thick barrier is unlikely to cause significant cooling. 

 As with mode 4, there were no major differences in loading values between the four 

datasets in mode 5. For this mode, very strong cooling is observed, although none of the loading 

values for the other four parameters are conducive for cooling. In all datasets, the loading values 

from this mode indicate substantial cooling occurring below weaker hurricanes with little time to 
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generate mixing that are translating over deep isothermal layers. Additionally, the thickness of 

the barrier layer is negligible in all four datasets. 

Table 5: The loading values of each parameter for all five modes of the PCA from all four 

datasets. 

 

  

5.3 Discussion of Analysis of Variance on Oceanic cooling 

Two ANOVA tests were completed on ΔSST to identify statistically significant 

differences in oceanic cooling between different months (Figure 21), as well as different 

hurricane categories (Figure 22). The ANOVA test binning by month yielded an insignificant p-

value indicating that amount of oceanic cooling that occurs beneath hurricanes is not dependent 

on time of year. This result was present for data at 4x, 3x, 2x, and 1xRMW. Because SSTs 
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change considerably throughout the year with warmer temperatures in summer months and 

cooler temperatures in winter months, this result suggests that the pre-hurricane SST has little to 

no effect on the amount of cooling that occurs beneath a hurricane. 

The ANOVA test binning by hurricane category, however, did yield a statistically 

significant result. Further analysis with a multiple comparisons test revealed that oceanic cooling 

is greater beneath category-2 hurricanes than category-1 hurricanes, with no other statistically 

significant differences among other categories. Previous studies (Haakman et al., 2019; Lloyd & 

Vecchi, 2011) have found similar results revealing that oceanic cooling increases considerably 

between category-1 and category-2 hurricanes with no differences in cooling between category-2 

through category-5 hurricanes. One proposed explanation of this trend is the effect of the oceanic 

cooling feedback on hurricane intensity (Lloyd & Vecchi, 2011). In their paper, the authors 

suggest that water columns with strong stratification enhance cooling and act to suppress 

hurricane intensification, and conversely, water columns with weak stratification result in less 

overall cooling which supports hurricane intensification. As mentioned earlier, stratification is 

typically not conducive for cooling as it acts to inhibit vertical mixing which would limit the 

cooling response. However, when water columns are more stratified, there is generally a larger 

temperature difference between the surface and depth. Therefore, greater stratification coincides 

with larger temperature differences and larger transfers of heat from the surface to depth, 

resulting in a greater observed cooling at the surface. Lloyd & Vecchi (2011) argue that within 

their dataset, the observed oceanic cooling resulting from stratification and the enhanced vertical 

temperature gradient outweighed the reduction in vertical mixing and reduced cooling also 

brought on by stratification. This argument is supported by the ANOVA test, as well as the result 
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of the linear regression of N with ΔSST, which indicates that greater cooling occurs when N is 

larger, or when stratification is greater. 

This information can then be used to potentially explain why no statistically significant 

differences occur in oceanic cooling beneath category-2 through category-5 hurricanes. In 

theory, regardless of stratification, category-1 hurricanes are not able to produce enough cooling 

to restrict themselves from intensifying to category-2. However, category-2 hurricanes 

translating over waters with strong stratification could be more likely to generate enough cooling 

to restrain themselves from intensifying into major hurricanes. Therefore, it is possible that 

major hurricanes are more likely to be present over weakly stratified water columns where 

cooling is suppressed as they would not be able to intensify into major hurricanes if they 

generated greater cooling. By that token, there are potentially some N and/or ΔSST thresholds 

beyond which intensification to subsequent hurricane categories is unable to be maintained. A 

direction of future work could be aimed at further exploring the effects of stratification, oceanic 

feedback, and potential parameter thresholds on hurricane intensification. 

Lloyd and Vecchi (2011) also offer a second explanation in that category-2 hurricanes are 

strong enough to stir up the coldest waters. This implies that the waters stirred up to the surface 

by major hurricanes are of a similar temperature to those stirred up by category-2 hurricanes 

which would explain the similarities in ΔSST between category-2 through category-5 hurricanes. 

However, data from this study seem to support the former explanation over the latter. Figure 31 

shows the scatter plot of Vmax and ΔSST from the 2xRMW dataset, separated by hurricane 

category. Although the multiple comparisons test did not reveal statistically significant 

differences in ΔSST between category-2 through category-5 hurricanes, the scatter plot in Figure 

31 still shows what appears to be a decreasing trend in ΔSST with increasing hurricane category 



77 

 

beginning with category-2. The mean ΔSST values for category-2, -3, -4, and -5 hurricanes are 

1.8 ℃, 1.3 ℃, 1.3 ℃, and -0.4 ℃ respectively. Similarly, the maximum ΔSST values are 4.8 ℃, 

3.1 ℃, 2 ℃, and -0.4 ℃. Though not statistically significant, these values imply less oceanic 

cooling in each subsequent category past category-2. If Lloyd & Vecchi’s (2011) second 

explanation which stated that major hurricanes do not stir up colder waters than category-2 

hurricanes were true, it would be expected that there would be no noticeable differences in ΔSST 

between category-2 through category-5 hurricanes. Therefore, the trends present in Figure 31 

help support their first explanation that water column stratification and the feedback of oceanic 

cooling play a critical role in hurricane intensification beyond category-2, and that there is 

potentially some N and/or ΔSST threshold that cannot be exceeded for intensification to occur to 

subsequent hurricane categories. Future studies with more data on major hurricanes would be 

necessary to confirm or deny the existence of these trends. 

 

Figure 31: Scatter plot of Vmax and ΔSST from the 2xRMW dataset. Red lines divide data points 

by hurricane category. 
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When binning ΔSST by hurricane category, the 1xRMW was the only data set in which 

there was no statistically significant difference in cooling between any two hurricane categories. 

1xRMW. Figure 32 shows the box and whiskers plot of the ANOVA tests binning by hurricane 

category for at 4x, 3x, 2x, and 1xRMW. As with 2xRMW, there are statistically significant 

differences in ΔSST when using data for 4x and 3xRMW, with category-2 hurricanes resulting in 

greater cooling than category-1 hurricanes. However, for 1xRMW, there are no significant 

differences in cooling between any hurricane categories (p-value = 0.26). The interpretation of 

these results is that oceanic cooling close to the hurricanes center is not statistically different 

between hurricane categories, and that the cooling further from the hurricane center (4x, 3x, and 

2xRMW) is statistically higher under category-2 hurricanes than under category-1 hurricanes. 

However, although the ANOVA test was not statistically significant at 1xRMW, the observed 

trend in Figure 32d is similar to those at 4x, 3x, and 2xRMW where the greatest cooling values 

are still occurring beneath category-2 hurricanes. 
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Figure 32: Box and whiskers plot for the results of the ANOVA test of ΔSST binning by hurricane 

category for (a) 4xRMW, p-value << 0.01, (b) 3xRMW, p-value << 0.01, (c) 2xRMW, p-value 

<< 0.01, and (d) mode 4, p-value = 0.26. Red lines show the median cooling value for each 

month. Horizontal blue lines on each box represent the 25th and 75th percentile values. 

Horizontal black lines are maximum and minimum values that are not considered outliers. Red 

crosses are outlier values. 

 

5.4 Discussion of Multilinear Regression 

The final method of statistical analysis came in the form of MLR with the purpose of 

developing a MLR model that could explain the most variance in ΔSST using the fewest number 
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of parameters. The course of action was to use the parameters that had the greatest influence on 

ΔSST from the linear regressions and PCA, and develop MLR models with those until the 

addition of new parameters no longer explained more variance in ΔSST. Ultimately, a MLR 

model containing the three most influential parameters (LUh
-1, Pmin, and ITLD) was deemed best, 

explaining 32.1% of the variance in ΔSST. The addition of other parameters such as BLT, N, and 

LatTC led to a model that could explain only 0.3% more variance in ΔSST. The percentage of 

variance in ΔSST explained by the MLR models containing varying numbers of parameters is 

shown in Figure 23. 

Figure 24 shows the scatter plot of ΔSST versus ΔSSTpredict values. Based on the plot and 

differences between respective ΔSST and ΔSSTpredict values, it can be noted that the 

parameters/mechanisms not considered in this study that influence ΔSST can not only enhance 

the cooling response, but also restrict it more than what is predicted by the MLR presented here. 

For instance, the maximum ΔSST value of 4.8 ℃ has an ΔSSTpredict of 2.5 ℃. This cooling 

occurred beneath Hurricane Danielle (2010), which was a category-2 hurricane at that time with 

a Vmax of 95 kt, Pmin of 950 mbar, LUh
-1 of eight hours, while translating over an ITLD of 23 m. 

Though each of these values are conducive for oceanic cooling, the predicted cooling is still over 

2 ℃ less than the observed cooling. As such, unconsidered parameters not accounted for in this 

MLR model are still contributing to a considerable amount of cooling. The least amount of 

cooling was -1.1 ℃ (an SST increase of 1.1℃), associated with an ΔSSTpredict is 0.7 ℃. This SST 

response also occurred beneath a category-2 hurricane, Hurricane Gordon (2006), at which point 

the system had a Vmax of 85 kt, Pmin of 972 mbar, LUh
-1 of three hours, while translating over an 

ITLD of 51 m. Although these values are less conducive for cooling, a minimal cooling was still 
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expected based on the values for LUh
-1, Pmin, and ITLD. Opposite to the previous example, 

unaccounted for parameters here are actually reducing the SST response beneath the hurricane. 

The mean difference between ΔSST and ΔSSTpredict was relatively small at just 0.006 ℃ 

indicating that across the entirety of the dataset, the equation for ΔSSTpredict provided by the MLR 

outputs similar values to observed ΔSST values. However, the larger standard deviation of 0.8 ℃ 

implies that while the statistical model may perform well on average, it is much less reliable if it 

were to be used to predict oceanic cooling beneath individual hurricanes. This furthers the 

argument for the importance of determining the other parameters/mechanisms that contribute to 

ΔSST, and including those in a statistical model that would yield low mean and standard 

deviation values of the difference between ΔSST and ΔSSTpredict. A statistical model with these 

results would allow for more reliable predictions of oceanic cooling on an individual level and 

could therefore be used to assist with hurricane intensity forecasts on an individual level as well. 

As with the linear regressions, there was interest in understanding how the percentage of 

variance explained in ΔSST would change when analyzing data within varying ranges from the 

hurricane center. Following Figure 23, Figure 33 shows the percentage of variance in ΔSST 

explain by MLR models for each of the four datasets (4x, 3x, 2x, and 1xRMW). Within all four, 

the same trends exist in relation to explaining variance with in ΔSST. The combination of LUh
-1, 

Pmin, and ITLD tend to be able to explain roughly as much variance as the MLR models that also 

included BLT, N, and LatTC. 
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Figure 33: The percentage of variance explained in ΔSST from MLR models containing 

increasing numbers of predictor parameters for the four datasets. 

 

The only dataset where some differences exist is 1xRMW in which there is a noticeable 

increase in the percentage of variance explained in ΔSST with the addition of both N and LatTC to 

the MLR. In the other datasets, differences between percentage of variance explained in ΔSST in 

the MLR containing all six parameters compared to those containing just LUh
-1, Pmin, and ITLD 

are all 0.3%. In comparison, the difference at 1xRMW is 3.1%. The reasoning behind this sudden 

increase could possibly be explained by the p-values and r2 values associated with the 1xRMW 

presented in Table 3. Although parameters at 1xRMW saw the highest r2 values, several of the 

linear regressions that were statistically significant at 4x, 3x, and 2xRMW now had p-values 

greater than 0.05. Thus, increased r2 values associated with the 1xRMW may not be statistically 

significant and should be noted when interpreting these results. Furthermore, while the 3.1% 

increase is greater than the 0.3% increase in the other datasets, it is still relatively small in regard 
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to the variance explained by LUh
-1, Pmin, and ITLD. In an ideal scenario, more data collected at 

1xRMW would give a better sense of the true trends that exist between the parameters examined 

through this project with ΔSST within 1xRMW.  

Trends at 4xRMW down to 1xRMW support hypothesis three in that there would be 

improvements in the statistics (more variance explained in ΔSST ) when using data concentrated 

closer to the hurricane center. This was the expected result because at some distance from the 

storm center, the hurricane will have no effect on the ocean surface. As such, the datasets 

containing data furthest from the hurricane center (e.g., 4xRMW) would be expected to explain 

less variance in ΔSST compared to those where data is concentrated close to the hurricane center 

(e.g., 1xRMW). Focusing on the MLRs from each dataset that contain just LUh
-1, Pmin, and ITLD, 

it can be seen that the difference in variance explained in ΔSST differs from dataset to dataset. 

The smallest gap in the percentage of variance explained in ΔSST is from 4xRMW to 3xRMW, 

where there is an increase of 4%. Comparatively, the percentages of variance explained in ΔSST 

from 3xRMW to 2xRMW, and 2xRMW to 1xRMW are 8.4% and 7.5% respectively. The 

substantial increase in the variance explained in ΔSST supports earlier arguments that data closest 

to the hurricane center is best for the prediction of ΔSST, and that data outside of 2xRMW should 

be avoided if possible as there is a considerable drop off in the variance explained between 

3xRMW and 2xRMW. The impact of hurricanes on oceanic cooling is more predictable when 

data is taken from within the RMW, and becomes increasingly less predictable when data further 

from the hurricane center is used. 
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6. CONCLUSION 

 

6.1 Summary of Project 

 The overarching goal of this project was to further the understanding of the parameters 

contributing to hurricane-induced oceanic cooling (ΔSST). To accomplish this, 17 years of 

observational hurricane and oceanic data from 2003 through 2019 in the North Atlantic basin 

were analyzed using a wide range of statistical analyses. Hurricane data for this project were 

obtained from CSU’s EBTRK dataset. EBTRK is an expansive hurricane dataset that serves as 

an extension of NOAA’s HURDAT2 dataset by containing additional parameters. The majority 

of oceanic data were derived from Argo float profiles that were matched with hurricane 

observation points so that the oceanic data from the Argo float profiles resembled ocean 

conditions just prior to and in the vicinity of the hurricanes. The remaining oceanic parameter, 

ΔSST, was calculated using satellite sea surface temperatures from NASA’s JPL’s GHRSST 

Level 4 SST analysis product. 

Every hurricane observation point has a single value for each parameter in EBTRK. After 

the matching process of hurricane observation points and Argo float profiles, and the calculation 

of ΔSST, a dataset was constructed where each hurricane observation point contained its single 

values for hurricane parameters, single values for the oceanic parameters from its matched Argo 

float profile, and a single value for ΔSST. Three other datasets were then created based on the 

original dataset. The matching process for the original dataset required Argo float profiles to be 

within a distance of four times the radius of maximum winds of a hurricane. The three new 

datasets included all the data the Argo float profile was within three times the radius of 
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maximum winds, two times the radius of maximum winds, and one times the radius of maximum 

winds respectively. 

 The first method of statistical analysis was linear regression. Linear regressions were run 

on ΔSST against each of the remaining hurricane and oceanic parameters to identify those with 

statistically significant relationships with ΔSST, and how much variance in ΔSST they could 

explain. The second method was principal component analysis. This was done to identify 

parameters that may work in tandem to contribute to oceanic cooling. The third method of 

statistical analysis was analysis of variance, done to identify statistically significant differences 

in oceanic cooling across hurricane category and month. Analysis of variance was also 

performed on mode scores from the principal component analysis to identify whether there were 

statistically significant differences in mode scores across different months. The spatial 

distribution of mode scores were also plotted to identify any trends that existed within the basin. 

The fourth and final method of statistical analysis was multilinear regression. Based on results 

from the first three method of statistical analysis, several multilinear regression models were 

developed to identify the fewest number of parameters that could explain the most variance in 

ΔSST. 

The primary takeaway from this study is that hurricane parameters have a greater 

influence on ΔSST than oceanic parameters. In particular, the time available for vertical mixing 

LUh
-1 has the greatest influence on the observed cooling response, with higher values (more 

time) resulting in greater cooling. LUh
-1 is a function of two hurricane parameters, translation 

speed Uh and size, defined by the radius of maximum winds RMW. Through linear regressions of 

these individual parameters with ΔSST, it is apparent that a hurricane’s Uh is the dominant of the 

two. Thus, the single parameter with the greatest impact on ΔSST is Uh. However, taking RMW 
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into account through the calculation of LUh
-1 results in greater variance explained in ΔSST 

making it a more ideal metric. Following LUh
-1, hurricane strength as a function of minimum sea 

level pressure Pmin is the next most important parameter contributing to ΔSST, with lower values 

(stronger hurricanes) resulting in greater cooling. Of those considered, the oceanic metric that 

contributed the most to ΔSST is the isothermal layer depth ITLD, with lower values (shallower 

isothermal layers) resulting in greater cooling. These results, as well as those from the PCA 

support hypothesis one and hypothesis two in that the greatest cooling response is likely to occur 

under powerful hurricanes translating over shallow isothermal layers with ample time to generate 

mixing in the upper ocean. While hurricane parameters LUh
-1 and Pmin may be the most important 

for predicting ΔSST, results from the PCA also emphasize the importance of taking oceanic 

parameters into consideration under particular circumstances if possible, as hurricane strength 

and time to generate vertical mixing can be restricted by the depth of the isothermal layer and/or 

the thickness of the barrier layer.  

 Results from this study also generally support the first part of hypothesis three in that 

hurricane parameters have a greater impact on ΔSST closer to the hurricane center. Results from 

the linear regressions and MLRs indicate hurricane parameters LUh
-1 and Pmin explain greater 

variance in ΔSST in each subsequent dataset (4x, 3x, 2x, and 1xRMW). However, the second part 

of hypothesis three, which states that oceanic parameters become more important to ΔSST further 

from the hurricane center, is not supported by this study. There is no clear or significant trend in 

the contribution of the ITLD, isopycnal layer depth IPLD, barrier layer thickness BLT, or Brunt-

Vaisala frequency N with ΔSST at 4x, 3x, 2x, and 1xRMW. 
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6.2 Future Work 

There are a few directions that can be taken based up previous work and the results of 

this study. One direction would be identifying the relative importance of different parameters to 

oceanic cooling across different ocean basins. In attempting to predict the oceanic cooling 

beneath hurricanes, it would be beneficial to understand how these statistics vary in different 

parts of the world. As seen here, LUh
-1, Pmin, and ITLD appear to be three most important 

parameters to the cooling response beneath North Atlantic hurricanes. Is this the same case in the 

western Pacific and Indian Oceans? Similarly, it is of interest to determine how the relative 

importance of these parameters vary within the same basin (e.g., Gulf of Mexico vs. Caribbean 

Sea vs. western North Atlantic). 

Another question is how strong is the relationship between oceanic cooling and 

differences in hurricane intensification? Other directions of interest involve the effects of a 

warming climate on hurricane strength, hurricane frequency, and ocean temperatures. How will 

the cooling response observed beneath hurricanes change with the warming climate? How will 

this impact the feedback of cold wakes on hurricane intensity? If ocean temperatures rise but 

cooling responses remain at similar levels, will the effect on hurricane intensity not be as strong 

as long as ocean temperatures are warm enough to support intensification? 

Lastly, what other parameters/mechanisms can be used to predict oceanic cooling? Based 

on the MLRs presented here, the parameters identified in this study are able to explain ~32% of 

the variance in oceanic cooling. What other hurricane or oceanic metrics could be impacting 

oceanic cooling that are not taken into consideration in this study? One metric that could be of 

interest is the TCHP. Introduced by Whitaker (1967), TCHP is an oceanic metric that can be 

described as the vertical integration of temperature within the water column above the 26 ℃ 
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isotherm (Potter et al., 2019). As mentioned earlier, a general rule of thumb is that hurricanes 

require ocean temperatures of at least 26 ℃ in order for heat fluxes to remain at levels that can 

support hurricane intensification (Palmen, 1948; D’Asaro et al., 2007). TCHP is typically used to 

assist with predictions of hurricane intensification, though maybe a relationship exists between 

itself and ΔSST, or the depth of the 26 ℃ isotherm and ΔSST. Another oceanic parameter that 

could be of interest is the barrier layer potential energy (BLPE). In their 2019 paper, Haakman 

and authors and used just two oceanic metrics, BLT and BLPE when studying cold wakes in the 

North Atlantic Ocean, with BLPE outperforming BLT in regard to hurricane-induced oceanic 

cooling. BLPE has been put forth as a better metric than BLT because it allows for a better 

insight into differences in stratification between the surface and ITLD (Chi et al., 2014). With 

BLT producing no statistically significant results in this study, the use of BLPE could potentially 

produce more insightful results in future work. 
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