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ABSTRACT

This dissertation is composed of two main research topics: velocity-dependent dark matter

(DM) annihilation from simulations, and 3D modeling of the interstellar medium of the Milky

Way (MW). The former has been my focus of research for the last four years, and has resulted

in the three papers discussed in this dissertation. We have performed numerical calculations of

J -factors using hydrodynamical simulations of galaxies from the Auriga and APOSTLE simula-

tions. My first project involves calculations of velocity-dependent line-of-sight J -factors for the

smooth DM halo component of MW-like galaxies. We also determine that the DM relative ve-

locity distribution can be modeled using a Maxwell-Boltzmann distribution. My second project

includes the velocity-dependent annihilation radiation from DM substructure, or subhalos, within

the Auriga simulations. My third project focuses on the velocity-dependent DM annihilation from

dwarf spheroidal (dSph) analogues within the APOSTLE simulations. In my fourth project, we

are currently working to extend this research to examine the velocity-dependent J -factors of the

Andromeda galaxy (M31). We hope to compare these J -factors to the extended γ-ray emission

detected from M31. Another project that I am working on involves creating a 3D model of the

interstellar radiation field (ISRF) of the MW. We plan for this model to include large-scale struc-

tures, such as spiral arms and the bar, as well as details of the stellar and dust distribution in the

MW. My contribution to the project is a 3D completeness model of OB stars in Gaia DR3.
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NOMENCLATURE

DM Dark Matter

DMO Dark Matter Only

MW Milky Way Galaxy

M31 Andromeda Galaxy

dSph Dwarf Spheroidal

APOSTLE A Project Of Simulating The Local Environment

EAGLE Evolution and Assembly of GaLaxies and their Environments

Au# Auriga Halo Number

AP-L# APOSTLE Level 1 or 2

NFW Navarro-Frenk-White Profile

MB Maxwell-Boltzmann

GCE Galactic Center Excess

ISM Interstellar Medium

ISRF Interstellar Radiation Field

CR Cosmic Ray

OB Type O and B Stars

Tycho-Gaia Astrometric Solution TGAS

c Speed of Light

G Gravitational Constant

r, R Radius

m, M Mass

N Number of particles or subhalos
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V Volume

ρ Density

x Position Vector

v Velocity Vector

f(x,v) Phase-Space Function

P Probability Distribution

J J -factor

Js Effective J -factor

σAvrel Annihilation Cross Section

µn n-th Moment of the Relative Velocity Distribution

κ Kurtosis

ϵ Softening Length

L Annihilation Luminosity

F Annihilation Flux

Vmax Maximum Circular Velocity

Rmax Radius at which Vmax Occurs
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1. INTRODUCTION AND LITERATURE REVIEW*

In this section I will provide an introduction to the material covered in this dissertation and

discuss the background literature that pertains the MW, dSphs, M31, DM annihilation, simulations

used in my research, and the interstellar medium.

1.1 The Milky Way

The MW is a barred spiral galaxy, in which our solar system is located about 8 kpc from the

Galactic center. The total mass of the MW is estimated to be about 1.29 × 1012M⊙ [8], however

much of the mass of the MW is composed of DM. The DM density at the Solar location is estimated

to be about 0.35 GeV cm−3 [9]. Extended rotation curves of galaxies provide the most compelling

evidence for the existence of large quantities of DM on galactic scales. Their detailed shapes

provide invaluable insight regarding the spacial structure of the DM halo. Analytic calculations

and simulations both suggest that the density profiles of DM halos may contain useful information

regarding the cosmological parameters of the Universe. The DM halos of MW-like galaxies can be

well approximated by a Navarro-Frenk-White (NFW) density profile [10]. The distribution of DM

throughout the MW provides our motivation to examine MW-like galaxies in DM simulations.

1.2 dSph Galaxies

A dSph galaxy is a small galaxy with very little dust and an older stellar population. They

are spheroidal in shape and can be found in the Local Group as companion galaxies to the MW

and M31. There are 9 dSphs that we consider to use in our search for analogues in the simulated

galaxies: Canes Venatici I, Carina, Draco, Fornax, Leo I, Leo II, Sculptor, Sextans, and Ursa Minor

(see table 4.1).

dSphs have been found to be dominated by DM, and the typical stellar mass-to-light ratios for

*Part of the data reported in this chapter is reprinted from “Velocity-dependent J-factors for annihilation radiation
from cosmological simulations” by Board et al., 2021. Journal of Cosmology and Astroparticle Physics, vol. 04,
p. 070, https://doi.org/10.1088/1475-7516/2021/04/070 © IOP Publishing. Reproduced with permission. All rights
reserved.
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dSph stellar populations are in the range ∼ 1 − 3 [11]. The large presence of DM and proximity

to the MW makes dSphs ideal candidates in which to study DM annihilation.

1.3 M31

The Andormeda galaxy (M31) is a barred spiral galaxy, and is the nearest large galaxy to the

MW. Observational evidence for DM in M31 comes from measurements of its rotational velocity

curve [12, 13]. These observations provide coarse-grained properties of the DM distribution near

the central regions of the halo where the galaxy resides. With the existing data, the fine-grained

structure of DM and its distribution outside of the galaxy is primarily inferred from simulated

halos. Within the standard cosmological paradigm, M31’s DM halo is expected to extend well

beyond the galactic disk, and it is also expected to contain a large amount of substructure. Due to

its mass and proximity, the detection sensitivity of M31 to DM searches with γ-rays is competitive

with the MW dSph galaxies, particularly if the signal is sufficiently boosted by substructures. M31

is predicted to be the brightest extragalactic source of DM annihilation [14, 15], which motivates

our study of DM annihilation radiation from M31.

1.4 DM annihilation

Indirect DM searches aim to identify Standard Model (SM) particles that are produced when

DM particles annihilate with one another in astronomical environments. Electrons, neutrinos, and

photons are stable SM particles that experiments are able to detect. The flux of SM particles from

a system depends on the strength of the annihilation cross section, and the phase-space distribution

of DM within the system. The astrophysical dependence of the annihilation rate is encapsulated in

a quantity typically denoted in the literature as the J -factor.

For DM particles with mass ∼ 10 − 1000 GeV, the strongest bounds on the DM annihilation

cross section have been obtained through observation of dwarf galaxies by gamma-ray observations

such as the Fermi-LAT [16, 17, 18]. Combining the limits from all dwarf galaxies with high-quality

stellar kinematic data, these bounds reach the cosmologically-motivated thermal relic cross section

regime over this entire mass range. For higher values of the DM mass, ≳ 1 TeV, the leading bounds
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come from observations of dwarf galaxies by H.E.S.S. [19] and HAWC [20]. Bounds over this

entire mass range may also be obtained from the inner MW galaxy, though contamination from

astrophysical sources make these bounds more difficult to interpret [21].

All these strong bounds on the DM annihilation cross section assume that the cross section

is dominated by the velocity independent, s-wave component, and is therefore independent of

velocity. If the annihilation cross section is velocity dependent, as in the cases of p-wave, d-wave,

or Sommerfeld models, the J -factor must account for this velocity dependence by incorporating

the full DM velocity distribution [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. Cross section

limits from dwarf spheroidal galaxies have been extended to these velocity-dependent models for

the aforementioned annihilation channels [27, 31]. These constitute the most stringent limits on

velocity-dependent models. In addition to these bounds from dwarf galaxies, there have been initial

explorations of the impact of velocity-dependent DM annihilation on the signal from the Galactic

center [26, 34], and from DM subhalos [6].

The above studies of velocity-dependent DM annihilation rely on simplified analytic models

for the DM phase space distribution. While convenient because of their analytic properties, these

simplified models need to be tested against the corresponding DM distribution of MW-like galaxies

extracted from cosmological simulations of galaxy formation. We perform the first analysis of the

J -factor in velocity-dependent annihilation cross section models using state-of-the-art simulations

of MW-like galaxies. For our study, we use the Auriga magneto-hydrodynamical simulations of

galaxy formation [35], as well as the APOSTLE hydrodynamical simulations [36, 37]. We focus

on the expected signal from the MW galaxy, for the first time determining the DM relative velocity

distribution from cosmological simulations. From this distribution we determine the velocity-

dependent J -factors for p-wave, d-wave and Sommerfeld annihilation cross section models.

1.5 Simulations

In my research we utilize two different sets of hydrodynamical simulations from the Au-

riga [35] and the APOSTLE [38, 37] projects, which I discuss in this section.

The Auriga simulations [35] include a suite of thirty magneto-hydrodynamical zoom simula-
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tions of isolated MW mass halos, selected from a 1003 Mpc3 periodic cube (L100N1504) from the

EAGLE project [39, 40]. The simulations were performed using the moving-mesh code Arepo [41]

and a galaxy formation subgrid model which includes star formation, feedback from supernovae

and active galactic nuclei, metal-line cooling, and background UV/X-ray photoionisation radia-

tion [35]. The cosmological parameters used for the simulations are from Planck-2015 [42] mea-

surements: Ωm = 0.307, Ωb = 0.048, H0 = 67.77 km s−1 Mpc−1. In chapter 2 we use the standard

resolution level (Level 4) of the simulations with DM particle mass, mDM = 3×105 M⊙, baryonic

mass, mb = 5 × 104 M⊙, and Plummer equivalent gravitational softening of ϵ = 370 pc [43, 44].

In chapter 3 we use the high resolution level (Level 3) of the simulations with DM particle mass,

mDM = 5 × 104 M⊙, baryonic mass, mb = 6 × 103 M⊙, and Plummer equivalent gravitational

softening length of ϵ = 184 pc [43, 44].

The APOSTLE simulations [38, 37] use the same code as the EAGLE project [39, 40] with the

EAGLE reference model Ref-L100N1504 calibration, applied to zoom simulations of Local Group

analogue systems, which contain two MW-mass halos. The EAGLE simulations use a modified

version of the P-GADGET3 Tree SPH code [45], the ANARCHY version of SPH [39, 46], and a

galaxy formation subgrid model that includes metal-line cooling, photoionisation, star formation,

and feedback from star formation and active galactic nuclei. The cosmological parameters are

from WMAP-7: Ωm = 0.272, Ωb = 0.0455, h = 0.704. In chapter 2 we use twelve APOSTLE

volumes simulated at similar resolution to EAGLE Recal-L025N0752, which we refer to as AP-L2

(i.e. Level 2 or medium resolution). At this resolution, the DM particle mass, mDM ≃ 5.9×105 M⊙,

the initial gas particle mass, mg ≃ 1.3× 105 M⊙, and ϵ = 308 pc. In chapter 4 and chapter 5, we

use five APOSTLE volumes simulated at the highest resolution available, which we refer to AP-L1

(i.e. Level 1 or high resolution). In each of these five volumes, we choose one MW-like halo and

one M31-like halo and select all of the self-bound substructures (subhalos) within the virial radius

of the halos for further study. The DM particle mass at this resolution is mDM ≃ 5 × 104 M⊙,

the initial gas particle mass is mg ≃ 1.0× 104 M⊙, and the maximum physical softening length is

ϵ = 134 pc.
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All simulated halos have a dark-matter-only (DMO) counterpart which share the same initial

conditions as the hydrodynamical runs, but galaxy formation processes are ignored and all the

particles are treated as collisionless. I shall refer to halos in the hydrodynamical simulations as

either the Auriga or APOSTLE halos and to those in the DMO simulations as DMO halos.

1.6 The Interstellar Medium

The interstellar medium (ISM) and the processes that occur within it are crucial in shaping the

evolution of galaxies. The collapse of massive gas clouds composed of H2 and heavier elements

leads to the formation of stars. As stars evolve along the main sequence, the radiation they emit is

absorbed and re-emitted by dust in the ISM, affecting the astrochemical distribution and balance

between molecular, atomic, and ionized hydrogen. Supernova (SN) explosions at the final stage of

evolution of massive stars accelerate cosmic rays (CRs), which in turn ionize the gas in the ISM

and influence the galactic nucleosynthesis and star formation rate (SFR).

CR propagation in the ISM and the feedback effects with the other ISM components is a com-

plex and fundamental problem in modern astrophysics. The CRs are subject to various energy

losses due to their interactions with the other components of the diffuse ISM: the interstellar gas,

radiation and magnetic fields. SN create turbulent magnetic fields, which affect the propagation

and escape of CRs from a galaxy. CRs also generate turbulence and drive galactic winds, resulting

in outflows of material enriching circumgalactic space. In the case of star-forming galaxies, the

energy density in the radiation and magnetic fields, CRs, and turbulent motions of the interstellar

gas are similar, so all of these components influence the others.

How all these pieces fit together to produce what we observe is still a mystery. Modern galaxy

evolution simulations have included some of these processes [47, 48, 49, 50, 51, 52, 53, 54].

However, the simulations are calibrated to observations, e.g., the γ-ray luminosity vs. infrared

(IR) luminosity/SFR relation in the MW and nearby galaxies [55], and are reliant on prescriptions

for the sub-grid physics and assumed properties for the ISM. Without additional input on the ISM,

the galaxy evolution modeling efforts are at an impasse on how to properly include CRs into the

current frameworks.

5



2. VELOCITY-DEPENDENT J -FACTORS FOR ANNIHILATION RADIATION FROM

COSMOLOGICAL SIMULATIONS*

We determine the DM pair-wise relative velocity distribution in a set of MW-like halos in the

Auriga and APOSTLE simulations. Focusing on the smooth halo component, the relative velocity

distribution is well-described by a Maxwell-Boltzmann (MB) distribution over nearly all radii in

the halo. We explore the implications for velocity-dependent DM annihilation, focusing on four

models which scale as different powers of the relative velocity: Sommerfeld, s-wave, p-wave, and

d-wave models.

2.1 Selection of MW-Like Galaxies

In this section we discuss our selection of MW-like galaxies. We select MW-like analogues

from the Auriga and APOSTLE simulations using the following criteria: the virial mass, stellar

mass, and rotational velocity curve [56, 57]. We obtain 10 Auriga level 3 halos and 6 APOSTLE

level 2 halos.

Simulated MW-like galaxies are usually selected by their virial mass alone. However, to make

accurate predictions for the DM distribution throughout the galaxy it is important to apply some

additional criteria to select a MW analogue. Here, we specify the criteria we use for selecting MW

analogues in the Auriga and APOSTLE simulations.

The Auriga halos have a virial mass of M200 = [0.93−1.91]×1012 M⊙ [35], which agrees with

the observed MW halo mass estimates (see ref. [58] and references therein). We select the MW

analogues by the following criteria introduced in refs. [56, 57]: (i) the stellar mass1 of the simulated

galaxy falls within the 3σ range of the observed MW stellar mass, 4.5 × 1010 < M∗/M⊙ <

8.3 × 1010 [59], and (ii) the rotation curves of the simulated halos fit well the observed MW

*Reprinted from “Velocity-dependent J-factors for annihilation radiation from cosmological simulations” by
Board et al., 2021. Journal of Cosmology and Astroparticle Physics, vol. 04, p. 070, https://doi.org/10.1088/1475-
7516/2021/04/070 © IOP Publishing. Reproduced with permission. All rights reserved.

1The stellar masses of both the Auriga and APOSTLE halos are calculated from the stars within a spherical radius
of 30 kpc from the Galactic center.
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rotation curve obtained from ref. [60]. As detailed in ref. [57], with these criteria we obtain a total

of 10 MW-like Auriga halos. The virial and total stellar masses of these 10 Auriga halos are listed

in table 2.1.

Halo Name M200 [×1012M⊙] M⋆ [×1010M⊙]
Au2 1.91 7.65
Au4 1.41 7.54
Au5 1.19 6.88
Au7 1.12 5.27
Au9 1.05 6.20

Au12 1.09 6.29
Au19 1.21 5.72
Au21 1.45 8.02
Au22 0.93 6.10
Au24 1.49 7.07

AP-V1-1-L2 1.64 4.88
AP-V6-1-L2 2.15 4.48
AP-S4-1-L2 1.47 4.23
AP-V4-1-L2 1.26 3.60
AP-V4-2-L2 1.25 3.20
AP-S6-1-L2 0.89 2.41

Table 2.1: The virial and stellar masses of the Auriga and APOSTLE MW-like halos, labeled
by “Au-Halo Number” and “AP-Volume Number-Halo Number-Resolution Level”, respectively.
Reprinted with permission from ref. [2].

The AP-L2 simulations include an initial set of 24 MW-mass halos. Since the stellar masses

of the halos in the APOSTLE simulations are slightly smaller than those expected for MW-mass

halos [61], we slightly relax the criterion on the stellar mass to find the APOSTLE MW-like galax-

ies. In particular, we select the simulated galaxies with stellar mass in the range of 2.4 × 1010 <

M∗/M⊙ < 8.3×1010, and a rotation curve which agrees with the observed MW rotation curve [60].

With these criteria, we obtain a total of 6 MW-like AP-L2 halos. The virial and stellar masses of

these halos are listed in table 2.1.
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2.2 Properties of MW Analogues

In this section we discuss the properties of our sample of MW analogues, with a specific focus

on the DM density profiles and the relative velocity distributions. Our determination of the DM

relative velocity distribution is the first of its kind for MW analogues in cosmological simulations.

Our analysis is also the first characterization of the DM velocity distribution at locations inside and

outside of the Solar position. All prior studies have focused on the velocity distribution in the solar

neighborhood and explored the implications for direct DM detection experiments [57, 56, 62, 63,

64].

2.2.1 DM Density Profiles

The predicted DM annihilation signal and the J -factor are sensitive to the DM density profile,

so it is important to understand the behavior of these profiles in our MW analogues. To determine

the DM density profiles, we assume the halos to be spherically symmetric. This has been shown

to be a good assumption for halos in hydrodynamic simulations [65], since baryons make the DM

distribution more spherical in the central parts compared to the distribution obtained from DMO

simulations [66, 67, 68, 69, 70].

The sphericity of the halos can be directly checked in our simulations. We compute the inertia

tensor of the DM particles within four different radii: 2, 8, 20, and 50 kpc from the Galactic

center, in Auriga and APOSTLE MW-like halos and their DMO counterparts. The sphericity is

defined as s = c/a, where c and a are respectively the smallest and largest axes of the ellipsoid

obtained from the inertia tensor. For a perfect sphere, c = a and s = 1. We find that for the

Auriga MW-like halos the sphericities at 2, 8, 20, and 50 kpc are in the range of s(2 kpc) =

[0.66− 0.89], s(8 kpc) = [0.72− 0.86], s(20 kpc) = [0.71− 0.88], and s(50 kpc) = [0.63− 0.87],

respectively. As expected, the sphericities are systematically lower for the DMO counterparts,

in which s(2 kpc) = [0.63 − 0.88], s(8 kpc) = [0.58 − 0.80], s(20 kpc) = [0.56 − 0.69], and

s(50 kpc) = [0.49− 0.70]. For the APOSTLE MW-like halos, we find s(2 kpc) = [0.80− 0.90],

s(8 kpc) = [0.69−0.88], s(20 kpc) = [0.73−0.85], and s(50 kpc) = [0.71−0.91], while for their
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DMO counterparts, s(2 kpc) = [0.75−0.79], s(8 kpc) = [0.60−0.75], s(20 kpc) = [0.54−0.75],

and s(50 kpc) = [0.53− 0.78].

We extract the spherically-averaged DM density profiles from the mass enclosed in consecutive

spherical shells of different widths from the Galactic center, containing 2,000 DM particles within

each shell. Our choice of 2,000 DM particles per shell optimizes the calculation time of the J -

factors discussed in section 2.3. In order to calculate accurately the DM density profile, it is

important to choose the location of the halo center carefully. We determine the center of each

halo using the shrinking sphere method [43]. This is an iterative technique in which we start by

calculating the center of mass of the DM particles within the virial radius, and then recursively

shrink the radius of the sphere. At each step of the iteration the center of the halo is reset to the last

computed barycenter and the radius of the sphere is reduced by 5%. This process continues until

1000 DM particles are contained within the sphere.

A second issue which is important in determining the DM density profile is the resolution limit.

The thorough resolution study of ref. [43] suggests a convergence radius at which the integrated

mass is converged within ∼ 10%, i.e. the so-called Power radius, RP03, based on the two-body

relaxation timescale of the DM particles. The criterion can be written as:

0.6 ≤
√
200

8

√
4πρcrit
3mDM

√
N

lnN
R

3/2
P03, (2.1)

where N is the number of particles with mass mDM enclosed within RP03, and ρcrit = 3H2/8πG

is the critical density [71]. For the cosmological parameters used in the simulations, we have

ρcrit(z = 0) = 127.49 M⊙ kpc−3 and 137.58 M⊙ kpc−3 for Auriga and APOSTLE simulations,

respectively. Solving eq. (2.1) for each of the halos in the DMO simulations, we find the Power

radius to be in the range of RP03 = [1.14− 1.29] kpc and RP03 = [1.41− 1.59] kpc for the Auriga

and APOSTLE DMO simulations, respectively. The concept of numerical convergence is less

clear in simulations containing baryons. For halos in the hydrodynamic simulations, we calculate

the Power radius using only the DM particles and multiplying their mass by a factor of Ωm/ΩDM,
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which corresponds to a halo entirely made of DM particles. We find that the Power radius is in

the range of RP03 = [0.94 − 1.07] kpc and RP03 = [1.33 − 1.45] kpc for Auriga and APOSTLE

MW-like halos, respectively. The average Power radius is RP03 = 0.98 kpc and 1.41 kpc for the

10 Auriga and 6 APOSTLE MW-like halos, respectively.

Using the methodology described above, figure 2.1 shows the DM density profiles for our MW

analogues in the Auriga (left panel) and APOSTLE (right panel) simulations. As expected, at large

radii, there is essentially complete agreement between the DM density profiles of the DMO and

the hydrodynamic simulations. At small radii, inside the expected location of the Solar circle, the

trend is for the halos in the hydrodynamic simulations to have steeper profiles compared to the

DMO. This is a result of the contraction of the DM halo as a response to the presence of baryons in

the inner parts of the halo [72, 73]. The steepening of the hydrodynamic profiles compared to their

DMO counterparts is more pronounced for the Auriga halos compared to the APOSTLE halos.

This is due to the smaller stellar masses of the APOSTLE halos, which leads to less contraction of

the halos in APOSTLE compared to Auriga. For comparison, the best fit Navarro–Frenk–White

(NFW) profile for the Auriga halo Au2 in the left panel and APOSTLE halo AP-V4-1-L2 in the

right panel are shown as dashed black curves in figure 2.1.

2.2.2 Relative Velocity Distributions

We now determine the DM pair-wise velocity distributions, to which we refer in what follows

as the DM relative velocity distributions. We begin by establishing our notation. Define f(x,v)

such that f(x,v) d3x d3v is the mass of DM particles within a phase space volume x + d3x and

v+d3v. The position vector x and the velocity vector v are defined in the rest frame of the galaxy.

In these expressions and those below, bold-face quantities represent vectors with components given

by the three spatial and velocity components of a DM particle. At a position x in the halo, we write

the probability distribution of DM velocities as

Px(v) =
f(x,v)

ρ(x)
, (2.2)
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Figure 2.1: DM Density profiles for the Auriga (left panel) and APOSTLE (right panel) MW-like
halos (blue) and their DMO counterparts (yellow). The dashed black curves specify the best fit
NFW profile for Auriga halo Au2 in the left panel and APOSTLE halo AP-V4-1-L2 in the right
panel. The vertical lines mark the average Power radius for the Auriga and APOSTLE MW-like
halos in the left and right panels, respectively. Reprinted with permission from ref. [2].

where the DM density at x is normalized as

ρ(x) =

∫
f(x,v)d3v. (2.3)

At a position x, we are interested in the probability that a DM particle 1 has velocity v1 in the

range v1 + d3v1 times the probability that a DM particle 2 has velocity v2 in the range v2 + d3v2,

Px(v1)d
3v1Px(v2)d

3v2. (2.4)

The individual particle velocities may be written in terms of the center-of-mass velocity, vcm, and

the relative velocity, vrel ≡ v2 − v1, as v1 = vcm + vrel/2 and v2 = vcm − vrel/2. Using the fact

that the magnitude of the jacobian of the transformation d3v1d
3v2 → d3vcmd

3vrel is unity, and

integrating over vcm, we then obtain a general expression for the distribution of relative velocities

at a position x,

Px(vrel) =

∫
Px(v1 = vcm + vrel/2)Px(v2 = vcm − vrel/2) d

3vcm. (2.5)
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To calibrate our expectations, it is useful to review the prediction for the relative velocity dis-

tribution in the case of a pure Maxwellian halo. For Maxwellian halos, at any point in the halo,

the DM velocity distribution, f , is Gaussian in all three velocity components, with a dispersion in

each direction given by σ. The distribution of velocities is then given by the Standard Halo Model

(SHM) [74], which is the simplest and most commonly adopted model to describe the DM halo.

In the SHM, the DM halo is assumed to be spherical and isothermal, and this leads to an isotropic

Maxwell-Boltzmann velocity distribution with a most probable speed of
√
2σ. In this case, the rel-

ative velocity distribution, Px(vrel), is also a Maxwellian distribution, but with a one dimensional

relative velocity dispersion of
√
2σ [25].

The velocity vectors of the simulation particles are determined with respect to the center of

each halo. In each spherical shell, we resolve the velocity vectors into three components then

subtract the components of the velocities in this basis, being careful to avoid double counting. We

then take the modulus of the components of the pairwise relative velocities, which provides an

estimate of Px(vrel) in each radial shell.

Notice that the relative velocity modulus distribution, Px(|vrel|), is related to the relative ve-

locity distribution, Px(vrel), by

Px(|vrel|) = v2rel

∫
Px(vrel) dΩvrel

, (2.6)

where dΩvrel
is an infinitesimal solid angle along the direction vrel. In each radial shell, Px(|vrel|)

is normalized to unity, such that ∫
Px(|vrel|) dvrel = 1 (2.7)

and therefore we have
∫
Px(vrel) d

3vrel = 1.

In figure 2.2 we show the DM relative velocity modulus distribution in the Galactic rest frame

for an example MW-like Auriga halo and its respective DMO counterpart. For both halos, we show

the speed distributions in radial shells near the Galactic center, near the Solar circle, and at two

radii well beyond the Solar circle (i.e. 20 and 50 kpc from the Galactic center). The solid blue
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Figure 2.2: Modulus of the DM relative velocity distributions in the Galactic rest frame for an
example Auriga MW-like halo (blue) and its DMO counterpart (yellow). Each panel shows the
distributions at a different Galactocentric radius. The solid curves specify the mean relative speed
distributions, while the shaded bands specify the 1σ Poisson errors. The dashed curves repre-
sent the corresponding best fit Maxwell-Boltzmann distribution. Reprinted with permission from
ref. [2].

(orange) curves show the mean speed distribution for the Auriga (DMO) halo, while the shaded

bands specify the 1σ Poisson error in the speed distributions.

The method used to define the spherical shells for calculating the density profiles produces

varying radial boundaries from halo to halo. In order to effectively compare the relative velocity

distributions of different halos at the same radius, we redefine the spherical shells to have fixed

radial width progressing outward from the Galactic center. Each spherical shell has radial width

of 0.1 kpc, with the number of particles in each shell in the range of [486 − 3304]. The spherical

shells of fixed radial width are only used in the calculations shown in figures 2.2 and 2.4 (also see
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figure B.1).

As we can see from figure 2.2, including baryons in the simulations results in an increase of the

DM relative speed distributions at all radii. This increase is more pronounced in the inner galaxy,

and is due to the deepening of the galaxy’s gravitational potential when baryons are included in the

simulations. This result is consistent with the local DM speed distributions of MW-like galaxies

extracted from other hydrodynamic simulations [57, 62, 56, 63, 64].

Next, we compare the DM relative speed distributions at each radii with a Maxwellian distri-

bution (dashed colored curves in figure 2.2). For each halo in the hydrodynamic and DMO simula-

tions, we find the best fit Maxwellian speed distribution, f(v) ∝ v2 exp(−v2/v20), where v0 is the

best fit peak speed. For the halos in the hydrodynamic simulations, the relative speed distributions

are very close to the Maxwellian model at all radii, with an agreement becoming increasingly bet-

ter as we move further away from the Galactic center. For the DMO halos, the agreement with the

Maxwellian model is not as good as is for the hydrodynamic case, though again the agreement gets

better at radii further away from the Galactic center. Deviations from the Maxwellian distribution

for the DMO halos at small radii are not surprising, since the DM density profiles deviate from

the isothermal r−2 profile in the central regions of the DMO halos [75]. Additionally, the velocity

anisotropy of the DMO halos at all radii leads to further deviations from the isotropic Maxwellian

distribution.

In all cases, the DM relative speed distribution at small radii is shifted to smaller relative speeds

as compared to the Maxwellian distributions, while at large radii there is a shift to larger relative

speeds compared to the Maxwellian. We explore the origins of the shapes of these distributions in

the following section. To understand how good the fit is to the Maxwell-Boltzmann distribution,

in Appendix A we present the χ2/dof for all halos at several different radii.

To explore the halo-to-halo variation in the DM relative speed distributions of the Auriga MW-

like halos, we first examine their rotation curves. The circular velocities for two example Auriga

halos (Au2 and Au22) are shown in figure 2.3. The total circular velocity of each halo is vc(r) =√
GM(< r)/r, where M(< r) is the total mass (DM, stars, and gas) enclosed in a sphere of
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Figure 2.3: Circular velocity of the two Auriga halos Au2 (blue) and Au22 (magenta) as function
of Galactocentric radius. Reprinted with permission from ref. [2].

Galactocentric radius r. In figure 2.4, we show the relative velocity modulus distributions for

the same two halos. These halos have the smallest and largest peak speeds in the radial shell

centered at 2 kpc. The four panels show the relative speed distributions of the two halos at different

Galactocentric radii. As we move from 2 kpc to 50 kpc from the Galactic center, the relative speed

distributions of Au22 is strongly shifted to smaller speeds, while that of Au2 does not show a

significant change. This behavior can be understood from the rotation curves of the two halos,

shown in figure 2.3. The circular velocity of Au2 changes slightly with Galactocentric distance,

while that of Au22 decreases significantly as we move from 2 kpc to larger radii.

Notice that to extract the relative DM velocity distributions, we calculate the average distri-

bution in each radial shell. We have verified the spherically average velocity distributions we

obtained are consistent with those obtained by splitting each radial shell into 8 sections divided

evenly about the azimuthal direction of the halo’s principal axes. We have also checked our results

against a more local method for computing the relative DM velocity distributions, using only the

nearest neighbors of each particle. Choosing reasonable aperture sizes to find the neighbors of

each particle in each radial shell, we find that the relative velocity distributions and J -factors are

not significantly affected. The difference in all the results of this dissertation when using this local
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Figure 2.4: Modulus of the DM relative velocity distribution for the two Auriga MW-like halos
that have the smallest (Au2, blue) and largest (Au22, magenta) peak speeds at 2 kpc. The modulus
velocity distributions for the two halos are shown at the same radii as in figure 2.2. Reprinted with
permission from ref. [2].

nearest neighbors method compared to using all particle pairs is at the order of ∼ 10%.

2.3 J -factors

Having determined the DM density profiles and the relative velocity distributions for the MW-

like halos, we are now in position to determine the velocity-dependent J -factors. In this section,

we lay out the formalism for calculating the J -factors for each of the annihilation cross section

models that we consider. In the formulae presented below, our notation closely follows that of

ref. [25].
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2.3.1 Annihilation Rate

We begin by defining σA, the DM annihilation cross section to any set of Standard Model

particles. The number density of DM particles at position x is ρ(x)/m, where m is the DM particle

mass. The flux of DM particles is given by the product of the number density and the modulus of

the relative velocity, vrel ≡ |vrel| = |v1 − v2|. Multiplying the flux by the DM annihilation cross

section and the number density of target DM particles, we obtain the annihilation rate in a volume

element dV at the position x in the halo as

dΓ

dV
=

[
ρ(x)

m

]2 ∫
d3vrelPx(vrel)(σAvrel). (2.8)

We note that the standard definition of the annihilation cross section averaged over the relative

velocity distribution is then,

⟨σAvrel⟩(x) =
∫

d3vrelPx(vrel)(σAvrel), (2.9)

which in general depends on spatial location x.

To determine the annihilation rate, as above we take the DM halo as spherically symmetric.

We define a solid angle centered on the Galactic center, r as the distance from the Galactic center

to a point in the halo, R0 as the distance from the Sun to the Galactic center, ℓ as the distance from

the Sun to a point in the halo (i.e. line of sight), and Ψ as the opening angle between the line of

sight ℓ and the direction towards the Galactic center. The radial distance from the Galactic center

to a point in the halo can then be expressed as r2 (l,Ψ) = l2 + R2
0 − 2lR0 cosΨ. The annihilation

rate along the line of sight is then proportional to

Js(Ψ) =

∫
dℓ

⟨σAvrel⟩
(σAvrel)0

[ρ(r(ℓ,Ψ))]2 . (2.10)

which, following ref. [31], we define as the effective J -factor. With this definition, the quantity

(σAvrel)0 is defined as the component of the annihilation cross section that is independent of the
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relative velocity.

2.3.2 DM Annihilation Models

In the often-studied case in which σAvrel does not depend on the relative velocity, eq. (2.10)

is simply proportional to the integral of the square of the density along the line-of-sight, J ∝∫
ρ2dℓ. More generally, σAvrel does depend on the relative velocity; in this case eq. (2.10) must be

evaluated for the given velocity dependence.

To account for this velocity dependence, we will make the replacement relative to the above

definition and parameterize the annihilation cross section in the general form, σAvrel → σAvrel =

(σAvrel)0 S (vrel/c), with S ≡ (vrel/c)
n. We examine the following possibilities: n = −1 (Sommerfeld-

enhanced annihilation), n = 0 (s-wave annihilation), n = 2 (p-wave annihilation), and n = 4

(d-wave annihilation). These models may be realized for different assumptions for the nature of

DM and the new physics that mediates their annihilation [31]. Examining these possibilities in the

context of eq. (2.8), we see that the different cross section models correspond to different velocity

moments of the relative velocity distribution,

⟨σAvrel⟩(x) ∝
∫

d3vrelPx(vrel)v
n
rel ≡ µn(x), (2.11)

where µn is the n-th moment of the relative velocity distribution, Px(vrel). Examining eq. (2.11)

we may then attach a physical meaning to the velocity-averaged annihilation cross section for each

of the models. In the case of the s-wave, the annihilation rate is simply proportional to the DM

density squared at a given position. For the case of Sommerfeld models, eq. (2.11) is proportional

to the inverse moment of the relative velocity distribution, while for the s-wave, p-wave, and d-

wave models, eq. (2.11) corresponds to the zeroth, 2nd, and 4th moments, respectively.
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The effective J -factor in eq. (2.10) can then be written as

Js(Ψ) =

∫
dℓ

∫
d3vrelPx(vrel)

(vrel
c

)n

[ρ(r(ℓ,Ψ))]2

=

∫
dℓ [ρ(r(ℓ,Ψ))]2

(
µn(x)

cn

)
. (2.12)

Therefore, depending on the particle physics model considered, the effective J -factor depends on

different moments of the relative velocity distribution.

We can look at each moment more closely. In the case of the p-wave, the integral

µ2(x) ≡
∫

d3vrelv
2
relPx(vrel) (2.13)

is the square of the intrinsic relative velocity dispersion of the system at a given x. This provides

a measure of the disordered motion of the relative velocities about x. In the case of the d-wave

model, it is useful to first define the following quantity

κ(x) =

∫
d3vrelv

4
relPx(vrel)[∫

d3vrelv2relPx(vrel)
]2 =

µ4(x)

(µ2(x))2
, (2.14)

which is motivated from the general statistical definition of kurtosis. In the case of a Maxwell-

Boltzmann distribution, we have κ = 1.667. Eq. (2.14) is useful because it is strongly dependent

on the more extreme tails of the relative velocity distribution. For smaller κ the components of the

velocity distribution are more strongly peaked near the mean value of the respective Gaussians,

while for larger κ, the velocity components are more (symmetrically) broadly distributed relative

to a Gaussian. As we discuss below, this has important implications for the determination of the

J -factors in these models.

2.4 Results

We now move on to determining the Js-factors for each of the MW-like halos, under the as-

sumptions of the different annihilation cross section models discussed above.
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Figure 2.5 shows the Js-factors as a function of the angle Ψ for all four cross section models

for the Auriga and APOSTLE halos. Here we consider only the smooth halo component, so that

all particles that are associated with subhalos of the main halo have been excluded. The ten Auriga

MW-like halos, along with their DMO counterparts are shown in the left panel, while in the right

panel we show the six APOSTLE MW-like halos and their DMO counterparts. At small angles,

but still large enough to correspond to radii larger than the resolution limit, the clear trend in both

simulations is for the Js-factors of the halos in the hydrodynamic simulations to be systematically

larger than those of their DMO counterparts. This behavior is primarily attributed to the contraction

of the DM density profiles due to the baryons in the inner parts of the halo, as seen in figure 2.1.

As discussed before, in the APOSTLE halos, the contraction of the density profiles is smaller

due to their smaller stellar masses, compared to Auriga halos. Hence, the difference between the

Js-factors of the halos in the DMO and hydrodynamic simulations are also smaller.

Though the higher density of the halos in the hydrodynamic simulations at small radii provides

a simple explanation for why the Js-factors are larger in the hydrodynamic case for all models, it

is interesting to note the relative change in the Js-factor between the halos in the hydrodynamic

simulations and their DMO counterparts for each model. Examining figure 2.5, we see that the

largest relative change occurs when going from the DMO to the hydrodynamic case for the d-

wave model. On the other hand, the smallest relative change occurs for the Sommerfeld model.

The larger relative increase in the Js-factor for the d-wave is a reflection of the fact that the Js-

factor in this case scales as the fourth moment of the relative velocity dispersion. To appreciate

quantitatively the effect of the various velocity scalings, in figure 2.6, we show the ratios of the

Js-factors of each model relative to the s-wave value.

Figure 2.7 shows the relative velocity moments for the Auriga MW-like halos, for the p-wave,

d-wave and Sommerfeld models. The bottom right panel of figure 2.7 shows the kurtosis, as defined

in eq. (2.14). As discussed above, the fourth moment is more sensitive to the small, but manifest

differences in the tails of the relative velocity distribution as compared to a Maxwell-Boltzmann

distribution. Comparing figures 2.5 and 2.7, we see that the scatter in the moment can be directly
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Figure 2.5: Js-factors for the different velocity-dependent models for Auriga (left panel) and
APOSTLE (right panel) simulations. For each model, we show the Js-factors for the ten MW-
like halos in the hydrodynamic simulations (blue) and their DMO counterparts (yellow). The
black vertical lines specify the angle Ψ corresponding to the average Power radius for the Auriga
and APOSTLE MW-like halos in the left and right panels, respectively. Reprinted with permission
from ref. [2].

translated over to the scatter in the J-factor in each case.

In addition to the shift in the Js-factor itself, it is important to quantify the scatter in this
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Figure 2.6: Js-factors as in figure 2.5, only plotted as a ratio relative to the s-wave value. Reprinted
with permission from ref. [2].

quantity amongst the ten MW-like halos. Similar to the above, we find that the largest scatter is

in the Js-factor of the d-wave model, and the smallest scatter is in the Sommerfeld model. In the

case of the d-wave, this is again a result of the sensitivity of the Js-factor to the tails of the velocity

distribution in these models. The integrand of the relative velocity moment, which in this case

scales as v4relf(vrel), exhibits a significant halo-to-halo scatter at the highest vrel, while at the lowest
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Figure 2.7: Velocity moments of the relative velocity distribution for the ten Auriga MW-like
halos and their DMO counterparts. The panels are: Second moment (top left), Fourth moment (top
right), inverse moment (bottom left). The bottom right panel shows the fourth moment divided
by the square of the second moment, with the black horizontal line indicating this quantity for
the Maxwell-Boltzmann relative velocity distribution. The black vertical lines specify the average
Power radius of the Auriga halos. Reprinted with permission from ref. [2].

vrel, this integrand is nearly identical for all halos. At the other extreme for the Sommerfeld model

there is significantly less scatter in the inverse moments, as shown in figure 2.7 for the Auriga

halos. In this case the integrand of the velocity moments scales as f(vrel)/vrel, and the scatter in

this integrand at the largest vrel is much less than for the d-wave case. In addition, at low vrel, the

scatter in the integrand increases, partially compensating for the scatter at high vrel. Together, these

effects combine to make the halo-to-halo scatter for the Sommerfeld model the smallest amongst

our cross section models.

The features in the relative velocity distributions explain the relative differences between the
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Js-factor of the halos in the hydrodynamic simulations and their DMO counterparts for a given

annihilation cross section model. More generally, in all cases we find that the scaling of the Js-

factors with angle is essentially entirely driven by the DM density profiles, and that this scaling

depends very weakly on the characteristics of the DM relative velocity distributions. This can be

best quantified by considering different lines-of-sight through a halo, which correspond to different

values of Ψ, and averaging the DM density and the velocity dispersion along each line-of-sight.

Figures 2.8 and 2.9 show the average DM density and velocity dispersion of the ten Auriga halos,

respectively, against their average Js-factor, with each point in this plane representing a differ-

ent value of Ψ. We see from figure 2.8 that for each cross section model, the average density

correlates with the average Js-factor, while from figure 2.9, there is minimal correlation with the

average velocity dispersion in each case. This implies that, even for velocity dependent models,

understanding the systematics in the DM density is the most important factor in determining the

Js-factor.

We reiterate that the analysis of this dissertation has focused on determining the J -factors

for the smooth halo component. The contribution from DM subhalos bound to the host galaxy is

expected to boost the J -factor for each annihilation model. For halos in the hydrodynamic simu-

lations and assuming s-wave annihilation, the boost factor from resolved subhalos is expected to

be small, corresponding for ≲ 1% increase over the smooth halo contribution [76]. While deter-

mining the boost factor for velocity-dependent models is beyond the scope of our current analysis,

we can roughly estimate the increase in density due to subhalos by including the particles bound to

subhalos2 in our calculations, and determining the spherically-averaged density and velocity dis-

tributions. With the subhalos included, we find at most ∼ 20% increase in the Js-factors, which

is manifest at values of Ψ near the resolution limit of our simulations. This justifies our approach

of focusing on the smooth halo, and indicates that the inclusion of subhalos leads to only a small

increase in the J -factors over the scales that we consider.
2More precisely, DM particles bound to subhalos belonging to the same friends-of-friends [77] group as the main

halo are included, with a dimensionless linking length of 0.2 times the mean interparticle spacing.
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Figure 2.8: Correlation between the DM density and Js-factor for Auriga halos (green to blue
colored points) and their DMO counterparts (yellow to red colored points). Each point represents
the average of the density and Js-factors over all the halos (ρ̄ and J̄s, respectively), along a line-
of-sight at a given angle Ψ. The color bars on the right indicate the values of the angle from the
galactic center. Angles start from ≃ 10 degrees, as angles at lower radii are below the resolution
limit (specified by black points on the plots). Each panel shows this correlation for a different cross
section model. Reprinted with permission from ref. [2].

2.5 Discussion and Conclusions

In this dissertation we have performed the first study of the DM relative velocity distribution

of Milky Way-like halos, using the Auriga and APOSTLE cosmological simulations. We find

that the DM pair-wise relative velocity distribution at nearly all radii in the halos is consistent

with the Maxwell-Boltzmann distribution. This agreement is particularly good for the simulations

that include baryons. For the corresponding DMO-simulations, the agreement with the Maxwell-

Boltzmann distribution is good, though there are some notable deviations, particularly at small

radii as the center of the halo is approached.

We have explored the implications for velocity-dependent DM annihilation, focusing on the
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Figure 2.9: Same as figure 2.8, except for the average velocity dispersion, σ̄, instead of the density.
Note that while figure 2.8 uses log-log axes, the data in this figure is presented on semi-log axes.
Reprinted with permission from ref. [2].

Sommerfeld (1/v), s-wave (v0), p-wave (v2), and d-wave (v4) models. We generally show that

the J -factors scale as the moments of the relative velocity distribution, and that the halo-to-halo

scatter is largest for d-wave, and smallest for Sommerfeld models.

Our results indicate that in velocity-dependent models, the J -factor is strongly correlated with

the DM density in the halo, and is very weakly correlated with the velocity dispersion. This implies

that if the DM density in the Milky Way can be robustly determined, one can accurately predict the

DM annihilation signal, without the need to identify the DM velocity distribution in the Galaxy.

In calculating the J -factors for velocity-dependent models, we have neglected the impact of

DM substructure within the Milky Way-like galaxies. The effect of substructure has been explored

for s-wave models in several previous studies [78, 76], which indicate that the corrections for

substructure are small, at least at the resolution limits of present simulations. It is possible that

boost factors can be significant for extrapolations down to ∼ Earth-mass subhalos, in particular
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for Sommerfeld-enhanced models. Accurately calculating the boost factors for velocity-dependent

models required determining the concentration-mass relation for subhalos [79] and their velocity

distribution, and understanding how to extrapolate these beyond the resolution limit of the simula-

tions. We leave this topic as a subject for future study.

The results we have presented will be important in guiding searches for velocity-dependent DM

annihilation, for example with Fermi-LAT data or with future data from higher-energy gamma-ray

instruments. Though p-wave and d-wave annihilation may be realized in simple models [80, 81,

82], due to the sensitivity of these instruments, for the simplest models bounds on p-wave [83, 31]

and d-wave [31] cross sections are much larger than those for thermal relic DM. Bounds may be

improved upon by considering more unique astrophysical environments, for example the super-

massive black hole at the center of the Milky Way [34]. The phenomenology becomes richer for

multi-state DM, such that Sommerfeld boosts can enhance the p-wave component and suppress

the s-wave component [84]. The results we have presented provide the most realistic approach

available to providing robust constraints on these velocity-dependent models with astrophysical

systematics incorporated.
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3. VELOCITY-DEPENDENT ANNIHILATION RADIATION FROM DM SUBHALOS IN

COSMOLOGICAL SIMULATIONS*

We use the suite of MW-like galaxies in the Auriga [35] simulations to determine the contri-

bution to annihilation radiation from DM subhalos in three velocity-dependent DM annihilation

models: Sommerfeld, p-wave, and d-wave models. We compare these to the corresponding distri-

bution in the velocity-independent s-wave annihilation model.

In this work we use the high resolution level (Level 3) of the Auriga simulations with DM

particle mass, mDM = 5 × 104 M⊙, baryonic mass, mb = 6 × 103 M⊙, and Plummer equivalent

gravitational softening length of ϵ = 184 pc [43, 44]. For the analysis in this work, we consider

DM particles bound to the smooth halo component as well as DM particles bound to subhalos,

as identified by the SUBFIND algorithm [85]. These simulations can resolve subhalos of mass

greater than ∼ 106 M⊙, which contain at least 20 DM particles. We also extrapolate our results to

subhalos with mass lower than that of the resolution limit of the simulations.

3.1 Properties of DM Subhalos

In this section, we discuss the dynamical properties of the DM subhalos that are most important

for our analysis. We focus specifically on the DM density profiles, the maximum circular veloci-

ties, and the DM relative velocity distributions. These properties are then used in the subsequent

sections to calculate the DM annihilation luminosity from each subhalo.

3.1.1 Density Profiles

For each subhalo, we obtain the spherically-averaged DM density profile from the DM mass

contained within spherical shells centered on the center of potential of each subhalo as determined

by SUBFIND. The number of DM particles per subhalo varies greatly between subhalos, with the

minimum number being 20 DM particles bound to a subhalo. Thus, we use variable bin widths,

*Reprinted from “Velocity-dependent annihilation radiation from dark matter subhalos in cosmological sim-
ulations” by Piccirillo et al., 2022. Journal of Cosmology and Astroparticle Physics, vol. 05, p. 058,
https://doi.org/10.1088/1475-7516/2022/08/058 © IOP Publishing. Reproduced with permission. All rights reserved.
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Figure 3.1: The cumulative number of subhalos enclosed within a sphere of Galactocentric radius
r for each Auriga halo (blue) and its DMO counterpart (orange). See table 2.1 for the virial radius,
r200, of each Auriga halo. Reprinted with permission from ref. [3].

ensuring that there is a minimum of 5 DM particles (for smaller subhalos) and a maximum of

200 DM particles (for larger subhalos) within each shell. For reasons discussed in section 3.2, we

define large subhalos to have an angular size > 1 degree as viewed from the solar position, and

small subhalos to have an angular size < 1 degree. We fit the DM density profile constructed from

the data to an Einasto density profile

ρ = ρ−2 exp

(
− 2

α

[(
r

r−2

)α

− 1

])
, (3.1)

where ρ−2 and r−2 are the density and radius at which ρ(r) ∝ r−2, and α is a parameter which

specifies the curvature of the density profile. We set this parameter to α = 0.16 [86]. In order

to account for numerical resolution, we fit the Einasto density profile to the simulation data for

radii larger than 2ϵ, where ϵ is the softening length defined in section 1.5. At large radii, we fit

the profile up to a maximum radius of 2RSUBFIND
max , where RSUBFIND

max is the radius of maximum

circular velocity derived from the SUBFIND algorithm [85]. Beyond 2RSUBFIND
max , a large fraction
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Figure 3.2: The DM density profile for a large subhalo in the Au6 simulation where r is the distance
from the center of the subhalo. The results from the simulation data and the best-fit Einasto profile
are shown in blue and orange, respectively. This subhalo has a stellar mass of 4×109 M⊙, DM mass
of 4× 1010 M⊙, and Vmax = 75 km/s at Rmax = 10.7 kpc, which is indicated by the vertical black
line. For large subhalos in the sky maps in section 3.2, we use the local DM density as estimated by
a Voronoi tessellation for distances larger than Rmax and use the best-fit Einasto density profile to
estimate the local DM density for distances within Rmax. Reprinted with permission from ref. [3].

of subhalos have their density profiles tidally stripped, such that they fall off faster than an Einasto

density profile.

We also calculate Rmax and Vmax for each subhalo from the particle distribution. For an in-

dividual DM subhalo, most of the annihilation signal comes from within Rmax, the radius where

the circular velocity Vc(r) reaches a maximum, Vmax. For each subhalo, we calculate the circular

velocity curve Vc(r) =
√
GM(< r)/r, where M(< r) is the total DM mass enclosed within a

sphere of radius r centered on the subhalo. We find that our calculations of Vmax and Rmax are

consistent with the values returned by SUBFIND. For internal consistency, we will use our calcu-

lations of Vmax and Rmax in this work. The Vmax and Rmax are used in section 3.2 to estimate the

total annihilation luminosity within Rmax for each subhalo.

Figure 3.2 shows the DM density profile of one example subhalo from Auriga halo Au6, along
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with the best fit Einasto density profile for that subhalo. Also shown is the Rmax value for the

same subhalo. Due to the resolution limit of the simulation, the density profile calculated from the

particle data underestimates the density in the central regions of the subhalos. For small subhalos

in the sky maps in section 3.2, we will estimate the total DM annihilation luminosity using the

calculated values of Vmax and Rmax. For large subhalos in the sky maps, we use the best fit Einasto

density profile for particles within Rmax and we use the local DM density estimated by a Voronoi

tessellation of the DM particle distribution for particles beyond Rmax. Following ref. [5], we apply

a Voronoi tesselator to estimate the DM distribution in the outer radii of each subhalo, allowing the

calculation of ρi from the DM particle mass and the cell volume surrounding the i-th DM particle.

For these large radii, this approach provides a better localized measure of the DM density than

other estimates which smooth over a particle’s nearest neighbors [87].

3.1.2 Relative Velocity Distributions

We now discuss the DM relative velocity distributions of subhalos using the notation estab-

lished in our previous work [2]. For each subhalo, we write the probability distribution of DM

particles associated with only that subhalo as

Px(v) =
f(x,v)

ρ(x)
, (3.2)

where x is the position vector, v is the velocity vector, and the DM density at a position x in the

subhalo is normalized as

ρ(x) =

∫
f(x,v)d3v. (3.3)

The velocity vectors of the DM particles are determined with respect to the center of the main

halo, whereas the position vectors are determined with respect to the center of the respective sub-

halo. This is appropriate as we are calculating the DM relative velocity distribution of particles

within each subhalo, so that the bulk subhalo motion is subtracted out. Using spherical shells as

defined in section 3.1.1, we resolve the velocity vectors into three components then subtract the

components of the velocities in this basis, being careful to avoid double counting. We then take
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Figure 3.3: The distribution in Vmax − σ space of subhalos from all six Auriga halos within R200

of each respective halo. We find σ by calculating the DM relative velocity distribution in radial
shells, fitting a Maxwell-Boltzmann curve to the distribution with a 1D velocity dispersion σ,
and then taking the average of these σ values over all shells for each subhalo. The dashed red
line indicates the best-fit power-law curve found to be σ = 0.51(Vmax)

1.15, which we will use
to extrapolate to lower mass subhalos. A similar result is obtained from the DMO simulations,
where σ = 0.55(Vmax)

1.10. Our results are consistent with the power law relation found in ref. [4].
Reprinted with permission from ref. [3].

the modulus of the components of the pairwise relative velocities, which provides an estimate of

Px(vrel). In each radial shell, Px(|vrel|) is normalized to unity, such that

∫
Px(|vrel|) dvrel = 1 (3.4)

and therefore we have
∫
Px(vrel) d

3vrel = 1.

Though there is some variation in the velocity distribution of subhalos, ref. [4] shows that for

MW dwarf spheroidal analogues, Px(|vrel|) can be well approximated by a Maxwell-Boltzmann

(MB) distribution,

PMB(|vrel|) =
√

2

π

v2rel
σ3

exp

(
− v2rel
2σ2

)
, (3.5)
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where σ is the 1D relative velocity dispersion.

In the analysis of ref. [4], the best fit MB distribution is found in spherical shells at different

radii from the center of the subhalo. Then the mean best fit peak speed of the MB distributions

over all shells is calculated for each subhalo. Ref. [4] finds that velocity-dependent J -factors can

be accurately estimated using the mean best fit MB parameters in simulated MW dwarf spheroidal

galaxies.

Following the same procedure as in ref. [4], we fit a MB distribution to the DM relative veloci-

ties in different spherical shells in each subhalo, and calculate the mean of the velocity dispersion,

σ, over all spherical shells in each subhalo. Figure 3.3 shows the relationship between the Vmax

of a given resolved subhalo and the σ of the best-fit Maxwellian. The dashed line indicates the

best-fit power-law curve which we will use to extrapolate to low-mass subhalos.

3.2 Annihilation Luminosities

The annihilation luminosity from the DM particles is calculated from the DM density and the

DM relative velocity distribution at each point within the halo. For the general case of velocity-

dependent models, the annihilation luminosity from some region of space can be written as

Ln =

∫
d3x

∫
d3vrelPx(vrel)

(vrel
c

)n

[ρ(x)]2 . (3.6)

For our velocity-dependent models, we examine the following possibilities: n = −1 (Sommerfeld-

enhanced annihilation), n = 0 (s-wave annihilation), n = 2 (p-wave annihilation), and n = 4 (d-

wave annihilation). The different cross section models correspond to different velocity moments

of the relative velocity distribution [2],

µn(x) ≡
∫

d3vrelPx(vrel)v
n
rel, (3.7)
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where µn(x) is the n-th moment of the relative velocity distribution Px(vrel). In terms of the

velocity moments, the annihilation luminosity can be written as

Ln =

∫
d3x [ρ(x)]2

(
µn(x)

cn

)
. (3.8)

The annihilation luminosity has contributions from both the smooth halo and the subhalo com-

ponents. We start by estimating the annihilation luminosity from the smooth component of the DM

halo. Using the Voronoi tessellation method described above, we estimate the local DM density at

the location of each DM particle. Then we calculate the relative velocity distribution at each point

on a spherical grid, using the nearest 500 DM particles. The relative velocity distributions are then

used in eq. (3.7) to obtain µn(x) for each annihilation model at each point. We interpolate these re-

sults to obtain the relative velocity moments at the location of each DM particle in the smooth halo.

We then compute the integral in eq. (3.8) over each volume produced by the Voronoi Tessellation

to obtain the annihilation luminosity produced by each DM particle in the smooth halo.

For the subhalo component, we calculate the annihilation luminosity by splitting up the contri-

bution from large and small subhalos. As mentioned in section 3.1.1, we consider large subhalos

to have an Rmax which corresponds to an angular size > 1 degree as seen from the solar position of

8.0 kpc, whereas we consider small subhalos to have an Rmax which corresponds to an angular size

of < 1 degree. We use this angular size definition for large and small subhalos, because 1 degree

corresponds to the approximate angular resolution scale for Fermi-LAT at the energies relevant

for DM searches. For large subhalos in the simulations, we calculate the annihilation luminosity

from each DM particle using methods similar to that of the smooth halo component. The only

difference is that the relative velocity moments, µn(x), are calculated using a Maxwell-Boltzmann

distribution with a dispersion set equal to the mean velocity dispersion, σ, computed as described

in section 3.1.2. We use the mean dispersion to estimate the relative velocity moment for all points

within the subhalo, and therefore µn would be independent of the position vector in the subhalos.

For smaller subhalos in our simulations, whose Rmax has an angular size less than 1.0 degree,
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Figure 3.4: All-sky Mollweide projections of the DM annihilation flux density for each considered
annihilation model as seen from the midplane of the stellar disc, 8.0 kpc from the Galactic center
of the Au6 halo (left) and its DMO counterpart (right). The color bars to the right of each pair
of sky maps show the approximate range of the annihilation flux density for each annihilation
model. The DM annihilation fluxes from subhalos are clearly systematically fainter compared to
the smooth halo component in all annihilation models than in the Sommerfeld model, with the
faintest subhalos shown in the d-wave model. Reprinted with permission from ref. [3].

35



we estimate the total DM annihilation luminosity from a spherical region interior to Rmax as

Lsub =
CEinastoV

4
max

G2Rmax

, (3.9)

where G is the gravitational constant and CEinasto = 1.87 for an Einasto density profile with

α = 0.16 [5]. Since we have chosen a µn that is not dependent on position for subhalos, we can

then rewrite eq. (3.8) as

Ln,sub =
(µn

cn

)∫
d3x [ρ(x)]2

=
(µn

cn

)
Lsub

=
(µn

cn

)(
CEinastoV

4
max

G2Rmax

)
.

(3.10)

Then including the contribution from the smooth component and the subhalos, we examine

these luminosities from one solar position at 8.0 kpc from the Galactic center by calculating the

annihilation flux as in ref. [5],

F = L/d2, (3.11)

where L is the luminosity of a subhalo or DM particle and d is the heliocentric distance of that sub-

halo or DM particle. We sum the annihilation flux from the smooth DM halo, large DM subhalos,

and small DM subhalos in bins of equal angular size of 1.9×10−5 rad2. The results of the flux den-

sity for each annihilation model are shown in figure 3.4. The all-sky Mollweide projection maps

on the left are the results for Au6 and those on the right are for its DMO counterpart. For each

annihilation model, we find that the smooth component of the DM halo is brighter and rounder

in shape in the hydrodynamical simulations compared to their DMO counterparts. We also find

that subhalo fluxes are systematically fainter in the hydrodynamical simulations than their DMO

counterparts for each annihilation model, consistent with previous results that examined s-wave

models [5]. When comparing the subhalo fluxes for different annihilation models in the same sim-

ulation, we find that the subhalo flux relative to the flux from the smooth halo component appears
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to be largest for the Sommerfeld model. Subhalo fluxes are suppressed relative to the smooth halo

in the p-wave and d-wave models, which we will quantify in section 3.3.

3.3 Results

In this section we present the primary results of our analysis. We begin by comparing the

contribution to the luminosity from subhalos and the smooth halos in the simulations. We then

characterize the contribution of the integrated subhalo luminosity due to subhalos across different

luminosity scales. We also estimate the impact of extrapolating the luminosity function of subhalos

below the lowest mass (∼ 106 M⊙) subhalos resolved in the simulations.

3.3.1 Luminosities of the Smooth Halos and Resolved Subhalos

Figure 3.5 shows the DM annihilation luminosities of six Auriga halos within a distance r/r200,

where r is the radial distance from the Galactic center and r200 is the virial radius of each halo.

Shown are both the contributions from the smooth DM halo and from the subhalos for each of the

six Auriga halos (left four panels) and the results for their DMO counterparts (right four panels).

The gray lines indicate the luminosity from the smooth DM halo of each simulated Auriga halo

for each annihilation model, while the thin blue, yellow, green, and red lines show the luminosity

from all subhalos within an Auriga halo for the s-wave, p-wave, d-wave, and Sommerfeld models,

respectively. For each model, the thick lines of the same color show the average total subhalo

luminosity across all six halos. The purple lines show the total mass of the smooth component

within radius r for each halo.

We compare the results for the average total subhalo luminosity to the total smooth halo lu-

minosity. For the Auriga halos, we find that the luminosity from the smooth DM halo dominates

over the average luminosity from subhalos in all annihilation models except for the Sommerfeld

model, where the subhalo luminosity dominates at r/r200 > 0.74. For the DMO halos, we find that

the luminosity from the smooth DM halo dominates for p-wave and d-wave annihilation, but the

average luminosity from subhalos surpasses that of the smooth DM component at r/r200 > 1.2 for

the s-wave model and at r/r200 > 0.17 for Sommerfeld.
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Figure 3.5: The total DM annihilation luminosity within some Galactocentric radius, r, as a func-
tion of that radius for the Auriga halos (left four panels) and their DMO counterparts (right four
panels). The gray lines are the results from the smooth DM halo component of the six Auriga
halos. The results for the resolved DM subhalos in each halo are shown as thin blue (s-wave),
yellow (p-wave), green (d-wave), and red (Sommerfeld) lines. The thick lines of the same color
correspond to the average total luminosity of resolved subhalos across all six Auriga halos. In each
panel, the number in the upper right indicates the average total luminosity from subhalos within
r200. Both luminosities from the smooth halo component and the subhalos have been normalized
by the total luminosity, L200, within r200 for the corresponding smooth halo component for each
annihilation model. The purple lines indicate the total smooth mass within r for each halo, nor-
malized by the total mass, M200, within r200. The dashed vertical lines indicate r200 for all halos.
The luminosities from the velocity-independent s-wave annihilation model agree with the results
of ref. [5]. Reprinted with permission from ref. [3].

Next we compare the results from the Auriga halos to that of their DMO counterparts. Exam-

ining the smooth halo components, we see that the luminosities of the Auriga halos approach L200

more rapidly at smaller radii than their DMO counterparts, which is also illustrated by the brighter

central regions in the sky maps in figure 3.4. This effect is a result of the contraction of the central

regions of the smooth DM halos due to the presence of baryons. For a given annihilation model,

we find that the subhalo luminosities in the DMO simulations typically have a larger value at the

same distance r/r200. This is due to baryonic processes in which the baryonic disc preferentially
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Figure 3.6: The fraction of subhalos with luminosity greater than some luminosity, L, relative to
the total luminosity, L200, within r200 of each smooth halo component. For s-wave (blue), p-wave
(yellow), d-wave (green), and Sommerfeld (red) annihilation models we show the results for both
the Auriga halos and their DMO counterparts in solid and dashed lines, respectively. The gray lines
indicate the best fit power law for Au6 over the range of luminosities associated with subhalos with
20 km/s ≤ Vmax ≤ 60 km/s. The best fit values of a from eq. (3.13) for Au6 are listed next to the
corresponding gray line. Reprinted with permission from ref. [3].

destroys nearby subhalos.

3.3.2 Subhalo Luminosity Functions

We now move on to analyze the subhalo differential luminosity functions, dN/dL, where N is

the number of subhalos with luminosity L, for each of our annihilation models. From this defini-

tion of the differential luminosity function, we construct the fraction of subhalos with luminosity

greater than L/L200 within each simulation for each DM annihilation model,

f(> L) ≡
∫ Lmax

L
L′ dN

dL′dL
′∫ Lmax

Lmin
L′ dN

dL′dL′
. (3.12)

To provide a physical interpretation for the cumulative luminosity function, we compare to a
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power law defined as

f(> L) ∝ L−(a−1). (3.13)

Defined in this manner, the subhalo luminosity function is dominated by the highest (lowest)

luminosity subhalos for a < 2 (a > 2). In order to conservatively avoid the impact of nu-

merical resolution, we calculate this quantity over the range of L calculated from subhalos with

20 km/s ≤ Vmax ≤ 60 km/s for each simulation.

Figure 3.6 shows the cumulative luminosity function, f(> L), within each simulated halo for

each DM annihilation model. S-wave (blue), p-wave (yellow), d-wave (green), and Sommerfeld

(red) annihilation models are shown for the Auriga halos (solid lines) and their DMO counter-

parts (dashed lines). The gray lines and corresponding a values indicate the best fit parameters

of eq. (3.13) for Au6. For the Auriga halos we find the range of a values to be [1.80 − 2.07] for

s-wave, [1.45− 1.66] for p-wave, [1.38− 1.49] for d-wave, and [2.10− 2.43] for the Sommerfeld

model. For the DMO counterparts we find the range of a values to be [1.75 − 1.99] for s-wave,

[1.50− 1.61] for p-wave, [1.35− 1.44] for d-wave, and [1.94− 2.34] for the Sommerfeld model.

These fit results indicate that for the case of the Sommerfeld model, the integrated subhalo

luminosity is dominated by the least luminous subhalos, while for s, p and d-wave models, the

luminosity is dominated by the most luminous subhalos. Going from s to d to p-wave, the high

luminosity subhalos become more and more significant as a fraction of the total subhalo emission,

even though similarly going from s to d to p-wave, the total luminosity contribution from subhalos

becomes progressively smaller as compared to the smooth halo.

To further examine the contributions to the luminosity from different subhalo mass intervals,

the four panels on the left side of Figure 3.7 show the contribution to the subhalo luminosity

from Au6 for different DM mass ranges and the four panels on the right side show the results

for the DMO counterpart. We consider the luminosities of all subhalos with DM masses above a

minimum mass of 106, 107, 108, 109, and 1010 M⊙. We calculate the total luminosity from subhalos

within r200 and above a minimum mass of 108 M⊙ as a fraction of the total luminosity from

resolved subhalos within r200. For Au6 we find the luminosity fraction to be 0.689 for s-wave,
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Figure 3.7: The luminosity contribution from Au6 subhalos for each annihilation model for var-
ious lower limits of the subhalo DM mass. Each line corresponds to a minimum DM mass of
106, 107, 108, 109, or 1010 M⊙. The lines corresponding to higher mass subhalos trend to the right
side of each panel. This shows that most of the total subhalo luminosity is due to large subhalos in
the s-wave, p-wave, and d-wave annihilation models. However, in the case of Sommerfeld annihi-
lation there is a notable fraction of luminosity from low-mass subhalos. We find similar results for
all six halos. Reprinted with permission from ref. [3].

0.996 for p-wave, 1.000 for d-wave, and 0.177 for Sommerfeld. For the DMO counterpart we

find the luminosity fraction to be 0.626 for s-wave, 0.977 for p-wave, 0.999 for d-wave, and 0.264

for Sommerfeld. For s-wave, p-wave, and d-wave annihilation models, a large part of the total

luminosity is due to high-mass subhalos. Whereas in the case of the Sommerfeld model we find

that there is a large contribution to the total subhalo luminosity from low-mass subhalos.

3.3.3 Low-Mass Subhalo Extrapolation

As discussed above, the Auriga simulations resolve DM subhalo masses down to ∼ 106 M⊙.

However, this is plausibly still much larger than the cut-off mass in cold DM, which may be as

small as Earth mass [88]. It is interesting to estimate the effects that an extrapolation down to mass

scales below the Aurgia resolution would have on our results.

41



In this analysis, for computational convenience we extrapolate DM subhalos down to ∼ 100 M⊙.

To estimate the abundance of these low-mass subhalos below the resolution scale, we follow

the work of ref. [5]. For each halo, we estimate the overall abundance of subhalos in the range

0.1 km/s ≤ Vmax ≤ 10 km/s, with a subhalo of maximum circular velocity 0.1 km/s correspond-

ing approximately to a subhalo of mass 100 M⊙. We assign a Vmax value to each of the extrapolated

subhalos using the differential Vmax function in ref. [5]. The subhalo is then assigned an Rmax value

using the median Rmax−Vmax relation shown in ref. [5] and derived from ref. [89] for extrapolation

to lower subhalo masses. These values for Vmax and Rmax are then used in eq. (3.9) to estimate the

velocity-independent s-wave annihilation luminosity for extrapolated subhalos.

Figure 3.3 above shows the relationship between the Vmax of a given resolved subhalo and the

σ value associated with that subhalo as discussed in section 3.1.2. The dashed line indicates the

best-fit power-law curve which we will use to extrapolate to low-mass subhalos. The extrapolated

σ values are used to produce a Maxwellian distribution, which is then used in eq. (3.7) as the prob-

ability distribution, Px, to calculate the velocity moment, µn, for each of the velocity-dependent

annihilation models. The extrapolated velocity moments, along with the Vmax and Rmax calculated

above, are then used in eq. (3.8) to estimate the velocity-dependent annihilation luminosity for

extrapolated subhalos.

Given the structural properties of the extrapolated subhalos, we then must assign them a posi-

tion within the halo. To assign the position, we start from a spherically symmetric number density

distribution that is generated from the resolved subhalos with 10 km/s < Vmax < 30 km/s. We

then fit a power-law curve to this number density profile, which we use to radially distribute the

subhalos. These objects are then distributed randomly in the angular coordinates, which produces

a spherically symmetric distribution of subhalos.

The effects of the addition of extrapolated subhalos on the total luminosity for all six Auriga

halos are depicted in the left four panels of figure 3.8 and the results for their DMO counterparts

are shown in the right four panels. For the Auriga halos, we still find that the luminosity from the

smooth DM halo dominates over the average luminosity from subhalos in all models except for
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Figure 3.8: Same as figure 3.5, but including the results for extrapolated subhalos with 0.1 km/s ≤
Vmax ≤ 10 km/s. In each panel, the number in the upper right indicates the average total luminosity
due to resolved and extrapolated subhalos within r200, normalized by L200. Reprinted with permis-
sion from ref. [3].

Sommerfeld annihilation, which now dominates at r/r200 > 0.2 rather than at r/r200 > 0.74 in

the case of only resolved subhalos. For the DMO counterparts, we find that the average luminosity

from subhalos now dominates for the s-wave model at r/r200 > 0.5 and for the Sommerfeld model

at r/r200 > 0.03.

3.4 Discussion and Conclusions

We have used the Auriga simulations of Milky Way-like galaxies to determine the contribution

of halo substructure to the signal from DM annihilation. We consider the general case of velocity-

dependent DM annihilation, examining Sommerfeld, s-wave, p-wave, and d-wave models. We find

that substructure is the most significant in Sommerfeld models, while it is the least significant in

d-wave models. In the Sommerfeld models, the substructure contribution to the DM annihilation

signal dominates that of the smooth component beyond ∼ 0.74r200, while for all other models the

substructure contribution is sub-dominant at all radii as compared to the smooth halo.
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Examining the luminosity functions of substructure, we find that in Sommerfeld models, the

luminosity function is dominated by the least massive subhalos that are resolved. On the other

hand, for d-wave models, the luminosity function is dominated by the most massive subhalos that

are resolved. So extrapolating to lower subhalo mass scales may still increase the luminosity con-

tribution from subhalos in Sommerfeld models, though it will not affect the luminosity contribution

from subhalos in the case of d-wave models.

Systematic uncertainties in the results can also arise from the uncertainty in the number of

subhalos, due to a different treatment of baryonic effects. We do not expect these uncertainties

to affect our results for the d-wave model, since the luminosities are not centrally concentrated in

that case. However, they can introduce additional uncertainties in our results for the Sommerfeld

model. Studying the J -factors in an even larger sample of simulations is important to quantify

such uncertainties.

Another source of systematic uncertainty can arise from the assumed DM density profile of the

subhalos. In our analysis, we have assumed the shape of the DM density profile interior to Rmax

to be an Einasto density profile, and we have estimated the total luminosity of each subhalo using

CEinasto = 1.87 in eq. 3.10. Since Vmax, Rmax, and µn are calculated directly from the simulation

data, the total luminosity may be sensitive to the choice of DM density profile. To examine the

systematic arising from the assumed profile, we consider simply how our results change when

assuming an NFW profile instead of an Einasto profile. For the NFW case, we can estimate the

total luminosity from a subhalo using an NFW profile with CNFW = 1.23 [78]. This implies that

using an NFW profile instead of an Einasto profile would simply scale our results by ≳ 30%,

LNFW
sub = 0.66LEinasto

sub , for all annihilation models.

The results of our analysis have interesting implications for gamma-ray emission observed by

Fermi-LAT. For example, the Galactic Center Excess (GCE) does not yet have a clear explana-

tion, and may be consistent with particle DM annihilation [90]. However, it is possible that this

emission is inconsistent with limits obtained from dwarf galaxies [91]. Including the full effect of

baryonic physics, the morphology of the GCE [92] is consistent with the signal from the smooth
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component of the DM distribution [87]. Since the morphology of the smooth emission component

is similar for Sommerfeld, s-wave, p-wave, and d-wave models, the GCE would similarly be well

fit by the smooth component of any of these velocity-dependent models. The bounds on the cross

section would simply scale with the ratio of the J -factors, in a manner similar to that discussed in

Ref. [32]. However, one caveat to this statement is that the simulations that we have considered re-

solve subhalos down to mass scales of ≳ 106 M⊙. This may be far larger than the actual minimum

subhalo mass, and an extrapolation down to lower subhalo masses may be particularly important

for Sommerfeld models, in which case the subhalo component may eventually dominate over the

smooth halo emission.

Another galaxy that our results may be considered in the context of is M31. Fermi-LAT has

previously detected emission from the central regions of M31, which may be explained via cosmic-

ray interactions in the central stellar disk [93]. More recently, there has been an indication of an

extended emission from the region surrounding M31, which may be explained by emission from

its more extended DM halo [94]. The M31 system is a unique target for DM annihilation, because

halo substructure is expected to contribute to the emission in the outermost regions. Our results

indicate that, even in the context of the full physics simulations, substructure emission is significant

for Sommerfeld models, and even in the case of s-wave models the total emission from subhalos

nears that of the smooth component around r200. However, for p and d-wave models, the smooth

component is dominant at all radii, and no emission from substructure would be identified. This

shows that M31 provides a unique system for DM annihilation and substructure analysis, and we

defer its detailed study to future work.
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4. VELOCITY-DEPENDENT J -FACTORS FOR MILKY WAY DWARF SPHEROIDAL

ANALOGUES IN COSMOLOGICAL SIMULATIONS*

We extract the DM density and relative velocity distributions of the MW’s dSphs from the

APOSTLE Level 1 hydrodynamical simulations [37, 38], and compute the J -factors for the sim-

ulated dSphs for the s-wave, p-wave, d-wave, and Sommerfeld models. To extract the relative

velocity distributions, we first identify analogues of MW satellite galaxies in the APOSTLE sim-

ulations by matching observed properties such as the circular velocity at the half-light radius and

stellar mass to the corresponding subhalos in the simulation. From these best analogue candidates,

we extract the DM relative velocity distribution, and thereby the J -factors for the MW analogue

subhalos. As an additional key component of our analysis, we compare the DM relative velocity

distributions from the subhalos to MB distributions, from which we ascertain how well the MB

distribution works over the entire range of resolved subhalo mass scale in APOSTLE.

4.1 dSph Galaxy Analogues

In this section, we discuss the properties of the dSph analogues that we identify in our simula-

tions. We begin by defining a broad matching criteria to map dSphs onto subhalos in the APOSTLE

simulations, and then move onto characterizing the density profiles of these systems, and finally

determine the DM velocity distributions in the analogues.

4.1.1 Selection of dSph Analogues

The selection of specific dSph analogues was performed using two matching criteria. The first

criterion involves matching the observed circular velocity at the half-light radius of the dSphs [11].

For each subhalo, we first calculate the circular velocity, Vc(r) =
√

GM(< r)/r, where M(< r)

is the total mass enclosed within a sphere of radius r centered on the subhalo. We then compute

Vc(r1/2), or V1/2, where r1/2 is the 3D half-light radius for each of our dSph counterparts [95].

*Reprinted from “Velocity-dependent J-factors for Milky Way dwarf spheroidal analogues in cosmological
simulations” by Blanchette et al., 2023. Journal of Cosmology and Astroparticle Physics, vol. 03, p. 021,
https://doi.org/10.1088/1475-7516/2023/03/021 © IOP Publishing. Reproduced with permission. All rights reserved.
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Most generally, we require that our dSph analogues have a circular velocity at the half-light radius

within 2σ of the observed value, where σ is the uncertainty from observations, which is typically

a few km/s for the dSphs that we consider. The only exception is for the Draco analogues, which,

as described below, we require it to be within 3σ of the observed value, due to the difficulty in

identifying a matching analogue.

As our second criterion, we require that the subhalos have a stellar mass that is consistent with

the measured stellar mass of its observed counterpart [11]. Further, considering that typical stellar

mass-to-light ratios for dSph stellar populations are in the range ∼ 1− 3, and extending this range

by 50% to increase the number of matching analogues, we take the range of dSph stellar masses

that we consider to be within the range 0.5− 4.5 of the measured stellar mass of the dSph.

Given the relatively small sample of satellites in our simulations, and the precise measurements

of the stellar mass and circular velocity, it is expected that our matching criteria will not produce

exact dSph analogues. This is particularly true when considering the distance to the dSph. In

the cases in which we find a matching circular velocity and stellar mass, but there is a significant

difference between the distance to the observed satellite and the distance to the simulated satellite,

we simply shift the simulated satellite to a distance corresponding to that of the observed satel-

lite [96]. We choose this approach because we are most interested in the J -factors below, which

are a sensitive function of the dSph distance.

With our criteria we identify 126 unique subhalos in AP-L1 as dSph analogues. We further

refine our selection of dSph analogues based on the modeling of their DM density profiles, as

discussed in section 4.1.2. This reduces our number of unique subhalos in AP-L1 to 100 subha-

los. The results of our search for analogues are shown in table 4.1. For each dSph, the number

of subhalos identified as analogues, N , is given in the second column of this table. Note that N

may contain subhalos that are analogues of multiple dSphs. For each dSph, we also show the

top two best matching analogues based on their s-wave J -factor being closest to those of ref. [6]

(also shown in figure 4.7 in section 4.3), as well as several properties for each analogue. In sev-

eral instances, for example with Sculptor, Carina, and Sextans, we find good matches between a
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dSph Analogue N Mobs
⋆ [M⊙] M⋆ [M⊙]

V obs
1/2 V1/2 Vmax log10(J̃s)

[km/s] [km/s] [km/s] [GeV2 cm−5]

Canes Venatici I (1)
21 2.3× 105

5.66× 105
13.2

14.56 15.39 17.42
Canes Venatici I (2) 2.50× 105 14.79 16.05 17.44
Carina (1)

17 4.3× 105
2.38× 105

11.1
11.30 13.14 18.52

Carina (2) 9.30× 105 11.37 22.89 18.15
Draco (1)

4 2.2× 105
8.91× 105

17.5
14.92 24.32 18.81

Draco (2) 8.89× 105 15.28 29.01 18.82
Fornax (1)

4 1.7× 107
1.36× 107

18.5
18.79 20.38 18.01

Fornax (2) 1.20× 107 18.36 21.96 17.87
Leo I (1)

19 5.0× 106
3.27× 106

15.6
15.24 20.37 17.63

Leo I (2) 3.52× 106 15.15 24.81 17.64
Leo II (1)

47 7.8× 105
1.45× 106

11.4
12.15 20.13 17.66

Leo II (2) 6.86× 105 10.58 21.90 17.66
Sculptor (1)

9 2.5× 106
1.40× 106

15.6
14.97 26.11 18.58

Sculptor (2) 5.52× 106 15.81 27.73 18.61
Sextans (1)

3 5.9× 105
3.89× 105

12.3
12.77 12.79 17.88

Sextans (2) 3.88× 106 11.61 11.70 17.91
Ursa Minor (1)

23 3.9× 105
4.61× 105

19.9
19.13 25.52 18.76

Ursa Minor (2) 8.91× 105 19.28 24.32 18.74

Table 4.1: The number of subhalos identified as dSph analogues, N , stellar mass, M⋆, the cir-
cular velocity at the half-light radius, V1/2, the maximum circular velocity, Vmax, and the s-wave
J -factors of our selected dSph analogues in AP-L1. The observed stellar mass, Mobs

⋆ , and the
observed circular velocity at the half-light radius, V obs

1/2 of the dSphs are also given in the table.
Note that a given subhalo may be identified as being more than one dSph analogue. Reprinted with
permission from ref. [4].

simulated satellite and the observed system. On the other hand, as alluded to above, for Draco we

are unable to locate reasonable analogues using the matching criterion of 2σ uncertainty for V1/2.

This is similar to what has been found in previous similar studies [36], as Draco is less dense than

is predicted given its best matching analogues in simulations. Allowing up to 3σ uncertainty for

V1/2, we do obtain four Draco analogues across the ten simulated halos.

4.1.2 DM Density Profiles

We now move on to characterizing the DM density profiles of the subhalos. Characterizing

the density profiles are important since they enter into the calculation of the DM annihilation

rate through the J -factor. We follow the typical assumption that the particle distributions in the
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Figure 4.1: Spherically-averaged DM density profiles for a subset of five subhalos in the AP-L1
simulations, with masses in the range of 7 × [107 − 109] M⊙. The black portion of each curve
represents the density at radii smaller than 268 pc, i.e. twice the gravitational softening length. The
lighter shaded region represents the 1σ error, found using Poisson statistics. The dashed green line
shows the best fit Einasto profile for the 6.0 × 108 M⊙ subhalo. The black cross on each curve
specifies the radius containing half the stellar mass of each subhalo. Reprinted with permission
from ref. [4].

subhalos are spherically symmetric, which has been shown to be a good assumption for simulated

dwarf galaxies in APOSTLE [97].

In figure 4.1 we show the spherically-averaged DM density profiles of five example subhalos

of different masses. For each simulated subhalo, the DM density is obtained from the DM mass in

spherical shells of width ranging from [0.1−1.0] kpc, and plotted as a function of r/Rmax, where r

is the distance from the subhalo center, which is identified as the center of potential of that subhalo,

and Rmax is the radius at which the rotation curve of the subhalo reaches its maximum value. The

bin width of the spherical shells was chosen such that there is a minimum of 10 particles per shell.

As is shown in figure 4.1, the density profiles start to flatten towards the inner regions of

the subhalos. This is due to the resolution limit of the simulations, which is determined by the

gravitational softening length, ϵ = 134 pc. In figure 4.1, the black portion of the curves represent
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the density profiles at radii less than twice the softening length. The black cross on each curve

specifies the radius containing half of the stellar mass of each subhalo. An important question

regarding the flattening of the density profiles is whether it can be a result of the baryonic feedback

prescription used in the simulations. However, we note that this is not the case in our simulations.

In particular, refs. [98] and [99] showed that the EAGLE baryonic feedback model, which is also

used by APOSTLE, does not create cores in dwarf galaxies.

We model the DM density profile of the simulated subhalos by the Einasto profile,

ρ = ρ−2 exp

(
− 2

α

[(
r

r−2

)α

− 1

])
, (4.1)

where ρ−2 and r−2 are the density and radius at which ρ(r) ∝ r−2, and α is a parameter which

specifies the curvature of the density profile. We set this parameter to α = 0.16 [86], so only

the two parameters ρ−2 and r−2 are varied. For each subhalo, we find the best fit Einasto profile

in the range of 2ϵ < r < 2Rmax, using 2ϵ rather than ϵ to be conservative and avoid resolution

issues. As an example, in figure 4.1 the dashed green line shows the best fit Einasto profile for

the 6.0 × 108 M⊙ subhalo. It is clear that the central region of the simulated subhalos are under-

dense compared to what is expected from the Einasto fit, which is typically true throughout all the

simulated subhalos examined.

We note that for some of the more massive subhalos, the density profiles show a flattening even

for radii larger than 2ϵ. To take this into account, we also find the best fit Einasto profiles in the

range of 3ϵ < r < 2Rmax. To ensure that our results are robust with respect to the specific range

used for fitting the density profiles, we proceed as follows. We calculate the J -factors of our dSph

analogues using the best fit Einasto profile in the range of 2ϵ < r < 2Rmax and compare the results

to the J -factors calculated using a best fit Einasto profile in the range of 3ϵ < r < 2Rmax. We

then compute the ratio of these two J -factors and remove any dSph candidate that has a J -factor

ratio which exceeds by more than 1σ from the mean J -factor ratio. This cut reduces our number

of analogues from 126 to 100, as mentioned previously.
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4.1.3 Relative Velocity Distributions

For velocity-dependent annihilation models, the J -factors depend not only on the DM density

profile, but also on the DM pair-wise, or relative velocity distribution in the subhalo. We now

describe how we extract the DM relative velocity distributions in radial shells in each subhalo.

We first extract the position vector, x, and the velocity vector, v, of the simulation particles

belonging to each subhalo, with respect to the center of that subhalo. Following the notation used

in ref. [2], we define f(x, v) such that f(x, v) d3x d3v is the number of DM particles within a phase

space volume x + d3x and v + d3v. The probability distribution of DM velocities at a position x

can be written as

Px(v) =
f(x, v)
ρ(x)

, (4.2)

where the DM density at x is given by

ρ(x) =
∫

f(x, v)d3v. (4.3)

For a given pair of DM particles with velocities v1 and v2, we can write the individual velocities

in terms of the center-of-mass velocity, vcm, and the relative velocity, vrel ≡ v2 − v1, as v1 =

vcm + vrel/2 and v2 = vcm − vrel/2. We can then write a general expression for the distribution of

relative velocities at a position x,

Px(vrel) =

∫
Px(v1 = vcm + vrel/2)Px(v2 = vcm − vrel/2) d

3vcm. (4.4)

The DM relative velocity modulus distribution, Px(|vrel|), is related to the relative velocity

distribution, Px(vrel) by

Px(|vrel|) = v2rel

∫
Px(vrel) dΩvrel , (4.5)

where dΩvrel is an infinitesimal solid angle along the direction vrel. It is normalized to unity, such

that
∫
Px(|vrel|)dvrel = 1.
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To extract the relative velocity modulus distributions for each subhalo, we define spherical

shells of width ranging from [0.1− 1.0] kpc, progressing radially outward from the subhalo center.

In each shell, we extract the three components of the velocity vectors, and find the modulus of

the pairwise relative velocity distributions for all DM particles in the shell. The bin width of the

spherical shells was chosen such that there are at least 10 particles in each shell.

Figure 4.2 shows the DM relative velocity modulus distributions for an example subhalo. The

speed distributions are shown in spherical shells of 1 kpc width1 at different radii from the center

of the subhalo, starting from a shell enclosed within 1 < r < 2 kpc from the subhalo center, and

going to a shell with 5 < r < 6 kpc from the center. The bottom right panel of the figure shows

the DM relative speed distribution for all particles in the subhalo. The purple shaded bands specify

the 1σ Poisson error in the speed distributions.

Next, we compare the DM relative speed distributions with a MB distribution. In the Standard

Halo Model [74], the DM velocity distribution is an isotropic MB distribution with a most probable

speed of
√
2σ, where σ is the one dimensional velocity dispersion. In this model, the relative

velocity distribution Px(vrel) is also a MB distribution, but with a one dimensional relative velocity

dispersion of
√
2σ [25]. For each subhalo, we find the best-fit MB relative speed distribution,

PMB(|vrel|) =
4v2rel√
πv3p

exp

(
−v2rel

v2p

)
, (4.6)

where vp is the best fit peak speed, i.e. the most probable speed of the DM particles.

Once we have the empirical Px(|vrel|) for each spherical shell in a subhalo, we can find the

best fit peak speed, vp, in eq. (4.6) for each subhalo, by fitting the DM relative speed distributions

in each shell to the MB distribution. In figure 4.2 we show the best fit MB speed distribution for

each of the six 1 kpc shells as solid black lines. As it is clear from the figure, the MB distribution

provides a good fit to the DM relative speed distribution of the simulated subhalo at all radii. Notice

that the data shown in figure 4.2 is for a “typical” subhalo analogue and is representative of the

1We use spherical shells of 1 kpc width in figure 4.2 for clarity of presentation, while in the analysis of the J-factors
we use shells of width ranging from [0.1− 1.0] kpc.
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Figure 4.2: The DM relative velocity modulus distribution in 1 kpc shells for a typical subhalo
of mass 7.0 × 109 M⊙. The different panels show five different 1 kpc shells, starting from the
shell closest to the subhalo center in the upper left, and continuing to the shell furthest from the
center in the bottom center panel. The bottom right panel shows the DM relative velocity modulus
distribution of all particles in the subhalo. The purple shaded bands specify the 1σ Poisson error in
the speed distributions, while the black solid lines show the best fit MB distribution in each case.
Reprinted with permission from ref. [4].

DM relative speed distributions of the other simulated subhalos studied in this work.

Another method to determine the best fit peak speed of the MB distribution for each subhalo

is to fit the relative speed distribution of all DM particles in the subhalo, instead of dividing it

by shells. This process is much more computationally intensive, but provides an excellent check

when compared to the mean peak speed found from the results of dividing the subhalo into different

shells. Both of these methods lead to a power law relation between the best fit peak speed of the

MB distribution and the maximum circular velocity, Vmax, of the subhalo,

vp = (1.057± 0.016) (Vmax)
1.052±0.004 , (4.7)

where vp and Vmax are in units of km s−1, and the errors here represent the 1σ error on each fit
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Figure 4.3: The best fit peak speed, vp, of the MB distribution as a function of the maximum
circular velocity, Vmax, for all selected subhalos in AP-L1 determined by finding the best fit peak
speed in different radial shells and taking the mean across all shells (orange dots), or by using a
single MB fit across all particles in a subhalo (blue dots). The best fit power law (eq. 4.7) using the
orange points is shown as a solid black line. Reprinted with permission from ref. [4].

parameter returned by the LMFIT package for Python.

Figure 4.3 shows the relation between the best fit peak speed of the MB distribution and the

maximum circular velocity of the subhalos in AP-L1 using the two methods for determining vp.

The blue points are computed using all the DM particles in the subhalos, and the orange points are

computed by first finding the best fit peak speed for different shells, and then taking the mean of

the peak speeds across all shells. Also shown in the plot is the best fit power law using the mean

of the peak speed shown as a solid line, and quantified in eq. (4.7). The two methods of obtaining

the best fit peak speed agree within their 1σ errors.

4.2 J -factors

With the DM density profiles and relative velocity distributions now determined, we can move

on to calculating the velocity-dependent J -factors. Here we lay out the formalism for the J -factor
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calculation for each of the annihilation cross section models that we consider. The notation closely

follows ref. [2].

The DM annihilation cross section, σA, averaged over the relative velocity distribution at a

spatial location, x, is given by

⟨σAvrel⟩(x) =
∫

d3vrelPx(vrel)(σAvrel). (4.8)

In the usual s-wave annihilation, σAvrel is independent of the relative velocity. However, for

velocity-dependent annihilation models, σAvrel depends on the relative velocity and can be parametrized

as σAvrel = (σAvrel)0(vrel/c)
n. Here (σAvrel)0 is the velocity-independent component of the an-

nihilation cross section, and n depends on the specific DM annihilation model. We consider the

following cases: n = 0 (s-wave annihilation), n = 2 (p-wave annihilation), n = 4 (d-wave annihi-

lation), and n = −1 (Sommerfeld-enhanced annihilation).

For the general velocity-dependent annihilation, the expected gamma-ray flux from DM anni-

hilation can then be written as
dΦγ

dE
=

(σAvrel)0
8πm2

χ

dNγ

dE
Js, (4.9)

where mχ is the DM particle mass, dNγ/dE is the gamma-ray energy spectrum produced per

annihilation, and Js is the effective J -factor defined as [31, 2],

Js(θ) =

∫
dℓ

⟨σAvrel⟩
(σAvrel)0

[ρ(r(ℓ, θ))]2

=

∫
dℓ

∫
d3vrelPx(vrel)

(vrel
c

)n

[ρ(r(ℓ, θ))]2 . (4.10)

Here ℓ is the distance from the Sun to a point in the dSph (i.e. line of sight), θ is the opening

angle between the line of sight ℓ and the distance D from the Sun to the center of the dSph, and

r2(ℓ, θ) = ℓ2 +D2 − 2ℓD cos θ is the square of the radial distance measured from the center of the

dSph. This is with the assumption that the dSph is spherically symmetric. The Js-factor integrated
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over solid angle is then given by

J̃s(θ) = 2π

∫ θ

0

Js(θ
′) sin θ′dθ′. (4.11)

4.3 Results

In this section we present the J̃s-factors of the dSph analogues in AP-L1 for the different

velocity-dependent annihilation models. We also quantify the errors introduced in the J̃s-factors

if we model the DM relative velocity distribution of the dSph as a MB distribution.

In figures 4.4 and 4.5 we show the J̃s-factors as a function of the opening angle, θ, for a subset

of simulated dSphs selected to be analogues of Carina and Sculptor, based on the criteria discussed

in section 4.1.1. The four panels of the figures show the J̃s-factors for the four annihilation models.

In the s-wave panel, the results are shown using two methods of computing the DM density profiles.

In one method the density profiles are directly computed from the simulation data, and in the other

method an Einasto fit to the density profiles is used. In the p-wave, d-wave, and Sommerfeld

panels, the best fit Einasto density profiles are used, while two methods are employed to compute

the DM relative velocity distributions. In one method the velocity distributions are extracted from

the simulation data directly, and in the other method the power law relation in eq. (4.7) is used to

find the MB peak speed for each dSph analogue from its maximum circular velocity.

We can clearly see from the s-wave panel of figures 4.4 and 4.5 that the J̃s-factors are larger

when the best fit Einasto density profile is used. This is due to the empirical density profiles be-

ing under-dense in the inner regions of the dSph analogues, which results in smaller J̃s-factors

obtained from the simulation data compared to those obtained from the Einasto profile. It is also

clear from the other panels of the figures that modelling the DM relative velocity distribution using

a MB distribution introduces a degree of error into the J̃s-factors in all three velocity-dependent

models, which depends on the specific model. Nevertheless, for all three velocity-dependent mod-

els, the errors introduced in the J̃s-factors due to the MB modelling of the velocity distributions are

much smaller than the errors introduced due to using the under-dense empirical density profiles.
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Figure 4.4: J̃s-factor for one Carina dSph analogue in AP-L1 for the s-wave (top left), p-wave (top
right), d-wave (bottom left), and Sommerfeld (bottom right) annihilation models. In the s-wave
panel, the solid and dashed lines represent using the empirical and an Einasto fit to the DM density
profile, respectively, for the J̃s-factor calculation. In the p-wave, d-wave, and Sommerfeld panels,
the solid and dashed lines represent using the empirical DM relative velocity distribution and a MB
distribution with a peak speed determined from the power law relation in eq. (4.7), respectively.
Reprinted with permission from ref. [4].

We can quantify more precisely the error introduced in the J̃s-factors if we model the relative

velocity distribution of the dSph as a MB distribution. For this, we compare the J̃s-factor of all

subhalos using the DM relative velocity distributions extracted from the simulation data with those

computed using (a) the best fit MB velocity distribution in different radial shells, (b) the best fit

MB distribution for all particles in the subhalo, (c) a MB distribution with a peak speed set to the

mean of the best fit MB peak speeds across all radial shells, and (d) a MB distribution with a peak

speed found using eq. (4.7). The ratios of the J̃s-factors obtained directly from the simulation data

to those computed from a MB velocity distribution, J̃MB
s , using each of the above methods are

shown in figure 4.6 for the p-wave, d-wave, and Sommerfeld models.

We can see from figure 4.6 that fitting a MB distribution in each radial shell minimizes the
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Figure 4.5: Same as figure 4.4 but for one Sculptor dSph analogue in AP-L1. Reprinted with
permission from ref. [4].

error for all annihilation models. The errors introduced by the other three methods are similar to

each other, especially for the p-wave and Sommerfeld models. In table 4.2, we quantify the errors

introduced in the J̃s-factors using all four methods for computing the velocity distribution. At

high Vmax, we find that fitting a MB distribution in each radial shell introduces an average error of

1.06-1.70%, using the best fit MB distribution for all particles in a subhalo introduces an average

error of 2.17-6.50%, using the mean of MB fits across all radial shells introduces an average error

of 2.45-5.91%, and using a MB distribution from eq. (4.7) introduces an average error of 2.93-

14.86% for the velocity-dependent annihilation models. We find that the average percent error

increases at lower Vmax for all annihilation models. We also find that the average percent errors are

generally smaller for the Sommerfeld model in each method of calculation.

We note that the computational time saved using a MB distribution with a peak speed found

from the power law fit (eq. (3.7)) to model the relative velocity distribution rather than extracting

it from the simulation data directly is substantial. In particular, we found that for our subset of
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Figure 4.6: The ratio of the J̃s-factors obtained from the empirical DM relative velocity distri-
butions and those found from fitting a MB distribution: in different radial shells (black), to all
particles in the dSph (blue), using the mean peak speed found from the best fit MB peak speeds
across all shells (green), and using the peak speed found from eq. (4.7) (orange). The solid lines
show the mean ratios as a function of the dSph’s maximum circular velocity, while the dashed
lines show the upper and lower 1σ uncertainties. The left, middle, and right panels show the re-
sults for the p-wave, d-wave, and Sommerfeld models, respectively. Reprinted with permission
from ref. [4].

subhalos selected from the AP-L1 simulations, the time it takes to compute the J̃s-factors using

the empirical data is ∼ 20, 000 times longer than the time it takes to compute them using the MB

distribution.

Next, we compare our J̃s-factor results to those recently found in the literature for specific

dSphs [6]. In figure 4.7, we show the comparison of our J̃s-factors for nine dSph analogues

obtained using the simulation data directly and using a MB velocity distribution with a peak speed

obtained from the power law fit, with those presented in figure 1 of ref. [6]. The J̃s-factors in

ref. [6] are calculated using eq. (4.10), integrated over cones with various opening half-angles. We

choose to compare to the J̃s-factors integrated over a cone with an opening half-angle of 0.5◦,

simply because all the dSph analogues are extended out at minimum to 0.5◦, but not to the the

next data point of 10◦. Furthermore, to compare our results to those of ref. [6], we compute our

J̃s-factors by positioning the simulated dSph analogues at the same galactocentric distance as their

observed dSph counterparts, obtained from ref. [96].
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MB Shells All particles Mean across shells Power law
p-wave [4.14, 1.25] [11.24, 6.50] [12.16, 4.54] [13.25, 8.82]
d-wave [5.99, 1.70] [24.04, 9.92] [25.30, 5.91] [26.38, 14.86]
Sommerfeld [2.00, 1.06] [12.90, 2.17] [13.90, 2.45] [14.43, 2.93]

Table 4.2: The average percent error of the J̃ -factors of each method of calculation for the velocity-
dependent annihilation models. Shown are the average percent errors for subhalos with 3.09 ≤
Vmax ≤ 4.30 km/s (left numbers in the intervals) and subhalos with 43.16 ≤ Vmax ≤ 60.0 km/s
(right numbers in the intervals). Reprinted with permission from ref. [4].

In ref. [6] a Navarro-Frenk-White (NFW) profile was used to model the density profiles of the

dSphs, and the DM velocity distributions were assumed to be related to the density profiles by the

Eddington inversion formula [100]. This approach assumes that the DM halo is in equilibrium with

a spherically symmetric potential, and that the DM has isotropic orbits. For comparison, in this

work, we use the best fit Einasto density profiles for the simulated dSphs. The DM relative velocity

distributions are obtained directly from the cosmological simulations, and we also compare the

results to those obtained from modeling the velocity distributions as a MB distribution. These

represent the primary differences in our approach and the approach used in ref. [6]. In appendix C,

we also present the J̃s-factors for the nine dSph analogues using their best fit NFW density profiles,

and compare them to the results of ref. [6].

As we can see in figure 4.7, our results generally agree with ref. [6]. In particular, for each of

the observed dSphs shown in figure 4.7, the average J̃s-factor over the different simulated dSph

analogues is roughly on the same order of magnitude as those of ref. [6] for each annihilation

model, and show no systematic trends when compared to ref. [6]. We also see that in general the

subhalo-to-subhalo scatter is largest for d-wave and smallest for the Sommerfeld model. This trend

is similar to the results obtained for the smooth halo in ref. [2].

4.4 Discussion and Conclusions

In this dissertation we have presented a systematic study of the velocity-dependent DM annihi-

lation signals from dwarf spheroidal galaxy analogues in the APOSTLE cosmological simulations.

We extract the DM density and pair-wise relative velocity distributions of the simulated dwarf
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Figure 4.7: Integrated J̃s-factors over cones with opening half-angles of 0.5◦ for nine dSph ana-
logues for the s-wave (blue), p-wave (red), d-wave (orange), and Sommerfeld (green) models. The
the J -factors are calculated using the DM relative velocity distributions found empirically (cir-
cle), using a MB distribution with a peak speed from the power law in eq. (4.7) (triangle), and
comparing to the data in ref. [6] (square). Reprinted with permission from ref. [4].

spheroidal analogues to compute the J -factors in the s-wave, p-wave, d-wave, and Sommerfeld

annihilation models. We also quantify the error introduced in the J -factors if we model the DM

relative velocity distribution as a Maxwell-Boltzmann distribution.

We find a good agreement between the DM relative velocity distributions of the dwarf spheroidal

analogues extracted from the simulations and their best fit Maxwellian distribution at all radii. As

a result, the error introduced in the J -factors from using the best fit Maxwellian distributions in

different radial shells within a dwarf spheroidal analogue is on average 2.7% for the three velocity-

61



dependent models. This error increases to 10.7% if we use a Maxwellian distribution with a peak

speed set to the mean of the best fit Maxwellian peak speeds across all radial shells in a dwarf

spheroidal analogue. If instead, we use all the DM particles in a dwarf spheroidal analogue to find

the best fit Maxwellian distribution, the error is slightly increased to 11.1%. We also find that the

latter two methods of determining the best fit peak speed of the Maxwellian distribution by using

either all the DM particles in the dwarf spheroidal analogue or by finding the mean of the best fit

peak speeds at different radii, lead to a power law relation between the best fit peak speed and the

maximum circular velocity of the dwarf spheroidal analogue (i.e. eq. (4.7)). Using this power law

to compute the J -factors substantially reduces the computation time, and introduces on average a

13.4% error.

We have investigated the effects of modelling the DM density profile of the dwarf spheroidal

analogues using an Einasto profile. We find that the difference between the J -factors calculated

directly from the simulation data and those calculated from the best fit Einasto profiles is much

larger than the error introduced in the calculations due to modeling the DM relative velocity distri-

butions with a Maxwell-Boltzmann distribution. The large differences in the two density profiles

originate from the resolution of the simulations which results in the empirical density profiles be-

ing under-dense in the inner regions of the dwarf spheroidal analogues compared to the Einasto

profile.

We also find that the systematic uncertainties introduced in the integrated J -factors by us-

ing different analogues of the same observed dwarf spheroidal in the simulations is in general

larger than the error introduced by modeling the relative DM velocity distributions as a Maxwell-

Boltzmann distribution. Additional systematic uncertainties can also be introduced by using dif-

ferent models for the DM density profiles, such as the NFW profile and its cored versions, or

by breaking the assumption of spherically symmetric profiles. Also, it may be necessary to in-

clude substructure within the dSph analogues, and quantify the difference in their contributions

for the different velocity-dependent models. This mass function for these sub-subhalos has been

quantified in the higher resolution DMO Aquarius simulations [101], but not for the simulations
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considered in this analysis. At this stage, a detailed analysis of such uncertainties is beyond the

scope of this work.

Finally, we compare our results to those found in the literature for specific dwarf spheroidal

galaxies. We find that our integrated J -factors are generally in good agreement with those pre-

sented in previous work, which uses simplified models for the DM velocity distributions of the

dwarf spheroidals [6]. The simulations we use in this dissertation do not force strict model as-

sumptions on the velocity distribution. As a result, we specifically show that the halo-to-halo

scatter in the J -factors dominate the astrophysical uncertainties, with the largest scatter for the

d-wave models and the smallest for the Sommerfeld models. Such a scatter is likely to have im-

portant implications for bounds on the DM annihilation cross section that have been obtained in

previous studies [18].
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5. VELOCITY-DEPENDENT J -FACTORS FOR M31 IN COSMOLOGICAL

SIMULATIONS

At the time of publication of this dissertation, the work discussed in this chapter is currently in

progress. Please see more a recent publication by Vienneau et al. for the most updated figures and

results.

In this work, we extract the DM density and relative velocity distributions of M31 from the

APOSTLE Level 1 hydrodynamical simulations [37, 38], and compute the J -factors for the sim-

ulated M31 galaxies for the s-wave, p-wave, d-wave, and Sommerfeld models. We compare the

results to the J -factors for the MW foreground and external sources.

5.1 Selection of M31-Like Galaxies

We use APOSTLE Level 1 volumes to examine M31-like analogues. Each APOSTLE volume

contains two main galaxies, a MW-like and an M31-like galaxy. In this work, we consider both

main halos in each of the five Level 1 volumes, to give us a total of 10 M31-like analogues.

In each volume, we define the Solar position at 8.0 kpc from the galactic center of one of the

main halos, making sure that the other main halo appears at the galactic longitude and latitude

values of the observed M31. To include the contributions from foreground and background dwarf

galaxies, we do not impose any distance restrictions on the DM particles in which we consider.

5.2 Properties of the Simulated Volumes

In this section, we discuss the dynamical properties of the DM halos that are most important

for our analysis. We focus specifically on the DM density profiles and the relative DM velocity

distributions. These properties are then used in the subsequent sections to calculate the J -factors.

As in section 3.2, we separate our J -factor calculations into contributions from the smooth

DM halo and contributions from DM subhalos. Also, for the purposes of our analysis, we further

separate the contributions from M31, the MW foreground, and other external sources.
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5.2.1 DM Density Profiles

We now move on to characterizing the DM density profiles of the halos. Characterizing the den-

sity profiles is important since they enter into the calculation of the DM annihilation rate through

the J -factor.

Unlike in our previous studies of DM annihilation in simulations, we assume that the DM

density profile is not spherically symmetric. This is because M31 is an extended source on the sky

and contains a non-uniform distribution of substructure. Following ref. [5], we apply a Voronoi

tesselator to estimate the DM distribution in the entire volume, allowing the calculation of ρi from

the DM particle mass and the cell volume surrounding the i-th DM particle. This approach provides

a better localized measure of the DM density than other estimates which smooth over a particle’s

nearest neighbors [87], as discussed in previous sections. We can use the local DM density profile

in our calculations for the J -factors.

5.2.2 Relative Velocity Distribution

For velocity-dependent annihilation models, the J -factors depend not only on the DM density

profile, but also on the DM pair-wise, or relative velocity distribution of the DM particles. We now

describe how we extract the DM relative velocity distributions at the location of each DM particle.

Previously, we assumed the relative velocity distributions to be spherically symmetric, and

thus we calculated the relative velocity distributions in spherical shells. Now, we will not assume

spherical symmetry due to the reasons discussed above. At the location of each DM particle, we

take the nearest 500 DM particles and calculate the pair-wise relative velocity of each particle.

We find that the local DM relative velocity distribution can still be well approximated by a MB

distribution. The relative velocity distributions are then used in eq. (3.7) to obtain µn(x) for each

annihilation model at the location of each DM particle. We can now use the velocity moments to

calculate the J -factors.
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5.3 Results

To calculate the J -factors, we need the DM density and the DM relative velocity distribution.

Using the Voronoi tessellation method described above, we estimate the local DM density at the

location of each DM particle. Then we calculate the relative velocity distribution at the location of

each DM particle, and obtain µn(x) for each annihilation model. We then compute the integral in

eq. (3.8) over each volume produced by the Voronoi Tessellation, normalized by the angular size,

to obtain the J -factors.

5.3.1 J -factors

In this section we present the preliminary results of our analysis. We begin by comparing the

contribution to the J -factors from DM subhalos to that of the DM smooth halo in the simulations.

We then compare the contribution to the J -factors from the MW foreground and external sources

to that from M31. Additionally we compare our results of the s-wave annihilation radiation from

M31 to the analytic models in ref. [94].

Figure 5.1 shows the results for one M31-like galaxy for each considered annihilation model

as seen from the Solar position. The extended emission from the smooth DM halo is noticeable

in all annihilation models. The contribution from subhalos is greatest for the Sommerfeld and s-

wave annihilation models. As found in ref. [3], the DM annihilation radiation from subhalos is not

significant in p-wave and d-wave annihilation models.

Figure 5.2 shows the ratio of J -factors from M31 to that of the combined contribution from

MW foreground and external sources for the same M31-like galaxy shown in figure 5.1 for each

considered annihilation model as seen from the Solar position. The extended emission from the

smooth DM halo of M31 is dominant in all annihilation models. In the case of Sommerfeld and

s-wave annihilation models, we find that the annihilation radiation from DM subhalos dominate

over that of the smooth DM halo component.

Figure 5.3 shows the J -factors for all 10 M31-like halos for Sommerfeld (red), s-wave (blue),

p-wave (yellow), and d-wave (green) annihilation models. The solid lines show the annihilation
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Figure 5.1: J -factors for one M31-like galaxy for each considered annihilation model as seen from
the Solar position. The concentric black circles represent r200 and 2r200 of the halo. The extended
emission from the smooth DM halo is noticeable in all annihilation models. The contribution from
subhalos is greatest for the Sommerfeld and s-wave annihilation models.

radiation from M31 while the dashed lines show the MW foreground annihilation. The horizontal

axis shows the angle from the center of M31 for the line-of-sight. At each angle we spherically

average the J -factors, so that we can include the contribution from DM subhalos. We find that in

the case of s-wave annihilation, our results agree with that of ref. [7].

5.3.2 Fermi Analysis

We are currently working to implement our J -factor results from DM simulations into Fermi

modeling software. we perform a binned likelihood analysis assuming an extended spatial profile
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Figure 5.2: The ratio of J -factors from M31 to that of the combined contribution from MW
foreground and external sources for one M31-like galaxy for each considered annihilation model
as seen from the Solar position. The concentric black circles represent r200 and 2r200 of the halo.
The extended emission from the smooth DM halo of M31 is dominant in all annihilation models.
In the case of Sommerfeld and s-wave annihilation models, we find that subhalos dominate over
the smooth component.

for the source based on our templates, centered on M31, using the Fermitools 2.0.8.1 We utilize

FermiPy [102], which is a Python-based software package that automates the tools for Fermi-LAT

source analysis.

We consider the 30° × 30°region of interest (ROI) centered on M31 as shown in figure 5.1.

We input a background source model using the MW foreground annihilation signals from each

simulation. Each of the ten instances of the simulations and each of the four annihilation models
1https://github.com/fermi-lat/Fermitools-conda/wiki
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Figure 5.3: The J -factors for all 10 M31-like halos for Sommerfeld (red), s-wave (blue), p-wave
(yellow), and d-wave (green) annihilation models. The solid lines show the annihilation radiation
from M31 while the dashed lines show the MW foreground annihilation. The horizontal axis shows
the angle that the line-of-sight makes from the center of M31. At each angle we spherically average
the J -factors. We find that in the case of s-wave annihilation, our results agree with that of ref. [7].

are considered separately in this analysis.

In a general FermiPy analysis, one defines the model sources within the ROI and then performs

multiple likelihood tests to determine the best-fitting parameters of the model sources. Follow-

ing ref. [103], we define the Test Statistic (TS) as TS = −2ln(L0/L1) where L0 represents the

likelihood of the null hypothesis and L1 represents the likelihood of the alternative.

We have not yet obtained definitive results from the FermiPy analysis, but we anticipate that

the results will show a significant annihilation signal from the smooth DM component of M31 in

all annihilation models. We expect to see a significant contribution to the DM annihilation signals

in the Sommerfeld and s-wave annihilation models. We also expect that the results of the analysis

will provide strict limits on the annihilation cross section of DM particles in the simulations.
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5.4 Discussion and Conclusions

In this dissertation we have presented a systematic study of the velocity-dependent DM anni-

hilation signals from M31 analogues in the APOSTLE cosmological simulations. We extract the

local DM density and the pair-wise relative velocity distributions of M31, the MW foreground,

and external sources to compute the J -factors in the s-wave, p-wave, d-wave, and Sommerfeld

annihilation models. We find that the extended emission from the smooth DM halo dominates

over the emission from the MW foreground and external sources in all annihilation models. As

in section 3.4, we find that substructure is the most significant in Sommerfeld and s-wave models,

while it is the least significant in p-wave and d-wave models.

We compare our results to that of ref. [7], which utilizes a spherically-symmetric analytic

approach to the calculation of the J -factors. We find that for the s-wave DM annihilation model,

the J -factors from M31 and the MW foreground in simulations are in good agreement with the

analytic estimations. We note that the halo-to-halo scatter for M31 J -factors is smallest in the

Sommerfeld and largest in the d-wave annihilation model.

Currently we are working to implement the velocity-dependent J -factors of M31 in a FermiPy

analysis.

The work in this chapter is still currently in progress by Evan Vienneau, Addy Evans, Louis

Strigari, and Nassim Bozorgnia.
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6. 3D MODELING OF THE INTERSTELLAR MEDIUM OF THE MILKY WAY

At the time of publication of this dissertation, the work discussed in this chapter is currently in

progress. Please see more a recent publication for the most updated figures and results.

6.1 Motivation

The objective of this project is to provide a cohesive “big picture” view of the dynamical

interactions between CRs and the other parts of the diffuse ISM through developing detailed data-

driven models of the interstellar gas, radiation and magnetic fields, and CRs in the MW. These

models will be used to investigate the deep connections between important properties related to

the evolving ISM: the CR heating and pressure, the radio/IR/γ-ray relation, the spatial distribution

of the diffuse ultraviolet (UV) through far-IR (FIR) radiation (the interstellar radiation field –

(ISRF)), and the spatial distribution of CO and its relationship to H2 through the often used XCO

parameter.

The ISRF modeling uses empirical luminosity functions (LFs) and density profiles for the

stellar spectral content of the different geometric components (disk, arms, etc.). Because we are

not studying the dynamical and stellar evolutionary history this is the most practical approach for

characterizing the stellar populations at the present day.

Of particular importance is the LF and profile of OB stars, because these stars provide heating

of dust nanograins that emit prominently in the mid-infrared, and the OB stars are candidates

for tracing the CR sources, if not actual sources themselves [104, 105]. Dust heating from the

strong UV from these stars produces warmer emissions, so better characterization of their spatial

distribution enables the most accurate separation of the warm and cooler FIR-emitting dust; the

latter is mainly due to heating by the longer wavelength component of the ISRF in the ISM.

Density profiles for late-type stars have been measured by several authors over the years [106,

107], and most recently using Tycho-Gaia Astrometric Solution (TGAS)/Gaia DR1 [108]. How-

ever, the density for OB stars has not been studied in great detail. The LFs for these stars for the
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R12/F98 ISRF models are based on limited statistics, from studies in the 1980/90s [109, 110, 111]

and Hipparcos observations [112, 113].

A catalog of approximately 5000 OB stars has been compiled using Gaia DR2 [114]. Com-

bined with the Hipparcos data we intend to utilize this sample of OB stars with a Bayesian analysis

[115] to tightly constrain the OB-star distribution vertical scale height. Ref. [108] finds from

TGAS the scale height for A-type stars is ∼ 50 pc, increasing to ∼ 100 pc for later types. A direct

empirical estimate of the OB star scale height will be an important input also into our CR source

models.

Determining the OB star number density requires a measurement of the selection function in

order to correct for incompleteness. Using DR1 [108] estimates the selection function for late-type

stars by cross-matching TGAS with the 2MASS catalog. For DR2, we are also able to compare

to 2MASS to estimate the selection function [116]. In addition to the OB star number density we

will be able to better determine the number density for all other stellar types, providing the most

tightly constrained LFs and corresponding improved accuracy of the ISRF over all wavelengths.

The outcome will be an optimized 3D ISRF model with self-consistently determined structural

parameters for the major stellar and dust components. Our work will provide the best model of the

full 3D spectral intensity spatial distribution from UV-to-FIR for the MW, which is necessary for

accurate calculation of CR electron/positron energy losses and the IC γ-ray production from the

interstellar emissions. Our new model will also provide the most detailed description for the IR

photon density and dust temperature distribution across the Galaxy over different spatial scales.

6.2 Selection of OB Stars in Gaia DR3

Gaia DR3 has astrometry and photometry for an incredible 1,811,709,771 sources. However,

we are only interested in a subset of these stars to include in the calculations for our model. In this

section we will discuss the selection of O and B stars in Gaia DR3.

For our completeness model, we select stars which have been reliably detected by Gaia [1].

We only consider stars which satisfy the following quality cuts: PHOT_G_MEAN_MAG <= 20,

ASTROMETRIC_MATCHED_TRANSITS >= 5, ASTROMETRIC_EXCESS_NOISE <= 20,
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PARALLAX_OVER_ERROR >= 10. See appendix D for the query used to select O and B stars

from the Gaia catalogue. We further reduce our subset of stars by performing a parallax cut, so that

we only consider stars within a distance of 4.2 kpc. This ensures that our entire region of interest

for the 3D ISRF model will be encompassed by the 3D completeness model. This process gives us

966,707 B type and 170,660 O type stars to consider.

6.3 Completeness Model

Comparing model predictions to observations from an astronomical catalogue requires knowl-

edge of the selection effects and incompleteness affecting the observed objects. Knowing what

we could not observe is as important as knowing what we could observe, especially for creating a

model based on our observations.

A catalogue selection function describes the probability of an object to be included in an astro-

nomical catalogue. This selection function represents the combined the effects of data collection

and data processing. The most common approach to estimate a catalogue selection function of

a sample is to compare to a more complete catalogue [117, 108, 118]. This approach is easy to

understand and implement, but does require that the comparison catalogue truly is complete.

To calculate the completeness of the Gaia catalogue you would need a different method of cal-

culation because there currently is no catalogue which is more complete than the Gaia catalogue.

Ref. [1] provides empirical calculations of the completeness function of the Gaia catalogue. This

approach requires modeling each step of the Gaia processing, from the scanning law and onboard

filtering to the astrometric processing. We use the Gaiaverse1 selection function established in

ref. [1] to estimate the completeness of our sample of OB stars.

6.4 Results

Once we have obtained the subset of OB stars that satisfy the conditions outlined in section 6.2,

we then calculate a 2D and 3D completeness model. Utilizing the Gaiaverse selection function

Python package [1], we estimate the completeness of O and B type stars separately. We query

1https://github.com/gaiaverse/selectionfunctions
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Figure 6.1: All-sky map of the average completeness of B stars (top) and O stars (bottom) along
the line of sight out to 4.2 kpc.

the selection function with only one type of star, which provides an estimate for the completeness

at the location of each star. Using HEALPix to establish bin locations on the sky, we sort the

stars into corresponding bins. To create a 2D completeness model on the sky, we average the

completeness of O stars and B stars separately in a given HEALPix bin. We then extend our

completeness model to 3D by utilizing the parallaxes assigned by Gaia, which is why we require

precise parallax measurements of our OB sample. For O and B stars separately, we calculate the
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Figure 6.2: The 3D completeness model for B stars. This shows a sample of points at different
distances from the Sun and using HEALPix with nside = 2 to query the 3D completeness model.
The results are similar for O stars.

average completeness in a HEALPix bin from the Sun out to a certain distance. This provides the

average total 3D completeness for OB stars, and ensures that at a distance of 4.2 kpc our 2D and

3D completeness models coincide.

Figure 6.1 shows the average 2D completeness of B stars (top) and O stars (bottom) along

the line of sight out to 4.2 kpc. The color bar indicates the completeness, where a completeness

of 0 indicates the sample is incomplete in that region and a completeness of 1 indicates that all

stars were successfully detected in that region. In these 2D completeness models, we find that

there are some structural components of the MW visible in the all-sky map of completeness for

B stars. However, we can clearly see the structure of the dust component of the MW disk in the

completeness map for O stars.
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Figure 6.2 shows the average 3D completeness model for B stars. This depicts a sample of

points at different distances from the Sun at HEALPix centers of nside = 2 to query the 3D com-

pleteness model. Each point represents the total average completeness out to that distance. The

color bar indicates the completeness. The x, y, and z axes are given in rectangular Galactic coordi-

nates and show the distance from the Sun in kpc. This 3D completeness model extends to 4.2 kpc

in all directions such that it contains the entire region of interest for our 3D ISRF model. The 3D

completeness model matches figure 6.1 at a distance of 4.2 kpc from the Sun.

6.5 Discussion and Conclusions

We are working to create an optimized 3D ISRF model with self-consistently determined struc-

tural parameters for the major stellar and dust components. Our work will provide the best model

of the full 3D spectral intensity spatial distribution from UV-to-FIR for the MW, which is necessary

for accurate calculation of CR electron/positron energy losses and the IC γ-ray production from

the interstellar emissions. Our new model will also provide the most detailed description for the

IR photon density and dust temperature distribution across the Galaxy over different spatial scales.

My contribution to this project is the creation of the 3D completeness model of OB stars in

Gaia DR3. We have obtained OB stars from the Gaia DR3 catalogue which satisfy our quality

cuts. Utilizing the Gaiaverse selection function, we calculate the completeness of our sample of

O and B stars separately. This 3D completeness model can then be used to estimate the density

profile and luminosity profile of OB stars in our 3D ISRF model.

The work in this chapter is still currently in progress by Louis Strigari and Troy Porter.
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7. CONCLUSIONS

During the course of my dissertation work, I have published three papers, as discussed in

chapters 2–4, and have contributed to two additional ongoing projects, as discussed in chapters 5

and 6. In this chapter I will summarize the conclusions from this dissertation.

In chapter 2 we have performed the first study of the DM relative velocity distribution of Milky

Way-like halos, using the Auriga and APOSTLE cosmological simulations. We find that the DM

pair-wise relative velocity distribution at nearly all radii in the halos is consistent with the Maxwell-

Boltzmann distribution. This agreement is particularly good for the simulations that include

baryons. For the corresponding DMO-simulations, the agreement with the Maxwell-Boltzmann

distribution is good, though there are some notable deviations, particularly at small radii as the

center of the halo is approached.

We have explored the implications for velocity-dependent DM annihilation, focusing on the

Sommerfeld (1/v), s-wave (v0), p-wave (v2), and d-wave (v4) models. We generally show that

the J -factors scale as the moments of the relative velocity distribution, and that the halo-to-halo

scatter is largest for d-wave, and smallest for Sommerfeld models.

Our results indicate that in velocity-dependent models, the J -factor is strongly correlated with

the DM density in the halo, and is very weakly correlated with the velocity dispersion. This implies

that if the DM density in the Milky Way can be robustly determined, one can accurately predict the

DM annihilation signal, without the need to identify the DM velocity distribution in the Galaxy.

In chapter 3 we have used the high-resolution Auriga simulations of Milky Way-like galaxies

to determine the contribution of halo substructure to the signal from DM annihilation. We consider

the general case of velocity-dependent DM annihilation, examining Sommerfeld, s-wave, p-wave,

and d-wave models. We find that substructure is the most significant in Sommerfeld models, while

it is the least significant in d-wave models. In the Sommerfeld models, the total substructure

contribution to the DM annihilation signal dominates that of the smooth component beyond ∼

0.74r200, while for all other models the substructure contribution is sub-dominant at all radii as
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compared to the smooth halo.

Examining the luminosity functions of substructure, we find that in Sommerfeld models, the

luminosity function is dominated by the least massive subhalos that are resolved. On the other

hand, for d-wave models, the luminosity function is dominated by the most massive subhalos that

are resolved. So extrapolating to lower subhalo mass scales may still increase the luminosity con-

tribution from subhalos in Sommerfeld models, though it will not affect the luminosity contribution

from subhalos in the case of d-wave models.

In chapter 4 we have presented a systematic study of the velocity-dependent DM annihilation

signals from dwarf spheroidal galaxy analogues in the high-resolution APOSTLE cosmological

simulations. We extract the DM density and pair-wise relative velocity distributions of the sim-

ulated dwarf spheroidal analogues to compute the J -factors in the s-wave, p-wave, d-wave, and

Sommerfeld annihilation models. We also quantify the error introduced in the J -factors if we

model the DM relative velocity distribution as a Maxwell-Boltzmann distribution.

We find a good agreement between the DM relative velocity distributions of the dwarf spheroidal

analogues extracted from the simulations and their best fit Maxwellian distribution at all radii. As

a result, the error introduced in the J -factors from using the best fit Maxwellian distributions in

different radial shells within a dwarf spheroidal analogue is on average 2.7% for the three velocity-

dependent models.

Additionally, we compare our results to those found in the literature for specific dwarf spheroidal

galaxies. We find that our effective J -factors are generally in good agreement with those presented

in previous work, which uses simplified models for the DM velocity distributions of the dwarf

spheroidals [6]. The simulations we use in this dissertation do not force strict model assumptions

on the velocity distribution.

In chapter 5 we have presented a systematic study of the velocity-dependent DM annihila-

tion signals from M31 analogues in the high-resolution APOSTLE cosmological simulations. We

extract the local DM density and the pair-wise relative velocity distributions of M31, the MW

foreground, and external sources to compute the J -factors in the s-wave, p-wave, d-wave, and
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Sommerfeld annihilation models. We find that the extended emission from the smooth DM halo

dominates over the emission from the MW foreground and external sources in all annihilation

models. As in section 3.4, we find that substructure is the most significant in Sommerfeld and

s-wave models, while it is the least significant in p-wave and d-wave models. Additionally, we

find that the s-wave J -factors for M31 and the MW foreground generally agree with the results of

ref. [7].

In chapter 6 we are working to create an optimized 3D ISRF model with self-consistently

determined structural parameters for the major stellar and dust components. Our work will provide

the best model of the full 3D spectral intensity spatial distribution from UV-to-FIR for the MW,

which is necessary for accurate calculation of CR electron/positron energy losses and the IC γ-ray

production from the interstellar emissions. Our new model will also provide the most detailed

description for the IR photon density and dust temperature distribution across the Galaxy over

different spatial scales.

My contribution to this project is the creation of the 3D completeness model of OB stars in

Gaia DR3. We have obtained OB stars from the Gaia DR3 catalogue which satisfy our quality

cuts. Utilizing the Gaiaverse selection function, we calculate the completeness of our sample of

O and B stars separately. This 3D completeness model can then be used to estimate the density

profile and luminosity profile of OB stars in our 3D ISRF model.
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APPENDIX A

BEST FIT PARAMETERS FOR RELATIVE VELOCITY DISTRIBUTIONS*

In table A.1 we present the best fit peak speeds and reduced χ2 values for the Maxwellian

functional form to fit the DM relative velocity modulus distributions of the Auriga and APOSTLE

MW-like halos. The best fit parameters are given for the DM particles in spherical shells at different

radii from the center of the halo.

r = 2 kpc r = 8 kpc r = 20 kpc r = 50 kpc
Halo Name v0 [km s−1] χ2

red v0 [km s−1] χ2
red v0 [km s−1] χ2

red v0 [km s−1] χ2
red

Au2 315.93 1.05 321.03 1.99 307.43 0.91 263.53 1.33
Au4 337.43 0.98 335.43 0.86 297.53 1.05 245.12 2.09
Au5 379.34 0.46 338.43 0.63 293.63 0.96 236.62 1.14
Au7 308.93 0.68 298.33 0.72 268.13 0.80 225.42 1.24
Au9 384.14 0.51 328.33 0.71 274.93 0.72 226.62 2.12

Au12 341.83 0.56 314.93 0.81 273.53 1.01 235.42 2.12
Au19 326.23 0.62 299.83 0.63 280.13 0.86 233.02 1.88
Au21 331.93 0.21 330.73 0.63 303.73 1.28 246.92 1.67
Au22 401.64 0.61 316.73 1.64 270.53 2.48 220.92 1.47
Au24 363.04 0.40 329.03 0.53 302.13 1.13 249.42 1.63

AP-V1-1-L2 309.58 0.89 312.75 0.49 299.72 0.73 267.15 1.55
AP-V6-1-L2 368.60 0.62 331.61 0.53 308.73 0.52 273.38 1.07
AP-S4-1-L2 297.77 0.62 295.07 0.42 271.10 0.64 243.93 0.92
AP-V4-1-L2 296.83 0.68 296.91 0.55 269.67 0.61 238.93 1.84
AP-V4-2-L2 298.68 0.92 244.91 0.90 229.59 0.66 198.06 1.17
AP-S6-1-L2 313.43 0.91 267.60 0.97 241.73 1.24 201.78 1.19

Table A.1: Best fit peak speed, v0, and the reduced χ2 values for the goodness of fit of the
Maxwellian velocity distributions to the DM speed distributions of the Auriga and APOSTLE
MW-like halos at different radii from the center of the halo. Reprinted with permission from
ref. [2].

*Reprinted with permission from “Velocity-dependent J-factors for annihilation radiation from cosmological sim-
ulations” by Board et al., 2021. Journal of Cosmology and Astroparticle Physics, vol. 04, p. 070, Copyright [2021]
by IOP Publishing Ltd and Sissa Medialab.
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APPENDIX B

COMPONENTS OF THE RELATIVE VELOCITY DISTRIBUTIONS*

In figure B.1 we show the radial (vrel,r), polar (vrel,θ), and azimuthal (vrel,ϕ) components of the

DM relative velocity distributions for halos Au2 and Au22 at four different Galactocentric radii.

The origin of our reference frame is at the Galactic center, and the z-axis is perpendicular to the

stellar disk. The three components of the relative velocity distribution are individually normalized

to unity, such that
∫
dvrel,if(vrel,i) = 1 for i = r, θ, ϕ.

The three components of the relative velocity distribution are different at each radius, and there

is a clear velocity anisotropy at all radii. The solid colored curves in each panel specify the best fit

Gaussian distribution to each relative velocity component for the two halos.

To better understand the degree of anisotropy in the relative velocities, we compute the anisotropy

parameter,

β = 1−
σ2
θ + σ2

ϕ

2σ2
r

, (B.1)

where σr, σθ, and σϕ are the radial, polar, and azimuthal velocity dispersions, respectively. Notice

that for an isotropic velocity distribution, β = 0. In figure B.2 we show the anisotropy parameter

as a function of Galactocentric radius for the Auriga MW-like halos. We can see that at small radii,

relative velocity distributions of all halos are close to isotropic, but become more anisotropic as we

move further from the Galactic center.

To better compare halos Au2 and Au22, we can also study the shape of their halos. In sec-

tion 2.2 we define the range of sphericities of all the Auriga MW-like halos at four different radii.

For Au2 we have s(2 kpc) = 0.66, s(8 kpc) = 0.72, s(20 kpc) = 0.71, and s(50 kpc) = 0.63.

For Au22 we have s(2 kpc) = 0.82, s(8 kpc) = 0.86, s(20 kpc) = 0.88, and s(50 kpc) = 0.86.

*Reprinted with permission from “Velocity-dependent J-factors for annihilation radiation from cosmological sim-
ulations” by Board et al., 2021. Journal of Cosmology and Astroparticle Physics, vol. 04, p. 070, Copyright [2021]
by IOP Publishing Ltd and Sissa Medialab.

95



Deviations from sphericity can be described by the triaxiality parameter,

T =
a2 − b2

a2 − c2
, (B.2)

where a ≥ b ≥ c are the three axes of the ellipsoid obtained from the inertia tensor. For very oblate

systems, T ≈ 0, whereas for very prolate systems, T ≈ 1. For Au2 we have T (2 kpc) = 0.72,

T (8 kpc) = 0.46, T (20 kpc) = 0.17, and T (50 kpc) = 0.12. For Au22 we have T (2 kpc) = 0.56,

T (8 kpc) = 0.30, T (20 kpc) = 0.31, and T (50 kpc) = 0.44. Hence, Au2 has a larger deviation

from sphericity and is more triaxial compared to Au22.
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Figure B.1: The histograms show the radial (left panels), polar (middle panels) and azimuthal
(right panels) components of the DM relative velocity distributions for halos Au2 (magenta) and
Au22 (blue). From top to bottom the rows show the distributions in radial shells at 2 kpc, 8 kpc, 20
kpc, and 50 kpc from the Galactic center. The solid lines specify the best fit Gaussian distribution
for each velocity component and each halo. Reprinted with permission from ref. [2].
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Figure B.2: Anisotropy parameter, β, as a function of Galactocentric radius for the 10 Auriga
MW-like halos. The cyan and magenta curves specify the anisotropy parameter for halos Au2 and
Au22, respectively. Reprinted with permission from ref. [2].
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APPENDIX C

J -FACTORS USING AN NFW PROFILE*

In this appendix, we present the J̃s-factors for nine dSph analogues, using their best fit NFW

density profiles. Figure C.1 shows a comparison of the results for the cases where the DM relative

velocity distributions are obtained directly from the simulation data, when using a MB velocity

distribution with a peak speed obtained from the power law fit, and the results presented in figure

1 of ref. [6]. Comparing figures C.1 and 4.7, we can see that the scatter in the J̃s-factors is slightly

larger when the best fit NFW density profiles are used, but there are no major systematic differences

relative to the results using the Einasto model.

*Reprinted with permission from “Velocity-dependent J-factors for Milky Way dwarf spheroidal analogues in
cosmological simulations” by Blanchette et al., 2023. Journal of Cosmology and Astroparticle Physics, vol. 03, p.
021, Copyright [2023] by IOP Publishing Ltd and Sissa Medialab.
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Figure C.1: Same as figure 4.7, but computed using the best fit NFW density profile for each dSph
analogue instead of the Einasto density profile. Reprinted with permission from ref. [4].
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APPENDIX D

GAIA QUERY

The following query was used to obtain the subset of O stars used to produce the 3D complete-

ness models. The same query was used to obtain B stars by replacing ap.spectraltype_esphs = ‘O’

with ap.spectraltype_esphs = ‘B’.

queryStringGaia = """SELECT g.l, g.b, g.ra, g.dec, g.parallax, g.parallax_over_error,

g.phot_g_mean_mag, g.phot_rp_mean_mag

FROM gaiadr3.gaia_source AS g

INNER JOIN gaiadr3.astrophysical_parameters AS ap

ON g.source_id = ap.source_id

WHERE (g.phot_g_mean_mag <= 20. AND ap.spectraltype_esphs = ‘O’

AND g.astrometric_matched_transits >= 5 AND g.astrometric_excess_noise <= 20.

AND g.parallax_over_error >= 10.) """
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