VELOCITY-DEPENDENT DARK MATTER ANNIHILATION FROM SIMULATIONS, AND
3D MODELING OF THE INTERSTELLAR MEDIUM OF THE MILKY WAY

A Dissertation
by
ERIN NICOLE PICCIRILLO

Submitted to the Graduate and Professional School of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee,  Louis Strigari

Committee Members, Bhaskar Dutta
Rupak Mahapatra
Samiran Sinha
James Harding

Head of Department,  Grigory Rogachev

May 2023

Major Subject: Physics

Copyright 2023 Erin Nicole Piccirillo



ABSTRACT

This dissertation is composed of two main research topics: velocity-dependent dark matter
(DM) annihilation from simulations, and 3D modeling of the interstellar medium of the Milky
Way (MW). The former has been my focus of research for the last four years, and has resulted
in the three papers discussed in this dissertation. We have performed numerical calculations of
J -factors using hydrodynamical simulations of galaxies from the Auriga and APOSTLE simula-
tions. My first project involves calculations of velocity-dependent line-of-sight 7 -factors for the
smooth DM halo component of MW-like galaxies. We also determine that the DM relative ve-
locity distribution can be modeled using a Maxwell-Boltzmann distribution. My second project
includes the velocity-dependent annihilation radiation from DM substructure, or subhalos, within
the Auriga simulations. My third project focuses on the velocity-dependent DM annihilation from
dwarf spheroidal (dSph) analogues within the APOSTLE simulations. In my fourth project, we
are currently working to extend this research to examine the velocity-dependent 7 -factors of the
Andromeda galaxy (M31). We hope to compare these 7-factors to the extended y-ray emission
detected from M31. Another project that I am working on involves creating a 3D model of the
interstellar radiation field (ISRF) of the MW. We plan for this model to include large-scale struc-
tures, such as spiral arms and the bar, as well as details of the stellar and dust distribution in the

MW. My contribution to the project is a 3D completeness model of OB stars in Gaia DR3.
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1. INTRODUCTION AND LITERATURE REVIEW*

In this section I will provide an introduction to the material covered in this dissertation and
discuss the background literature that pertains the MW, dSphs, M31, DM annihilation, simulations

used in my research, and the interstellar medium.
1.1 The Milky Way

The MW is a barred spiral galaxy, in which our solar system is located about 8 kpc from the
Galactic center. The total mass of the MW is estimated to be about 1.29 x 10*?M,, [8], however
much of the mass of the MW is composed of DM. The DM density at the Solar location is estimated
to be about 0.35 GeV cm 3 [9]. Extended rotation curves of galaxies provide the most compelling
evidence for the existence of large quantities of DM on galactic scales. Their detailed shapes
provide invaluable insight regarding the spacial structure of the DM halo. Analytic calculations
and simulations both suggest that the density profiles of DM halos may contain useful information
regarding the cosmological parameters of the Universe. The DM halos of MW-like galaxies can be
well approximated by a Navarro-Frenk-White (NFW) density profile [10]. The distribution of DM

throughout the MW provides our motivation to examine MW-like galaxies in DM simulations.
1.2 dSph Galaxies

A dSph galaxy is a small galaxy with very little dust and an older stellar population. They
are spheroidal in shape and can be found in the Local Group as companion galaxies to the MW
and M31. There are 9 dSphs that we consider to use in our search for analogues in the simulated
galaxies: Canes Venatici I, Carina, Draco, Fornax, Leo I, Leo II, Sculptor, Sextans, and Ursa Minor
(see table 4.1).

dSphs have been found to be dominated by DM, and the typical stellar mass-to-light ratios for

“Part of the data reported in this chapter is reprinted from “Velocity-dependent J-factors for annihilation radiation
from cosmological simulations” by Board et al., 2021. Journal of Cosmology and Astroparticle Physics, vol. 04,
p. 070, https://doi.org/10.1088/1475-7516/2021/04/070 © IOP Publishing. Reproduced with permission. All rights
reserved.



dSph stellar populations are in the range ~ 1 — 3 [11]. The large presence of DM and proximity

to the MW makes dSphs ideal candidates in which to study DM annihilation.

1.3 M31

The Andormeda galaxy (M31) is a barred spiral galaxy, and is the nearest large galaxy to the
MW. Observational evidence for DM in M31 comes from measurements of its rotational velocity
curve [12, 13]. These observations provide coarse-grained properties of the DM distribution near
the central regions of the halo where the galaxy resides. With the existing data, the fine-grained
structure of DM and its distribution outside of the galaxy is primarily inferred from simulated
halos. Within the standard cosmological paradigm, M31’s DM halo is expected to extend well
beyond the galactic disk, and it is also expected to contain a large amount of substructure. Due to
its mass and proximity, the detection sensitivity of M31 to DM searches with «-rays is competitive
with the MW dSph galaxies, particularly if the signal is sufficiently boosted by substructures. M31
is predicted to be the brightest extragalactic source of DM annihilation [14, 15], which motivates

our study of DM annihilation radiation from M31.
1.4 DM annihilation

Indirect DM searches aim to identify Standard Model (SM) particles that are produced when
DM particles annihilate with one another in astronomical environments. Electrons, neutrinos, and
photons are stable SM particles that experiments are able to detect. The flux of SM particles from
a system depends on the strength of the annihilation cross section, and the phase-space distribution
of DM within the system. The astrophysical dependence of the annihilation rate is encapsulated in
a quantity typically denoted in the literature as the 7 -factor.

For DM particles with mass ~ 10 — 1000 GeV, the strongest bounds on the DM annihilation
cross section have been obtained through observation of dwarf galaxies by gamma-ray observations
such as the Fermi-LAT [16, 17, 18]. Combining the limits from all dwarf galaxies with high-quality
stellar kinematic data, these bounds reach the cosmologically-motivated thermal relic cross section

regime over this entire mass range. For higher values of the DM mass, 2 1 TeV, the leading bounds



come from observations of dwarf galaxies by H.E.S.S. [19] and HAWC [20]. Bounds over this
entire mass range may also be obtained from the inner MW galaxy, though contamination from
astrophysical sources make these bounds more difficult to interpret [21].

All these strong bounds on the DM annihilation cross section assume that the cross section
is dominated by the velocity independent, s-wave component, and is therefore independent of
velocity. If the annihilation cross section is velocity dependent, as in the cases of p-wave, d-wave,
or Sommerfeld models, the 7-factor must account for this velocity dependence by incorporating
the full DM velocity distribution [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. Cross section
limits from dwarf spheroidal galaxies have been extended to these velocity-dependent models for
the aforementioned annihilation channels [27, 31]. These constitute the most stringent limits on
velocity-dependent models. In addition to these bounds from dwarf galaxies, there have been initial
explorations of the impact of velocity-dependent DM annihilation on the signal from the Galactic
center [26, 34], and from DM subhalos [6].

The above studies of velocity-dependent DM annihilation rely on simplified analytic models
for the DM phase space distribution. While convenient because of their analytic properties, these
simplified models need to be tested against the corresponding DM distribution of MW-like galaxies
extracted from cosmological simulations of galaxy formation. We perform the first analysis of the
J -factor in velocity-dependent annihilation cross section models using state-of-the-art simulations
of MW-like galaxies. For our study, we use the Auriga magneto-hydrodynamical simulations of
galaxy formation [35], as well as the APOSTLE hydrodynamical simulations [36, 37]. We focus
on the expected signal from the MW galaxy, for the first time determining the DM relative velocity
distribution from cosmological simulations. From this distribution we determine the velocity-

dependent 7 -factors for p-wave, d-wave and Sommerfeld annihilation cross section models.
1.5 Simulations

In my research we utilize two different sets of hydrodynamical simulations from the Au-
riga [35] and the APOSTLE [38, 37] projects, which I discuss in this section.

The Auriga simulations [35] include a suite of thirty magneto-hydrodynamical zoom simula-



tions of isolated MW mass halos, selected from a 100° Mpc? periodic cube (L100N1504) from the
EAGLE project [39, 40]. The simulations were performed using the moving-mesh code Arepo [41]
and a galaxy formation subgrid model which includes star formation, feedback from supernovae
and active galactic nuclei, metal-line cooling, and background UV/X-ray photoionisation radia-
tion [35]. The cosmological parameters used for the simulations are from Planck-2015 [42] mea-
surements: €2, = 0.307, €, = 0.048, Hy = 67.77 km s~ Mpc~L. In chapter 2 we use the standard
resolution level (Level 4) of the simulations with DM particle mass, mpy = 3 X 10° M, baryonic
mass, m, = 5 x 10* M, and Plummer equivalent gravitational softening of ¢ = 370 pc [43, 44].
In chapter 3 we use the high resolution level (Level 3) of the simulations with DM particle mass,
mpym = 5 x 10* Mg, baryonic mass, m;, = 6 x 10° Mg, and Plummer equivalent gravitational
softening length of € = 184 pc [43, 44].

The APOSTLE simulations [38, 37] use the same code as the EAGLE project [39, 40] with the
EAGLE reference model Ref-L100N 1504 calibration, applied to zoom simulations of Local Group
analogue systems, which contain two MW-mass halos. The EAGLE simulations use a modified
version of the P-GADGET3 Tree SPH code [45], the ANARCHY version of SPH [39, 46], and a
galaxy formation subgrid model that includes metal-line cooling, photoionisation, star formation,
and feedback from star formation and active galactic nuclei. The cosmological parameters are
from WMAP-7: 2, = 0.272, ), = 0.0455, h = 0.704. In chapter 2 we use twelve APOSTLE
volumes simulated at similar resolution to EAGLE Recal-LL025N0752, which we refer to as AP-L2
(i.e. Level 2 or medium resolution). At this resolution, the DM particle mass, mpy =~ 5.9x 10° Mg,
the initial gas particle mass, m, ~ 1.3 x 10° M, and € = 308 pc. In chapter 4 and chapter 5, we
use five APOSTLE volumes simulated at the highest resolution available, which we refer to AP-L1
(i.e. Level 1 or high resolution). In each of these five volumes, we choose one MW-like halo and
one M31-like halo and select all of the self-bound substructures (subhalos) within the virial radius
of the halos for further study. The DM particle mass at this resolution is mpy ~ 5 x 10* Mg,
the initial gas particle mass is m, ~ 1.0 x 10* M, and the maximum physical softening length is

e = 134 pc.



All simulated halos have a dark-matter-only (DMO) counterpart which share the same initial
conditions as the hydrodynamical runs, but galaxy formation processes are ignored and all the
particles are treated as collisionless. I shall refer to halos in the hydrodynamical simulations as

either the Auriga or APOSTLE halos and to those in the DMO simulations as DMO halos.
1.6 The Interstellar Medium

The interstellar medium (ISM) and the processes that occur within it are crucial in shaping the
evolution of galaxies. The collapse of massive gas clouds composed of Hs and heavier elements
leads to the formation of stars. As stars evolve along the main sequence, the radiation they emit is
absorbed and re-emitted by dust in the ISM, affecting the astrochemical distribution and balance
between molecular, atomic, and ionized hydrogen. Supernova (SN) explosions at the final stage of
evolution of massive stars accelerate cosmic rays (CRs), which in turn ionize the gas in the ISM
and influence the galactic nucleosynthesis and star formation rate (SFR).

CR propagation in the ISM and the feedback effects with the other ISM components is a com-
plex and fundamental problem in modern astrophysics. The CRs are subject to various energy
losses due to their interactions with the other components of the diffuse ISM: the interstellar gas,
radiation and magnetic fields. SN create turbulent magnetic fields, which affect the propagation
and escape of CRs from a galaxy. CRs also generate turbulence and drive galactic winds, resulting
in outflows of material enriching circumgalactic space. In the case of star-forming galaxies, the
energy density in the radiation and magnetic fields, CRs, and turbulent motions of the interstellar
gas are similar, so all of these components influence the others.

How all these pieces fit together to produce what we observe is still a mystery. Modern galaxy
evolution simulations have included some of these processes [47, 48, 49, 50, 51, 52, 53, 54].
However, the simulations are calibrated to observations, e.g., the y-ray luminosity vs. infrared
(IR) luminosity/SFR relation in the MW and nearby galaxies [55], and are reliant on prescriptions
for the sub-grid physics and assumed properties for the ISM. Without additional input on the ISM,
the galaxy evolution modeling efforts are at an impasse on how to properly include CRs into the

current frameworks.



2. VELOCITY-DEPENDENT [7-FACTORS FOR ANNIHILATION RADIATION FROM
COSMOLOGICAL SIMULATIONS*

We determine the DM pair-wise relative velocity distribution in a set of MW-like halos in the
Auriga and APOSTLE simulations. Focusing on the smooth halo component, the relative velocity
distribution is well-described by a Maxwell-Boltzmann (MB) distribution over nearly all radii in
the halo. We explore the implications for velocity-dependent DM annihilation, focusing on four
models which scale as different powers of the relative velocity: Sommerfeld, s-wave, p-wave, and

d-wave models.
2.1 Selection of MW-Like Galaxies

In this section we discuss our selection of MW-like galaxies. We select MW-like analogues
from the Auriga and APOSTLE simulations using the following criteria: the virial mass, stellar
mass, and rotational velocity curve [56, 57]. We obtain 10 Auriga level 3 halos and 6 APOSTLE
level 2 halos.

Simulated MW-like galaxies are usually selected by their virial mass alone. However, to make
accurate predictions for the DM distribution throughout the galaxy it is important to apply some
additional criteria to select a MW analogue. Here, we specify the criteria we use for selecting MW
analogues in the Auriga and APOSTLE simulations.

The Auriga halos have a virial mass of My = [0.93—1.91] x 10'2 M, [35], which agrees with
the observed MW halo mass estimates (see ref. [58] and references therein). We select the MW
analogues by the following criteria introduced in refs. [56, 57]: (i) the stellar mass' of the simulated
galaxy falls within the 30 range of the observed MW stellar mass, 4.5 x 101° < M, /M, <

8.3 x 10 [59], and (ii) the rotation curves of the simulated halos fit well the observed MW

“Reprinted from “Velocity-dependent J-factors for annihilation radiation from cosmological simulations” by
Board et al., 2021. Journal of Cosmology and Astroparticle Physics, vol. 04, p. 070, https://doi.org/10.1088/1475-
7516/2021/04/070 © 1OP Publishing. Reproduced with permission. All rights reserved.

!The stellar masses of both the Auriga and APOSTLE halos are calculated from the stars within a spherical radius
of 30 kpc from the Galactic center.



rotation curve obtained from ref. [60]. As detailed in ref. [57], with these criteria we obtain a total
of 10 MW-like Auriga halos. The virial and total stellar masses of these 10 Auriga halos are listed

in table 2.1.

Halo Name | Moy [x 10" Mg | M, [x10'0 M|
Au2 1.91 7.65
Au4 1.41 7.54
Au5 1.19 6.88
Au7 1.12 5.27
Au9 1.05 6.20

Aul2 1.09 6.29
Aul9 1.21 5.72
Au2l 1.45 8.02
Au22 0.93 6.10
Au24 1.49 7.07
AP-VI-1-L2 1.64 4.88
AP-V6-1-L2 2.15 4.48
AP-S4-1-L2 1.47 4.23
AP-V4-1-L2 1.26 3.60
AP-V4-2-1.2 1.25 3.20
AP-S6-1-L2 0.89 241

Table 2.1: The virial and stellar masses of the Auriga and APOSTLE MW-like halos, labeled
by “Au-Halo Number” and “AP-Volume Number-Halo Number-Resolution Level”, respectively.
Reprinted with permission from ref. [2].

The AP-L2 simulations include an initial set of 24 MW-mass halos. Since the stellar masses
of the halos in the APOSTLE simulations are slightly smaller than those expected for MW-mass
halos [61], we slightly relax the criterion on the stellar mass to find the APOSTLE MW-like galax-
ies. In particular, we select the simulated galaxies with stellar mass in the range of 2.4 x 10 <
M. /Mg < 8.3% 10*°, and a rotation curve which agrees with the observed MW rotation curve [60].
With these criteria, we obtain a total of 6 MW-like AP-L2 halos. The virial and stellar masses of

these halos are listed in table 2.1.



2.2 Properties of MW Analogues

In this section we discuss the properties of our sample of MW analogues, with a specific focus
on the DM density profiles and the relative velocity distributions. Our determination of the DM
relative velocity distribution is the first of its kind for MW analogues in cosmological simulations.
Our analysis is also the first characterization of the DM velocity distribution at locations inside and
outside of the Solar position. All prior studies have focused on the velocity distribution in the solar
neighborhood and explored the implications for direct DM detection experiments [57, 56, 62, 63,

64].
2.2.1 DM Density Profiles

The predicted DM annihilation signal and the 7 -factor are sensitive to the DM density profile,
so it is important to understand the behavior of these profiles in our MW analogues. To determine
the DM density profiles, we assume the halos to be spherically symmetric. This has been shown
to be a good assumption for halos in hydrodynamic simulations [65], since baryons make the DM
distribution more spherical in the central parts compared to the distribution obtained from DMO
simulations [66, 67, 68, 69, 70].

The sphericity of the halos can be directly checked in our simulations. We compute the inertia
tensor of the DM particles within four different radii: 2, 8, 20, and 50 kpc from the Galactic
center, in Auriga and APOSTLE MWe-like halos and their DMO counterparts. The sphericity is
defined as s = ¢/a, where ¢ and a are respectively the smallest and largest axes of the ellipsoid
obtained from the inertia tensor. For a perfect sphere, c = a and s = 1. We find that for the
Auriga MW-like halos the sphericities at 2, 8, 20, and 50 kpc are in the range of s(2 kpc) =
[0.66 — 0.89], s(8 kpc) = [0.72 — 0.86], s(20 kpc) = [0.71 — 0.88], and s(50 kpc) = [0.63 — 0.87],
respectively. As expected, the sphericities are systematically lower for the DMO counterparts,
in which s(2 kpc) = [0.63 — 0.88], s(8 kpc) = [0.58 — 0.80], s(20 kpc) = [0.56 — 0.69], and
s(50 kpc) = [0.49 — 0.70]. For the APOSTLE MW-like halos, we find s(2 kpc) = [0.80 — 0.90],
s(8 kpc) = [0.69 —0.88], s(20 kpc) = [0.73 —0.85], and s(50 kpc) = [0.71 —0.91], while for their



DMO counterparts, s(2 kpc) = [0.75—0.79], s(8 kpc) = [0.60 — 0.75], s(20 kpc) = [0.54 —0.75],
and s(50 kpc) = [0.53 — 0.78].

We extract the spherically-averaged DM density profiles from the mass enclosed in consecutive
spherical shells of different widths from the Galactic center, containing 2,000 DM particles within
each shell. Our choice of 2,000 DM particles per shell optimizes the calculation time of the 7-
factors discussed in section 2.3. In order to calculate accurately the DM density profile, it is
important to choose the location of the halo center carefully. We determine the center of each
halo using the shrinking sphere method [43]. This is an iterative technique in which we start by
calculating the center of mass of the DM particles within the virial radius, and then recursively
shrink the radius of the sphere. At each step of the iteration the center of the halo is reset to the last
computed barycenter and the radius of the sphere is reduced by 5%. This process continues until
1000 DM particles are contained within the sphere.

A second issue which is important in determining the DM density profile is the resolution limit.
The thorough resolution study of ref. [43] suggests a convergence radius at which the integrated
mass is converged within ~ 10%, i.e. the so-called Power radius, Rpo3, based on the two-body

relaxation timescale of the DM particles. The criterion can be written as:

0.6 < V200 [4AT perig \/NR?»/Q

8 3mpy In N~ 03

2.1)

where N is the number of particles with mass mpy; enclosed within Rpgs, and pei = 3H?/87G
is the critical density [71]. For the cosmological parameters used in the simulations, we have
perit(z = 0) = 127.49 M, kpc~ and 137.58 M, kpc ™ for Auriga and APOSTLE simulations,
respectively. Solving eq. (2.1) for each of the halos in the DMO simulations, we find the Power
radius to be in the range of Rpg3 = [1.14 — 1.29] kpc and Rpg3 = [1.41 — 1.59] kpc for the Auriga
and APOSTLE DMO simulations, respectively. The concept of numerical convergence is less
clear in simulations containing baryons. For halos in the hydrodynamic simulations, we calculate

the Power radius using only the DM particles and multiplying their mass by a factor of €2,,,/Qp,



which corresponds to a halo entirely made of DM particles. We find that the Power radius is in
the range of Rpoz = [0.94 — 1.07] kpc and Rpog = [1.33 — 1.45] kpc for Auriga and APOSTLE
MW-like halos, respectively. The average Power radius is Rpps = 0.98 kpc and 1.41 kpc for the
10 Auriga and 6 APOSTLE MW-like halos, respectively.

Using the methodology described above, figure 2.1 shows the DM density profiles for our MW
analogues in the Auriga (left panel) and APOSTLE (right panel) simulations. As expected, at large
radii, there is essentially complete agreement between the DM density profiles of the DMO and
the hydrodynamic simulations. At small radii, inside the expected location of the Solar circle, the
trend is for the halos in the hydrodynamic simulations to have steeper profiles compared to the
DMO. This is a result of the contraction of the DM halo as a response to the presence of baryons in
the inner parts of the halo [72, 73]. The steepening of the hydrodynamic profiles compared to their
DMO counterparts is more pronounced for the Auriga halos compared to the APOSTLE halos.
This is due to the smaller stellar masses of the APOSTLE halos, which leads to less contraction of
the halos in APOSTLE compared to Auriga. For comparison, the best fit Navarro-Frenk—White
(NFW) profile for the Auriga halo Au2 in the left panel and APOSTLE halo AP-V4-1-L2 in the

right panel are shown as dashed black curves in figure 2.1.
2.2.2 Relative Velocity Distributions

We now determine the DM pair-wise velocity distributions, to which we refer in what follows
as the DM relative velocity distributions. We begin by establishing our notation. Define f(x,Vv)
such that f(x, v) d®x d>v is the mass of DM particles within a phase space volume x + d*x and
v+ d3v. The position vector x and the velocity vector v are defined in the rest frame of the galaxy.
In these expressions and those below, bold-face quantities represent vectors with components given
by the three spatial and velocity components of a DM particle. At a position x in the halo, we write

the probability distribution of DM velocities as

Pi(v) = ) , (2.2)
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Figure 2.1: DM Density profiles for the Auriga (left panel) and APOSTLE (right panel) MW-like
halos (blue) and their DMO counterparts (yellow). The dashed black curves specify the best fit
NFW profile for Auriga halo Au2 in the left panel and APOSTLE halo AP-V4-1-L2 in the right
panel. The vertical lines mark the average Power radius for the Auriga and APOSTLE MW-like
halos in the left and right panels, respectively. Reprinted with permission from ref. [2].

where the DM density at x is normalized as

p(x):/f(x,v)d3v. (2.3)

At a position x, we are interested in the probability that a DM particle 1 has velocity v; in the

range v; + d>v, times the probability that a DM particle 2 has velocity v, in the range vy + d>vs,
P (v1)d>v1 Py (va)d®vy. (2.4)

The individual particle velocities may be written in terms of the center-of-mass velocity, v.,, and
the relative velocity, Vye = Vo — Vi, 88 Vi = Ve + Vie/2 and vy = Ve, — Vi /2. Using the fact
that the magnitude of the jacobian of the transformation dv,d3v, — d3vey,d®v, is unity, and
integrating over v.,,, we then obtain a general expression for the distribution of relative velocities

at a position X,

Px(vrel) - /Px<vl = Vem + Vrel/Z)Px(VQ = Vem — Vrel/2) d3vcm- (25)
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To calibrate our expectations, it is useful to review the prediction for the relative velocity dis-
tribution in the case of a pure Maxwellian halo. For Maxwellian halos, at any point in the halo,
the DM velocity distribution, f, is Gaussian in all three velocity components, with a dispersion in
each direction given by o. The distribution of velocities is then given by the Standard Halo Model
(SHM) [74], which is the simplest and most commonly adopted model to describe the DM halo.
In the SHM, the DM halo is assumed to be spherical and isothermal, and this leads to an isotropic
Maxwell-Boltzmann velocity distribution with a most probable speed of v/2¢. In this case, the rel-
ative velocity distribution, Px(v,q), is also a Maxwellian distribution, but with a one dimensional
relative velocity dispersion of v/2¢ [25].

The velocity vectors of the simulation particles are determined with respect to the center of
each halo. In each spherical shell, we resolve the velocity vectors into three components then
subtract the components of the velocities in this basis, being careful to avoid double counting. We
then take the modulus of the components of the pairwise relative velocities, which provides an
estimate of Py (v, ) in each radial shell.

Notice that the relative velocity modulus distribution, Py (|v,al), is related to the relative ve-

locity distribution, Py(V,e), by

Px(lvr61|) = Ufel / Px(vrel) dereU (26)

where df2,._, is an infinitesimal solid angle along the direction v,.;. In each radial shell, Py(|vyal)

Vrel

is normalized to unity, such that

/Px(|vre1’) dvrel =1 (27)

and therefore we have f Px(Vya) v, = 1.

In figure 2.2 we show the DM relative velocity modulus distribution in the Galactic rest frame
for an example MW-like Auriga halo and its respective DMO counterpart. For both halos, we show
the speed distributions in radial shells near the Galactic center, near the Solar circle, and at two

radii well beyond the Solar circle (i.e. 20 and 50 kpc from the Galactic center). The solid blue
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Figure 2.2: Modulus of the DM relative velocity distributions in the Galactic rest frame for an
example Auriga MW-like halo (blue) and its DMO counterpart (yellow). Each panel shows the
distributions at a different Galactocentric radius. The solid curves specify the mean relative speed
distributions, while the shaded bands specify the 1o Poisson errors. The dashed curves repre-
sent the corresponding best fit Maxwell-Boltzmann distribution. Reprinted with permission from
ref. [2].

(orange) curves show the mean speed distribution for the Auriga (DMO) halo, while the shaded
bands specify the 1o Poisson error in the speed distributions.

The method used to define the spherical shells for calculating the density profiles produces
varying radial boundaries from halo to halo. In order to effectively compare the relative velocity
distributions of different halos at the same radius, we redefine the spherical shells to have fixed
radial width progressing outward from the Galactic center. Each spherical shell has radial width
of 0.1 kpc, with the number of particles in each shell in the range of [486 — 3304]. The spherical

shells of fixed radial width are only used in the calculations shown in figures 2.2 and 2.4 (also see
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figure B.1).

As we can see from figure 2.2, including baryons in the simulations results in an increase of the
DM relative speed distributions at all radii. This increase is more pronounced in the inner galaxy,
and is due to the deepening of the galaxy’s gravitational potential when baryons are included in the
simulations. This result is consistent with the local DM speed distributions of MW-like galaxies
extracted from other hydrodynamic simulations [57, 62, 56, 63, 64].

Next, we compare the DM relative speed distributions at each radii with a Maxwellian distri-
bution (dashed colored curves in figure 2.2). For each halo in the hydrodynamic and DMO simula-
tions, we find the best fit Maxwellian speed distribution, f(v) o< v? exp(—v?/v7), where vy is the
best fit peak speed. For the halos in the hydrodynamic simulations, the relative speed distributions
are very close to the Maxwellian model at all radii, with an agreement becoming increasingly bet-
ter as we move further away from the Galactic center. For the DMO halos, the agreement with the
Maxwellian model is not as good as is for the hydrodynamic case, though again the agreement gets
better at radii further away from the Galactic center. Deviations from the Maxwellian distribution
for the DMO halos at small radii are not surprising, since the DM density profiles deviate from
the isothermal r~2 profile in the central regions of the DMO halos [75]. Additionally, the velocity
anisotropy of the DMO halos at all radii leads to further deviations from the isotropic Maxwellian
distribution.

In all cases, the DM relative speed distribution at small radii is shifted to smaller relative speeds
as compared to the Maxwellian distributions, while at large radii there is a shift to larger relative
speeds compared to the Maxwellian. We explore the origins of the shapes of these distributions in
the following section. To understand how good the fit is to the Maxwell-Boltzmann distribution,
in Appendix A we present the y?/dof for all halos at several different radii.

To explore the halo-to-halo variation in the DM relative speed distributions of the Auriga MW-
like halos, we first examine their rotation curves. The circular velocities for two example Auriga
halos (Au2 and Au22) are shown in figure 2.3. The total circular velocity of each halo is v.(r) =

GM (< r)/r, where M (< r) is the total mass (DM, stars, and gas) enclosed in a sphere of
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Figure 2.3: Circular velocity of the two Auriga halos Au2 (blue) and Au22 (magenta) as function
of Galactocentric radius. Reprinted with permission from ref. [2].

Galactocentric radius . In figure 2.4, we show the relative velocity modulus distributions for
the same two halos. These halos have the smallest and largest peak speeds in the radial shell
centered at 2 kpc. The four panels show the relative speed distributions of the two halos at different
Galactocentric radii. As we move from 2 kpc to 50 kpc from the Galactic center, the relative speed
distributions of Au22 is strongly shifted to smaller speeds, while that of Au2 does not show a
significant change. This behavior can be understood from the rotation curves of the two halos,
shown in figure 2.3. The circular velocity of Au2 changes slightly with Galactocentric distance,
while that of Au22 decreases significantly as we move from 2 kpc to larger radii.

Notice that to extract the relative DM velocity distributions, we calculate the average distri-
bution in each radial shell. We have verified the spherically average velocity distributions we
obtained are consistent with those obtained by splitting each radial shell into 8 sections divided
evenly about the azimuthal direction of the halo’s principal axes. We have also checked our results
against a more local method for computing the relative DM velocity distributions, using only the
nearest neighbors of each particle. Choosing reasonable aperture sizes to find the neighbors of
each particle in each radial shell, we find that the relative velocity distributions and 7 -factors are

not significantly affected. The difference in all the results of this dissertation when using this local
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Figure 2.4: Modulus of the DM relative velocity distribution for the two Auriga MW-like halos
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nearest neighbors method compared to using all particle pairs is at the order of ~ 10%.

2.3  J-factors

Having determined the DM density profiles and the relative velocity distributions for the MW-
like halos, we are now in position to determine the velocity-dependent 7 -factors. In this section,
we lay out the formalism for calculating the 7-factors for each of the annihilation cross section

models that we consider. In the formulae presented below, our notation closely follows that of

ref. [25].




2.3.1 Annihilation Rate

We begin by defining 04, the DM annihilation cross section to any set of Standard Model
particles. The number density of DM particles at position x is p(x)/m, where m is the DM particle
mass. The flux of DM particles is given by the product of the number density and the modulus of
the relative velocity, v;o] = |Viel| = |V1 — V2|. Multiplying the flux by the DM annihilation cross
section and the number density of target DM particles, we obtain the annihilation rate in a volume

element dV" at the position x in the halo as

dr ?
W - {%} /dSVrelPx(Vrel)(O-Avrel)~ (28)
We note that the standard definition of the annihilation cross section averaged over the relative

velocity distribution is then,

(0 AV} (X) = / Vi P (Vie) (0 AVrel), (2.9)

which in general depends on spatial location x.

To determine the annihilation rate, as above we take the DM halo as spherically symmetric.
We define a solid angle centered on the Galactic center, 7 as the distance from the Galactic center
to a point in the halo, R, as the distance from the Sun to the Galactic center, ¢ as the distance from
the Sun to a point in the halo (i.e. line of sight), and W as the opening angle between the line of
sight ¢ and the direction towards the Galactic center. The radial distance from the Galactic center
to a point in the halo can then be expressed as 72 (I, ¥) = [? + R2 — 2] Ry cos U. The annihilation

rate along the line of sight is then proportional to

- [ a0 1720 )2, 2.10)

(UAvrel ) 0

which, following ref. [31], we define as the effective [7-factor. With this definition, the quantity

(0 AVe1)o is defined as the component of the annihilation cross section that is independent of the
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relative velocity.
2.3.2 DM Annihilation Models

In the often-studied case in which o 4v, does not depend on the relative velocity, eq. (2.10)
is simply proportional to the integral of the square of the density along the line-of-sight, J o
| p*del. More generally, o 40, does depend on the relative velocity; in this case eq. (2.10) must be
evaluated for the given velocity dependence.

To account for this velocity dependence, we will make the replacement relative to the above
definition and parameterize the annihilation cross section in the general form, o AvVpe) — T AV =
(0 AVre1)0 S (Vre1/€), With S = (ve1/c)". We examine the following possibilities: n = —1 (Sommerfeld-
enhanced annihilation), n = 0 (s-wave annihilation), n = 2 (p-wave annihilation), and n = 4
(d-wave annihilation). These models may be realized for different assumptions for the nature of
DM and the new physics that mediates their annihilation [31]. Examining these possibilities in the
context of eq. (2.8), we see that the different cross section models correspond to different velocity

moments of the relative velocity distribution,

(T avre) (X) X / Ve P (Vrel ) Ufey = pin (%), (2.11)

where 1, is the n-th moment of the relative velocity distribution, Py (v, ). Examining eq. (2.11)
we may then attach a physical meaning to the velocity-averaged annihilation cross section for each
of the models. In the case of the s-wave, the annihilation rate is simply proportional to the DM
density squared at a given position. For the case of Sommerfeld models, eq. (2.11) is proportional
to the inverse moment of the relative velocity distribution, while for the s-wave, p-wave, and d-

wave models, eq. (2.11) corresponds to the zeroth, 2nd, and 4th moments, respectively.
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The effective [J-factor in eq. (2.10) can then be written as

7.0 = [t [ @viapitva) (22)" e v
- [t (22). 1)

C’VL

Therefore, depending on the particle physics model considered, the effective [ -factor depends on
different moments of the relative velocity distribution.

We can look at each moment more closely. In the case of the p-wave, the integral

pa(x) = /d?’vrelvfelPx(vrel) (2.13)

is the square of the intrinsic relative velocity dispersion of the system at a given x. This provides
a measure of the disordered motion of the relative velocities about x. In the case of the d-wave

model, it is useful to first define the following quantity

3 4
H(X) _ fd Vrdvrelpx<vrel) _ M4<X) (214)

U d3vrelvfelpx(vrel)}2 (k2(x))?’

which is motivated from the general statistical definition of kurtosis. In the case of a Maxwell-
Boltzmann distribution, we have x = 1.667. Eq. (2.14) is useful because it is strongly dependent
on the more extreme tails of the relative velocity distribution. For smaller ~ the components of the
velocity distribution are more strongly peaked near the mean value of the respective Gaussians,
while for larger x, the velocity components are more (symmetrically) broadly distributed relative
to a Gaussian. As we discuss below, this has important implications for the determination of the

J -factors in these models.
2.4 Results

We now move on to determining the J,-factors for each of the MW-like halos, under the as-

sumptions of the different annihilation cross section models discussed above.
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Figure 2.5 shows the J-factors as a function of the angle V¥ for all four cross section models
for the Auriga and APOSTLE halos. Here we consider only the smooth halo component, so that
all particles that are associated with subhalos of the main halo have been excluded. The ten Auriga
MW-like halos, along with their DMO counterparts are shown in the left panel, while in the right
panel we show the six APOSTLE MW-like halos and their DMO counterparts. At small angles,
but still large enough to correspond to radii larger than the resolution limit, the clear trend in both
simulations is for the Js-factors of the halos in the hydrodynamic simulations to be systematically
larger than those of their DMO counterparts. This behavior is primarily attributed to the contraction
of the DM density profiles due to the baryons in the inner parts of the halo, as seen in figure 2.1.
As discussed before, in the APOSTLE halos, the contraction of the density profiles is smaller
due to their smaller stellar masses, compared to Auriga halos. Hence, the difference between the
Js-factors of the halos in the DMO and hydrodynamic simulations are also smaller.

Though the higher density of the halos in the hydrodynamic simulations at small radii provides
a simple explanation for why the Js-factors are larger in the hydrodynamic case for all models, it
is interesting to note the relative change in the [J;-factor between the halos in the hydrodynamic
simulations and their DMO counterparts for each model. Examining figure 2.5, we see that the
largest relative change occurs when going from the DMO to the hydrodynamic case for the d-
wave model. On the other hand, the smallest relative change occurs for the Sommerfeld model.
The larger relative increase in the J;-factor for the d-wave is a reflection of the fact that the J-
factor in this case scales as the fourth moment of the relative velocity dispersion. To appreciate
quantitatively the effect of the various velocity scalings, in figure 2.6, we show the ratios of the
Js-factors of each model relative to the s-wave value.

Figure 2.7 shows the relative velocity moments for the Auriga MW-like halos, for the p-wave,
d-wave and Sommerfeld models. The bottom right panel of figure 2.7 shows the kurtosis, as defined
in eq. (2.14). As discussed above, the fourth moment is more sensitive to the small, but manifest
differences in the tails of the relative velocity distribution as compared to a Maxwell-Boltzmann

distribution. Comparing figures 2.5 and 2.7, we see that the scatter in the moment can be directly
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Figure 2.5: J,-factors for the different velocity-dependent models for Auriga (left panel) and
APOSTLE (right panel) simulations. For each model, we show the J;-factors for the ten MW-
like halos in the hydrodynamic simulations (blue) and their DMO counterparts (yellow). The
black vertical lines specify the angle W corresponding to the average Power radius for the Auriga
and APOSTLE MW-like halos in the left and right panels, respectively. Reprinted with permission
from ref. [2].

translated over to the scatter in the J-factor in each case.

In addition to the shift in the Js-factor itself, it is important to quantify the scatter in this
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Figure 2.6: J,-factors as in figure 2.5, only plotted as a ratio relative to the s-wave value. Reprinted
with permission from ref. [2].

quantity amongst the ten MW-like halos. Similar to the above, we find that the largest scatter is
in the J,-factor of the d-wave model, and the smallest scatter is in the Sommerfeld model. In the
case of the d-wave, this is again a result of the sensitivity of the J,-factor to the tails of the velocity
distribution in these models. The integrand of the relative velocity moment, which in this case

scales as vfel f(vre1), exhibits a significant halo-to-halo scatter at the highest v,, while at the lowest
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Figure 2.7: Velocity moments of the relative velocity distribution for the ten Auriga MW-like
halos and their DMO counterparts. The panels are: Second moment (top left), Fourth moment (top
right), inverse moment (bottom left). The bottom right panel shows the fourth moment divided
by the square of the second moment, with the black horizontal line indicating this quantity for
the Maxwell-Boltzmann relative velocity distribution. The black vertical lines specify the average
Power radius of the Auriga halos. Reprinted with permission from ref. [2].

Urel, this integrand is nearly identical for all halos. At the other extreme for the Sommerfeld model
there is significantly less scatter in the inverse moments, as shown in figure 2.7 for the Auriga
halos. In this case the integrand of the velocity moments scales as f(ve1)/vrel, and the scatter in
this integrand at the largest v, is much less than for the d-wave case. In addition, at low v, the
scatter in the integrand increases, partially compensating for the scatter at high v,). Together, these
effects combine to make the halo-to-halo scatter for the Sommerfeld model the smallest amongst
our cross section models.

The features in the relative velocity distributions explain the relative differences between the
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Js-factor of the halos in the hydrodynamic simulations and their DMO counterparts for a given
annihilation cross section model. More generally, in all cases we find that the scaling of the 7-
factors with angle is essentially entirely driven by the DM density profiles, and that this scaling
depends very weakly on the characteristics of the DM relative velocity distributions. This can be
best quantified by considering different lines-of-sight through a halo, which correspond to different
values of W, and averaging the DM density and the velocity dispersion along each line-of-sight.
Figures 2.8 and 2.9 show the average DM density and velocity dispersion of the ten Auriga halos,
respectively, against their average J,-factor, with each point in this plane representing a differ-
ent value of ¥. We see from figure 2.8 that for each cross section model, the average density
correlates with the average J;-factor, while from figure 2.9, there is minimal correlation with the
average velocity dispersion in each case. This implies that, even for velocity dependent models,
understanding the systematics in the DM density is the most important factor in determining the
J.-factor.

We reiterate that the analysis of this dissertation has focused on determining the 7 -factors
for the smooth halo component. The contribution from DM subhalos bound to the host galaxy is
expected to boost the J-factor for each annihilation model. For halos in the hydrodynamic simu-
lations and assuming s-wave annihilation, the boost factor from resolved subhalos is expected to
be small, corresponding for < 1% increase over the smooth halo contribution [76]. While deter-
mining the boost factor for velocity-dependent models is beyond the scope of our current analysis,
we can roughly estimate the increase in density due to subhalos by including the particles bound to
subhalos? in our calculations, and determining the spherically-averaged density and velocity dis-
tributions. With the subhalos included, we find at most ~ 20% increase in the J,-factors, which
is manifest at values of ¥ near the resolution limit of our simulations. This justifies our approach
of focusing on the smooth halo, and indicates that the inclusion of subhalos leads to only a small

increase in the 7 -factors over the scales that we consider.

*More precisely, DM particles bound to subhalos belonging to the same friends-of-friends [77] group as the main
halo are included, with a dimensionless linking length of 0.2 times the mean interparticle spacing.

24



S-Wave
. 100

10°

10—1,

0 (GeV/cm?3)

0 (GeV/cm?3)
=
o
L
u o
o o
degrees

10_12021 1622 1623 10‘24 10_12015 10‘16 1617 1618 1619

7. (GeV2/cm®) 7. (GeV2/cm®) 10

D-Wave Sommerfeld

10°

10°

1071f /

1072

o® 80

o’
goo**’ 70

10—1 L

P (GeV/icm3)
P (GeV/cm3)

1610 1611 1612 1613 10_12024 1625 1626 1627

Js (GeV?/cm?®) Js (GeV2/cm?®) 10

Figure 2.8: Correlation between the DM density and J,-factor for Auriga halos (green to blue
colored points) and their DMO counterparts (yellow to red colored points). Each point represents
the average of the density and J,-factors over all the halos (p and 7, respectively), along a line-
of-sight at a given angle W. The color bars on the right indicate the values of the angle from the
galactic center. Angles start from ~ 10 degrees, as angles at lower radii are below the resolution
limit (specified by black points on the plots). Each panel shows this correlation for a different cross
section model. Reprinted with permission from ref. [2].

2.5 Discussion and Conclusions

In this dissertation we have performed the first study of the DM relative velocity distribution
of Milky Way-like halos, using the Auriga and APOSTLE cosmological simulations. We find
that the DM pair-wise relative velocity distribution at nearly all radii in the halos is consistent
with the Maxwell-Boltzmann distribution. This agreement is particularly good for the simulations
that include baryons. For the corresponding DMO-simulations, the agreement with the Maxwell-
Boltzmann distribution is good, though there are some notable deviations, particularly at small
radii as the center of the halo is approached.

We have explored the implications for velocity-dependent DM annihilation, focusing on the
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Figure 2.9: Same as figure 2.8, except for the average velocity dispersion, o, instead of the density.
Note that while figure 2.8 uses log-log axes, the data in this figure is presented on semi-log axes.
Reprinted with permission from ref. [2].

Sommerfeld (1/v), s-wave (v°), p-wave (v?), and d-wave (v*) models. We generally show that
the J-factors scale as the moments of the relative velocity distribution, and that the halo-to-halo
scatter is largest for d-wave, and smallest for Sommerfeld models.

Our results indicate that in velocity-dependent models, the 7 -factor is strongly correlated with
the DM density in the halo, and is very weakly correlated with the velocity dispersion. This implies
that if the DM density in the Milky Way can be robustly determined, one can accurately predict the
DM annihilation signal, without the need to identify the DM velocity distribution in the Galaxy.

In calculating the [J-factors for velocity-dependent models, we have neglected the impact of
DM substructure within the Milky Way-like galaxies. The effect of substructure has been explored
for s-wave models in several previous studies [78, 76], which indicate that the corrections for
substructure are small, at least at the resolution limits of present simulations. It is possible that

boost factors can be significant for extrapolations down to ~ Earth-mass subhalos, in particular
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for Sommerfeld-enhanced models. Accurately calculating the boost factors for velocity-dependent
models required determining the concentration-mass relation for subhalos [79] and their velocity
distribution, and understanding how to extrapolate these beyond the resolution limit of the simula-
tions. We leave this topic as a subject for future study.

The results we have presented will be important in guiding searches for velocity-dependent DM
annihilation, for example with Fermi-LAT data or with future data from higher-energy gamma-ray
instruments. Though p-wave and d-wave annihilation may be realized in simple models [80, 81,
82], due to the sensitivity of these instruments, for the simplest models bounds on p-wave [83, 31]
and d-wave [31] cross sections are much larger than those for thermal relic DM. Bounds may be
improved upon by considering more unique astrophysical environments, for example the super-
massive black hole at the center of the Milky Way [34]. The phenomenology becomes richer for
multi-state DM, such that Sommerfeld boosts can enhance the p-wave component and suppress
the s-wave component [84]. The results we have presented provide the most realistic approach
available to providing robust constraints on these velocity-dependent models with astrophysical

systematics incorporated.
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3. VELOCITY-DEPENDENT ANNIHILATION RADIATION FROM DM SUBHALOS IN
COSMOLOGICAL SIMULATIONS*

We use the suite of MW-like galaxies in the Auriga [35] simulations to determine the contri-
bution to annihilation radiation from DM subhalos in three velocity-dependent DM annihilation
models: Sommerfeld, p-wave, and d-wave models. We compare these to the corresponding distri-
bution in the velocity-independent s-wave annihilation model.

In this work we use the high resolution level (Level 3) of the Auriga simulations with DM
particle mass, mpy = 5 X 104 Mg, baryonic mass, m;, = 6 X 103 Mg, and Plummer equivalent
gravitational softening length of ¢ = 184 pc [43, 44]. For the analysis in this work, we consider
DM particles bound to the smooth halo component as well as DM particles bound to subhalos,
as identified by the SUBFIND algorithm [85]. These simulations can resolve subhalos of mass
greater than ~ 10% M, which contain at least 20 DM particles. We also extrapolate our results to

subhalos with mass lower than that of the resolution limit of the simulations.
3.1 Properties of DM Subhalos

In this section, we discuss the dynamical properties of the DM subhalos that are most important
for our analysis. We focus specifically on the DM density profiles, the maximum circular veloci-
ties, and the DM relative velocity distributions. These properties are then used in the subsequent

sections to calculate the DM annihilation luminosity from each subhalo.
3.1.1 Density Profiles

For each subhalo, we obtain the spherically-averaged DM density profile from the DM mass
contained within spherical shells centered on the center of potential of each subhalo as determined
by SUBFIND. The number of DM particles per subhalo varies greatly between subhalos, with the

minimum number being 20 DM particles bound to a subhalo. Thus, we use variable bin widths,

“Reprinted from “Velocity-dependent annihilation radiation from dark matter subhalos in cosmological sim-
ulations” by Piccirillo et al., 2022. Journal of Cosmology and Astroparticle Physics, vol. 05, p. 058,
https://doi.org/10.1088/1475-7516/2022/08/058 © IOP Publishing. Reproduced with permission. All rights reserved.
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Figure 3.1: The cumulative number of subhalos enclosed within a sphere of Galactocentric radius
r for each Auriga halo (blue) and its DMO counterpart (orange). See table 2.1 for the virial radius,
200, Of each Auriga halo. Reprinted with permission from ref. [3].

ensuring that there is a minimum of 5 DM particles (for smaller subhalos) and a maximum of
200 DM particles (for larger subhalos) within each shell. For reasons discussed in section 3.2, we
define large subhalos to have an angular size > 1 degree as viewed from the solar position, and
small subhalos to have an angular size < 1 degree. We fit the DM density profile constructed from

the data to an Einasto density profile

2 (07
p=p_sexp (—5 Ké) —1D, 3.1)

where p_, and r_, are the density and radius at which p(r) oc 772, and « is a parameter which
specifies the curvature of the density profile. We set this parameter to o = 0.16 [86]. In order
to account for numerical resolution, we fit the Einasto density profile to the simulation data for
radii larger than 2¢, where € is the softening length defined in section 1.5. At large radii, we fit

SUBFIND * yhere RSUBFIND g the radius of maximum

max max

the profile up to a maximum radius of 2R

circular velocity derived from the SUBFIND algorithm [85]. Beyond 2 RSUBFIND "4 Jarge fraction

max
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Figure 3.2: The DM density profile for a large subhalo in the Au6 simulation where r is the distance
from the center of the subhalo. The results from the simulation data and the best-fit Einasto profile
are shown in blue and orange, respectively. This subhalo has a stellar mass of 4 x 10° M, DM mass
of 4 x 10'° Mg, and V. = 75 km/s at Ry, = 10.7 kpc, which is indicated by the vertical black
line. For large subhalos in the sky maps in section 3.2, we use the local DM density as estimated by
a Voronoi tessellation for distances larger than 2., and use the best-fit Einasto density profile to
estimate the local DM density for distances within [?,,,x. Reprinted with permission from ref. [3].

of subhalos have their density profiles tidally stripped, such that they fall off faster than an Einasto
density profile.

We also calculate R, and V. for each subhalo from the particle distribution. For an in-
dividual DM subhalo, most of the annihilation signal comes from within R,,., the radius where
the circular velocity V.(r) reaches a maximum, V;,.,. For each subhalo, we calculate the circular
velocity curve V,(r) = \/GM (< r)/r, where M(< r) is the total DM mass enclosed within a
sphere of radius r centered on the subhalo. We find that our calculations of V., and R,,., are
consistent with the values returned by SUBFIND. For internal consistency, we will use our calcu-
lations of V.« and R,,.x in this work. The V., and R,,.. are used in section 3.2 to estimate the
total annihilation luminosity within R, for each subhalo.

Figure 3.2 shows the DM density profile of one example subhalo from Auriga halo Au6, along

30



with the best fit Einasto density profile for that subhalo. Also shown is the R, value for the
same subhalo. Due to the resolution limit of the simulation, the density profile calculated from the
particle data underestimates the density in the central regions of the subhalos. For small subhalos
in the sky maps in section 3.2, we will estimate the total DM annihilation luminosity using the
calculated values of V. and R,,... For large subhalos in the sky maps, we use the best fit Einasto
density profile for particles within 2, and we use the local DM density estimated by a Voronoi
tessellation of the DM particle distribution for particles beyond R,,... Following ref. [5], we apply
a Voronoi tesselator to estimate the DM distribution in the outer radii of each subhalo, allowing the
calculation of p; from the DM particle mass and the cell volume surrounding the i-th DM particle.
For these large radii, this approach provides a better localized measure of the DM density than

other estimates which smooth over a particle’s nearest neighbors [87].
3.1.2 Relative Velocity Distributions

We now discuss the DM relative velocity distributions of subhalos using the notation estab-
lished in our previous work [2]. For each subhalo, we write the probability distribution of DM

particles associated with only that subhalo as

Pe(v) = ) (3.2)

where x is the position vector, v is the velocity vector, and the DM density at a position x in the

subhalo is normalized as

p(x):/f(x,v)d3v. (3.3)

The velocity vectors of the DM particles are determined with respect to the center of the main
halo, whereas the position vectors are determined with respect to the center of the respective sub-
halo. This is appropriate as we are calculating the DM relative velocity distribution of particles
within each subhalo, so that the bulk subhalo motion is subtracted out. Using spherical shells as
defined in section 3.1.1, we resolve the velocity vectors into three components then subtract the

components of the velocities in this basis, being careful to avoid double counting. We then take
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Figure 3.3: The distribution in V., — & space of subhalos from all six Auriga halos within Ry
of each respective halo. We find & by calculating the DM relative velocity distribution in radial
shells, fitting a Maxwell-Boltzmann curve to the distribution with a 1D velocity dispersion o,
and then taking the average of these o values over all shells for each subhalo. The dashed red
line indicates the best-fit power-law curve found to be & = 0.51(V;,.,) %, which we will use
to extrapolate to lower mass subhalos. A similar result is obtained from the DMO simulations,
where & = 0.55(Vipax )19, Our results are consistent with the power law relation found in ref. [4].
Reprinted with permission from ref. [3].

the modulus of the components of the pairwise relative velocities, which provides an estimate of

Py (Vye1)- In each radial shell, Py (|vyq|) is normalized to unity, such that

/Px(|vrel|) dvrel =1 (34)

and therefore we have f Px(Vya) d3v,e = 1.
Though there is some variation in the velocity distribution of subhalos, ref. [4] shows that for

MW dwarf spheroidal analogues, Py (|v;e|) can be well approximated by a Maxwell-Boltzmann

2 12 v2
Pus(|veal) = \/;U—; exp (-T‘;) , (3.5)
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where o is the 1D relative velocity dispersion.

In the analysis of ref. [4], the best fit MB distribution is found in spherical shells at different
radii from the center of the subhalo. Then the mean best fit peak speed of the MB distributions
over all shells is calculated for each subhalo. Ref. [4] finds that velocity-dependent 7 -factors can
be accurately estimated using the mean best fit MB parameters in simulated MW dwarf spheroidal
galaxies.

Following the same procedure as in ref. [4], we fit a MB distribution to the DM relative veloci-
ties in different spherical shells in each subhalo, and calculate the mean of the velocity dispersion,
o, over all spherical shells in each subhalo. Figure 3.3 shows the relationship between the V.«
of a given resolved subhalo and the & of the best-fit Maxwellian. The dashed line indicates the

best-fit power-law curve which we will use to extrapolate to low-mass subhalos.
3.2 Annihilation Luminosities

The annihilation luminosity from the DM particles is calculated from the DM density and the
DM relative velocity distribution at each point within the halo. For the general case of velocity-

dependent models, the annihilation luminosity from some region of space can be written as

L, = / dx / e Pe(via) (L) o). (3.6)

C

For our velocity-dependent models, we examine the following possibilities: n = —1 (Sommerfeld-
enhanced annihilation), n = 0 (s-wave annihilation), n = 2 (p-wave annihilation), and n = 4 (d-
wave annihilation). The different cross section models correspond to different velocity moments

of the relative velocity distribution [2],

/,Ln(X> = /dBVrelPx<Vrel>/U?ely (37)
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where 1, (x) is the n-th moment of the relative velocity distribution Py (v, ). In terms of the

velocity moments, the annihilation luminosity can be written as

L, = / &x [p(2)]? (“"<X>> . (3.8)

C?’L

The annihilation luminosity has contributions from both the smooth halo and the subhalo com-
ponents. We start by estimating the annihilation luminosity from the smooth component of the DM
halo. Using the Voronoi tessellation method described above, we estimate the local DM density at
the location of each DM particle. Then we calculate the relative velocity distribution at each point
on a spherical grid, using the nearest 500 DM particles. The relative velocity distributions are then
used in eq. (3.7) to obtain i, (x) for each annihilation model at each point. We interpolate these re-
sults to obtain the relative velocity moments at the location of each DM particle in the smooth halo.
We then compute the integral in eq. (3.8) over each volume produced by the Voronoi Tessellation
to obtain the annihilation luminosity produced by each DM particle in the smooth halo.

For the subhalo component, we calculate the annihilation luminosity by splitting up the contri-
bution from large and small subhalos. As mentioned in section 3.1.1, we consider large subhalos
to have an R,,,, which corresponds to an angular size > 1 degree as seen from the solar position of
8.0 kpc, whereas we consider small subhalos to have an R, which corresponds to an angular size
of < 1 degree. We use this angular size definition for large and small subhalos, because 1 degree
corresponds to the approximate angular resolution scale for Fermi-LAT at the energies relevant
for DM searches. For large subhalos in the simulations, we calculate the annihilation luminosity
from each DM particle using methods similar to that of the smooth halo component. The only
difference is that the relative velocity moments, 1, (x), are calculated using a Maxwell-Boltzmann
distribution with a dispersion set equal to the mean velocity dispersion, o, computed as described
in section 3.1.2. We use the mean dispersion to estimate the relative velocity moment for all points
within the subhalo, and therefore 1,, would be independent of the position vector in the subhalos.

For smaller subhalos in our simulations, whose R,,., has an angular size less than 1.0 degree,

34



Sommerfeld 23

22

21

Ioglo(F/radz)

20
S-wave 17

16

15

Ioglo(F/radz)

14

13

P-wave 5

log1o(F/rad?)

D-wave _7

log1o(F/rad?)

-10

Figure 3.4: All-sky Mollweide projections of the DM annihilation flux density for each considered
annihilation model as seen from the midplane of the stellar disc, 8.0 kpc from the Galactic center
of the Au6 halo (left) and its DMO counterpart (right). The color bars to the right of each pair
of sky maps show the approximate range of the annihilation flux density for each annihilation
model. The DM annihilation fluxes from subhalos are clearly systematically fainter compared to
the smooth halo component in all annihilation models than in the Sommerfeld model, with the
faintest subhalos shown in the d-wave model. Reprinted with permission from ref. [3].
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we estimate the total DM annihilation luminosity from a spherical region interior to [2,,,x as

CYEinastonél
Loy, = ——— 2%, 3.9
b 2R (3.9)
where G is the gravitational constant and Chasto = 1.87 for an Einasto density profile with

a = 0.16 [5]. Since we have chosen a p,, that is not dependent on position for subhalos, we can

then rewrite eq. (3.8) as

Ln,sub = <%

[ exiplo?

(% Low, (3.10)
_ < Hn ) < CEinasto Vrﬁax >
cn G? R ax ’

Then including the contribution from the smooth component and the subhalos, we examine

N——— —

these luminosities from one solar position at 8.0 kpc from the Galactic center by calculating the
annihilation flux as in ref. [5],

F=1L/d (3.11)

where L is the luminosity of a subhalo or DM particle and d is the heliocentric distance of that sub-
halo or DM particle. We sum the annihilation flux from the smooth DM halo, large DM subhalos,
and small DM subhalos in bins of equal angular size of 1.9 x 10~° rad?. The results of the flux den-
sity for each annihilation model are shown in figure 3.4. The all-sky Mollweide projection maps
on the left are the results for Au6 and those on the right are for its DMO counterpart. For each
annihilation model, we find that the smooth component of the DM halo is brighter and rounder
in shape in the hydrodynamical simulations compared to their DMO counterparts. We also find
that subhalo fluxes are systematically fainter in the hydrodynamical simulations than their DMO
counterparts for each annihilation model, consistent with previous results that examined s-wave
models [5]. When comparing the subhalo fluxes for different annihilation models in the same sim-

ulation, we find that the subhalo flux relative to the flux from the smooth halo component appears
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to be largest for the Sommerfeld model. Subhalo fluxes are suppressed relative to the smooth halo

in the p-wave and d-wave models, which we will quantify in section 3.3.
3.3 Results

In this section we present the primary results of our analysis. We begin by comparing the
contribution to the luminosity from subhalos and the smooth halos in the simulations. We then
characterize the contribution of the integrated subhalo luminosity due to subhalos across different
luminosity scales. We also estimate the impact of extrapolating the luminosity function of subhalos

below the lowest mass (~ 10° M) subhalos resolved in the simulations.
3.3.1 Luminosities of the Smooth Halos and Resolved Subhalos

Figure 3.5 shows the DM annihilation luminosities of six Auriga halos within a distance 7 /7590,
where r is the radial distance from the Galactic center and 799 is the virial radius of each halo.
Shown are both the contributions from the smooth DM halo and from the subhalos for each of the
six Auriga halos (left four panels) and the results for their DMO counterparts (right four panels).
The gray lines indicate the luminosity from the smooth DM halo of each simulated Auriga halo
for each annihilation model, while the thin blue, yellow, green, and red lines show the luminosity
from all subhalos within an Auriga halo for the s-wave, p-wave, d-wave, and Sommerfeld models,
respectively. For each model, the thick lines of the same color show the average total subhalo
luminosity across all six halos. The purple lines show the total mass of the smooth component
within radius 7 for each halo.

We compare the results for the average total subhalo luminosity to the total smooth halo lu-
minosity. For the Auriga halos, we find that the luminosity from the smooth DM halo dominates
over the average luminosity from subhalos in all annihilation models except for the Sommerfeld
model, where the subhalo luminosity dominates at /7900 > 0.74. For the DMO halos, we find that
the luminosity from the smooth DM halo dominates for p-wave and d-wave annihilation, but the
average luminosity from subhalos surpasses that of the smooth DM component at r/ryp9 > 1.2 for

the s-wave model and at r /ro99 > 0.17 for Sommerfeld.
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Figure 3.5: The total DM annihilation luminosity within some Galactocentric radius, r, as a func-
tion of that radius for the Auriga halos (left four panels) and their DMO counterparts (right four
panels). The gray lines are the results from the smooth DM halo component of the six Auriga
halos. The results for the resolved DM subhalos in each halo are shown as thin blue (s-wave),
yellow (p-wave), green (d-wave), and red (Sommerfeld) lines. The thick lines of the same color
correspond to the average total luminosity of resolved subhalos across all six Auriga halos. In each
panel, the number in the upper right indicates the average total luminosity from subhalos within
r900. Both luminosities from the smooth halo component and the subhalos have been normalized
by the total luminosity, Log, within 75 for the corresponding smooth halo component for each
annihilation model. The purple lines indicate the total smooth mass within » for each halo, nor-
malized by the total mass, Mygg, within r59y. The dashed vertical lines indicate 75 for all halos.
The luminosities from the velocity-independent s-wave annihilation model agree with the results
of ref. [5]. Reprinted with permission from ref. [3].

Next we compare the results from the Auriga halos to that of their DMO counterparts. Exam-
ining the smooth halo components, we see that the luminosities of the Auriga halos approach Ly
more rapidly at smaller radii than their DMO counterparts, which is also illustrated by the brighter
central regions in the sky maps in figure 3.4. This effect is a result of the contraction of the central
regions of the smooth DM halos due to the presence of baryons. For a given annihilation model,
we find that the subhalo luminosities in the DMO simulations typically have a larger value at the

same distance r/ryp0. This is due to baryonic processes in which the baryonic disc preferentially
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Figure 3.6: The fraction of subhalos with luminosity greater than some luminosity, L, relative to
the total luminosity, Logg, within ryg of each smooth halo component. For s-wave (blue), p-wave
(yellow), d-wave (green), and Sommerfeld (red) annihilation models we show the results for both
the Auriga halos and their DMO counterparts in solid and dashed lines, respectively. The gray lines
indicate the best fit power law for Au6 over the range of luminosities associated with subhalos with
20 km/s < Viax < 60 km/s. The best fit values of a from eq. (3.13) for Au6 are listed next to the
corresponding gray line. Reprinted with permission from ref. [3].

destroys nearby subhalos.
3.3.2 Subhalo Luminosity Functions

We now move on to analyze the subhalo differential luminosity functions, dN/dL, where N is
the number of subhalos with luminosity L, for each of our annihilation models. From this defini-
tion of the differential luminosity function, we construct the fraction of subhalos with luminosity

greater than L/ Logy within each simulation for each DM annihilation model,

f;maz L/ dN dL/

_ ar
f>L)= (o i g (3.12)

To provide a physical interpretation for the cumulative luminosity function, we compare to a
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power law defined as

f(> L) o L™, (3.13)

Defined in this manner, the subhalo luminosity function is dominated by the highest (lowest)
luminosity subhalos for a < 2 (¢ > 2). In order to conservatively avoid the impact of nu-
merical resolution, we calculate this quantity over the range of L calculated from subhalos with
20 km/s < Viax < 60 km/s for each simulation.

Figure 3.6 shows the cumulative luminosity function, f(> L), within each simulated halo for
each DM annihilation model. S-wave (blue), p-wave (yellow), d-wave (green), and Sommerfeld
(red) annihilation models are shown for the Auriga halos (solid lines) and their DMO counter-
parts (dashed lines). The gray lines and corresponding a values indicate the best fit parameters
of eq. (3.13) for Au6. For the Auriga halos we find the range of a values to be [1.80 — 2.07] for
s-wave, [1.45 — 1.66) for p-wave, [1.38 — 1.49] for d-wave, and [2.10 — 2.43] for the Sommerfeld
model. For the DMO counterparts we find the range of a values to be [1.75 — 1.99] for s-wave,
[1.50 — 1.61] for p-wave, [1.35 — 1.44] for d-wave, and [1.94 — 2.34] for the Sommerfeld model.

These fit results indicate that for the case of the Sommerfeld model, the integrated subhalo
luminosity is dominated by the least luminous subhalos, while for s, p and d-wave models, the
luminosity is dominated by the most luminous subhalos. Going from s to d to p-wave, the high
luminosity subhalos become more and more significant as a fraction of the total subhalo emission,
even though similarly going from s to d to p-wave, the total luminosity contribution from subhalos
becomes progressively smaller as compared to the smooth halo.

To further examine the contributions to the luminosity from different subhalo mass intervals,
the four panels on the left side of Figure 3.7 show the contribution to the subhalo luminosity
from Au6 for different DM mass ranges and the four panels on the right side show the results
for the DMO counterpart. We consider the luminosities of all subhalos with DM masses above a
minimum mass of 10, 107, 108, 10°, and 10'° M. We calculate the total luminosity from subhalos
within 7559 and above a minimum mass of 10® M, as a fraction of the total luminosity from

resolved subhalos within r559. For Au6 we find the luminosity fraction to be 0.689 for s-wave,
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Figure 3.7: The luminosity contribution from Au6 subhalos for each annihilation model for var-
ious lower limits of the subhalo DM mass. Each line corresponds to a minimum DM mass of
105,107, 10%,10%, or 10'® M,. The lines corresponding to higher mass subhalos trend to the right
side of each panel. This shows that most of the total subhalo luminosity is due to large subhalos in
the s-wave, p-wave, and d-wave annihilation models. However, in the case of Sommerfeld annihi-
lation there is a notable fraction of luminosity from low-mass subhalos. We find similar results for
all six halos. Reprinted with permission from ref. [3].

0.996 for p-wave, 1.000 for d-wave, and 0.177 for Sommerfeld. For the DMO counterpart we
find the luminosity fraction to be 0.626 for s-wave, 0.977 for p-wave, 0.999 for d-wave, and 0.264
for Sommerfeld. For s-wave, p-wave, and d-wave annihilation models, a large part of the total
luminosity is due to high-mass subhalos. Whereas in the case of the Sommerfeld model we find

that there is a large contribution to the total subhalo luminosity from low-mass subhalos.
3.3.3 Low-Mass Subhalo Extrapolation

As discussed above, the Auriga simulations resolve DM subhalo masses down to ~ 10 M.
However, this is plausibly still much larger than the cut-off mass in cold DM, which may be as
small as Earth mass [88]. It is interesting to estimate the effects that an extrapolation down to mass

scales below the Aurgia resolution would have on our results.
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In this analysis, for computational convenience we extrapolate DM subhalos down to ~ 10° M.
To estimate the abundance of these low-mass subhalos below the resolution scale, we follow
the work of ref. [5]. For each halo, we estimate the overall abundance of subhalos in the range
0.1 km/s < Viax < 10 km/s, with a subhalo of maximum circular velocity 0.1 km/s correspond-
ing approximately to a subhalo of mass 10° M. We assign a V.., value to each of the extrapolated
subhalos using the differential Vi, function in ref. [5]. The subhalo is then assigned an R, value
using the median R,,,x — Vinax relation shown in ref. [5] and derived from ref. [89] for extrapolation
to lower subhalo masses. These values for V. and R, are then used in eq. (3.9) to estimate the
velocity-independent s-wave annihilation luminosity for extrapolated subhalos.

Figure 3.3 above shows the relationship between the V., of a given resolved subhalo and the
o value associated with that subhalo as discussed in section 3.1.2. The dashed line indicates the
best-fit power-law curve which we will use to extrapolate to low-mass subhalos. The extrapolated
o values are used to produce a Maxwellian distribution, which is then used in eq. (3.7) as the prob-
ability distribution, Py, to calculate the velocity moment, 1, for each of the velocity-dependent
annihilation models. The extrapolated velocity moments, along with the V.. and R,,., calculated
above, are then used in eq. (3.8) to estimate the velocity-dependent annihilation luminosity for
extrapolated subhalos.

Given the structural properties of the extrapolated subhalos, we then must assign them a posi-
tion within the halo. To assign the position, we start from a spherically symmetric number density
distribution that is generated from the resolved subhalos with 10 km/s < Vj,.x < 30 km/s. We
then fit a power-law curve to this number density profile, which we use to radially distribute the
subhalos. These objects are then distributed randomly in the angular coordinates, which produces
a spherically symmetric distribution of subhalos.

The effects of the addition of extrapolated subhalos on the total luminosity for all six Auriga
halos are depicted in the left four panels of figure 3.8 and the results for their DMO counterparts
are shown in the right four panels. For the Auriga halos, we still find that the luminosity from the

smooth DM halo dominates over the average luminosity from subhalos in all models except for
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Figure 3.8: Same as figure 3.5, but including the results for extrapolated subhalos with 0.1 km/s <
Vinax < 10 km/s. In each panel, the number in the upper right indicates the average total luminosity
due to resolved and extrapolated subhalos within 75, normalized by Logy. Reprinted with permis-
sion from ref. [3].

Sommerfeld annihilation, which now dominates at 7 /7909 > 0.2 rather than at 7 /rsg0 > 0.74 in
the case of only resolved subhalos. For the DMO counterparts, we find that the average luminosity
from subhalos now dominates for the s-wave model at r/ry99 > 0.5 and for the Sommerfeld model

at 7"/7“200 > 0.03.
3.4 Discussion and Conclusions

We have used the Auriga simulations of Milky Way-like galaxies to determine the contribution
of halo substructure to the signal from DM annihilation. We consider the general case of velocity-
dependent DM annihilation, examining Sommerfeld, s-wave, p-wave, and d-wave models. We find
that substructure is the most significant in Sommerfeld models, while it is the least significant in
d-wave models. In the Sommerfeld models, the substructure contribution to the DM annihilation
signal dominates that of the smooth component beyond ~ 0.747549, while for all other models the

substructure contribution is sub-dominant at all radii as compared to the smooth halo.
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Examining the luminosity functions of substructure, we find that in Sommerfeld models, the
luminosity function is dominated by the least massive subhalos that are resolved. On the other
hand, for d-wave models, the luminosity function is dominated by the most massive subhalos that
are resolved. So extrapolating to lower subhalo mass scales may still increase the luminosity con-
tribution from subhalos in Sommerfeld models, though it will not affect the luminosity contribution
from subhalos in the case of d-wave models.

Systematic uncertainties in the results can also arise from the uncertainty in the number of
subhalos, due to a different treatment of baryonic effects. We do not expect these uncertainties
to affect our results for the d-wave model, since the luminosities are not centrally concentrated in
that case. However, they can introduce additional uncertainties in our results for the Sommerfeld
model. Studying the [J-factors in an even larger sample of simulations is important to quantify
such uncertainties.

Another source of systematic uncertainty can arise from the assumed DM density profile of the
subhalos. In our analysis, we have assumed the shape of the DM density profile interior to R,.x
to be an Einasto density profile, and we have estimated the total luminosity of each subhalo using
CEinasto = 1.87 in eq. 3.10. Since V., Rmax, and p, are calculated directly from the simulation
data, the total luminosity may be sensitive to the choice of DM density profile. To examine the
systematic arising from the assumed profile, we consider simply how our results change when
assuming an NFW profile instead of an Einasto profile. For the NFW case, we can estimate the
total luminosity from a subhalo using an NFW profile with Cygpw = 1.23 [78]. This implies that
using an NFW profile instead of an Einasto profile would simply scale our results by > 30%,
LEEW = (0.66 LEnasto_for all annihilation models.

The results of our analysis have interesting implications for gamma-ray emission observed by
Fermi-LAT. For example, the Galactic Center Excess (GCE) does not yet have a clear explana-
tion, and may be consistent with particle DM annihilation [90]. However, it is possible that this
emission is inconsistent with limits obtained from dwarf galaxies [91]. Including the full effect of

baryonic physics, the morphology of the GCE [92] is consistent with the signal from the smooth
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component of the DM distribution [87]. Since the morphology of the smooth emission component
is similar for Sommerfeld, s-wave, p-wave, and d-wave models, the GCE would similarly be well
fit by the smooth component of any of these velocity-dependent models. The bounds on the cross
section would simply scale with the ratio of the [7-factors, in a manner similar to that discussed in
Ref. [32]. However, one caveat to this statement is that the simulations that we have considered re-
solve subhalos down to mass scales of > 10® M. This may be far larger than the actual minimum
subhalo mass, and an extrapolation down to lower subhalo masses may be particularly important
for Sommerfeld models, in which case the subhalo component may eventually dominate over the
smooth halo emission.

Another galaxy that our results may be considered in the context of is M31. Fermi-LAT has
previously detected emission from the central regions of M31, which may be explained via cosmic-
ray interactions in the central stellar disk [93]. More recently, there has been an indication of an
extended emission from the region surrounding M31, which may be explained by emission from
its more extended DM halo [94]. The M31 system is a unique target for DM annihilation, because
halo substructure is expected to contribute to the emission in the outermost regions. Our results
indicate that, even in the context of the full physics simulations, substructure emission is significant
for Sommerfeld models, and even in the case of s-wave models the total emission from subhalos
nears that of the smooth component around r59. However, for p and d-wave models, the smooth
component is dominant at all radii, and no emission from substructure would be identified. This
shows that M31 provides a unique system for DM annihilation and substructure analysis, and we

defer its detailed study to future work.
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4. VELOCITY-DEPENDENT [7-FACTORS FOR MILKY WAY DWARF SPHEROIDAL
ANALOGUES IN COSMOLOGICAL SIMULATIONS*

We extract the DM density and relative velocity distributions of the MW’s dSphs from the
APOSTLE Level 1 hydrodynamical simulations [37, 38], and compute the 7 -factors for the sim-
ulated dSphs for the s-wave, p-wave, d-wave, and Sommerfeld models. To extract the relative
velocity distributions, we first identify analogues of MW satellite galaxies in the APOSTLE sim-
ulations by matching observed properties such as the circular velocity at the half-light radius and
stellar mass to the corresponding subhalos in the simulation. From these best analogue candidates,
we extract the DM relative velocity distribution, and thereby the 7 -factors for the MW analogue
subhalos. As an additional key component of our analysis, we compare the DM relative velocity
distributions from the subhalos to MB distributions, from which we ascertain how well the MB

distribution works over the entire range of resolved subhalo mass scale in APOSTLE.
4.1 dSph Galaxy Analogues

In this section, we discuss the properties of the dSph analogues that we identify in our simula-
tions. We begin by defining a broad matching criteria to map dSphs onto subhalos in the APOSTLE
simulations, and then move onto characterizing the density profiles of these systems, and finally

determine the DM velocity distributions in the analogues.
4.1.1 Selection of dSph Analogues

The selection of specific dSph analogues was performed using two matching criteria. The first
criterion involves matching the observed circular velocity at the half-light radius of the dSphs [11].
For each subhalo, we first calculate the circular velocity, V,(r) = \/GM(< r)/r, where M (< r)
is the total mass enclosed within a sphere of radius 7 centered on the subhalo. We then compute

Ve(ry /2), or Vi3, where 75 is the 3D half-light radius for each of our dSph counterparts [95].

“Reprinted from “Velocity-dependent J-factors for Milky Way dwarf spheroidal analogues in cosmological
simulations” by Blanchette et al., 2023. Journal of Cosmology and Astroparticle Physics, vol. 03, p. 021,
https://doi.org/10.1088/1475-7516/2023/03/021 © IOP Publishing. Reproduced with permission. All rights reserved.
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Most generally, we require that our dSph analogues have a circular velocity at the half-light radius
within 20 of the observed value, where o is the uncertainty from observations, which is typically
a few km/s for the dSphs that we consider. The only exception is for the Draco analogues, which,
as described below, we require it to be within 30 of the observed value, due to the difficulty in
identifying a matching analogue.

As our second criterion, we require that the subhalos have a stellar mass that is consistent with
the measured stellar mass of its observed counterpart [11]. Further, considering that typical stellar
mass-to-light ratios for dSph stellar populations are in the range ~ 1 — 3, and extending this range
by 50% to increase the number of matching analogues, we take the range of dSph stellar masses
that we consider to be within the range 0.5 — 4.5 of the measured stellar mass of the dSph.

Given the relatively small sample of satellites in our simulations, and the precise measurements
of the stellar mass and circular velocity, it is expected that our matching criteria will not produce
exact dSph analogues. This is particularly true when considering the distance to the dSph. In
the cases in which we find a matching circular velocity and stellar mass, but there is a significant
difference between the distance to the observed satellite and the distance to the simulated satellite,
we simply shift the simulated satellite to a distance corresponding to that of the observed satel-
lite [96]. We choose this approach because we are most interested in the [7-factors below, which
are a sensitive function of the dSph distance.

With our criteria we identify 126 unique subhalos in AP-L.1 as dSph analogues. We further
refine our selection of dSph analogues based on the modeling of their DM density profiles, as
discussed in section 4.1.2. This reduces our number of unique subhalos in AP-L1 to 100 subha-
los. The results of our search for analogues are shown in table 4.1. For each dSph, the number
of subhalos identified as analogues, [V, is given in the second column of this table. Note that N
may contain subhalos that are analogues of multiple dSphs. For each dSph, we also show the
top two best matching analogues based on their s-wave 7 -factor being closest to those of ref. [6]
(also shown in figure 4.7 in section 4.3), as well as several properties for each analogue. In sev-

eral instances, for example with Sculptor, Carina, and Sextans, we find good matches between a
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VObS V1/2 Vmax 1OglO (\-75)

dSph Analogue N | Mobs M M, M 1/2
P g 7 Mol « Mo [km/s] | [km/s] | [km/s] | [GeV?cm™?]

Canes Venatici I (1) . | 5.66 x 107 1456 | 15.39 17.42
Canes Venatici 1(2) | 21 | 2310 L o50%105 | 32 | 1479 | 16.05 17.44
Carina (1) 5 | 2.38 x 10° 1130 | 13.14 18.52
Carina (2) 7143107 g ag 10 | 1| 1137 | 2280 18.15
Draco (1) . | 8.91 x 107 1492 | 2432 18.81
Draco (2) 4022007 begg w10 | 70| 1508 | 2901 18.82
Fornax (1) - [ 1.36 x 107 1879 | 20.38 18.01
Fornax (2) 4L LA g w107 | 18 | 1836 | 21.96 17.87
Leol(1) s | 3.27 x 10° 1524 | 2037 17.63
Leol(2) 191 5.0 10% | g 0o 106 | 190 | 1515 | 2481 17.64
Leo 11 (1) . | 1.45 x 10° 12.15 | 20.13 17.66
Leo I (2) AT T80T gs 105 | T | 1058 | 2190 17.66
Sculptor (1) s | 1.40 x 10° 1497 | 2611 18.58
Sculptor (2) 9 25107 oo 10 | 190 | 1581 | 2173 18.61
Sextans (1) . | 3.89 x 107 1277 | 1279 17.88
Sextans (2) 31 99x10" Taee 108 | 12 | 1161 | 1170 17.91
Ursa Minor (1) 5 | 4.61 x10° 19.13 | 25.52 18.76
Ursa Minor (2) 23 393107 Fe gy 109 | 129 | 1908 | 2432 18.74

Table 4.1: The number of subhalos identified as dSph analogues, /N, stellar mass, M,, the cir-
cular velocity at the half-light radius, V)5, the maximum circular velocity, Vi,.x, and the s-wave
J -factors of our selected dSph analogues in AP-L1. The observed stellar mass, M°", and the
observed circular velocity at the half-light radius, Vlo/gs of the dSphs are also given in the table.
Note that a given subhalo may be identified as being more than one dSph analogue. Reprinted with
permission from ref. [4].

simulated satellite and the observed system. On the other hand, as alluded to above, for Draco we
are unable to locate reasonable analogues using the matching criterion of 20 uncertainty for V; /5.
This is similar to what has been found in previous similar studies [36], as Draco is less dense than
is predicted given its best matching analogues in simulations. Allowing up to 3¢ uncertainty for

V12, we do obtain four Draco analogues across the ten simulated halos.
4.1.2 DM Density Profiles

We now move on to characterizing the DM density profiles of the subhalos. Characterizing
the density profiles are important since they enter into the calculation of the DM annihilation

rate through the 7-factor. We follow the typical assumption that the particle distributions in the
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Figure 4.1: Spherically-averaged DM density profiles for a subset of five subhalos in the AP-L1
simulations, with masses in the range of 7 x [10” — 10°] M. The black portion of each curve
represents the density at radii smaller than 268 pc, i.e. twice the gravitational softening length. The
lighter shaded region represents the 1o error, found using Poisson statistics. The dashed green line
shows the best fit Einasto profile for the 6.0 x 10® M, subhalo. The black cross on each curve
specifies the radius containing half the stellar mass of each subhalo. Reprinted with permission
from ref. [4].

subhalos are spherically symmetric, which has been shown to be a good assumption for simulated
dwarf galaxies in APOSTLE [97].

In figure 4.1 we show the spherically-averaged DM density profiles of five example subhalos
of different masses. For each simulated subhalo, the DM density is obtained from the DM mass in
spherical shells of width ranging from [0.1 — 1.0] kpc, and plotted as a function of r/ Ry,.x, Where r
is the distance from the subhalo center, which is identified as the center of potential of that subhalo,
and R,,.. 1s the radius at which the rotation curve of the subhalo reaches its maximum value. The
bin width of the spherical shells was chosen such that there is a minimum of 10 particles per shell.

As is shown in figure 4.1, the density profiles start to flatten towards the inner regions of
the subhalos. This is due to the resolution limit of the simulations, which is determined by the

gravitational softening length, ¢ = 134 pc. In figure 4.1, the black portion of the curves represent
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the density profiles at radii less than twice the softening length. The black cross on each curve
specifies the radius containing half of the stellar mass of each subhalo. An important question
regarding the flattening of the density profiles is whether it can be a result of the baryonic feedback
prescription used in the simulations. However, we note that this is not the case in our simulations.
In particular, refs. [98] and [99] showed that the EAGLE baryonic feedback model, which is also
used by APOSTLE, does not create cores in dwarf galaxies.

We model the DM density profile of the simulated subhalos by the Einasto profile,

2 [0
p=p_sexp (—5 Ké) —1D, 4.1

where p_, and r_, are the density and radius at which p(r) oc 772, and « is a parameter which
specifies the curvature of the density profile. We set this parameter to « = 0.16 [86], so only
the two parameters p_, and r_5 are varied. For each subhalo, we find the best fit Einasto profile
in the range of 2¢ < r < 2R.x, using 2¢ rather than ¢ to be conservative and avoid resolution
issues. As an example, in figure 4.1 the dashed green line shows the best fit Einasto profile for
the 6.0 x 10% M, subhalo. It is clear that the central region of the simulated subhalos are under-
dense compared to what is expected from the Einasto fit, which is typically true throughout all the
simulated subhalos examined.

We note that for some of the more massive subhalos, the density profiles show a flattening even
for radii larger than 2¢. To take this into account, we also find the best fit Einasto profiles in the
range of 3¢ < r < 2R,,.«. To ensure that our results are robust with respect to the specific range
used for fitting the density profiles, we proceed as follows. We calculate the 7 -factors of our dSph
analogues using the best fit Einasto profile in the range of 2¢ < r < 2R, and compare the results
to the J-factors calculated using a best fit Einasto profile in the range of 3¢ < r < 2R,.x. We
then compute the ratio of these two 7 -factors and remove any dSph candidate that has a 7 -factor
ratio which exceeds by more than 1o from the mean 7 -factor ratio. This cut reduces our number

of analogues from 126 to 100, as mentioned previously.
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4.1.3 Relative Velocity Distributions

For velocity-dependent annihilation models, the 7-factors depend not only on the DM density
profile, but also on the DM pair-wise, or relative velocity distribution in the subhalo. We now
describe how we extract the DM relative velocity distributions in radial shells in each subhalo.

We first extract the position vector, X, and the velocity vector, v, of the simulation particles
belonging to each subhalo, with respect to the center of that subhalo. Following the notation used
in ref. [2], we define f(x, v) such that f(x, V) d®x d®v is the number of DM particles within a phase
space volume x + d®x and v + d3v. The probability distribution of DM velocities at a position x

can be written as

f(x,v)
P(v) = , 4.2
AT -
where the DM density at X is given by
p(x) = / f(x,v)d®v. (4.3)

For a given pair of DM particles with velocities v, and vo, we can write the individual velocities
in terms of the center-of-mass velocity, v, and the relative velocity, v, = vy — vy, as v; =
Vem + Viel/2 and Vo = Ve, — Vi1 /2. We can then write a general expression for the distribution of

relative velocities at a position X,

Px(vrel) - /Px(vl = Vem + Vrel/Q)PX(V2 = Vem — Vrel/2) dgvcm- (44)

The DM relative velocity modulus distribution, Py(|v.e|), is related to the relative velocity
distribution, Py (V) by
Rl = 021 [ Pelv) ds, @3)

where df2y_ is an infinitesimal solid angle along the direction v,. It is normalized to unity, such

that fpx(’Vrely)dUrel =1.
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To extract the relative velocity modulus distributions for each subhalo, we define spherical
shells of width ranging from [0.1 — 1.0] kpc, progressing radially outward from the subhalo center.
In each shell, we extract the three components of the velocity vectors, and find the modulus of
the pairwise relative velocity distributions for all DM particles in the shell. The bin width of the
spherical shells was chosen such that there are at least 10 particles in each shell.

Figure 4.2 shows the DM relative velocity modulus distributions for an example subhalo. The
speed distributions are shown in spherical shells of 1 kpc width! at different radii from the center
of the subhalo, starting from a shell enclosed within 1 < r < 2 kpc from the subhalo center, and
going to a shell with 5 < r < 6 kpc from the center. The bottom right panel of the figure shows
the DM relative speed distribution for all particles in the subhalo. The purple shaded bands specify
the 10 Poisson error in the speed distributions.

Next, we compare the DM relative speed distributions with a MB distribution. In the Standard
Halo Model [74], the DM velocity distribution is an isotropic MB distribution with a most probable
speed of /20, where o is the one dimensional velocity dispersion. In this model, the relative
velocity distribution Px(v,) is also a MB distribution, but with a one dimensional relative velocity
dispersion of v/20 [25]. For each subhalo, we find the best-fit MB relative speed distribution,

4v

2 ,02
P, - — rel _ “rel 4.6
MB(‘V ID \/7_7-@2 €xp ( Ug ) ’ ( )

where v, is the best fit peak speed, i.e. the most probable speed of the DM particles.

Once we have the empirical Px(|v.|) for each spherical shell in a subhalo, we can find the
best fit peak speed, v, in eq. (4.6) for each subhalo, by fitting the DM relative speed distributions
in each shell to the MB distribution. In figure 4.2 we show the best fit MB speed distribution for
each of the six 1 kpc shells as solid black lines. As it is clear from the figure, the MB distribution
provides a good fit to the DM relative speed distribution of the simulated subhalo at all radii. Notice

that the data shown in figure 4.2 is for a “typical” subhalo analogue and is representative of the

"We use spherical shells of 1 kpc width in figure 4.2 for clarity of presentation, while in the analysis of the J-factors
we use shells of width ranging from [0.1 — 1.0] kpc.
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Figure 4.2: The DM relative velocity modulus distribution in 1 kpc shells for a typical subhalo
of mass 7.0 x 10° M. The different panels show five different 1 kpc shells, starting from the
shell closest to the subhalo center in the upper left, and continuing to the shell furthest from the
center in the bottom center panel. The bottom right panel shows the DM relative velocity modulus
distribution of all particles in the subhalo. The purple shaded bands specify the 1o Poisson error in
the speed distributions, while the black solid lines show the best fit MB distribution in each case.
Reprinted with permission from ref. [4].

DM relative speed distributions of the other simulated subhalos studied in this work.

Another method to determine the best fit peak speed of the MB distribution for each subhalo
is to fit the relative speed distribution of all DM particles in the subhalo, instead of dividing it
by shells. This process is much more computationally intensive, but provides an excellent check
when compared to the mean peak speed found from the results of dividing the subhalo into different
shells. Both of these methods lead to a power law relation between the best fit peak speed of the

MB distribution and the maximum circular velocity, V;,., of the subhalo,

Up = (1.057 & 0.016) (Vi) 27200 (4.7)

1

where v, and V).« are in units of kms™", and the errors here represent the 1o error on each fit
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Figure 4.3: The best fit peak speed, v,, of the MB distribution as a function of the maximum
circular velocity, V;,.x, for all selected subhalos in AP-L1 determined by finding the best fit peak
speed in different radial shells and taking the mean across all shells (orange dots), or by using a
single MB fit across all particles in a subhalo (blue dots). The best fit power law (eq. 4.7) using the
orange points is shown as a solid black line. Reprinted with permission from ref. [4].

parameter returned by the LMFIT package for Python.

Figure 4.3 shows the relation between the best fit peak speed of the MB distribution and the
maximum circular velocity of the subhalos in AP-L1 using the two methods for determining v,,.
The blue points are computed using all the DM particles in the subhalos, and the orange points are
computed by first finding the best fit peak speed for different shells, and then taking the mean of
the peak speeds across all shells. Also shown in the plot is the best fit power law using the mean
of the peak speed shown as a solid line, and quantified in eq. (4.7). The two methods of obtaining

the best fit peak speed agree within their 1o errors.
4.2 J-factors

With the DM density profiles and relative velocity distributions now determined, we can move

on to calculating the velocity-dependent 7 -factors. Here we lay out the formalism for the 7 -factor
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calculation for each of the annihilation cross section models that we consider. The notation closely
follows ref. [2].
The DM annihilation cross section, o4, averaged over the relative velocity distribution at a

spatial location, X, is given by

<O-Avrel>(x) - /d3vre1PX(Vrel)(UAUrel>- (48)

In the usual s-wave annihilation, o 4v.. 1s independent of the relative velocity. However, for
velocity-dependent annihilation models, o 4v,¢] depends on the relative velocity and can be parametrized
as oAUl = (0AUel)o(Vrel/C)". Here (040 )0 is the velocity-independent component of the an-
nihilation cross section, and n depends on the specific DM annihilation model. We consider the
following cases: n = 0 (s-wave annihilation), n = 2 (p-wave annihilation), n = 4 (d-wave annihi-
lation), and n = —1 (Sommerfeld-enhanced annihilation).

For the general velocity-dependent annihilation, the expected gamma-ray flux from DM anni-

hilation can then be written as
d®, (0AVwe)y AN,
- \757

= 4.
dE 87rm3< dE 4.9)

where m,, is the DM particle mass, dN.,/dE is the gamma-ray energy spectrum produced per

annihilation, and 7, is the effective /J-factor defined as [31, 2],

7.0) - | a0 272 g )

(UAUrel)o

_ / de / PviaPevia) (%) 1o (00 (4.10)

Here 7 is the distance from the Sun to a point in the dSph (i.e. line of sight), € is the opening
angle between the line of sight ¢ and the distance D from the Sun to the center of the dSph, and
r2(¢,0) = (> + D* — 2(D cos 0 is the square of the radial distance measured from the center of the

dSph. This is with the assumption that the dSph is spherically symmetric. The [J,-factor integrated

55



over solid angle is then given by
~ 0
Js(0) = 27T/ Js(0") sin0'de’. 4.11)
0

4.3 Results

In this section we present the J.-factors of the dSph analogues in AP-L1 for the different
velocity-dependent annihilation models. We also quantify the errors introduced in the i—factors
if we model the DM relative velocity distribution of the dSph as a MB distribution.

In figures 4.4 and 4.5 we show the i—factors as a function of the opening angle, @, for a subset
of simulated dSphs selected to be analogues of Carina and Sculptor, based on the criteria discussed
in section 4.1.1. The four panels of the figures show the J,-factors for the four annihilation models.
In the s-wave panel, the results are shown using two methods of computing the DM density profiles.
In one method the density profiles are directly computed from the simulation data, and in the other
method an Einasto fit to the density profiles is used. In the p-wave, d-wave, and Sommerfeld
panels, the best fi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>