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ABSTRACT 

 

The need to improve cotton to the benefit of humanity has been the driving factor in 

scientific cotton breeding for nearly 150 years. The act of cotton breeding itself is not a novel 

enterprise. What is novel, however, are the tools and technologies breeders utilize in cotton 

breeding operations. The semi-arid Texas High Plains agricultural area is one of the largest 

cotton producing regions in the world. This region is supported agriculturally by the ever-

shrinking Ogallala aquifer. Identifying cotton varieties that perform or demonstrate yield stability 

across a range of water limited environments is critical to the long-term sustainability of cotton 

production on the Texas High Plains. Contemporary remote sensing devices like drones provide 

a pathway to evaluate cotton growth in a manner that is novel, efficient, and high throughput. 

The significance of this approach with respect to evaluation of cotton growth on the Texas High 

Plains is that information can be gathered over many breeding plots at high temporal granularity 

in a quantified and consistent manner. Observation of this type provides researchers with insight 

into growth patterns and characteristics not previously evident with manual plot-by-plot field 

observations. This presents the possibility that growth patterns and characteristics in breeding 

lines might be identified, when observed over a range of water levels in the semi-arid Texas 

High Plains, which provide a basis to isolate genotypes that will allow cotton production in this 

region to remain stable in the coming decades. 
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NOMENCLATURE 

 

GSD Ground Sample Distance 

GSA Ground Sample Area 

DEM Digital Elevation Model 

DSM Digital Surface Model 

DTM Digital Terrain Model 

ExG Excessive Greenness Index 

TGI Triangular Greenness Index 

VARI Visible Atmospherically Resistant Index 

RGBVI Red Green Blue Vegetative Index 

MGRVI Modified Red Green Index 

GNORM Green Normalized Layer 

CVol Canopy Volume 

CC Canopy Cover 

CV Coefficient of Variation 

VI Vegetative Index 

UAS Unmanned Aerial Systems 

NDVI Normalized Differential Vegetative Index 

DAP Days After Planting 

DOY  Day of Year 
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1. INTRODUCTION 

1.1. Background 

Forty-one counties comprise the Texas High Plains (THP) region extending from 

the Oklahoma state boundary in the Northern Texas panhandle Southward along the 

New Mexico state line and ending at a horizontal line intersecting the Southeastern 

corner of New Mexico. The region covers an approximate 10,000 km2 of land surface 

area (Lascano et al., 2020). The history of agricultural production in the region runs 

parallel to the development of groundwater-based irrigation beginning in the 1920s. The 

source of groundwater for THP agricultural production is almost exclusively the 

Ogallala aquifer. A vast aquifer spanning eight states, the Ogallala is the largest 

unconfined aquifer in the United States (Texas Water Devlopment Board, 2020). Annual 

production demands for water in the THP currently exceed the annual average recharge 

volume. As such, the portion of the aquifer under the THP is a diminishing resource 

where the estimated average distance to water table has increased about 30 cm per year 

(McGuire & Fischer, 2001). 

 Given the status of groundwater resources in the area, most production systems 

operate with an accumulating irrigation deficit over the growing season. Along with 

deficit irrigation, the number of non-irrigated production acres and the need for 

producers to explore irrigated alternatives in the THP are increasing (Chu et al., 2016). 

The trend away from fully irrigated cotton production to either deficit irrigation or 

partially irrigated production systems will continue in the coming decades because of the 

insufficient annual aquifer recharge in the area. Researchers and producers working 
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within the agricultural sector of the THP region are faced with the reality that cotton 

production with less water on an annual basis will become requisite to sustainable cotton 

production. As has been the case with many challenges facing cotton production over the 

last 150 years, the ability to manage the water-resource challenge facing the THP will 

come largely through breeding groups producing germplasm well-suited to specific 

environments capable of responding to continuously improving water and crop 

management practices. 

1.2. Cotton Breeding 

 Upland cotton has been successfully modified over many decades through global 

breeding activities that follow the same general process involving a “systematic method 

of observation, data collection and statistical analysis of plant performance” (Dever, 

2012). Examples of improvements include increased lint yield, higher fiber quality, 

insect resistance, disease resistance, and desirable changes to leaf morphology (Zeng et 

al., 2018). Such genetic improvements occurred because of continual gain in overall 

understanding of genetics and gene action in cotton. Early cotton breeding success came 

during a period when genetic knowledge in breeding was largely limited to Mendelian 

inheritance of qualitative traits (Bourland, 2019). Even in the early years of scientific 

cotton breeding and development, electronic tools were designed and utilized to assist 

breeders with plant phenotyping in the context of breeding (Johnson, 1939). From this 

early period of scientific cotton breeding there would be considerable advancements 
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over the next 80 years. The period from 1940 to 2020 would see massive gains in high 

throughput harvest equipment technologies (Eaton, 2003), fiber evaluation technologies 

(Kelly et al., 2015), biotechnologies (Hake, 2003), gene manipulation methodologies 

(Paterson & Smith, 1999), and in digital phenotyping technologies (Chawade et al., 

2019; Pabuayon et al., 2019). The level at which cotton breeders have historically been 

able to advance cotton performance and quality is strongly related to the adequacy of the 

available technologies supporting such activities. 

 Observation and data collection have been a fundamental component in breeding 

for centuries. These observations vary dramatically with respect to specific plant 

properties or phenotypic characters but the objective, to isolate the most prominent 

instances of any specific plant trait, remains the same (Dever, 2012). Obtaining reliable 

plot level data at scale is one of the major aspects of breeding related field work. This 

essential process has been historically limited by the amount time and labor breeders 

have at their disposal each growing season. 

1.3. Breeding Tools 

Tools that provide means to reduce time and labor involved in any of the many 

coordinated data collection efforts conducted over breeding plots in a single season, are 

beneficial to breeders and, ultimately, genetic gain. During the first two decades of the 

21st century agricultural science in general has been inundated with various proximal 

and remote sensing technologies (Khanal et al., 2020). Sophisticated sensor technologies 
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are now available in many forms at reasonable costs to researchers. Of currently 

available electronic tools, unmanned aerial systems (UAS) have become one of most 

widely evaluated and utilized remote sensing technologies in agriculture (Tsouros et al., 

2019). These devices allow researchers to gather data over large areas of cropland with 

little time and labor. Although the act of collecting image data itself requires little effort 

there remains large gaps in both public and private sector agricultural operations 

regarding analytic output for drone based high throughput evaluations (Yang et al., 

2020). Nevertheless, these systems provide a means to generate insight not previously 

possible with manual plot-by-plot field observations. Examples include non-destructive 

yield estimation (Ashapure et al., 2020), ground cover (Duan et al., 2016), maturity 

evaluations (Narayanan et al., 2019), and plant height information (Hu et al., 2018). 

UAS technologies appear to be establishing a level of necessity in large scale breeding 

operations. Complete implementation and utilization of UAS technology across the 

breeding industry is not occurring currently but such an outcome would not be surprising 

given the current state of research around UAS based remote sensing. 

1.4. UAS Technologies 

  As it stands today, there are several published experiments focused on the use 

UAS technologies to evaluate crop growth and biomass accumulation over a growing 

season. These methods for monitoring crop biomass accumulation are conducted via the 

analysis of multispectral data in the form of some type of vegetative index or through the 
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use of a three-dimensional representation of the plant derived from LiDAR or through 

the process of photogrammetric scene reconstruction (Wang et al., 2021). Regarding the 

use of these processes to monitor the growth of cotton in a breeding context, the number 

of available published experiments is quite small. Work by (Chu et al., 2016) appears to 

be the first such published experimentation covering the use of UAS derived imagery to 

evaluate cotton growth. In this work 35 cotton varieties were evaluated using plant 

height estimates derived from a series of digital surface models (DSM) using the formula 

DSMi – DSM0 where the difference between the bare soil DSM and a DSM collected at 

some point in the growth period of the crop provided an estimate of plant height. Along 

with the estimation of plant height values, this work assessed a parameter related to leaf 

area and biomass called canopy cover. This value is a two-dimensional measure of crop 

canopy derived from a segmentation process that separated plant pixels from the rest of 

the scene in an individual plot. These methods for evaluating crop growth with UAS are 

fundamental and continue to be utilized in both public and private sector crop research. 

1.5. UAS Based Growth Modelling 

 Building on the early drone-based growth modeling research in cotton, further 

work explored the use of vegetative indices (VI) coupled with kinematics and second 

derivative parameters of VI derived sigmoid-type plant based growth curves (Yeom et 

al., 2017). This work is critical in that the focus extends beyond the observed growth and 

biomass accumulation to the rate curve and specific parameters of that curve. In the end, 
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the utility in this form of analysis is most evident when the operator can reduce a 

season’s worth of drone observations to a few numerical parameters that provide insight 

regarding specific genotypes. Further work covering whole-season growth monitoring in 

cotton focused on comparisons between RGB and multispectral canopy cover (CC) 

(Ashapure et al., 2019). Canopy cover values provide insight into growth rates during 

the period of growth that occurs before complete canopy closure between rows. The 

significance of this work is that it demonstrated strong agreement between RGB derived 

CC values and those produced via a multispectral sensor. This provides a basis for using 

RGB sensors to monitor growth via CC over a comparable multispectral device. Given 

that RGB drone systems are typically much cheaper than a multispectral option, the 

findings in this work are beneficial to the global agricultural drone community. 

1.6. Goals & Objectives 

 At present there exists a range of opportunities relating to aspects of UAS growth 

assessments in cotton that remain unexplored; specifically, when curve kinematics are 

explored relating to rates of biomass accumulation.  The research herein focuses on the 

use of photogrammetric scene reconstruction to estimate biomass via drone derived 

growth proxies such as canopy volume and canopy cover. The rates of growth for the 

given varieties in this research were subjected to three water treatments in the semi-arid 

region of the High Plains of Texas. The focus of the work is to use contemporary 

methods and novel approaches to evaluate growth rates in cotton over a range of water-
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deficit-stress levels with the expectation that these novel approaches will allow for better 

understanding of cotton growth under water deficit stress variability. Through better 

understanding of how growth rate values relate to end of season outcomes of interest, 

better selections can be identified. 

The goal of this project is to develop a drone-based method for characterization 

of cotton growth rates and patterns to further genetic improvement of cotton breeding 

lines for the Texas High Plains. The components of this study supporting that goal are 

described in the following phases: 

1. Identify a group of genetic material with sufficiently variable growth rates and 

habits suitable for observation and growth curve derivation. Growth rate variability 

was identified through an assessment of cotton plant maturity, a phenotypic 

character described by the ratio of open bolls to total bolls at the point in the season 

where the check variety assessment is greater than 50 percent. 

2. Collect high resolution RGB drone imagery over the trial with a targeted revisit 

interval of 10 days. The focus is to gather time series image data for both years that 

is robust enough to allow interpolated sigmoid curve fitting to be representative of 

actual plant growth within each plot. 

3. Both digital surface model and orthomosaic raster layers were produced for all 

flights using photogrammetric scene reconstruction based on raw RGB image data 

collected over the breeding trial from each drone flight. 
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4. Generate a set of plot level extractions for all plots, for each flight, treatment, and 

year. The individual plot level extractions are compiled for all flights for both years 

and serve as the base data set from which interpolated growth curves are produced. 

5. Each plot for each flight produces both an RGB plot level extraction and a DSM 

plot level extraction. The RGB raster data is used to generate each of six different 

visible light spectrum vegetative indices suitable for image segmentation and 

canopy cover estimates. The canopy volume value was derived from the DSM plot 

extraction and exported. These numbers serve as the observed data for curve fitting. 

Specifics of the indices and canopy volume formulas are described in Table 4. 

6. Sigmoid curves are interpolated over the observed plot level vegetative indices 

canopy cover values as well as the canopy volume assessment. The generalized 

logistic function will be the specific sigmoid equation fit to the observed data. The 

resultant curve will serve as a proxy for biomass accumulation over time for each 

plot. 

7. From the interpolated sigmoid growth curves, a derivative curve will be 

produced using the rigorous form of a derivative. The result of this will be a curve 

that describes biomass accumulation rates as described by each of six canopy cover 

values as well the volumetric canopy values. 

8. Growth rates will be normalized using heat unit accumulation rates. The purpose 

of this final step will be to produce a single numeric assessment of plot growth from 
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a season-long drone data time course. This single numeric data point will be a 

digitally derived phenotypic character called “heat units to maximum growth rate”. 

The relationship between this novel digitally derived phenotypic character and end 

of season outcomes like seed cotton yield and fiber quality parameters will be 

evaluated. 

The objectives are to 1) identify, and observe via high-frequency, high-resolution RGB 

drone data, a group of material with enough growth variability to understand the 

relationship between the timing of growth rates and yield and quality outcomes, 2) 

develop a routine to analyze many drone flights over the course of an entire growing 

season and reduce that data-dense, time-series into singular digitally derived phenotypic 

assessments and 3) evaluate and understand the relationships between the digitally 

derived phenotypic assessments, e.g. heat-units-to-maximum-growth-rate, and important 

yield and fiber quality outcomes as well as the effect of water deficit stress on such 

relationships.   
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2. MATERIALS & METHODS 

 

2.1. Entry Selection 

Ten cotton (Gossypium hirsutum) varieties were selected from breeding 

germplasm to be imaged via UAS over two seasons at a location in the Texas High 

Plains (THP) cotton production region. Lines were selected with the intent of generating 

variability relating to growth characteristics based on maturity ratings. Maturity ratings 

are traditionally assessed as the number of open bolls to total bolls (Table 1). 

Commercial, advanced, and intermediate entries were included in the 10 lines chosen for 

this work. 

Agronomic metadata used in the pre-experiment selection process were assessed 

to identify entries. These data were collected in 2019 over the following three locations 

spanning the Texas High Plain production region: Halfway, TX; Lubbock, TX; and 

Lamesa, TX. In the 2019 Lamesa testing location, entries were subjected to both full and 

limited irrigation treatments. This background information was used in conjunction with 

other known growth characteristics of these entries to obtain breeding material in this 

experiment with diverse growth patterns and variability relating to growth characteristics 

based on maturity ratings. Beyond growth rate characteristics the only other limiting 

factor used to assemble the group of lines that would be used in this work was seed 

volume in the existing catalog of material. 
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2.2. Experimental Design 

The trial was conducted at the USDA-ARS Plant Stress and Water Conservation 

Laboratory in Lubbock, TX, (latitude of 33° 35' 40.85" N and a longitude of 101° 54' 

4.99" W) in 2020 and 2021. The soil type at this location is an Amarillo series (fine-

loamy, mixed, superactive, thermic Aridic Paleustalfs) which is generally a sandy clay 

loam for the horizons that comprise the cotton rooting zone. A randomized complete 

block design was selected with 10 entries and four replications. Planting dates were 12 

May 2020, and 06 June 2021. This layout was mirrored over three water treatments: 

non-irrigated, 50 percent ETc replacement and a fully irrigated treatment which sought 

to eliminate water deficit stress altogether as measured with canopy temperature 

observations. Weather data were collected with an onsite weather station. 

All plots were planted as two-row plots at 6.096 m (20 ft) in length with 4.572 m 

(15 ft) of planted row. The seeding rate for all plots was targeted at ~13 plants per meter 

(4 plants per foot) and planted with a four-row cone planter. In 2020 the target planting 

depth was 3.81 cm (1.5 in) and in 2021 the target planting depth was 6.35 cm (2.5 in). 

The difference in planting depths between to two years was a product of moisture levels 

in the soil at the time of planting. All plots were stripper harvested and samples were 

pulled by hand from the seed cotton for fiber quality analysis.  

The fully irrigated treatment was managed through continuous evaluation of the 

canopy temperature curve. The biological optimum temperature for cotton has been 
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shown to be 28 °C (Wanjura et al., 1990). Whenever the canopy temperature was above 

the biological optimum temperature for a period of 200 minutes or greater over 

consecutive days, 38.1 mm (1.5 in) of water was applied to the fully irrigated treatment. 

The 50% irrigation treatment was induced by only matching every other full irrigation 

treatment in an alternating manner. The water application volume was the same but the 

time interval between applications was doubled. In both years, in-situ canopy 

temperature sensors were used while in 2021 both canopy temperature sensors and 

capacitance-based soil moisture probes were used (Goanna Ag GoField™ Plus). All 

treatments in both years started with a full soil moisture profile as heavy irrigation was 

applied until emergence. In 2020, irrigation treatments had greater relevance and 

produced larger effects regarding yield because the environmental water deficit was 

greater than that of 2021. Using the method described above, the water treatments for 

rain-grown, 50% percent, and full irrigation produced irrigation totals of 66.04, 114.3, 

and 297.18 mm (2.6, 4.5, and 11.7 in) respectively. (The amount for the rain-grown 

treatment represents the initial early season application given to ensure emergence). In 

2020, crop rainfall total during the growing season was 195.58 mm (7.7 in), bringing the 

respective irrigation totals for treatments to 261.62, 309.88, and 492.76 mm (10.3, 12.3, 

and 19.4 in). The calculated ETc values are generated via the GoField Plus interface 

using NDVI derived Kc values generated by the proprietary GoSat system. This system 

uses a propriety adaption of the FAO56 Penman-Monteith model (Allen et al., 1998). 



 

13 

 

 

 

The total calculated crop water demand for 2020 was 570.23 mm (22.45 in). The actual 

percentage of total ETc for the three treatments in 2020 was 45.8%, 54.8%, and 86.4% 

respectively. For 2021 the irrigation totals for the respective treatments were 117.35, 

157.99, and 216.91 mm (4.62, 6.22, and 8.54 in). The seasonal rainfall in 2021 was 

226.57 mm (8.92 in) bringing the treatment totals to 343.92, 384.56, and 443.48 mm 

(13.54, 15.14, and 17.46 in). The ETc total for 2021 was 476.25 mm (18.75 in) meaning 

the respective actual treatment percentages were 72.2%, 80.74%, and 93.12 % of the 

seasonal crop water demand. The actual treatment percentages for 2021 were greater 

than 2020 and this outcome is evidenced by nearly doubled plot weights in 2021. 

Plots were stripper harvested 05 November 2020, and 15 November 2021 with a 

two-row cotton harvester and seed cotton weights were recorded. Samples were taken 

from the harvested material in each plot and ginned for turnout to calculate yield. Fiber 

traits were measured for all entries in the experiment at Texas Tech Fiber and 

Biopolymer Research Institute using high volume instrumentation (HVI™) with two 

micronaire, two color, four length, and four strength sample measurements per protocol. 

2.3.  Drone Data Collection & Photogrammetry 

Drone flights were conducted throughout the 2020 (Table 2) and 2021 (Table 3) 

growing seasons. The experiment was imaged with a 20-megapixel RGB sensor using a 

DJI Mavic 2 Pro (DJI Technology Co., Ltd., Shenzhen, China). A flight revisit interval 

of ten days was targeted for both seasons from planting to just before harvest. 



 

 

 

Table 1 Maturity and yield information for selected entries from 2019. Entries were tested across three locations: 

Lubbock, Halfway, and Lamesa Texas with two water levels: Irrigated and Low Water. This information was used to 

assemble the group of entries that were included in the field trials for this research in 2020 and 2021. The testing 

locations span the Texas High Plains region. * Material not included in the 2019 field trials but included based on 

results from prior testing. 

Genotype Breeding Stage Halfway, TX 

% Open 

15-Oct  

Irrigated 

Halfway, TX 

Yield Rank 

 

Irrigated 

Lubbock, TX 

% Open  

14-Oct  

Irrigated 

Lubbock, TX 

Yield Rank 

 

Irrigated 

Lamesa, TX 

% Open  

17-Sep  

Irrigated 

Lamesa, TX 

Yield Rank 

 

Irrigated 

Lamesa, TX 

% Open  

12-Sep  

Low Water 

Lamesa, TX 

Yield Rank 

 

Low Water 

FiberMax 958 Check variety 81 8 91 1 53 9 80 19 

Stoneville 474 Check variety 83 20 86 17 50 1 70 5 

Deltapine 491 Check variety 69 12 78 20 48 3 68 8 

CA4007 * Germplasm release -- -- -- -- -- -- -- -- 

15-3-115D Advanced line 78 18 87 23 50 15 73 23 

15-3-114D Advanced line 73 24 80 24 47 22 70 6 

16-2-206D Intermediate line 38 17 65 12 25 5 60 15 

16-2-209D Intermediate line 53 6 66 9 22 3 52 16 

16-2-306FQ * Intermediate line -- -- -- -- -- -- -- -- 

16-2-306FQ Intermediate line 62 11 83 4 68 13 78 8 

 



 

 

 

Environmental conditions, specifically high winds, forced the revisit interval to 

fluctuate to as much as 25 days, however. Flight missions were conducted in such a 

manner that the adjacent front and side image overlap was 75% percent. All flights were 

conducted at an average flight height of 20 m which produced a ground sample distance 

(GSD) or a per pixel resolution of ~5 mm. The drone data processing workflow adhered 

to current best practices for RGB image data and followed the method described in 

(Ashapure et al., 2019) with a minor exception in the order of processing steps relating 

to the generation of the digital surface model (DSM). Ground control points were fixed 

objects in the scene. The points were surveyed with the Emlid single-band RS+ GNSS 

receiver (Emlid Ltd., Budapest, Hungary) and post processed using readily available 

data from the NOAA Continuously Operating Reference Stations (CORS) Network 

(NCN), managed by NOAA/National Geodetic Survey. 

Agisoft Photoscan Pro (Agisoft LLC, St. Petersburg, Russia) photogrammetry 

software was used to generate RGB orthomosaics as well as digital surface models 

(DSM). The photogrammetric processing routine typically follows a workflow that 

produces a sparse point cloud using a structure from motion (SfM) algorithm. The 

conventional routine is to then create a dense point cloud, followed by a mesh layer that 

serves to produce the DSM from which the orthomosaic is derived. In our research it has 

been observed that a higher quality orthomosaic can be generated if the DSM from 

which the orthomosaic is produced, is derived from the sparse point cloud rather than the 



 

15 

 

dense point cloud (Figure 1). This appears to be because the surface utilized to overlay 

the images to produce the composite orthomosaic is less complex, ultimately reducing 

“swirling” effects that can be observed in drone derived orthomosaics. This does mean 

that the DSM must be produced a second time once the dense point cloud is constructed 

which serves to produce a better three-dimensional representation of the scene, as one 

might expect. 

Sparse point cloud 

creation from raw 

image data 

Temporary digital 

surface model 

creation from sparse 

Orthomosaic 

creation and export 

Dense point cloud 

creation from sparse 

point cloud 

Final digital surface 

model creation and 

export 

Figure 1 Process diagram of photogrammetric processing steps used in this study 

which depicts a slight variation in the conventional routine. The orthomosaic is 

derived only from the sparse point cloud while the digital surface model is derived 

from the dense point cloud. 



 

 

 

Table 2 Flight dates, wind speeds, weather conditions, and resultant orthomosaic and digital surface model (DSM) 

ground sample distances (GSDs) for all flights in 2020 

Flight Date Flight Height 

(meters) 

Orthomosaic Ground 

Sample Distance (mm) 

DSM Ground Sample 

Distance (mm) 

Mission Start Time  

(24 H CDT) 

Wind Speed (m/s) 

26-May-2020 20 4.98 9.96 12:35 6.70 

10-Jun-2020 20 5.65 11.30 10:46 1.50 

12-Jun-2020 20 5.65 11.31 10:56 3.60 

18-Jun-2020 20 6.19 12.37 11:38 2.10 

23-Jun-2020 20 5.42 10.84 13:05 4.60 

26-Jun-2020 20 5.71 11.43   9:27 6.58 

01-Jul-2020 20 5.15 10.31 10:06 7.70 

02-Jul-2020 20 5.37 10.74   9:36 3.59 

07-Jul-2020 20 5.35 10.71 14:02 2.06 

09-Jul-2020 20 5.37 10.74 10:12 5.70 

15-Jul-2020 20 5.15 10.31 13:28 2.10 

20-Jul-2020 20 5.34 10.21 13:38 4.10 

23-Jul-2020 20 5.11 10.68 13:34 1.65 

03-Aug-2020 20 5.30 10.60 13:23 2.01 

05-Aug-2020 20 4.85 10.22 15:14 8.20 

19-Aug-2020 20 5.05 10.09 11:22 2.10 

25-Aug-2020 20 5.36 10.73 14:10 1.50 

03-Sep-2020 20 5.39 11.57 13:57 2.96 

11-Sep-2020 20 4.77 9.89 14:25 1.92 

31-Oct-2020 20 3.35 6.72 12:50 3.60 
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Table 3 Flight dates, wind speeds, weather conditions, and resultant orthomosaic and digital surface model (DSM) 

ground sample distances (GSDs) for all flights in 2021 

Flight Date Flight Height 

(meters) 

Orthomosaic Ground 

Sample Distance (mm) 

DSM Ground 

Sample Distance 

(mm) 

Mission Start Time  

(24 H CDT) 

Wind Speed (m/s) 

17-May-2021 50 13.70 30.87 11:50 7.72 

14-Jun-2021 20 4.89 9.89 12:57 4.63 

16-Jul-2021 20 4.71 9.25 14:32 5.14 

22-Jul-2021 20 4.92 9.53 13:06 3.60 

27-Jul-2021 20 4.86 9.46 14:22 2.49 

29-Jul-2021 20 4.64 9.08 12:41 0.54 

05-Aug-2021 20 4.68 9.15 11:22 4.12 

18-Aug-2021 20 4.77 9.75 13:45 2.57 

27-Aug-2021 20 4.76 9.68 14:23 3.09 

07-Sep-2021 20 4.63 9.58 14:09 3.24 

15-Sep-2021 20 4.56 8.96 14:31 1.54 

04-Oct-2021 20 4.75 9.20 12:33 3.60 

28-Oct-2021 20 5.27 10.27   9:36 5.14 

04-Nov-2021 20 4.54 8.91 14:10 2.06 

 

 



 

 

 

2.4. Plot-level extraction 

Once the complete set of time series RGB orthomosaics and DSMs were 

amassed for each season they were imported into QGIS for analysis. QGIS is an open-

source geographic information system well-suited for drone related geospatial analysis 

(QGIS.org, 2022). With the drone derived raster layers imported into the GIS 

environment, a vector layer was created representing the experimental design. This 

vector layer serves to define a set of geometries that allow the metadata associated with 

individual plots in the experiment to be associated with respective plot-level extractions 

generated from the drone layers (Figure 2). 
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The plot-level extractions, for both RGB and DSM data, serve as the base data 

for analysis. With a complete set of plot-level extractions for both RGB and DSM data 

for all flights generated, the growth assessment process can begin in earnest. This begins 

by calculating canopy cover (CC) values from visible spectrum vegetative indices, and 

canopy volume (CVol) estimates for each plot in each flight for both years. At this point,  

the data analysis is reduced to simple multiband geospatial image analysis and was 

performed utilizing the Python programming language and libraries available through 

Figure 2 Plot vector creation within a GIS space allows for individual plot level 

extractions from raster data as well as the association of relevant plot metadata 

with extracted information 
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the general Python ecosystem (Python.org, 2022). The canopy cover analysis is a 

process of segmentation over a derivative of the plot-level extraction itself. In the work 

conducted by (Ashapure et al., 2019) four methods were evaluated for generating canopy 

cover values and it was observed that the RGBVI formula produced results most closely 

correlated with segmented NDVI images which are widely accepted to accurately 

represent healthy vegetative matter and canopy cover (Tenreiro et al., 2021). 

2.5. Vegetative Index Segmentation & Canopy Volume Derivation 

In this work, growth rate observations were generated from six visible light 

indices: EXG, RGBVI, MGRVI, GNORM, TGI, VARI, and from canopy volume values 

generated from the DSM. This work includes a value generated from simply normalizing 

the green band over the sum of all other bands that will be referred to hereafter as 

GNORM. This process is described in the work by (Ashapure et al., 2019) but the 

researchers in that case used the normalized green band with red and blue normalized 

bands to produce an excessive greenness index (ExG) rather than evaluating qualities of 

the normalized green band exclusively. Our work includes the results of the GNORM 

thresholding for generating CC values due to its simplicity and efficacy for providing a 

means to segment cotton cotton canopy in plot-level extractions. Along with RGBVI, 

GNORM, and ExG we evaluated two other visible spectral indices: triangular greenness 

index (TGI) as described in (De Ocampo et al., 2019), and visible atmospherically 

resistant index (VARI) as described in (García-Martínez et al., 2020). The formulas used 

to calculate the various RGB vegetative indices are recorded in Table 4. All methods 

require a threshold value to perform the segmentation process and the results of that 
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process are compared (Figure 3). In all cases the threshold value is identified through an 

empirical process over a subsample of the image data set. Once the optimal threshold



 

 

 

Table 4 Formulas used to calculate growth observations for each plot-level extraction from both vegetive indices and 

canopy volume estimates. * The approach described by Ashapure et al, 2020 has been modified herein. † The use of a 

simple normalized green layer 

Name Data Product 

Source 

Formula Threshold Value Reference 

ExG RGB 

Orthomosaic 

𝐸𝑥𝐺 = 2𝐺𝑛 − 𝑅𝑛 − 𝐵𝑛 

𝑋𝑛 =
𝑋

𝑅 + 𝐺 + 𝐵
 

0.15 (Woebbecke et al., 1995) 

MGRVI RGB 

Orthomosaic 
𝑀𝐺𝑅𝑉𝐼 =  

𝐺2 − 𝑅2

𝐺2 + 𝑅2
 

 

0.15 (Bendig et al., 2015) 

RGBVI RGB 

Orthomosaic 
𝑅𝐺𝐵𝑉𝐼 =  

𝐺2 − 𝑅 × 𝐵

𝐺2 + 𝑅 × 𝐵
 

0.15 (Hague et al., 2006) 

GNORM RGB 

Orthomosaic 
𝐺𝑛𝑜𝑟𝑚 =  

𝐺

𝑅 + 𝐺 + 𝐵
 

0.35 n/a† 

TGI RGB 

Orthomosaic 

𝑇𝐺𝐼 = 𝑅𝑔𝑟𝑒𝑒𝑛 −  𝛼𝑅𝑟𝑒𝑑 − 𝛽𝑅𝑏𝑙𝑢𝑒  

𝛼 =
2(𝜆𝑏𝑙𝑢𝑒 − 𝜆𝑔𝑟𝑒𝑒𝑛)

(𝜆𝑏𝑙𝑢𝑒 − 𝜆𝑔𝑟𝑒𝑒𝑛)
 

𝛽 =
2(𝜆𝑔𝑟𝑒𝑒𝑛 − 𝜆𝑟𝑒𝑑)

(𝜆𝑏𝑙𝑢𝑒 −  𝜆𝑟𝑒𝑑)
  

0.05 

α = 0.59 

β = 0.52 

(Hunt Jr et al., 2011) 

(De Ocampo et al., 2019) 

VARI RGB 

Orthomosaic 
𝑉𝐴𝑅𝐼 =

𝐺 − 𝑅

𝐺 + 𝑅 − 𝐵
 

0.05 (Gitelson et al., 2002) 

CVol Digital Surface 

Model 𝐶𝑉𝑜𝑙 =  𝐺𝑆𝐷2 × ∑ ∑(𝐷𝑆𝑀𝑝ℎ(𝑖,𝑗))

ℎ

𝑗=1

𝑤

𝑖=1

 

𝐷𝑆𝑀𝑝ℎ = 𝐷𝑆𝑀 − min (𝐷𝑆𝑀) 

 (Ashapure et al., 2020) * 

 



 

 

 

 value is ascertained, the plot level extractions are subjected to a binary 

thresholding process and pixel counts generated. 

The canopy volume values differ from the canopy cover values in that each pixel 

value represents a canopy height value. The raw output values in the plot-level 

extractions from the DSM are in altitude or meters above sea level. Converting the plot-

Figure 3 Depiction of RGB based vegetative indices and corresponding 

segmented plot-level extractions based on threshold values. 
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level extractions from raw values in meters above sea level to plant height in meters has 

been done in previous work by taking a bare soil flight and creating a DSM from that 

flight. The bare soil DSM is subtracted from all successive DSMs to create a raster layer 

that represents height above bare soil (Ashapure et al., 2020). Our process for converting 

the DSM values to plant height differed in that the local minimum value in each 

individual plot-level extraction was used to establish the soil height value. When alleys 

or bare soil values are present in each plot-level extraction this method for calibration 

Figure 4 Plot-level DSM extractions are calibrated from raw elevation values to 

plant height using the local plot minimum value. Outliers are removed using a 

threshold of 3.5 standard deviations. All pixel values that fall below the 20th 

percentile are set to 0. 
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becomes possible. However, in situations where a single plot-level extraction contains 

only canopy cover and zero bare soil pixels exist, this method would not be feasible. The 

reason for calibrating DSM values for each plot uniquely is that the distortions that can 

occur in photogrammetric reconstruction are minimized in this way based on our 

observations. Another reason for using this approach is that a bare soil flight taken at 

planting may not be representative of the soil surface two months later. Rainfall, wind 

and field management practices all change the shape of the field surface at the soil level. 

Beds change size and furrow depths change. A DSM created at the beginning of the 

season, which is then used to calibrate all other flights, may not be representative of soil 

surface conditions mid-season. 

The initial step in the process for calibrating plot-level DSM data is to remove 

outlier values. Photogrammetric reconstruction can create spurious points in the point 

cloud step that can result in occasional unrealistic values in a single cell in the DSM 

raster. These were removed by excluding values greater than 3.5 standard deviations 

from the mean. Cells with outlier values were then replaced with the mean value for the 

individual plot-level raster. The minimum value at this point is subtracted from all 

values in the plot-level extraction (Equation 1). 

 

Equation 1 

𝐷𝑆𝑀𝑝ℎ = 𝐷𝑆𝑀 − min (𝐷𝑆𝑀) 
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Equation 2 

𝐶𝑉𝑜𝑙 =  𝐺𝑆𝐷2 × ∑ ∑(𝐷𝑆𝑀𝑝ℎ(𝑖,𝑗))

ℎ

𝑗=1

𝑤

𝑖=1

 

 

The final step is to remove noise values that fall under 20 percent of the 

maximum value which removes noise in the data related to the fact the the bed and soil 

are not uniform surfaces. It is important to be sure that all values used in the canopy 

volume estimation are plant canopy exclusively, hence the elimination of the values 

below the 20th percentile. A visual representation of the resultant plot-level plant height 

raster is depicted in Figure 2. We then find the sum of all pixels in the two-dimensional 

array are then multiplied by the square of the ground sample distance to create a value 

that represents the canopy volume (Equation 2). 

2.6. Sigmoid curve interpolation 

After the canopy cover and canopy volume values are extracted from each plot 

for all flights in both years, data are used to interpolate a sigmoid like growth curve 

(Figure 4). The interpolated growth curve over the biomass proxies serves as a means to 

quantify and characterize aspects of plant growth for a specific variety over water 

treatments and years. Work conducted by (Koya & Goshu, 2013) and (Szparaga & 

Kocira, 2018) describes the use of the generalized logistic function (Equation 3) to 

characterize biological growth. 
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Equation 3 

𝐴 +  
𝐾 − 𝐴

(𝐶 + 𝑒−𝐵𝑡)
1
𝑣 

 

 

Curve fitting was conducted using the Python programming language and the 

Scipy scientific computing library (Virtanen et al., 2020). Initial parameter guesses are 

provided prior to processing based on range of values for each RGB vegetative index as 

well as for the DSMs. Parameter estimation was constrained within reasonable 

boundaries for respective parameters. 

2.7. Curve Derivative Characteristics Analysis 

Using the parameters generated through the curve fitting process, the derivative 

of the sigmoid growth curve was calculated using the rigorous definition of a derivative 

Figure 5 The scientific computing library, SciPy, was used to fit a generalized 

logistic function to the observed data and interpolate a sigmoid growth curve for 

all vegetative indices and DSM data. 
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The scipy.optimize submodule provides python functions facilitating the deployment of 

the estimated curve parameters. Once the optimization process is complete a series of 

values representing the days after planting (DAP) of interest can be passed into the curve 

function and the interpolated curve is produced. When calculating the derivative of the 

curve, a value of 1e-5 was used for h in Equation 4. 

Equation 4 

lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

 

Once the curve derivatives values were estimated over the series of DAP values 

representing the period of interest, the max growth rate and the first half-max growth 

rates were identified and exported. The days after planting values for the max growth 

Figure 6 Derivatives of the sigmoid curve were produced to describe growth rate 

for all RBG indices and DSM plot data. 
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rate and the first half-max growth rate were exported as well. The outcome of this 

processing step reduces the season-long growth information into two separate 

quantifications: a single value for the first half maximum growth rate and a second value 

for the maximum growth rate (Figure 6). The DAP values for these growth rate events 

are also exported for analysis. 

 

 

  

Figure 7 The values for the max growth rate and the first half-max growth rate 

were exported from the derivative curves. The respective days-after-planting 

values were also exported. 
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3. RESULTS 

 

3.1. Water Treatment Effect 

In 2020, the ETc replacement from total irrigation and rain for the three 

treatments was was 45.8%, 54.8%, and 86.4% respectively. The annual rainfall for 2020 

was below average for the Texas High Plains allowing for water treatments effects to 

materialize. The treatment effect was shown to be significant in 2020 with ANOVA at α 

= 0.05 (Table 5). In 2021 the rainfall total was higher than the previous year resulting in 

an ETc replacement for the three treatments of 72.2%, 80.74%, and 93.12 % 

respectively. Although the separation of entry mean yields between treatments was less 

distinct in 2021, as a result of abundant rainfall, the treatments were shown to be 

significant with ANOVA at α = 0.05 (Table 6). Figure 6 depicts yield variability across 

water treatments for specific entries. The separation between water treatments in 2021 

was weaker with the largest apparent difference occurring between the high irrigation 

treatments and the medium and low irrigation treatments combined. 

 The purpose of an irrigation treatment in this experiment was to create variability 

in growth to provide insight on both the ability to successfully characterize growth 

across variable environmental conditions and to identify lines from the ten chosen 

genotypes that might demonstrate a level of yield and growth stability across variable 

water inputs. The treatment effect was great enough to generate the desired variability 

based on the results of the analysis of variance. 
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Table 5 Analysis of variance for genotype and water treatment effects in 2020. * 

Indicates significance at alpha 0.05 

Source DF SS MS F-Value P-value 

Genotype 9 12.6 1.4 2.909 0.00467 * 

Water Treatment 2 1020.7 510.3 1064.04 < 0.001 * 

Genotype X Water 

Treatment 

18 5.4 0.3 0.621 0.87422 

Error 87 41.7 0.5   

Totals 119 1080.4    

 

Table 6 Analysis of variance for genotype and water treatment effects in 2021. * 

Indicates significance at alpha 0.05 

Source DF SS MS F-Value P-value 

Genotype 9 34.3 3.81 0.662 0.740 

Water Treatment 2 471.0 235.48 40.904 < 0.001 * 

Genotype X Water 

Treatment 

18 98.0 5.44 0.946 0.528 

Error 85 489.3 5.76   

Totals 119 1092.6    
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Figure 8 Plot weights by genotype across water treatments for 2020 and 2021. The 

genotypes are ordered by entry mean plot weight. 
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3.2. Processing Method & Max Growth Variability 

In both years the range in observed DAP value for max growth rate was broader 

when derived from the DSM processing methodology than in the vegetative index 

growth curve derivations. A noteworthy aspect of growth curves produced through the 

DSM data layer versus the RGB orthomosaic data layer is that when applied broadly 

over many flights the DSM is more error prone. The early volumetric estimations of the 

plant canopy within a given plot are subject to greater error given that single anomalous 

features in the DSM will comprise a large portion of the overall volume estimated. The 

other aspect of the DSM generation is that spurious features in the sparse and dense 

point clouds tend to create anomalies in the surface model that will ultimately be 

interpreted as canopy volume. As a result of these nuances with DSM growth curve 

generation vs canopy cover-based growth curves, the calculated values for DAP to max 

growth rate were less stable, more variable and demonstrated weaker correlations with 

end of season traits of interest like yield or specific fiber quality parameters. The 

digitally derived traits based on the DSM data product were less stable and more error 

prone (Figure 9). Conversely, the digitally derived phenotypic characters based on 

canopy cover values demonstrated greater stability and stronger correlations with end of 

season outcomes over the two years of experimentation. 
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3.3. Normalizing DAP with DD60 Heat Units 

Recording number of days after planting is an intuitive and straightforward way 

to evaluate temporal differences related to max growth rate. When comparing entries in 

a single year this approach is sufficient. However, when comparing data from multiple 

years, the count of days after planting to max growth rate is not robust enough to 

mitigate the reality that a single day in 2020 can be much different than that of 2021 in 

terms of plant metabolism growth potential. This occurs because seasonal temperature 

patterns differ year over year (Figure 10). 

Figure 9 Boxplots for the number of days after planting at which the max growth 

rate was observed across both processing type and water treatment. 
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It makes sense, then, to replace the number of days after planting with a sum of 

accumulated heat units (DD60s). This is a measure of accumulated daily mean 

temperature above a threshold, which in this case is 60 °F (Main, 2012). Comparisons of 

heat units to max growth rate vs. days after planting to max growth rate are more direct 

and generalizable as environmental heat above the threshold has a large influence on 

growth.  

3.4. Heat Units to Max Rate vs. Fiber Yield 

The relationship between heat units to max growth rate and fiber yield was 

weaker for the the max growth rate values generated from the digital surface model-

Figure 10: Air temperature differences in 2020 vs. 2021 resulted in distinctly 

different patterns of heat unit accumulation. Normalizing the time span 

from planting to landmark growth events with heat units allows for 

comparisons across time and space. 
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based growth curves. When normalized with heat unit accumulation and evaluated over 

all treatments and years, the relationship between heat units to max growth rate and fiber 

yield for DSM based growth curves was not evident. This, as described, resulted from 

the variability in the DSM observations and the greater level of error associated with that 

data source (Figure 11). 

Figure 11: There was not an observed relationship between entry mean heat units 

to max growth rate values and fiber yield over all years and treatments. The DSM 

data demonstrated greater variability and was more susceptible to error. 
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A stronger relationship was observed between the heat units to max growth rate 

values derived from the canopy-cover-based growth curves and fiber yield. The growth 

curves interpolated from the observed canopy cover values were more stable and less 

error prone. The coefficient of determination varied from 0.67 to 0.77 across the six 

RGB based vegetative indices used to produce the interpolated growth curves and heat 

unit to max growth rate values (Figure 12). 

 

3.5. Heat Units to Max Rate vs Fiber Quality 

Given the lack of relationship between the heat units to max growth rate and 

fiber yield from the DSM derived growth curves, the entry mean DSM based values 

were not compared with entry mean fiber quality parameters. The canopy-cover-based 

growth curve derivative feature values, however, were compared to several fiber quality 

parameters including micronaire and fiber length. The coefficient of determination for 

the calculated entry mean heat units to max growth rate value and the entry mean fiber 

length ranged from 0.11 to 0.34. The vegetative indices that produced the curve 

derivative features with the strongest correlation to entry mean fiber length were the 

RGBVI and GNORM indices. The VI curves with the weakest correlation were the TGI 

and MGRVI indices (Figure 13). For other fiber quality parameters, such as micronaire, 

no relationship between the calculated entry mean heat units to max growth rate values 

was observed. All RGB based growth curve derivative features demonstrated this lack of 

correlation to micronaire. 
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Figure 12: The heat unit to max growth rate values produced from the 

canopy cover observations based on the six RGB vegetative indices were 

correlated with entry mean fiber yield when compared across both 2020 and 

2021. 
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3.6. Variance Components and Repeatability 

Variance components were analyzed using a mixed model approach. Models 

were fit in using the R programming language and linear mixed models function, 

lmer(), from the lme4 package (Bates et al., 2014). Variances for the heat units to max 

growth rate calculations for the two vegetative indices that demonstrated the overall 

strongest relationship with both fiber yield and fiber length were calculated and are 

expressed as a proportion of the total variance (Tables 7 & 8). 
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Figure 13: A subtle relationship was observed between the calculated entry mean 

heat units to max growth rate values and the entry mean fiber length values over 

both years and all treatments. 
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Table 7: Variance components as a proportion of total variance from GNORM 

derived growth curves. 

GNORM 

Group Value Percentage 

Genotype:Water 0.0 0.0 

Genotype:Year 1108.7 1.5 

Genotype 835.6 1.1 

Water 20871.0 28.2 

Year 35784.4 48.3 

Residual 15446.3 20.9 

 

 

 

Table 8: Variance components as a proportion of total variance from ExG derived 

growth curves. 

ExG 

Group Value Percentage 

Genotype:Water 765.0 1.1 

Genotype:Year 500.6 0.7 

Genotype 1701.2 2.5 

Water 10166.3 14.9 

Year 44805.1 65.8 

Residual 10176.7 14.9 
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4. DISCUSSION 

4.1. Max Growth Rate as a Phenotypic Character 

Aspects of the digitally derived phenotypic character described in this research, 

heat units to max growth rate, reveal meaningful growth trends. Traditional means of 

characterizing the point in time where such an event might occur are limited in terms of 

implementation. Measures of LAI can be obtained through several nondestructive 

methods with devices such as under-canopy light bars and handheld devices like the LI-

COR LAI-2200c Plant Canopy Analyzer. These devices have been shown to be accurate 

but none of the commercially available non-destructive, canopy measurement devices 

allow for a low-cost, low-labor deployment over many hundreds or thousands of 

breeding plots. 

In plant breeding, phenotyping technologies must be high throughput to be 

effectively used. The use of drone technology to assess this growth milestone through a 

high throughput assessment of canopy growth in segmented RGB drone imagery is both 

scalable and managed with a reasonable level of cost and labor. The significance of 

growth characterizations produced from such data lies in the relationship with important 

end of season outcomes like yield and in the manner in which the value can be obtained 

in a high throughput, scalable and easily managed method. 

4.2. Heat Units to Max Growth and Yield 

In both years of this research the following relationship between heat units to 

max growth rate and fiber yield was observed: as the heat units to max growth rate value 

increases, so does the yield. From a physiological standpoint, this measure of growth 
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describes the amount of time, as a matter of accumulated heat, a given entry will exploit 

before reaching the maximum rate of canopy development. The rate of canopy 

development for cotton plants, and the length of the period of canopy development, are 

important as this is a direct representation of the upper limit to yield potential in a cotton 

plant. The reproductive structures on the plant must be supported by photosynthate 

produced in green leaves. The longer the vegetative head start a given cotton plant 

enjoys in a season, the greater potential for that plant to support fruiting structure 

production and development. This source-sink relationship is a fundamental component 

of yield potential in most crops. 

Another aspect of the source-sink relationship in cotton and the ability to 

characterize the maximum rate of source (canopy) development, is that before the 

initiation of fruiting structures on the plant, the primary carbohydrate sink on the plant, 

other than new canopy growth, is the roots (Ritchie et al., 2007). For areas that 

experience environmental water deficit stress such as the Texas High Plains, this early 

source-sink relationship and the timing of the maximum canopy development rate may 

provide important information to the breeder as to the length of the period where the 

plant’s roots can exclusively consume carbohydrates from productive leaves. Max 

growth rate timing and its relationship with canopy development supporting 

carbohydrate production used in root growth may also contribute to the positive 

correlation between heat units to max growth rate and fiber yield. 
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4.3. Heat Units to Max Growth and Fiber Length 

A subtle correlation was observed between the heat units to max growth rate 

values and fiber length. The maximum coefficient of determination for this relationship 

was .34 but the average R2 score was just under 0.2. First flower development is 

generally accepted to occur in a cotton crop around 900 DD60s or roughly 60 days after 

planting. Soon after opening, the flower is self-pollinated and roughly 12 hours after 

pollination, fertilization will occur (Stewart, 1986). At this point, the boll begins to 

develop where the initial portion of the the boll filling phase is entirely devoted to the 

elongation of the fiber cells. As bolls develop most of the assimilate received by the boll 

is generated in leaves on the same sympodial branch (Schubert et al., 1986). The 

physiological basis for a positive correlation with fiber length and heat units to 

maximum growth rate is likely similar to that of fiber yield as a whole. The longer the 

plant can develop canopy the greater the support for boll development and carbohydrate 

intensive developmental processes that occur within the boll such as fiber elongation. 

The fact that a relationship to fiber length and not micronaire was observed may 

be a product of the micronaire evaluation itself with the High Volume Instrument (HVI) 

system. Different fiber configurations with regard to secondary cell wall thickness and 

fiber diameter, also known as fiber maturity, can produce similar micronaire values and 

therefore might result in poor correlations to milestone growth events. HVI is widely 

used for its speed and cost but debate is ongoing with respect to its use in plant breeding 

(Kelly et al., 2012). Future work could explore the relationship with growth milestones 

and fiber maturity measured with devices that more precisely measure secondary cell 
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wall development as a proportion of overall fiber diameter using the Advanced Fiber 

Information System (AFIS). 

4.4. Genetic vs Environmental Effects on Observation 

The fact that heat units to maximum growth rate is a useful measure of crop 

growth is clear. However, when analyzing variance components in this work we see that 

this measure of growth is heavily influenced by the environment. In breeding studies, the 

focus of nearly all effort is to select entries with some form of genetic superiority. In the 

case of this work, with the assessment of growth as a measure of heat units to maximum 

growth rate, it appears that little of the variability for this value is a direct result of 

genetic differences. The experimental design was such that the major environmental 

variability was introduced in the form of irrigation treatments because of the initial focus 

to evaluate lines that might demonstrate a level of yield stability and growth rate stability 

in the semi-arid region of the Texas High Plains. 

The percentage of genetic variability from the total variability reported in Tables 

7 and 8 for heat units to maximum growth rate for the GNORM and ExG based growth 

curves was quite small with values of 1.1 and 2.5 percent respectively. This outcome 

highlights one of the major challenges associated with conducting breeding experiments, 

specifically for a species native to tropical regions like cotton, in a water deficit stress 

environment or under water deficit stress treatments. One might posit that cotton 

breeding operations should only be conducted in areas like the Mississippi Delta, where 

rain is abundant and floodplain soils are nutrient rich. Phenotypic variability in these 
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environments is much more likely to be a result of genetics, rather than environment, 

given the ideal growth conditions for all breeding plots. 

4.5. Screening Early Generation Material 

In this research, previously tested lines at an “intermediate” or above level of 

development were selected. Intermediate in this case means uniform breeding lines in 

the second year of multiple location testing. Advanced lines are in the third year of 

multiple location testing. The observed maturity variability from previous years was 

used as a means to identify germplasm to include in this experiment that might possess 

growth rate variability. Even after intentionally introducing growth variability based on 

maturity, the variability within a treatment was small and the intrinsic genetic variability 

with respect to all other variability was minimal. In nurseries and progeny row trials the 

innate genetic variability between lines is typically far greater than that of lines that have 

been selected and advanced over several years as the act of selection itself reduces 

genetic variability over time. 

It would be a tremendously labor intensive and potentially cost prohibitive 

exercise to generate a heat unit to maximum growth rate characterization for entries in a 

large cotton breeding nursery. Conversely, early generation and nursery material would 

likely be the segment of the breeding pipeline that would contain the greatest proportion 

of intrinsic genetic variability. It follows then that the method for assessing maximum 

growth rate as function of heat unit accumulation developed in this research would be 

well suited to early generation and nursery material, primarily because there is not 

currently another practical method to quantitatively derive such information over many 
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thousands of plots. Future efforts might include further method development and 

implementation over large cotton breeding nurseries and early generation trials. 

4.6. Instability of DSM Derived Growth Curves 

The evaluation of the growth rate values derived from the digital surface models 

indicated early in the analytic process that this data source contained variability that was 

too great to be useful in the heat units to maximum growth rate assessments. Three-

dimensional point cloud generation from RGB imagery is a complex process that can be 

affected by plant morphologies as well as by the environmental conditions at data 

capture. Time of day, specifically in water deficit stress environments, can alter the 

overall position of the leaves in the canopy of a cotton plant. In the early hours of the 

day, before wilting occurs, the position of the leaves is different than what might be 

observed in flight data captured at solar noon or during the hottest portion of the day in 

the afternoon. The point cloud is based on feature matching and detection which would 

be influenced by canopy wilting. 

With the RGB based vegetative indices, the primary observed value from which 

the sigmoid curves are interpolated is a segmented measure of ground cover. From the 

nadir aerial view of the drone, the breadth of the canopy in all directions would change 

in instances of severe wilting but this variation is smaller than a three-dimensional 

assessment of a wilted canopy as produced in the volumetric value derived from the 

digital surface model. Another factor contributing to the high level of variability and 

poor relationship with yield and fiber quality parameters for the digital-surface-model-

based heat units to maximum growth rate values is the fact that the soil surface itself is 
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highly variable and changes over time. As mentioned, previous methods for determining 

plant growth based on digital surface models used a bare soil flight collected before 

planting occurs. The subsequent digital surface models are then calibrated throughout 

the season by subtracting the values of the DSM0. What remains is a surface model that 

describes a plant canopy in terms of volume above the initial soil surface. In principle 

this is a straightforward process, but the surface soil is fluid throughout the season and is 

affected by rain, wind and crop management practices in the field. The early season 

representation of the soil is certainly much different than what exists at season’s end 

after many weather events and passes through the field with heavy equipment. In the 

approach used in this research the soil surface was calibrated using the bare soil surface 

observed in each flight in the alley between plots and adjacent to each plot where this 

value was assessed. 

Beyond dealing with soil surface variability, this method also mitigates the 

between flight variability that can be observed between successive digital surface models 

even when a sufficient number of ground control points are captured during flight and 

used during the photogrammetric stitching process. Nevertheless, efforts to manage 

variability in the point cloud derived three-dimensional digital surface model generated 

in this research may not be sufficient to generate growth curve and growth rate values 

that have relationships to end of season outcomes for individual plots. 

4.7. Selected Lines 

Based on the heat units to maximum growth rate, yield and fiber quality values 

across water treatments, two lines were identified through this research as candidate 
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lines potentially well-suited for cultivation in the Texas High Plains regions where water 

availability and environmental impacts are becoming increasingly variable as weather 

patterns continually shift. These lines are 15-3-114 and 16-2-306. 

Figure 14: Fiber yield values for selected varieties across both treatments and 

years. From these, two varieties were selected: 15-3-114 and 16-2-306.  
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In 2020, which was the most discriminating of the two years in terms of water deficit 

stress across treatments, 15-3-114 demonstrated a long period of canopy development 

Figure 15: Heat units to maximum growth rate values for selected varieties 

across both treatments and years. From these, two varieties were selected: 15-3-

114 and 16-2-306. 
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with a high value for heat units to max growth rate value. In 2021, the wetter of the two 

years, this line again had a long canopy development period and later max growth rate. 

15-3-114 had average yield across treatments in 2020 and above average yield in 2021 in 

the low and high-water treatments.  16-2-306 was average for growth rate timing and 

canopy development in 2020 and above average for canopy development in 2021. For 

yield 16-2-306 was one of the better performing lines in the low water treatment of 2020 

and just above average in the low and high-water treatments of 2021.  
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5. CONCLUSION 

5.1. Growth Rate Selection in Breeding 

The yield of a cotton crop is related to the ability of the crop to produce 

carbohydrates from photosynthesis to support fruit production. Plants that can develop 

canopy and increase leaf area have a greater maximum potential for photosynthesis and a 

greater ability to produce carbohydrates. Therefore, increased assimilate production is a 

sensible breeding objective. Identifying entries in a breeding trial that possess a longer 

canopy development phase and a superior ability to maximize leaf development would 

be a challenging proposition with traditional methods and techniques. Point-in-time plot 

level observations for canopy development might be gathered with a reasonable level of 

labor and time but when one considers gathering such information across a large 

breeding trial 10 or 12 times a season, the workload becomes unmanageable. 

The use of high throughput digital technologies like drones makes the challenge 

of collecting plot level data many times throughout the season possible with the level of 

resources one might typically find in a breeding program. Drone technologies have 

become common in plant science over the last decade and are becoming an integral part 

of most breeding programs. The potential for drone technologies to gather data with high 

temporal frequency that can be reduced to single numeric values, as is the case with heat 

units to max growth rate, is particularly useful to the plant breeder. Rather than 

attempting to makes sense of periodic changes or full sigmoid growth curves, the 

method of analysis in this research allows the breeder to make straightforward 

comparisons on growth rate across years and regions. Using the accumulated DD60 
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value mitigates the differences that occur when comparing days after planting from one 

year to the next or from one region to the next. 

For regions like the Texas High Plains where economic productivity and long-

term stability is dependent on healthy cotton production systems and germplasm, it will 

be necessary to augment traditional breeding practices in the region with technologies 

and practices that provide more information for selection. Digitally derived phenotypic 

characters such heat units to max growth rate allow breeders to select for traits not 

previously quantifiable. As the weather patterns of the THP regions change and natural 

groundwater resources decline, breeders and growers will face the challenge of 

producing greater yields with fixed or reduced inputs. With quantifiable growth rate data 

breeders will be able make selections with greater information about environmental 

stability and explore aspects of germplasm in their programs not previously investigated.  
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