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ABSTRACT 

 

The vector-borne protozoan parasite Trypanosoma cruzi causes Chagas disease 

in humans, dogs, and many other mammalian hosts. Canine Chagas disease is 

increasingly diagnosed in dogs of the southern US where triatomine insect vectors occur, 

and there are limited veterinary diagnostic options; currently, only the indirect 

fluorescent antibody (IFA) test is offered at a single accredited diagnostic laboratory. 

This study evaluated a multiplex microsphere immunoassay (MIA) for detecting 

antibodies against T. cruzi in dogs and compared with existing serological methods to 

establish cut-off values and relative sensitivity/specificity. Dog sera (n=135) which were 

previously characterized using the IFA and off-label use of two commercial rapid assays 

were tested on the multiplex MIA against 12 different antigens: nine T. cruzi antigens, a 

negative control recombinant protein (green fluorescent protein), a Leishmania antigen, 

and a canine parvovirus antigen (used as an antibody control given near-ubiquitous 

parvovirus vaccination). For each sample, the ratio of median fluorescence intensity 

(MFI) for each T. cruzi antigen to that of GFP was calculated. Samples with an 

antigen/GFP ratio greater than 4 standard deviations above the mean of 25 known 

negative sera were considered positive on that antigen. Samples testing positive on 2 or 

more antigens were considered positive for T. cruzi antibodies. Compared to the IFA, the 

multiplex MIA demonstrated a relative sensitivity of 100% and specificity of 96.97%. 

Given its precision, high-throughput format, potential for automation, and lack of 
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subjective interpretation, the multiplex MIA should be considered a valid and improved 

assay for T. cruzi antibodies in dogs. 
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1. INTRODUCTION 

 

The vector-borne protozoan parasite Trypanosoma cruzi is endemic to the 

Americas and causes Chagas disease in a wide range of mammalian hosts, including 

humans and dogs. It is estimated that 288,000 people in the United States have Chagas 

disease, with origins of infection varying from travel-related to endemic spread14. Dogs 

are an important host of interest to veterinary public health, as they are an effective 

sentinel species and experience similar disease manifestations to humans10, 20. Previous 

studies in Texas have estimated the prevalence of Chagas disease in domestic dogs to be 

between 20.3% and 31.6%, with even higher estimates in kennel or shelter environments 

in Texas (up to 57.6%)7, 8, 15. The average yearly seropositivity in canine samples 

submitted to the Texas A&M Veterinary Medical Diagnostic Laboratory (TVMDL) is 

over 20%; additionally, demand for serologic testing at TVMDL has more than doubled 

in the last decade, from 1,129 test requests in 2014 to over 2,500 in 2022 (Figure 1). 

Between 2014 and 2018, over 1,200 positive T. cruzi antibody tests were reported by 

TVMDL in samples submitted from Texas, with the directional distribution of positive 

results primarily in south-central Texas (Figure 2). 
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Figure 1. Total T. cruzi serology tests performed at TVMDL by year for a 5-year 

period (2014-2022, unpublished TVMDL data) 

 

 

Figure 2. Map showing directional distribution of positive T. cruzi serology tests in 

Texas, and seropositivity by county. Source: unpublished TVMDL data from 2014 

through 2018; total number tested = 6,108 



 

3 

 

Diagnosing Chagas disease can be challenging, as the parasite’s life cycle offers 

only brief windows of parasitemia during which T. cruzi organisms can be detected 

primarily by PCR of blood or by hematological methods. Evidence of the parasite in the 

heart and other affected tissues can be observed histologically, however this is primarily 

achieved post-mortem. As such, serologic methods are the primary means of antemortem 

testing for Chagas disease; since there is currently little evidence of patients self-clearing 

the parasite, seropositivity is typically considered a diagnosis of a current infection. In 

humans, the Centers for Disease Control and Prevention (CDC) considers a single test 

insufficient to definitively diagnose Chagas disease, and instead recommends using “two 

or more tests that use different techniques and detect antibodies to different antigens”5; 

this recommendation is also echoed by a recent publication on diagnosing Chagas 

disease in the United States11. For dogs, only the indirect fluorescent antibody (IFA) test 

is currently available as a validated option in accredited diagnostic laboratories; 

however, this approach requires specialized equipment, is interpreted using subjective 

evaluation of fluorescence patterns, and is prone to cross-reaction with other closely 

related pathogens (e.g., Leishmania) as it uses whole T. cruzi parasites as antigen (Figure 

3). Commercially available rapid tests designed and approved for human use have been 

used in research settings to screen dogs for T. cruzi antibodies18, but this is not currently 

an option for routine diagnostics. Given these limitations, it is currently not practical to 

diagnose canine Chagas disease to the same level of rigor as the CDC’s 

recommendations for human diagnosis.  
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Figure 3. Photos of two dog serum samples tested on the T. cruzi IFA (1:20 serum 

dilution, 100x magnification). Left photo: A strong, clearly positive reaction. Right 

photo: A negative reaction with moderate background staining. Photo credit: 

Carlos Rodriguez, TVMDL  

 

Human and veterinary diagnostic laboratories have begun developing and 

implementing multiplex microsphere immunoassays (MIA) for a variety of infectious 

diseases using a commercial platform known as xMAP Technology (Luminex Corp, 

Austin, TX)21, 23. These assays use microscopic polystyrene beads (available in magnetic 

or non-magnetic forms) as the solid phase, against which proteins of interest can be 

bound. For indirect assays, antibodies in the patient serum bind to the antigens on the 

beads, and a secondary antibody conjugated with phycoerythrin (PE) serves as a marker 

for any bound antibodies. Each bead is uniquely labeled with an internal dye, allowing 

the instrument reader to determine which target is represented while measuring the 

signal from the PE conjugate (indicating the presence/absence of antibodies in the 

patient serum against that target).  
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Previous studies6, 13 have described the use of a multiplex MIA to screen serum 

for T. cruzi antibodies in humans and dogs, determining a panel of appropriate antigens 

of interest and demonstrating effective diagnosis. Multiplex MIAs such as this one offer 

improvements over classical T. cruzi serology (i.e., IFA) in several ways: they eliminate 

the need for subjective interpretation by using an instrument reader; are performed using 

a 96-well plate, offering high throughput; increase precision via multiple readings per 

analyte, per sample; and offer high sensitivity and specificity by targeting multiple 

antigens. The aim of this study is to characterize this multiplex MIA and determine its 

validity in detecting antibodies against multiple T. cruzi antigens in dogs, establishing 

cut-off values for seropositivity and estimating sensitivity/specificity relative to existing 

methods. Additionally, we aim to demonstrate this assay’s utility in monitoring 

seropositive dogs over time.  
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2. MATERIALS AND METHODS 

 

 Serum samples (n = 135) were previously collected from hunting dogs as part of 

a longitudinal study of Chagas disease in south Texas kennels, during which dogs were 

sampled at 0, 6, and 12 months2. All samples were obtained from privately-owned 

animals in accordance with guidelines approved by the Texas A&M University’s 

Institutional Animal Care and Use Committee and Clinical Research Review Committee 

(2018–0460 CA). A total of 61 individual dogs were represented in this sample set, 

comprised of 11 different breeds and ranging in age from 1 to 12 years old; 31 dogs were 

female, and 30 dogs were male. As part of the previous study, samples from these dogs 

were characterized using the IFA test and two commercially available rapid 

immunochromatographic tests (ICT); an endpoint titer was determined for the IFA by 

serially diluting samples until a final dilution with positive fluorescent signal was 

reached. The rapid ICTs (ChemBio StatPak and InBios Chagas Detect™ Plus) were used 

off-label to test dog serum, as they are both FDA licensed and validated for human use 

only. To determine and validate cutoff criteria for the MIA, we used a subset of samples 

that had congruent positive or congruent negative results across all 3 of the serological 

tests to which they were subjected. This included the samples which were categorized as 

clearly seropositive (n = 27) and clearly seronegative (n = 33) by the prior serological 

tests in the original study. Validating the assay with these samples of congruent 

serostatus was done because there remains uncertainty in the true infection status for 

animals that have discordant test results, and there is yet to be an accepted gold standard 
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serologic test for T. cruzi exposure in human or veterinary medicine9, 11, 16, 17. Once 

cutoff criteria for the MIA were established with this sample set, we then used the full 

sample set which includes dogs sampled at multiple time points to monitor changes in 

serostatus over time.   

 A total of 12 antigens were evaluated in the multiplex assay (Table 1); 9 antigens 

from T. cruzi, were prepared and coupled to the xMAP beads as previously described6: 

FF10, G10, LE2, Kn107, FAB4, ATPase, Kn122, Kn80, and a whole-organism lysate. 

Green fluorescent protein (GFP) was used as a negative recombinant antigen. A canine 

parvovirus protein (VP2, MyBioSource, Inc., San Diego, CA)) was used as an antibody 

control; since all dogs in this study were assumed to have been previously vaccinated, 

samples failing to react to this protein would reflect inadequate antibody production or 

sample integrity issues. Lastly, a Leishmania protein (K39, MyBioSource, Inc., San 

Diego, CA) was included to examine cross-reactivity19. In addition to the study samples, 

3 control sera were also tested: negative and positive Leishmania controls, and a 

negative parvovirus control (VMRD, Inc., Pullman, WA). 
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Table 1. Proteins used as antigens in the canine T. cruzi multiplex MIA. 

Antigen name Gene ID/description Function in assay 

FF10 TcCLB.506529.610 T. cruzi antigen 

G10 TcCLB.504199.20 T. cruzi antigen 

LE2 TcCLB.507447.19 T. cruzi antigen 

Kn107 TcCLB.508355.250 T. cruzi antigen 

FAB4 TcCLB.507029.30 T. cruzi antigen 

ATPase TcCLB.509233.180 T. cruzi antigen 

Kn122 TcCLB.506749.10 T. cruzi antigen 

Kn80 TcCLB.506885.70 T. cruzi antigen 

Tc Lysate Trypanosoma cruzi lysate from tissue culture T. cruzi antigen 

GFP Green fluorescent protein Negative control recombinant protein 

VP2 Canine parvovirus capsid protein VP2 Positive antibody control protein 

K39 Kinesin-like protein, partial Leishmania antigen 

 

 Samples were tested as previously described for dog serum13. Briefly, a mixture 

containing all 12 antigen-coupled beads in assay buffer (PBS with casein) was prepared 

and added to black polystyrene 96-well flat bottom plates (Greiner Bio-One). The plates 

were affixed to magnetic holders and the beads captured in the bottom of the wells. The 

excess assay buffer was removed by forcefully inverting each plate above a waste 

container with the magnetic holder attached, leaving the beads in the well, and 100 µL of 

the serum samples (diluted 1:500) was added in duplicate wells. One set of wells 

contained assay buffer only as a blank/background sample. The plates were sealed with 

foil and incubated at room temperature on a compact orbital microplate shaker (Thermo 

Fisher Scientific) set to 600 rpm for 1 hour. Following the first incubation, the plates 

were washed three times as follows; for each wash, the magnetic plate holder was used 

to keep the beads in place, and the liquid removed from the plates by forcefully inverting 

over a waste container. The magnetic holder was removed, and 200 µL of assay buffer 
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was added to the wells, resuspending the beads. The magnetic plate holder was then used 

to recapture the beads, and the wash buffer removed from the wells by forcefully 

inverting the plate. Anti-canine IgG conjugated with phycoerythrin (Rockland, Inc., 

Limerick, PA) was used as a secondary antibody at a working dilution of 1:100; 150 µL 

of the PE conjugate was added to each well, the plates resealed with foil, and incubated 

at room temperature on a plate shaker for 1 hour and 30 minutes. After the second 

incubation, the plates were washed three times as described above. The beads were then 

resuspended in 150 µL of assay buffer and read using a MAGPIX instrument equipped 

with xPONENT software (Luminex Corp, Austin, TX), and the median fluorescence 

intensity (MFI) for all 12 antigens in each well was measured. The average net MFI 

(average MFI of both sample wells minus the MFI of the blank/background wells) for 

each antigen on each sample was used for subsequent analysis.  

 For all samples, the average net MFI of each antigen was divided by that of GFP 

(hereon referred to as the antigen-GFP ratio). This allowed analysis to be performed on a 

normalized value as well as corrected for any samples which had high reactivity against 

GFP (i.e., background or non-specific reactions)24. A subset of samples (n = 25) which 

were previously negative for T. cruzi antibodies by all 3 existing serologic methods were 

designated as a “negative pool”, and the mean antigen-GFP ratio for each antigen was 

calculated for these samples. Study samples with antigen-GFP ratios above 4 standard 

deviations from the mean of the negative pool were considered reactive to that antigen. 

Statistical analyses were performed using Stata software (StataCorp LLC, College 

Station, TX), and graphical representations of results via heatmaps were generated using 
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Prism 9 software (GraphPad Software, La Jolla, CA) to compare results between groups 

and visualize seroconversion over time. A receiver operating characteristic (ROC) using 

the IFA as the reference test was used to determine the optimal number of reactive 

antigens required to designate a sample as positive for antibodies against T. cruzi, along 

with assay sensitivity/specificity relative to the IFA. Correlation analysis was performed 

to investigate the relationship between IFA endpoint titer and the number of positive 

MIA antigens.
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3. RESULTS 

 

The area under the curve (AUC) for the ROC was 0.9989 (Figure 4), indicating 

the multiplex assay is highly comparable to the reference test (IFA). The ROC analysis 

indicated an optimal cutoff of ≥2 reactive antigens to classify a sample as seropositive 

(Table 2). Using this criterion, the multiplex assay had relative sensitivity of 100% and 

specificity of 96.97%, with only a single result disagreeing with the reference test. The 

group of samples which were positive on IFA had notably higher antigen-GFP ratios 

than the IFA negative group (Figure 5). The number of reactive antigens for seropositive 

samples was highly correlated with the previous IFA titer (r = 0.8675, p<0.0001). All 

samples were reactive on the parvovirus protein, indicating no apparent antibody failures 

or sample quality issues. The Leishmania antigen was functional, with the positive 

control showing high reactivity and the negative control showing none (Figure 5). 

Notably, the Leishmania positive control was also reactive on 2 T. cruzi antigens (whole-

organism lysate and Kn107). A single study sample was considered reactive for the 

Leishmania antigen using the diagnostic criteria established for T. cruzi (4SD above the 

T. cruzi-negative pool). 
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Figure 4. Receiver operating characteristic (ROC) curve for the canine T. cruzi 

antibody MIA using the IFA as a reference standard. 

 

 

Table 2. Sensitivity, specificity, and percentage of samples correctly classified at 

different cut-off values for the canine T. cruzi multiplex MIA relative to the IFA. 

Cut-off 

(# positive antigens) 
Sensitivity Specificity % Correctly classified 

≥ 1 100.00% 93.94% 96.67% 

≥ 2 100.00% 96.97% 98.33% 

≥ 3 92.59% 100.00% 96.37% 

≥ 4 48.15% 100.00% 76.67% 

≥ 5 11.11% 100.00% 60.00% 

≥ 6 3.70% 100.00% 56.67% 
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Of the 37 dogs for which all three longitudinal samples were tested (Figure 6), 8 

were considered in the original study to have seroconverted between sampling points 

based on a consensus result of at least 2 positive serologic tests2. Using the MIA, 3 

(37.5%) of these dogs showed apparent seroconversion using the optimized diagnostic 

cut-off values used in this study (2 or more positive antigens); 2 more dogs were below 

the cut-off criteria but were seropositive against a single antigen. Once seropositive, the 

number of reactive antigens remained relatively stable over time, fluctuating on no more 

than 2 antigens for most dogs (and with no dogs reverting from seropositive to 

Figure 5. Heatmap showing reactivity of 60 canine serum previously tested for T. 

cruzi antibodies by IFA (grouped by previous IFA result), and reactivity of 

Leishmania & canine parvovirus controls. 
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seronegative over time).  All samples in the longitudinal group which were previously 

positive by IFA were positive on the multiplex assay, and the patterns and magnitude of 

reactive antigens were unique between individual dogs.  
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Figure 6. Heatmap showing the number of positive T. cruzi antigens on the MIA at 

0-, 6-, and 12-month intervals for 37 dogs presumed to be positive based on 

previous testing. 



 

16 

 

4. DISCUSSION AND CONCLUSIONS 

4.1. Summary 

Our study successfully demonstrated the utility of a multiplex microsphere 

immunoassay in detecting antibodies against T. cruzi in dogs when compared to existing 

test methods. Although other serological methods such as IFA and rapid immunoassays 

have been used extensively in diagnostic and research settings and are considered 

validated for those purposes based on human literature and correlation with clinical 

signs, few previous studies have been conducted which quantify their performance in 

terms of sensitivity and specificity relative to a gold standard. The multiplex MIA has 

been used in previous studies to test dogs, humans, non-human primates, and mice4, 6, 13; 

however, this is the first study to estimate its sensitivity/specificity for diagnostic 

purposes. While this study determined an optimal single cut-off point of 2 positive 

antigens to balance the inverse relationship between sensitivity and specificity, when 

implementing this assay in a true diagnostic setting, it may be most useful to utilize a 

three-tiered approach bracketing cut-off values to maximize both values (i.e., classifying 

samples as negative below the cut-off which gives 100% sensitivity, positive at the cut-

off which gives 100% specificity, and “suspect” in between). 

Existing T. cruzi antibody assays are widely known to cross-react with 

Leishmania antibodies, confounding diagnosis for animals who could plausibly have 

been exposed to both pathogens. In addition to a whole-organism lysate, the inclusion of 

individual T. cruzi proteins in this assay (including at least one—FF10—which is 

completely unique to this organism) is intended to increase specificity. Given that the 
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Leishmania positive serum was positive on the T. cruzi assay, but only 1 of the T. cruzi 

positive samples were significantly reactive on the Leishmania antigen, there is likely 

not enough evidence in this study to conclude whether cross-reactivity will carry over to 

this testing platform. Additional studies with known Leishmania positive and negative 

samples, from areas in which T. cruzi exposure is unlikely, could ultimately provide 

more definitive answers to this question. Previous studies3, 4 have used different sets of 

T. cruzi proteins in the multiplex assay, and one of the advantages of this platform is the 

ability to expand/modify antigens to best optimize the test. If implementing this assay in 

settings where more definitive discrimination from Leishmania positivity is crucial (e.g., 

where infection with either pathogen is a possibility), additional proteins which are 

completely unique to T. cruzi may be added to increase specificity.   

 When compared to the longitudinal results of the Busselman et al. study, the 

MIA showed perfect agreement with the IFA results, but did not detect seroconversion 

against any antigens in 3 of the 8 dogs which had apparently seroconverted based on 

positive results on 2 rapid tests (Figure 3). As these dogs were consistently negative by 

both IFA and MIA, it is possible that the rapid tests are more sensitive (and thus less 

specific) than either of these methods. The 2 dogs which appeared to seroconvert against 

only 1 MIA antigen did so only during their final sampling point; of note, these dogs 

were also PCR positive at this sampling point. Although these dogs were originally 

considered seronegative according to the diagnostic criteria of 2 or more positive 

antigens, this may be an indication that positivity on even a single antigen can indicate 

early infection and should be considered as a suspicious result within the clinical and 
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epidemiological context. As such, the multiplex assay may be useful in monitoring at-

risk populations of dogs (e.g., in kennel settings) over time, where a change in 

seropositivity between sampling points—even on a single antigen—could trigger 

immediate follow-up testing by PCR, allowing diagnosis and possible intervention for 

acute cases sooner than conventional serology alone. 

4.2. Limitations and Assumptions 

There are a few limitations of this study, primarily associated with T. cruzi 

biology, the current state of Chagas disease diagnostics, and the fact that we are not 

using experimentally infected animals and instead relying on field samples. First, this 

study uses a relatively small panel of 8 T. cruzi-specific proteins and a whole-organism 

lysate as antigens. The proteome of T. cruzi is large1, and there are several discrete 

typing units (DTUs) resulting from the organism’s genetic variability22. The serum 

samples in this study come from dogs likely infected with the TcI and TcIV DTUs, as 

these are the genetic strains which circulate in the United States7. Although the specific 

proteins used in our panel have been chosen based on previous studies demonstrating 

their utility6, it is possible that there is unknown variation in how different DTUs present 

antigenic proteins to the immune system, and that this assay may yield different results 

in patients infected with DTUs other than TcI and TcIV (e.g., from outside the United 

States). Second, there are limitations associated with lack of a true “gold standard” for 

comparison. The IFA is the reference standard in our study by default, as it is the only 

option currently validated for use in dogs and available in an accredited veterinary 

diagnostic laboratory. Any apparent mischaracterization of seropositivity referent to the 
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IFA will be reflected in a decrease in the relative sensitivity/specificity of the MIA; 

however, it is possible that the MIA’s results are truly the “right answer” and any 

apparent decrease in these values is biased as a result. Conversely, and finally, the 

samples selected for validation were those which had the clearest seropositive/negative 

reactions based on previous testing, and our study will not explore the MIA’s 

performance in classifying discordant or “borderline” results in animals which are truly 

infected/not infected. This may positively bias the estimates of sensitivity/specificity in 

our study12. The sample size in this study was also relatively small due to the decision to 

use well-characterized samples. 

Evaluation of the multiplex MIA’s performance was dependent on several 

assumptions. First, although there is no perfect “gold standard” for T. cruzi testing, the 

IFA was used as the reference test in the ROC analysis and determination of 

sensitivity/specificity for the MIA. Second, antibody positive dogs were assumed to be 

infected; this is due to the lack of evidence of self-clearing once an animal has been 

exposed to the T. cruzi parasite. Regardless of these limitations and assumptions, the 

multiplex assay demonstrated high agreement with the IFA, and could perhaps serve as a 

new and improved “gold standard” going forward given its improvements over the more 

classical method. 

4.3. Conclusions and Future Directions 

The multiplex microsphere immunoassay for detection of Trypanosoma cruzi 

antibodies was successfully characterized and validated for use in dogs. Given the 

challenges in diagnosing Chagas disease using existing assays, this test may be adapted 
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by veterinary diagnostic laboratories as an additional, enhanced tool for detecting and 

monitoring seropositivity in individual animals. As the MIA is high throughput, it may 

also be of use in monitoring at-risk dog populations (e.g., in kennels) and could enhance 

epidemiological surveillance capabilities. Additionally, an improved assay will be 

critically important as antiparasitic treatments of dogs hopefully become available in the 

future and may be of use in monitoring dogs’ antibody responses during and after 

treatment. 

There are myriad possibilities for future work expanding on this study. Given the 

high-throughput format of the assay and the thousands of samples received at TVMDL 

each year for T. cruzi serology testing, future studies could improve on our estimates of 

Se/Sp using larger sample sets and statistical analyses which account for the lack of a 

true gold standard (e.g., latent class analysis). High-volume testing could also inform 

larger, spatial/temporal studies of Chagas disease using banked diagnostic laboratory 

samples. Additionally, the set of T. cruzi antigens included in the panel could be 

expanded to provide greater sensitivity or specificity (e.g., decreasing cross-reactivity 

with closely related pathogens such as Leishmania). The multiplex capabilities of the 

assay could also be expanded to target other serum markers which are indicative of 

cardiac Chagas disease (e.g., cardiac troponin), or inflammatory cytokines associated 

with immune system response to protozoal infection. Other immunoglobulins beyond 

IgG (e.g., IgM) could be measured using this system as well. As with ELISA, the MIA 

platform can be configured into different formats to expand utility, such as sandwich 

assays which allow capture of other serum components or competitive assays which 
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could reduce the need for species-specific reagents. Even in the indirect format used in 

this study, swapping the anti-canine IgG conjugate for one which is cross-reactive 

against IgG from multiple species (such as a protein A/G conjugate) could allow this 

assay to be used in any species of interest and expand surveillance capabilities beyond 

dogs. 
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