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ABSTRACT

This thesis aims to develop a simple and practical framework for musculoskeletal simulation

that accounts for the inertia of muscles.

Computer animation researchers have been using and extending muscle-driven skeletal sim-

ulations for many graphics applications. However, almost all musculoskeletal simulators used

in graphics (and biomechanics) ignore the effect of the inertia of the muscles as they slide with

respect to the bones. Instead, the mass of the muscles are “lumped” to the bones at the rest pose,

and so the effect of the muscle inertia cannot be reflected in the dynamics of the system, even

though around 40% of total body mass is from skeletal muscles. We present a novel framework

for incorporating the effects of muscle inertia for all commonly used musculotendon path types,

including those with multiple path points and wrapping surfaces. To maximize inter-operability

with existing musculoskeletal simulators, we use the reduced coordinates of the articulated rigid

body system representing the skeletal joints as the degrees of freedom. However, unlike existing

musculoskeletal simulators, we take into account the inertia of the muscles as they slide with respect

to the bones, by inserting mass points along the paths of the musculotendons. As the skeleton

moves, these mass points move, since each musculotendon is assumed to be frictionless—the path

moves such that its length is always at its local minimum. Our main technical contribution is the

derivation of this mapping (i.e., Jacobian, plus its time derivative) from the skeletal motion to the

muscle mass motion.
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1. INTRODUCTION*

1.1 Problem Statement

Musculoskeletal simulations have become an increasingly important component in modern

graphics applications. Computer animation researchers have been using and extending muscle-

driven skeletal simulations for many applications—to name some examples, improved inverse

kinematics over methods without taking human body into account [1], head/neck animation, [2],

hand animation [3], real-time visualization of muscle activations [4], energy-minimizing gait

animations [5], creation of imaginary bipedal characters [6], upper body animations [7, 8], and

control of characters under various anatomical conditions [9, 10].

However, almost all musculoskeletal simulators used in graphics (and biomechanics) ignore the

effect of the inertia of the muscles as they slide with respect to the bones. Instead, the mass of the

muscles is “lumped” to the bones at the rest pose, meaning that the muscle masses are added to the

bone masses. This means that the effect of the muscle inertia cannot be reflected in the dynamics of

the system when the muscles slide with respect to the bones, even though around 40% of total body

mass comes from skeletal muscles [11].

Missing inertia can change some important aspects of the simulation. The effect of the missing

inertia is most pronounced when the muscle mass is large and/or far from the joints it acts on.

For example, some of the muscles of the lower limb exhibit significant inertial effects. In the

seminal paper, Pai [12] notes that the triceps surae muscle of the human ankle can account for an

additional 7.6 % of the effective inertia of the joint. As another example, let us consider the flexors

of the hand during a finger flicking motion (Fig. 1.1b). The joints of the finger have very small

inertia by themselves, but when the muscle masses are taken into account, the joint inertia increases

significantly.

With a traditional musculoskeletal simulator, these muscle masses are absorbed into the nearest

*Part of this chapter is reprinted with permission from Y. Wang, J. Verheul, S.-H. Yeo, N. K. Kalantari, and S.

Sueda, "Differentiable simulation of inertial musculotendons," ACM Transactions on Graphics, vol. 41, Nov. 2022.
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(a) (b)

Figure 1.1: We model flicking the fingertip with the other hand and add different amounts of forces.
(a) Without muscle inertia, the simulation shows artifacts when applying 5N forces. (b) While with
muscle inertia, the simulation shows artifacts when applying 20N forces. The simulation remains
stable under an impulse that is several times larger. We can show that muscle inertia changes the
dynamics result of flicking motion and stabilizes the simulation.

segment (i.e., forearm) and do not affect the inertia of the finger joints, whereas with our approach,

these masses are coupled to all of the joints spanned by the musculotendons.

This increase in inertia is important not only for simulation accuracy but also stability. If we

apply an impulse to the fingertip (e.g., flicking with the other hand), the distal joint quickly becomes

unstable due to its small inertia, but if the effect of muscle inertia is taken into account, it remains

stable under an impulse that is several times larger. Joint damping can be added to overcome some

of these issues, but this would require manual tweaking of parameters, and the added damping

would help stabilize both the simulation with and without muscle inertia. Furthermore, the muscle

inertia provides coupling of the joints, naturally preventing the joints from moving independently.

As we mentioned before, almost all musculoskeletal simulators used in graphics ignore the

effect of the inertia of the muscles. Instead, they use the “segment lumping” method, which lumps

the mass of the muscles to the bones at the rest pose. Fig. 1.2 illustrates what segment lumping

means, and Fig. 1.3 illustrates our method, which does not lump the muscle mass.
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Lumped Muscle

B1

B2 Lumped Muscle 
Stationary wrt B1

B1

B2

Figure 1.2: We use this simple example to briefly explain what segment lumping means. We have
two rigid bodies in this case, B1 and B2. If we want to lump the mass of the muscle along with the
bones within body B1, we will model the muscle and B1 as a single body in the model of dynamics,
which means that even when the elbow joint angle changes during simulation, the muscle should be
stationary with respect to B1.

Unlumped Muscle

B1

B2
Unlumped Muscle 
Moving wrt , B1 B2

B1

B2

Figure 1.3: Here is an example of a unlumped muscle. The muscle should be moving with respect
to B1 when the elbow joint angle changes during simulation.

1.2 Our Approach

In the past few years, biomechanics researchers have proposed techniques to deal with muscle

inertia [13, 14], but these approaches can only be used for relatively simple muscle paths. Therefore,

we propose a framework for incorporating the effects of muscle inertia into musculoskeletal
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simulations that contain more complex muscle paths, including those with wrapping surfaces. Our

framework is based on the kinematic hierarchy shown in Fig. 1.4. This hierarchy allows us to

compute the velocities of the muscle mass points (xα) from the velocities of the skeletal joints (qr).

The main technical contribution of this thesis is the derivation of this Jacobian mapping, Jαr,

and its time derivative, J̇αr.
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Figure 1.4: A simple musculoskeletal system with three bones and one muscle. The origin is on
the first body and the insertion is on the third body. We use this simple system to illustrate our
kinematic hierarchy of a musculoskeletal system with corresponding Jacobian mappings between
different coordinates.

We now briefly describe the various Jacobian factors involved in this kinematic hierarchy. We

express the motion of the musculotendons in terms of the motion of the skeletal joint using a chain

of Jacobians so that at the top level, only the reduced degrees of freedom of the skeleton, shown in

the illustration (Fig. 1.4), are used to drive both bones and musculotendons. The key to efficient

inertial muscle simulation is to find a mapping between the change in the 3D world coordinates of

these mass points and the change in the reduced coordinates of the articulated rigid body system.
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This is accomplished through a series of Jacobian mappings:

• Jmr maps reduced coordinates qr to maximal coordinates qm. The maximal coordinates are

represented by the rotational and translational components of the rigid bodies. These reduced

coordinates qr are composed of a series of joint angles. We will perform our dynamic system

simulation using these reduced coordinates.

• Jxm maps maximal coordinates qm to origin/insertion points xori/xins, where the origin and

insertion refer to the muscle attachment points on the bones that are proximal and distal with

respect to the muscle, respectively. To simulate the movement of the origin and insertion

points, we can track their position using maximal coordinates qm, which serve as the input

for our muscle mass points algorithm.

• Jαx maps origin/insertion points xori/xins to muscle mass points xα. To take into account the

inertia of muscles, we insert mass points (the red dots on the path from xori to xins in the

figure) along the paths of the musculotendons. As the skeleton moves, these mass points

move since each musculotendon is assumed to be frictionless—the path moves such that

its length is minimized. When sampled at a reasonable density, these insertion points can

accurately approximate the path of inertial muscles.

These Jacobians are used to map between the velocities:

q̇m = Jmr q̇r, (1.1a)

q̇x = Jxm q̇m, (1.1b)

ẋa = Jαx q̇x. (1.1c)

We chain these Jacobians together so that, ultimately, we can express the motion of the muscle mass

points as a function of the joint angles of the skeleton:

ẋα = Jαx Jxm Jmr q̇r. (1.2)
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1.2.1 Types of musculotendon paths
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Figure 1.5: Concrete running example for Type I, II, and III muscles. In all cases, there are three
bones and one muscle. The origin is on body A, and the insertion is on body C. Type II muscle has
a path point on body B, and Type III muscle has a wrapping surface S defined with respect to body
B.

To aid us in the derivation, we categorize musculotendon paths into three types (Fig. 1.5):

I: Straight-line paths, whose Jacobians are derived in a straightforward manner.

II: Polyline paths through a sequence of points, whose Jacobians are derived by extending the

Eulerian-on-Lagrangian framework [15, 16].

III: All others, but most importantly, curved paths wrapping over smooth surfaces, whose Ja-

cobians are based on neural networks trained with our custom sampling strategy to handle

parasitic discontinuities.

1.2.2 Why Neural Networks for Type III?

Existing muscle routing algorithms are highly efficient [17, 18, 19, 20], and with some fairly

minor modifications, we could use the output of these libraries to compute the Jacobians with finite

differencing, which would not be prohibitively expensive due to the efficiency of these libraries.
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However, they cannot be used directly in our framework for inertial muscles because they all suffer

from a massive problem: Jacobian discontinuity.
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Figure 1.6: (a) A double pendulum with a musculotendon, hitting a wrapping surface. (b) Energy
plot (kinetic in blue, potential in red, total in yellow) of the simulation using an existing wrapping
surface library. (c) Energy plot using our approach. (d) Plot of the x-component of five selected
muscle mass points as a function of the distal joint angle, zoomed around a discontinuity. The
solid lines are generated using an existing wrapping surface library. The dotted lines are generated
using our approach. (e) The corresponding plots of the Jacobian. Unlike previous work (solid), our
approach (dotted) generates smooth Jacobians.

As an illustration of this problem, suppose that we have a double pendulum with a musculotendon

shown in Fig. 1.6a. As the pendulum swings due to the force of gravity acting on both the bones and

the musculotendon, the path of the musculotendon attaches and detaches from the wrapping surface.

If we use a Jacobian computed using existing wrapping surface libraries and finite differencing, we

observe discontinuities in the energy plot, as shown in Fig. 1.6b. The reason for this discontinuity

can be seen by looking at the motion of the mass points. Fig. 1.6d shows the x-component of five

of the mass points (each with its own color) as a function of the distal joint angle, zoomed in near
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a discontinuity. The values computed with an existing wrapping surface library are shown with

solid lines and ours with dotted lines. Fig. 1.6e shows the corresponding derivatives. The jump

in the value of the Jacobian manifests itself as an energy jump in the simulation. On the other

hand, our neural network approach generates the smooth Jacobian plots in Fig. 1.6e, while keeping

the position plots in Fig. 1.6d virtually indistinguishable from the output of the library code. This

results in a smooth energy trajectory shown in Fig. 1.6c.

Because of our smooth Jacobians, our approach is compatible with various practical techniques,

such as higher-order time integrators, inverse dynamics, complex joints, Hill-type muscle models,

and differentiable dynamics. Importantly, as we decrease the amount of mass in the muscles, our

simulator gracefully degrades to existing musculoskeletal simulators that do not support muscle

inertia. It is even possible to mix and match musculotendons with/without mass, which can be

useful for focusing the computational power on the most important muscles.
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2. RELATED WORK*

We will first briefly discuss various methods of simulating articulated rigid bodies. And then we

will review several muscle models used in computer graphics and biomechanics.

2.1 Articulated Rigid Body Dynamics

Articulated rigid body dynamics has been an active research area for many decades, especially

in the field of robotics, where high-performance algorithms were required for low-power systems.

A great deal of effort has been spent on both O(n) and O(n3) methods, for example, to refine

the performance for tree-configuration or closed-loop systems [21, 22]. Although asymptotically

worse, O(n3) methods have attracted significant attention because they are more intuitive and are

more easily parallelizable [23, 24, 25]. However, these methods do not work in the presence of the

maximal stiffness matrix from linearly implicit integration, one of the most common integration

methods in graphics [26].

The use of reduced/maximal coordinates with two-way coupling of articulated and deformable

bodies has been of particular interest in computer graphics. Shinar et al. [27] used maximal coordi-

nate dynamics with pre-stabilization, coupled with a finite element mesh. Their method achieves

full two-way coupling, but their intricate time-stepping method makes it difficult to extend or to

incorporate into existing simulators. Kim and Pollard [28] used reduced coordinate dynamics with

explicit coupling between rigid and deformable bodies. Their method is extremely fast to evaluate;

however their approach is limited to explicit integration schemes, since the reduced coordinates

are integrated with the O(n) recursive method. Jain and Liu [29] used reduced coordinates with

fully implicit coupling between rigid and deformable bodies. However, with their formulation, each

*Part of this chapter is reprinted with permission from Y. Wang, N. J. Weidner, M. A. Baxter, Y. Hwang, D. M.

Kaufman, and S. Sueda, “REDMAX: Efficient & flexible approach for articulated dynamics,” ACM Trans. Graph., vol.

38, Jul. 2019, and from Y. Wang, J. Verheul, S.-H. Yeo, N. K. Kalantari, and S. Sueda, "Differentiable simulation of

inertial musculotendons," ACM Transactions on Graphics, vol. 41, Nov. 2022.
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deformable body can only be influenced by a single rigid body. Liu et al. [30] used an off-the-shelf

solver for maximal coordinate articulated bodies, which was time-stepped alongside a deformable

body. Their coupling, however, was limited to explicit interactions—they only affected each other

after taking a time step. To summarize, our method is unique in that it is capable of simultaneously

using reduced coordinates, with fully implicit two-way coupling, and with the deformable mesh

spanning multiple rigid bodies. We should clarify, however, that we limited our discussion to

two-way coupling between articulated and deformable bodies—the works above provide many

other important contributions.

There have also been a number of related works on the simulation of various phenomena using

articulated rigid bodies, such as: trees [31], hair [32], and characters [33]. Linear time methods for

flexible multibody systems have also been studied for decades, as described in the detailed survey by

Wasfy and Noor [34]. Of particular importance to graphics, Bertails [35] showed that the recursive

linear time approach can be used to simulate the dynamics of elastic rods. These efficient methods

can only be used in the special case when all of the implicit forces are between topologically

neighboring bodies (e.g., joint springs), since then the topology of the reduced stiffness matrix will

be the same as that of the reduced mass matrix. However, in the general case, the implicit forces are

between arbitrary bodies, and so the recursive linear time approaches cannot be used.

2.2 Musculoskeletal Simulation

Because of the importance of human character animation to graphics, many different types of

approaches have been studied, starting with the seminal work on facial animation [36, 37, 38]. Often

in graphics, the causal relationship between the muscles and the bones is switched—the skeleton

is first moved, and then the muscles/flesh are correspondingly simulated to add bulging effects to

the character’s skin [39, 40, 28]. As important as these works are to graphics (e.g., commercial

products [41, 42]), this thesis focuses exclusively on muscle-driven systems.
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2.2.1 Line-based Methods

Line-based musculoskeletal methods were developed by adding line-of-action muscles to rigid

body dynamics from robotics [43, 44]. Almost always, these muscles are assumed to be massless,

taking the shortest path between the origin and insertion, possibly being routed around path

points and wrapping surfaces. Perhaps the first three works in computer graphics to use proper

biomechanics-based muscle models are the works by Komura et al. [45, 46, 1], in which they show

new types of animations, such as biomechanically based fatigue, which were not possible with

previous joint torque-based approaches. Lee and Terzopoulos [2] use line-based musculotendons to

model the muscles of the neck, and in their follow-up works, they use these muscles to drive the

volumetric mesh for upper-body motion [7] and swimming [8]. Wang et al. [5] simulate a variety of

gaits, showing that optimizing for metabolic energy expenditure increases the realism of resulting

animations. Geijtenbeek et al. [6] use Hill-type muscle models for a range of bipedal characters,

including humans, animals, and imaginary creatures. Unlike previous work, they also optimize for

the placement and routing of these muscle lines so that the total error based on speed, orientation,

and effort is minimized. Lee et al. [9] propose a scalable biped controller that is able to solve for the

activations of more than one hundred muscles. Their controller is formulated as a quadratic program

that can handle frictional contact based on Coulomb’s model. Their results include motions that

include muscle pain, muscle tightness, or joint dislocation. In their follow-up work, Lee et al. [10]

use deep reinforcement learning to control more than three hundred Hill-type muscles for full-body

motions. They show that they can reproduce a wide range of motions, including muscle weakness,

use of prostheses, and pathological gaits.

The strand-based muscles by Sueda et al. [3] and Sachedeva et al. [16] do have musculotendon

inertia, but their systems cannot readily be used in conjunction with existing biomechanical simula-

tors, because they explicitly simulate the two-way coupled system of muscles and bones, whereas

existing simulators only work with the reduced degrees of freedom of articulated rigid bodies.
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2.2.2 Volume-based Methods

Although not directly related, we briefly cover volume-based muscle models because of their

importance to graphics. Among those that do use biomechanically based muscle mechanics models,

two subtypes of volume-based methods have been studied. The first subtype—those with embedded

force generators— was initially used in animation. Chen and Zeltzer [47] introduced the first

biomechanics-based muscle mechanics model to computer animation. They used the finite element

method (FEM) with twenty-node isoparametric brick elements, with the longitudinal edges of

these elements acting as muscle force generators. Later, Zhu et al. [48] used eight-node brick

elements with force generators between a set of linear FEM nodes. Lemos et al. [49] developed

a general FEM framework that could support any nonlinear material as the background isotropic

material. Ng-Thow-Hing [50] used a similar approach to embed force generators inside a B-spline

solid. Around the turn of the century, the second subtype—those with anisotropic muscle material

models—became more popular in graphics. The seminal work by Teran et al. [51] used a material

model with a strain energy that includes an anisotropic muscle potential term. Similar muscle

mechanics model is used in their follow-up work on larger scale simulation of skeletal muscles

[52] as well as facial muscles [53]. Fan et al. [54] used a blackbox deformation energy as an

approximation for contractile mechanics in their volumetric muscles undergoing contact. Recently,

Lee et al. [55] simulated volumetric muscles with Projective Dynamics, driven by per-element

energy functions derived from a Hill-type muscle model.

Min et al. [56] used quadratic strain energy to model contractile volumetric muscles of soft-

bodied animals. Although in principle it is possible to use these volumetric simulators to compute

the inertial effects of the muscle, they are impractical or impossible for the types of applications

we are interested in, considering the high number of parameters and the computational complexity

required by volumetric models.
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3. MAXIMAL COORDINATES*
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Chapter 3

Figure 3.1: In this chapter, we dive into the kinematic hierarchy for our previously introduced
example. Our focus is the mapping between reduced and maximal coordinates, represented by the
Jacobian Jmr. We will first introduce the maximal coordinates formulation and then later use it to
derive Jmr, which is the first component of the Jacobian chain.

In this chapter, we will introduce some background knowledge about maximal coordinates.

(highlighted in red in Fig. 3.1). Dynamics with maximal coordinates use each rigid body’s six

degrees of freedom (DOFs). Constraints must be applied to model joints, and these constraints

often must be stabilized to avoid drift [57, 58]. Later in Chapter 4, we will cover the other approach,

reduced coordinates, which requires only a minimal set of degrees of freedom, such as joint angles

for revolute joints and relative translations for prismatic joints, to represent the state of the system.

*Part of this chapter is reprinted with permission from Y. Wang, N. J. Weidner, M. A. Baxter, Y. Hwang, D. M.

Kaufman, and S. Sueda, “REDMAX: Efficient & flexible approach for articulated dynamics,” ACM Trans. Graph., vol.

38, Jul. 2019.
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Following the notation of Cline and Pai [58] and Kaufman et al. [59], we use bold letters, x,

to denote vectors and points in R3, and sans serif letters, q, to denote generalized coordinates and

related quantities. Everywhere possible, q refers to the generalized coordinates of a body, and x

refers to a point on the body in R3. Time derivatives are indicated with a dot: ẋ ≡ dx/dt; and

material derivatives are indicated with a prime: x′ ≡ dx/du.

3.1 Position Representation

The configuration of a rigid body is represented by the usual 4 × 4 transformation matrix

consisting of rotational and translational components:

0
iE =

0
iR

0p

0 1

 . (3.1)

The leading subscripts and superscripts indicate that the coordinates of a rigid body (or frame) i are

defined with respect to the world frame, 0. Thus each column of the rotation matrix, 0
iR, corresponds

to the frame’s basis vectors, ek, expressed in world coordinates, and 0p is the position of the frame’s

origin expressed in world coordinates. In other words, the first three columns of 0
iE express the

ith frame’s x, y, and z axis directions in 0th coordinate frame, and the last column of 0
iE expresses

the ith frame’s position in the 0th coordinate frame. Given a local position ix on a rigid body, its

world position is

0x = 0
iE

ix, (3.2)

where we have omitted the homogeneous coordinates for brevity. Unless otherwise stated, we

assume that the reference frame is the world frame and use a trailing subscript to indicate the frame

of a rigid body, as in Ei. With this notation, Ei transforms a position from the local space of the

ith rigid body to world space.

The rotation matrix, R, has the following properties:

RR> = R>R = I, det(R) = 1. (3.3)
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This implies that the columns of R are mutually orthonormal and follow the right-hand rule. Also,

the inverse of a rotation matrix is the transpose, which is a very useful property! All 3× 3 matrices

with the properties above form a group called the special orthogonal group in 3 dimensions, or

SO(3). We can write this as R ∈ SO(3).

The group of all 4× 4 transformation matrices of the form Eq. 3.1 is called the special Euclidean

group in 3 dimensions, or SE(3). We can write this as E ∈ SE(3). Because of its special structure,

taking the inverse of E is easy:

R p

0 1


−1

=

R> −R>p

0 1

 (3.4)

The inverse matrix reverses the transformation: 0
iE
−1 = i

0E. In other words, 0
iE transforms points

from i to 0, whereas 0
iE
−1 transforms points from 0 to i.

3.2 Velocity Representation

The spatial velocity (or the twist) iφi of a rigid body 0
iE describes the motion of the rigid body

at time t,

iφi =

iωi

iνi

 . (3.5)

This 6× 1 vector can also be expressed as a 4× 4 matrix similar to the transformation matrix in

Eq. 3.1, with the rotational part in the 3× 3 upper-left block and the translational part in the 3× 1

upper-right block, [
iφi
]

=

[iωi]
iνi

0 0

 , (3.6)
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where the 3× 3 matrix, [a], is the cross-product matrix such that [a]b = a× b:

[a] =


0 −az ay

az 0 −ax

−ay ax 0

 . (3.7)

The twist is related to the time derivative of the frame with:

0
i Ė = 0

iE

[iωi]
iνi

0 0

 . (3.8)

The intuition behind Eq. 3.8 is that we must multiply the twist by 0
iE to transform it to world space

since 0
i Ė is in world space whereas iφi is in local space. Again, we sometimes suppress the leading

superscript for brevity and write φi, assuming that all spatial velocity quantities are expressed in

local coordinates. If we simplify Eq. 3.8, we see that the time derivative of the rotation matrix is its

upper left 3× 3 portion:

0
i Ṙ = 0

iR [iωi]. (3.9)

.

3.3 Logarithms and Exponentials

Recall that:

• A rotation matrix belongs to the special orthogonal group in 3D: R ∈ SO(3).

• A rigid body configuration belongs to the special Euclidean group in 3D: E ∈ SE(3).

For each of these, there exists a corresponding velocity, or “Lie algebra” to be more technically

precise:

• Angular velocity belongs to so(3), the Lie algebra of SO(3): ω ∈ so(3).

• Spatial velocity belongs to se(3), the Lie algebra of SE(3): φ ∈ se(3).

As shown in Eq. 3.6 Angular velocity, ω ∈ so(3), can also be expressed as a vector ω ∈ R3 or as a

3× 3 skew symmetric matrix, [ω]. Similarly, spatial velocity, φ ∈ se(3), can also be expressed as a
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vector φ ∈ R6 or as a 4× 4 matrix, [φ].

We use the matrix logarithm and exponential to go back and forth between SO(3) and so(3), as

well as between SE(3) and se(3).

R = exp([ω]), [ω] = log(R),

E = exp([φ]), [φ] = log(E).

(3.10)

Intuitive interpretation is that if a frame undergoes an angular velocity of ω for 1 unit of time, then

the frame will be rotated by R. Similarly, if a frame undergoes a spatial velocity of φ for 1 unit

of time, then the frame will be transformed by E. For general matrices, these operations can be

expensive, but for these types of matrices, there are efficient formulas.

3.4 Force Representation

Let a be a reference frame and xa be a point in a rigid body. Suppose we have a force acting on

the rigid body at that point xa, which can be represented by a vector fa ∈ R3. This force creates a

torque or moment:

τa = xa × fa ∈ R3. (3.11)

Then, we can introduce a spatial force or wrench by combining the torque and force into a single

vector:

fa =

τa

fa

 ∈ R6. (3.12)

3.5 Material Jacobian

If a rigid body is moving with spatial velocity, φi, the world velocity of a point, ix, affixed to

the rigid body is computed as 0ẋ = Jφi. More specifically,

0ẋ = Ri

Γ∈R3×6︷ ︸︸ ︷(
[ix]> I

)
︸ ︷︷ ︸

J∈R3×6

φi, (3.13)
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where the 3×6 matrix, J, the material Jacobian (consisted of the rotation matrix Ri and Γ = ([ix]> I)

that transforms twists to local point velocities), transforms the local spatial velocity of the rigid

body, φi, into the velocity of a local point on the rigid body in world coordinates, 0ẋ. Its transpose,

a 6× 3 matrix, transforms a point force in world space, f 0, into a local wrench acting on the rigid

body,

fi = J>f 0. (3.14)

This “transpose” relationship works in a variety of generalized coordinate settings. If there is a

matrix that maps generalized velocities into world velocities, then its transpose will map forces in

world coordinates back to generalized forces.

3.6 Adjoint

Just like how 3D points and vectors must be in the same coordinate space before they can be

added (and dotted, crossed, etc.), spatial velocities must also be in the same coordinate space. The

spatial velocity transforms from one frame to another according to the adjoint of the coordinate

transform, which is defined by the rigid transform 0
iE,

0
iAd =

 0
iR 0

[0ip] 0
iR

0
iR

 . (3.15)

The spatial velocity of the ith rigid body in world coordinates is then

0φi = 0
iAd

iφi, (3.16)

which is the spatial velocity of the ith rigid body with respect to the world, now expressed in world

coordinates.

Let’s look at the time derivative of the adjoint, which we’ll need to derivate the equations of
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motion. Dropping the superscripts and subscripts for brevity, we have, from Eq. 3.15,

Ȧd =

 Ṙ 0

[ṗ]R + [p]Ṙ Ṙ

 . (3.17)

Looking at the rotational component of Eq. 3.9 gives us Ṙ = R[ω]. The point derivative, [ṗ], is a

little trickier. (Note [ṗ] 6= [ν].) Instead, note that ṗ is the velocity of the frame origin expressed in

world coordinates. So, [ṗ] = [Rν], since ν is expressed in local coordinates, and R rotates a vector

from local to world coordinates. But [Rν] = R[ν]R>, because for an arbitrary x,

[Rν](Rx) = (Rν)× (Rx)

= R(ν × x)

= R[ν]x

= (R[ν]R>)(Rx),

(3.18)

and so [ṗ]R = [Rν]R = R[ν]. So the final form of the time derivative of the adjoint is

Ȧd =

 R[ω] 0

R[ν] + [p]R[ω] R[ω]

 . (3.19)

This can be factored into a product of two matrices:

Ȧd(E, φ) =

 R 0

[p]R R


︸ ︷︷ ︸

Ad(E)

[ω] 0

[ν] [ω]


︸ ︷︷ ︸

ad(φ)

, (3.20)

where we have added the parameter list to be more explicit. The second factor, ad = Ad−1 Ȧd, is

the spatial cross product matrix, which is the adjoint action of the Lie algebra on itself [60, 61].
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3.7 Equations of Motion

The Newton–Euler equations of motion of a rigid body can be written in a compact form as

Miφ̇i = [Coriolis forces] + [body forces (e.g., gravity)]

= ad(φi)
>Miφi + fbody(Ei).

(3.21)

Here, Mi is the spatial inertia of the rigid body, and ad(φi) is the spatial cross product matrix from

Eq. 3.20. If gravity is the only force involved, then the body force is

fbody(Ei) =

 0

R>i mg

 , (3.22)

where m is the linear mass and g is the gravity vector in world coordinates. The top zero indicates

that gravity does not affect angular velocity. For the translational velocity, the multiplication by the

transpose of the rotation matrix transforms the gravity direction into body coordinates.

Eq. 3.21 can be rearranged to take on the more familiar form as given by Murray et al. [62] in
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their Equation (4.16). Let I be the rotational inertia, and mI be the translational inertia. Then

I 0

0 mI


ω̇
ν̇

 =

[ω]> [ν]>

0 [ω]>


I 0

0 mI


ω
ν

+

τ
f


=

[ω]> [ν]>

0 [ω]>


Iω
mν

+

τ
f


=

[ω]>Iω + [ν]>mν

[ω]>mν

+

τ
f


=

[ω]>Iω

[ω]>mν

+

τ
f


= −

ω × Iω
ω ×mν

+

τ
f

 ,

(3.23)

which is the same as the Newton–Euler Equation in body coordinates, as given by Murray et al.

[62] in their Equation (4.16).

3.8 Maximal Inertia

Expressing the spatial velocity of a rigid body in local coordinates is advantageous in that the

mass matrix is diagonal and can be precomputed at the beginning of the simulation. Wikipedia’s

article on “List of moments of inertia” is a good reference for some common shapes.* For a

triangular mesh, we can compute the body-centered frame and its associated mass matrix using

volume integration [63].

*https://en.wikipedia.org/wiki/List_of_moments_of_inertia
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For example, the 6× 6 mass matrix of a cuboid whose side lengths are (∆x,∆y,∆z) is

M =



m
12

(∆y2 + ∆z2) 0 0 0 0 0

0 m
12

(∆z2 + ∆x2) 0 0 0 0

0 0 m
12

(∆x2 + ∆y2) 0 0 0

0 0 0 m 0 0

0 0 0 0 m 0

0 0 0 0 0 m


, (3.24)

where m = ρ∆x∆y∆z is the total mass of the cuboid with density ρ.

3.9 Euler Integration with Maximal Coordinates

For now, we will work with the simplest integration method. If we discretize the acceleration as

φ̇ =
φ(k+1) − φ(k)

h
, (3.25)

where h = t(k+1) − t(k) is the time step size, then we can rewrite Eq. 3.21 to be at the velocity level

at time t(k),

Miφ
(k+1)
i = Miφ

(k)
i + h

(
ad(φ

(k)
i )>Miφ

(k)
i + fbody(E

(k)
i )
)
, (3.26)

which can be solved for the new velocities, φ(k+1)
i .

The rigid body configuration E
(k+1)
i can be obtained by integrating φ(k+1)

i . We must be careful

here because Ei belongs to a non-Euclidean space SE(3). As we mentioned before, we can use the

matrix logarithm and exponential to go back and forth between SE(3) and se(3). We use the first

order implicit discretization, with the time step h:

E
(k+1)
i = E

(k)
i exp

h
[ω

(k+1)
i ] ν

(k+1)
i

0 0


 . (3.27)

The matrix exponential can be computed efficiently using Rodrigues’ formula [62].
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3.10 Elastic and Damping Forces

Following the approach of Baraff and Witkin [26], we can add implicit damping and elastic

forces using the linearly implicit Euler integration. They linearize the forces about the current

position and velocity and move the resulting matrices to the left-hand-side (see §4.6.1):

(
M + hD− h2K

)
φ(k+1) = Mφ(k) + hf, (3.28)

where D is the damping matrix, K is the stiffness matrix, and f is the sum of all forces. What goes

into D, K, and f depends on the type of forces involved.

3.10.1 Damping Force

With simple viscous damping, D = dI is a diagonal matrix, where d is the damping coefficient.

There is no contribution to the right-hand-side force vector, f.

3.10.2 Directional Point Force

Let’s say that we want to pull on a point ix on a rigid body in a particular direction 0a, where

ix is in local coordinates, and 0a is in world coordinates. Then the linear wrench to be applied to

the rigid body can be computed as follows:

f = kΓ>R> 0a, (3.29)

where k is the stiffness constant, Γ transforms twists to local point velocities (Eq. 3.13), and R is

the rotation matrix of the rigid body. The corresponding potential energy is

V = −k 0x> 0a, (3.30)

where 0x is the position of the force application point in world coordinates. The force in Eq. 3.29 is

the negative gradient of this potential energy with respect to the 6 DOFs. We obtain the stiffness

23



matrix if we differentiate again:

K = k

[ix][R> 0a] 0

[R> 0a] 0

 , (3.31)

where we used the following identity for the derivatives with respect to the 6 DOFs:

∂R>a

∂ω
= [R>a],

∂Ra

∂ω
= −R[a],

∂p

∂ν
= R. (3.32)

The stiffness matrix is non-symmetric, which makes sense since the force is not a function of the

rigid translations (ν), and so the second column is zero. We follow Baraff and Witkin [26] and

symmetrize: K = 1
2
(K + K>).

3.10.3 Point-to-Point Force

For a linear force between two points on two different bodies, the wrenches acting on these two

bodies are

f = k

 Γ>1 R
>
1 ∆x

−Γ>2 R
>
2 ∆x

 , (3.33)

where ∆x = 0x2 − 0x1, and 0x1 and 0x2 are the world coordinate positions of the two points,

which are obtained by transforming the corresponding local coordinate positions. This force is the

negative gradient of the potential energy:

V =
1

2
k∆x>∆x. (3.34)
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As before, we obtain the stiffness matrix by differentiating the force with respect to the DOFs:

K = k



[1x1][R>1 (p1 − 0x2)] [1x1] [1x1]R>1 R2[2x2] −[1x1]R>1 R2

[R>1 (p1 − 0x2)] I R>1 R2[2x2] −R>1 R2

[2x2]R>2 R1[1x1] −[2x2]R>2 R1 [2x2][R>2 (p2 − 0x1)] [2x2]

R>2 R1[1x1] −R>2 R1 [R>2 (p2 − 0x1)] I


. (3.35)

Again, we symmetrize this: K = 1
2
(K + K>).

3.11 Constraints

3.11.1 Joint Constraints

Joint constraints between rigid bodies are implemented using the adjoint formulation [62], from

which we can easily derive various types of joints simply by dropping different rows in the 6× 6

adjoint matrix. Given two rigid bodies, i and k, and a joint frame defined with respect to the first

body, ijE, we constrain the rigid bodies’ spatial velocities, φi and φk, with respect to the joint frame.

Using Eq. 3.16, the relative velocity at joint j is given by

δφj = j
iAdφi −

j
kAdφk

=

(
j
iAd −

j
iAd

i
0Ad

0
kAd

)φi
φk

 .
(3.36)

(Note i
0Ad = 0

iAd
−1.) For a rigid joint, we want the relative velocities to be zero, so we set δφ = 0.

From this, we can derive different types of joints by dropping various rows of the constraint equation:

for example, the top three rows (corresponding to the three rotational DoFs) for a ball joint or the

third row (corresponding to the rotation about the z-axis) for a hinge joint.

Setting δφ = 0, we can write Eq. 3.36 in matrix form as GΦ = 0, where G ∈ R6×12 and

Φ ∈ R12×1. (This is for a fixed joint. For a hinge joint, G ∈ R5×12.) As we add more bodies and

joints, we add more rows to this “constraint” matrix. For example, if we have 3 bodies and 2 hinge

joints between them, then G will have 5 + 5 = 10 rows and 6 + 6 + 6 = 18 columns. The entries in
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G need to line up so that the correct terms get multiplied by each other. For example, if the two

hinge joints are between bodies 1 and 2, and between 1 and 3, the constraint equation is

G11 G12 0

G21 0 G23



φ1

φ2

φ3

 =

0

0

 . (3.37)

Before we incorporate these constraints into dynamics, let’s first simplify the notation of

Eq. 3.26, by letting φi = φ
(k+1)
i and f̃i = Miφ

(k)
i + h

(
ad(φ

(k)
i )>Miφ

(k)
i + fbody

(
E

(k)
i

))
. Then we

have Miφi = f̃i, which is a 6× 6 linear system. If we combine all bodies, we get MΦ = f̃, which is

a 6n× 6n linear system, where n is the number of bodies. We can think of this linear system as the

solution to the following quadratic minimization problem:

minimize
Φ

1

2
Φ>MΦ− Φ>f̃. (3.38)

To this quadratic objective, we add the equality constraint equation GΦ = 0, giving us

minimize
Φ

1

2
Φ>MΦ− Φ>f̃

subject to GΦ = 0.

(3.39)

Since the maximal mass matrix, M, is always positive definite, the objective is convex, and using

duality, we can convert this quadratic minimization problem into a single linear system, called a

Karush-Kuhn-Tucker (KKT) system [64],

M G>

G 0


Φ

λ

 =

 f̃

0

 . (3.40)

The top entry in the solution vector, Φ, is the new velocities of all the rigid bodies, and the bottom

entry in the solution vector, λ, is the vector of Lagrange multipliers for the constraints. The joint

reaction forces can be computed as−G>λ/h. For intuition, the top and bottom rows can be rewritten
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separately:

MΦ + G>λ = f̃

GΦ = 0.

(3.41)

The top equation is the original discretized Newton–Euler equation but with constraint forces added,

and the bottom equation is the constraint equation from the joints.

3.11.2 Contact Constraints

First, let’s assume that a single body is colliding with the ground. A collision detector, which

is outside the scope of this document, returns the collision point and the collision normal. Let’s

assume that these are both in world coordinates: 0x and 0n. What we require from the colliding

rigid body is that the velocity of the collision point is positive with respect to the collision normal.

Using the material Jacobian, Eq. 3.13, the velocity of the collision point is

0ẋ = 0
iRΓ(ix) iφi, (3.42)

where ix = i
0E

0x is the collision point in body local coordinates. We want this world velocity to

be positive with respect to the collision normal, so the final constraint is

0n> 0
iRΓ(ix) iφi ≥ 0 or

N iφi ≥ 0,

(3.43)

where N = n> RΓ. In this simple case of a single collision point on a single body, N is a 1× 6

matrix. If we have multiple contact points, we can add more rows to this constraint matrix, with

each row having a slightly different entry because the contact point, ix, is going to be different. If

the collision occurs with other objects in the scene (i.e., not the ground), the collision normal may

also be different. If there are multiple rigid bodies colliding with the world, then N will be of size

m× 6n, where m is the total number of collisions, and n is the number of rigid bodies.
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Now let’s see how we handle collisions between bodies i and j. What we do now is to constrain

the relative velocity between the colliding bodies. The collision detector (usually) doesn’t know

whether things are moving, so it will just return a list of collision points and normals as before.†

As before, we have collision point 0x and normal 0n. The relative velocity, 0vrel, between the two

points in contact, expressed in world coordinates, is

0vrel = 0
iRΓ(ix) iφi − 0

jRΓ(jx) jφj, (3.44)

where ix = i
0E

0x and jx = j
0E

0x. We want this relative velocity to be positive with respect to the

collision normal: 0n> 0vrel ≥ 0. In matrix form, we have the following:

(
0n> 0

iRΓ(ix) − 0n> 0
jRΓ(jx)

) iφi

jφj

 ≥ 0. (3.45)

Each collision between bodies takes two block columns (12 columns total) of the C matrix. By

combining all collisions into the contact constraint matrix, we can write CΦ ≥ 0. For an example

filling pattern, see Eq. 3.37.

By adding the constraint to Eq. 3.38, we obtain the following quadratic program:

minimize
Φ

1

2
Φ>MΦ− Φ>f̃

subject to CΦ ≥ 0.

(3.46)

If there are joint constraints as well, we must solve

minimize
Φ

1

2
Φ>MΦ− Φ>f̃

subject to CΦ ≥ 0

GΦ = 0.

(3.47)

†Continuous collision detector also takes into account velocities.
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3.12 Summary

We have presented some background knowledge about maximal coordinates, which is the

foundation of the whole thesis. We started with how to use maximal coordinates (each rigid body

has six degrees of freedom) to represent each rigid body’s position, velocity, force and shown how

to transform those quantities from one frame to another according to the adjoint of the coordinate

transform. Then, we derived and formed the equations of motion and introduced how to apply

different forces and constraints in the system. The basic knowledge of maximal coordinates will

help us derive the reduced approach in the next chapter.
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4. REDUCED COORDINATES*
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Chapter 4

Figure 4.1: In this chapter, we continue the derivation of Jmr based on the maximal coordinates
formulation we presented in the last chapter. Then, we designed and implemented the REDMAX
framework that combined the advantages of both reduced and maximal coordinates. We will show
how flexible it is to incorporate different forces and constraints in both coordinates, which lay the
foundation for incorporating muscles.

In this chapter, we will introduce a new approach, which we call REDMAX, to solve the

differential equations in the dynamic system of articulated rigid bodies in a more flexible way

(highlighted in red in Fig. 4.1). Dynamics with reduced coordinates uses a minimal set of degree of

freedom (DOFs), such as joint angles for revolute joints and relative translations for prismatic joints

to represent the state of the system, while maximal coordinates, which we covered in Chapter 3,

*Part of this chapter is reprinted with permission from Y. Wang, N. J. Weidner, M. A. Baxter, Y. Hwang, D. M.

Kaufman, and S. Sueda, “REDMAX: Efficient & flexible approach for articulated dynamics,” ACM Trans. Graph., vol.

38, Jul. 2019.
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model all six degrees of freedom of each rigid body and need constraints to model joints.

Forward dynamics with reduced coordinates was originally developed for robotics applications

[65, 66]. Unlike the maximal coordinate formulation, which requires 6n degrees of freedom (DOFs)

and 5n constraints (for revolute/hinge joints), the reduced coordinate formulation requires only n

DOFs and no constraints. Initially, linear time algorithm was known only for reduced coordinates,

but Baraff [67] proposed a linear time algorithm that uses maximal coordinates. Baraff [67] argues

that one of the advantages of maximal coordinates is that they’re easier to understand and implement.

“While O(n) inverse reduced-coordinate approaches are easily understood, forward

reduced-coordinate formulations with linear time complexity have an extremely steep

learning curve, and make use of a formidable array of notational tools. The author

admits (as do many practitioners the author has queried) to lacking a solid, intuitive

understanding of these methods.”

Baraff [67] goes on to argue for the use of maximal coordinates, since the resulting KKT matrix

(Eq. 3.40) can be factored in linear time as long as there are no loops. (Loops can be supported

for a small cost.) Baraff [67] does mention an important advantage of using reduced coordinates—

lack of constraint drift. However, combining reduced coordinates with other types of simulation

(e.g., FEM) is again challenging. What we present here is not linear time, but is easy to understand

and implement.

4.1 Updating the Transforms

Now, the main thing we need is a way to map between reduced coordinates and maximal

coordinates since we want to express our system DOFs in reduced coordinates. For now, let’s

assume that we only have revolute (hinge) joints, so our reduced coordinates are composed of a

series of joint angles. We’ll also assume that there are no loops in the mechanism. Let qr, q̇r, and

q̈r be the reduced position, velocity, and acceleration. As before, for maximal coordinates, we’ll

also use E, φ, and φ̇ for individual rigid bodies, but we’ll use qm, q̇m, q̈m, for the stacked vectors of

all rigid bodies. Our goal here is to find a Jacobian, Jmr, that maps reduced coordinates to maximal
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coordinates:

q̇m = Jmrq̇r. (4.1)

Once we derive this Jacobian, we will be ready to start working out the dynamics in reduced

coordinates. We start with the Newton–Euler equations of motion of rigid bodies in maximal

coordinates Eq. 3.21. Instead of a single body, assume we have a system of bodies in the matrix

form Mmq̈m = fm, where fm contains all forces including Coriolis forces. This system has 6n

degrees of freedom, since it is in maximal coordinates. Using the Jacobian in Eq. 4.1, we can

convert this into reduced coordinates. First, we need the mapping between reduced and maximal

accelerations:

q̈m = J̇mrq̇r + Jmrq̈r. (4.2)

Therefore, we need not only the Jacobian, J, but also its time derivative, J̇.

Incidentally, the reason inverse dynamics is easier than forward dynamics can be seen by looking

at f = Mq̈. In inverse dynamics, we are given q̈ and solve for f, whereas in forward dynamics, we

are given f and solve for q̈. Therefore, with inverse dynamics, we need to know how to multiply

by the mass matrix, M, whereas with forward dynamics, we need to know how to multiply by the

inverse mass matrix, M−1, or solve with the mass matrix.

Let’s take a closer look at the Jacobian. The Jacobian is easier to understand in terms of

velocities, but we’ll start with positions. We’ll first assume that the joint hierarchy forms an acyclic

graph, i.e., a tree. If the system has loops, we first need to break them so that we get a spanning

tree, and we will put these loops back later with constraints in §4.6.4. In a tree, each node only has

one parent, with the root node having a null parent. So, we can assume that there is a one-to-one

mapping between a body and a joint, and therefore we can use “body” and “joint” interchangeably.

Joints and bodies always come in pairs, and for each pair, the body is always understood to be

the child body connected to the joint. We will use the notation B0, B1, · · · , Bi for bodies and

J0, J1, · · · , Ji for joints. Bi is the body attached to joint Ji and vice-versa.

The “world” body and joint, B0 and J0, coincide and are at the world origin. In Fig. 4.2, we have
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J2

J1

B2B1

J0
B0

Figure 4.2: Bodies and joints. Body frames are labeled with ’B’, and joint frames are labeled with
’J’. Bodies are expressed with respect to the world, and joints are expressed with respect to their
parents.

two bodies with their corresponding joints. The body frames are located at the center of mass with

their axes oriented according to the rotational inertia. The joint frames are located at the position

of the joint on the body. With maximal coordinates, we use the configuration of each body with

respect to the world as the DOFs, as indicated by the dotted blue arrows. With reduced coordinates,

we use the relative configuration (e.g., joint angle) between a child and its parent as the DOFs, as

indicated by the dotted red arrows. So we must store the following information when coding:

• Each body i stores 0
Bi
E, the transformation of the ith body with respect to the world. Because

the 0th body is the world, we use 0 instead of B0 for the leading subscript.

• Each joint i stores JpJiE, the transformation of the ith joint with respect to its parent joint. If we

have a serial chain, p = i− 1, but in the general case, p 6= i− 1. We use the convention that

the parent index is always smaller than the child index.

Here, we again used the notation with leading superscript and subscript on E to represent these

transformation matrices. These transformation matrices represent a configuration of the subscript

frame with respect to the superscript frame. In other words, if we have a point Bix stored in Bi’s

coordinate frame, its position in the world coordinate frame is 0x = 0
Bi
E Bix.

Additionally, as we show in Fig. 4.3, we decompose the joint transform into two parts: J i, which

represents where the joint is with respect to its parent at rest; and Qi(qi), which represents the
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J̄2 Q2

Figure 4.3: The transform for joint 2 decomposed into two parts. To go from J2 to J1, first apply
Q2 and then J2.

relative transformation due to the degree of freedom qi. The joint transform is the product of these

two: Ji(qi) = J iQi(qi). J i is constant and is set at initialization time, whereas Qi(qi) changes

at run time depending on the current qi. In the simple case, we only have revolute joints, J i is a

translation matrix, and Qi(qi) is a rotation matrix.

Note that Qi and Ji represent the same frame pictorially—in Fig. 4.3, the purple and red frames

are drawn on top of each other. The difference is in what they are relative to, as shown by the dotted

arrows: Ji is relative with respect to Jp, and Qi is relative with respect to J i. Using the notation

with leading scripts, the transformation of J2 with respect to J1 is J1J2E(q2) = J1
J2
E J2

Q2
E Q2

J2
E, with the

last transform being the identity matrix since Q2 and J2 are equivalent. With the simplified notation,

we write J2(q2) = J2Q2(q2).

The actual formulation for Qi(qi) depends on the joint type. For example, for a revolute joint

about the Z-axis, we have

Qi(qi) = Ji
Qi
E(qi) =



cos(qi) − sin(qi) 0 0

sin(qi) cos(qi) 0 0

0 0 1 0

0 0 0 1


. (4.3)

When we derive the Jacobian, rather than using a rotation matrix directly as above, we will be using

the matrix exponential, since we’ll be working with spatial velocities. The rotation matrix above
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can be written equivalently as

Qi(qi) = exp ([Sqi]) , S =

(
0 0 1 0 0 0

)>
. (4.4)

In other words, the product Sqi gets constructed into a skew symmetric matrix using Eq. 3.6, which

is then exponentiated to construct a transformation matrix. For other types of joints, we get other

expressions for Q and S.

Although not always needed for dynamics calculations, sometimes it is useful to know where

the joint frame is with respect to the world (e.g., drawing the joint on the screen). For a joint i, its

world transformation matrix, 0
Ji
E (i.e., where Ji is with respect to the world frame), can be computed

by chaining the transforms matrices from the root to the joint. For a serial chain, we get

0
Ji
E = 0

J1
E(q1) J1

J2
E(q2) · · · Ji−1

Ji
E(qi)

= J1(q1)J2(q2) · · · Ji(qi)

= J1Q1(q1) J2Q2(q2) · · · J iQi(qi).

(4.5)

In some situations, we also need to compute where the body is with respect to the world (e.g., drawing

the body on the screen or applying a maximal force to the bodies). This can be done by first

computing where the joint is with respect to the world and then right multiplying by Ji
Bi
E, the

transform of Bi with respect to Ji. This represents where the body is with respect to the joint, and is

constant over time.

4.2 Jacobian

We just saw how we compute the transform of the joint frame. To derive the dynamics, we

also need to take into account the velocities. In particular, we need a way to compute the maximal

(body) velocities, since the inertia is stored with respect to maximal coordinates. In this section,

we will now derive the Jacobian to map between maximal and reduced velocities: Φ = Jq̇, where

Φ is the vector of maximal velocities, and q̇ is the vector of reduced velocities. (We wrote this as

q̇m = Jmrq̇r before.)
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Figure 4.4: Velocities of bodies and joints. Joint Ji is between body Bi and its parent body Bi−1.

We’ll use the following notation. An arbitrary body Bi in a tree hierarchy has a parent Bp, with

a joint Ji between them. The joint will be assigned to Bi instead of Bp, since there is a one-to-one

mapping between a body and a joint to the body’s parent. On the other hand, Bp may have multiple

children, so assigning the joint toBp instead of toBi can make the code more complex. For example,

in Fig. 4.4, we have B2 and its parent B1 with J2 between them.

The derivation of the Jacobian will be similar, but different from what we just saw in §4.1. We

start by computing the relative twist between Bp and Bi at Ji. The twists of the two bodies Bp and

Bi represented in Ji’s frame are:

JiφBp = Ji
Bp
Ad BpφBp ,

JiφBi = Ji
Bi
Ad BiφBi . (4.6)

Their difference is the twist of Ji in its own frame:

JiφJi = JiφBi −
JiφBp

= Ji
Bi
Ad BiφBi −

Ji
Bp
Ad BpφBp

= Ji
Bi
Ad BiφBi −

Ji
Bi
Ad Bi

0 Ad
0
BpAd

BpφBp ,

(4.7)

where 0 indicates the world frame. JiBiAd is constant, and is constructed from Ji
Bi
E, which represents

where the i’s body frame is with respect to the joint frame, which is set at initialization. Remember

that in maximal coordinates, we store positions with respect to the world and velocities with respect
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to the body itself. In other words, for each body, we store 0
Bi
E and BiφBi . So in the above expression,

the adjoint matrices of the form 0
Bi
Ad and Bi

0 Ad can be computed easily from 0
Bi
E. We can rearrange

this to solve for Bi’s spatial velocity.

Ji
Bi
Ad BiφBi = Ji

Bi
Ad Bi

0 Ad
0
BpAd

BpφBp + JiφJi

BiφBi = Bi
0 Ad

0
BpAd

BpφBp + Bi
Ji
Ad JiφJi .

(4.8)

What this expression implies is that if we know the parent’s velocity, BpφBp , and the joint’s velocity,

JiφJi , we can compute the child’s velocity, BiφBi . In reduced coordinates, we parameterize JiφJi not

with the full 6 degrees of freedom but with some subset ∈ R6. For example, assuming we’re using

revolute joints about the Z axis, we can write

JiφJi = Sq̇i, S =

(
0 0 1 0 0 0

)>
. (4.9)

We use S here to follow the notation of Park et al. [66] and Kim [61]. S takes on this simple

form for revolute joints, but it gets quite complicated for spherical joints, as we’ll see later in §4.5.

Combining Eq. 4.8 and Eq. 4.9, we get

BiφBi = Bi
0 Ad

0
BpAd︸ ︷︷ ︸

Bi
Bp
Ad

BpφBp + Bi
Ji
Ad S︸ ︷︷ ︸
Bi
Ji
AdS

q̇i (4.10)

This relationship can be recursively applied to get the system Jacobian. Let’s assume we have a

serial chain and use 0, 1, 2, ..., instead of p and i. So we have

B1φB1
= B1

B0
Ad B0φB0

+ B1
J1
AdS q̇1, (4.11)
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but we can assume that the world frame is stationary, so B0φB0
= 0. Continuing recursively,

B2φB2
= B2

B1
Ad B1φB1

+ B2
J2
AdS q̇2

= B2
B1
Ad
(
B1
J1
AdS q̇1

)
+ B2

J2
AdS q̇2

= B2
B1
Ad B1

J1
AdS q̇1 + B2

J2
AdS q̇2,

B3φB3
= B3

B2
Ad B2φB2

+ B3
J3
AdS q̇3

= B3
B2
Ad
(
B2
B1
Ad B1

J1
AdS q̇1 + B2

J2
AdS q̇2

)
+ B3

J3
AdS q̇3

= B3
B2
Ad B2

B1
Ad B1

J1
AdS q̇1 + B3

B2
Ad B2

J2
AdS q̇2 + B3

J3
AdS q̇3.

(4.12)

The pattern here is that initially, B1φB1
is just a function of q̇1, but as we traverse the tree, BiφBi

becomes a function of all the ancestors of i. For a serial chain, this implies a lower triangular matrix.


B1φB1

B2φB2

B3φB3


︸ ︷︷ ︸

q̇m

=


B1
J1
AdS 0 0

B2
B1
Ad B1

J1
AdS

B2
J2
AdS 0

B3
B2
Ad B2

B1
Ad B1

J1
AdS

B3
B2
Ad B2

J2
AdS

B3
J3
AdS


︸ ︷︷ ︸

Jmr


q̇1

q̇2

q̇3


︸ ︷︷ ︸

q̇r

. (4.13)

Note the recursive structure here. To fill a matrix element to the left of the diagonal, we take the

element above and premultiply it by Bi
Bi−1

Ad. As we iterate over all the columns to the left of the

diagonal, what we are doing is that we are backtracing the ancestors all the way to the root. For a

general tree structure, we cannot assume that the row directly above belongs to the parent. Instead,

the parent is on some row above the current row.

The pseudocode of the Jacobian filling function is given in Alg. 1. Remember that the size of the

Jacobian is m× r, the number of maximal DOFs by the number of reduced DOFs. Therefore, the

row are indexed using maximal (body) indices, and the columns are indexed using reduced (joint)

indices. In the pseudocode, the notation J(Bi, Ji) implies using body Bi’s indices for the rows and

joint Ji’s indices for the columns. The function is called in a forward traversal order, starting from

the root joint. With this ordering, the parent is guaranteed to be processed before its children. This
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function takes advantage of the recursive structure of the tree hierarchy—as we traverse through the

ancestors, we use the products already computed by the ancestors. In the following, we use Jij to

denote matrix entries that have already been computed:


B1
J1
AdS 0 0

· · 0

· · ·

⇒


J11 0 0

B2
B1
Ad J11

B2
J2
AdS 0

· · ·

⇒


J11 0 0

J21 J22 0

B3
B2
Ad J21

B3
B2
Ad J22

B3
J3
AdS

⇒


J11 0 0

J21 J22 0

J31 J32 J33

 .

(4.14)

Since this matrix has O(n2) elements, it takes O(n2) time to fill, even with this recursive structure.

If we only need the product of this matrix with a vector, we only need O(n) time, a strategy taken

by the recursive forward dynamics algorithm [65, 66, 61].

Algorithm 1 Filling the Jacobian matrix
1: while forward traversal do . starting with root
2: Bi = Ji’s body
3: J(Bi, Ji) = Bi

Ji
Ad S(qi) . Diagonal element

4: Jp = Ji’s parent joint
5: Bp = Jp’s body
6: Form Bi

Bp
Ad(qi)

7: Ja = Jp . Ji’s ancestor, starting with Ji’s parent
8: while Ja != null do
9: J(Bi, Ja) = Bi

Bp
Ad(qi) J(Bp, Ja) . Off-diagonal element

10: Ja = Ja’s parent joint

4.3 Jacobian Time Derivative

As we saw in Eq. 4.2, we require the time derivative of J, which in turn requires the time

derivative of the adjoint, Ȧd. For the diagonal terms, the derivative is

J̇(i, i) = i
Ji
Ad Ṡ, (4.15)
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which is 0 for revolute joints, since S is constant. (It isn’t 0 for some other types of joints.) For

off-diagonal terms, recall that we have the recurrence relation J(i, a) = i
pAd J(p, a), where p is the

parent of i, and a is an ancestor of i. From this, we see that the derivative is

J̇(i, a) = i
pȦd J(p, a) + i

pAd J̇(p, a). (4.16)

To compute i
pȦd, we use Eq. 3.19 and the identity for taking the derivative of the matrix inverse:

Ȧ−1 = −A−1ȦA−1.

i
pȦd =

d

dt

(
i
0Ad

0
pAd
)

= i
0Ȧd

0
pAd + i

0Ad
0
pȦd

= 0
i Ȧd

−1 0
pAd + i

0Ad
0
pȦd

= −i0Ad 0
i Ȧd

i
0Ad

0
pAd + i

0Ad
0
pȦd.

(4.17)

The function is called in a forward traversal order, starting from the root. In this ordering, the parent

is guaranteed to be processed before its children.

Algorithm 2 Filling the Jacobian matrix and its time derivative
1: while forward traversal do
2: J(i, i) = i

Ji
AdS . Diagonal element

3: J̇(i, i) = i
Ji
Ad Ṡ . Diagonal element

4: ancestor = parent
5: while ancestor != null do
6: J(i, a) = i

pAd J(p, a) . Off-diagonal element
7: J̇(i, a) = i

pȦd J(p, a) + i
pAd J̇(p, a) . Off-diagonal element

8: ancestor = ancestor’s parent
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4.4 REDMAX Dynamics

Now that we have both Jmr and J̇mr, we can finally form the reduced equations of motion.

Combining Eq. 3.21 and Eq. 4.2, we have

Mm

(
Jmr q̈r + J̇mr q̇r

)
= fm

Mm Jmrq̈r = fm −Mm J̇mr q̇r(
J>mrMm Jmr

)
q̈r = J>mr

(
fm −Mm J̇mr q̇r

)
Mrq̈r = fr,

(4.18)

where the reduced mass matrix, Mr = J>mrMm Jmr, and the reduced force vector,

fr = J>mr

(
fm −Mm J̇mr q̇r

)
, are much smaller than their maximal counterparts (1/6 the size for

revolute joints). Furthermore, we don’t require constraints, since the Jacobians automatically take

care of constraints. The last term, −J>mrMm J̇mr q̇r, is the extra quadratic velocity vector that

results due to the change of coordinates [68].

Let’s first try the simple Euler integration scheme from §3.9. The acceleration in Eq. 4.18 is

discretized as

q̈r =
q̇

(k+1)
r − q̇

(k)
r

h
, (4.19)

which results in

Mrq̇
(k+1)
r = Mrq̇

(k)
r + hfr. (4.20)

This is a small, dense linear system that gives the new reduced velocities, q̇(k+1)
r . If desired, the

maximal velocities can be computed using the Jacobian. The reduced positions are integrated as

qr
(k+1) = qr

(k) + hq̇
(k+1)
r .

Often it is advantageous to use a more sophisticated integrator, such as MATLAB’s ode45

integrator, which allows adaptive time steps. To use these general integrators, we must convert a
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2nd order ODE into a system of 1st order ODEs, by stacking the positions and velocities together.

d

dt

qr

q̇r

 =

 q̇r

M−1
r fr

 . (4.21)

An adaptive integrator is much more stable for rigid body dynamics because it takes small time

steps as needed. This is important especially if there is no damping, since even a simple two-link

system can result in chaotic behavior.*

With ode45, integrating Eq. 4.21 gives numerically the same solution as the recursive forward

dynamics method outlined by Kim[61]. Because we need to invert the reduced mass matrix, our

method is O(n3), whereas recursive forward dynamics is O(n). (Somehow, the linear method

automagically computes the product of the reduced mass matrix with the right-hand-side!) Our

method, however, is much simpler to implement, easier to understand, and easier to combine with

deformable object simulations (e.g., FEM).

4.5 Other Joint Types

These are based on the source code by Kim [61].†

4.5.1 Fixed Joint

A fixed joint is used for rigidly attaching two bodies together. Recall that the joint transform is

defined with respect to the parent joint:

j−1
j E = j−1

j E0 Qj(qj), (4.22)

where j−1
j E0 is the initial transform (often a translation), and Qj(qj) is the transform that actually

applies the degrees of freedom of that joint. For a fixed joint, qj = ∅, and Qj(qj) is simply the

4× 4 identity matrix. The joint Jacobian, S, is an empty 6× 0 matrix.

*See a video of a “double pendulum” here: https://youtu.be/U39RMUzCjiU.
†GEAR: Geometric Engine for Articulated Rigid-body simulation https://github.com/junggon/gear
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4.5.2 Prismatic Joint

A prismatic joint allows one degree of translational freedom. Let a represent the axis along

which the joint is able to translate. Then

Qj(qj) =

I aqj

0 1

 , (4.23)

which is a 4× 4 translation matrix. The corresponding joint Jacobian is

S =

0

a

 ∈ R6×1. (4.24)

4.5.3 Planar Joint

A planar joint allows translation in two directions. We assume that the joint is oriented so that

the allowed motion is in the X-Y plane. Then

Qj(qj) =


I 0 qj

0 1 0

0 0 1

 , (4.25)

which is again a 4× 4 translation matrix. The corresponding joint Jacobian is

S =



0 0

0 0

0 0

1 0

0 1

0 0


∈ R6×2. (4.26)
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4.5.4 Translational Joint

A translational joint allows full translation (but no rotation).

Qj(qj) =

I qj

0 1

 , (4.27)

and the corresponding joint Jacobian is

S =

0

I

 ∈ R6×3. (4.28)

4.5.5 Spherical Joint

Representing 3D rotation with reduced coordinates is nontrivial. With any 3-parameter represen-

tation, there will be a singularity somewhere. With more than 3 parameters, we require constraints,

which we will get to in §4.6.4. One option for a 3-parameter rotation representation is Euler angles.

(Another option is exponential coordinates, which we describe later in §4.5.8. We start here with

Euler angles because they’re also used for universal joints, described next in §4.5.6.) Once we

choose a sequence of axes to rotate by (e.g., XZX), we can multiply out the 3 rotation matrices and

obtain a single rotation matrix parameterized by the 3 angles.‡

Recall from Eq. 4.9 that for a revolute joint, S ∈ R6×1, because q ∈ R. For a spherical joint

parameterized by Euler angles, S ∈ R6×3, and q ∈ R3. Intuitively, each column of S is the

derivative of E with respect to q, expressed in local coordinates. In other words, each column i of S

is defined as:

[Si] ≡ E−1 dE

dqi
, (4.29)

where the bracket operator is from Eq. 3.6. (Note the similarity to Eq. 3.8.) By “unbracketing” this

LHS matrix, we obtain the ith column of S. We can simplify this a little bit because only rotations

‡Formulas on Wikipedia: https://en.wikipedia.org/wiki/Euler_angles.
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are involved for a spherical joint. Since E is a rotation matrix for a spherical joint, we can instead

write

[Si] ≡ R>
dR

dq
, (4.30)

where the bracket operator corresponds only to the rotational part, as in Eq. 3.7.

Let’s use XZX Euler angles as a concrete example. The corresponding rotation matrix is:

R =


c2 −s2c3 s2s3

c1s2 c1c2c3 − s1s3 −s1c3 − c1c2s3

s1s2 c1s3 + s1c2c3 c1c3 − s1c2s3

 , (4.31)

where c1 = cos(q1), c2 = cos(q2), etc. Q is then

Q =

R 0

0 1

 . (4.32)

Since q = (q1 q2 q3)> ∈ R3, we take the derivative separately three times to get the three columns

of S. To get the 1st column of S, we take the derivative of R with respect to q1 and premultiply by

R>. After lots of cancellations, the resulting product is a skew symmetric matrix:

R>
dR

dq1

=


0 −s2s3 −c3s2

s2s3 0 −c2

c3s2 c2 0

 . (4.33)

If we “unbracket” this 3× 3 skew symmetric matrix, we obtain a 3× 1 vector. This forms the top

three rows of the 1st column of S. The bottom three rows are zero, because translations are not

parameterized by a spherical joint. Repeating for the 2nd and 3rd rows, we obtain the final form of
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S for a spherical joint parameterized by XZX Euler angles:

S =



c2 0 1

−c3s2 s3 0

s2s3 c3 0

0 0 0

0 0 0

0 0 0


. (4.34)

For this joint Jacobian, the time derivative, Ṡ, is nonzero, and is needed for the computation of J̇:

Ṡ =



−s2q̇2 0 0

s3s2q̇3 − c3c2q̇2 c3q̇3 0

c2s3q̇2 + s2c3q̇3 −s3q̇3 0

0 0 0

0 0 0

0 0 0


. (4.35)

4.5.6 Universal Joint

A universal joint allows bending in X and Y but no twisting along Z. We start with the rotation

matrix corresponding to the XYZ Euler angles:

R =


c2c3 −c2s3 s2

c1s3 + s1s2c3 c1c3 − s1s2s3 −s1c2

s1s3 − c1s2c3 s1c3 + c1s2s3 c1c2

 , (4.36)
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where c1 = cos(q1), c2 = cos(q2), etc. We then fix the third angle at 0, so that c3 = 1 and s3 = 0.

This gives us

R =


c2 0 s2

s1s2 c1 −s1c2

−c1s2 s1 c1c2

 . (4.37)

Q is then

Q =

R 0

0 1

 . (4.38)

The joint Jacobian, S, is going to be a 6× 2 matrix. As with the spherical joint, to get the 1st

column of S, we take the derivative of R with respect to q1 and premultiply by R>. After some

cancellations, we get a skew symmetric matrix, from which the angular elements are extracted into

the first column of S. We repeat this for the second column, and the resulting matrix is

S =



c2 0

0 1

s2 0

0 0

0 0

0 0


. (4.39)

The time derivative of the joint Jacobian is

Ṡ =



−s2q̇2 0

0 0

c2q̇2 0

0 0

0 0

0 0


. (4.40)
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4.5.7 Revolute joint

Because revolute joints are one of the simplest and most useful joints, we used it as an introduc-

tory example in §4.2. Here, we replicate the derivations for completeness. We will assume that the

joint allows bending along the Z axis.

Q(q) = exp ([Sq]) =



cos(q) − sin(q) 0 0

sin(q) cos(q) 0 0

0 0 1 0

0 0 0 1


, S =



0

0

1

0

0

0


. (4.41)

4.5.8 Spherical Joint with Exponential Coordinates

No matter which 3-parameter representation we choose for a spherical joint, there is going to

be a singularity somewhere. We could alternatively use a quaternion, but then we would need to

add a constraint to keep the quaternion be of unit length. With Euler angles, to stay away from

singularities, we need to switch the coordinate chart on the fly (e.g., between ZYX and ZYZ). With

exponential coordinates [69, 70], we also need to reparameterize, but we do not need to keep track

of the coordinate chart.

Let q ∈ so(3) (can also be thought of as R3) be the DOF of the spherical joint. Recall that every

rotation matrix can be expressed as a matrix exponential of a skew symmetric matrix, and Q is then

R = exp([q]), Q =

R 0

0 1

 . (4.42)

The joint Jacobian, S, is computed using the derivative formula described by Gallego and Yezzi
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[70]. The derivative of R with respect to q is a 3× 3× 3 tensor, where each 3× 3 slice is given by

∂R

∂qi
=
qi[q] + [[q](I − R)ei]

q>q
R, (4.43)

where ei is the ith standard basis in R3, and I is the identity matrix. If ‖q‖ < ε, then we must take

the limit as q→ 0, which gives us R = I , and ∂R/∂qi = [ei]. Each column of the joint Jacobian is

then

[Si] = R>
∂R

∂qi
. (4.44)

The bracket around Si implies that we need to unbracket the RHS to get each column of S. By

contracting the 3× 3× 3 tensor ∂R/∂q by q̇, we can compute the time derivative of the rotation

matrix, Ṙ, which is needed for Ṡ:

Ṙ =
∑
i

∂R

∂qi
q̇i. (4.45)

To aid in the derivation of Ṡ, we first partition the derivative as

∂R

∂qi
= AiR, Ai = (Bi + Ci)d, Bi = qi[q], Ci = [[q](I − R)ei], d =

1

q>q
. (4.46)

Then each column of Ṡ can be expressed as

[
Ṡi

]
= Ṙ

>
AiR + R>ȦiR + R>AiṘ

Ȧi =
(
Ḃi + Ċi

)
d+ (Bi + Ci) ḋ

Ḃi = q̇i[q] + qi[q̇]

Ċi =
[
[q̇](I − R)ei − [q]Ṙei

]
ḋ =
−2q>q̇

(q>q)2
.

(4.47)

Quoting Grassia [69], “The exponential map has singularities on the spheres of radius 2nπ (for

n = 1, 2, 3, . . .). This makes sense, since a rotation of 2π about any axis is equivalent to no rotation

at all—the entire shell of points 2π distant from the origin (and 4, etc.) collapses to the identity in
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SO(3).” They then show that a good way to avoid singularities is to check if ‖q‖ is close to 2π and

if so, reparameterize as q = (1− 2π/‖q‖)q. Whenever q is reparameterized, we must also update q̇,

S, and Ṡ. To do so, we first recompute S with Eq. 4.44 using the reparameterized q. Then, we can

compute the new velocities as q̇ = S−1Sprevq̇prev. Finally, we can compute Ṡ using Eq. 4.47 with

the new values of q and q̇.

4.5.9 Composite Joint

In a composite joint, two joints are composed together: Q = Q1Q2. This can be interpreted as a

chaining of two joints, with a massless body in between, with 1 as a parent of 2. The corresponding

joint Jacobian is

S =

(
2
1AdS1 S2

)
∈ R6×(n1+n2), (4.48)

where n1 and n2 are the number of DOFs of joints 1 and 2, respectively, and 2
1Ad is the 6× 6

adjoint matrix that transforms from joint 1’s coordinate space to joint 2’s coordinate space. The

time derivative of the right term, S2, is simply Ṡ2, which is computed by joint 2. The time derivative

of the left term is
d

dt

(
2
1AdS1

)
= 2

1ȦdS1 + 2
1Ad Ṡ1. (4.49)

To compute 2
1Ȧd, note that joint 2 stores its transform with respect to joint 1 (child with respect to

parent), which is 1
2Ad. The transform of the parent with respect to to the child involves the inverse,

and so we have

2
1Ȧd = −2

1Ad
1
2Ȧd

2
1Ad Using the identity for the derivative of the inverse

= −2
1Ad

1
2Ad ad

(
2φ2

)
2
1Ad Using Eq. 3.20 (4.50)

= −ad(S2q̇2) 2
1Ad.
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The twist of joint 2, 2φ2, is the spatial velocity of 2 with respect to 1, which is the product S2q̇2. For

example, if joint 2 is a translational joint, then

S2q̇2 =

 0

q̇2

 ∈ R6, (4.51)

which is a translation-only twist. Combining Eq. 4.48, Eq. 4.49, and Eq. 4.50, the time derivative of

S is, therefore,

Ṡ =

(
−ad(S2q̇2) 2

1AdS1 + 2
1Ad Ṡ1 Ṡ2

)
. (4.52)

Composite joints can be chained together. For example, a composite joint of three joints can be

expressed as Q = Q1(Q2Q3).

4.5.10 2D Free Joint

A 2D free joint is a joint that is completely unconstrained in 2D. This is useful if we want a

structure that is not affixed to the ground, in which case the root joint will be implemented as a

free joint. To implement a 2D free joint, we concatenate a X-Y planar joint and a Z revolute joint

together into a composite joint:

Q = Q1Q2, (4.53)

where Q1 = Qplanar and Q2 = Qrevolute. Their corresponding joint Jacobians are:

S1 =



0 0

0 0

0 0

1 0

0 1

0 0


, S2 =



0

0

1

0

0

0


, (4.54)
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and Ṡ = 0 for both. After some simplification, the Jacobian for the 2D free joint is then

S =

(
2
1AdS1 S2

)
=



0 0 0

0 0 0

0 0 1

Qxx
2 Qyx

2 0

Qxy
2 Qyy

2 0

Qxz
2 Qyz

2 0


. (4.55)

The bottom three rows of the first column contain the 1st row of the Q2 matrix, and the bottom three

rows of the second column contain the 2nd row of the Q2 matrix.

4.5.11 3D Free Joint

A 3D free joint is a joint that is completely unconstrained in 3D. This is useful if we want a

structure that is not affixed to the ground, in which case the root joint will be implemented as a free

joint.

To implement a 3D free joint, we concatenate a translational joint and a spherical joint together

into a composite joint:

Q = Q1Q2, (4.56)

where Q1 = Qtranslational and Q2 = Qspherical. Their corresponding joint Jacobians are:

S1 =

0

I

 , Ṡ1 =

0

0

 , S2 =

Ŝ2

0

 , Ṡ2 =

 ˆ̇S2

0

 , (4.57)

where Ŝ2 implies taking the top 3 rows of S2. (The bottom 3 rows are zeros, since the 2nd joint is a

spherical joint.) After some simplification, the Jacobian is:

S =

(
2
1AdS1 S2

)
=

 0 Ŝ2

R>2 0

 , (4.58)
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where R2 is the rotational part of Q2. The time derivative is:

Ṡ =

(
−ad(S2q̇2) 2

1AdS1 + 2
1Ad�

�7
0

Ṡ1 Ṡ2

)
=

 0 ˆ̇S2

−[Ŝ2q̇2]R>2 0

 . (4.59)

We can also concatenate the two joints in reverse order. This works just as well with ode45,

but with Euler, it may cause more drift.

Q = Q1Q2, (4.60)

where Q1 = Qspherical and Q2 = Qtranslational. The corresponding joint Jacobian is

S =

 Ŝ1 0

−[q2]Ŝ1 I

 ∈ R6×6, (4.61)

where Ŝ1 is the top three rows of S1, and q2 ∈ R3 is the translational DOF of joint 2. The time

derivative of the Jacobian is

Ṡ =

 ˆ̇S1 0

−[q̇2]Ŝ1 − [q2] ˆ̇S1 0

 , (4.62)

where ˆ̇S1 is the top three rows of Ṡ1, and q̇2 is the (translational) velocity of joint 2.

4.5.12 Spline Curve Joint

With REDMAX, it is easy to include more advanced joints, such as the Spline Joint by Lee and

Terzopooulos [71]. We’ll start by reviewing some basic spline concepts. For concreteness, we’ll be

using uniform cubic B-spline curves.

Let C ∈ R3×4 be the matrix of 4 consecutive control points:

C =

(
c1 c2 c3 c4

)
, (4.63)
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and let B ∈ R4×4 be the cubic B-spline basis matrix:

B =
1

6



1 −3 3 −1

4 0 −6 3

1 3 3 −3

0 0 0 1


. (4.64)

Then the spline position at q ∈ [0, 1] can be written as

x(q) = CB~q, ~q =



1

q

q2

q3


. (4.65)

Other types of splines can be swapped in by replacing the basis matrix, B. If there are more than 4

control points, then the matrix C needs to be updated so that the appropriate 4 control points make

up the 4 columns of the matrix, and the spline parameter, q, must always be mapped to be between

0 and 1.

We can expand Eq. 4.65 in terms of the control points, ci:

x(q) = c1B1(q) + c2B2(q) + c3B3(q) + c4B4(q), (4.66)

where the basis function, Bi(q), is the product of the ith row of B and ~q.

The spline joint uses the cumulative form of basis functions, introduced by Kim et al.[72]:

x(q) = c1B̃1(q) + ∆c2B̃2(q) + ∆c3B̃3(q) + ∆c4B̃4(q), (4.67)

where the control point differences are computed as ∆ci = ci − ci−1. By equating Eq. 4.66 and

54



Eq. 4.67, the cumulative basis functions, B̃i(q), are:

B̃4(q) = B4(q)

B̃3(q) = B3(q) +B4(q)

B̃2(q) = B2(q) +B3(q) +B4(q)

B̃1(q) = B1(q) +B2(q) +B3(q) +B4(q) = 1.

(4.68)

The derivatives, B̃′i(q) and B̃′′i (q), are computed by differentiating ~q:

B′(q) =
1

6



−3 3 −1

0 −6 3

3 3 −3

0 0 1




1

2q

3q2

 , B′′(q) =
1

6



3 −1

−6 3

3 −3

0 1


 2

6q

 , (4.69)

where we have removed the zero entries from ~q′ and ~q′′, and the corresponding columns from B.

With the spline joint, instead of control points ci ∈ R3, we have control frames Ci ∈ SE(3). We

use the cumulative form, Eq. 4.67, but instead of subtracting to get the control point differences, we

use the matrix logarithm to get the control frame differences. Following Eq. 4.67, the joint matrix

can be expressed using products of exponentials instead of additions:

Q(q) = C1 exp
(

∆C2B̃2(q)
)

exp
(

∆C3B̃3(q)
)

exp
(

∆C4B̃4(q)
)
, (4.70)

where the control frame differences are computed using logarithms: ∆Ci = log(C−1
i−1Ci).

The recursive method for computing the corresponding joint Jacobian, S = [Q−1(∂Q/∂q)], and

Hessian, ∂S/∂q, are given in the appendix of the spline joints paper [71], which we reproduce

in Alg. 3 for reference. Once we compute ∂S/∂q, Ṡ can be computed using the chain rule:

Ṡ = (∂S/∂q)q̇.
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Algorithm 3 Cubic Spline Joint transform, Jacobian, and Hessian

1: Q = C1 exp(∆C2B̃2(q))
2: S = ∆C2B̃

′
2(q)

3: ∂S/∂q = ∆C2B̃
′′
2 (q)

4: for i = 3, 4 do
5: Qi = exp(∆CiB̃i(q))
6: Q = QQi

7: Adi = Ad(Q−1
i )

8: adi = ad(S)
9: S = ∆CiB̃

′
i(q) + AdiS

10: ∂S/∂q = ∆CiB̃
′′
i (q) + Adi(∂S/∂q + adi∆CiB̃i(q))

4.5.13 Spline Surface Joint

For the spline surface joint (called the multi-DOF spline joint by Lee and Terzopoulos [71]), we

will again use uniform cubic B-splines, and we will limit ourselves to n = 2, which means we have

a tensor product surface:

f(C, q1, q2) = ~q>1 B
>CB~q2, ~qi =

(
1 qi q2

i q3
i

)>
, (4.71)

where B is the spline basis matrix from Eq. 4.64, and C is the 4× 4 matrix of control values. The

derivatives of the tensor product surface are:

∂f

∂q1

= ~q ′>1 B>CB~q2,
∂f

∂q2

= ~q>1 B
>CB~q ′2 , ~q ′i =

(
0 1 2qi 3q2

i

)>
∂2f

∂q2
1

= ~q ′′>1 B>CB~q2,
∂2f

∂q2
2

= ~q>1 B
>CB~q ′′2 ,

∂2f

∂q1q2

=
∂2f

∂q2q1

= ~q ′>1 B>CB~q ′2 ,

~q ′′i =

(
0 0 2 6qi

)>
,

(4.72)

In the multi-DOF spline joint, Lee and Terzopoulos [71] suggest using splines to process the

3 rotational and 3 translational degrees of freedom individually. They also suggest putting the

translational basis in front of the rotational basis, so that the resulting transformation matrix behaves

more intuitively. (I.e., E = TR is more intuitive than E = RT, because the translation values in T
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go directly into the last column of the E matrix rather than being rotated by R. The 6 basis vectors

are then:

ê1 =



0

0

0

1

0

0


, ê2 =



0

0

0

0

1

0


, ê3 =



0

0

0

0

0

1


, ê4 =



1

0

0

0

0

0


, ê5 =



0

1

0

0

0

0


, ê6 =



0

0

1

0

0

0


. (4.73)

The resulting transformation is a spline-weighted product of the matrix exponentials of these basis

vectors:

Q(q) =
6∏

k=1

exp (êkf(Ck, q)) , (4.74)

where Ck ∈ R4×4 is matrix of control values for the kth basis. For example, C1 through C3 are the

x, y, and z positions of the 16 control frames. By multiplying the rotations together, the spline

frame acts as XYZ Euler angles, and so Lee and Terzopoulos [71] warn against gimbal locks. This

should not be a problem as long as the rotations are small (< π/4).

The joint Jacobian, S ∈ R6×2, and Hessian, ∂S/∂q ∈ R6×2×2, can be computed recursively, as

shown in Alg. 4. Once we compute ∂S/∂q, Ṡ can be computed using the chain rule: Ṡ = (∂S/∂q)q̇,

which is a tensor product.

4.6 REDMAX Flexibilility

4.6.1 Joint Stiffness and Damping

Adding joint stiffness and damping is much easier in reduced coordinates than in maximal

coordinates. We’ll use linear stiffness here, but non-linear stiffness can be implemented trivially.

The joint torque due to the stiffness of the joint is

τK = −Kqr, (4.75)
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Algorithm 4 Cubic Spline Surface Joint transform, Jacobian, and Hessian

1: Q = exp(ê1f(C1, q))
2: for i = 1, 2 do
3: Si = ê1∂fi(C1, q) . Si ∈ R6 is the ith column of S; ∂fi = ∂f

∂qi
4: for j = 1, 2 do
5: ∂Sij = ê1∂

2fij(C1, q) . ∂Sij ∈ R6 is the (i, j)th column of ∂S/∂q; ∂2fij = ∂2f
∂qiqj

6: for k = 2, · · · , 6 do
7: Qk = exp(êkf(Ck, q))
8: Q = QQk

9: Adk = Ad(Q−1
k )

10: for i = 1, 2 do
11: adi = ad(Si)
12: Si = êk∂fi(Ck, q) + AdkSi
13: for j = 1, 2 do
14: ∂Sij = êk∂

2fij(Ck, q) + Adk(∂Sij + adiêk∂fj(Ck, q))

where K is the scalar stiffness parameter. We assumed here that the rest state of the joint is at

qr = 0, but again, it is trivial to have other values. This joint torque goes into the appropriate rows

of the reduced force, fr, which can simply be added to the reduced equations of motion (Eq. 4.18):

(
J>mrMm Jmr

)
q̈r = fr + J>mr

(
fm −Mm J̇mr q̇r

)
. (4.76)

Similarly, for joint damping, the torque is

τD = −Dq̇r, (4.77)

where D is the scalar damping parameter.

With linearly implicit Euler integration, we evaluate the force at the next time step by expanding

around the current time step [26]. For the joint stiffness force, we get:

τK
(k+1) = τK

(k) +
∂τK

∂qr

(
q(k+1)
r − q(k)

r

)
= τK

(k) −Khq̇(k+1)
r ,

(4.78)
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since q̇
(k+1)
r =

(
q

(k+1)
r − q

(k)
r

)
/h with implicit Euler. So with linearly implicit Euler, the joint

stiffness force gets an extra “implicit” term that goes on the left hand side. Similarly, for the joint

damping force, we get:

τD
(k+1) = τD

(k) +
∂τD

∂q̇r

(
q̇(k+1)
r − q̇(k)

r

)
= τD

(k) −D
(
q̇(k+1)
r − q̇(k)

r

)
= τD

(k) −Dq̇(k+1)
r − τD

(k)

= −Dq̇(k+1)
r .

(4.79)

So with linearly implicit Euler, the joint damping force gets an “implicit” term that goes on the left

hand side, and completely disappears from the right hand side. By moving all the factors of q̇(k+1)
r

from both forces to the right hand side, we get

(
J>mrMm Jmr + hDr + h2Kr

)
q̇(k+1)
r =

(
J>mrMm Jmr

)
q̇(k)
r +h

(
f(k)
r + J>mr

(
f(k)
m −Mm J̇mr q̇

(k)
r

))
.

(4.80)

For linear stiffness and linear damping (Eq. 4.75 & Eq. 4.77),

Kr = −∂τK

∂qr
=


K1 0 0

0
. . . 0

0 0 Kn

 , Dr = −∂τD

∂q̇r
=


D1 0 0

0
. . . 0

0 0 Dn

 . (4.81)

(Note: sometimes people move the negative signs around to get (M + hD− h2K) on the left hand

side [26].) In general, we can combine the linearly implicit terms for both reduced and maximal

coordinates:

(
J>mr

(
Mm + hDm − h2Km

)
Jmr + hDr − h2Kr

)
q̇(k+1)
r

=
(
J>mrMm Jmr

)
q̇(k)
r + h

(
f(k)
r + J>mr

(
f(k)
m −Mm J̇mr q̇

(k)
r

))
. (4.82)
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4.6.2 Hyper Reduced Coordinates

We can further reduce the degrees of freedom by chaining more Jacobians. For example, let’s

say we have a chain of rigid bodies connected by revolute joints, and we want the joint angle to

be all the same. This can be accomplished by adding constraints as shown in §4.6.4, but if we use

a chained Jacobian, we end up with a single DOF system. The reduced equation of motion from

before, written out in full, is

J>mrMm Jmr q̈r = J>mr

(
fm −MmJ̇mrq̇r

)
, (4.83)

where q̇r contains all of the joint velocities. We now want to apply another Jacobian, so that these

joint angles become the same. This can be expressed using the following relationship:


θ̇1

...

θ̇n

 =


1

...

1

 θ̇

q̇r = JrR q̇R,

(4.84)

where q̇R represents the new (hyper) reduced coordinates. If we define

JmR = Jmr JrR, J̇mR = J̇mr JrR + Jmr J̇rR, (4.85)

then the hyper reduced equation of motion is

J>mRMm JmR q̈R = J>mR

(
fm −MmJ̇mRq̇R

)
. (4.86)

In the following sections, we use lower cased subscripts (e.g., Jmr instead of JmR) to slightly lighten

the notation, but with the understanding that the reduced coordinates can also be hyper reduced.
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4.6.3 Adding Deformable Bodies

One of the strengths of the REDMAX algorithm is the ease in which deformable objects

(e.g., FEM) can be added. Without loss of generality, we show how this can be done with a mass-

spring system. Let a spring be defined by a sequence of nodes connected in series, and let x be the

nodal positions. For each node, the kinetic energy and the gravitational potential energy can be

expressed as

T =
1

2
mẋ>ẋ, V = −mg>x, (4.87)

where m is the mass of the node. This results in mass matrix M = mI and gravity force f = mg.

Between consecutive nodes x0 and x1, the elastic potential energy can be expressed as

V =
K

2
ε2

ε =
l − L
L

l = ‖∆x‖

∆x = x1 − x0,

(4.88)

where K is the stiffness. The corresponding force is the negative gradient of the energy:

f 0 =
Kε

L

∆x

l
, (4.89)

and f 1 = −f 0. These quantities for all of the springs can be collected into a mass matrix Ms and a

force vector fs.

We can combine this with REDMAX by modifying the Jacobian, whose job is to map reduced

coordinates into maximal coordinates. Let xf and xa denote the “free” and “attached” vertices

of the spring. To attach vertices to the rigid bodies, we work in maximal coordinates. The world
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velocity of the attached vertex can be expressed as:

ẋa = RΓ
(
ixa
)︸ ︷︷ ︸

Jam

φi, (4.90)

where R is the rotation matrix of the body, ixa is the position of the attached vertex in body

coordinates, and Γ ∈ R3×6 is the material Jacobian from Eq. 3.13. The time derivative of this

Jacobian, Jam, is:

J̇am = R [ωi] Γ. (4.91)

By collecting all attachment Jacobians into a single global matrix, we obtain Jαm, which

transforms maximal velocities of rigid bodies to velocities of attached vertices. Let qf and qa denote

the concatenation of free and attached vertices. Then we have:


q̇m

q̇a

q̇f

 =


Jmr 0

Jαm Jmr 0

0 I


q̇r

q̇f



q̈m

q̈a

q̈f

 =


J̇mr 0

J̇αm Jmr + Jαm J̇mr 0

0 0


q̇r

q̇f

+


Jmr 0

Jαm Jmr 0

0 I


q̈r

q̈f

 .

(4.92)

The equations above allow us to express the maximal degrees of freedom as a linear function of

the reduced degrees of freedom. By using an identity block to pass through the free vertices of the

deformable bodies, we can use them as the reduced DOFs but at the same time create maximal

quantities (mass matrix, force vector, etc.) for them, without the hassle of reduced coordinates.

Let qM be the concatenation of the maximal degrees of freedom: qm, qa, and qf , and let qR be

the concatenation of the reduced degrees of freedom: qr and qf . Then defining JMR and J̇MR
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appropriately, Eq. 4.92 can be expressed compactly as

q̇M = JMRq̇R

q̈M = J̇MRq̇R + JMRq̈R.

(4.93)

We define the maximal mass matrix and the maximal force vector as

M =


Mm 0 0

0 Ma 0

0 0 Mf

 , fM =


fm

fa

ff

 , (4.94)

and the resulting reduced equation of motion is

J>MR M JMR q̈R = J>MR

(
fM −M J̇MR q̇R

)
, (4.95)

where MR = J>MR M JMR and fR = J>MR

(
fM −M J̇MR q̇R

)
are the reduced mass matrix and force

vector, respectively. In the following sections, we use lower cased subscripts (e.g., Jmr instead of

JMR) to slightly lighten the notation, but it is important to note that “reduced coordinates” can mean

rigid bodies with or without an attached deformable bodies.

4.6.4 Adding Constraints

The Jacobian-based dynamics (Eq. 4.18) and recursive forward dynamics [65, 66, 61] need

constraints to support closed loops. These “loop-closing” constraints are implemented in a similar

fashion as the joints in maximal coordinate dynamics (§3.11.1). We’re looking for G such that

GΦ = 0.

For example, let’s consider forming a four-bar linkage by adding a loop-closing constraint to a

system composed of four bodies in a series. The last body will be attached to the first body using a

constraint. The world velocities of these two bodies, B and A, are

0ẋA = 0
ARΓ(AxA) AφA,

0ẋB = 0
BRΓ(BxB) BφB, (4.96)
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where AxA and BxB are the positions of the constrained point expressed in A and B, respectively.

We want these two velocities to be equal. We must be careful though, because if we simply form a

constraint by equating these two, we get a singular system. To see why, consider the number of

degrees of freedom and constraints in the system. Before adding the loop-closing constraint, the

four-bar linkage has 3 degrees of freedom. If we add a 3-dimensional constraint, how many actual

degrees of freedom are we left with? What would happen if we apply this 3D constraint is that we

get a singular matrix with a 1D nullspace that corresponds to the actual, single degree of freedom of

a four-bar linkage. Resolving this numerically is rather expensive, but fortunately there is a trivial

way to get rid of this nullspace beforehand. If we look at the axis of rotation of the joint attached to

A, we can obtain the two directions orthonormal to A’s hinge axis. (B would work just as well.)

Let 0a be the axis of rotation in world space. We can create two directions orthonormal to 0a as

follows (dropping the superscript for brevity).

v1 = (1 0 0)> // put 1 in the location with the smallest element in abs(a)

v2 =
a× v1

‖a× v1‖

v1 =
v2 × a
‖v2 × a‖

.

(4.97)

Then 0v1 and 0v2 are both vectors in world space orthogonal to 0a and to each other. The constraint

we want is that the relative velocity must be equal along these two directions.

0v>1

0v>2

(0
ARΓ(AxA) − 0

BRΓ(BxB)

)
︸ ︷︷ ︸

Gm

AφA

BφB


︸ ︷︷ ︸

q̇m

=

0

0

 . (4.98)

If we are working at the acceleration level, we need to take the time derivative, like we did for

the Jacobian in Eq. 4.2. The constraint on the acceleration is

Gmq̇m = 0 → Ġmq̇m + Gmq̈m = 0. (4.99)
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For the Gm in Eq. 4.98, the only factors that depend on time are the two rotation matrices. Taking

their time derivative as in Eq. 3.9,

Ġm =

0v>1

0v>2

(0
AR [AωA] Γ(AxA) − 0

BR [BωB] Γ(BxB)

)
. (4.100)

Gm and Ġm are both 2× 12, and they get placed into global constraint matrices as discussed in

§3.11.1. To apply these constraints, we form a KKT system as in Eq. 3.40. Because the constraint

is being applied on the maximal coordinates, q̇m, we must right-multiply the constraints by Jmr

first to convert them to reduced coordinates. The constrained dynamics equation is then

 Mr J>mr G
>
m

Gm Jmr 0


q̈r

λ

 =

 fr

−
(
Ġm Jmr + Gm J̇mr

)
q̇r

 . (4.101)

If, instead, we are working at the velocity level, the constraint is GmJmrq̇r = 0, and so we get

 Mr J>mr G
>
m

Gm Jmr 0


q̇

(k+1)
r

λ

 =

Mrq̇
(k)
r + hfr

(k)

0

 . (4.102)

If, instead, the constraint applies directly to the reduced coordinates rather than maximal coordi-

nates, then the KKT system does not need the Jmr factors in the constraints. At the acceleration

level, Mr G>r

Gr 0


q̈r

λ

 =

 fr

−Ġrq̇r

 , (4.103)

and at the velocity level,

Mr G>r

Gr 0


q̇

(k+1)
r

λ

 =

Mrq̇
(k)
r + hfr

(k)

0

 . (4.104)

Sometimes we may want both types of constraints: those acting on maximal coordinates, and
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those acting on reduced coordinates. Then substituting

Ḡr =

 Gr

Gm Jmr

 , ˙̄Gr =

 Ġr

Ġm Jmr + Gm J̇mr

 (4.105)

into Eq. 4.103 will automatically apply both types of constraints. When expanded out, the expression

turns into:
Mr G>r J>mr G

>
m

Gr 0 0

Gm Jmr 0 0




q̈r

λr

λm

 =


fr

−Ġrq̇r

−
(
Ġm Jmr + Gm J̇mr

)
q̇r

 . (4.106)

Quadratic programs for inequality constraints can be constructed similarly. In the most gen-

eral case, we have inequality and equality constraints on both maximal and reduced coordinates,

represented by constraint matrices Cm, Cr, Gm, and Gr, respectively. In addition to Eq. 4.105 and let

C̄r =

 Cr

Cm Jmr

 , ˙̄Cr =

 Ċr

Ċm Jmr + Cm J̇mr

 . (4.107)

Then the resulting quadratic program is

minimize
q̈r

1

2
q̈>r Mrq̈r − q̈>r fr

subject to C̄rq̈r ≥ − ˙̄Crq̇r

Ḡrq̈r = − ˙̄Grq̇r.

(4.108)

4.6.5 Hybrid Dynamics

In forward dynamics, we compute the accelerations given the forces, and in inverse dynamics,

we compute the forces given the accelerations. In the REDMAX formulation, it is easy to mix

these two into “hybrid” dynamics. Let p indicate the subset of joints whose motion are prescribed.
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Then we can apply an equality constraint on the prescribed accelerations: pGr q̈r = pq̈r, where pGr

contains the identity matrix in the appropriate columns so that the prescribed joints will be affected

(note pĠr = 0). The KKT system is then

Mr Ḡ
>
r

Ḡr 0


q̈r

λ

 =

 fr

pq̈r − ˙̄Gr q̇r

 , (4.109)

where we have included the − ˙̄Gr q̇r term since other constraints may have non-zero ˙̄Gr. The

required joint torques can be computed with the resulting Lagrange multiplier: pτ = pG>r
pλ, where

pGr and pλ are the appropriate rows and columns of Gr and λ, respectively. At the velocity level,

Mr Ḡ
>
r

Ḡr 0


q̇

(k+1)
r

λ

 =

Mrq̇
(k)
r + hfr

(k)

h pq̈r + pGrq̇
(k)
r

 . (4.110)

The 2nd row of the KKT system, Ḡrq̇r = h pq̈r + pGrq̇
(k)
r , contains an extra term on the right hand

side because the joint acceleration, rather than velocity, is being prescribed. It is also possible to

prescribe the velocity by replacing the 2nd row with pGr q̇r = pq̇r.

4.7 Summary

In this chapter, we designed and implemented the REDMAX framework to simulate articulated

rigid body. We showed how we use the reduced approach to get a denser and smaller matrix to

simulate the dynamics of the system. First, we describe the formulation of our framework, which

exposes all the reduced and maximal quantites. Then, we presented how flexible it is to apply

implicit and explicit forces, and bilateral and unilateral constraints on both reduced and maximal

coordinates. Finally, we have shown how to incorporate different constraints by forming a quadratic

program, and use them to handle different applications, such as closing loops, attaching FEM nodes

to bodies, and joint limits.
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5. REDUCED MUSCULOTENDONS*
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Chapter 5

Figure 5.1: In this chapter, we will focus on the last component of kinematic hierarchy, which
is to derive the mapping between the 3D coordinates of the muscle mass points and those of
the origin/insertion points, represented by Jαx. By chaining the previously introduced Jacobian
mappings and Jαx together, we can express the motion of the musculotendons in terms of the motion
of the skeletal joint and drive the simulation using only the reduced coordinates.

In this chapter, we will introduce a new approach to incorporate the effects of muscle inertia into

efficient musculoskeletal simulations (highlighted in red in Fig. 5.1). This new approach extends

on the Jacobian mapping Jmr developed in REDMAX, and is able to handle a wide variety of

musculotendon paths, including straight, polyline, and curved paths over wrapping surfaces using

our new Jacobians Jαm. We will also demonstrate how a novel neural network solution can be

employed to solve the difficult challenge of Jacobian discontinuity, which arises in certain types of

*Part of this chapter is reprinted with permission from Y. Wang, J. Verheul, S.-H. Yeo, N. K. Kalantari, and S.

Sueda, "Differentiable simulation of inertial musculotendons," ACM Transactions on Graphics, vol. 41, Nov. 2022.
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muscle path.

5.1 Types of musculotendon paths

To aid us in the derivation, we categorize musculotendon paths into three types (Fig. 1.5): (Type

I) straight-line paths; (Type II) polyline paths through a sequence of points; and (Type III) all

others, but most importantly, curved paths wrapping over smooth surfaces. For Type I, we derive

the Jacobian in a straight-forward manner. For Type II, we extend the Eulerian-on-Lagrangian

framework [15, 16] to model the sliding motion of the musculotendon material through a series of

points. For Type III, we use neural networks.

5.2 Jacobian discontinuity

Some musculotendons are constructed as 3D paths that wrap around smooth surfaces. To derive

the Jacobians for these types of paths, we use neural networks. The reason for using neural networks

may not be immediately obvious, since existing muscle routing algorithms are highly efficient

[17, 19, 44, 20]. With some fairly minor modifications, we could use the output of these libraries to

compute the Jacobians with finite differencing, which would not be prohibitively expensive due to

the efficiency of these libraries. However, they cannot be used directly in our framework for inertial

muscles because they all suffer from a massive problem: Jacobian discontinuity.

As an illustration of this problem, suppose that we have a double pendulum with a musculotendon

shown in Fig. 1.6a. As the pendulum swings due to the force of gravity acting on both the bones and

the musculotendon, the path of the musculotendon attaches and detaches from the wrapping surface.

If we use a Jacobian computed using existing wrapping surface libraries and finite differencing, we

observe discontinuities in the energy plot, as shown in Fig. 1.6b. These energy jumps occur because

the velocities of the muscle mass points undergo sudden changes, even when the velocities of the

joints vary smoothly.

Fig. 1.6d shows the x-component of five of the mass points (each with its own color), as a

function of the distal joint angle, zoomed in near a discontinuity. The values computed with an

existing wrapping surface library are shown with solid lines, and ours with dotted lines. Fig. 1.6e
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shows the corresponding derivatives. The jump in the value of the Jacobian creates sudden changes

in the velocities of the mass points, which in turn creates energy jumps in the simulation.

On the other hand, our neural network approach generates the smooth Jacobian plots in Fig. 1.6e,

while keeping the position plots in Fig. 1.6d virtually indistinguishable from the output of the library

code. This results in a smooth energy trajectory shown in Fig. 1.6c.

One way to deal with the discontinuity is to detect these sudden state changes and apply a manual

fix, e.g., by computing the pre- and post-collision Jacobians and running a nonlinear optimization to

compute the velocities that minimize the change in energy. However, such approaches are tricky to

incorporate into implicit integrators, such as SDIRK2 [73], as well as into differentiable simulation

techniques, such as the adjoint method [74, 75, 76], which our method supports naturally without

any changes to the framework.

We instead choose to smooth the discontinuity. Smoothing would be easy with a uni-articular

muscle spanning a hinge joint. As an offline process, we could pre-sample many points within the

range of motion of the joint, and then apply a smoothing filter over the samples. During runtime, we

could then use the filtered values to construct the Jacobian. However, high-dimensional smoothing

would be required with a bi- or multi-articular muscle, as well as with a uni-articular muscle with a

spherical joint. Therefore, we use neural networks for this high-dimensional smoothing problem.

This approach is simple to implement and can be used with any existing muscle routing libraries.

5.3 Methods

We use the reduced coordinates, qr, of the articulated rigid body system representing the skeletal

joints as the degrees of freedom (DOFs) of the system. To take into account the inertia of the muscles

as they slide with respect to the bones, we insert mass points along the path of the musculotendon.

These mass points are fixed at a certain percentage length α along the path (i.e., fixed at certain

texture coordinates; see Fig. 5.2b); however, as the skeleton moves, these mass points move in world

space, since each musculotendon is assumed to be frictionless—the path moves such that its length

is minimized.

In this section, we derive the Jacobian Jαr that maps the change in the reduced coordinates of
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the articulated rigid body system to the change in the 3D world coordinates of these muscle mass

points:

ẋα = Jαrq̇r, (5.1)

where q̇r is the stacked vector of reduced (joint) velocities, and ẋα is the stacked vector of muscle

mass point velocities in world space. The size of q̇r depends on the joint types. For example, if all

of the joints are revolute, then q̇r ∈ Rn, and if all of the joints are spherical, then q̇r ∈ R3n, where

n is the number of joints. The multiplication by the Jacobian Jαr, which depends nonlinearly on qr,

produces the 3D world velocities of muscle mass points ẋα ∈ R3m, where m is the number of mass

points.

We assume that we already have access to the Jacobian Jmr (and its time derivative J̇mr) that

maps between the reduced (joint) velocities and the maximal (body) velocities of the articulated

rigid body system [28, 77]:

q̇m = Jmrq̇r, (5.2)

where q̇m is the stacked vector of maximal velocities. Unlike reduced velocities, the size of the

maximal velocity vector does not depend on the joint type: q̇m ∈ R6n. In our work, we stack the

rotational velocity, ω, and the translational velocity, ν, together to form the maximal velocity, so

that for each body, we have:

q̇m = φ =

ω
ν

 , (5.3)

with both ω and ν expressed in body-local coordinates [78].* In the rest of this section, we sometimes

use φ as an alternative symbol for the maximal velocity (twist) of a single body.

The main technical contribution of our work is the derivation of Jacobian Jαm (and its time

derivative J̇αm) that maps the maximal velocities to the muscle mass point velocities (details in

§5.3.1, §5.3.2, and §5.3.3). Once this Jacobian is derived, to compute the world velocities of the

muscle mass points from the reduced velocities of the joints, we chain it together with Jmr to form

*Other conventions can be used; the derivations will need to be accordingly modified.
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the final Jacobian we are after:

Jαr = JαmJmr. (5.4)

Armed with this Jacobian, we can compute the 3D world accelerations of the muscle mass points as:

ẍα = J̇αrq̇r + Jαrq̈r

J̇αr = J̇αmJmr + JαmJ̇mr.

(5.5)

Plugging this into the equations of motion of the mass points Mαẍα = fα and applying the principle

of virtual work, we obtain:

J>αrMαJαrq̈r = J>αr

(
fα −MαJ̇αrq̇r

)
. (5.6)

Here, Mα ∈ R3m×3m is the constant diagonal inertia matrix of the m muscle mass points, and

fα ∈ R3m is the force of gravity acting on these mass points. The muscle activation forces do not

directly apply forces to these mass points. Instead, in order to keep our framework compatible

with existing biomechanical simulators, we assume that the activation forces are applied to the

skeleton, which in turn kinematically moves the mass points through the Jacobian Jαr. The last

term in Eq. 5.6, which uses J̇αm, is the quadratic velocity vector (QVV) that results from the partial

derivatives of the kinetic energy [68].

The reduced coordinates of the system also drive the bones, and so combining muscles and

bones, we obtain the final equations of motion of the whole musculoskeletal system in reduced

coordinates:

M̃rq̈r = f̃r (5.7a)

M̃r = J>αrMαJαr + J>mrMmJmr (5.7b)

f̃r = J>αr

(
fα −MαJ̇αrq̇r

)
+ J>mr

(
fm −MmJ̇mrq̇r

)
+ fr, (5.7c)
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where Mm ∈ R6n×6n is the constant diagonal inertia of the n bones,† fm ∈ R6n is the sum of

maximal forces acting on these bones, such as gravity, Coriolis, and muscle activation forces, and

fr is the sum of reduced forces, such as joint torques. We can use any time integrator to step the

system forward in time. In our implementation, we use forward Euler, BDF1, and SDIRK2 [73].

Throughout this section, we will use the concrete running example shown in Fig. 1.5. We will

assume that each joint is a revolute joint, and so the reduced velocity is q̇r = (θ̇A θ̇B θ̇C)> ∈ R3.

The maximal velocity is q̇m = (φA φB φC)> ∈ R18, and Jmr ∈ R18×3. The origin of the

musculotendon is assumed to be on body A, and the insertion on body C. We will also assume

that there is a single muscle with two mass points, so that ẋα ∈ R6, and Jαm ∈ R6×18. The final

Jacobian is Jαr ∈ R6×3. For the Type II muscle, the path point is attached to body B. For the Type

III muscle, the wrapping surface S is defined with respect to body B.

5.3.1 Type I: Straight Line Muscles

We start with the simple case of a straight line muscle between two bodies. We do not claim this

subsection as a contribution, but the derivations and notations introduced here will help us with the

rest of the thesis.

To be explicit, for vectors, we will use a leading superscript to indicate which coordinate space

the vector is defined in, and for matrices, we will use a leading sub/superscript to indicate from

which to which space the matrix transforms a vector. Let Axori be the 3D position of the origin in

the local space of A, and Cxins be the 3D position of the insertion in the local space of C. Then the

world velocities of the origin and insertion can be computed as:

Wẋori = W
ARΓ(Axori)φA,

Wẋins = W
CRΓ(Cxins)φC , (5.8)

where W
XR ∈ SO(3) is the rotation matrix of bodyX (e.g.,A or C), and Γ(x) =

(
[x]> I

)
∈ R3×6

is the material Jacobian matrix for computing the point velocity [78], with [·] the cross-product

matrix. This gives us the following expression for the Jacobian between maximal velocities and

†The maximal inertia is constant because of our choice of body-local coordinates.
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world velocities of the origin/insertion for our concrete running example in Fig. 1.5:

Jxm =

W
ARΓ(Axori) 0 0

0 0 W
CRΓ(Cxins)

 ∈ R6×18. (5.9)

For a muscle mass point α, the world velocity is simply the weighted average of the world

velocities of the origin and the insertion: Wẋα = (1− α)Wẋori + αWẋins. Thus, the Jacobian Jαx is:

Jαx =

(1− α1) I α1 I

(1− α2) I α2 I

 ∈ R6×6, (5.10)

where α1 and α2 are the percentage lengths of the two mass points. The product of these two

Jacobians gives the final Jacobian for Type I muscles: Jαm = JαxJxm ∈ R6×18.

The α value is fixed over time, as well as the origin and insertion positions with respect to their

respective bodies. The time derivative of the Jacobian is then J̇αm = JαxJ̇xm, where

J̇xm =

W
AR [ωA]Γ(Axori) 0 0

0 0 W
CR [ωC ]Γ(Cxins)

 , (5.11)

since Ṙ = R[ω] for maximal velocities in body coordinates [78].

5.3.2 Type II: Path Point Muscles

Some musculotendons are constructed as a polyline going through a sequence of path points. To

deal with these types of muscles, we extend the Eulerian-on-Lagrangian (EOL) strands framework

[15, 16]. Let i = 0, 1, 2, · · · , n+ 1 be the indices of the path points (so that i = 0 corresponds to the

origin, i = n+ 1 corresponds to the insertion, and there are n internal path points). With the EOL

framework, we keep track of not only the world space position and velocity (Lagrangian quantities

xi and ẋi ∈ R3) of the path points, but also the reference space position and velocity (Eulerian

quantities si and ṡi ∈ R) at these path points. This allows us to model the sliding motion of the

underlying strand even when the world positions of the path points are fixed (e.g., if ẋi = 0 but
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ṡi 6= 0, the musculotendon material still moves in world space). Following the work by Sachdeva et

al. [16], we assume that all of the line segments of the polyline share the same strain value, which

allows us to derive a Jacobian that maps from ẋi to ṡi (see Eq. 3 [16]):

Jsx = −L−1∆S∆X̄, (5.12)

where ∆S is a matrix constructed from the Eulerian coordinates si, ∆X̄ is a matrix constructed

from the Lagrangian coordinates xi, and L is constructed from the segment lengths between the

path points.

Since Sachdeva et al. [16] used inextensible EOL strands, they did not need to derive the

time derivative of this Jacobian. However, in this work, the EOL strands are used for extensible

musculotendons; therefore, we must also derive J̇sx. Using the inverse derivative identity for L, we

obtain:

J̇sx = −L−1
(
L̇ Jsx + ∆Ṡ∆X̄ + ∆S∆ ˙̄X

)
. (5.13)

So far, the Jacobians Jsx and J̇sx that we derived cannot be plugged into our system because

they only map between ẋi and ṡi, rather than from q̇m to ẋα. In other words, these Jacobians

only provides the mapping between the Lagrangian and Eulerian velocities of the path points of a

musculotendon, rather than the mapping between the maximal velocities of the skeleton and the

muscle mass point velocities. To tie the Jacobians Jsx and J̇sx to the rest of the system, we introduce

a new notation z that represents the combined Lagrangian/Eulerian coordinates:

zi =

xi

si

 ∈ R4. (5.14)

In the concrete example in Fig. 1.5, which contains a single internal path point,

z = (xori sori x1 s1 xins sins)
> ∈ R12. The musculotendon material cannot flow past the origin or

insertion, so ṡori and ṡins are always zero. Using this notation, the Jacobian that we are after can be

75



written as:

Jαm = JαzJzm ∈ R6×18

J̇αm = J̇αzJzm + JαzJ̇zm.

(5.15)
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(b)

Figure 5.2: (a) An EOL segment: the motion of the mass point xα depends on the motion of
both Eulerian and Lagrangian motions of the path points zi and zi+1. (b) A musculotendon with
one path point between origin and insertion: α represents the percentage length along the whole
musculotendon, whereas β represents the percentage length along each line segment.

The left Jacobian Jαz ∈ R6×12 represents the mapping from the Lagrangian/Eulerian velocities

of the path points to the muscle mass point (Fig. 5.2a). This was already derived by Sueda et al.

[15] (Eq. 4), but we reproduce the expression here, for our concrete example with one path point

and two mass points. The first mass point is between the origin and the path point, and the second

mass point is between the path point and the insertion. Therefore, we get:

Jαz =

(1− β1)I −(1− β1)F1 β1I −β1F1 0 0

0 0 (1− β2)I −(1− β2)F2 β2I −β2F2

 . (5.16)

Here, we used β to represent the percentage location of xα within a particular line segment, as shown

in Fig. 5.2b. F ∈ R3 is the deformation gradient of the line segment: F1 = (x1 − xori)/(s1 − sori)

and F2 = (xins − x1)/(sins − s1). The time derivatives of these quantities, which were not derived

before by Sueda et al. [15], are nevertheless needed for our extensible musculotendons. We list the
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detailed derivations of these derivatives as follows.

5.3.2.1 Derivation of Jsx and J̇sx

Here, we follow the derivation of EOL strands by Sachdeva et al. [16]. Let there be n path

points between the origin and insertion, as shown in Fig. 5.2a. Then there are n+ 1 line segments,

and within each segment i, we define

∆xi = xi+1 − xi, ∆si = si+1 − si. (5.17)

The length of each segment is then

li = ‖∆xi‖, (5.18)

and we further define

∆x̄i =
∆xi
li
. (5.19)

Then we form the following three matrices:

L =



l0 + l1 −l0

−l2 l1 + l2 −l1

−l3 l2 + l3 −l2
. . . . . . . . .

−ln−1 ln−2 + ln−1 −ln−2

−ln ln−1 + ln


∈ Rn×n (5.20)

∆S =



−∆s1 ∆s0

−∆s2 ∆s1

. . . . . .

−∆sn ∆sn−1


∈ Rn×n+1 (5.21)

77



∆X̄ =



−∆x̄>0 ∆x̄>0

−∆x̄>1 ∆x̄>1
. . . . . .

−∆x̄n ∆x̄n


∈ Rn+1×3(n+2). (5.22)

The Jacobian for mapping from the Lagrangian velocities to the Eulerian velocities can be expressed

as:

Jsx = −L−1∆S∆X̄ ∈ Rn×3(n+2), (5.23)

This Jacobian maps the Lagrangian velocities of the n+ 2 points (origin, insertion, and internal path

points) to the Eulerian velocities of just the n internal path points (excluding origin and insertion).

In other words, if we know the Lagrangian velocities of the origin, insertion, and the internal path

points, then we can compute the Eulerian velocities of the internal path points. (The Eulerian

velocities of the origin and insertion are always zero.) The time derivative of the Jacobian is:

J̇sx = −L−1
(
L̇ Jsx + ∆Ṡ∆X̄ + ∆S∆ ˙̄X

)
. (5.24)

To derive these matrix quantities, we use the following scalar and vector quantities.

∆ẋi = ẋi+1 − ẋi (5.25)

∆ṡi = ṡi+1 − ṡi (5.26)

l̇i =
∆x>i
li

∆ẋi (5.27)

∆ ˙̄xi =
(
I−∆x̄i∆x̄>i

) ∆ẋi
li
. (5.28)

5.3.2.2 Derivation of Jαz and J̇αz

As noted in the main text, we use α to denote the percentage length of a mass point along the

whole path, and β to denote the percentage length of the same mass point within the particular line
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segment that the mass point is on. For convenience, at startup, we convert α into its corresponding

Eulerian coordinate s. For example, if α = 0.5 for a mass point, then we set s for this mass point to

be L/2, where L is the total length of the path. Then at runtime, β can be computed from s as

β =
s− s0

s1 − s0

, (5.29)

where s0 and s1 are the Eulerian coordinates of the two path points that contain the mass point.

Given β, we can compute the world position of the mass point as:

Wxα = (1− β)Wx0 + β Wx1. (5.30)

The time derivative of β is

β̇ = − 1

∆s
((1− β)ṡ0 + βṡ1) , (5.31)

where ∆s = s1 − s0, so the world velocity of the mass point becomes:

Wẋα = (1− β)Wẋ0 + β Wẋ1 −
∆x

∆s
((1− β)ṡ0 + βṡ1) , (5.32)

where ∆x = x1 − x0. This was derived earlier by Sueda et al.[15]. To ease the derivation of the

time derivative, we define the deformation gradient of the line segment as:

F =
∆x

∆s
. (5.33)

Rearranging Eq. 5.32, we obtain:

Wẋα =

(
(1− β)I βI −(1− β)F −βF

)
︸ ︷︷ ︸

Jαz



Wẋ0

Wẋ1

ṡ0

ṡ1


. (5.34)
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The time derivative, J̇αz, requires β̇ (Eq. 5.31) as well as Ḟ. The time derivative of the

deformation gradient is

Ḟ = − 1

∆s
(∆ẋ + F∆ṡ) . (5.35)

The right Jacobian Jzm ∈ R12×18 in Eq. 5.15 represents the mapping from the maximal velocities

of the bodies to the Lagrangian/Eulerian velocities of the path points. This can be accomplished by

constructing a Jacobian that passes through the Lagrangian components while hitting the Eulerian

components by Jsx:

Jzm =

 I

Jsx

Jxm, J̇zm =

 0

J̇sx

Jxm +

 I

Jsx

 J̇xm. (5.36)

Jxm in our concrete example with an internal path point xi attached to body B is:

Jxm =


W
ARΓ(Axori)

W
BRΓ(Bxi) 0

0 W
BRΓ(Bxi)

W
CRΓ(Cxins)

 ∈ R6×18. (5.37)

Its time derivative, J̇xm, can be derived similarly as in Eq. 5.11.

5.3.3 Type III: Wrapping Surface Muscles

5.3.3.1 Training the Network

We train the network with origin and insertion positions as the input, rather than the joint angle.

This is an important choice, since it allows the same trained network to be used regardless of: the

type of the joints; how many joints the musculotendon spans; as well as with respect to which

bodies the surface is defined. Using the cylinder wrapping surface as a concrete example, the input
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and output of our network are: 

Sxori

Sxins

α

r


→
(
Sxα

)
, (5.38)

where r is the radius of the cylinder, and α is the percentage length along the musculotendon. The

origin Sxori, insertion Sxins, and the output position Sxα are all defined with respect to the coordinate

space of the wrapping surface S. During training, we use the `2-norm of the difference between the

output of the network and the output of the wrapping library.

We include samples with muscles in both attached and detached states, so that at runtime, we do

not need to detect whether the muscle is in contact or not. Once trained, the network and the original

wrapping library can be used interchangeably, except for one important difference: discontinuity.

To ensure that the network does not contain any discontinuities, we use the hyperbolic tangent

activation function. Furthermore, we throw away the samples near the discontinuity before training.

To detect whether a sample is close to a discontinuity, we use the following simple heuristics for all

wrapping surfaces.

• Compute l, the length of the “wrapped” portion of the path.

• If l = 0, keep the sample.

• Compute L, the length of the whole path.

• If l/L < thresh, discard the sample.

• Otherwise, keep the sample.

Both l and L are readily available from the wrapping surface library. In our current implementation,

we use a threshold of 1%.

The trajectory of xα computed with the library is only C0, but the trajectory computed by the

network is C∞. Despite this difference, the two trajectories are virtually indistinguishable. For
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example, if we closely inspect what happens to xα as it approaches and touches the wrapping

surface, we find that it slightly penetrates the wrapping surface and then floats back to the surface.

We also note that the wrapping surface path is already an approximation of the actual path taken by

a real muscle, and so this slight discrepancy is within reason.

5.3.3.2 Incorporating the Network

We now describe how we use the trained network in our simulation framework. As described

earlier, to maximize generality, we train the network with origin and insertion in the coordinate

space of the wrapping surface as the input: Sxori and Sxins. To compute Wẋα, the world velocity of

the muscle mass point, we first need to transform the network input into S space, use the network,

and then transform the output back to world space.

Like with Type I and Type II muscles, our goal is to derive Jαm and J̇αm. To derive Jαm, we

must express the world velocity of xα using maximal velocities of the bodies. The world velocity of

one mass point can be written as the sum of three terms:

Wẋα = Wvbase + W∆vori + W∆vins. (5.39)

The first term represents the base motion of the mass point as if it were fixed with respect to

S. Since S itself could be moving, even if the mass point is stationary in S, its world velocity

could be nonzero. The second term represents the contribution from the relative motion of the

origin within the S space. Similarly, the third term represents the contribution from the relative

motion of the insertion within the S space. Our goal is to rewrite each of the three terms so that

Wẋα = Jbaseq̇m + Joriq̇m + Jinsq̇m. Then the Jacobian we are after is Jαm = Jbase + Jori + Jins.

For concreteness, we continue to assume that the origin is fixed to A, insertion is fixed to C, and

the surface S is fixed to B (see Fig. 1.5). The first term in Eq. 5.39 is the motion of the mass point
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assuming that it is fixed in S. If we convert this to body B’s space, we get:

Wvbase = W
SRΓ(Sxα)φS

= W
BRΓ(BSE

Sxα)φB,

(5.40)

where B
SE is the transformation matrix of S with respect to B, which is fixed over time. The

Jacobian for this term, assuming there are two mass points (Fig. 1.5), is then

Jbase =


0 W

BRΓ(BSE
Sxα1) 0

0 W
BRΓ(BSE

Sxα2) 0

 ∈ R6×18, (5.41)

where Sxα1 and Sxα2 are the values returned from the network.
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C

Figure 5.3: Coordinate spaces for a wrapping surface muscle. A contains the origin, C contains the
insertion, and B contains the wrapping surface S. The S coordinate space (not drawn in this figure)
moves rigidly with B.

To compute Jori, we first need the relative velocity of the origin from point of view of the surface.

To do so, we must take into account the relative motions of the coordinate spaces, shown in Fig. 5.3.

Since the origin is attached to A, we can compute its world velocity Wẋori using Eq. 5.8. What we

are after is the relative velocity of the origin if we temporarily imagine frame B to be stationary and
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transfer its motion to frame A. In other words, we subtract from Wẋori the hypothetical velocity of

the origin attached to body B:

Wvrel
ori = W

ARΓ(Axori)φA − W
BRΓ(BAE

Axori)φB, (5.42)

where B
AE = W

BE
−1 W

AE, formed from the current configurations of bodies A and B. We then rotate

this into surface space, hit it with the network Jacobian, and then rotate back to world:

W∆vori = W
SR

SJNN
αo

S
WR

Wvrel
ori. (5.43)

The network Jacobian, SJNN
αo , is computed with backward differentiation of the network. Given that

the input and output of the network are in S space, the network Jacobians are also in S space,

SJNN
αo =

d Sxα
d Sxori

, SJNN
αi =

d Sxα
d Sxins

. (5.44)

Since Sxα , Sxori, and Sxins are all in R3, these network Jacobians are 3× 3 matrices.

Combining Eq. 5.42 and Eq. 5.43 and extracting out the maximal velocities φA and φB, the

Jacobian Jori for the concrete running example becomes:

Jori =


W
SR

SJNN
α1o

S
WR

W
ARΓ(Axori) 0 0

W
SR

SJNN
α2o

S
WR

W
ARΓ(Axori) 0 0



−


0 W

SR
SJNN

α1o
S
WR

W
BRΓ(BAE

Axori) 0

0 W
SR

SJNN
α2o

S
WR

W
BRΓ(BAE

Axori) 0

 ∈ R6×18.

(5.45)

84



The Jacobian Jins is derived similarly, except that the insertion is fixed to body C instead of A,

Jins =


0 0 W

SR
SJNN

α1i
S
WR

W
CRΓ(Cxins)

0 0 W
SR

SJNN
α2i

S
WR

W
CRΓ(Cxins)



−


0 W

SR
SJNN

α1i
S
WR

W
BRΓ(BCE

Cxins) 0

0 W
SR

SJNN
α2i

S
WR

W
BRΓ(BCE

Cxins) 0

 ∈ R6×18.

(5.46)

The time derivatives of the individual quantities in J̇base, J̇ori, and J̇ins are derived as follows.

5.3.3.3 Derivation of J̇base

The two quantities in Jbase that we must take the time derivative of are W
BR and Γ(BSE

Sxα).

For a body with rotation matrix R and angular velocity ω in body space, we have [78]:

Ṙ = R[ω], (5.47)

and so
W

BṘ = W
BR[ωB].

To compute the time derivative of Γ(BSE
Sxα), we only need the time derivative of Sxα , since

B
SE is constant,

Γ̇(BSE
Sxα) =

(
[BSR

Sẋα ]> 0

)
. (5.48)

For this base Jacobian, Sxα is the position of the muscle mass point assuming for a moment that it

is tied to the surface S. Therefore, we can compute its time derivative as:

Sẋα = S
BRΓ(BSE

Sxα)φB. (5.49)

5.3.3.4 Derivation of J̇ori and J̇ins

For J̇ori, we need the time derivatives of WSR, S
WR, WAR, Γ(Axori), and Γ(BAE

Axori).
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Assuming that the surface is attached to body B, The rotation matrix W
SR is

W
SR = W

BR
B
SR. (5.50)

The surface does not move with respect to the body, so using Eq. 5.47,

W

SṘ = W
BR[ωB] BSR. (5.51)

The time derivative of the inverse rotation is simply the transpose of the time derivative:

S

WṘ =
W

SṘ
>. (5.52)

Next, using Eq. 5.47 again,
W

AṘ = W
AR[ωA]. (5.53)

The position of the origin with respect to A is fixed, so

Γ̇(Axori) = 0. (5.54)

However, the position of the origin with respect to B changes over time, since B
AE = W

BE
−1 W

AE

changes over time:
B

AĖ =
d

dt
{WBE−1}WAE + W

BE
−1 d

dt
{WAE}. (5.55)

Using the inverse derivative identity and the fact that Ė = E[φ] [78], we have, after some rearrang-

ing:
B

AĖ = B
AE[φA]− [φB] BAE. (5.56)

Therefore, the time derivative of Γ(BAE
Axori) is

Γ̇(BAE
Axori) =

([
(BAE[φA]− [φB] BAE) Axori

]>
0

)
. (5.57)
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We analytically derive all of the derivatives, except for the network Jacobians. For these, we

perturb Sxori and Sxins in time to evaluate the network again to perform finite differencing:

Sx+
ori = Sxori + ε Svrel

ori,
SJ̇

NN
αo = (SJNN+

αo − SJNN
αo )/ε,

Sx+
ins = Sxins + ε Svrel

ins,
SJ̇

NN
αi = (SJNN+

αi − SJNN
αi )/ε,

(5.58)

where Svrel
ori is computed as Svrel

ori = S
WR

Wvrel
ori, and likewise for Svrel

ins.
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6. RESULTS*

The results described in the first part of this chapter was presented in SIGGRAPH 2019. And

the second part of this chapter will be presented in SIGGRAPH ASIA 2022.

6.1 Flexibility of REDMAX

This section demonstrate the results from Chapter 4. With REDMAX’s flexibility, we can easily

incorporate constraints, attach FEM, and use advanced joints, etc. First, we can easily incorporate

different combinations of constraints, for instance, reduced unilateral constraint for joint limits,

maximal unilateral constraint for collisions, reduced bilateral constraint for gears, and finally

maximal bilateral constraint for loop closure. It also becomes trivial to handle implicit two-way

coupling between articulated and deformable bodies, such as FEM when attaching a finite element

mesh to the skeleton, we can directly form and solve the KKT linear system, which is composed

of the skeleton inside the body, and then the deformable bodies, finally the bilateral constraints

that bind some vertices to be fixed with respect to the skeleton (see Fig. 6.1). With REDMAX, it

is easy to combine forward and inverse dynamics into hybrid dynamics. In forward dynamics, we

compute the motion q̇ given the forces f , and in inverse dynamics, we compute the forces f given

the motion q̇. In REDMAX, it’s also easy to combine them into hybrid dynamics, where some DOFs

are forward, some DOFs are inverse. We emphasize that we can easily apply hybrid dynamics in

both reduced and maximal coordinates.

6.1.1 Experiment Settings

We implemented our system in C++ and ran the simulations on a consumer desktop with an

Intel Core i7-7700 CPU @ 3.6 Ghz and 16 GB of RAM. We use Eigen for dense linear algebra,

*Part of this chapter is reprinted with permission from Y. Wang, N. J. Weidner, M. A. Baxter, Y. Hwang, D. M.

Kaufman, and S. Sueda, “REDMAX: Efficient & flexible approach for articulated dynamics,” ACM Trans. Graph., vol.

38, Jul. 2019, and from Y. Wang, J. Verheul, S.-H. Yeo, N. K. Kalantari, and S. Sueda, "Differentiable simulation of

inertial musculotendons," ACM Transactions on Graphics, vol. 41, Nov. 2022.
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Pardiso for sparse linear solves, and Mosek for quadratic programs.

6.1.2 Adding Deformable Bodies

We use a starfish example to showcase how simple and straightforward it is to add deformable

bodies to our simulation system using REDMAX framework and achieve two-way coupling effects.

Figure 6.1: We model a starfish with a skeleton consisting of 20 joints and a coarse FEM mesh
consisting of 221 vertices. For display and collision, we embed a fine mesh with 7909 vertices
inside the coarse simulation mesh. We use co-rotated elasticity, but any material model can be used
[79].

Figure 6.2: STARFISH, showing fully two-way coupled integration between articulated and de-
formable bodies.

STARFISH (Fig. 6.2): We use REDMAX hybrid dynamics to animate the starfish—we procedu-

rally prescribe some of the joints as well as some specific points on the skeleton. The rest of the
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skeleton and the FEM mesh are passively simulated with fully implicit two-way coupling.

6.1.3 Hybrid Dynamics

We use a hand simulation example to showcase the hybrid dynamics (forward dynamics and

inverse dynamics) using the REDMAX framework.

Figure 6.3: HAND simulation with coupled interphalangeal joint motions. We fixed the fingertips,
and at the same time, prescribed the elbow angle using reduced inverse dynamics.

HAND (Fig. 6.3): The two distal joints of a healthy human finger exhibits coupled interphalangeal

joint motions [80]. Specifically, the most distal joint (DIP) usually flexes by half the joint angle of

the second most distal joint (PIP). We model a human hand where we use hyper reduced coordinates

on the DIP/PIP of the four fingers. We then animate the hand with REDMAX hybrid dynamics. The

fingertip positions are prescribed using maximal inverse dynamics, and at the same time, the elbow

angle is prescribed using reduced inverse dynamics (Fig. 6.3).

6.2 Muscle Inertia Simulations

The next section, we will show some results of our reduced inertia muscle from Chapter 5. We

first verify that our framework is in agreement with published results. And we demonstrate how our

neural network approach can handle all the variations of the wrapping surfaces properly. Finally,
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we show that our framework can handle musculotendons with higher-order integrators, inverse

dynamics, and differentiability.

6.2.1 Experiment Settings

We implemented a prototype in MATLAB [81]. The networks were trained on a computer with

a Ryzen 7 5800X CPU with 32 GB of RAM and an RTX 3080 Ti GPU with 12 GB of RAM. We

trained the networks using Adam [82] with the default parameters and a learning rate of 10−4. For

each network, we used 6 hidden layers with 256 neurons per layer. We use tanh as the activation

function for all layers. The trained networks were loaded and evaluated in MATLAB. We used

around 30k samples, and the training took about 12 hours.

6.2.2 Comparison to Analytical Results
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Figure 6.4: Comparison to published results [12]. (a) Two bones and one muscle, all with the same
mass. (b) The solid lines show that after simulating the system with the muscle for 0.3 seconds, the
two angles straighten out as in the previous work. The dotted lines show the same simulation but
with the mass of the muscle lumped onto the bones.

We start with comparisons to the simulation and analytical results by Pai [12] to verify that our

general framework is in agreement with published results. First we simulate the scene in Fig. 6.4a,

which uses the same setup as their Fig. 2. As shown by the solid lines in our Fig. 6.4b, the two

angles reach zero at 0.3 s. Our results matched the analytical results by Pai [12].
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Pai [12] also analytically computed the contributions to the self-inertia of the rat knee joint

from the biceps femoris posterior muscle and the bones of the shank, and reported that the relative

contribution from the muscle with respect to the bones is 45%. We also computed the inertia from

the muscle and the bones using Eq. 5.7b, and obtained the value of 45.8%. The slight discrepancy

goes down if we include more mass points, but we found that 10–20 are sufficient for most purposes.

Furthermore, the discrete approach allows us to more easily model the non-uniform mass distribution

along the musculotendon path.

6.2.3 Network Jacobian

Figure 6.5: Double pendulums with cylinder wrapping. The same trained network is used for a
range of input parameters. For comparison, the right-most double pendulum is simulated without a
muscle.

We simulate a group of double pendulums with varying origin, insertion, radius, and the initial

rotation of the wrapping surface, as shown in Fig. 6.5. In these experiments, the masses of the

proximal bone, the distal bone, and the muscle are set to be equal. For comparison, in the right-most

pendulum, we remove the muscle, adding half of its mass to the proximal bone and the other half

to the distal bone. Using the same trained network, the simulator is able to account for all the
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variations properly.

6.2.4 Energy Behavior

0 1 2 3
Time (s)

E
ne

rg
y

(a) Type II without QVV

0 1 2 3
Time (s)

E
ne

rg
y

(b) Type II with QVV

0 1 2 3
Time (s)

E
ne

rg
y

(c) Type III without QVV

0 1 2 3
Time (s)

E
ne

rg
y

(d) Type III with QVV

Figure 6.6: (a–b) Energy plots from a Type II muscle with and without QVV. (c–d) Energy plots
from a Type III muscle with and without QVV. Kinetic energy is shown in blue, potential energy in
red, and total energy in yellow.

To show the importance of the J̇αm term that we derived, we take one of the simulations from

Fig. 6.5, and remove J̇αm, and consequently the quadratic velocity vector (QVV) of the muscle

mass points [68]. (We keep the QVV of the bones in the simulation.) As shown in Fig. 6.6c, even
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with the SDIRK2 time integrator, the energy oscillates wildly. On the other hand, as shown in

Fig. 6.6d, the energy stays stable once we put the QVV of the muscle back in.

Similarly, in Fig. 6.6a–6.6b, we show the same experiment with a Type II muscle. Again,

without the QVV of the muscle, the energy fluctuates, but with the QVV of the muscle included,

the energy remains stable.

6.2.5 Simulation Stability

The effect of muscle inertia is stronger when a relatively light bone is actuated by a relatively

large muscle mass located away from the joint. In Fig. 1.1b, we show an example of such a case

with the flexor digitorum profundus and superficialias muscles (FDP & FDS), which originate near

the elbow and insert into the distal and middle phalanges, respectively. For our simulation, we

modeled the bones and joints using open source data [83], and we manually modeled the FDP and

FDS as Type II muscles, with the tendons routed through pulleys implemented as path points. We

fixed all joints except for the three joints of the index finger, which we modeled as revolute joints.

The masses of the bones are set from the meshes, with a relatively large density of 5 g cm−3 to

account for the rest of the finger mass, and the mass of the muscles is set to 200 g each. With a fixed

time step of 1 ms, we apply different amounts of force for the first two time steps of the simulation,

to model flicking the fingertip with the other hand.

With the traditional approach, the simulation becomes unstable when the force is increased to

5 N, whereas with our approach, the simulation becomes unstable when the force is increased to

20 N. This is due to the fact that with the traditional approach, the muscle inertia gets absorbed

into the forearm segment, and thus the generalized inertia of the finger joints is not affected by the

muscles, unlike with our approach. (The peak force during typing is around 2 N [84].) We also note

that the inertia due to the muscles in this particular example is substantially underestimated, since

we assume that strain is equal throughout the length of the musculotendon. If we also take into

account the fact that the tendon is highly stiff, joint motion would cause more of the muscle mass to

move, which would increase the inertia further.
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6.2.6 Sampling & Network Architectures

This section provides additional experiments with different sampling thresholds and network

architectures for the neural network for Type III muscles. Specifically, we closely examine the

behavior of the network around the Jacobian discontinuity.

To train networks that behave smoothly near the Jacobian discontinuity and to encourage better

convergence, we exclude a small percentage of data points around the sharpest features from our

sampling range. This sampling threshold needs to be chosen carefully. If we throw away too many

samples, the resulting simulation produces noticeable artifacts, such as the one shown in Fig. 6.7a,

where the threshold was set to 20% (l/L in §5.3.3.1). As we lower the threshold to 10%, the artifacts

become minor but remain visible. We have empirically determined that a threshold of 1% can retain

the network’s convergence while keeping the artifacts negligible.
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Figure 6.7: (a) When the threshold is set to 20%, the simulation produces noticeable artifacts near
the Jacobian discontinuity. (b) Convergence plots with 3 (blue), 6 (red), 8 (yellow), and 12 (purple)
layers.

With the threshold fixed at 1%, we tried training the network with 3, 6, 8, and 12 layers. As

shown in Fig. 6.7b, all four networks converged adequately well. We chose to use a network with 6

layers since it gave us a good tradeoff between speed and accuracy.

In order to better understand what the network is doing around the Jacobian discontinuity, we

first set up a Type III muscle around an event that can cause Jacobian discontinuity in Fig. 6.8. We

95



fixed one end of the muscle, xori, and moved the other end of the muscle, xins, along the x-axis. As

the position of xins moves from right to left, the muscle loses contact with the wrapping surface and

becomes straight.

In the following experiments, we closely examine the behavior of various neural networks

around the point where the muscle loses contact with the wrapping surface. For each network

architecture, we plotted the x component of the position of the muscle mass points in the middle, xα

(where α = 0.5), as well as the x component of the Jacobian, Jαxins , against the x component of the

position of the insertion point xins. Those networks with the same sampling threshold are gathered

in the same plot. We also include the results from the existing library in the plot for comparison

purposes. The plots showed us one dimension of the exact Jacobians, which the networks learned

from the samples. Thus we can get a better idea about how the networks are approximating around

the sharp features and use these plots as a reference when we choose the right network to use in the

simulation.

x
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xori

x
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α

x
(0)
insx

(1)
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x
(1)
α

x
(2)
α

(Fixed)

Figure 6.8: Here is the scene where we conducted experiments with various network structures
and sampling thresholds. The origin point xori and the wrapping surface are fixed. We move the
insertion point xins from right to left along the x-axis, which is represented by the purple arrow. The
muscle point (xα, where α = 0.5) is moving with the insertion point, and its status is changing from
moving on the surface to barely touching the surface and finally detaching from the surface. The
dotted lines in green, red, and orange color represent three different stages of the muscle. We can
learn how networks behave around the sharp feature by plotting the change of xα against the change
of xins in the x-axis.

96



After setting up the scene, we ran experiments to determine the most suitable network architec-

ture and the sampling threshold. Since our problem is a straightforward regression problem, we

limit our neural network to multi-layer perceptrons. We then trained the networks with layers 1, 2,

3, 4, 6, 8, 10, and 12. We also tested 128 and 256 neurons per layer for each network depth. We

used different training data for each network structure with thresholds 1%, 3%, 5%, and 10%. Here,

we only used 1% and 5% to make the comparisons.
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Figure 6.9: Threshold 5% Comparison. (a) Plot of the x-component of the muscle point as a function
of the x-component of the insertion point. (b) Plot of the x-component of Jacobian of the muscle
point as a function of the x-component of the insertion point. Networks with the same number of
layers are plotted in the same color. Solid lines represent the networks with 256 neurons in each
layer, and dotted lines represent the networks with 128 neurons. The black line results from the
existing library and the other neural networks’ results should closely approximate it.

As Fig. 6.9a shows, none of the networks approximates the black line sufficiently well. All of

them produced visible artifacts during simulation. Starting from the model with six layers and 256

neurons, it can be seen from Fig. 6.9b that the networks beyond this size started to overfit, which

is indicated by the fluctuations in the solid yellow line. The extent to which the models overfit

becomes more severe as the size of the networks becomes larger than six. The model with eight
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layers and 256 neurons (shown in solid green line) and the model with ten layers and 256 neurons

(shown in solid blue line) display more significant fluctuations and generate unexpected movements

in the energy plots.
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Figure 6.10: Threshold 1% Comparison. (a) Plot of the x-component of the middle muscle point as
a function of the x component of the insertion point. The 6-256 and 12-256 models produced good
approximations of the black line and resulted in visually good simulations. Other models were not
good enough due to the presence of artifacts. (b) The same plot of the Jacobian. Compared to the
plot with threshold 5%, the Jacobian fluctuation disappeared because more data points exist around
the discontinuity and a larger model no longer overfits.

As Fig. 6.10a shows, unlike the plots with threshold 5%, most networks can approximate the

black line well in terms of position accuracy. As a result, we prefer networks with a threshold of

1% over 5%. We further compared both Fig. 6.10a and Fig. 6.10b and observed that all networks

between the 6-layer-256-neuron and 12-layer-256-neuron models gave good approximations. We

chose the 6-layer-256-neuron model for its simplicity.

Finally, we want to compare the influence of different sampling thresholds. We trained the

network consisting of 6 layers and 256 neurons per layer, using different training datasets obtained

by applying different sampling thresholds. We chose the 6-layer model because prior experiments
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showed that it generally works well with different thresholds.

The results of different sampling thresholds can be seen from Fig. 6.11a; each line corresponds

to the behavior of a separately trained model. When trained with a 1% threshold, the model best

approximates the black line. Moreover, as the sampling threshold gets larger than 1%, the lines

corresponding to the trained models deviate further from the existing library.
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Figure 6.11: Here we compared different sampling thresholds with the same network structure.
(a) Plot of the x-component of the middle muscle point as a function of the x component of the
insertion point. (b) The same plot of the Jacobian.

6.2.7 Failure Cases

If we use values outside the training range, the network is not able to generate good results.

Fig. 6.12 shows three such examples. In Fig. 6.12a, the runtime radius is outside of the training

range. The resulting muscle path visibly penetrates the wrapping surface. In Fig. 6.12b, the origin

point is outside of the training range. The resulting muscle path is visibly curved. In Fig. 6.12c,

the insertion point is outside of the training range. The resulting muscle path is visibly curved and

irregular.

To further analyze the failure cases, we computed the total length of the muscle line by both the
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(a) Radius (b) Origin (c) Insertion

Figure 6.12: Three failure cases: (a) The network was trained on radius between 0.01 and 0.2.
Here, the network fails for a radius value of 0.25. (b) The network was trained on origin between
(−1.0,−1.0,−1.0) and (1.0, 1.0, 1.0) in the coordinate space of the wrapping surface. Here, the
network fails for an origin value of (−1.1, 1.1, 0.45). (c) The network was trained on insertion
between (−1.0,−1.0,−1.0) and (1.0, 1.0, 1.0) in the coordinate space of the wrapping surface.
Here, the network fails for an insertion value of (−0.22, 1.17,−1.1). Note that the α = 1 point
clearly deviates from its intended position.

network and the existing library. In Fig. 6.13a, we set up a scene with a fixed radius and a fixed

insertion point and move the origin point away from the training range. The result showed that as

the origin moves further from the training range, the resulting muscle line will be more different

from the existing library, leading to much worse visual artifacts. In Fig. 6.14a, we set up another

scene with a fixed origin point and a fixed insertion point, increasing the radius and making it out of

the training range. The result showed that as the radius gets more extensive than the training range,

the resulting muscle line will be more different from the existing library.
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Figure 6.13: (a) The scene with a fixed radius value of 0.15 and a fixed insertion (−0.5, 0.0, 0.0)
in the coordinate space of the wrapping surface. The initial position of the origin is (1.0, 0.0, 0.0)
in the coordinate space of the wrapping surface. We move the origin point along its x-direction
as the arrow points. We computed the total length L of the muscle line using the network and
the existing library. The orange dotted box represents the network training range: origin between
(−1.0,−1.0,−1.0) and (1.0, 1.0, 1.0) in the coordinate space of the wrapping surface. (b) We plot
the percentage difference between the resulting length of the muscle line from the network and
from the existing library as we move the origin further away from the training range. Note that the
difference increases as the origin moves further away from the training range.
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Figure 6.14: (a) The scene with a fixed origin of (1.0, 0.0, 0.0) and a fixed insertion (−0.5, 0.0, 0.0)
in the coordinate space of the wrapping surface. The initial radius of the cylinder is 0.2. Then, we
increase the radius and make it out of the training range (represented by the dotted orange box).
Similarly, we computed the total length L of the muscle line using the network and the existing
library. The network training range of the radius is between 0.01 and 0.2. (b) We plot the percentage
difference between the resulting length of the muscle line from the network and from the existing
library as we increase the radius and make it further away from the training range. Note that the
difference increases as the radius moves further away from the training range.

6.2.8 Comparison to OpenSim

For our next experiment, we use marker-based motion-capture data to drive the skeleton and

compute the resulting torques at the joints with inverse dynamics. We show a 0.5 s clip in Fig. 6.15.

The figure shows the swing phase: from take-off to touch-down. We use OpenSim to scale the bone

lengths/masses, joint locations, muscle origin/insertion, path points, and wrapping surfaces to the

specific subject. The skeleton has 11 DOFs: 6 for pelvis, 3 for the right hip, 1 for the right knee,

and 1 for the right ankle. We model four muscles that span the ankle: gastrocnemius lateral (Type

III), gastrocnemius medial (Type III), soleus (Type I), and tibialis anterior (Type II). The subject

runs on a treadmill at 19.1 km/h, and we use OpenSim to reconstruct the motion of the skeleton

from the marker data.
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We collect the ankle torque computed with inverse dynamics from the swing phases from two

10 s trials using OpenSim and our simulator. We overlay the swing phases on top of each other and

plot the results in Fig. 6.16. We show the torque results generated by:

• OpenSim (blue), which does not support inertial muscles.

• Our simulator (red) with the muscles accounting for 0% of the total mass of the tibia segment.

• Our simulator (yellow) with 80% of the tibia mass transferred to the muscles.

The relative masses of the four muscles are taken from the literature [85]. For each muscle, the

mass is distributed into 20 equally spaced points in the middle portion of the musculotendon that

correspond to the muscle (as opposed to the tendons). Fig. 6.16b shows the closeup of the final dip.

Comparing the blue and red plots, we confirm that our simulator generates results that gracefully

t = 0.0 t = 0.1 t = 0.2

t = 0.3 t = 0.4 t = 0.5

Figure 6.15: The swing phase of a 19.1 km/h treadmill run, showing only the right leg. The four
muscles (and their types) are: gastrocnemius lateral (Type III), gastrocnemius medial (Type III),
soleus (Type I), and tibialis anterior (Type II).
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Figure 6.16: (Left) Ankle torque computed by inverse dynamics, showing the mean and the standard
deviation. Blue plot is generated by OpenSim, which does not support inertial muscles. Red plot is
generated by our simulator with the muscles accounting for 0% of the total mass. Yellow plot is
generated by our simulator with 80% of the tibia segment mass transferred to the muscles. (Right)
The closeup of the final dip, showing the individual trajectories. Our simulator generates results
that gracefully degrades to OpenSim’s results as the inertia of the muscles is decreased to zero.

degrades to OpenSim’s results, as the inertia of the muscles is decreased to zero. On the other hand,

comparing the red and yellow plots, we note that the ankle moment can differ by as much as 40%

due to the effect of muscle inertia.

6.2.9 Graceful Degradation
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Figure 6.17: The colors show how much of the segment mass has been put into the muscles: from
dark blue (0%) to dark red (80%).
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In §6.2.8, we showed that the inverse dynamics output computed by our simulator matches the

output computed with OpenSim [18], if we remove the muscle mass. We then showed that if we put

80% of the segment mass into the muscles, we obtain a torque value that is different by as much as

40%. In the Fig. 6.17, we plot the output of our simulator as we smoothly vary the muscle mass

percentage from 0% (dark blue) to 80% (dark red), showing graceful degradation of our simulator

to OpenSim.

6.2.10 Spline Joint Knee with Hill-Type Muscles

Figure 6.18: For §6.2.10, we add a spline joint knee and Hill-type muscles to the model used in
§6.2.8. We manually excite the rectus femoris and the semimembranosus muscles. The excitation
levels of the soleus and the tibialis anterior muscles are computed automatically with a proportional
controller.

To demonstrate the generality and flexibility of our approach, we take the same scene setup as

above, but replace the revolute joint of the knee with a spline joint [71] and add the semimembra-

nosus (Type I) and the rectus femoris (Type III). As shown in Fig. 6.19, we manually model a spline
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Figure 6.19: Our approach supports complex joint types. Top row: Knee with a revolute joint—the
tibia separates from the femur. Bottom row: Knee with a spline joint—the tibia stays close to the
femur.

joint to better model the motion of the tibia with respect to the femur. (OpenSim uses a similar

technique called a “mobilizer” [86].) We also use Hill-type muscles [87] to drive the knee and

ankle joints, as opposed to using mocap as in §6.2.8. We use the damped equilibrium model with

active force-length, active force-velocity, passive force-length, and tendon force-length curves taken

from the biomechanics literature [88]. We manually set the excitation levels of the gastrocnemius

lateral/medial muscles to a low level. We use a proportional controller based on the ankle joint

angle to set the excitation levels of the tibialis anterior and the soleus muscles. Then we manually

excite the rectus femoris and semimembranosus muscles, which results in the extension and flexion

of the knee, as shown in Fig. 6.18.

6.2.11 Differentiable Reaching with Adjoint Method

For the final result, we use the adjoint method [74, 75, 76] to compute the simulation derivatives

to optimize for a reaching task using an arm model [89] with manually placed muscles, shown in

Fig. 6.20. For the three heads of the deltoid muscle, we use sphere-capped cylinders, and for the

three heads of the triceps brachii muscle, we use cylinders. The task objective is to move the hand to

the specified target, and the task parameters are the constant torques to be applied to the shoulder (3

106



DOF) and elbow (1 DOF) joints. We use fminunc as the optimizer with our analytical derivatives.

As a comparison, when we run fminunc in gradient-free mode, it takes an order-of-magnitude

more time to optimize, requiring many more simulation runs. Our inertial muscles, however, work

seamlessly with the adjoint method. Furthermore, more objectives can be added, such as having the

hand come to a rest, or more generally, following a preset trajectory.

6.3 Summary

In this chapter, we showcased some applications of the REDMAX framework to simulate

articulated rigid body. We further showcased various experiments which compared some simulation

results generated by our framework and analytical results by the published results, and verified that

our general framework is in agreement with some previous works. Finally, we have shown that our

framework is compatible with different existing techniques and applications, including higher-order

integrators, inverse dynamics, Hill-type muscle models, and differentiability.

Figure 6.20: Reaching task. Our inertial muscles work flawlessly with the adjoint method for
computing the simulation derivatives.
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7. CONCLUSIONS AND FUTURE WORK*

7.1 Summary
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Figure 7.1: We have presented all the Jacobian mappings involved in our kinematic hierarchy, from
reduced coordinates to maximal coordinates, then to the 3D coordinates of the origin/insertion
points, and finally to the 3D coordinates of the muscle mass points. Finding those mappings for
different stages in our hierarchy is essential to achieve efficient inertial muscle simulation.

In this thesis, we presented an approach to account for the inertia of the muscles in a muscu-

loskeletal simulation. Fig. 7.1 shows how our framework works. We use a chain of Jacobians to

map between the 3D world coordinates of the muscle mass points to the reduced coordinates of the

articulated rigid body system and then drive the dynamic system using only the joint angles of the

skeleton. We discussed different stages of our pipeline in each chapter.

*Part of this chapter is reprinted with permission from Y. Wang, J. Verheul, S.-H. Yeo, N. K. Kalantari, and S.

Sueda, "Differentiable simulation of inertial musculotendons," ACM Transactions on Graphics, vol. 41, Nov. 2022.
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In Chapters 3 and 4, we introduced REDMAX, where we derived the Jacobian that maps between

maximal and reduced coordinates of the articulated rigid body, and highlighted the flexibility of

REDMAX with different results. In Chapter 5, we introduced our inertia muscle, where we can

handle a wide variety of musculotendon paths, including (I) straight, (II) polyline, and (III) curved

paths over wrapping surfaces. We use the Eulerian-on-Lagrangian framework for Type II muscles,

and for Type III muscles, we use neural networks. We showed that our approach is compatible

with existing simulation techniques, such as inverse dynamics and differentiable dynamics, and

the motion can be driven by muscle activations or joint torques. In the limit, as the mass of the

muscles is transferred to the bones, our simulation results gracefully degrade to results obtained

using traditional musculoskeletal simulators without inertial muscles.

7.2 Main Challenges and Lessons Learned

In order to produce our proposed method and analyze its efficacy, we experienced many

difficulties during our research effort. Some of these difficulties deal with the overall research

methodology, and others pertain to technical details that seem subtle but are essential to creating a

clear and well-supported exposition. We will review these difficulties in this section because they

provide valuable lessons on delivering high-quality research on our subject.

The main difficulty in our research on this subject has been the number of iterations it took

before arriving at what some regard as the primary technical novelty in our work, i.e., the neural

network approach. We changed our method twice before the current neural network approach was

considered because we faced weird energy behavior. It finally became clear that the discontinuous

Jacobian is an inherent property in our musculoskeletal model and that we require an alternative

approach to mitigate its effects on simulation stability.

After we adopted the current neural network method, we experienced further difficulties in

neural network training. While finding the mathematical formulation to incorporate neural Jacobian

derivatives was a straightforward extension of our earlier research, it was necessary to find expertise

outside the original research personnel to complete the training process. The biggest challenge

was that model often failed to converge, which was eventually addressed by selectively removing
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sample points. Additionally, the large number of parameters that had to be tuned prolonged the

training process.

Finally, after months of experimentation, our neural models managed to capture the dynamics

of musculoskeletal systems that include wrapping surfaces. There are many challenges along the

way. One challenge was creating good energy plots and making the correct comparisons. We added

additional training runs to explore further how our choice of models affects the simulation. While

our method is an incremental step towards a fully comprehensive simulation framework, we still

seek to demonstrate the advantage of our system over traditional ones where possible.

7.3 Future Work

In this work, we use the centerline to account for the muscle mass, which is still an approximation,

but this is a prudent choice since using a complete, volumetric mesh is impractical for these

experiments, at least currently. It may seem possible to tweak the FEM simulation parameters

to produce the desired output. However, we believe that using FEM for these target applications

is highly challenging, if not impossible, considering the high number of parameters and the

computational complexity required by the volume model. Therefore, it would be a challenge to

produce results with FEM that can gracefully degrade to OpenSim results the way our method can.

Future work may address these difficulties with volumetric FEM. Such work, along with ours,

would pave the way toward a fully comprehensive simulation framework. Some models use path

points that move based on the skeletal DOFs (e.g., LBS waypoints [90], moving muscle points [18]).

Although we have not implemented these, they can be categorized as Type II path points with their

corresponding Jacobians between the skeletal DOFs and these points.

Our approach still underestimates muscle inertia for muscles with long tendons because we

assume that the strain is equal along the entire length of the musculotendon. For future work, we

would like to derive the kinematics of the muscle points while incorporating inextensible tendons to

reduce this underestimation.

We plan to train on more wrapping surface types, including ellipsoid, torus, sphere, and double

cylinder [44, 17]. In theory, our neural network approach can be used for any path. However, some
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wrapping surfaces require many parameters, making training more difficult and slower. For example,

training a double cylinder would require five more parameters than a single cylinder. (The first

cylinder can be defined along the Z-axis. Assuming that the second cylinder is not orthogonal to the

first, we need two parameters for a point and two for the direction, plus the radius.) Similarly, using

a network for an arbitrary shape [20] could be a challenge, depending on the number of parameters

of the surface.

Network evaluation is a bottleneck in our current implementation, which is written in MATLAB.

We expect that evaluating the network on the GPU and batching the input as much as possible would

increase the performance significantly. Furthermore, since our framework is possible to mix and

match inertial and non-inertial musculotendons, depending on the application. It is possible to find

a subset of musculotendons to add inertia to, in order to find the sweet spot in terms of efficiency

and efficacy. Automatically determining the set of musculotendons that affects the total inertia the

most is an interesting avenue of future research.

Finally, given that our approach is compatible with the adjoint method, it would be interesting to

optimize for tasks involving ground contact [75, 76]. In our current implementation, as with most

other musculoskeletal simulators [88], musculoskeletal dynamics and muscle/tendon dynamics

are integrated separately, and so the adjoint method cannot use muscle excitations as parameters.

Going further, we could add another layer on top of the adjoint method to compute for the muscle

excitations rather than joint torques.
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