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ABSTRACT

Hypertension is directly linked with an increase in mortality risks. This increase is especially

observed in rural areas with uninsured or under-insured patients. Remote patient monitoring is a

technological development that can help monitor hypertensive patients and detect changes within

their blood pressure levels. The technological limitation is the inability to predict periods of hy-

pertension. In this thesis, we address this issue by presenting a software system designed to suc-

cessfully predict periods of hypertension and alert clinicians. Central to our software system is a

framework for preparing data for predictive machine learning models, and an adaptive model for

different sized sliding windows, to enable adverse health event predictions before the optimal in-

put length has been reached. Using this framework, an XGBoost model only tuned for unbalanced

data achieved an area under the receiver operating characteristic curve score of 0.77 and area under

the precision recall curve score of 0.76. Feature importance plots demonstrate that our framework

can extract the most impactful features, which are common across models. This demonstrates the

ability to transform previously unsuitable data into data well-suited for periods of hypertension

prediction and use it to alert clinicians of hypertensive periods to facilitate early interventions.
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1. INTRODUCTION

1.1 Background

Elevated levels of blood pressure are becoming an increasingly large problem. In the United

States alone, cardiovascular disease (CVD) is a leading cause of death and amounts to a significant

part of the overall health care spending. With annual costs rising from $212 billion in 1996 to an

estimated $320 billion in 2016, it is increasingly becoming a financial issue as well [1]. Fortunately,

if CVD is detected early enough, treatment can reduce the risk of CVD-related deaths by 50-80%

[2, 3, 4, 5, 6]. One treatable condition directly linked to CVD-related death is hypertension, which

is indicated by sustained, increased levels of systolic (SBP) and diastolic blood pressure (DBP) as

can be seen in 1.1 [7, 8].

Category SBP in mmHg DBP in mmHg
Normal < 120 and < 80
Elevated 120-129 and < 80

Hypertension I 130-139 or 80-89
Hypertension II ≤ 140 or ≤ 90

Table 1.1: Blood pressure categories in mmHg.

Hypertension can be especially difficult to treat in populations that are uninsured, under-

insured, rural or underrepresented [9]. Remote patient monitoring devices can help fill this gap by

providing healthcare that is inexpensive and accessible. It provides a positive impact on provider

and client satisfaction, as well as a decrease in the hospitalizations of clients in rural areas. With

early information about hypertension, clinicians can act sooner to prevent hypertensive events [10].

1.2 Previous Work

An appropriate mechanism for remote patient monitoring and treatment of hypertension is nec-

essary. Telemonitoring solutions to improve clinical care, particularly with a focus on cardiology,

1



have been studied extensively to only limited success, thus far.

Chaudhry et al. developed a telemonitoring system to predict and reduce readmission of pa-

tients diagnosed with heart failure [11]. In this study, patient-reported assessments of symptoms

and general health led to alerts for call-center nurse interventions if daily values raised alarms.

The study found no statistically significant improvement in readmission rates in the telemonitoring

arm, despite modest baseline risk estimation of readmission risk [12]. Ong et al. conducted a sim-

ilar remote patient monitoring study on heart failure patients, using more advanced remote sensing

and risk estimating for intervention [13]. However, their study similarly failed to provide a statisti-

cally significant reduction in readmission. A subsequent study using the remote monitoring system

designed for CVD patients did find improvement in predicting outcomes using baseline data and

the first month of intervention data [14]. Beyond clinical trials, Park et al. analyzed real-world

Medicaid telemonitoring data to characterize the adherence of patients with hypertension to tele-

monitoring with respect to blood pressure control. They found that there was a positive correlation

associated with adherence and blood pressure control [15]. Abrar et al. designed a system with

which blood pressure levels of the next 24h can be predicted by providing hourly blood pressure

measurements through an app [16]. The app then sends the data to the cloud, at which it is prepared

and evaluated by a combination of complex machine learning algorithms, before sending a fore-

cast back to the app. In this system, the focus lies on a complex combination of genetic algorithms

which try to establish a precise forecast given the past 24h of blood pressure data. While Abrar et

al. used a 24-hour time period, and thus a 24 time step long sliding window, J. Lee et al. used a

sliding window of 5.5 hours with time steps of 30 minutes [17] in order to try to predict upcoming

hypertensive episodes. For this, they left a gap between their sliding window and the time period in

which they were trying to predict a hypertensive event. They found that as the gap size increases,

the ability to accurately predict an upcoming hypertensive event shrinks. Yet, J. Lee et al. were

able to achieve an AUCROC score of 0.93.

2



1.3 Objective

The focus of this thesis will be the design of a remote monitoring system capable of reli-

ably warning physicians of impending periods of hypertension. The proposed remote monitoring

system will be able to automatically transmit blood pressure measurements from at-home blood

pressure monitors to the cloud, prepare the data for a classifier, and then predict possible events.

From here, physicians can intervene early and prevent the worsening of a patient’s condition. The

remote monitoring system has multiple sub systems to handle different tasks. The first task is to

accept incoming data from the patient. A separate part of the system then transforms and prepares

the incoming data for imputation. A machine learning model is then tasked with generating a pre-

diction, which will be delivered to the physician. To better aid physicians, I also propose a model

which adapts to the size of the input data size, thus enabling event predictions before the optimal

sliding window size has been reached. Further, the data uploaded is used to continuously train and

update the machine learning model used to generate the periods of hypertension prediction. A lot

of focus is usually laid on developing a novel machine learning model for such a system. In this

thesis, the focus lies on the preparing the data for a classifier. This allows for further develop-

ment and improvement of classification accuracy in the future using more advanced models such

as convolutional neural networks (CNN) or recurrent neural networks (RNN).

3



2. REMOTE MONITORING SYSTEM

2.1 Data Preprocessing

At the heart of the system is the framework which explores telemonitoring time-series data to

identify key periods and features, leading to better machine learning models that effectively predict

periods of hypertension, illustrated in Figure 2.1. This section describes the process by which the

telemonitoring data is prepared for the classifiers and the architecture of the adaptive model. For

the final models generated, the effectiveness of the predictions was computed using the area under

the curve of the receiver operating characteristic (AUCROC) and area under the curve of precision

and recall (AUCPR) to determine how best to separate those periods at risk from those not. The

technique was then evaluated across linear and non-linear models that select predictive features

(logistic regression with lasso regularization, random forest, and XGBoost).

4



Figure 2.1: Architecture of proposed software system

2.1.1 Dataset

The data used to verify the effectiveness of my framework was provided by a telemonitoring

company that uses data transmitted from Medicaid patients in Texas, USA. This data is transmitted

from a Bluetooth-enabled blood pressure monitor via an intermediary device connected to the

cloud. Three different device models were used in the study. The devices used were the Fora

D40d, Taidoc 3223 and the A&D UA-767PBT. Roughly 1.6 million data points were gathered

from 4,291 patients between August 2015 and January 2019. Of the 4,291 patients in the study,

1,494 (35%) were male and 2,797 (65%) female. The average age of the patients was 76.74 with

a standard deviation of 13.29. Out of the total number of patients (N = 4,291), only between

5



2,053 and 2,906 patients were chosen due to several factors such as sparsity (lack of adherence)

and duration (length of telemonitoring < window size and event horizon) of data. Figure 2.2

visualizes the inclusion/exclusion criterion for patients. Table 2.1 shows the different population

characteristics depending on how much data is used. This study was approved by the local IRB,

Texas A&M Human Research Protection Program (IRB #IRB2018-0166D).

Figure 2.2: Exclusion criteria flowchart for participants
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Population Characteristics Part 1

Minimum Data Length n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12 n = 13 n = 14 n = 15 n = 16

Number of PIDs: 2,906 2,854 2,795 2,745 2,685 2,645 2,611 2,561 2,533 2,491 2,451 2,413 2,379

Age Mean: 71.93 71.94 71.95 72.01 72.01 72.02 72.02 72.01 72.03 71.99 72.01 71.99 72.0

Age Std: 12.26 12.27 12.27 12.23 12.23 12.23 12.19 12.17 12.14 12.15 12.12 12.1 12.11

Sex Mean (M=0, F=1): 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66

Spell Length Mean: 94.37 96.01 97.93 99.61 101.68 103.1 104.32 106.16 107.21 108.82 110.38 111.9 113.29

Spell Length Std: 115.11 115.5 115.95 116.33 116.78 117.09 117.35 117.74 117.97 118.3 118.62 118.93 119.21

Number of events Mean: 10.13 10.3 10.49 10.65 10.86 11.01 11.13 11.3 11.4 11.55 11.69 11.81 11.94

Number of events Std: 20.83 20.99 21.16 21.32 21.51 21.63 21.75 21.92 22.02 22.17 22.32 22.47 22.6

Number of imputed Measurements Mean: 8.63 8.77 8.94 9.08 9.26 9.36 9.46 9.6 9.69 9.82 9.94 10.06 10.16

Number of imputed Measurements Std: 12.16 12.22 12.29 12.36 12.44 12.5 12.55 12.62 12.67 12.73 12.8 12.86 12.92

Population Characteristics Part 2

Minimum Data Length n = 17 n = 18 n = 19 n = 20 n = 21 n = 22 n = 23 n = 24 n = 25 n = 26 n = 27 n = 28

Number of PIDs: 2,348 2,315 2,280 2,245 2,217 2,193 2,167 2,141 2,123 2,097 2,078 2,053

Age Mean: 71.95 71.95 71.93 71.93 71.89 71.94 71.96 71.96 72.01 72.01 72.01 72.05

Age Std: 12.12 12.11 12.12 12.16 12.17 12.17 12.19 12.19 12.15 12.17 12.17 12.09

Sex Mean (M=0, F=1): 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.65 0.65 0.66

Spell Length Mean: 114.57 115.96 117.46 119.0 120.25 121.34 122.53 123.74 124.58 125.82 126.73 127.94

Spell Length Std: 119.46 119.74 120.03 120.33 120.57 120.77 121.0 121.23 121.4 121.64 121.82 122.05

Number of events Mean: 12.04 12.13 12.26 12.39 12.5 12.59 12.69 12.82 12.88 12.97 13.04 13.14

Number of events Std: 22.72 22.87 23.01 23.16 23.28 23.38 23.49 23.6 23.69 23.81 23.9 24.02

Number of imputed Measurements Mean: 10.25 10.35 10.47 10.59 10.69 10.77 10.85 10.94 11.01 11.09 11.16 11.24

Number of imputed Measurements Std: 12.97 13.03 13.1 13.16 13.21 13.26 13.31 13.36 13.39 13.44 13.48 13.54

Instead of showing population characteristic by window & horizon size, it is shown by length of data used.

This is because a window of size three and horizon size two requires the same amount of data as a sliding

window of size four and an event horizon of size one.

Table 2.1: Population characteristics of various minimum spell length requirements.

2.1.2 Multiple Readings

For each day the patient was in the study, the default protocol was one blood pressure reading

per day. However, there were several situations when the patients would have duplicate readings

such as due to faulty measurement devices, incorrect usage, or a reading outside a safe thresh-

old prompting the nurse to check in and request another measurement. Using duplicate readings
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could have a confounding effect by itself indicating intervention–i.e., rising blood pressure from

repeated cuff inflation, or falling blood pressure due to nursing intervention. Thus, I chose the first

measurement as the most representative of pre-intervention readings, and trusted that the machine

learning models would appropriately handle the minimal noisy measurements.

2.1.3 Measurement Period and Missing Data Imputation

It is natural to find missing data on some days or some longer periods of missing data in

real world data. However, using only the data we have, it is difficult to distinguish why there

were spells of missing data followed by more monitoring data. Missing data could be due to a

simple missed reading, or a more complex story, such as ending treatment on purpose (either by

personal choice or clinician direction). In addition, in the real world, some patients may have

multiple spells of treatment with varying degrees of gap between treatments. Thus, the more

complicated situations beyond the first spell of monitoring has potential for more confounding

effects from external factors that might bias the models. Because of the temporal nature of the

data and the study aim to determine how many days of readings were necessary to appropriately

generate hypertension alarms, I wanted to capture a relatively complete period of data. Too large

a gap would render predictions potentially useless, while too small would inhibit realistic patient

data modeling. To determine the optimal amount of imputation needed for measurement gaps and

an appropriate end point for the first monitoring spell, I first analyzed the amount of each gap

length. Figure 2.3 visualizes the amount of a certain gap length. For example, there were 48,549

instances of a patient missing a reading. This figure indicated that three days of imputation would

be a good medium between retaining time-series accuracy and having a sufficient amount of data

to properly train the model. Thus, patients missing more than three consecutive days (>3) of

readings were assumed to have ended their treatment. Based on this definition, only the first spell

of monitoring was used, on which imputation was done using forward fill on the SBP, DBP, and

pulse data of each patient.
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Figure 2.3: Number of instances where a certain gap length occurred in the data.
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2.1.4 Windowing

I used a sliding window approach to train and test models for periods of hypertension. Figure

2.4 illustrates a seven-day sliding window, with an example of estimating periods of hypertension

over the next 7 days (event-horizon prediction length discussed below). Larger sliding windows

and/or event horizons need more data and thus fewer windows can be created, but they can po-

tentially enable better modeling of blood pressure trends. Therefore, larger than seven days may

eliminate early warnings, and requiring long periods of readings before the system may generate

alarms. Alternatively, small window sizes may not have sufficient signals to generate accurate

enough alarms. To research this effect, sliding window sizes between 3 and 14 days were used.

Figure 2.4: 7 Day Sliding Window with 7-Day Event Horizon
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2.1.5 Feature Extraction

From the window of data that consisted of multiple SBP, DBP, and pulse readings, as well as

additional data on age and sex of the patient, I extracted features to represent the trends in blood

pressure measurements. Following similar work in the field of glucose monitoring and hyper-

glycemic excursions (periods of high blood sugar), I extracted the variance, slope, and maximum

positive and negative changes of consecutive days [18]. Additionally, I extracted the difference

between the first and last readings, and middle and last readings of the SBP, DBP, and pulse data

points. These extracted features were chosen based on their ability to provide additional infor-

mation on the variability of the blood pressure readings and trends towards the latter portion of

the window. For instance, a high seven-day standard deviation means that the blood pressure of a

patient fluctuated a lot, while a low standard deviation means that the blood pressure was consis-

tent over the period. I then concatenated this into one input vector for each day. For example, if

considering a seven-day sliding window, then I would have features 1-7 as raw SBP readings, 8-14

as raw DBP readings, 15-21 as raw pulse readings, then the next 18 features (22-39) would be the

extracted ones from the sliding window and the final two features (40-41) would be age and sex,

thus resulting in 41 features before moving on to feature elimination.

11



Feature List

Feature Name Type of Feature Feature Generation

SBP Day 1 – w Measured N/A

DBP Day 1 – w Measured N/A

Pulse Day 1 – w Measured N/A

Slope of SBP/DBP/Pulse Extracted Slope of linear regression model

Standard Deviation of

SBP/DBP/Pulse

Extracted

√√√√√ w∑
i=1

(xi − µ)2

w

Max positive change between

two days of SBP/DBP/Pulse

Extracted See Algorithm 1

Max negative change

between two days of

SBP/DBP/Pulse

Extracted See Algorithm 2

Difference between first &

last day of SBP/DBP/Pulse

window

Extracted xw − x1

Difference between

first & middle day of

SBP/DBP/Pulse window

Extracted xw/2 − x1

Age Measured N/A

Sex Measured N/A

’w’ stands for the length of a window.

Table 2.2: A table of features including their equation features was extracted instead of measured.
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Algorithm 1 Algorithm to calculate the max positive change between two adjacent days of SBP,
DBP, or Pulse.

procedure MAXPOSITIVECHANGE(w)

max_change← inf

for i← 1 to length(w) do

if (w[i-1] - w[i]) > max_change then

max_change← w[i-1] – w[i]

end if

end for

return max_change

end procedure

Algorithm 2 Algorithm to calculate the max negative change between two adjacent days of SBP,
DBP, or Pulse.

procedure MAXNEGATIVECHANGE(w)

max_change← -inf

for i← 1 to length(w) do

if (w[i-1] - w[i]) < max_change then

max_change← w[i-1] – w[i]

end if

end for

return max_change

end procedure
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2.1.6 Labels and Event Horizon

Hypertensive events were defined as a set of measurements which were above a clinician spec-

ified threshold for SBP (personal thresholds set by clinicians). Then, an alert label indicated the

presence of a hypertensive event during the length of the event horizon, where “1” denoted the

presence of a hypertensive event and a “0” denoted no hypertensive event. The length of the event

horizon is important in determining how early a prediction can be made. A small event horizon,

for example, could potentially be more precise but may not provide sufficient time for intervention,

and be harder to predict. Conversely, a large event horizon could potentially provide sufficient time

for intervention, and a potential higher prediction accuracy, (i.e., whether an event occurred in a

given time period) but result in reduced precision. The data preparation step tries to best identify

the optimal prediction event horizon, and sliding window size. I tested event horizon sizes between

1 ad 14 days to identify accuracy in the data, and whether additional time would provide clinicians

with an opportunity to intervene. Longer horizons, such as between 7 and 14 days, were tested to

determine the impact longer horizons had on detection accuracy.

2.1.7 Feature Selection

While the machine learning models selected are capable of selecting features, the non-linear,

higher-dimensional models (Random Forest and XGBoost) may select co-linear features in subse-

quent trees, which may result in a perceived reduced feature importance when providing clinicians

with an estimation of hypertension and what is leading to that estimation (to help guide interven-

tions). Therefore, after training, I applied backward feature elimination using the validation set

and logistic regression to remove co-linear features. Logistic regression’s L1 regularization would

remove unnecessary features, and help select the key features that are directly related, with statis-

tical test and p-value illustrating this relationship. Using a backwards elimination based upon the

p-values, (removal of the highest p-value), I ultimately removed all features with a p-value greater

than 0.05. I then used this feature subset, without co-linear features, to train Random Forest and

XGBoost.
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Each model uses a proportion of the features generated based upon window size and horizon

length. However, while the number of features select varies (from min of x proportion of features

used to max of y proportion of generated features used), there is consistency across feature impor-

tance. For one, all SBP measurements, age, and sex are kept during feature selection. Additionally,

the standard deviation, and slope of SBP along with DBP, and Pulse data are often kept. The max

positive/negative change along with the difference between first and last/middle features are often

chosen as well, although it differs whether the SBP, DBP, or pulse version are kept. These are

evident across Figures 4.5 to 4.10.

2.2 Event Prediction

2.2.1 Classifier Choices

Although there is a wide range of classifiers that would have also been well-suited for this

task, I decided on a logistic regression classifier, decision forest, and a XGBoost classifier. With

these methods, it is easy to determine which features emerged as more important. This facilitated

more tuning of the data preparation and cleaning step, as it allowed me to pinpoint which extracted

features worked well and which ones did not. Using the logistic regression model’s coefficients,

I was able to determine what the classifier was using to make its prediction. In the case of the

decision forest, and XGBoost I was able to look at the individual decision trees for information on

what was most impactful for their classification.

2.2.2 Hyper Parameter Tuning

For logistic regression with L1 regularization, I used the lambda regularization parameter. For

XGBoost, training the depth of each tree was set to a max depth of two, the number of trees to

21, and the max step size remained unchanged. Additionally, I provided the models with a class-

weight parameter because of the data set imbalance. For most window and event horizon sizes,

there were more “0s” (no hypertensive events) than “1s” (hypertensive events) which resulted in an

unbalanced data set. I computed the weight to be = no event happened
event happened

for the event happened class,

to increase its importance to a “balanced” level.
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2.2.3 Testing Data using Logistic Regression, Random Forest, and XGBoost

All classifiers were trained on the same set of training data. The data was split between training,

validation, and testing with a ratio of 70:15:15 respectively based upon Patient IDs. The data was

randomly shuffled at the patient level before splitting. The shuffling was done on the patient IDs

rather than the entire data set to maintain continuity of the sliding windows, resulting in a patient

being in either the training, validation, or testing data set, and demonstrating the model’s ability to

generalize to new, unseen patients.

2.2.4 Adaptive Model

To facilitate the possibility of earlier interventions and treatment by physicians, a model which

can adapt to the varying sliding window input sizes is required. Traditional classifiers work with

a fixed input size, thus preventing early predictions, such as using only 3 days of input data. The

solution to this inability is to conglomerate the best classifiers for each input size to one larger

model. As depicted in Figure 2.5, the input from the patient is first augmented using the extracted

features discussed above, then passed into the model along with the length of the input sequence.

From here, the adaptive model uses one of its sub models to create an event prediction, which

ultimately gets sent to the physician. The benefit of the model design is the ability to continuously

update and improve the sub-models, which in turn leads to a higher overall accuracy.

Figure 2.5: Adaptive Classification Model Architecture
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3. PERFORMANCE EVALUATIONS

3.1 Introduction

The data used to train the machine learning classifiers were unbalanced, thus I decided not to

use a performance measure such as Root-Mean-Square Deviation (RMSE) to determine the clas-

sification accuracy. To best determine the performance of the machine learning models used, I

measure their performances using the area under the receiver operating characteristic curve (AU-

CROC), the area under the precision recall curve (AUCPR), confusion matrices, and SHapley

Additive exPlanations (SHAP).

3.2 Confusion Matrices

Both AUCROC and AUCPR are derived from confusion matrices by indicating how many

classification instances were classified as correct and incorrect. Further, they indicate if the cor-

rectly classified instances were of the true positive (TP), false positive (FP), true negative (TN),

and false negative (FN) kind. These values give a good overview on how a classifier is performing.

As previously stated, using a 50% risk probability as the threshold for predicting positive versus

negative alerts may not yield the best results. Some classifiers perform better or worse depending

on where the classification threshold is set. This means that there could be a multitude of different

performances depending on the classification threshold set, and thus there can be a multitude of

different confusion matrices.

3.3 AUCROC

Having a multitude of different confusion matrices that all show the binary classification per-

formance of different thresholds is not very efficient. Thus, a metric such as AUCROC can indicate

how the model is performing using different thresholds. AUC stands for area under the curve and is

primarily useful for comparing different ROC plots with each other to determine the best classifier.

The ROC, or receiver operating characteristic, takes the true positive and false positive rate of dif-

ferent binary classification thresholds and plots them against each other. This allows us to clearly
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see which threshold yields the best classifications. Thus, using the AUCROC curve is particularly

useful for seeing how well a classifier is able to discern between two classes.

3.4 AUCPR

Despite the effectiveness of using the AUCROC curve, Area Under the Precision Recall Curve

(AUCPR) still adds valuable information, especially in cases of an imbalanced dataset. Imagine

having a dataset which is highly unbalanced–e.g., 90% of class 0 and 10% of class 1, where class

1 represents cancer found in a patient. A regular machine learning algorithm might find it hard to

predict cancer instances and would predict 0 most of the time. That could lead to a high accuracy

of let’s say 0.95 and an AUCROC score of 0.93, but with the obvious oversight that the data is

highly imbalanced, and so predicting case 0 or no cancer is not as valuable as predicting cancer.

This is why we also use AUCPR. The area under the curve aspect stays the same – to compare

different models with each other. However, the false positive rate is swapped with the precision

(Precision = True Positive
True Positive + False Positive

). This means we are focusing on the true positive, false

positive, and false negative values and ignoring the true negative values. Thus focusing on how

well we predict the positive case instead of the negative case. In the case of this research, predicting

an upcoming period of hypertension is much more important than predicting the opposite. As such,

using AUCPR is a key element of comparing performances between the different classifiers trained

and used in this research.

3.5 SHAP

With the introduction of Lundberg et al.’s SHapley Additive exPlanations, there now is a better

way to determine the importance of a feature to the classification model. Additionally, SHAP

enables us to compare the classifiers with each other in terms of the feature importance. This is

specifically important because it facilitates easily understanding what each model deems to be an

important feature and what not.
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4. RESULTS & DISCUSSION

4.1 Results

4.1.1 Hypertension Detection Performance

Table 4.2 presents the AUCPR values and Table 4.1 AUCROC values for various event hori-

zon, and sliding window lengths. In general, as the event horizon length increases, performance

improves. This is both a function of the amount of predictive data used to make an estimation

and the increasing probability of a hypertensive event occurring as the horizon length increases.

While the AUCPR performance of the classifiers improved with an increase in both sliding win-

dow size and event horizon size, the same cannot be said about AUCROC. Here we can see that the

XG Boost classifiers do not see a substantial performance gain as the sliding window or horizon

size increase (colored rows). Further, we can notice that the AUCROC values start to converge at

around 8-day of sliding window length and a 14-day event horizon (bold numbers). This indicates

that the increasing window lengths do not make the problem easier to model, which could be a

result from the reduction in patients seen in Table 2.1.
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Table 4.1: AUCROC results for each tested method across different sliding window, and event
horizons sizes, with some results highlighted which are discussed in this section.
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Table 4.2: AUCPR results for each tested method across different sliding window, and event hori-
zons sizes.
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4.1.2 Model Overview

I used SHAP [19] on both the Logistic Regression and XGBoost model to understand which

features impacted the models most, illustrated in Figures 4.1 to 4.10. Using SHAP enables us to

properly visualize the output of our machine learning model based on the importance of the input

features and the range of those continuous features and their increase or decrease in risk. A higher

SHAP value is indicated by the color red, whereas blue denotes a lower SHAP value. One can

observe a clear emphasis on the importance of SBP readings over DBP and Pulse readings. These

results are expected knowing that the main focus is predicting periods of hypertensive events based

on SBP thresholds. Looking at the SHAP plots for 3, 7, 8, 10, 13, and 14 day sliding windows, we

can see that typically the last 3-4 days of SBP values are the most important to the classifiers.

Figure 4.1: Logistic Regression SHAP plot with 7-day event horizon and 3-day sliding window.
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Figure 4.2: Logistic Regression SHAP plot with 7-day event horizon and 7-day sliding window.

Figure 4.3: Logistic Regression SHAP plot with 7-day event horizon and 8-day sliding window.
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Figure 4.4: Logistic Regression SHAP plot with 7-day event horizon and 13-day sliding window.

Figure 4.5: Logistic Regression SHAP plot with 7-day event horizon and 14-day sliding window.
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Figure 4.6: XG Boost SHAP plot with 7-day event horizon and 3-day sliding window.

Figure 4.7: XG Boost SHAP plot with 7-day event horizon and 7-day sliding window.
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Figure 4.8: XG Boost SHAP plot with 7-day event horizon and 8-day sliding window.

Figure 4.9: XG Boost SHAP plot with 7-day event horizon and 13-day sliding window.
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Figure 4.10: XG Boost SHAP plot with 7-day event horizon and 14-day sliding window.

4.1.3 Adaptive Model Overview

Using the best performing models for a 7-day event horizon as submodels to create the adaptive

model results in the performance graphs shown by Figure 4.11 and 4.12. The model performances

will change, depending on the event horizon and sliding window size chosen. As discussed earlier,

the longer the event horizon, the better the classification performance. In the two Figures 4.11 and

4.12 we can also clearly see that while XG Boost does better than the other two classifiers when it

comes to AUCROC values, this changes in the AUCPR figure. Here there is a more heterogeneous

mix of classifiers with Logistic regression being better or equal to XGBoost on 10-day sliding

windows, or 14-day sliding windows.
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Figure 4.11: AUCPR values for each sliding window submodel in adaptive model
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Figure 4.12: AUCROC values for each sliding window submodel in adaptive model
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5. CONCLUSION & FUTURE WORK

5.1 Discussion

In general, all three models performed comparably, with Random Forest performance being

slightly lower than Logistic Regression or XGBoost. This indicates that telemonitoring data does

seem to generate data that has potential to generate alerts for preventive action. More importantly,

the results indicate that the seven-day event horizon, since seven days, should provide sufficient

time for potential intervention while retaining much of the accuracy. There are two factors that

go into this result. First, in general, as the event horizon increases in size, performance improves

because the algorithm does not have to be as precise on the exact day that a hypertensive event

occurred (one-day horizon). However, the performances seem to start converging around a seven-

day event horizon length. This may be because the features being used to predict are now further

away from the event. That is, the last measurement used for prediction is seven days prior to the

last day of the seven-day event horizon, but two weeks prior to the fourteen-day event horizon.

Further, we can see that longer sliding windows yield higher accuracies. While the performance of

the models increase as both the event horizon and the sliding window increase, they converge after

a certain length. Looking at the Figure 4.2 we can see that the best performance was reached using

a 13-day sliding window and 14-day event horizon before losing performance when increasing the

sliding window size to 14 days. Since the performance of an 8-day sliding window is comparable

to a 13-day sliding window model, in some cases even outperforming the latter, it might be more

preferential to keep the sliding window sizes to around 7-8 days in length. More studies are needed

to separate out these two orthogonal issues, namely how precisely can the algorithms reasonably

predict and how many days out has optimal predictive performance.

The SHAP plot gives some additional insight into the second issue. In particular, the latest

readings and the variance over the window matter, but the number of additional readings help the

model better determine hypertension risk. The split in the feature ranges (SHAP value / along the
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x-axis) in the XGBoost model demonstrate why the model is able to achieve a better AUCROC

score, providing a likelihood that with increased data and increased participants, it will result in

higher performance gains. Given the large overlap between the highest impacting features of both

models, we demonstrate that our framework is able to successfully extract valuable features out

of the available telemonitoring data and that additional days of data are important in accurately

predicting periods of hypertension.

5.2 Limitations and Future Directions

This work presents promising ability to generate actionable alarms. However, the success of

telehealth solutions is a three-step process: 1) finding the right timing for alarms to facilitate the

right type of intervention, 2) keeping clinicians informed of any future event periods, and finally 3)

evaluating those interventions for specific hypertensive events. In this paper, we address the first

two questions with the limitation of only predicting periods of hypertension. A clear next step for

this work is to evaluate the relationship between the alarms that would be generated from these

models and a risk of hypertensive events, to then develop a future prospective trial. Additionally,

the use of more advanced classification models such as deep neural networks or recurrent neural

networks could enable prediction accuracy far exceeding those of the classifiers used in this study.

5.3 Conclusion

As previously established, hypertensive patients can be aided through remote health by daily

monitoring of their SBP, DBP, and pulse. In this study, the patients’ data is transmitted via Blue-

tooth to an intermediary device that connects to the cloud, enabling clinicians to view their patients’

daily data. At the center of this software system is a framework which identifies key features, win-

dows of measurement, and length of event horizon to successfully train a machine learning model

to predict periods of hypertension. Additionally, an adaptive model enables physicians to begin us-

ing the framework early and relying on the best possible model for a given input sequence length.

Based on the AUCROC and AUCPR of XGBoost ranging between 0.7-0.85 for AUCPR and 0.78-

0.8 for AUCROC, we demonstrate the success of the framework in enabling prediction of periods
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of hypertension. Throughout the process of aggregating, and then removing underperforming fea-

tures, training a model, and then finally validating the model’s performance using SHAP, we can

see the highest impacting features are later in the sliding window. This indicates that, while the

history of features matter, the latest trends are most indicative of positive events. This demonstrates

the framework’s ability to accurately extrapolate the most impactful features on the model output.
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