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ABSTRACT 

This thesis implements hybrid mechanistic-machine learning models to predict load-induced 

cracking in concrete beams without transverse (applied along the depth of the beam) reinforcement. 

Predicting load-induced cracking is crucial for robustly predicting shear capacity. Mechanistic models 

lack the flexibility to represent load-induced cracking, and machine learning models lack a sufficient 

data set to learn load-induced cracking relationships. Hybrid models have the best chance of accurately 

predicting load-induced cracking. To implement hybrid modeling, we developed the Hybrid Learning 

theory and identified optimal combinations of mechanistic and machine learning models. Additionally, 

we developed a framework that has low mechanistic bias and sufficient constraint. This framework 

will allow for mechanistically consistent predictions. Hybrid models have great potential for modeling 

in Structural Engineering because of their flexibility and interpretability, and robust prediction of shear 

capacity will lead to increased design efficiency and understanding of concrete beam failure mechanics. 
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CHAPTER I: INTRODUCTION 

While improving design efficiency is always a goal for structural engineering, it has recently 

become significantly more important considering recent efforts to reduce carbon emissions. The 

production of cement (the main constituent of concrete) accounts for 5-7% of global carbon dioxide 

emissions (Benhelal et al. 2013), and the strategy pertinent to structural engineering for decreasing 

these emissions is decreasing the quantity of cement and concrete used in construction.  

Concrete structures would become significantly lighter with the slightest increase in beam 

efficiency because beams are the most prolific concrete component found in structures. Beam action 

is even present when studying other structural components (Wight and MacGregor, 2016). Structural 

walls, when bent about their weak axis, are considered to have beam-like behavior, and columns, 

when eccentric loads are applied, are treated as beams with axial loads. Structural slabs, which account 

for 40% of the concrete used in high-rise buildings (Block et al. 2019), vary only slightly from beam 

behavior. So, design efficiencies realized for concrete beams would translate to efficiencies in structural 

members that exhibit beam-like behavior as well.  

Without an accurate model to represent concrete beam capacity, extra construction materials 

will be needed to ensure a design’s safety. Conversely, the more accurately concrete beam response 

can be represented, the more efficiently they can be implemented in design. 

Widely accepted models for predicting shear capacity in concrete beams without transverse 

reinforcement are still sought after, but none have been developed yet (Koscak et al, 2022). This 

group of concrete beams, which do not contain transverse reinforcement (reinforcement spanning 
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the depth of the beam), is important to understand because it includes most structural slabs and 

shares many properties with beams that do contain transverse reinforcement (Zararis and Papadakis, 

2001). Models for predicting a concrete beam without transverse reinforcement’s capacity are mostly 

comprised of mechanistic models with empirically fitted relationships, which have limited flexibility in 

representing any complex mechanism accurately (Classen, 2020). In this thesis, we use the term 

mechanic or mechanism to describe the phenomena occurring in the beam's response while 

mechanistic models refer to the mathematical representation of the mechanisms. Even though they 

do not represent the underlying mechanisms accurately, these mechanistic models accurately describe 

beam shear capacity (Cavagnis et al., 2018). The main consequence of inaccurately describing 

underlying mechanisms is a decrease in robustness. Mechanistic models will perform well on the data 

set they were developed on (slender beams) but their performance deteriorates significantly when 

tested on beams outside of the data set’s range (deep beams). 

The main complexity in predicting a concrete beam’s capacity is rooted in its addition of other 

materials, such as deformed steel reinforcement (Ngo and Scordelis, 1967). This addition improves 

concrete beam performance but complicates their response to loading compared to a beam’s 

response made from either material separately (Kani, 1964). Steel beam capacity is sufficiently 

understood because steel’s isotropic and elastic properties simplify response analysis through much 

of a steel beam’s loading stages (Segui, 2012). If enough steel is added to a concrete beam, its response 

depends on the properties of the steel. Primarily, Including transverse reinforcement in a concrete 

beam simplifies the analysis by allowing a beam to be related to a truss structure, as is done in the 

strut-and-tie method (Schlaich and Schafer, 1991), However, concrete beams only containing 
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longitudinal reinforcement (not containing transverse reinforcement) are more difficult to analyze 

(Reineck, 1991; Muttoni and Ruiz 2008; Ruiz et al., 2015). Aside from beams with high slenderness 

(span-to-depth ratio), concrete beams without transverse reinforcement often do not reach their 

flexural capacity (making them shear failure driven) and fail suddenly (Yang, 2014), and their response 

depends mainly on concrete fracture properties and longitudinal reinforcement bond strength 

mechanics (El-Ariss, 2007). These complex mechanisms determine the crack shape resulting from 

loading (load-induced cracking), and the crack shape determines the shear capacity (therefore the 

ultimate capacity).  

Load-induced cracking is the most complex mechanism in determining shear capacity. Many 

of the other mechanisms can be suitably described by mechanistic models, but load-induced cracking 

must be severely simplified in mechanistic models. Without the flexibility to accurately describe load-

induced cracking, mechanistic models will always lack robustness. 

Machine learning methods have recently been used to predict shear capacity. These have the 

flexibility to describe complex relationships but require substantial data sets (Raissi et al, 2019). 

Additionally, machine learning models have no interpretability (Gondia et al, 2020), so skepticism 

would be associated with their use in practice. 

In the middle of machine learning and mechanistic methods lie hybrid mechanistic-machine 

learning methods that can represent complex relationships with less data. Hybrid mechanistic-machine 

learning modeling methods have the best chance of accurately representing load-induced cracking by 

combining data and mechanics.  
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Accurate prediction of load-induced cracking would also increase our understanding of the 

mechanism itself. While machine learning models are not interpretable by themselves, hybrid models 

provide increased interpretability (Zhang et al., 2020), so if the hybrid model captures an accurate 

representation of the load-induced cracking mechanism, it can be studied against other mechanism 

and test data to potentially increase our understanding of load-induced cracking.  

Additionally, successfully implementing a hybrid model for this problem will pave the way to 

increase our understanding of other structural members with mechanisms too complex for 

mechanistic models. For example, this approach can be applied to timber design, leading to an 

improved understanding of how moisture conditions affect strength past the empirically derived 

relationships often used (Breyer et al., 2020). 

In this thesis, we implement hybrid mechanistic-machine learning models for accurately 

predicting load-induced crack propagation of concrete beams without transverse reinforcement. This 

accurate prediction will remedy the previous poor treatments of crack propagation used in 

mechanistic models, providing more accurate predictions for all concrete beams without transverse 

reinforcement and not just the beams the model was developed on. Hybrid models have the flexibility 

to represent complex relationships, do not require a large data set, and can be interpreted more than 

machine learning models. Successfully implementing hybrid models for this task allows for more 

efficient and sustainable concrete design and a greater understanding the crack-induced failure.  
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CHAPTER II: OVERVIEW OF RELATED WORK 

As we mentioned earlier, shear failure in concrete beams without transverse reinforcement 

has very complex mechanisms. This section will explore some of the efforts to understand shear 

failure and its mechanics. In this brief review, we hope to convey the essence of shear failure research 

and provide a basis for further research. 

Through experiments, we prove or identify possible theories about shear failure mechanics. 

Then, based on those mechanics and gathered experimental data, we develop mathematical 

relationships, based on the chosen modeling method, to represent the mechanics theorized from 

experiments. To most clearly reflect the essence of shear failure in concrete members without 

transverse reinforcement, this review will follow a similar pattern, beginning with experimental 

programs and their identified mechanics and ending with a description of models developed to predict 

shear failure. In the developed models section, we will not discuss the developed model’s mathematical 

form extensively. Instead, we will identify which mechanics they include and their flaws when 

predicting shear capacity. Generally, mechanistic models over-simplify mechanisms and limit their 

robustness. Furthermore, machine learning models robustly predict shear capacity when enough data 

is available but are uninterpretable. So, mechanistic models will be reviewed to identify what portions 

they simplify, and machine learning models will be reviewed to identify their limitations in 

interpretability. 
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Experimental Programs: Shear Failure, Explained 

Reviewed works in this section perform experiments to determine shear failure mechanics in 

concrete beams. 

One of the first test series studied chronologically was by Kani (1964). These test series lead 

to the “shear valley” mechanism, which is a term that describes the sudden decrease, then increase, 

in shear capacity when slenderness increases. In response to ACI committee 426’s encouragement to 

develop a “rational theory”, Kani tested 14 beams with varying slenderness (
𝑎𝑎
𝑑𝑑
) ratios. For ratios under 

1.5 and above 5, full flexural capacity was achieved but not for values in between. This matched 

previous studies from Ferguson (1950), which observed a 225 percent increase in shear stress at 

failure when the shear arm ratio changed from 2.35 to 1.17. This was unexpected because, from 

beam theory, an elastic section would have the same shear stress at failure regardless of the shear 

arm ratio. The unexpected change in shear stress at failure indicated the complexity of shear capacity 

in concrete beams and provided the basis of the “shear valley”. 

The shear valley mechanism is caused by two others. The first of these is “cantilever action”. 

When measuring the displacement of plane sections on test beams, they were observed not remaining 

plane. Instead, severe warping of the cross section was observed, and thus, the cantilever action 

mechanism was theorized. This mechanism is essentially the bending of concrete “teeth”, which are 

formed when flexural cracks propagate on either side of a section of the concrete beam. The bending 

of the tooth is caused by beam action, which causes, among other things, increased tensile stresses in 

longitudinal reinforcement as it tends towards the maximum moment portion of the beam. This 

causes the cracked beam’s teeth, resembling a comb’s teeth, to be loaded horizontally like cantilever 
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beams. Cantilever action causes the beams’ stress state to change, especially near the crack, flattening 

the crack propagation path. A depiction of this action is displayed in Figure 2.1. Results indicate 

cantilever action is more significant towards the maximum moment, likely due to the decreased 

flexural resistance of a tooth where larger cracks are present.  

 

Figure 2.1: Cantilever action in concrete beams without shear reinforcement 

The other mechanism comprising the “shear valley” mechanism is the remaining arch capacity. 

To study the compression field of the beam as it progressed towards failure, strain gauges were placed 

along the beam’s depth and oriented parallel to the theoretical compression strut of a tied arch. In 

deeper beams (shear arm < 2.5), the stain gauges indicated flexural resistance stopped coming from 

beam action and started coming from the strutting action of a tied arch. This led to the conclusion 

that after concrete teeth fail in deep beams, the beam’s capacity is determined by the arch that 

remains, whereas the remaining arch’s capacity is determined by plasticity theory.  
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In slender beams, no remaining arch would develop, and in deep beams, the concrete teeth 

would fail at much lower loads. These two observations construct the shear valley. Deep beam 

capacity is determined by the capacity of the remaining arch, which decreases as the beam becomes 

more slender, and the slender beam capacity is determined by tooth capacity, which increases with 

more slenderness. The lowest shear capacity, and the bottom of the “shear valley”, lie at some point 

of slenderness where capacity transitions from being determined by remaining arch capacity to tooth 

capacity. Plotting the shear capacity of a beam and varying the slenderness ratio, a valley will form 

(Figure 2.2).  

 

Figure 2.2: Shear valley explaining variation in shear capacity from beam slenderness 

(Adapted from (Kani, 1964)) 

Finally, the last observation made was of increased shear strength with smooth reinforcement 

instead of deformed (Leonhardt and Walther, 1961). This reinforces the shear valley mechanic. If 

there is no deformed reinforcement, there can be no beam action and no tooth failure. The beam 
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failure is always determined by direct strutting. Of course, using smooth bars decreases moment 

capacity, so there is a trade-off.  

To study the crack shapes that cause failure, how opposite crack faces move relative to each 

other (crack kinematics), and how inter-crack forces contribute to failure, Campana et al. (2013) 

tested four simply supported beams. Strains and displacements were measured across the beams 

using a high-precision distance-measuring device. 

No mechanic could be identified that explains the crack shapes that develop near failure, but 

these tests did observe that crack shapes were consistent in identical beams. All critical cracks (defined 

by Campana et al. (2013) as cracks that represent the ultimate failure surface) exhibited a shape of a 

hyperbolic tangent function, as shown in Figure 2.3.  

 

Figure 2.3: Typical critical crack configuration 

The test results indicated that the crack kinematic mechanics are much more complex than 

the kinematics proposed by Walraven (1980), Ulaga (2003), and Guidotti (2010), but no mechanics 

were given in their place. The previous mechanics describe crack opening to occur first and be 

followed by a combination of opening and sliding. However, test results indicate sliding and opening 

occur simultaneously. Any mechanism describing crack kinematics must relate loading to crack opening 

and sliding along the crack’s shape. This is usually done by relating the kinematics to strains in the 

uncracked region, as shown in Figure 2.4 (a).  
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By analyzing the measured crack shapes and kinematics near failure, the shear resistance 

contribution of inter-crack and uncracked concrete shear resisting mechanisms were identified. Inter-

crack forces include aggregate interlock (Figure 2.4 (b)), doweling action (Figure 2.4 (e)), and residual 

tensile strength (Figure 2.4 (c)).  

• The aggregate interlock mechanism has been studied and modeled extensively 

(Walraven, 1981; Ulaga, 2003). Jacobsen et al. (2012) conducted a series of push-off 

tests to determine the force-displacement relationship of the aggregate interlock 

mechanism. Aggregate interlock is described as the friction forces occurring between 

crack faces sliding past each other. This force is dependent on aggregate size and 

concrete strength. Unlike other shear-resisting mechanisms, this has been studied in 

isolation from concrete beam systems (Huber et al., 2019). Aggregate interlock 

resistance increases with Mode II fracture and decreases with Mode I fracture. 

• The residual tensile strength mechanism describes the softening behavior of concrete 

when it is loaded past its maximum tensile stress. Once the tensile stress of concrete 

surpasses its peak stress, the concrete does not fail. Instead, portions rupture partially, 

creating microcracks and decreasing the resistance capacity of the concrete. This 

softening behavior continues for increasing strain until microcracks join and combine 

with the visible crack, the region where the crack can be seen and no residual tensile 

strength exists (Reinhardt, 1984; Reinhardt et al., 1986; Hordijk 1992; Hillerborg, 

1983). Residual tensile strength is dependent on aggregate size and fracture energy 

and decays significantly as Mode I (opening) fracture increases (Cavagnis et al., 2018). 
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• Doweling action is activated in the longitudinal reinforcement when opposite crack 

faces move vertically past each other. The resistance provided by this mechanism can 

be described by beam theory if some assumptions are made about the reinforcement-

concrete interfaces but become much more difficult if factors like slippage or 

delamination are accounted for.  

Residual tensile strength, found in the upper portions of the crack, was found to contribute 

little to shear resistance because the crack openings were found to be too large in that region. 

Additionally, the size of the compression zone near failure indicated it would contribute little to the 

total resistance as well Figure 2.4 (d). From this, the majority of the resistance at failure would be 

provided by aggregate interlock and doweling action mechanisms. 

 

Figure 2.4: Shear-resisting mechanisms 

Cavagnis et al. (2015) tested a series of 13 beams (two were re-used for a total of 15) to 

study load-induced cracking mechanisms. These beams varied in geometry and loading conditions, and 

crack shapes and kinematics were measured using Digital Image Correlation. While no totally inclusive 
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mechanics were theorized for relating crack shapes at failure to beam properties and loading 

conditions, mechanics describing the types of cracks that develop and their role in failure were.  

Load-induced cracks can be categorized by their shape, position, and the forces that develop 

them. The most apparent are the primary (type A cracks) and secondary (type B cracks) flexural 

cracks and the cracks propagating horizontally from the tops of primary cracks (type F cracks). These 

cracks develop from flexure and cantilever action. Type A & B cracks merging with others are classified 

as type C cracks, and cracks from delamination are type D cracks. Type D cracks can form early in 

loading and are the result of doweling action. Type E cracks offshoot from A cracks and are the result 

of aggregate interlock stresses. Finally, Type G cracks are created from concrete crushing. The typical 

shape of these cracks is shown in Figure 2.5. 

 

Figure 2.5: Types of load-induced cracking 

A mechanic was proposed to determine the length of type A cracks, but because it can be 

difficult to determine where type A cracks end and type F cracks begin, this mechanic is subjective. 

For example, some cracks appear curved throughout their length, indicating no transition point, and 

others have multiple segments, indicating too many transition points. A more objective proposed 
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mechanic was the increase of inclination in an A-type crack when it was in a region with a higher 

moment-to-shear ratio. This mechanic was implemented mathematically with equation (1). 

 𝛽𝛽 = atan �1 + 1.25 ∗
𝑀𝑀

𝑉𝑉𝑣𝑣𝑣𝑣 ∗ 𝑑𝑑
� 

( 1) 

Where 𝑀𝑀 is the moment in the virtual section at the crack root, 𝑉𝑉𝑣𝑣𝑣𝑣 is the shear in that same 

section, 𝑑𝑑 is the beam depth, and 𝛽𝛽 is the crack inclination. 

No single combination of crack types describes the critical cracks that develop. However, the 

proposed crack development type mechanic categorizes the types of failure that can occur from load-

induced cracking. Type 1 coincides with arching or strutting action where the crack types are relatively 

insignificant in failure, relating back to the “remaining arch” capacity (Kani, 1964). Type 2 is caused by 

type C cracks. The joining of secondary or primary cracks causes the kinematics of the crack to change, 

disengaging an active aggregate interlock mechanism in some portion of the crack. Type 3 is similar to 

the previous except a type E crack causes disengagement. When stresses from aggregate interlock 

become too significant, the tensile strength of concrete is reached, and cracks propagate perpendicular 

to the type A crack where the aggregate interlock is acting. Finally, Type 4 is similar to 2 and 3, but is 

the result of late-stage type C cracks.  

Following the previous study, Cavagnis et al. (2017) tested seven additional specimens under 

similar conditions, further adding to mechanisms related to load-induced cracking, the contribution of 

shear resisting mechanism, and crack kinematics. 

Crack shapes and kinematics before failure indicate that the critical crack (the crack whose 

shape and kinematics describe the capacity of the beam) is the same as the merged crack in some 
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cases, but in many other cases, it is not. No mechanism could be identified for this difference. Because 

of the way cracks merge to cause failure, it can be difficult to determine which crack should be 

determined as the critical crack. In some cases, cracks merge and the beam’s strength continues to 

increase. The critical crack for this would be the merged crack. In most cases, however, cracks merge 

and the beam’s strength gradually or rapidly decreases. In this case, the critical crack is defined as the 

unmerged crack even though its shape and kinematics do not define the beam’s capacity. 

Observations were made on the crack kinematics that develops, but no mechanics were 

theorized for these observations. Upper, type F cracks are only characterized by Mode I fracture and 

do not exhibit sliding. Concrete mostly did not reach the post-peak levels of the stress-strain curve. 

These experimental observations are portrayed in Figure 2.6. 

 

Figure 2.6: Kinematics of a critical crack 

By using critical crack shape and kinematics and constitutive models, the shear resistance 

mechanisms were found to depend significantly on the crack shape and kinematics. In deep beams, 

inter-crack forces in A-F crack types contributed little compared to strutting in the uncracked region 

while the opposite was true for slender beams. Additionally, critical cracks developed closer to the 

applied loads for deep beams than for slender beams. From this, a mechanism is proposed that 
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correlates the location of the crack to the contribution of inter-crack forces to shear resistance. The 

closer the critical crack develops to the applied load, the less inter-crack forces contribute to shear 

resistance. Elaborating more on the location of critical cracks, a second, potential critical crack, which 

developed closer to the applied load, was observed on slender beam SC70. This potential critical 

crack, however, ultimately did not become a critical crack due to its proximity to the applied load, 

which allowed its uncracked regions to contribute more to resistance.  

Mechanistic Models 

Mechanistic models are those that use mathematics to describe mechanisms. They use 

mechanisms (e.g. aggregate interlock, cantilever action) as a template to develop equations relating, 

for example, strains to forces in the uncracked region of the beam. These equations may represent 

laws of physics, like equilibrium, geometry (strain and displacement relationship), or constitutive 

relationships. Empirical models are needed because mechanisms are often hard to define accurately. 

For example, the aggregate interlock mechanism is described as a friction force, which is intuitive from 

a previous understanding of rough surfaces and friction, but determining the exact relationship 

between friction forces and displacement based on intuition or physical laws is difficult or impossible.  

From this, all mechanistic models need some data-driven portion, in the form of empiric 

relationships, to relate theorized mechanisms to reality. Due to the inflexibility of empirical models, 

however, they are not able to fully represent the mechanism. In the following reviewed models, the 

need for a data-driven portion will be a common theme and will be observed to varying degrees. 

Some models choose a handful of mechanisms to describe shear capacity and fit available data to that, 

and others choose many simpler mechanisms and fit each of those. Some shear failure models only 
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consider one or two inter-crack force mechanisms to be significant while others may consider them 

all. Most shear failure models are often based on the equilibrium of rigid bodies and focus on one 

virtual section at a time, as shown in Figure 2.7. The Critical Shear Crack Theory (Muttoni and Ruiz, 

2008) epitomizes this single-crack method by only analyzing failure as the degradation of forces in one 

crack. Other theories also follow this approach, such as the Shear Crack Propagation Theory (Classen 

2020).  

 

Figure 2.7: Rigid body equilibrium 

Kani (1964), despite having theorized rather complex mechanics, chose to implement rather 

simple mechanics in their model. However, this is reasonable given the complexity of shear failure and 

limited data at the time. As described previously, this work introduces the “shear valley” mechanism. 

The capacities of the remaining arch and the concrete teeth are the basis for this proposed model: 

the concrete “teeth” giving way to the arch, and then, the arch collapsing. For deep beams, concrete 

“teeth” lose their capacity early in loading, but their remaining arch is often sufficient to support shear 

forces until flexural capacity is reached. For slender beams, the concrete “teeth” have a much greater 

capacity, but after their failure, the remaining arch’s capacity is much less than applied loads, causing a 
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rapid failure. For the mathematical implementation of this, a simplified version of the concrete “tooth” 

is used. It is rectangular and has a height and width calibrated from test data. Using this, a simple elastic 

analysis determines the tensile force that can be supported until the stress in the tooth reaches the 

concrete tensile strength. This is considered the failure of the tooth. Equation (2) determines the 

moment that causes the failure of this tooth. 

 
𝑀𝑀𝐶𝐶𝐶𝐶 =

7
8
𝑏𝑏 ∗

𝑑𝑑2

6
∗ 𝑓𝑓𝑐𝑐𝑐𝑐 ∗

𝑠𝑠𝑐𝑐𝑐𝑐
𝑠𝑠
∗
𝑎𝑎
𝑑𝑑

 ( 2) 

Where 𝑠𝑠𝑐𝑐𝑐𝑐 is the width of the tooth, and 𝑠𝑠 is the depth of the tooth.  

The capacity of the arch can be represented by (3) 

 𝑀𝑀𝐶𝐶𝐶𝐶 = 𝑀𝑀𝐹𝐹𝐹𝐹 ∗
𝑑𝑑

𝑘𝑘 ∗ 𝑎𝑎
 ( 3) 

Where 𝑘𝑘 needs to be calibrated on test data (taken as 0.9) and 𝑀𝑀𝐹𝐹𝐹𝐹 is the flexural capacity 

of the beam.  

Using both relationships, the bottom-most point of the “shear valley” can be determined. 

Based on this point and the two relationships, the moment capacity (and shear capacity) can be 

determined for the beam. If the shear arm ratio is low enough, the full flexural capacity can be reached, 

and if the shear arm ratio is high enough, it may also be achieved. However, in the middle is where 

shear failure dominates.  

This model comes from a very fundamental understanding of deep and slender beam failures 

but is based on a theory that fails to consider inter-crack phenomena, such as aggregate interlock. 

Additionally, the model omits propagation mechanics in determining the capacity of the remaining 

arch. 



18 
 

Rieneck (1991) proposed a model for slender beams, as the arching action provided in deep 

beams is controlled by the failure of a strut and is defined well. The identified slender beam shear 

resistance components are from aggregate interlock, doweling action, cantilever action, and shear 

force in the uncracked concrete. A relationship between the inter-crack shear resistance and the 

uncracked region shear resistance is derived from a stress analysis of the compression zone. Assuming 

all tensile resistance in the cross section is from reinforcement and the stress distribution in the 

uncracked region is linear, this analysis shows the compression zone can carry, at most, 30 percent of 

applied loads near failure. From this, much of the load must be carried in the inter-crack regions of 

the beam, and constitutive relationships with idealized models of the crack can be used to determine 

the capacity of a beam. A simple kinematic model for the proposed crack is derived by relating tensile 

strains to crack openings. These kinematics are then used to evaluate how the inter-crack forces 

contribute to shear capacity, and a single equation was then produced to describe shear failure at the 

beginning of the “B-region”.  

This model considers many important mechanics in its formulation but simplifies and omits 

many too. Cantilever action is assumed negligible, but if this were true, there would be no beam 

action, a mechanism on which this model depends. By not including cantilever action, the biaxial stress 

states in the uncracked region are severely simplified. Additionally, the crack shape is extremely 

idealized and no residual tensile stresses are considered in the upper portions of the crack.  

The mechanistic model proposed by Cavagnis et al. (2018) uses all inter-crack forces and the 

shear resistance in the uncracked portion to describe concrete beam shear capacity. Aggregate 

interlock relationships are determined by Walraven (1980) but modified to avoid numerical 
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integration. Doweling action forces are modeled after Ruiz et al. (2013) but are then simplified to not 

account for reinforcement spacing. Residual tensile strength is modeled using a fracture softening 

mechanism proposed by Reinhardt (1984), where the force in the micro-cracked region is inversely 

proportional to the crack opening. The shear resisted by the uncracked concrete is estimated by 

considering the stress field from the application of load to the critical shear crack. Assumptions in 

modeling this stress field are never validated and do not relate to any mechanism. The contribution 

of the uncracked region is then simplified further to be a portion of the inter-crack contribution, 

where the location of the critical crack determines the portion. Explicit equations yield the neutral 

axis depth and crack shape based on the location of the critical crack. The crack kinematics are then 

iteratively solved through the moment equilibrium of the critical crack section. This process can be 

repeated for critical cracks occurring at any portion of the beam and the critical shear crack position 

that results in the lowest shear strength can be assumed as the true position. The validation of these 

positions is not given for a significant number of these beams, however. Additionally, this model 

frequently finds the minimum value to occur in the 40% to 60% shear span region, with little variation 

in shear capacity in this range. From this, assuming the critical shear crack to occur halfway into the 

midspan will yield reasonable capacities.  

This model predicts shear capacity well for slender beams, but is almost entirely empirical and 

simplifies underlying mechanisms significantly. The proposed aggregate interlock model deviates 

significantly from push-off tests (Jacobsen, 2012) with the same kinematics. The doweling action model 

does not include the vertical displacement of crack faces, which is significant in determining its 

resistance. No explanation is given for the theorized stress field of the uncracked region, and the 
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model developed becomes invalid for deep beams. The most simplified mechanism, however, is load-

induced cracking. In this model, the shape of the crack is determined only by its location (which seems 

to be constant for all beams), and previously identified failure mechanics are ignored. 

Classen (2020), in the most recent attempt to accurately describe shear failure in concrete 

beams without shear reinforcement, creates a model to not only describe shear failure but also 

describe the crack propagation process leading to failure. This was not intended to be used in a design 

scenario, but rather to increase understanding of the system. The model begins by examining a single 

crack in a pre-determined location. This crack has only propagated to the flexural reinforcement at 

the beginning of the analysis. At this point, the compression zone depth is decreased (analogous to 

an increase in load) and the propagation and kinematics of the crack must be solved. A solution for 

these values is obtained iteratively through inter-crack constitutive models, strain-kinematics 

relationships, elastic models for stresses in the uncracked section, and the equilibrium of rigid bodies. 

The compression zone depth continues to decrease until the net shear resistance found through 

equilibrium starts to decrease. For the analysis of the entire beam, this process must be repeated for 

new crack locations at intervals of the beam. As this method’s goal was to make the most accurate 

representation of mechanisms, there was little calibration used in this model.  

While far better than many other bilinear cracks, the single, multi-segmented crack used in 

this model still will not represent the crack failure mechanisms presented in Cavagnis (2015). Finally, 

this implementation makes only a few comparisons to test data to validate itself, so its ability to 

represent shear capacity accurately is unknown. Additionally, the critical crack this model predicts 

matches the unmerged crack and not the merged crack that determines the beam's capacity. 
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These reviewed models simplify or omit many mechanisms from their mathematical 

representations. These models still predict shear capacity accurately by fitting incorrect relationships 

for underlying mechanisms, but fitting incorrect relationships limits the model's robustness. Table 2.1 

shows a brief summary of some of the omitted and simplified mechanisms for the reviewed models 

and some additional models that were not described previously.  

Table 2.1: Simplified and omitted mechanisms 

Model Mechanism 
omitted 

Mechanism 
simplified 

How they simplified 

(Kani, 1964) Inter-crack forces “Tooth” geometry Only considered rectangular 
tooth. 

(Reineck, 1991) Cantilever action Load-induced 
cracking 

Assumed a single bilinear crack 

(Cavagnis et al., 2018) Biaxial stress-
strain relationship 

Crack kinematic-
strain relationship 

Assumed crack faces to rotate 
about the crack tip 

(Classen, 2020) Multiple cracks 
contributing to 
failure 

Delamination 
crack length 

The delamination crack was 
the length of the primary 
crack’s projection 

(Ruiz et al., 2015) Multiple cracks 
contributing to 
failure 

Load-induced 
cracking 

Assumed a single bilinear crack 

(Mari et al., 2014) Change in neutral 
axis depth from 
cracking 

Shear stress 
distribution at the 
crack tip 

Shear stress was assumed 0 at 
the crack tip 

 

Machine Learning Models 

Machine learning methods are different from mechanistic ones because they do not attempt 

to use mechanisms as a template, but instead, define relationships entirely from data. While this limits 

their ability to learn by not providing any structure, it also makes them substantially more flexible by 

not restraining them to simpler mathematical forms. Machine learning models, like the neural networks 
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used for image classification, have upwards of billions of trainable parameters. Compared to an 

empirical relationship, which has three or four data-driven parameters, machine learning models can 

represent more complex mechanisms. However, machine learning models require large data sets and 

are largely uninterpretable. 

The models reviewed in this section have enough data to learn relationships for shear capacity 

but are not able to do so interpretably. In some cases, there is not enough data for machine learning 

to learn a better representation than mechanistic models. 

The first model examined in this section is (Zsutty, 1968), which does not employ machine 

learning as it is known today but rather uses statistical regression (empirical model) and dimensional 

analysis. These modeling methods resemble machine learning significantly, only differing in the 

magnitude and complexity of the algorithms used. Additionally, while empirical fitting techniques are 

often used in mechanistic models, they are done so to fit theorized mechanisms, which distinguishes 

them from purely empirical models. Because this model does not consider any mechanisms in its 

derivation, it is considered in this section rather than the mechanistic models section. In this work, the 

initial attempts to make a high-accuracy model were unsuccessful because the simple model proposed 

was unable to describe the complexity of the two failure states that can emerge: deep and slender 

beam failure. From this, the data was split and two separate models were made. By only considering 

beams with a shear arm ratio greater than 2.5, a more accurate model was developed. However, the 

same was not true for deep beams. Ultimately, the best prediction for deep beam failure was provided 

by the slender beam model. The difficulty in prediction was attributed to Ferguson's (1956) and 

Taylor’s (1960) explanation of increased strength in deep beams, where they explain that increased 
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strength is caused by the pressures applied to the top and bottom faces of the beam. In deep beams 

without these pressures, the slender beam model performed well. While this model achieves 

reasonable predictions for shear capacity, it can only do so for slender beams and is not able to 

describe the complex transition from beam failure to strutting failure in deep beams. 

Analyzing more contemporary modeling approaches, Mangalathu et al. (2021) use a variety of 

machine learning models and Shapley Additive exPlanations (SHAP) to predict punching shear capacity 

in flat slabs and provide interpretability to those predictions, respectively. The key purpose of this 

work was to provide the accuracy of a machine learning model while remedying some of its 

interpretability problems. These models were trained with a dataset of 380 slabs. To avoid 

memorization, data is split into training and testing sets for model creation and evaluation.  The 

extreme gradient boosting model is identified as the best predictor for this problem and is compared 

to other empirical models. Upon examining the data, it appears the entire dataset, training and testing, 

was used in this comparison. This invalidates the comparison because performance on training data 

does not accurately represent the model’s “learning”. Using the score provided for the testing set, it 

appears that this machine learning model performs worse than less flexible empirical models. This is 

likely attributed to the size of the data set. The SHAP analysis is used to provide interpretability to the 

predictions by indicating which input parameters positively or negatively influence the shear capacity 

prediction from its average value. This is an insightful analysis because it confirms the machine learning 

model is respecting some general mechanisms of shear capacity, such as low a/d ratios increasing shear 

capacity. However, this does not provide the same level of interpretability as mechanistic models, 

where all modeled mechanics can be observed in mathematics.  
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In a similar work, Feng (2021) uses ensemble ML models to predict the shear capacity of deep 

beams with and without transverse reinforcement. Ensemble models are used because they do not 

require a “best” model to be learned, which can be difficult for a limited dataset. Instead, they combine 

predictions from several good models. The data set they used for training only had 271 samples. 

Making a predictive model for this data set would be very difficult because the mechanics of these 

beams can vary substantially. Depending on the amount of transverse reinforcement, the final failure 

state could be determined by arching or beam action. This makes the XGBoost’s final prediction 

coefficient of determination of 0.928 significant because this indicates that the model has the flexibility 

to accurately represent this transition. These results are then compared to empirical models, which 

the author mistakenly equates with mechanistic models. However, this is an extremely unfair 

comparison because these models were developed only for deep beams with shear reinforcement, 

and this dataset contains many other configurations of beams. Even considering the beams these 

expressions were developed for, the “WVR” beams, the spread is still significantly more than the 

machine learning model, indicating its superiority in prediction accuracy. It should be noted that there 

are mechanistic models significantly more accurate than these empirical models shown. Finally, an 

interpretability aspect of the model is given through the partial dependence of the loss function with 

respect to the input features. While this does describe the relevance of input features, it does not 

describe any mechanism of shear failure. The author acknowledges this by stating the two models 

should be used in conjunction and that mechanistic interpretation is crucial to application. 
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CHAPTER III: DESCRIPTION OF THE PROBLEM 

Both machine learning and mechanistic models have deficiencies when predicting concrete 

beams without shear reinforcement’s shear capacity. Empirical modeling’s flexibility limits the 

robustness of mechanistic models, and machine learning models need large datasets and lack 

interpretability. The deficiencies of mechanistic models detailed further are: (1) mechanistic models 

omit or misrepresent mechanisms known to affect shear failure (2) Even if all relevant mechanisms 

are included, some are too complex to be accurately represented by empirical models.  

Problem (1)’s primary example is all mechanistic models only consider one crack in 

determining failure when experiments show multiple cracks affect the shear capacity. Simplifying the 

mechanisms of shear failure must be compensated for by empirical models fitting incorrect 

relationships for other mechanisms. For example, Cavagnis et al. (2018) proposed a failure model 

which predicts the shear capacity well (0.95 coefficient of determination) on slender beams, but its 

prediction of aggregate interlock strength is significantly different from the test results provided by 

Jacobsen et al. (2012). By relying on empirical models to calibrate mechanistic shear capacity models, 

the mechanistic models are only sufficient to describe the systems on which they were calibrated. 

When Cavagnis et al. (2018) model is applied to deep beams, it predicts poorly. Figure 3.1 shows 

prediction errors for varying slenderness ratios. To robustly predict shear capacity, all mechanisms 

must be modeled accurately.  
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Figure 3.1: Poor predictions made by mechanistic models for deep beams (a/d<2.5) 

Even if all mechanisms were appropriately considered, some are too complex for empirical 

models to represent accurately (problem 2). Predicting load-induced cracking is critical to predicting 

failure because all inter-crack forces are dependent on it. Determining their shape for capacity 

prediction is seemingly impossible and is, in fact, often described as a “riddle”. Many mechanisms have 

been proposed to explain the cracks angles and types that form but these cannot completely describe 

load-induced cracking. A mechanism to completely describe load-induced cracking is likely too 

complex. Empirical fits used in mechanistic models cannot be expected to accurately describe load-

induced cracking when its mechanism is this complex. Empirical models are sufficient to model most 

mechanisms, but the most complex mechanisms, like load-induced cracking, must be modeled with a 

more flexible method. 

If the fitting method’s flexibility is considered, machine learning methods have shown a great 

ability for finding patterns in complex environments (Sun et al., 2020). Regression-based machine 

learning models have been able to predict many concrete members' shear capacities (Mangalathu et 
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al., 2021). However, these methods need a large, rich dataset to find the relevant patterns, so while 

they could theoretically be used in predicting crack shapes consistently, not enough available data on 

them. If only shear capacity is predicted, issues still arise with mechanistic interpretability and 

generalization past the dataset. However, because of their flexibility, machine learning methods can 

generalize better than empirical fitting methods.  
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CHAPTER IV: METHODOLOGY 

To robustly predict shear capacity in concrete beams without shear reinforcement, the 

accurate prediction of load-induced cracking is essential. Mechanistic models do not have the flexibility 

to represent load-induced cracking, and machine learning models do not have enough data to learn 

load-induced cracking or enough interpretability for their robust shear capacity predictions to be used 

in practice.  

Recently, many new models have been developed that combine machine learning and 

mechanistic models to make Hybrid Mechanistic Machine Learning models. These have been 

developed under a variety of names, like “Physics Informed Deep Learning”( Rao et al., 2021), 

“Knowledge Enhanced Deep Learning” (Wang and Wu, 2020), “Finite Element Network” (Jokar and 

Semperlotti, 2021), Physics-informed neural networks (PINNs) (Riassi et al., 2019). Hybrid models are 

most often used to decrease the amount of data required for learning, but can also be used to increase 

prediction interpretability, and both these qualities are needed to robustly predict shear capacity. 

In this thesis, we attempted to create a hybrid model for predicting load-induced cracking, but 

we were unsuccessful. However, along the way, we made several important discoveries about hybrid 

modeling and the requirements needed to accurately predict load-induced cracking. We took the 

following approach to implement hybrid mechanistic-machine learning modeling for the prediction of 

load-induced cracking in concrete beams without transverse reinforcement: 

1. We surveyed various hybrid modeling approaches used in civil engineering and adjacent fields 

to determine which could be useful in predicting load-induce cracking. As mentioned, many 

hybrid models have been created, and none have been used to model load-induced cracking 
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on an entire beam. By surveying and categorizing these modeling approaches by their 

functionality, we determined which would best predict load-induced cracking. The survey and 

categorization are presented and discussed in Chapter 5. 

2. We determined the appropriate mechanics to include in the hybrid model. Most hybrid 

models use differential equations as their mechanistic models, but they do not necessarily have 

to. Our previous hybrid model survey indicated the basic properties the mechanistic model 

needs, and the mechanistic model should be implemented before hybridization to validate it. 

The validation of mechanistic models is presented in Chapter 6. 

3. We hybridized the previously verified mechanistic model chosen in step two with the hybrid 

modeling method chosen in step one. By using the flexibility of machine learning, we attempted 

to obtain an accurate load-induced cracking model can be obtained. The load-induced cracking 

model would then be used to create a robust model for predicting the shear capacity of 

concrete beams without shear reinforcement. Because the hybrid methods are relatively new, 

the best way to hybridize models has not been identified. We created several implementations 

using the same hybrid method to determine which works best. Implementation details for 

these hybrid models are discussed in Chapter 7. 

4. We assessed the mechanistic consistency of the hybrid model and determined why it could 

not accurately predict load-induced cracking. Because hybrid models are more interpretable 

than machine learning models, some explanations for their predictions can be made based on 

developed mechanisms for shear failure. The analysis of mechanistic consistency is discussed 

in Chapter 8 
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5. We assessed additional properties of hybrid modeling that can benefit Structural Engineering. 

While the hybrid model was not able to achieve our original goal, it and models like it have 

other uses. The assessment included how efficiently the implementation uses data, how the 

different implementations created in step 3 affect performance, and how interpretable the 

model was. This assessment is discussed in Chapter 9 

6. We developed a new hybrid model framework that remedies the deficiencies of its 

predecessor. Deficiencies found in step 4 included not representing multiple cracks, having 

poorly represented mechanistic models, and not having learning sufficiently constrained. This 

new framework employs a finite crack approach that uses multiple LSTMs to predict the crack 

propagations instead of crack shapes. Additionally, it uses mechanistic models that represent 

underlying mechanics well. This framework is discussed in Chapter 10 

7. Finally, we developed an experiment to determine the effect of constraint on hybrid models. 

Under-constrained models do not have enough mechanistic models to make the machine 

learning models mechanistically consistent. This experiment varies the number of mechanistic 

models used when training and adds other forms of constraint besides mechanistic models. 

The role of constraint and the experiment design are discussed in Chapter 11. 

Figure 4.1 shows this approach and its dependencies on previous steps 
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Figure 4.1: Thesis Methodology and its dependencies   
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CHAPTER V: INVESTIGATION OF HYBRID MODELING METHODS 

The survey was conducted by searching for keywords in various engineering journals. From 

the articles found through this search, additional articles were recognized through cited references. 

Additionally, articles that were foundational in the field were identified from seminars and, while many 

of these foundational articles did not apply to structural engineering, they were fundamental to the 

understanding of the field of hybrid modeling.  

Previous attempts have been made to categorize hybrid modeling strategies to various extents. 

Karniadakis et al. (2021) define hybrid method categories through the biases that can be added to ML 

models to influence their learning. These biases include observation, inductive, and learning biases. 

Each bias consists of adding domain knowledge of the system into different aspects of a Machine 

Learning model. Methods that do not fit in these definitions are labeled as hybrid combinations of the 

biases, but no explanation is given as to how these other methods are composed of the various biases, 

limiting the categorization’s robustness. Observation and learning biases can apply to any mechanics, 

but inductive biases are limited to mechanics with symmetry or invariant components and are most 

directly compared to how Convolutional Neural Networks detect symmetry in images. Furthermore, 

these methods are limited to describing how machine learning can be enhanced with domain 

knowledge and leave no definition for how mechanistic methods can be enhanced with ML. 

Alternatively, He and Chen (2020) categorized hybrid methods more generally as; physical constraints 

enforced on data-driven models, existing physical models enriched by information learned from data, 

and applying both models separately to approximate different aspects of the physical system.  
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Grouping hybrid models into broad categories based on which constituent is dominant is 

subjective. Any hybrid model is a combination of both mechanistic and machine learning modeling 

regimes and, depending on your perspective, can be seen as having either modeling regime be 

dominant. Although a model might be predominantly composed of mechanistic terms, the main 

predictive component may come from the machine learning model and vice-versa. The perspective 

of regime dominance can often come from the background of the problem too. If mechanics are 

being used to improve a machine learning model, the hybrid model is considered machine learning 

based, and the same is true in the other respect. Additionally, these groupings do not indicate the 

functionality (how they synergize and their purpose) of the categorized models. The functionality of 

these two seemingly separate groupings appears to be the same. From this, the best organization of 

the hybrid methods would be by their functionality instead of any component dominance.  

Still, all hybrid methods in the below review will be described from a machine learning 

background because the main feature of the desired hybrid method is to improve a machine learning 

method so that it can learn load-induced cracking. In the following paragraphs, the reviewed hybrid 

modeling methods are grouped into categories based on functionality, and for each category, a general 

description of the method is given. The hybrid methods’ functionalities will also be examined to show 

how they provide benefits over non-hybrid approaches too. The goal of the categorization is to better 

define which hybrid methods can be used to predict the load-induced cracking of concrete beams 

without transverse reinforcement. 

When viewing hybrid modeling from a machine learning point of view, mechanics are always 

providing more information to the model for it to learn from. For mechanics to be used as 
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information, it can be used as a means of structure or as a means of data. In this thesis, these uses will 

be termed mechanistic structure (or just structure) and mechanistic data, respectively. These will serve 

as the main level of hybrid model categorization.  

Mechanics as a means of structure 

The methods that use mechanistic structure are mechanistic learning, mechanistic feature 

engineering, data-driven inclusion, and data-driven tuning. Data-driven inclusion and mechanistic 

learning are the main methods while mechanistic feature engineering and data-driven tuning are 

variations of data-driven inclusion but are unique enough to be their own category of methods. 

Mechanistic learning 

Machine learning methods learn by evaluating a loss function which measures prediction 

discrepancies, but if certain properties are desired, then additional relationships can be added to the 

loss function. The most common example of this is adding a regularization term, as shown in (4).  

 𝐿𝐿�𝑌𝑌𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑� =
1
2
�𝑌𝑌𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑 − 𝑌𝑌𝑐𝑐𝑐𝑐𝑢𝑢𝑝𝑝�

2
+ 𝜆𝜆 ∗ 𝑅𝑅(θ) ( 4) 

Where 𝑅𝑅( ) is the regularization function and 𝜃𝜃 is some property or prediction of the model.  

The most common regularization function in neural networks is the L2 norm (5), which 

penalizes the model for selecting large weights, 𝑤𝑤𝑝𝑝.  

 𝑅𝑅�𝑤𝑤𝑝𝑝� = 𝑤𝑤𝑝𝑝2 ( 5) 

There is no limit to relationships that can be added to constrain learning. From this, additional 

relationships representing mechanics can be added to the loss function. Mechanistic Learning is often 
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used to make the machine learning model obey certain laws of physics, but can also be used to satisfy 

other constraints, like geometric conditions. A general expression for this may look like (6) and (7). 

 𝑌𝑌𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑 = 𝑀𝑀𝐿𝐿(𝑋𝑋) 
( 6) 

 𝐿𝐿�𝑌𝑌𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑� =
1
2
�𝑌𝑌𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑 − 𝑌𝑌𝑐𝑐𝑐𝑐𝑢𝑢𝑝𝑝�

2
+ 𝜆𝜆 ∗ 𝑅𝑅(𝜙𝜙) + 𝑀𝑀𝑀𝑀𝑀𝑀ℎ(𝑌𝑌𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑,𝑋𝑋) ( 7) 

 Where 𝑀𝑀𝑀𝑀𝑀𝑀ℎ is the constraining mechanism and 𝑋𝑋 are the input features.  

A central characteristic of this hybrid method is that the mechanistic relationship is separate 

from the discrepancy term in the loss function and serves to regulate learning. Furthermore, 

mechanistic learning can be used without a discrepancy term. In this case, the machine learning model 

learns entirely from the mechanistic constraints. because the loss function will never reach 0 in training, 

mechanics imposed in this will only be softly enforced (Rao et al., 2021). This method benefits from 

mechanistic consistency and improved learning structure, thus it results in a more accurate learned 

model requiring less data. Finally, this method can also be thought of as semi-supervised learning 

because learning is being constrained indirectly. This type of hybridization is easy to implement because 

only the loss function needs to be modified, but finding the appropriate mechanistic term may be 

difficult. 

Wang and Wu (2020) applied this method to modeling structural response from wind loading. 

To do this, they used a recurrent neural network (RNN) to predict a single degree of freedom 

structure’s displacement, velocity, and acceleration at time step 𝑖𝑖 using the exciting force of the same 

time step and the predictions from the previous timestep, shown conceptually in (8). 
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 𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑖𝑖′,𝑢𝑢𝑖𝑖′′ = 𝑅𝑅𝑅𝑅𝑅𝑅�𝑢𝑢𝑖𝑖−1,𝑢𝑢𝑖𝑖−1′ ,𝑢𝑢𝑖𝑖−1′′ ,𝐹𝐹𝑝𝑝,𝑖𝑖� ( 8) 

Where 𝐹𝐹𝑝𝑝,𝑖𝑖 is the exciting force at time step 𝑖𝑖.  

Their loss function then includes a term to measure discrepancies in predictions and uses 

dynamic equilibrium to equate the predictions to the excitation force. However, this is not done 

directly but rather through wavelet projections, which will be discussed in a later section. The 

mechanics-based portion of the loss function can be simplified as in (9). 

 𝑚𝑚𝑀𝑀𝑀𝑀ℎ( ) =  𝑢𝑢𝑖𝑖 ∗ 𝑘𝑘 + 𝑢𝑢𝑖𝑖′ ∗ 𝑀𝑀 + 𝑢𝑢𝑖𝑖′′ ∗ 𝑚𝑚 − 𝑓𝑓𝑖𝑖 ( 9) 

Where 𝑘𝑘 is the stiffness, 𝑀𝑀 is the damping coefficient, and 𝑚𝑚 is the mass of the system. 

The results show using mechanistic learning significantly reduces the amount of data required. 

The mechanistic learning model achieved its minimum error by only considering 3200-time steps while 

a model that did not use it needed 5600-time steps to achieve the same error. Additionally, 

mechanistic learning also ensures mechanistic consistency by maintaining equilibrium. When white 

gaussian noise was added to the responses, the enhanced model was significantly more accurate than 

the plain machine learning model. Finally, it was able to accurately extrapolate far beyond the training 

examples of 16s to test samples of 600s. However, this extrapolation was not compared to a plain 

machine learning model. Therefore, it cannot be concluded definitively that this is a benefit of 

mechanistic learning, but it is likely given that ensuring mechanistic consistency would prevent drift in 

later predictions. 

Haghithat et al. (2021) implemented a PINNs model to predict solid mechanics state variables 

from spatiotemporal inputs. This is the common application of PINNs where an automatic 
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differentiation algorithm is used to find the derivatives of state variables with respect to the inputs. 

The state variables and their derivatives can then be used in continuum mechanics equilibrium and 

constitutive equations. In this, the stress and displacement of an elastic plate are predicted and then 

validated against a synthetic data set and the continuum mechanics equations. By taking the partial 

derivative of the stresses, the stresses could be validated against the applied loads, and displacements 

could be compared to strains through their differentiation. Additionally, constitutive parameters for 

the plate were predicted. These were validated in the constitutive loss term.  

This method was also used by Rao et al. (2021) to predict the elastodynamic response of 

homogenous plates by constraining the loss function with equilibrium equations and explicitly forcing 

boundary/ initial conditions. This implementation did not use any data and was only constrained by 

Mechanistic Learning terms. Zhang et al. (2020) predicted the structural kinematics, non-linear 

restoring force, and hysteresis parameter of a structure by constraining it with equilibrium and 

hysteresis Mechanistic Learning terms. In a similar work, Zhang et al. (2020) predicted structural 

kinematics and non-linear restoring force by only using equilibrium constraints. Shukla et al. (2020) 

constrained a neural network with acoustic wave equations to learn the wave speed and detect cracks 

in solid surfaces.  

Data-Driven Inclusion 

Data-driven inclusion models add structure to learning by incorporating mechanistic 

expressions in their prediction, which is then used in a loss function to evaluate discrepancy. Often, 

machine learning and mechanistic models work together to represent different mechanisms of the 

system. A representation of this can be seen in (10). 
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 𝑌𝑌𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑 = 𝑓𝑓�𝑀𝑀𝐿𝐿(𝑋𝑋),𝑀𝑀𝑀𝑀𝑀𝑀ℎ(𝑋𝑋)� 
( 10) 

The machine learning and mechanistic model combinations can vary widely. The machine 

learning model may be a function of the mechanistic model, the mechanistic model a function of the 

machine learning model, both models may contribute to the same prediction, or any combination 

may be true. Depending on the configuration of mechanistic and machine learning components, it can 

appear like the machine learning model is an inclusion in a mechanistic model, giving it its name. 

Additionally, the number of machine learning models that can be used is not limited; Multiple models 

may be used to represent different mechanisms. By 𝑌𝑌𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑 being partially predicted by mechanistic 

models, the machine learning portion has a less complex mechanism to learn, being the one it was 

assigned. Ideally, this will reduce data requirements or increase prediction accuracy for a given data 

set. This method also has the benefit of connecting mechanisms which have scarce data to larger 

datasets through other mechanisms. For example, load-induced cracking can be connected to shear 

failure through the constitutive relationships of inter-crack forces.  

Vianna et al. (2020) use this method to estimate the inadequacy of differential equations 

predicting aircraft hardware distress. Data on flight characteristics is provided for every flight, but the 

data relevant to hardware distress, the label in this data set, is only provided during routine inspections, 

leading to a data imbalance/small data set size. Additionally, the complex failure mechanisms are only 

partially understood. So, in this problem, the mechanistic models are inadequate because of an 

incomplete understanding and there is not enough data to make an entirely data-driven model. The 

inadequacy of the mechanics prevents well-developed PINNs methods, which use differential 

equations, from being used. The hardware distress models include crack growth from fatigue in 



39 
 

fuselages, crack growth from combined fatigue and corrosion, and bearing fatigue exacerbated by 

grease degradation. Two methods are proposed to implement a hybrid model:  

(1) by introducing a discrepancy “node”  

(2) by having a whole mechanism be represented by a data-driven “node”.  

However, only the second option is ever used. The first method will be discussed in a later 

section as it is classified as another method. These “nodes” are combined with physics-driven “nodes” 

(e.g. Paris power law in fracture mechanics) to make the entire model. (11) – (13) represent the 

relationships used in this model. 

 𝑎𝑎𝑐𝑐 = 𝑎𝑎𝑐𝑐,𝑐𝑐−1 + Δ𝑎𝑎𝑐𝑐,𝑐𝑐 ( 11) 

 Δ𝑎𝑎𝑐𝑐,𝑐𝑐 = 𝐶𝐶Δ𝐾𝐾𝑐𝑐𝑚𝑚 
( 12) 

 Δ𝐾𝐾𝑐𝑐 = 𝑀𝑀𝐿𝐿(𝑋𝑋) 
( 13) 

Where 𝑋𝑋 are flight characteristics, Δ𝐾𝐾𝑐𝑐 is a stress intensity factor, 𝐶𝐶 and 𝑚𝑚 are material 

properties, and 𝑎𝑎 is the crack length. 

Using flight and maintenance session data, the machine learning model is trained with error 

from the crack size at inspection, that is 𝑎𝑎 at the final timestep. Crack data wasn’t available for all 

predictions, and training had to depend on the few timesteps that there was data for.  

Unfortunately, this work does little to compare this method’s performance to purely machine 

learning or purely mechanistic modeling, so no real conclusions can be drawn on its effectiveness. 

However, these models are one of the few to not implement mechanics through differential 
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equations, highlighting that differential equations may be just one of many ways to incorporate 

mechanics. 

Wang and Wu (2020) also use this method through their incorporation of the wavelet 

transform. By doing this, the mechanistic knowledge that some exciting frequencies will not affect the 

response of the structure is simplifying the relationship that the machine learning model must learn. 

In this example, the machine learning model is representing multiple mechanics instead of one, but 

this implementation can still be considered as data-driven inclusion because mechanistic models are 

used to predict the discrepancy terms. 

This method was also used by Eshkevari et al. (2021) to learn the stiffness of a structure given 

response data. Chakraborty and Adhikari (2021) created a model to predict the time evolution of a 

structure's mass and stiffness based on the response information 

Mechanistic Feature Engineering 

As mentioned previously, this method is a variation of the data-driven inclusion method. This 

is because it includes all mechanistic expressions as inputs to the machine learning model, as seen in 

equation (14), while data-driven inclusion might include them at any point in the model. Much like 

how principal component analysis would be used to engineer features, mechanistic models are 

combining features based on relevant mechanics.  

 𝑌𝑌𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑 = 𝑀𝑀𝐿𝐿(𝑀𝑀𝑀𝑀𝑀𝑀ℎ(𝑋𝑋),𝑋𝑋) 
( 14) 

This allows for the machine learning model to represent a simpler relationship because if the 

mechanistic expressions were not given, it would have to learn them itself, increasing its complexity. 

The relationships that are used can be as simple as having dimensionally consistent input features or 
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combining geometric features like length and width into an area. While it might be common for Data-

Driven Inclusion models to represent individual mechanisms with machine learning, Mechanistic 

Feature Engineering will often represent many mechanisms with one machine learning model. For 

example, dimensional analysis can be performed on a beam’s features to make them relate easier to 

the predicted variable of beam capacity, one machine learning model would be used to relate loading 

to stress and relate beam material properties to failure stress, and a Data-Driven Inclusion model 

would commonly represent only one of these mechanisms with machine learning. However, this 

categorization does not prevent Data-Driven Inclusion models from representing all these 

mechanisms with one machine learning model.  

Gunaratnam and Gero (1994) use dimensional analysis to improve the performance of a 

neural network predicting a variety of phenomena in structural engineering. In one application, the 

neural network was used to predict the loading on a beam given moments along its length. The 

dimensionless variables 
𝑀𝑀
𝑃𝑃𝑃𝑃

 and 
𝑥𝑥
𝐹𝐹
 were used, where 𝑀𝑀 was the moment in the beam 𝛿𝛿 was the location 

of that moment, 𝑃𝑃 was the load that caused the moment, 𝑥𝑥 was the location of that load, and 𝐿𝐿 was 

the length. Despite overlapping training and testing data in their evaluation, the model with 

dimensionless Input achieved more accurate predictions than a normal neural network. This effect 

was observed in the predicting moment capacity of concrete beams and maximum bending moments 

in rectangular plates as well.  

Other works use a similar method for the prediction of failure in concrete members (Perez, 

2014) (Gondia, 2020). However, instead of using dimensional analysis, components from existing 

equations are used with genetic algorithms to essentially optimize them. The basis for these models’ 
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classification as hybrid is in question, though, and depends entirely on the equations used. Most 

equations in design codes, like ACI 318-19 (2019) bear little relation to the mechanisms they are 

describing and are almost entirely empirical, so if these are the basis for prediction, then the model 

should not be considered hybrid. Instead, it may be considered as some refinement process as one 

empirical model is being replaced with a better empirical model, which was likely developed using the 

same data. However, there are also design code equations, like those for strut and tie models, which 

significantly relate to the underlying mechanics. In this case, these can be considered hybrid.  

Xu et al. (2021) were able to use “combined parameters” like slenderness ratios and tensile 

to yield strength ratios to achieve more accurate predictions of cold-formed stainless-steel tubular 

columns. 

Data-Driven Tuning 

Just as in mechanistic feature engineering, this method is also a variation of data-driven 

inclusion. Instead of the machine learning model representing mechanisms of the system, it represents 

a modification of mechanistic expressions, whether that be an amplification, reduction, or discrepancy 

prediction of the mechanism. A possible type of modification can be seen in (15) 

 𝑌𝑌𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑 = 𝑀𝑀𝐿𝐿(𝑋𝑋) ∗ 𝑀𝑀𝑀𝑀𝑀𝑀ℎ(𝑋𝑋) 
( 15) 

Often mechanistic expressions do not accurately represent underlying mechanisms because 

of simplifications or assumptions made and because of the limited flexibility of empirical models, so 

this method accounts for those simplifications with a machine learning model. When discussing the 

work presented by Vianna et al. (2020), their method of adding a discrepancy “node” was not 

considered a data-driven inclusion method because it belongs in this category. This method is great 
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for increasing prediction accuracy because the machine learning models have a much simpler 

relationship to learn compared to the other hybrid methods presented. If the mechanistic expressions 

are at least somewhat accurate, then most of the system’s complexity is already being described, and 

the machine learning model often only needs to describe relatively simple relationships. However, this 

is the least interpretable hybrid implementation, as there are no mechanics to relate the machine 

learning predictions to. For example, if load-induced cracking is predicted using Data-Driven Inclusion, 

where the whole model is predicting shear capacity, then the predictions can be related to crack 

inclination mechanisms (Cavagnis et al., 2015), but if Data-Driven Tuning is used, it will only correct 

mechanistic predictions for shear capacity and not represent any underlying mechanisms.  

Zhang and Sun (2020) applied this method to damage localization. Understanding that finite 

element model updating is prone to errors from simplification and that there also isn’t enough data 

to make a machine learning model outright, they used this method to make a neural network that 

corrects the finite element predictions based on data of a real damaged structure. This method is 

never compared to finite element updating or neural networks directly but was shown to only predict 

well for cases similar to training data (small damage states were predicted well because they were 

well represented in training data). However, in a later comparison, this method combined with 

another hybrid method (mechanistic data) shows increased performance over finite element updating 

This method was applied by Guan et al. (2021) to amplify the linear response history of a 

structure under seismic excitation to non-linear response histories. 
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Mechanics as a means of data 

Mechanistic models can also be used to generate data about a system rather than using those 

mechanics to provide structure to learning. This may be the most straightforward approach to hybrid 

modeling, as data only needs to be generated from another simulation.  

The methods that use mechanistic data can be distinguished by those that use entirely 

simulated data and those that only use simulated data as a supplement. Typically, the former is very 

useful in metamodeling, reduced-order modeling, or solving inverse problems, and the latter has only 

been used to help with generalization (increase accuracy).  

Metamodeling and reduced order modeling use a similar process to achieve the same goal: 

describe a system with different mathematics than the one used to create data for it. Solving inverse 

problems has a similar purpose as metamodeling or reduced-order modeling except, as the name 

suggests, the inputs and outputs are swapped in the machine learning model from how they were 

used in the mechanistic one.  

Methods that use entirely simulated data are always used to improve computational efficiency. 

There are significantly fewer computations required in executing the layers of a neural network than 

inversing stiffness matrices in finite element formulations, and regression in inverse problems can speed 

up and automate the process of finding the inputs that produced a given output. Using simulated data 

as a supplement to help with generalization can hurt the predictive model by providing inaccurate 

information but is beneficial to learning in the absence of sufficient data. 

Napolitano and Glisic (2020) use this method to solve the inverse problem of predicting the 

damage events (loading or displacements that caused damage) that caused a structure’s current health 
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state. Typically in a finite element simulation, the damage event would be applied to the structure and 

the damage state could be predicted using mechanistic models. Given that a structure’s current health 

state could be caused by any combination of damage events, it is difficult to provide an inverted model 

with mechanics. Instead, a database of many damage events’ effects on a structure is made and a 

Gaussian Process Regression is used to find the likely damage event that caused a structure’s current 

state. Without this procedure, simulation outputs would have to be manually compared to the 

damaged structure to determine the events that led to the structure’s current health state.  

Additionally, using an algorithm to update the simulation’s parameters to more closely predict 

the damaged structure, as is done in finite element updating, would be time-consuming because 

simulations would have to be done online. However, using machine learning in inverse problems, all 

simulations can be performed offline and a computationally efficient model can then be used when 

needed. 

Sofi and Steelman (2021) used neural networks to make a metamodel of bridge finite element 

simulations, providing a tool for rapid retrofit decisions. Jokar and Semperlotti (2021) created 

metamodels for finite elements, reducing the computational expense associated with the finite 

element method. Kim et al. (2021) created more computationally efficient models for predicting the 

strength of circular hollow section x-joints using support vector machines and neural networks trained 

on high-fidelity finite element models. Similarly, Zhang et al. (2021) created a model to efficiently 

predict the flexural capacity of RC structures based on their extent of corrosion-induced cracking. 

These models were trained on finite element models that included the effect of corrosion. Based on 

finite element simulations, Esteghamati and Flint (2021) created a support vector machine model to 
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predict the seismic vulnerability and environmental impacts of buildings based on their early design 

parameters and location. 

Methods that use simulated data as a supplement do so to help with generalizability. As 

presented earlier, Zhang and Sun (2020) use data-driven tuning to increase the accuracy of finite 

element updating strategies for damage localization. Their predictions were very inaccurate for large 

damage intensities, a scenario that was relatively absent in their data. However, including finite element 

updating labels for large damage intensities helped the model generalize even though the labels were 

relatively inaccurate. 

Parameter-Free Data-Driven Modeling 

A method that was studied but not considered hybrid was Parameter-Free Data-Driven 

Modeling. It is both data-driven and incorporates mechanics, but it does not include any learned model. 

Instead, predictions are made directly from a database. This method was still included in the survey 

because of its adjacency to the methods of interest.  

Kirchdoerfer & Oritz (2016) identify that the main issue with modeling a system accurately is 

the constitutive models that relate physical laws to each other. Often, constitutive models include too 

many simplifications and assumptions, so rather than making a model for constitutive relationships, 

data on the relationships will be used directly in prediction. The basic formulation of Parameter-Free 

Data-Driven Modeling finds an observed material property that is the closest to satisfying the 

governing physical laws. Therefore, with a perfectly accurate observation, a perfectly accurate 

simulation can be found. This method was originally applied to the static analysis of a 3D truss. 
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He & Chen (2020) and Kirchdoerfer & Oritz (2017) both realize that the accuracy of this 

method is then entirely dependent on the accuracy of the dataset. If significant noise is present in the 

dataset, the noise will detract from the method’s accuracy. From this, an alternative formulation was 

made that finds a material relationship, interpolated between observed states, that exactly satisfies 

mechanistic laws.  

Kirchdoerfer & Oritz (2018) then used this method to model the dynamics of structures too. 

Discussion 

Several discussions about the preceding methods are provided in the following sections. To 

better define the categorization and compare it to others, the relationship between proposed 

methods and their relationship to other categorizations (Karniadakis et al, 2021) are discussed. Next, 

to better understand the relationship between mechanistic models and hybrid models, the relationship 

between machine learning and empirical modeling is discussed. Then, the concept of interpretability 

is better defined because improvements in accuracy and computation efficiency are easy to determine, 

but improvements in interpretability are subjective and have not been evaluated well in the past. 

Finally, many investigated hybrid models have used neural networks for their machine learning 

portions, so we investigate the reason for their popularity. 

The Relationship Between Proposed Methods and PIML biases 

Figure 5.1 shows a decision tree to classify a hybrid model. This decision tree helps to clarify 

the differences in hybrid modeling methods.  
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Figure 5.1: A decision tree to help clarify the difference in hybrid modeling methods. DDT is Data-

Driven Tuning, SS is Simulated data as a supplement, MFE is Mechanistic Feature Engineering, DDI is 

Data-Driven Inclusion, MechL is Mechanistic Learning, IM is Inverse Modeling, ROM is Reduced-

Order Modeling or Metamodeling, MM is mechanistic model, and ML is machine learning model. 

Additionally, the typical uses for these methods are shown in Figure 5.2. This figure shows 

that Mechanistic Data methods are often used to increase computational efficiency and Mechanistic 

Structure Methods are often used to increase prediction accuracy. 
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Figure 5.2: Method Purpose, where the acronyms are the same as in Figure 5.1. 

The methods proposed previously are all fundamentally similar and only differ by the location 

in the learning process that mechanistic models provide information. Mechanistic Learning includes 

mechanistic models in the loss function, Data-Driven Inclusion, Mechanistic Feature Engineering, and 

Data-Driven Tuning all include mechanics in the prediction of the target variable (the variable whose 

discrepancy is evaluated in the loss function), and all mechanistic data methods use data simulated 

from mechanistic models.  

Mechanistic Learning and Data-Driven-Inclusion-like methods have the biggest distinction. 

Although, they can appear similar. In Mechanistic Learning, the mechanistic relationships are included 

in the loss function and regulate learning. The Data-Driven Inclusion method potentially includes 

mechanistic relationships before and after the machine learning prediction. However, if the 

mechanistic terms following the machine learning are algebraically reorganized to be included in the 
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loss function, it can appear as if the modeling method used was Mechanistic Learning or even as if 

data was being simulated for the predicted variable. Upon closer examination, however, the Data-

Driven Inclusion method is using these mechanics as a “bridge” from the machine learning predictions 

to the dataset, and Mechanistic Learning methods only every use mechanistic relationships separate 

from discrepancy loss terms. This relationship carries for Data-Driven tuning but not necessarily for 

Mechanistic Feature Engineering. Because Mechanistic Feature Engineering’s mechanics are included 

before the machine learning predictions, the mechanics will never be in the loss function. In short, 

Data-Driven Inclusion-like methods’ machine learning models will be connected to the data set 

through mechanics and Mechanistic learning’s machine learning models will either have data for their 

predictions or not use data at all.  

As mentioned, the Physics Informed Machine Learning categorization (Karniadakis et al, 2021) 

differentiates methods by the type of bias that is included in the machine learning model. These biases 

can be related to the developed methods to show that they provide a more robust method of 

categorization. 

Observation bias is explicitly the information available from data, real or simulated. This bias 

has a significant overlap with the bias in standard machine learning and does little to effectively add 

information from mechanics. Only through simulated data is additional information given to a learned 

model, and using simulated data corresponds directly to the Mechanistic Data methods. Additionally, 

no distinction is made between models that solely use simulated data and those that use it as a 

supplement.  
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Inductive bias affects learning through specially designed neural architectures. This bias is best 

exemplified by how convolutional neural networks are efficient with spatial data. Inductive bias could 

be related to Data-Driven-Inclusion-like methods (Data-Driven Inclusion, Mechanistic Feature 

Engineering, Data-Driven Tuning) because the incorporated mechanics could be considered a special 

form of architecture, but this analogy ultimately does not work because (1) Data-Driven Inclusion 

applies to more machine learning methods than neural networks and (2) Inductive bias is explicitly 

referencing neural structures that respect symmetry, translation, rotation.  

Finally, learning bias is defined as softly imposing constraints through the loss function, and it 

includes PINNs as a representative method using this bias. PINNs are similar to both Data-Driven 

Inclusion and Mechanistic Learning because PINNs are only defined as having some mathematical 

operators in the loss function, and, as mentioned before, both Data-Driven Inclusion and Mechanistic 

learning can be represented in this way. PINNs do not distinguish between these even though they 

affect learning differently. Additionally, PINNs are exclusively used to represent constraints from 

differential equations and show little utility in how these can be used with other mathematical 

representations of mechanisms. They also have a special format in which spatiotemporal information 

is used as an input and state variables are the output. Because of this, the derivatives of the predictions 

can be computed easily using the automatic differentiation algorithm and thus making PINNs suited 

toward differential equations. However, many applications in civil engineering exist where differential 

equations are not suitable to represent underlying mechanisms. For example, the equilibrium of large 

rigid bodies, as is often used for modeling shear failure in cracked concrete beams, is more amenable 

to the vector sums of forces and moments on its boundary. To make the shear failure system 
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amenable to being constrained by differential equations, a finite element discretization would need to 

be implemented.  

The Physics Informed Machine Learning organization (Karniadakis et al., 2021) does not include 

many methods or explanations for how mechanics can be used as a structure for learning even though 

they included models (Racauckas, 2020) that exemplify this behavior. Instead of creating a 

categorization for these methods, they were designated as hybrid combinations of biases without any 

explanation for how they hybridized biases.  

For this reason and those considered above, the proposed categorization is more general and 

applicable to Civil Engineering than those provided in Karniadakis (2021).  

Relationship between machine learning and empirical modeling 

At first glance, you might think mechanistic and hybrid models are very different, but they 

actually have many similarities. This can be seen through the relationship between empirical and 

machine learning models, the data-driven portion of mechanistic and hybrid models, respectively.  

Empirical modeling is widely used and trusted for making predictive models. Empirical 

modeling shares many characteristics with machine learning because both are entirely data-driven. 

The only substantial difference between the two is that machine learning models are vastly more 

complex than empirical ones, which may only have one parameter being calibrated. However, aside 

from this complexity, both are still attempting to find patterns in data. In this sense, it is logical to say 

that machine learning models are empirical models too, and many of the same principles carried for 

empirical models may be shared with machine learning ones. As stated by Charalampakis and 

Papanikolaou (2021) “It is worth noting that ML, as a field of study, did not appear abruptly in the 
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scientific scene; a simple regression analysis on experimental data, used for decades across all fields of 

engineering, can be considered as a primitive ML application.” Considering that all mechanistic models 

have some empirical contribution, the distance between mechanistic and hybrid models is smaller you 

might consider. However, one difference between mechanistic and hybrid models is machine learning 

models are more prone to overfitting and memorization than empirical ones. This can have a 

potentially harmful effect in terms of robustness. This is because the memorization capacity of the 

handful of parameters used in simple regressions (empirical models) is negligible, but when machine 

learning models, like neural networks having millions of parameters, are fit, they can easily memorize 

the entire data set. This is not a substantial issue, though, because separating training and testing data 

have become standard to avoid memorization and prove machine learning actually learns. Finally, one 

interesting consequence of the memorization ability of each fitting method is empirical models have 

more data available to them for fitting because there is no need to separate data into training and 

testing. From this, hybrid and mechanistic modeling are equivalent besides the complexity of fitting 

techniques and the need to separate training and testing data.  

On the interpretability of models 

All new models aim to be more accurate, computationally efficient, or interpretable than 

previous ones. Understanding how accuracy or computational efficiency increases is quantitative and 

objective, but assessing interpretability is qualitative and subjective. In general, machine learning models 

are always described as uninterpretable, mechanistic models are interpretable, and hybrid models 

seem to have improved interpretability compared to machine learning models. By investigating these 

models, we can determine a common factor that affects interpretability.  
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When discussing machine learning models, we always say they are uninterpretable because of 

a “black box” effect, meaning inputs go into the model, then come out without any indication of what 

transformations occurred (Gondia et al., 2020). It is not that the mathematics between inputs and 

outputs are unknown, it is just there are too many of them to make sense. On the other hand, 

mechanistic models are often much simpler, and we can see how inputs to the model affect the 

output just by examining its mathematical expressions.  

We might consider this to be the basis of interpretability (seeing how inputs transform into 

outputs), but it ultimately does not fit because sometimes mechanistic models are too complex to 

determine input and output relationships. For example, in finite element modeling, it can be difficult 

to determine how complex loading will translate to stress states. What both the finite element models 

and simple mechanistic model both have in common is their mathematical forms represent underlying 

mechanics. For example, when looking at the ACI 318-19 (2019) equation for concrete shear capacity, 

we see that shear strength increases with an increase in depth.  

 𝑉𝑉 = 2 ∗ 𝜆𝜆 ∗ �𝑓𝑓𝑐𝑐′ ∗ 𝑏𝑏 ∗ 𝑑𝑑 ( 16) 

Where 𝜆𝜆 is a factor to account for lightweight concrete. 

This correlates to previous mechanics observed in experiments. We can see that the ACI 

equation is observing this, and by inspecting the basic components of a finite element model, we can 

see that it follows equilibrium and constitutive mechanisms. 

We can't tell if a machine learning model is representing mechanics just by looking at its 

weights and biases, but this isn’t the only way of verifying mechanism representation. We can tell if it 

is representing mechanics by testing the sensitivity of its predictions. This makes two ways to 
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determine interpretability: one by looking at the mathematical form of the model and one by analyzing 

its predictions.  

Using this definition, the interpretability of a machine learning model can be more robust than 

the interpretability of mechanistic models. Often, mechanistic models aren’t able to fully model the 

complexity of underlying mechanics, and thus, lead to inaccurate predictions for cases they weren't 

validated on. However, your interpretation of a machine learning’s prediction is more likely to be 

accurate because they have the flexibility to accurately describe complex mechanics. In fact, relying 

solely on the familiarity of the model’s mathematical form for interpretability often lead to 

misinterpretations of predictions. Back to the ACI example, this model doesn’t account for aggregate 

interlock, delamination cracks, or failure caused by crack merging, so when concrete strength is too 

high and aggregate is cracked along with the concrete matrix, this relationship will misinterpret 

underlying mechanisms (Huber et al., 2016). 

This definition is also a better explanation of machine learning’s lack of interpretability than 

the “black box” effect because at the base of the “black box” effect argument lies the fact that the 

underlying mechanics cannot be seen in the machine learning model’s mathematical form. Often when 

machine learning is used for prediction, outputs are generated but there is no validation of them with 

underlying mechanics, so the prediction is uninterpretable. Validating all the mechanisms for a system 

as complex as shear failure in concrete beams would be impossible by only examining predictions. 

Changing the depth, for example, in machine learning predictions could cause any number of 

underlying mechanisms to behave differently. The beam could transition into a deep beam state and 

cause an increase in capacity or beam capacity could increase simply because there is more cross-
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sectional area to act on. Without knowing how a change in depth is altering capacity predictions, there 

is no way to know if it is respecting underlying mechanisms. Additionally, there would be no point in 

trying to modify the machine learning algorithm so that its mathematical form could be analyzed 

because then it would be as restricted as empirical models and would thus lack the flexibility to 

accurately represent underlying mechanisms. From this, the only type of interpretability that should 

be used with machine learning should be correlating its predictions with underlying mechanisms. 

This last point directly transitions into why hybrid modeling is more interpretable than machine 

learning. In Mechanistic Learning, constraints are added on the loss function that explicitly satisfies 

underlying mechanisms, so by sufficiently training the machine learning model, predictions will not 

have to be analyzed for respecting underlying mechanisms. They will explicitly be respected. Data-

Driven-Inclusion-like models provide interpretability in another way. By incorporating many more 

mechanistic models into prediction, the machine learning only has to represent a few mechanisms, 

then their predictions can be effectively evaluated for respecting those mechanisms. For example, 

when predicting load-induced cracking, predictions for a critical crack should show the crack extending 

most of the way up the beam and should be closer to the application of loading than the support. 

These mechanisms could be verified by analyzing predictions. 

The prevalence of neural networks 

Hybrid methods typically use Artificial Neural Networks or one of their derivatives (RNN, 

CNN, etc.) as their machine learning model, and the use of SVM, Gaussian process regression, or 

decision trees is much less common. Several factors may contribute to the neural network’s popularity, 



57 
 

and these factors must be considered to decide if neural networks provide some advantage over 

other machine learning methods.  

The first factor contributing to the neural network’s popularity is its somewhat loose 

relationship to the human brain (Sofi and Steelman, 2021). This may provide an initial allure when 

relatively new users are looking for a method to use. Still, experience in regression identifies that 

neural networks are the same as any other regressor, so this is not enough evidence alone.  

Another reason may be their continuous development and success in other fields. Deep 

learning has shown promise in many fields with abundant data, and new variations of neural networks 

are always being developed. RNNs and CNNs have found popularity for their ability to recognize 

sequence-dependent mechanics, which can be useful for time-series analyses (Eshkevari et al., 2021). 

However, similar spatiotemporal structures can be made in other algorithms, and boosting and bagging 

methods have shown much promise for small datasets, which is a common case in engineering 

domains.  

Neural networks are also popular because of the automatic differentiation (Baydin et al., 2018) 

training algorithm they use. With a suitable automatic differentiation library, any number of 

mathematical operations may be used to create a unique learning structure, making them very 

modular and most amenable to hybridization. Of course, other methods can use gradient-based 

training, but, as in the case of the support vector machine’s ability, gradient-based training may defeat 

the other methods’ purpose. A support vector machine employing gradient-based training effectively 

turns into a more restricted neural network. The main advantage of SVM is that the kernel trick can 

be used to significantly reduce the complexity of the model, allowing for more accurate predictions 
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with fewer data. From this, most machine learning methods are restricted to incorporating mechanics 

in their loss functions or their input features. Additionally, the automatic differentiation procedure is 

key to the operation of most PINNs models because they use automatic differentiation implicitly to 

use the derivatives of outputs in the loss function. While this may not be the main reason for their 

popularity, it is a substantial reason why they should be preferred in hybrid modeling. There are 

drawbacks to neural networks, however. Mainly, they typically require large amounts of data because 

neural networks have a large parameter space. This is partially reconciled in hybrid modeling. 

Hybrid Learning 

A central feature of hybrid models is that they decrease data requirements for learning by 

adding more information from mechanistic models. This is usually explained vaguely by simulations 

adding more data or mechanistic models decreasing the complexity the machine learning models must 

describe, but this increase in data efficiency can be described concretely through the bias-variance 

tradeoff. We use Hybrid Learning to term this theory for increased data efficiency.  

We will describe learning more thoroughly first to set up the definition of Hybrid Learning. 

Learning (or fitting) is often described as updating parameters in a parameterized model for the model 

better to better suit a dataset. However, learning can alternatively be described as selecting a model 

from a set of possible models all having different parameters, where the selected model has the 

desired parameters. These two descriptions are equivalent because selecting one model over another 

is like updating parameters in the former definition.  

This set of possible models is the model space. The complexity of this space depends on the 

number of unique combinations of learnable parameters, and the model space’s flexibility to describe 
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complex mechanics correlates to its complexity. Then, the goal of fitting or learning is to use in-sample 

data as an “image” of underlying mechanics to determine or “learn” the model in this space that best 

describes the mechanics. To determine how well it describes the mechanics, it is tested against an 

out-of-sample data set, which contains an independent “image” of the underlying mechanics. If there 

is low error, it can be said the mechanics have been learned well. (Yaser et al., 2012). The advantage 

of viewing learning like this is that effect of the model space size (or the number of trainable 

parameters) can be more easily seen. The more models in the space (more parameters), the more 

difficult it will be to select the best one (best combination of parameters). 

Before learning begins, the bias-variance trade-off can use the complexity of the model space 

(𝑛𝑛𝑚𝑚), the complexity of underlying mechanics (𝐶𝐶), and the size of the data set (𝐷𝐷) to explain how the 

machine learning model will perform. The trade-off has many similarities to the mathematical proof 

of error linked to the VC dimension for classification models (Vapnik and Chervoneskis, 2015), and 

describes the out-of-sample error as being composed of two components, one from bias and one 

from variance. Error from variance increases when there is not enough in-sample data to adequately 

choose a model from a space that is too complex, and error from bias increases when the model 

space complexity cannot represent the complexity of the mechanics. This trade-off is shown 

conceptually in (17) and (18). 



60 
 

 𝐸𝐸𝑏𝑏𝑖𝑖𝑎𝑎𝑣𝑣 ∝
𝐶𝐶
𝑛𝑛𝑚𝑚

 
(17) 

 𝐸𝐸𝑣𝑣𝑎𝑎𝑐𝑐 ∝
𝑛𝑛𝑚𝑚
𝐷𝐷

 
(18) 

The “trade-off” between these two errors occurs when increasing the complexity of space; 

the error from bias decreases and the error from variance increases.  

To illustrate this relationship, consider the problem of fitting data generated from a 10th-order 

polynomial with random coefficients. If a 10th-order polynomial is used to fit the data with only 4 

points generated from the original polynomial, any number of compatible relationships could be 

learned, generating substantial error on out-of-sample predictions. Alternatively, if a 2nd-order 

polynomial is used with the same points, dramatic errors from overfitting can be avoided, but this will 

never be able to approximate the true relationship. These examples are shown in Figure 5.3. 

 

Figure 5.3: Comparison of error from Bias and Variance 
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Setting up this definition for learning makes understanding Hybrid Learning simple, as it is just 

a small extension of this definition. However, hybrid methods affect the bias-variance trade-off 

differently. In Data-Driven-Inclusion-like methods, additional mechanistic relationships are used to 

describe some of the underlying mechanisms, essentially reducing the complexity (𝐶𝐶) the machine 

learning model must represent. This decreases the machine learning model’s error from bias. Figure 

5.4 shows the model space for standard and hybrid learning. Mechanistic data provides extra data (𝐷𝐷) 

from mechanistic simulation, decreasing the error from variance. Mechanistic Learning also provides 

extra data (𝐷𝐷), although, not directly. By providing constraints in the loss function, Mechanistic Learning 

is providing extra data for predictions in the form of constraint equations.  

 

Figure 5.4: Model Space Changes for Data-Driven-Inclusion-Like Methods 

To extend the polynomial analogy, the mechanistic models could represent the 2nd-order to 

10th-order terms in a 10th-order polynomial while the data-driven portion must only learn a linear and 

constant term.  

As every model is wrong (Box, 1979), however, any error in mechanistic relationships will 

contribute additional error to the out-of-sample predictions of the machine learning model. In Data-
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Driven-Inclusion-like models, the machine learning model receives all its information from the 

mechanistic relationships. To reduce the in-sample error, the machine learning model will learn its 

mechanisms as well as correct the error from mechanistic relationships. Thus, the machine learning 

model will not be representing its own mechanisms. Similar conclusions can be easily extended for 

the other hybrid methods. When flawed mechanistic relationships are used to generate data, the data 

will be partially erroneous, giving bad information to the machine learning model. From this, the out-

of-sample error of the machine learning models is composed of parts from bias, variance, and 

mechanistic error, which we will term mechanistic bias in this thesis.  

Throughout this thesis, we will use Hybrid Learning to explain both the data efficiency and 

mechanistic inconsistency of our models. 

Application to Shear Failure 

The purpose of studying the reviewed models and defining the proposed hybrid method 

categories was to determine the best hybrid approach to predict load-induced cracking in concrete 

beams without shear reinforcement. Given that there is scarce data relating crack shapes to loading, 

a method is needed that reduces the amount of data required for learning or provides an increase in 

data. While any method could potentially be implemented for this, the Data-Driven Inclusion method 

is used because it connects mechanisms with relatively little data (load-induced cracking) with larger 

datasets (shear capacity data sets). From this choice, the Data-Driven Inclusion method will be defined 

more thoroughly now. Through this definition, we can better select the mechanistic model used in 

hybridization and determine any other implementation details that must be considered. Additionally, 
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this does not have to be the only hybrid modeling method used; many reviewed hybrid models 

incorporate multiple methods to great effect.  

We will thoroughly define this method through an example. To begin using this method on a 

system, the mechanistic models of the system must be organized by how well they represent 

underlying mechanics. The ones that represent poorly will be replaced by a machine learning model. 

Consider the mechanistic models, 𝑓𝑓1, 𝑓𝑓2, and 𝑓𝑓3, of the example system shown in Figure 5.5 (equations 

(19)-(21)). These models represent their underlying mechanics well except for 𝑓𝑓2, which is the source 

of most of the error in the end prediction. Predictions for 𝑓𝑓1 and 𝑓𝑓2 depend only on input features 

(observable characteristics of the studied system), 𝑋𝑋, and 𝑓𝑓3 depends on 𝑋𝑋 and the predictions of 𝑓𝑓1 

and 𝑓𝑓2, which are labeled 𝛼𝛼1 and 𝛼𝛼2, respectively. 𝑓𝑓3’s prediction is the end prediction of the model, 

𝑌𝑌.  

 𝛼𝛼1 = 𝑓𝑓1(𝑋𝑋) 
( 19) 

 𝛼𝛼2 = 𝑓𝑓2(𝑋𝑋) 
(20) 

 𝑌𝑌 = 𝑓𝑓3(𝛼𝛼1,𝛼𝛼2,𝑋𝑋) 
(21) 

Because 𝑓𝑓1 and 𝑓𝑓3 have acceptable/low error associated with their predictions, they will 

continue to be described by mechanistic models. 

Mechanistic and Data-Driven Inclusion models differ in how they handle 𝑓𝑓2. The typical 

procedure for implementing 𝑓𝑓2 in a mechanistic framework would be to study 𝑓𝑓2’s mechanism, then 

identify the parameters that affect it most significantly, and then create some fitted relationship for it 

using some power-law or polynomials, using idealizations and assumptions wherever necessary to 
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reduce the fitted relationship’s complexity. Instead of this, 𝑓𝑓2 will simply be replaced with a machine 

learning model, which is known for its flexibility in finding complex relationships (Rackauckas, 2020). 

Through this, the mechanism doesn’t need to be simplified and its full relationship can be learned 

To train this model, however, information on 𝛼𝛼2 will be needed, but data on 𝛼𝛼2 will not be 

available. Otherwise, a normal machine learning model could be used. Ultimately, 𝛼𝛼2 is only needed 

to obtain error from predictions, so finding alternative methods for predicting error will be sufficient 

to train the machine learning model. This error can be obtained in two ways: (1) The value of 𝛼𝛼2 can 

be solved in terms of the data on 𝑌𝑌 and the 𝑓𝑓3 mechanism and the error can be computed directly 

(equations 24 and 25). (2) If the machine learning architecture is amenable to gradient-based training, 

the prediction error from 𝛼𝛼2 can be computed simply using the automatic differentiation algorithm. 

For example, if the loss from 𝑌𝑌 is (22) 

 𝐿𝐿�𝑌𝑌𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑� =
1
2
∗ �𝑌𝑌𝑐𝑐𝑐𝑐𝑢𝑢𝑝𝑝 − 𝑌𝑌𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑�

2
 ( 22) 

The change in error occurring from 𝛼𝛼2’s model parameters is (23). 

 𝜕𝜕𝐿𝐿
𝜕𝜕Φ

=
𝜕𝜕𝐿𝐿

𝜕𝜕𝑌𝑌𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑
∗
𝜕𝜕𝑌𝑌𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑
𝜕𝜕𝑓𝑓3

∗
𝜕𝜕𝑓𝑓3
𝜕𝜕𝛼𝛼2

∗
𝜕𝜕𝛼𝛼2
𝜕𝜕Φ

 
( 23) 

Where Φ are the trainable parameters of the machine learning model for 𝛼𝛼2. 

Examining equations (23) and (25), the final trained model will depend largely on the accuracy 

of the 𝑓𝑓3 mechanics in either option. The loss function for option 1 is shown in (24). 

 The solutions for the machine learning model’s output (𝛼𝛼2,𝑚𝑚𝑝𝑝𝑐𝑐ℎ, shown in (25)) using option 

1 may not be explicit, especially if multiple mechanisms are being represented by machine learning. In 

this case, iterative or other numerical solutions may be used to pre-generate many solutions in a 
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somewhat “synthetic” dataset. This shows this method's relationship to Mechanistic Data Methods. 

However, the key functionality difference between these is that Data-Driven Inclusion methods are 

only representing a few mechanisms and Mechanistic Data Methods usually gather data from finite 

element simulations, which represent many more mechanisms. Additionally, option 1 can appear to 

resemble PINN’s and Mechanistic Learning method, where the physics is incorporated entirely in the 

loss function, but, as discussed earlier, Mechanistic learning differs in that its mechanics are 

incorporated separately from the discrepancy term. 

 𝐿𝐿�𝛼𝛼2,𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑� =
1
2
∗ �𝛼𝛼2,𝑚𝑚𝑝𝑝𝑐𝑐ℎ − 𝛼𝛼2,𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑�

2
 ( 24) 

 𝛼𝛼2,𝑚𝑚𝑝𝑝𝑐𝑐ℎ = 𝑓𝑓3−1(𝑌𝑌𝑐𝑐𝑐𝑐𝑢𝑢𝑝𝑝,𝛼𝛼1,𝑋𝑋) 
( 25) 

Option 2 will pass the same information to the machine learning model as option 1, only 

without having to solve for 𝛼𝛼2.  

 

Figure 5.5: Data-Driven Inclusion Model Layout 

If option 2 is used in training, additional constraints must be added to 𝑓𝑓1 and 𝑓𝑓3.  

1. The predicted values from 𝑓𝑓1 and 𝑓𝑓3 must always exist for any expected value of 𝛼𝛼2. 

For example, if some term in the 𝑓𝑓3 were to be divided by 𝛼𝛼2, 𝛼𝛼2 should never be 0.  
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2. 𝑓𝑓3 must always be a function of 𝛼𝛼2. If this is not true, the gradient information will 

never reach the machine learning model and training cannot occur.  

3. 𝑓𝑓1 and 𝑓𝑓3 must be amenable to the automatic differentiation algorithm. This is largely 

important in the software implementation and is handled well by most machine 

learning packages (TensorFlow, PyTorch, or Sci-Kit Learn). 

By fully defining the Data-Driven Inclusion method, we are now able to search for a 

mechanistic model to hybridize. The mechanistic model can include any type of mathematical form 

and does not have to be restricted to differential equations. Also, the mechanistic model must have 

some mechanics that are not well represented and some that are. The mechanics that are not well 

represented will then be replaced with machine learning. 
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CHAPTER VI: RECREATING MECHANISTIC SHEAR MODELS 

To use the Data-Driven Inclusion method to predict shear failure, a base mechanistic model 

will be needed. Based on our definition of the Data-Driven Inclusion method, the mechanistic model 

must represent multiple mechanisms, some of which are defined more accurately than others, and 

does not need to have any specifical mathematical form, like a differential equation. Ideally for our 

purpose, all mechanisms should be well represented except load-induced cracking. This way, we can 

use machine learning to predict that complex mechanism. The model that represented shear capacity 

mechanics most accurately was the Shear Crack Propagation Theory, so it will be investigated as a 

candidate for hybridization. However, this model does not attempt to predict load-induced cracking 

directly but instead predicts crack propagation. 

The main goals in recreating this mechanistic model are: (1) to verify its mathematical 

representation of mechanisms can be accurately reproduced and (2) to provide a basis for comparison 

for the hybrid model. 

Shear Crack Propagation Theory 

As mentioned before, this model attempts to express not only the failure state of the beam 

but also the entire failure process starting from the initial flexural cracks. This model was chosen 

because it represents crack propagation, strain-crack opening, and tension stiffening mechanisms in 

addition to the common mechanisms used in other mechanistic models. However, the Shear Crack 

Propagation Theory does not consider multiple cracks, limiting its ability to robustly predict shear 

failure.  
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The evaluation process of this model can be described as follows. First, a loading is chosen just 

past the initial flexural cracking such that the crack would propagate further. From this, four 

parameters must be assumed: the propagated crack height and angle, vertical stress from cantilever 

action, and section rotation. Given the propagated crack geometry and constitutive models, these 

assumed parameters are updated to satisfy the equilibrium of a rigid cracked section. Once equilibrium 

is found, this sequence of crack propagation is complete and another can begin based on an additional 

increase in load. Once the cracked concrete section is no longer able to support the increased loading, 

failure is assumed, and the capacity of the beam can be recorded. The appropriate choice for critical 

crack location is implied in this. If no location is known or assumed, all locations on the beam can be 

attempted, and the location with the lowest capacity governs. 

The process of re-creating the Shear Crack Propagation Theory began by reproducing its 

mechanistic models. They consist of models to: 

1. Describe the spacing of primary cracks; 

2. Relate delamination cracks to primary cracks; 

3. Relate strains in the uncracked region of the beam to crack openings; 

4. Describe principal stresses at the fictitious macro-crack tip; 

5. Describe the failure state of the crack tip as a result ; 

6. Represent residual tensile strength in the fictitious macro-crack; 

7. Represent aggregate interlock friction in the cracked region; 

8. Represent shear resistance from doweling action; 
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9. Describe the stress-strain relationship in the tensile reinforcement, including the effects of 

tension stiffening and delamination; and, 

10. Describe the stresses imposed on the uncracked concrete from cantilever action. 

Many of these are empirical but some are based purely on mechanics, such as the identification 

of principle stresses and their planes.  

Then, a framework for propagating the crack was needed, as the Shear Crack Propagation 

Theory generally describes a multi-segmented framework but then only explains sufficiently the 

implementation of a much simpler bilinear framework. A more detailed implementation is now given. 

First, the initial flexural crack is created (26)-(27). 

 𝑦𝑦0 = 0 
( 26) 

 𝛽𝛽0 = 90° 
( 27) 

Where 𝑦𝑦0 represents the tip height of the flexural crack and 𝛽𝛽0 represents the crack’s angle.  

The origin for describing crack tip locations is located at the flexural reinforcement, which is 

common for many models like the Shear Crack Propagation Theory. Then, the unknown parameters 

must be estimated (29)-(32) and an increase in load must be imposed. However, the increase in 

loading can be represented in many, similar ways, such as by decreasing the depth of the compression 

zone or increasing cracked section rotation. The former is chosen in the Shear Crack Propagation 

Theory’s implementation.  The location of the neutral axis, 𝑥𝑥0, can be assumed just above the midpoint 

of the depth for initial propagation (28).  
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 𝑥𝑥0 = 𝑑𝑑 ∗ 0.55 
( 28) 

 𝛿𝛿𝑦𝑦 = 10 𝑚𝑚𝑚𝑚 
( 29) 

 𝛽𝛽𝑝𝑝𝑣𝑣𝑐𝑐 = 80° 
( 30) 

 𝜎𝜎𝑧𝑧0 = 0 𝑀𝑀𝑃𝑃𝑎𝑎 
( 31) 

 𝜙𝜙 = 0.0002 𝑟𝑟𝑎𝑎𝑑𝑑 ( 
3216) 

These are appropriate starting estimates for initial propagation. Next, geometric relationships 

are used to compute the sliding and opening of crack segments, and a delamination crack is assumed 

based on the shape of the primary crack (model 2). Proposed geometric relationships were overly 

complex and limited to bilinear cracks, so new relationships were developed based on two triangles, 

𝑎𝑎𝑏𝑏𝑀𝑀 and 𝑑𝑑𝑀𝑀𝑓𝑓, that can always be found for any crack segment, as shown in Figure 6.1.  
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Figure 6.1: New Crack Geometry Model 

If each crack segment is labeled 1 to 𝑛𝑛 starting with 1 at the first propagated crack, then the 

relationships for the shapes of these triangles are (33)-(40) 

 
𝑎𝑎𝑖𝑖 = �𝛿𝛿𝑦𝑦𝑘𝑘

𝑛𝑛

𝑘𝑘=𝑖𝑖

+ 𝑥𝑥1 ( 33) 

 𝑏𝑏𝑖𝑖 =
𝑎𝑎𝑖𝑖

tan(𝛽𝛽𝑖𝑖)
= 𝑓𝑓𝑖𝑖 ( 34) 

 𝑀𝑀𝑖𝑖 =
𝑏𝑏𝑖𝑖

cos(𝛽𝛽𝑖𝑖)
 

( 35) 
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 ℎ𝑖𝑖 =
𝛿𝛿𝑦𝑦𝑖𝑖

tan(𝛽𝛽𝑖𝑖)
 

( 36) 

 
ℎ𝑖𝑖 = �ℎ𝑘𝑘

𝑛𝑛

𝑘𝑘=𝑖𝑖

 
( 37) 

 𝑓𝑓𝑖𝑖 = 𝑏𝑏𝑖𝑖 − ℎ𝑖𝑖 ( 38) 

 𝑑𝑑𝑖𝑖 = sin(𝛽𝛽𝑖𝑖) ∗ 𝑓𝑓𝑖𝑖 ( 39) 

 𝑀𝑀𝑖𝑖 = cos(𝛽𝛽𝑖𝑖) ∗ 𝑓𝑓𝑖𝑖 ( 40) 

The first triangle is simply the projection of the crack to the neutral axis, and the second is for 

finding the opening and sliding radii to multiply by the crack rotation, as represented in (41) and  (42). 

When 𝑓𝑓𝑖𝑖 is negative, the crack’s projection intersects the neutral axis before the center of rotation. 

This geometric relationship holds even if later crack angles become steeper or if cracks propagate into 

the compression zone. It also accurately describes the reverse shear friction effect that would occur 

from that sliding. 

 𝑟𝑟𝑜𝑜,𝑖𝑖 = 𝑎𝑎𝑏𝑏𝑠𝑠( 𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑖𝑖) 
( 41) 

 𝑟𝑟𝑣𝑣,𝑖𝑖 = 𝑎𝑎𝑏𝑏𝑠𝑠(𝑑𝑑𝑖𝑖) 
( 42) 

Where 𝑟𝑟𝑜𝑜,𝑖𝑖 is the opening radius and 𝑟𝑟𝑣𝑣,𝑖𝑖 is the sliding radius for crack 𝑖𝑖. 

These radii explain sliding and opening at the tip of crack 𝑖𝑖 (assuming crack faces rotate about 

the neutral axis (model 3), but the crack opening can be found on any portion of the segment as well 

by simply adding the distance along the crack from the tip to the location of interest as in (43). 
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 𝑟𝑟𝑜𝑜 = 𝑟𝑟𝑜𝑜,𝑖𝑖 + 𝑙𝑙 
( 43) 

The sliding radius is the same for any location on a crack segment. From the above 

relationships, the sliding and opening values can be obtained at any point on the crack with equations 

(44)-(46).  

 𝑙𝑙𝑖𝑖 =
𝛿𝛿𝑦𝑦𝑖𝑖

sin(𝛽𝛽𝑖𝑖)
 

( 44) 

 𝑤𝑤𝑖𝑖,𝜉𝜉 = �𝑟𝑟𝑜𝑜,𝑖𝑖 + 𝜉𝜉 ∗ 𝑙𝑙𝑖𝑖� ∗ 𝜙𝜙 
( 45) 

 𝛿𝛿 =  𝑟𝑟𝑣𝑣,𝑖𝑖 ∗ 𝜙𝜙 
( 46) 

Where 𝜉𝜉 is between 0 and 1, representing the tip and base of the crack, respectively.  

In the Shear Crack Propagation Theory, however, the uppermost crack is assumed to have 

no sliding or opening at the tip (model 3), but its bottom fully respects the kinematics imposed from 

the above rotation, as represented in (47)-(49).  

 𝑤𝑤𝑛𝑛,0 = 0 
( 47) 

 𝛿𝛿𝑛𝑛 = 0 
( 48) 

 𝑤𝑤𝑛𝑛,1 = �𝑟𝑟𝑜𝑜,𝑛𝑛 + 𝑙𝑙𝑐𝑐,𝑛𝑛� ∗ 𝜙𝜙 
( 49) 

The delamination crack length is then assumed to be the length of the primary crack’s 

horizontal projection. This can be represented through (50) 
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ℎ𝑑𝑑 = �ℎ𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 
( 50) 

Using the above kinematic values for each crack segment, the constitutive relationships may 

then be computed with a few modifications to fit the more complex framework.  

First, the forces in the uncracked region will be described (model 10), as they are the most 

complex. The computation of these forces begins by relating section rotation to strains in the 

uncracked region with equations (51)-(53). 

 𝜖𝜖𝑐𝑐𝑐𝑐 =
𝜙𝜙
𝑠𝑠𝑐𝑐𝑐𝑐

∗ 𝑥𝑥1 ( 51) 

 𝜖𝜖𝑐𝑐𝑜𝑜𝑝𝑝 =
𝜙𝜙
𝑠𝑠𝑐𝑐𝑐𝑐

∗ −𝑥𝑥0 
( 52) 

 𝜖𝜖𝑣𝑣 =
𝜙𝜙
𝑠𝑠𝑐𝑐𝑐𝑐

∗ (𝑑𝑑 − 𝑥𝑥0) 
( 53) 

(51)-(53) are acceptable only when realizing the assumptions made in them. First, the control 

section is assumed to be a rigid body, so no deflection from cantilever action would skew the 

relationship between opening and strain. Additionally, it is assumed the strain of the control section is 

representative of the strains 𝑠𝑠𝑐𝑐𝑐𝑐 distance (model 1) around the crack tip. Multiplication of this strain 

by the distance allows for relation to crack openings and is valid when strain increases linearly along 

the beam’s length. While linear strain distribution is typical for prismatic elastic beams, the distribution 

for cracked concrete beams has not been reported extensively. A linear strain distribution is also 

assumed across the depth of the uncracked region. Finally, the above equations assume that all strains 

in the surrounding area contribute to the primary crack, which is an acceptable assumption for a 

critical crack implementation but is not realistic. 
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After determining strains in the uncracked section, a crack propagation criterion can be 

implemented (model 5). This is done by realizing a biaxial failure criterion and analyzing principal 

stresses at the crack tip. The factors that affect this stress state are crack tip location (in compression 

zone or not) and cantilever action contribution. The principle of stress orientation is assumed to be 

in line with the crack angle since cracking is caused by a tensile failure in the concrete (model 4). The 

principal stresses can be computed from horizontal, vertical, and shear stresses with equations (54) 

and (55) 

 𝜎𝜎1 = 𝜏𝜏0 ∗ tan(βn) + σz0 ( 54) 

 𝜎𝜎2 = −
𝜏𝜏0

tan(𝛽𝛽𝑛𝑛) + 𝜎𝜎𝑧𝑧0 ( 55) 

Assuming that the crack tip is near a state of failure, the Kupfer failure criterion (Kupfer and 

Gerstel, 1973) can be employed and stresses 𝜏𝜏0 and 𝜎𝜎𝑥𝑥0 can be solved explicitly. These stresses are 

then related to strains through an elastic modulus. This assumes the relation between stress and strain 

is linear. The stresses can then be integrated along the uncracked section and produce forces to be 

used in equilibration. The final equations (56)-(58) depend on stresses at the crack tip, distance from 

the crack tip to the neutral axis, and the neutral axis depth. 
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𝑉𝑉𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐 =

2
3
∗ 𝑏𝑏 ∗ 𝜏𝜏0 �(𝑥𝑥0 + 𝑥𝑥1) +

1
2
�
𝑥𝑥12 + 𝑥𝑥0 ∗ 𝑥𝑥1
𝑥𝑥0 − 𝑥𝑥1

�� 
( 56) 

 𝐹𝐹𝑐𝑐𝑐𝑐 =
1
2
∗ 𝑏𝑏 ∗ 𝜎𝜎𝑥𝑥0 ∗ 𝑥𝑥1 ( 57) 

 𝐹𝐹𝑐𝑐𝑐𝑐 =
1
2
∗ 𝑏𝑏 ∗ 𝜖𝜖𝑐𝑐𝑜𝑜𝑝𝑝 ∗ 𝐸𝐸𝑐𝑐 ∗ 𝑥𝑥0 ( 58) 

It is interesting to note that 𝐹𝐹𝑐𝑐𝑐𝑐 and 𝐹𝐹𝑐𝑐𝑐𝑐 are not directly coupled, so instances in which they 

do not share a strain distribution could arise.  

The remaining shear-resisting mechanisms are those from residual tensile strength (model 6), 

aggregate interlock (model 7),  and doweling action (model 8),  and all these are represented by 

empirically derived models. More complex mechanistic models are available(Walraven, 1981; Hordijk, 

1992), but their computations were too complex to implement. Fracture process zone strength is 

represented through an exponential decay in (59)-(61). 

 𝜎𝜎𝑓𝑓𝑝𝑝𝑧𝑧(𝑤𝑤) = 𝑓𝑓𝑐𝑐𝑐𝑐 ∗ exp (−
𝑤𝑤
𝑤𝑤1

) 
( 59) 

 𝑤𝑤1 =
𝐺𝐺𝑓𝑓
𝑓𝑓𝑐𝑐𝑐𝑐

 
( 60) 

 𝐺𝐺𝑓𝑓 = 0.028 ∗ 𝑓𝑓𝑐𝑐′
0.18 ∗ 𝑑𝑑𝑎𝑎𝑎𝑎0.32 

( 61) 

Where 𝑑𝑑𝑎𝑎𝑎𝑎 is the maximum aggregate size and 𝑤𝑤 is the width of the crack.  

The stress from these relationships can be integrated along all cracks and its vertical and 

horizontal components can be computed. The process for computing the aggregate interlock stress 

is similar. However, the Shear Crack Propagation Theory provides an explicit equation for the 

integration of fracture process zone stresses but does not for aggregate interlock. This is because 

fracture process zone stresses typically only occur in the uppermost crack segment, and aggregate 
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interlock stresses occur through many crack segments. To account for the aggregate interlock’s 

widespread distribution across crack segments, a numerical integration scheme was implemented to 

find the vertical and horizontal forces due to the aggregate interlock stresses, which were based on 

the following constitutive relationships (62) and (63). 

 𝜏𝜏𝑎𝑎𝑖𝑖 = −
𝑓𝑓𝑐𝑐
30

+ (1.8 ∗ 𝑤𝑤−0.8 + (0.234 ∗ 𝑤𝑤−0.707 − 0.2) ∗ 𝑓𝑓𝑐𝑐) ∗ 𝛿𝛿 ( 62) 

 𝜎𝜎𝑎𝑎𝑖𝑖 = −
𝑓𝑓𝑐𝑐
20

+ (1.35 ∗ 𝑤𝑤−0.63 + (0.191 ∗ 𝑤𝑤−0.552 − 0.15) ∗ 𝑓𝑓𝑐𝑐) ∗ 𝛿𝛿 ( 63) 

Finally, the vertical force provided by doweling action can be computed with (64)-(66). 

 𝑉𝑉𝑑𝑑𝑎𝑎,0 = 1.64 ∗ 𝑏𝑏𝑛𝑛 ∗ 𝑑𝑑𝑣𝑣 ∗ 𝑓𝑓𝑐𝑐
0.33 

( 64) 

 𝑏𝑏𝑛𝑛 = 𝑏𝑏 − 𝑑𝑑𝑣𝑣 ∗ 𝑛𝑛𝑣𝑣 ( 65) 

 

𝑉𝑉𝑑𝑑𝑜𝑜𝑑𝑑𝑝𝑝𝑑𝑑 = �
𝑣𝑣𝑎𝑎 ≤ 0.05𝑚𝑚𝑚𝑚:𝑉𝑉𝑑𝑑𝑎𝑎,0 ∗

𝑣𝑣𝑎𝑎
0.05

∗ �2 −
𝑣𝑣𝑎𝑎

0.05
�

𝑣𝑣𝑎𝑎 > 0.05𝑚𝑚𝑚𝑚:𝑉𝑉𝑑𝑑𝑎𝑎,0 ∗
2.55 − 𝑣𝑣𝑎𝑎

2.5

  
( 66) 

Where 𝑣𝑣𝑎𝑎 is the vertical displacement of the crack at the origin.  

While not a shear-resisting mechanism, the force in the tensile reinforcement will need to be 

determined to find equilibrium. This force can be determined by considering tension stiffening and 

delamination effects (model 9). First, the average strain, 𝜖𝜖𝑣𝑣, computed from section rotations, must 

be related to strain in delaminated portions of the beam and strains that still are affected by tension 

stiffening, as represented in (67) 
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 𝜖𝜖𝑣𝑣 =
𝜖𝜖𝑐𝑐𝑣𝑣 ∗ (𝑠𝑠𝑐𝑐𝑐𝑐 − ℎ𝑑𝑑) + 𝜖𝜖𝑑𝑑 ∗ ℎ𝑑𝑑

𝑠𝑠𝑐𝑐𝑐𝑐
 

( 67) 

Then, the constitutive relationships (68)-(72) for each can be used to solve for the stress in 

reinforcement.  

 𝜎𝜎𝑣𝑣 = 𝜖𝜖𝑐𝑐𝑣𝑣 ∗ 𝐸𝐸𝑣𝑣 +
𝑓𝑓𝑐𝑐𝑐𝑐

1 + �3.6 ∗ 𝑀𝑀 ∗ 𝜖𝜖𝑐𝑐𝑣𝑣
 

( 17) 

 𝑀𝑀 =
𝐴𝐴𝑐𝑐

Σ𝑑𝑑𝑣𝑣 ∗ 𝜋𝜋
 

( 69) 

 𝐴𝐴𝑐𝑐 = ℎ𝑐𝑐,𝑝𝑝𝑓𝑓𝑓𝑓 ∗ 𝑏𝑏𝑑𝑑 
( 70) 

 ℎ𝑐𝑐,𝑝𝑝𝑓𝑓𝑓𝑓 = min (2.5 ∗ 𝑑𝑑𝑣𝑣,
𝑑𝑑 − 𝑥𝑥0

3
) ( 71) 

 𝜎𝜎𝑣𝑣 = 𝜖𝜖𝑑𝑑 ∗ 𝐸𝐸𝑣𝑣 ( 72) 

No explanation is given for the values in computing 𝑀𝑀, but from Bentz (2005), 𝑑𝑑𝑣𝑣 is the 

diameter of the reinforcement and 𝑏𝑏𝑑𝑑 is the width of the beam. Additionally, the relationship for 

ℎ𝑐𝑐,𝑝𝑝𝑓𝑓𝑓𝑓 is the portion of the beam in tension. 

Considering all the forces present on the beam and in the control section, equilibrium can be 

taken about two rigid bodies. The first rigid body includes the control section and applied loading. The 

equilibrium of this body provides 3 constraint equations. The second rigid body includes two identical 

control sections separated 𝑠𝑠𝑐𝑐𝑐𝑐 distance from each other. The moment equilibrium of this body allows 

for the computation of 𝜎𝜎𝑧𝑧0 and provides the final equation to match the four unknowns and assumed 

variables.  

The process of solving for these variables should be converging, but attempts to implement 

the Shear Crack Propagation Theory update process lead to diverging updates. The proposed process 
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begins with assumed values and computes all internal forces except for the steel tensile force, which 

is then computed based on the equilibrium of horizontal forces and moments. From this steel force, 

an updated section rotation can be computed from the average tensile strain in the reinforcement. 

Then, the vertical stress at the crack tip can be computed by the moment equilibrium of the concrete 

tooth using only the previously computed internal forces and a delta steel force (73) and (74), which 

is computed using the steel force derived from equilibrium. 

 Δ𝐹𝐹𝑣𝑣 = 𝐹𝐹𝑣𝑣 ∗
𝑛𝑛 + 1
𝑛𝑛

 ( 73) 

 𝑛𝑛 =
𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐
𝑠𝑠𝑐𝑐𝑐𝑐

 
( 74) 

Where 𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 is the location of the crack along the beam.  

The propagated crack angle can then be computed through the vertical and moment 

equilibrium of the first rigid body, and finally, the propagated crack height is computed using section 

rotation and vertical tip stress. In a typical solution-finding procedure, the computed values of 

unknown parameters should be closer to the solution than those originally assumed, but this updating 

process quickly becomes unstable. A related effect can be illustrated in Figure 6.2, which shows how 

varying propagated crack angle and section rotation on an initial crack effects vertical force equilibrium. 

Since vertical tip stress is not significant for beginning cracks and the crack height only depends on the 

crack angle and section rotation, they do not need to be varied. As the estimated parameters come 

closer to equilibrium (the minimum on the plot), the gradient of the error with respect to 𝜙𝜙 and 𝛽𝛽 

explodes. When using gradient-based updating methods, a solution was unobtainable even when 
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updating step sizes. The inability to find a solution could be from the modifications made to the 

presented implementation. 

 

Figure 6.2: Sensitivity plot of vertical equilibrium 

While this model claims to be able to accurately reproduce crack shapes given the crack 

location, the crack shapes were not able to be confirmed here. As such, the model proposed by 

Cavagnis et al. (2018) will be investigated. 

Cavagnis et al. (2018) Critical Shear Crack Theory 

This model provides a simpler framework for predicting shear capacity in concrete beams 

without transverse reinforcement at the cost of misrepresenting some mechanisms. This model 

considers all shear-resisting mechanisms to contribute to capacity but heavily modifies their empirical 
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relationships. A simple, explicit relationship is given for load-induced cracking even though there are 

no easily identifiable mechanisms for it. Furthermore, this model only considers a single crack to 

contribute to failure. So while the Critical Shear Crack Theory will be easier to implement, its 

mechanistic models will be much less accurate. 

More information on the mathematical form of this model can be found in later sections, and 

only information on replication will be presented here. Accurate replication was difficult to confirm. 

Computation results for individual beams were not presented with the description of the Critical 

Shear Crack Theory; only aggregated results were presented numerically. Thus, it is not possible to 

validate its implementation directly. However, results were presented graphically for individual beams 

(Cavagnis et al, 2020), so this was chosen as a basis for validation. Figure 6.3 shows the shear resistance 

distribution of six simply supported beams with a point load at midspan. The dark blue portion 

represents resistance from aggregate interlock, the light blue from residual tensile strength, the orange 

from doweling action, and the red from inclined compression chord (uncracked concrete shear 

resistance). These distributions are identical to those provided by Cavagnis et al.(2020), showing that 

the model was accurately reproduced and that a hybrid version of it can be accurately compared.  
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Figure 6.3: Validation of the Critical Shear Crack Theory Model 
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CHAPTER VII: IMPLEMENTATION OF THE DATA-DRIVEN INCLUSION 
METHOD 

For our implementation of the Data-Driven Inclusion method, we used the Critical Shear 

Crack Theory as our mechanistic model and found the crack position, crack geometry, crack 

kinematics, and aggregate interlock models need to be replaced with machine learning models. While 

replacing these portions of the mechanistic model decreases mechanistic bias, there still is one 

significant source of mechanistic bias inherent to this formulation, being that shear failure occurs due 

to one critical, bilinear crack. To describe more complex cracking patterns, the hybrid model must be 

further modified. The crack shape and aggregate interlock model are replaced because they do not 

represent the test values found in (Cavagnis et al., 2015), and the crack kinematics and location are 

replaced because they are dependent on assumptions of the previous model and may not accurately 

represent the shear failure mechanisms.  

Other models in the Critical Shear Crack Theory still do not represent underlying mechanisms 

well, such as the force from the inclined compression zone. However, this component has been 

shown to contribute little to the shear capacity of slender members, and to avoid increasing the 

complexity represented by the machine learning portions, the mechanistic model provided in the 

Critical Shear Crack Theory will remain in the hybrid model. 

The implemented hybrid model can be described as follows: The model begins by predicting 

the crack location (𝛼𝛼𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐), angles (𝛽𝛽𝐴𝐴𝐴𝐴,𝛽𝛽𝐴𝐴𝐹𝐹) and lengths (𝑙𝑙𝐴𝐴, 𝑙𝑙𝐹𝐹) of the bilinear crack, and the horizontal 

opening of the crack at the height of the longitudinal reinforcement (𝑢𝑢𝑎𝑎) in (75). 
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 𝛼𝛼𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐,𝛽𝛽𝐴𝐴𝐴𝐴,𝛽𝛽𝐴𝐴𝐹𝐹 , 𝐿𝐿𝐴𝐴𝐴𝐴, 𝐿𝐿𝐴𝐴𝐹𝐹 , 𝑢𝑢𝑎𝑎 =  𝑀𝑀𝐿𝐿(𝑋𝑋) 
( 75) 

Where 𝑋𝑋 is determined in Table 7.1 for each model, depending on the configuration. These 

machine-learning predictions can then be used with simple geometric expressions (equations (76)-

(81)) to yield the inputs required for the constitutive models of cracked and uncracked concrete. 

 𝑙𝑙𝑏𝑏 = 𝑙𝑙𝐴𝐴 ∗ sin(𝛽𝛽𝐴𝐴𝐴𝐴) 
( 76) 

 𝑑𝑑𝐹𝐹 = 𝑙𝑙𝑏𝑏 + sin(𝛽𝛽𝐴𝐴𝐹𝐹) ∗ 𝑙𝑙𝐹𝐹 
( 77) 

 𝑙𝑙1 = 𝑙𝑙𝐹𝐹 ∗ cos(𝛽𝛽𝐴𝐴𝐴𝐴 − 𝛽𝛽𝐴𝐴𝐹𝐹) 
( 78) 

 𝑙𝑙2 = 𝑙𝑙1 + 𝑙𝑙𝐴𝐴 
( 79) 

 𝑟𝑟𝐹𝐹 = 𝑎𝑎 − 𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 − 𝑙𝑙𝐴𝐴 ∗ cos(𝛽𝛽𝐴𝐴𝐴𝐴) − 𝑙𝑙𝐹𝐹 ∗ cos(𝛽𝛽𝐴𝐴𝐹𝐹) 
( 80) 

 ℎ𝐹𝐹 = 𝑑𝑑 − 𝑑𝑑𝐹𝐹 
( 81) 

These geometric quantities are represented in Figure 7.1. Using the crack opening, 𝑢𝑢𝑎𝑎, the 

Mode I displacements of the crack can be obtained with equations (82)-(84). 

 𝜙𝜙 =
𝑢𝑢𝑎𝑎
𝑑𝑑𝐹𝐹

 
( 82) 

 𝑤𝑤𝐴𝐴𝐹𝐹 = 𝜙𝜙 ∗ 𝑙𝑙𝐹𝐹 
( 83) 

 𝑤𝑤𝐴𝐴 = 𝜙𝜙 ∗ 𝑙𝑙2 ( 84) 

The sliding quantities needed for predicting aggregate interlock will simply be predicted in the 

machine learning model as a result of automatic feature engineering. The shear force from aggregate 

interlock is predicted with equation (85). 
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 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑀𝑀𝐿𝐿(𝑋𝑋) 
( 85) 

The contribution from residual tensile strength can be computed with expressions (86)-(90). 

 
𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑐𝑐

2
3 ∗ 0.3 ( 86) 

 
𝑤𝑤𝐶𝐶 = 0.073 ∗

𝑓𝑓𝑐𝑐
0.18

𝑓𝑓𝑐𝑐𝑐𝑐
∗

1.31
0.31

 ( 87) 

 𝑙𝑙3 = max �𝑚𝑚𝑖𝑖𝑛𝑛 �𝑙𝑙2,
𝑤𝑤𝑐𝑐
𝑤𝑤𝐴𝐴

∗ 𝑙𝑙2� , 𝑙𝑙1� ( 88) 

 𝑙𝑙𝐹𝐹1 = min �𝑙𝑙𝐹𝐹 ,
𝑤𝑤𝑐𝑐
𝑤𝑤𝐴𝐴𝐹𝐹

∗ 𝑙𝑙𝐹𝐹� ( 89) 

 
𝑉𝑉𝑐𝑐𝑝𝑝𝑣𝑣 = 𝑓𝑓𝑐𝑐𝑐𝑐 ∗ 𝑏𝑏 ∗ cos(𝛽𝛽𝐴𝐴𝐹𝐹) ∗ 𝑙𝑙𝐹𝐹1 ∗ �1 − �

1
1.31

∗ �
𝑢𝑢𝑎𝑎 ∗ 𝑙𝑙𝐹𝐹1
𝑑𝑑𝐹𝐹 ∗ 𝑤𝑤𝑐𝑐

�
0.31

�� + cos(𝛽𝛽𝐴𝐴𝐴𝐴)

∗ �𝑙𝑙3 ∗ �1 − �
1

1.31
∗ �

𝑢𝑢𝑎𝑎 ∗ 𝑙𝑙3
𝑑𝑑𝐹𝐹 ∗ 𝑤𝑤𝑐𝑐

�
0.31

�� − 𝑙𝑙1

∗ �1 − �
1

1.31
∗ �

𝑢𝑢𝑎𝑎 ∗ 𝑙𝑙1
𝑑𝑑𝐹𝐹 ∗ 𝑤𝑤𝑐𝑐

�
0.31

��� ∗
𝑓𝑓𝑐𝑐𝑐𝑐
�𝑓𝑓𝑐𝑐

  

( 90) 

 

Where 𝑤𝑤𝑐𝑐 is a property of concrete fracture mechanics, and 𝑙𝑙3 and  𝑙𝑙𝐹𝐹1 are the lengths where 

residual tensile strength is active on the vertical and horizontal crack segments, respectively.  

The presented formulation above varies from (Cavagnis et al., 2018) because its second term 

was originally included in the aggregate interlock constitutive model. However, because the second 

term describes the residual tensile strength, it will be included in this quantity. The doweling action 

can be computed through equations (91) and (92). 
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𝑘𝑘𝑏𝑏 = min�0.063 ∗ �

𝑙𝑙𝑏𝑏
𝑢𝑢𝑎𝑎
�
1
4

 � 
( 91) 

 𝑉𝑉𝑑𝑑𝑜𝑜𝑑𝑑𝑝𝑝𝑑𝑑 = 5 ∗ 𝑘𝑘𝑏𝑏 ∗ 𝑓𝑓𝑐𝑐𝑐𝑐 ∗ 𝜌𝜌 ∗ 𝑏𝑏 ∗ 𝑑𝑑  
( 92) 

Finally, the shear resistance contribution from the uncracked concrete can be computed (93) 

and used with the other shear resisting forces to predict the shear capacity (94). 

 𝑉𝑉𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐 =
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑉𝑉𝑐𝑐𝑝𝑝𝑣𝑣 + 𝑉𝑉𝑑𝑑𝑜𝑜𝑑𝑑𝑝𝑝𝑑𝑑

1 − 0.5 ∗ ℎ𝐹𝐹𝑟𝑟𝐹𝐹

− (𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑉𝑉𝑐𝑐𝑝𝑝𝑣𝑣 + 𝑉𝑉𝑑𝑑𝑜𝑜𝑑𝑑𝑝𝑝𝑑𝑑) 
( 93) 

 𝑉𝑉 = 𝑉𝑉𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐 + 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑉𝑉𝑐𝑐𝑝𝑝𝑣𝑣 + 𝑉𝑉𝑑𝑑𝑜𝑜𝑑𝑑𝑝𝑝𝑑𝑑 ( 94) 

 

 

Figure 7.1: Shear Mechanics of Concrete Beam 
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Table 7.1: Input Parameters used to Predict Shear Mechanics Quantities 
Output Parameter 𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 𝛽𝛽 𝑙𝑙 𝑢𝑢𝑎𝑎 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 

Input Parameter 
Shear span (𝑎𝑎) X X X X  
Beam Height (ℎ) X X X X  
Reinforcement Ratio (𝜌𝜌) X X X X  
Reinforcement Yield 
Strength (𝜎𝜎𝑌𝑌) 

X X X X  

Beam Width (𝑏𝑏) X X X X X 
Beam Depth (𝑑𝑑) X X X X X 
Maximum Aggregate Size 
�𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎� 

X X X X X 

Concrete Compressive 
Strength (𝑓𝑓𝑐𝑐) 

X X X X X 

𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐  X X X X 
𝛽𝛽    X X 
𝑙𝑙    X X 
𝑢𝑢𝑎𝑎     X 

 

A neural network architecture was chosen for the machine learning models in this hybrid 

framework so that gradient-based training could be used. However, the optimal layout of this neural 

architecture is not clear because multiple parameters are predicted (critical crack location, crack 

opening), and one parameter may depend on the value of previous ones (e.g. aggregate interlock 

depends on crack opening).  

Several implementations can be chosen. They will all be considered to determine their 

potential effects on learning. The first to consider would be having every parameter be predicted by 

one neural network, not accounting for this dependency. This layout can be called “connected”. Next, 

a layout having crack quantities (kinematics, angles, and lengths) and aggregate interlock quantities 

predicted by different networks, one feeding into the other, can be considered. This layout can be 
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called “unconnected”. Finally, as an extreme case, we can consider a model where each mechanism 

has its own neural network, each receiving separate inputs and feeding information sequentially from 

one network to the next. This layout can be called “spread”.  

From Haghighat et al. (2020), the spread model would be expected to perform the best. 

Additionally, because neural architectures have a difficult time learning an identity mapping between 

layers (He et al., 2016), it will be difficult for the input parameters used in the beginning layers of the 

model to be unaltered in later layers. From understanding this difficulty, instead of considering the 

architectures as having varying numbers of networks (spread vs. connected), they can be considered 

as having varying degrees of residual connectivity. This means neural networks that use more individual 

networks will have more residual connections than ones using a single network. It is important to note 

that the residual connections described previously are significantly different than those used in image 

recognition. They are used in image recognition to create deeper networks because of the same 

difficulty in learning identity layers.  

The connected, unconnected, and spread networks are shown schematically in Figure 7.2. 

Based on underlying mechanics, the best inputs to use for each model can be determined in Table 

7.1. 
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Figure 7.2: Model Layouts 

There are some quantities predicted from the networks in which a-priori knowledge of their 

expected values is available; the knowledge mostly comes from geometric constraints of crack 

prediction. For example, the angle of the crack’s inclination is expected to be between 0 and 90 

degrees. While predictions between 360 and 450 degrees would result in the same trigonometric 

relationships, constraining these predictions between the two expected bounds simplifies learning. 

We term this kind of bounding “two-sided bounding” Additionally, aggregate interlock shear resistance 

and crack lengths should only be positive. These can be bound similarly, termed “one-sided bounding”. 

However, when bounding these outputs, satisfying the second condition posed earlier is crucial (the 

new output is still a function of the trainable parameters of the network); if the condition is not 

satisfied, the network will not receive gradient information. The best method to achieve this and satisfy 

the second condition is to use activation functions. Two-sided and one-sided bounding uses the 

sigmoid and ReLU or ELU functions, respectively, as shown in Figure 7.3. It is important to note that 
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the ELU function can be very useful in predicting small values if its response is shifted 1 unit upward, 

essentially allowing the function to translate a wide range of negative input values to decimal outputs.  

This mechanistic bounding may cause this type of hybridization to appear like Data-Driven 

Tuning because a machine learning prediction is amplifying a pre-determined value, but this 

hybridization is actually more similar to, and perhaps a modification of, Data-Driven Inclusion. This 

similarity is because most of the mechanics are still being represented by the machine learning model, 

so the pre-determined value is doing the tuning.  

Explicit bounds are not known for some quantities, but Mechanistic learning can further bound 

aggregations of predictions. In this model, Mechanistic Learning is used to limit the neural network 

from predicting a crack shape that is out of the beam’s bounds, as shown in (95) and (96): 

 𝐿𝐿1 = 𝑟𝑟𝑀𝑀𝑙𝑙𝑢𝑢(−𝑟𝑟𝐹𝐹)2 
( 95) 

 𝐿𝐿2 = 𝑟𝑟𝑀𝑀𝑙𝑙𝑢𝑢(𝑑𝑑𝐹𝐹 − 𝑑𝑑)2 
( 96) 

All geometric constraints could be represented this way, but it is best to represent as many 

prediction bounds as possible through the one-sided and two-sided bounding because Mechanistic 

Learning only enforces soft constraints and the mechanistic boundings impose hard constraints, which 

is important if their predictions are to be used in later mechanistic relationships. If a neural network 

were to predict a value outside of its expected range, that value could break the first condition posed 

earlier (mechanistic models must exist for all machine learning predictions) and cause numerical 

instabilities in the mechanistic relationships. The expressions used to bound predictions in this hybrid 

implementation are shown in Table 7.2. 
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Table 7.2: Bounding Expressions uses, where CB is a crack-bound value determined by the user 
Predicted 
Quantity 

Bounding Type Expression 

𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 Two-Sided 𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 = 𝜎𝜎�𝑅𝑅𝑅𝑅(𝑋𝑋)� ∗ 𝑎𝑎 + 1 
𝛽𝛽 Two-Sided 𝛽𝛽 = 𝜎𝜎�𝑅𝑅𝑅𝑅(𝑋𝑋)� ∗ �

𝜋𝜋
2
−
𝜋𝜋

18
� +

𝜋𝜋
36

 

𝑙𝑙 Two-Sided 𝑙𝑙 = �𝜎𝜎�𝑅𝑅𝑅𝑅(𝑋𝑋)� ∗ �𝐶𝐶𝐵𝐵𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐 − 𝐶𝐶𝐵𝐵𝑑𝑑𝑜𝑜𝑑𝑑𝑝𝑝𝑐𝑐�
+ 𝐶𝐶𝐵𝐵𝑑𝑑𝑜𝑜𝑑𝑑𝑝𝑝𝑐𝑐� ∗ 𝑑𝑑 

𝑢𝑢𝑎𝑎 One-Sided, Soft 𝑢𝑢𝑎𝑎 = 𝑀𝑀𝑙𝑙𝑢𝑢�𝑅𝑅𝑅𝑅(𝑋𝑋)� + 1.01 
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 One-Sided, Soft 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑀𝑀𝑙𝑙𝑢𝑢�𝑅𝑅𝑅𝑅(𝑋𝑋)� + 1 

 

 

11a: Two-Sided Bounding 

 

11b: One-Sided Hard Bounding 

 

11c: One-Sided Hard Bounding 

 

Figure 7.3: Mechanistic Bounding Expressions 

Each neural network contains a batch normalization layer at the beginning, followed by the 

remaining layers to produce the predicted value, which is then bounded if necessary. Once the neural 

networks are defined, they are used with the remaining mechanistic relationships to produce the final 
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prediction: the shear capacity of the beam. A schematic of these neural blocks’ and mechanistic 

relationships’ configurations in the layout of the entire hybrid model is shown in Figure 7.4. The entire 

model is trained based on a loss function containing the mean squared error of the beam shear 

capacity predictions, the L2 regularization norm, and any additional Mechanistic Learning terms. 

Gradient-based training is implemented with the Nadam optimizer, and a learning rate is determined 

via hyperparameter optimization. 

 

Figure 7.4: Data-Driven Inclusion Model 

Each of the above-mentioned models has its number of layers, number of nodes, and L2 

regularization parameters optimized using a Random Search optimization tuner over 300 trials. The 

search parameters used are given in Table 7.3. Each trial performs 10 attempts at training and the 

training run that achieves the lowest coefficient of determination for the validation set is used as the 

representation for those hyperparameters. Using multiple attempts helps to avoid local minima. 

Optimal hyperparameters for each layout are shown in Table 7.3. 
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Table 7.3: Hyper Parameter Search 
Connected 

Hyper Parameter Min Max Sampling Strategy Optimal 
Nodes 10 150 Random Integer 100 
Layers 1 6 Random Integer 5 

Regularization Coefficient 1e-5 1e-2 Random Logarithm 0.03 
Learning Rate 1e-6 1e-2 Random Logarithm 0.001 

Unconnected 
Hyper Parameter Min Max Sampling Strategy Optimal 

Nodes_1 10 150 Random Integer 19 
Nodes_2 10 150 Random Integer 98 
Layers_1 1 6 Random Integer 1 
Layers_2 1 6 Random Integer 6 

Regularization Coefficient_1 1e-5 1e-2 Random Logarithm 0.0013 
Regularization Coefficient_2 1e-5 1e-2 Random Logarithm 4.7e-5 

Learning Rate 1e-6 1e-2 Random Logarithm 0.0047 
Spread Model 

Hyper Parameter Min Max Sampling Strategy Optimal 
Nodes_1 10 50 Random Integer 33 
Nodes_2 10 50 Random Integer 32 
Nodes_3 10 50 Random Integer 34 
Nodes_4 10 50 Random Integer 30 
Nodes_5 10 50 Random Integer 28 
Layers_1 1 3 Random Integer 2 
Layers_2 1 3 Random Integer 2 
Layers_3 1 3 Random Integer 2 
Layers_4 1 3 Random Integer 2 
Layers_5 1 3 Random Integer 1 

Regularization Coefficient_1 1e-5 1e-2 Random Logarithm 0.006 
Regularization Coefficient_2 1e-5 1e-2 Random Logarithm 0.0012 
Regularization Coefficient_3 1e-5 1e-2 Random Logarithm 0.0007 
Regularization Coefficient_4 1e-5 1e-2 Random Logarithm 0.0008 
Regularization Coefficient_5 1e-5 1e-2 Random Logarithm 0.004 

Learning Rate 1e-6 1e-2 Random Logarithm 0.0048 
 

The dataset used for training, validation, and testing is composed entirely of specimens with 
𝑎𝑎
𝑑𝑑
  

ratios of 2.5 or greater, that failed in shear, and are loaded with point loads at midspan. While the 
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dataset is composed mainly of beams �𝑏𝑏
𝑑𝑑

 < 4� , it also includes slab-like specimens. This is not 

significant because the shear failure mechanisms should be similar considering St. Venant’s principle 

(Saint-Venant, 1855). The total data set includes 750 specimens which are always split into 0.55, 0.25, 

and 0.20 portions for training, validation, and testing data for hyper tuning and 0.72, 0.08, and 0.20 

during 10-fold validation when the model is being trained for evaluation.  
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                            CHAPTER VIII: ANALYSIS OF CRACK PREDICTIONS 

The primary objective of this thesis is to accurately predict load-induced cracking in concrete 

beams without shear reinforcement. Even though the hybrid model was developed for this objective, 

it was not able to accomplish it. 

Overall, the connected hybrid model makes very accurate predictions for shear failure on 

slender beams, as shown in Figure 8.1. 

Figure 8.1: Connected hybrid model prediction accuracy 

No mechanistic consistency (a term we will use to describe how well machine learning 

predictions match underlying mechanics) can be found in the machine learning predictions, however. 

Upon examining the predicted crack shapes in Figure 8.2, no resemblance can be found between the 

predicted shapes and the true shape. Additionally, the crack openings at the level of tensile 

reinforcement (𝑢𝑢𝑎𝑎), shown in Figure 8.2, are much smaller than indicated in the test results (Cavagnis 

et al., 2017). Test results show openings near 1mm while the hybrid model predictions are nearer to 

0.05mm. 



96 

Figure 8.2: Demonstration of erroneous machine learning predictions 

The remainder of this section will investigate the cause of this mechanistic inconsistency and 

propose solutions to fix them.  

First, The Critical Shear Crack Theory misrepresents many mechanisms in its implementation. 

Consequently, the machine-learning-based portion of the hybrid model must also misrepresent its 

mechanisms. This effect is best illustrated by considering the mechanisms used from the Critical Shear 

Crack Theory and data used in training. Because the machine learning model gets its information from 

data through the mechanistic models, the mechanistic bias in them will cause the machine learning 

model to misrepresent its mechanisms in accounting for the mechanistic bias. The machine learning 

model’s goal to minimize the error in the shear capacity predictions will make it learn any mechanism, 

even incorrect ones. From this, the mechanistic bias will be attributed to the machine learning 

predictions, as originally theorized in the Hybrid Learning Theory. An example of this can be seen in 

the crack shape, crack opening, and aggregate interlock predictions. Crack openings are experimentally 

observed to be near 1mm at failure (Cavagnis et al., 2017), but the mechanistic model utilizes openings 

between 0.1 and 0.5 mm with 1mm as an extreme case, highlighting the discrepancies in supporting 
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mechanisms. As a result, the hybrid’s machine learning predictions will prefer crack openings closer to 

0 mm, misrepresenting the true mechanism. Predictions of crack openings are shown in Figure 8.2.  

Second, there is a lack of constraint between crack shape and opening predictions. For the 

crack opening at the base to be realistically near 0mm, the crack must be sufficiently small. Left 

unconstrained from this mechanism, the machine-learning model will find any suitable representation 

that predicts shear capacity accurately. As a result of this, machine learning models often predict low 

aggregate interlock strength predictions, large crack shapes, and small crack openings.  

While these predictions do not make sense in terms of mechanics, as aggregate interlock 

strength is often dominating in slender beams, they do make sense in the given framework. These 

predictions are allowed because the aggregate interlock machine learning model is not constrained by 

crack shape or opening and, as mentioned previously, the opening is not constrained by the crack 

shape.  

To show this, the crack opening can be constrained to its shape (Figure 8.3), and shear 

resistance components can be graphed for a variety of crack openings, where the residual tensile 

strength resistance is allowed to act on the full crack shape (Figure 8.4). We constrained the crack 

opening to crack shape by segmenting the mechanistically predicted crack into 𝑛𝑛 segments. To find 

the size of the segments, the residual tensile strength model will be used to relate crack shape and 

size to crack opening, assuming some crack length on which the residual tensile strengths act. An 

appropriate assumption may be 0.1*d length at the beginning of cracking with a linear decay until 

failure. The decay in length is appropriate, as this translates directly to an increase in section rotation 

under the given framework. To keep this exploration focused on the effects of constraining opening 
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to crack shape, the center of rotation will remain at the crack tip. A fracture criterion to relate 

openings to crack shape would better represent underlying mechanics, but one could not be 

implemented because the Critical Shear Crack Theory does not include tensile stresses in the 

uncracked concrete. This relationship is fairly inaccurate for beginning segments but aligns with the 

Critical Shear Crack Theory for later segments. The following expression (97) can be made to relate 

crack propagation to section rotation. 

 𝜙𝜙𝑖𝑖 =
𝑤𝑤𝑐𝑐

0.1 ∗ 𝑑𝑑 − �0.1 ∗ 𝑑𝑑 − 𝑑𝑑𝐹𝐹 ∗ 𝑤𝑤𝑐𝑐
𝑢𝑢𝑎𝑎,𝑚𝑚𝑎𝑎𝑥𝑥

� ∗ 𝑖𝑖𝑛𝑛

 
( 97) 

Where 𝑖𝑖 is the current step and 𝑛𝑛 is the total amount of steps. 𝑢𝑢𝑎𝑎,𝑚𝑚𝑎𝑎𝑥𝑥 determines the crack 

width at failure. 

1mm will be used for 𝑢𝑢𝑎𝑎,𝑚𝑚𝑎𝑎𝑥𝑥 to agree with the testing information. The dot in Figure 8.3 

represents a typical value of crack shape and opening that would be obtained from the Critical Shear 

Crack Theory. Because the crack shape is not constrained to the opening in the hybrid model, the 

residual tensile strength is overrepresented in the final model. If the residual tensile strength is allowed 

to act on a fully developed crack with a small opening, it can account for most of the shear resistance 

mechanism of the beam. Additionally, the aggregate interlock capacity is not constrained to shapes or 

openings in the hybrid model, so it can account for the remaining capacity prediction, even when they 

should not exist. Figure 8.4 shows that the aggregate interlock should not exist at low crack openings. 

This is because no sliding has developed in the crack yet. If the aggregate interlock predictions were 

constrained by crack shape or opening and the opening was constrained by the crack shape, 

mechanistically inconsistent predictions would not be possible. 
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Figure 8.3: Crack opening constrained by crack shape and typical Critical Shear Crack Theory values 

 

Figure 8.4: Contribution of shear-resisting components over crack openings 

All factors caused by a lack of constraint are summarized now: 

• Small crack openings are predicted because the crack shape is not constrained to the crack 

opening, resulting in significant contributions from residual tensile strength; 

• Aggregate interlock is not a significant contributor because most of the capacity is already 

provided by residual tensile strength; and, 

• Crack shape predictions are chosen to accommodate the above relationships and thus will 

never represent the true crack shape. 
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Third and lastly, even considering if the mechanistic bias was removed in the constitutive 

models and the predictions were sufficiently constrained, the hybrid model will still be limited as it 

does not consider multiple cracks. To accurately model the cracks that develop and predict the failure 

state in a mechanistically consistent manner, multiple cracks must be considered. 

The above-mentioned factors can be attributed to two deficiencies of the hybrid model: (1) 

lack of sufficient mechanistic constraint; and (2) misrepresentation of underlying mechanisms 

(significant mechanistic bias). There is still much that is unknown about the contribution of these 

deficiencies to inaccuracies of intermediate predictions. An accurate representation of supporting 

mechanisms (decreasing mechanistic bias) may not be sufficient to constrain the solution space and 

could result in still incorrect intermediate predictions. Likewise, adding constraints without accurate 

mechanistic models may lead to inaccurate failure capacity prediction.  

To remedy both issues, Chapter 10 will develop a framework for decreasing mechanistic bias, 

and Chapter 11 will investigate how to incorporate sufficient constrain. Remedying these issues will 

allow for the creation of a model capable of accurately predicting crack shapes. 
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CHAPTER IX: INVESTIGATING DIFFERENCES IN MODEL PERFORMANCE 

While this implementation was not able to predict load-induced cracking accurately, it still may 

be useful in other scenarios. The Data-Driven Inclusion method’s usefulness has been investigated by 

other authors, but many other benefits have not yet been mentioned. (Vianna et al., 2020) was 

reviewed in a previous section and uses Data-Driven Inclusion to predict aircraft hardware distress 

by having neural networks predict hard-to-determine mechanisms. Rackauckas et al. (2020) applied 

Data-Driven Inclusion to differential-equation-mechanistic models across many scientific disciplines. 

Rackauckas implemented this method similarly to Vianna, adding “universal approximators” (neural 

networks) into differential equations to estimate entire mechanisms or closure terms, while the rest 

of the modeled system would be defined by well-established mechanistic relationships. This is 

explained as giving “structure” to the learned model, which reduces the data needed in training.  

These works usually emphasize how accurate relationships can be learned for mechanisms 

without a lot of data. What these works do not address are the following: 

• What is the best way to integrate machine learning and mechanistic models? This is a relatively 

new field of machine learning, and past works do not explore the possible combinations of 

these models. From this, it is unclear how to best implement them.  

• How do mechanistic relationships reduce required data? Incorporation of domain knowledge 

has been reported many times to reduce the amount of data required for generalization 

(Rackauckas et al. 2020; Schaeffer et al., 2018; Tipireddy et al., 2019), but an explanation for 

this phenomenon is not given. Often vague analogies are given like mechanistic models give 
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more “structure”. A better explanation for this data efficiency is given through the Hybrid 

Learning theory, but this theory has not been tested yet. 

• Is this method applicable to structural engineering? This is a question about the utility of hybrid 

modeling. This method uses machine learning to represent a mechanism, but traditionally, 

empirical methods have been used for a similar effect. Are hybrid methods more useful in 

structural engineering than mechanistic methods? This should investigate both shear capacity 

accuracy and interpretability. Interpretability plays a significant role in the usability of any 

developed model. In the previous studies, no discussion was provided on this topic. Will 

replacing these empiric methods that are considered interpretable with machine learning 

significantly affect the overall model’s interpretability?   

To investigate all these unconsidered questions, our hybrid implementations will be compared 

to the performance of the mechanistic and machine learning methods in predicting shear failure 

capacity in concrete beams without transverse reinforcement. The mechanistic model will be one 

proposed by (Cavagnis et al., 2018), employing the Critical Shear Crack Theory, and the data-driven 

model will be a neural network. Comparing our various implementations of the hybrid model will 

help to identify the best way to combine mechanistic and machine learning models. Comparing hybrid 

model performance with machine learning performance verifies the Hybrid Learning Theory and 

explains how incorporating mechanics increases data efficiency. Finally, comparing hybrid and 

mechanistic performance will determine if hybrid modeling is feasible for use in Structural Engineering.  
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The data-driven model uses a neural network architecture with a hyper-optimized structure. 

The network’s architecture information is provided in Table 9.1. The architecture was selected using 

a random search algorithm. Inputs are normalized before being used in the network. Each layer has a 

ReLU activation function, including the output layer since the output should be strictly positive. The 

Nadam training algorithm is used for its ability to avoid local minima. The loss function is composed 

of a simple mean squared error (MSE) function and an L2 regularization function. The network is 

trained using 10-fold cross-validation, keeping the model that achieves the lowest MSE on the 

validation set. Using 10-fold cross-validation ensures the resulting model is not at a local minimum. 

Table 9.1: Plain Neural Network Configuration 

Layers Nodes Regularization Coefficient Learning Rate 

4 140 0.00029 0.0044 

 

The prediction accuracy of “connected”, “unconnected”, and “spread” hybrid models, the 

neural network, and the mechanistic model are compared on a test data set in Figure 9.1.  
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9.1(a): Mechanistic prediction results 

 

9.1(b): Machine Learning prediction results 

 

9.1(c): Connected prediction results 

 

9.1(d): Unconnected prediction results 

 

9.1(e): Spread prediction results 

Figure 9.1: Prediction Results  
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The number of trainable parameters used in each model is given in Table 9.2. While not an 

exact representation, the number of trainable parameters in a neural network is a great indicator of 

its model space complexity. 

Table 9.2: Trainable parameters 

Mechanism Crack 
Location 

Crack 
Length 

Crack 
Angle 

Crack 
Opening 

Aggregate 
Interlock 

Shear 
Capacity 

Total 

Neural 
Network 

60653 60653 

Connected 42663  42663 
Unconnected 461 51665  52040 
Spread 1707 1694 1864 1841 985  8091 

 

Optimal Model Configuration 

Upon examining the differences in hybrid model configurations, we can observe how to best 

combine mechanistic and machine learning models  

The Unconnected model performs the best. However, the spread model makes similarly 

accurate predictions with significantly fewer trainable parameters, indicating it may be a more efficient 

architecture. If all models are constrained to have equivalent numbers of trainable parameters to 

represent each mechanism (same model complexity), it can be seen that adding more residual 

connections results in a more efficient machine learning approach. The performance of an 

Unconnected model when it has the same number of parameters as the Spread model can be seen 

in Figure 9.2 It is important to note that while these constrained models have similar trainable 

parameters, the comparison could be skewed because the constrained models have not had their 

hyperparameters re-optimized. As such, the optimal layers-to-node ratio has not been determined. 



106 
 

However, because of the significant difference in prediction accuracy, hyperparameter tuning would 

likely not change this conclusion. Finally, a better spread model could be obtained by increasing its 

complexity. A more complex and more accurate model may have not been discovered due to the 

limited search range during hyperparameter tuning. 

 

Figure 9.2: Model Architecture Comparison with Equivalent Trainable Parameters 

Validation of Hybrid Learning Theory 

The hybrid models outperform the neural network by a larger margin for reasons explained 

in the hybrid learning theory. Because the neural network must represent a more complex system 

with the same amount of data, it will have greater error from variance. To validate the concept of 

data efficiency explained by the hybrid learning theory, the neural network’s performance is compared 

to the spread model’s while having similar model space complexity (number of trainable parameters). 

This will better highlight how the error from variance changes with data set size. By being limited, the 

neural network will not be able to represent its system adequately (having greater bias) but should 

have low error from variance due to the low number of trainable parameters. Figure 9.3 shows the 

comparison for varying sizes of training sets. Performance is still comparable between the models for 
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large data set sizes, but as the size decreases, the performance of the neural network reduces 

significantly. 

 

Figure 9.3: Data Efficiency of Data-Driven Inclusion 

The mechanistic bias can play a significant role in the effectiveness of mechanistic knowledge 

to reduce a learned model’s complexity, and in some cases, can even reverse this relationship if any 

mechanistic error is significant. For example, the Critical Shear Crack Theory is unable to predict 

arching action for deep beams because of the constitutive relationship it uses for the shear strength 

in uncracked concrete, which is the dominating component in deep beams. In this case, adding this 

mechanism for predictions on deep beams will actually increase the complexity of the model space. 

Figure 9.4 shows this a hybrid model’s predictions when deep beams are included in training and 

testing data.  
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Figure 9.4: Adverse effects of mechanistic bias 

From these observations, we can verify the Hybrid Learning theory and also identify an extra 

property of it: when mechanistic bias is too significant, the data efficiency effect is actually reversed. 

The Hybrid Learning theory provides a simple explanation for the data efficiency that mechanistic 

relationships provide. The data efficiency is best described as “targeted” learning on shear capacity 

mechanisms. Instead of machine learning needing to learn all the mechanisms of shear failure, it only 

“targets” the few it was assigned to. This decreases the hybrid model’s out-of-sample prediction error 

from variance while keeping the error from bias constant. Hybrid models can produce marginally 

higher accuracy for larger data sets, or significantly higher accuracy for small data sets.  

Use in Structural Engineering 

The accuracy and interpretability of the hybrid model will be compared to the mechanistic 

model to determine hybrid model usability in Structural Engineering.  

The hybrid model outperforms the mechanistic model, showing that machine learning is more 

able to represent the complexities of shear capacity predictions. Given the already-high accuracy of 

the mechanistic model, this represents a substantial increase in modeling flexibility from using hybrid 

methods. 
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Another benefit of hybrid models, as illustrated in Chapter 8, is they have interpretability. 

Through this interpretability, we were able to realize that the machine learning models were not 

respecting underlying mechanisms. Even though not accurately representing the mechanisms of shear 

failure is a problem for the current model’s use in Structural Engineering, its interpretability does show 

promise for the method in future applications when the problems identified in Chapter 8 are resolved. 

In this case, the interpretability of the hybrid model will be more robust than that of mechanistic 

models, where the mathematical form of mechanistic models can often lead to the misinterpretation 

of underlying mechanisms. Using hybrid methods also fixes the interpretability problems of machine 

learning while providing the flexibility associated with machine learning. 

This method can be useful in Structural Engineering in terms of increasing accuracy and 

robustness of interpretability. The hybrid model makes more accurate predictions than the 

mechanistic and machine learning model. Additionally, the hybrid model is more interpretable than 

machine learning models and has more robust interpretability than mechanistic models.  
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CHAPTER X: THE BASIS OF MODEL IMPROVEMENT 

To predict load-induced cracking in concrete beams without transverse reinforcement, 

modifications will need to be made to previously used mechanistic and machine learning models. In 

previous implementations, the failure (or critical shear crack) surface was represented by a bilinear 

crack. From the reviewed experimental programs, however, it is evident that multiple cracks, not just 

one bilinear crack, must be considered to adequately predict cracked surfaces and the failure surface. 

In the analysis of the previous hybrid model’s predictions, the mechanistic bias decreased the accuracy 

of the crack shape, crack kinematics, and aggregate interlock predictions, and insufficient constraint 

allowed for multiple solutions to satisfy the failure capacity of the concrete beam. For accurate 

prediction of load-induced cracking, multiple cracks, accurate constitutive models, and proper 

constraint on learning will be needed. This section will develop a framework: (1) that predicts load-

induced cracking for multiple cracks and (2) that has mechanistic models with low bias. We will save 

the investigation of sufficient constrain for Chapter 11, as it is a more complex topic. 

Consideration of multiple cracks 

Multiple cracks must be considered to accurately determine the failure state of concrete 

beams without shear reinforcement for two reasons: 

1. Slender beams always fail after adjacent cracks merge and disrupt each other’s 

kinematics (Cavagnis et al. 2015). 

2. Strains in uncracked portions cannot be related to crack openings unless multiple 

cracks and multiple strain states are considered (Cavagnis et al. 2018). 
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To better define how crack merging causes failure, we will define two types of cracks, the 

critical crack and the failure crack. The critical crack is one whose degradation of internal shear-

resisting mechanisms causes failure, while the failure crack is where the beam ultimately separates 

during failure. Sometimes these cracks are the same, and sometimes there is no critical crack, and the 

reason why models solely using a critical crack approach misrepresents the underlying mechanisms of 

failure is that there isn't always a critical crack. Sometimes cracks merge early during loading, and what 

was once considered the critical crack must be re-defined to consider the crack that merged with it. 

Loading then continues until the merged crack’s internal force degrades and the beam fails. When 

adjacent cracks merge, the beam either continues to resist shear capacity, creating a new critical crack 

to analyze, or the beam begins to fail. The Critical Shear Crack Theory or any model that employs a 

single crack with simple geometry should then represent this crack to accurately represent underlying 

mechanisms. However, when cracks merge later in failure, failure occurs rapidly and there is no 

degradation of internal forces. In this case, there is no critical crack, and the merged crack only 

represents a failure crack (Cavagnis et al., 2017). In this case, a single crack is not sufficient to accurately 

describe underlying mechanisms. Because of this, a multi-crack approach must be used. 

Additionally, the main reason the Critical Shear Crack Theory, or other models like it (Reineck, 

1991), cannot robustly represent failure is that they were never meant to accurately represent the 

cracking occurring in a failing beam (Classen, 2020). Rather, they are models that were developed to 

apply the well-known constitutive models (e.g. Aggregate Interlock, Tension Softening), developed 

independently from beam analysis, and provide a reasonable mechanistic interpretation of the 

problem (Reineck, 1991). 
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Considering multiple cracks is also important for relating strains in the uncracked region to 

crack openings in the cracked region. To relate strains in the uncracked region to crack openings in 

the cracked region of the beam, the strains must be applied to a distance along the beam’s length, and 

if that distance covers other cracks along the beam’s length, the calculated displacement must be 

attributed to all crack openings for affected cracks. Cavagnis et al. (2018) illustrate this by saying the 

crack opening only increases linearly with depth when considering all the crack openings in a tributary 

area. The strains across an arbitrary length of the beam will be distributed to the cracks in that same 

portion, so without knowledge of the surrounding cracks, this distribution would be difficult to 

determine. Additionally, considering that the crack’s kinematics will determine the capacity of the 

beam, determining this distribution is crucial. Figure 10.1 shows the benefits of predicting multiple 

cracks. 

 

Figure 10.1: The effect of predicting multiple cracks and warping caused by shear stresses. 
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Model framework 

An adequate framework will need to be developed to coordinate the predictions of multiple 

cracks and apply constitutive models appropriately. The single cracked-section analysis used in the 

Critical Shear Crack Theory and Shear Crack Propagation Theory will not be suitable when predicting 

multiple cracks, especially considering the delamination and aggregate interlock cracks that nucleate 

from primary cracks. A very generalizable framework for automatically analyzing the states of an entire 

beam is the finite element method.  

The prediction of load-induced cracking would benefit from the finite element method but 

would bring significant challenges in hybridizing the model too. A highly discretized method of analysis 

would allow for multiple cracks to be considered and for a more refined application of constitutive 

models, but the finite element implementation would have to be re-programmed to be amenable to 

automatic differentiation and the other constraints of the TensorFlow library. Even in the case the 

implementation works, the computational expense may be substantial. 

While it may be difficult to use a finite element framework, a similar framework might be 

implemented that still takes advantage of the discretization used in the finite element framework.  

Making larger, simple elements, a finite “tooth” method can be developed, where the teeth 

are defined by the cracks that develop on either side of it. This would be like Kani’s (1964) model for 

predicting tooth failure but would include all teeth developed along the beam. The tooth geometry 

would be more complex as well. In the finite element method, elements are deformable bodies. These 

bodies are equilibrated to form the constraints of the element’s deformation, then compatible 

deformations are solved (Reddy, 2019). A similar approach can be taken with each tooth and the 
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uncracked portion above them being the elements. The elements do not need to be too complex, as 

the deformations occurring in the actual beam only consist of cantilever action bending teeth and 

beam action in the uncracked portion. However, the beam action in the uncracked portions may be 

more complex than initially assumed, as discussed in a later section. This significantly-less-flexible 

implementation of the finite element method would allow for its hybridization. A finite teeth method 

provides an adequate framework for evaluating the states of each tooth and uncracked region. Upon 

evaluating these states, the elements can be updated to acknowledge crack propagation. However, 

their need for simple, uniform crack distribution would limit its accuracy for modeling the true cracking 

behavior. The cracks idealized in many proposed models (Reineck 1991; Cavagnis et al. 2018; Kani, 

1964) would suit this framework, but these cracks do not include delamination cracks, secondary 

cracks, or aggregate interlock cracks. Additionally, many failure cracks represent S shapes, as a 

combination of secondary and delamination cracks (Cavagnis et al., 2015). S-shaped cracks would not 

be suitable for this framework.  

Alternatively, a finite crack method might be developed to better account for the complexities 

of crack development while still allowing for discretized application of constitutive models. This 

approach would improve the Shear Crack Propagation Theory to include multiple cracks and the 

cracks that branch from the primary cracks. Ensuring forces in the crack are in equilibrium and 

accounting for the deformation of concrete “teeth” would be much more difficult in this approach, 

however, because of the complex geometry that results. 
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Figure 10.2 compares the frameworks, showing that delamination and aggregate interlock 

cracks would be difficult to model for the finite tooth framework and computing equilibrium would 

be difficult for the finite crack framework. 

 

Figure 10.2: Crack analysis frameworks 

Machine Learning Prediction of Crack Shapes 

Assuming the constitutive models used in this new implementation contain low mechanistic 

bias, only load-induced cracking should be predicted by machine learning. This will keep the 

relationships learned by data simpler than if constitutive models needed to be learned too. How the 

machine learning model predicts cracking must be considered, however, as there are many strategies.   

Any new implementation must predict multiple cracks as opposed to our previous 

implementation which predicted one crack with two segments. The best approach for this is to model 

a crack propagation mechanism instead of a load-induced cracking mechanism. By doing this, the 
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machine learning model can predict the propagation of cracks at each load step instead of predicting 

all the crack segments that will develop at once.  

It would be unfeasible for us to predict a finite amount of crack segments because the outputs 

of a neural network are fixed and the number of cracks occurring in the beam is unknown. 

Constraining the number of crack segments predicted to a fixed number would add significant bias. 

Additionally, hundreds of crack segments develop during loading. Predicting all of these would result 

in an extremely complex model.  

By predicting crack propagation, Long Short Term Memory (LSTM) models can be used 

instead of neural networks, which can predict as many crack propagations as there are load steps. 

This makes the LSTM able to predict all the segments of a crack. Certainly, multiple cracks would need 

to propagate at once, and the number of cracks that need to propagate cannot be determined in 

advance. This leaves us with the same issue we previously had: an unknown number of machine 

learning models are needed. However, this problem can be solved by only using one LSTM and using 

very small load increments. By making the load increment steps very small, you could account for 

more crack propagations being needed that are set to predict from the LSTM. For example, if the 

LSTM is set to predict the propagation of one crack and a load increment causes the need for two 

propagations, the first prediction can handle one propagation. Then on the next load step, the next 

prediction from the LSTM will predict the other required propagation, this works assuming no other 

propagations need to occur in the second load step. Hence, this approach crucially depends on the 

small load increments. 
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This method can be extended by considering different types of cracks that will propagate 

under different criteria. Doweling action causes delamination cracks whereas increased moment and 

cantilever action causes the propagation of primary cracks. From this, it would be beneficial to have 

separate LSTMs for each crack type instead of one LSTM predicting all types of crack propagation so 

that each LSTM can specialize on its own propagation criterion.  

Having one or a few LSTM cells predicting multiple cracks on a beam would require the 

following additional constraints on their implementation: 

• They must be able to not predict crack propagations if it is not necessary and;  

• They must predict crack segments that are spatially oriented to one another and 

associated with the crack proceeding them. 

Having the LSTM cell predict no cracks for a load step is especially important at the beginning 

of loading, where the loading is still elastic and no propagation has occurred but would also be relevant 

for specialized LSTM cells whose cracks only develop later in loading. The LSTM would need to halt 

a prediction such that no propagation is added to the cracked state of the beam. This can be achieved 

by predicting a signal along with the propagation information. This signal can be an arbitrary value, 

such as one or zero, indicating propagation or not, but to provide a physical sense of the signal, it 

could be the length of the crack. If the length is positive, then propagation occurs, and if it is negative, 

it doesn’t. 

We must also determine a system for identifying which existing cracks LSTM propagation 

predictions should be attributed to. Additionally, once that problem is solved, how will we determine 

the spatial orientation of existing cracks (which is closer to the application of load and which cracks 
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have merged)? Spatial orientation will be crucial for determining cantilever action effects and predicting 

failure. One simple method is to predict a crack id along with the coordinates and length, and the 

propagated crack gets matched to the crack with the closest id. Matching cracks can be grouped in 

mutable objects, and once grouped, can be ordered in another mutable object. Additionally, we can 

add a condition to check for intersecting propagations, and the two crack objects can be merged.  

Figure 10.3 shows this prediction framework, equilibrium is solved after every propagation. 

 

Figure 10.3: Crack prediction framework 

Low Bias Mechanistic Models 

To have a low mechanistic bias in machine learning predictions, the mechanistic models used 

in the Data-Driven Inclusion method need to accurately represent underlying mechanisms. Many 

mechanisms have been identified to contribute to shear failure, like aggregate interlock and residual 

tensile strength, but many others have not been identified throughout, such as how cantilever action 

affects the strain states in the uncracked region of the beam. For these less studied mechanisms, this 

section will rationalize how to best represent them, and for well-defined mechanisms, models will be 



119 
 

identified that represent test data well. First, we will discuss how to represent strains in the uncracked 

region and how they relate to crack openings. Then, we will discuss how to consider the microcracked 

region and propagation criterion. Finally, we will identify mechanistic models that represent underlying 

mechanisms well. 

Kinematic Hypothesis 

The kinematic hypothesis (strain distribution) is the most difficult portion to select, as the 

strains occurring in the uncracked region are not apparent, as the stress distributions from the cracked 

and toothed region will likely affect it significantly. Determining this hypothesis is crucial to representing 

the stresses in this region and relating the strains in the uncracked region to crack openings in the 

cracked region. 

We will use elementary beam theory to begin our analysis of an appropriate kinematic 

hypothesis. From beam theory (Beer et al., 2015), the cross-section of an elastic beam warps due to 

applied shear force to look like an “s” shape. In the section analysis, the extent of warping must be 

determined if the strains in the cross-section are to be accurately related to the crack openings. This 

warping for an elastic beam is shown in Figure 10.1. 

Euler Bernoulli beam theory and Timoshenko beam theory handle shear deformation 

differently (Beer et al., 2015).  

Euler Bernoulli beam theory (Beer et al., 2015) considers the plane section to remain plane, 

and section rotation is only affected by the moment that is applied, so shear stress doesn’t cause any 

additional warping strain. This theory can be used without significant error because, in slender beams, 

the displacement and strain from cross-section warping are much less significant than the strain from 
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bending. This can be easily realized in the force-moment relationship of beam equilibrium. If the force 

is applied very far away from the section of the analysis, then the moment will be high compared to 

internal shear forces. This is the case for a midspan section of a simply supported beam loaded with 

a point load at its midspan. However, at the support of this beam, shear strains and warping account 

for most of the strain in the cross-section since the moment is negligible in these sections.  

In Timoshenko beam theory (Timoshenko, 1921), an additional rotation is applied to account 

for the warping of shear stresses, but they do not use a warped “s” shape to represent this. Instead, 

a plane is still used, but the plane is oriented to match the warped section sufficiently.  

However, these considerations do not account for the non-linearity in concrete stress-strain 

relationships or the additional forces applied to the uncracked region from the cracked region. 

Concrete softens as it nears its peak capacity, especially when considering biaxial loading (Kupfer and 

Gerstle, 1973). If loads cause stress to enter the non-linear region, the strain distribution of the 

uncracked section would become non-linear, altering the kinematics in the crack portion of the beam.  

If the uncracked region is considered to be a separate beam then forces from the cracked 

region can just be applied as if it were an external force. To further illustrate this behavior, the concrete 

teeth can be considered shear connectors, making a composite section between the reinforcement 

and uncracked section. This indicates how the cracked sections affect the uncracked sections, as the 

presence of the teeth will alter the uncracked section’s strain distribution based on the shear 

transferred from the teeth to the uncracked section. 

Still many models consider strains to vary linearly through the depth of the cross-section and 

do not consider effects from warping, potentially affecting the kinematic model imposed on the crack 
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opening. As the depth of the uncracked region decreases, however, it becomes more slender, thus 

the shear deformation can be considered negligible to the flexural deformation. So, a linear strain 

distribution should not introduce significant error. Still, the forces from the uncracked region should 

be considered when determining strain distributions. To do this, Classen (2020) makes the shear 

stresses non-zero at the crack tip.  

Without an in-depth study on the strain distribution present in cracked beams, a simple linear 

strain distribution and linear uni-axial stress-strain response must be assumed. Additionally, a non-zero 

shear stress on the bottom of the uncracked region should be assumed. 

The relationship between the crack kinematics and strains in the uncracked region depends 

on determining a center of rotation compatible with both. If the center of rotation for the crack is 

assumed to be the neutral axis of the beam, which aligns with the kinematics of the uncracked region, 

then sliding will occur in the uppermost portions of the crack, which is not consistent with 

experimental results. Instead of obeying this relationship caused by the center of rotation, mechanistic 

models often set the sliding values for the uppermost cracks to zero, causing a discontinuity in the 

kinematic relationships. If the center of rotation is placed at the crack tip, then no sliding occurs in the 

upper regions of the crack, but the kinematics of the uncracked region are inconsistent. These 

discontinuities could be avoided by choosing a center of rotation that causes no sliding in the upper 

cracks and obeys the kinematics of the uncracked region, but no mechanism has been identified to 

explain a center of rotation like this. 

  



122 
 

Propagation Model and Residual Tensile Strength 

Fracture mechanics are crucial because they will ultimately determine the crack shapes, which 

ultimately determine beam capacity. Fracture mechanics will also determine the decay of internal 

forces along the crack (residual tensile strength).  

Concrete’s force-displacement relationship can be considered linear-brittle on very large scales 

(the scale of a building) or on very small scales (smaller than aggregate size), and linear-brittle 

relationships do not need to consider fracture mechanics much. However, on an intermediate scale, 

the scale of structural members, the relationship is much different due to the development of 

microcracks (Reinhardt et al., 1986). 

Discrete crack and crack band approaches are used to model the force-displacement 

relationship of the micro-cracked region.  

To understand the difference in these approaches, the distinction between visible cracks and 

microcracks must be understood. Visible cracks are, of course, visible and make one continuous 

segment, and microcracks are dispersed chaotically above the visible crack, not making a continuous 

segment, that is, until propagation increases further and the micro-cracks connect. This distinction is 

shown in Figure 10.4.  

 

Figure 10.4: Distinction between visible cracks and micro-cracks 
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The discrete crack simplifies these visible and micro-cracks with one fictitious crack. Since the 

micro-cracks have a deteriorating force-displacement relationship, meaning they are allowing more 

displacement per force applied, the micro-cracked region can be summarized as a crack with a small 

opening but still retaining some resistance.  

To increase the computational efficiency of the discrete crack models in finite element analysis 

and remove the dependency on element size, Bazant and Gambarova (1980) developed the crack 

band approach. Instead of considering any visible cracks, cracked regions are replaced with elements 

having micro-cracks distributed throughout. The aggregation of cracked elements is the crack band.  

The discrete-crack approach is common among the mechanistic models currently considered, 

while the crack band approach is common in finite-element modeling. However, the crack band 

approach only considers Mode I fracture. This is fine for initial fracture, but in later stages of cracking, 

Mode II must be considered. The discrete crack approach allows for the kinematics to be represented 

easier, as the micro-cracked region is represented with crack openings instead of strain. However, this 

approach makes relating strains in the uncracked region to openings in the cracked region more 

difficult. In a more realistic model, the micro-cracked region serves as a transition between these types 

of displacements (crack openings and strain). The discrete-crack approach should be used in future 

implementations because of its representation of crack kinematics. 

The Kupfer fracture criterion should be used to determine crack propagation because it 

considers biaxial effects, and uniaxial fracture process zone models can be used without significant 

error (Kupfer and Gerstle, 1973). Realistically, the contribution from residual tensile strength would 

be less in biaxial loading than in uniaxial loading because the stiffness of concrete decays much faster 
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when tensile and compressive forces are applied biaxially. Using a uni-axial relationship instead will 

cause residual tensile strengths to be over-estimated, but since these forces only account for a small 

portion of the overall resistance, this simplification should not cause significant mechanistic bias. The 

tensile stress-strain relationship for tensile loading has a much different shape when compressive 

forces are applied in the other direction.  

Inter-Crack Constitutive Models 

Appropriate inter-crack resistance models are readily available, as many of their mechanisms 

have been studied in isolated experiments (e.g. aggregate interlock, doweling action, tension stiffening) 

(El-Arris, 2007).  

Cantilever action is best represented by an elastic, non-prismatic cantilever beam since the 

concrete “tooth’s” failure is determined by the tensile strength of the concrete and there is a very 

small plastic region for tensile stress (Reinhardt et al., 1986). While the elasticity of the analysis 

simplifies finding the cantilever action stress at the crack tip, the non-prismatic shape makes finding 

deformations of a tooth difficult, especially since the bounds of the tooth can change in an instant. For 

simple crack geometries, Classen’s (2020) approach can accurately account for the stresses occurring 

from cantilever action, but not the deformations. 

Many models (Ugala, 2003; Walraven, 1979; Walraven and Reinhart, 1981; Guidotti, 2010; 

Bazant and Gambarova, 1980; Cavagnis et al. 2018; Tirassa et al. 2020) have been developed for 

predicting aggregate interlock stresses (Koscak, 2022). By applying these models on experimentally 

obtained crack kinematics, Koscak (2022) identifies Walraven’s (1979) to be the most consistent. 

However, this model has a poor consideration of crack kinematics (Koscak, 2022; Cladera et al., 2013). 
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Ulaga’s (2003) model was derived from Walraven's while considering sliding and opening to occur at 

the same time, so this model can be implemented to have the least mechanistic bias.  

Tension stiffening, which was not considered in the Critical Shear Crack Theory, can be 

accurately represented with the model proposed by Bentz (2005). Bentz studied this effect for varying 

levels of bond, and the models they produced can be used in this. 

We can use the model proposed by (El-Ariss, 2007) for dowling action because it is derived 

from many mechanistic principles and corresponds well with test data on concrete beams without 

shear reinforcement.  

This model was made by incorporating several smaller models. The first was replicated from 

Friberg’s (1940) model to describe the deflection and slope of dowels in concrete pavement. 

Deflection in this model was very dependent on the stiffness of the concrete cover. The stiffness of 

this was estimated with Soroushian’s (1987) model. The relationship between deflection and strength 

decay was provided by Millard and Johnson (1984). Finally, a model for ultimate strength was used 

from (Dulacska, 1972). This model contains less mechanistic bias than the others because it considers 

deflections in the bonded region as well as in the cracked region. Taking into account all these factors 

makes for mechanistic consistency. This model also accurately represents the ductility present in the 

later stages of loading. 
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CHAPTER XI: CONSTRAINT EFFECTS 

In the previous implementation, erroneous machine learning predictions were caused by the 

crack shape not being constrained to the crack opening. This allowed the fracture process zone to 

contribute greater to the resistance than it actually should have, and as a result, the aggregate interlock 

contributed less than it should have. To have mechanistically consistent predictions from the machine 

learning models, they must be sufficiently constrained. In this section, we will illustrate the effect of 

constraint on learning. 

In hybrid modeling, sufficient constraint means a unique solution can be obtained for the 

predicted variables in terms of the mechanistic models and the data set. In linear algebra, the number 

of independent constraints must match the number of unknown variables for a unique solution to 

occur. If there are more constraints than variables, some of the constraints must be linearly dependent 

on the others for there to be a solution, and if there are too few constraints, then multiple solutions 

can occur. However, the relationships used in hybrid modeling are not linear. They are very non-

linear, so these rules do not apply. Given an equal amount of constraints and unknowns, there could 

be many possible solutions, no solutions, or a unique solution. For example, consider the system of 

equations of a second and first-order polynomial shown in Figure 11.1. Depending on the equations, 

there could be one solution, two solutions, or no solutions even though there are 2 equations and 

two unknown variables, x and y. 
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Figure 11.1: Solutions to non-linear systems of equations 

This hypothesis explains the phenomena observed in the previous hybrid implementation. In 

the mechanistic model proposed by Cavagnis et al. (2018) (the model the previous hybrid 

implementation was based on) the model used did not need to constrain predictions from their 

aggregate interlock and crack shape models because they were defined explicitly in terms of 

characteristics of the beam. These explicit relationships were developed outside of their model (crack 

shape was determined from images of cracked beams and the aggregate interlock model was modified 

from previous experiments), so you could say they were defined by external data. They did, however, 

need to constrain their kinematics. To do this, they solved for the crack opening (thus the crack 

kinematics) by iteratively computing the moment equilibrium of an elastic section, updating an assumed 

value; to extend the system of equation analogy, there was one unknown and one equation. By 

replacing the relationships for crack shape, crack kinematics, and aggregate interlock in the hybrid 

models with machine learning relationships, the explicit relationships and constraints used to solve for 

crack kinematics were taken away, leaving a system of equations with many more variables than 

constraints. This is fine if accurately representing the mechanics of the predicted variables is 
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unimportant, but if you want the separate machine learning predictions to observe some mechanistic 

principle you must constrain them sufficiently.  

When unconstrained, machine learning models can make infinitely many predictions that will 

result in the correct shear capacity, and only one of them will be mechanistically consistent. We cannot 

use the data to find that constraint relationship itself. Data and mechanics play different roles in 

constraining hybrid models. Data is used to constrain the learning algorithm, and mechanistic models 

constrain what is given to the learning algorithm. If multiple unknowns are being predicted their values 

must be constrained to each other so that the information from data can be appropriately allotted 

to each prediction. To accurately predict the cracks that develop due to loading, there must be a 

unique solution for them given the mechanics. For example, the crack opening, crack shape, and 

aggregate interlock were predicted in the previous implementation. The crack opening, crack shape, 

and aggregate interlock were tied to each other in that they must all be used to predict the total 

capacity of the beam. This means they were all constrained by the data. However, the crack shape, 

crack opening, and aggregate interlock were not constrained to each other. This allowed for multiple 

possible combinations of crack opening, crack shape, and aggregate interlock that would have satisfied 

the data constraint, so the machine learning model could not discover the mechanistically consistent 

crack shape.  

Finally, one way to prove the necessity of a unique solution is by considering the mechanistic 

models as being used to generate a synthetic data set instead of constraining the machine learning 

predictions. By generating a synthetic data set, the machine learning models can be trained directly as 

if they were ordinary machine learning models. The accuracy of this synthetic data set, however, 
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would depend on the mechanistic models that generated them. If multiple solutions are possible when 

generating the data set, then the information given for learning will not be consistent. 

One way to improve the previous implementation would be to re-introduce the constitutive 

models for aggregate interlock so that it is explicitly predicted, fix the location of the critical crack to 

the midpoint of the shear span, as is done in the mechanistic model, and determine crack opening 

from equilibrium. While these changes would add significant bias, they would further constrain the 

crack shape machine learning predictions. However, there are still four unknown variables, the lengths 

and angles of the two crack segments. Thus, there would still be variability in the crack shapes and 

angles. To provide a unique solution without any further constraints, the machine learning model 

would have to only predict one crack length or angle. This highlights further difficulties in predicting 

load-induced cracking instead of crack propagations. For crack propagations, a unique solution can be 

found for every load step, as there are significantly fewer unknowns.  

Testing the Effect of Constraint 

We now define an experiment to further explore the role of constraint in hybrid modeling 

and test our hypothesis on the requirements of unique solutions. This experiment will vary the amount 

of constraint to study its effects on mechanistic consistency, and will also implement other sources of 

looser constraint to study their effect. The Shear Crack Propagation Theory’s constraints will be used 

for this experiment because its mechanistic models predict crack propagation instead of crack shape 

at failure, so there will be fewer unknowns associated with the crack prediction. However, a solution 

could never be found in our implementation of the model, so solutions may only be possible when 

removing some constraints. 



130 
 

The level of constraint can be altered by adding or removing mechanistic constraints, but it 

can also be increased by adding less strict constraints like the Mechanistic Learning terms introduced 

in the previous implementation. If predictions are not sufficiently constrained, more constraints can 

be added even if they have a significant mechanistic bias or other, less strict constraints can be added 

to encourage a mechanistically consistent prediction. The less strict constraints are similar to how 

crack shapes were constrained within the boundaries of the beam in the previous hybrid 

implementation. If too many constraints are present so that no solution exists, constraints can be 

removed.  

To begin designing this experiment, the constraint of the Shear Crack Propagation Theory 

must be examined. In Classen (2020) the variables and constraints are presented plainly: four 

unknowns, being vertical tip stress, propagation angle, propagation height, and section rotation and 

three constraints, being derived from various equilibriums. However, the propagation height can be 

explicitly solved in terms of the other variables, reducing the number of variables to be equal to the 

constraints. Considering the number of solutions is unknown for a system of nonlinear constraints, 

any number of solutions or no solutions could result. So, unique solutions cannot be guaranteed just 

based on this information.  

Because the Shear Crack Propagation Theory is likely over-constrained, an extra unknown 

variable will be added in the control case for this experiment. In the original mechanistic model, beta 

is used to describe the angle of the previously propagated crack and to describe the principle stress 

plane at the tip of the crack. We can add an extra free variable by making the angle of the principle 

stress plane different from the previously propagated crack, essentially removing the constraint that 
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these two angles are the same. This is a realistic modification since the principle stress orientation will 

determine the angle of the next crack, which should not always be in the same direction as the 

previous crack. In this way, there will be four variables and three constraint equations. The four 

variables will be the vertical stress at the tip, the orientation of the principle stress plane at the crack 

tip, and the x and y position of the crack. Figure 11.2 shows the sources of constraint. Equilibrium 

constraints are from the moment equilibrium of a concrete tooth and the moment, shear, and 

horizontal equilibrium of a cracked section. The moment and shear equilibrium of a cracked section 

must be considered as the same constraint because applied shear forces are not considered explicitly 

in the Shear Crack Propagation Theory. 

 

Figure 11.2: Source of constraint for experiment 

We can first experiment with the equilibrium constraints, trying different combinations of 

them or only one of them at a time. If no constraints are considered, then the variables would 

essentially be random values. 

Additionally, three extra constraints can be added to loosely constrain the prediction of the 

cracks. The first two constraints make sure the crack stays within the bounds of the beam, and the 

third makes the angle of the crack decrease with every propagation. This is not realistic but simplifies 

the kinematics significantly. These constraints are shown in equations (98-100) 
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 0 = 𝑟𝑟𝑀𝑀𝑙𝑙𝑢𝑢(−𝑟𝑟𝑓𝑓) 
( 98) 

 0 = 𝑟𝑟𝑀𝑀𝑙𝑙𝑢𝑢(ℎ𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑘𝑘 − 𝑑𝑑) 
( 99) 

 0 = 𝑟𝑟𝑀𝑀𝑙𝑙𝑢𝑢(𝛽𝛽𝑖𝑖 − 𝛽𝛽𝑖𝑖−1) 
(100) 

Additionally, the cracks in this experiment will always propagate positively because the LSTM 

is restricted to positive predictions and it predicts crack increments instead of crack locations. This is 

another loose constraint, but instead of being applied through Mechanistic learning, it is applied 

explicitly in prediction. These constraints limit the number of solutions that can be found in an 

underconstrained system, but without mechanistic constraints, multiple solutions are still possible.  

Finally, other constraints besides equilibrium can be added or removed. First, we can reinstate 

the constraint on the principle angle by equating it to the previous crack’s angle. Then, other variables 

can be added by removing their constraints or explicit relationship. For example, stresses from 

cantilever action depend on the spacing of major cracks. In the shear crack propagation theory, the 

crack space is assumed empirically to be 70 percent of the beam depth. Instead of using this explicit 

relationship. The spacing between critical cracks can be added as an unknown variable.  

In Table 11.1. we show all the combinations of effects applied in this experiment. According 

to Classen (2020), Case 12 should be sufficiently constrained, but due to our implementation of the 

model, likely, case 12 is over-constrained, and the control case or case 8 would provide a sufficient 

constraint. 
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Table 11.1: Experiment setup for testing the effect of constraint 

Case Equilibrium Loose Constraints Mechanistic Models 
Σ𝑀𝑀  Σ𝑀𝑀Σ𝑉𝑉 Σ𝑅𝑅  (98) (99) (100) 𝛽𝛽𝑝𝑝𝑐𝑐𝑜𝑜𝑝𝑝 𝑠𝑠𝑐𝑐𝑐𝑐  

Control X X X X X X X  
1    X X X   
2         
3 X      X  
4 X X     X  
5 X X X    X  
6    X X X X  
7 X X X X X X X X 
8 X X X X X X  X 
9 X X X X X X   
10 X X X    X X 
11       X X 
12 X X X      
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CHAPTER XII: CONCLUSIONS AND FUTURE WORK 

Currently, there is no agreement on a model to predict shear failure in concrete beams. This 

is primarily because mechanistic models simplify and misrepresent failure mechanics to accurately 

predict shear capacity, and this compromises prediction robustness. Namely, the mechanics severely 

simplified in mechanistic models is load-induced cracking. Without an accurate representation of 

cracking, models predicting beam capacity will always lack robustness, only being able to predict for 

the limited cases it was developed on. Machine learning models have the flexibility to avoid 

simplifications but require significant data to accurately learn the mechanics. Hybrid modeling methods, 

which incorporate machine learning and mechanics have the best chance to create accurate, robust 

models for predicting shear capacity. 

This thesis implements hybrid machine learning-mechanistic methods to attempt to accurately 

model load-induced cracking in concrete beams without transverse reinforcement. While we were 

not able to achieve this goal in this thesis, we made substantial progress toward it.  

To make this progress, we followed the approach introduced in Chapter 5, which is given in 

detail now. 

First, several hybrid models were surveyed (approach step 1) to determine which could 

predict crack propagation best. Physics Informed Machine Learning, Physics Informed Neural 

Networks, and Physics Guided Machine learning are just a few names given to hybrid models 

developed in Civil Engineering. To determine which would best suit our problem, the models were 

categorized by functionality. 



135 
 

Next, the Shear Crack Propagation Theory and Critical Shear Crack Theory mechanistic 

models were evaluated for use in hybridization (approach step 2).  

From this, the Critical Shear Crack Theory mechanistic model and the Neural Network 

machine learning model were used in the Data-Driven Inclusion Method (approach step 3) to 

accurately predict load-induced cracking. This method allows for the critical crack shape to be learned 

from beam capacity datasets. Crack shape, kinematics, and aggregate interlock are replaced in the 

hybrid model because they contain too much mechanistic bias. 

The mechanistic consistency of the hybrid model’s predictions was then investigated in light 

of them not matching experimental crack shapes (approach step 4).  

Without any standard practices set for how to best combine machine learning and mechanistic 

models in the Data-Driven Inclusion Method, multiple versions were constructed varying the 

combinations. These varied combinations were compared, in terms of interpretability and accuracy, 

against each other and against mechanistic and machine learning models that constituted them 

(approach step 5).  

Additionally, two extra steps were taken because we were not able to fully complete step 

three, accurately predicting load-induced cracking. Poor performance is associated with the hybrid 

model not considering multiple cracks, not providing sufficient mechanistic constraint, and containing 

too much mechanistic bias. To remedy this, we developed a new implementation (approach step 6) 

that combines a finite crack framework with the Data-Driven Inclusion method. This new 

implementation allows for multiple cracks to be predicted and evaluated appropriately. Additionally, 

it includes mechanistic models with low bias. Finally, we evaluated what is needed for sufficient 
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constraint and designed an experiment to further investigate the role of constraint in making 

mechanistically accurate predictions (approach step 7). This experiment alters the level of constraint 

and evaluates the mechanistic consistency of predictions. It also experiments with alternate, looser 

types of constraints through Mechanistic Learning. 

Through these steps, we completed several objectives defined in the thesis proposal. 

Presented now are the main findings from the completed objectives. 

Hybrid modeling methods can be separated by how they incorporate mechanics and are best 

organized by functionality (how incorporating mechanics helps machine learning). This organization is 

more robust than the biases proposed by Karniadakis et al (2021). All benefits of hybrid modeling can 

be defined by the Hybrid Learning theory. Hybrid Learning theory makes two claims: (1) Whether it 

be by an increase in simulated data or by decreasing the complexity of the model space, hybrid 

modeling reduces the required data for learning, and (2) Inaccuracies in the mechanistic models 

(mechanistic bias) decrease the accuracy of the machine learning prediction and reverse the data 

efficiency so that more data is required. From an analysis of interpretability, we found hybrid models 

to be interpretable even though their mathematical form is not due to the “black box” effect. The 

interpretability of hybrid models is nonetheless equivalent to that of the mechanistic models, however, 

and can lead to more robust interpretations. From a comparison of machine learning and empirical 

models, we found hybrid models to be very similar to mechanistic models. Finally, we found neural 

networks to be the best machine learning model for hybrid methods because of their modularity. 

We found our hybrid model’s predictions to be mechanistically inconsistent because they 

contain too much mechanistic bias, were not properly constrained and did not represent multiple 
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cracks. Insufficient constraint caused bad predictions because crack shape and opening were predicted 

so that residual tensile strength was inaccurately high and the aggregate interlock contribution was 

not tied to shape or opening, so multiple  combinations of crack opening, crack shape, and aggregate 

interlock capacity could result in an accurate prediction of shear capacity. 

Hybrid models with the highest degree of residual connectivity were found to provide the 

most data efficiency. Increasing residual connectivity allows for more efficient representations of 

mechanics, requiring much fewer trainable parameters for the same accuracy. Hybrid models had 

greater accuracy than mechanistic and machine learning models when predicting shear capacity. 

Hybrid models outperform mechanistic ones because of their flexibility and machine learning ones 

because of the hybrid learning theory. We found that mechanistic bounding and mechanistic learning 

can be used simultaneously to further constrain predictions. We consider the hybrid model to have 

the same interpretability as the mechanistic model and more interpretability than the machine learning 

model. The interpretability of the hybrid model indicated that it did not represent shear failure 

mechanics well, and while our initial implementation would not be useful, the accuracy and 

interpretability of hybrid modeling show its promise for use in structural engineering. 

Due to the finite time available in this thesis, we were not able to accurately predict load-

induced cracking in concrete beams without shear reinforcement. In the future, we will take the 

following approach to complete this objective.  

First, we will implement the framework in Chapter 10 to remedy issues with mechanistic bias 

and not predicting multiple cracks. Then we will perform the experiment designed in Chapter 11 to 

determine the effect of constraint on learning. After constraint is sufficiently investigated, the new 
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model will be modified so that it is sufficiently constrained. In completing these steps, the new hybrid 

model will be able to predict load-induced cracking, and shear capacity can be robustly predicted for 

concrete beams without transverse reinforcement.  

Being able to robustly predict the shear capacity of concrete beams without transverse 

reinforcement will lead to improved efficiency in design and allow us to better understand the failure 

mechanics of concrete beams. Beam action is prevalent in walls, columns, and slabs, which make up 

the majority of concrete structures, so designing these structural members knowing their true shear 

capacity significantly reduces the amount of concrete used in construction, increasing the sustainability 

of our built environment. By comparing hybrid model predictions with crack shapes from experiments, 

we can determine mechanics that have not been identified in load-induced cracking or identify 

mechanics that have not been represented well in other portions of the model.  

After successfully implementing hybrid models to predict load-induced cracking and robustly 

predict shear capacity, hybrid methods can then be applied to columns, trusses, walls, or foundations 

made of other materials as well to model their complex mechanics better too. 
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GLOSSARY OF VARIABLES 

Latin 

𝑎𝑎 Shear span 
𝑎𝑎𝑐𝑐 Crack length in the fuselage 
𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 The distance along the shear span in which the critical shear crack occurs 
𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, … , 𝑓𝑓𝑖𝑖 Lengths of triangles 𝑎𝑎𝑏𝑏𝑀𝑀 and 𝑑𝑑𝑀𝑀𝑓𝑓 that are used to determine crack kinematics 
𝑏𝑏 Beam width 
𝑏𝑏𝑛𝑛 Effective beam width for doweling action 
𝑑𝑑 Beam depth 

𝑑𝑑𝐹𝐹 
Height of point F, which is defined by (Cavagnis, et al., 2018), from the flexural 
reinforcement. 

𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 Maximum aggregate size 
𝑑𝑑𝑣𝑣 Diameter of steel reinforcement 
𝑓𝑓𝑐𝑐 Concrete compressive strength 
𝑓𝑓𝑐𝑐𝑐𝑐 Tensile strength of concrete 
𝑓𝑓𝑖𝑖 ,𝛼𝛼𝑖𝑖 Arbitrary functions and their outputs, respectively 
ℎ𝐹𝐹 Distance from extreme compression fiber to the tip of a bilinear critical shear crack 
ℎ𝑑𝑑 The horizontal projection of the delamination crack near the critical crack 
ℎ𝑘𝑘 The horizontal projection of crack 𝑘𝑘 
𝑘𝑘 Calibration coefficient 

𝑘𝑘, 𝑀𝑀,𝑚𝑚 
the stiffness, damping coefficient, and mass of a single degree of freedom system, 
respectively 

𝑘𝑘𝑏𝑏 Calibration coefficient representing the effects of delamination 
𝑙𝑙 Crack length 
𝑙𝑙1 Opening radius for the tip of the vertical crack segment in a bilinear crack 
𝑙𝑙2 Opening radius for the root of the vertical crack segment in a bilinear crack 

𝑙𝑙3 
Opening radius corresponds to an opening in which no microcracks exist in the 
vertical crack segment in a bilinear crack 

𝑙𝑙𝐴𝐴 The length of the vertical crack segment in a bilinear crack 
𝑙𝑙𝐹𝐹 The length of the horizontal crack segment in a bilinear crack 

𝑙𝑙𝐹𝐹1 
Opening radius corresponds to an opening in which no microcracks exist in the 
horizontal crack segment in a bilinear crack 

𝑙𝑙𝑏𝑏 
Tributary area in which cracks affect the critical shear crack. Equivalently the 
distance from the flexural reinforcement to the elbow of a bilinear critical shear 
crack (point B) 

𝑙𝑙𝑖𝑖 Length of crack i 
𝑛𝑛, 𝑖𝑖 Iteration variables 
𝑛𝑛𝑚𝑚 Model space complexity 
𝑛𝑛𝑣𝑣 Number of steel reinforcement strands 
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𝑟𝑟𝐹𝐹 Distance from the application of load and the tip of a bilinear critical shear crack 
𝑟𝑟𝑜𝑜,𝑖𝑖 The opening radius for crack 𝑖𝑖 
𝑟𝑟𝑣𝑣,𝑖𝑖 The sliding radius for crack 𝑖𝑖 
𝑠𝑠 Depth of a concrete tooth in cantilever action 
𝑠𝑠𝑐𝑐𝑐𝑐 The spacing of critical cracks along the length of a concrete beam 
𝑢𝑢𝑎𝑎,𝑚𝑚𝑎𝑎𝑥𝑥 Crack width at failure at the level of flexural reinforcement 
𝑢𝑢𝑎𝑎 Horizontal crack opening at the level of reinforcement 
𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑖𝑖′,𝑢𝑢𝑖𝑖′′ Displacement, velocity, and acceleration at timestep 𝑖𝑖, respectively 
𝑣𝑣𝑎𝑎 Vertical crack opening at the level of reinforcement 
𝑤𝑤 Width of crack opening 
𝑤𝑤𝐴𝐴 The opening (Mode I) of the root of the vertical crack segment in a bilinear crack 

𝑤𝑤𝐴𝐴𝐹𝐹 
The opening (Mode I) of the root of the horizontal crack segment in a bilinear 
crack 

𝑤𝑤𝑐𝑐 Material property representing a crack width in which no microcracks exist 
𝑤𝑤𝑝𝑝 The weights (parameters) of a neural network 
𝑥𝑥0 Depth of the neutral axis 
𝑥𝑥1 Distance from crack tip to the neutral axis 
𝑦𝑦0,𝛽𝛽0 Initial crack height and inclination  

 
Capital Latin 
𝐶𝐶 The complexity of the modeled system 
𝐶𝐶 and 𝑚𝑚 material properties for fracture mechanics 
𝐶𝐶𝐵𝐵𝑑𝑑𝑜𝑜𝑑𝑑𝑝𝑝𝑐𝑐 A lower bound for machine learning crack length predictions 
𝐶𝐶𝐵𝐵𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐 An upper bound for machine learning crack length predictions 
𝐷𝐷 Size of the in-sample data set 
𝐸𝐸𝑏𝑏𝑖𝑖𝑎𝑎𝑣𝑣 Out-of-sample error from bias 
𝐸𝐸𝑐𝑐 Elastic modulus of concrete 
𝐸𝐸𝑣𝑣 The elastic modulus of steel 
𝐸𝐸𝑣𝑣 Elastic modulus of steel 
𝐸𝐸𝑣𝑣𝑎𝑎𝑐𝑐 Out-of-sample error from variance 
𝐹𝐹𝑐𝑐𝑐𝑐 Compressive force results in uncracked concrete 
𝐹𝐹𝑐𝑐𝑐𝑐 Tensile force resultant in uncracked concrete 
𝐹𝐹𝑝𝑝,𝑖𝑖 The exciting force of a single degree of freedom system at time step 𝑖𝑖 
𝐹𝐹𝑣𝑣 Tensile force in steel reinforcement 
𝐺𝐺𝑓𝑓 Fracture energy required to create a cracked surface 
𝑀𝑀 The moment resultant in a virtual section in a beam 

𝑀𝑀𝐶𝐶𝐶𝐶 
A critical moment that causes failure in either the concrete teeth or the remaining 
arch of a concrete beam 

𝑀𝑀𝐹𝐹𝐹𝐹 The flexural capacity of a concrete beam 
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 Shear resistance provided by aggregate interlock 
𝑉𝑉𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐 Shear resistance provided by the inclined compression zone 
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𝑉𝑉𝑑𝑑𝑎𝑎,0 Maximum possible shear resistance available from doweling action 
𝑉𝑉𝑑𝑑𝑜𝑜𝑑𝑑𝑝𝑝𝑑𝑑 Shear resistance provided by doweling action 
𝑉𝑉𝑐𝑐𝑝𝑝𝑣𝑣 Shear resistance provided by the residual tensile strength 
𝑉𝑉𝑣𝑣𝑣𝑣 The shear resultant in a virtual section of a beam 
𝑉𝑉 Total shear capacity of a concrete beam 
𝑋𝑋 Input variables for models 
𝑌𝑌 Output variables for models 
𝑌𝑌𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑 Predicted output variables for models 
𝑌𝑌𝑐𝑐𝑐𝑐𝑢𝑢𝑝𝑝 True output variables for models 

 
Greek 
𝛽𝛽 Crack inclination from the horizontal 
𝛽𝛽𝐴𝐴𝐴𝐴 Crack Inclination for the vertical crack segment in a bilinear crack 
𝛽𝛽𝐴𝐴𝐹𝐹 Crack Inclination for the horizontal crack segment in a bilinear crack 
𝛿𝛿 Sliding distance between two cracked faces 
𝛿𝛿𝑦𝑦 Vertical projection of crack propagation increment due to a load increment 
𝜖𝜖𝑐𝑐𝑐𝑐 Strain at the level of the crack tip 
𝜖𝜖𝑑𝑑 Strain in the delaminated portion of the tensile reinforcement 
𝜖𝜖𝑣𝑣 Steel strain 
𝜖𝜖𝑐𝑐𝑜𝑜𝑝𝑝 Strain in the extreme compression fiber of the beam 
𝜖𝜖𝑐𝑐𝑣𝑣 Steel strain in non-delaminated portions of the beam subject to tension stiffening 
θ A property or prediction of a machine learning model 
𝜆𝜆 Strength parameter 
𝜌𝜌 Tensile reinforcement ratio 
𝜎𝜎1,𝜎𝜎2 Primary and secondary principal stresses 
𝜎𝜎𝑌𝑌 Reinforcement yield strength 
𝜎𝜎𝑎𝑎𝑖𝑖 , 𝜏𝜏𝑎𝑎𝑖𝑖 Normal and shear stress from aggregate interlock 
𝜎𝜎𝑓𝑓𝑝𝑝𝑧𝑧 Normal stress in fracture process zone 
𝜎𝜎𝑣𝑣 Stress in tensile reinforcement 
𝜎𝜎𝑥𝑥0 Normal stress at the crack tip on a plane oriented vertically 
𝜎𝜎𝑧𝑧0 Normal stress at the crack tip on a plane oriented horizontally 
𝜏𝜏0 Shear stress at the crack tip on a plane oriented vertically 
𝜙𝜙  Cracked section rotation 
𝜉𝜉 Variable between 0 and 1 representing the location of a point along a crack 
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Capital Greek 
Δ𝐾𝐾𝑐𝑐 stress intensity factor 
Δ𝐹𝐹𝑣𝑣 Increase in tensile force in steel reinforcement due to beam action 
Φ Trainable parameters of a regressor 

 
Functions 
𝑀𝑀𝑙𝑙𝑢𝑢( ) The exponential linear unit function 
𝐿𝐿( ) A loss function 
𝑀𝑀𝐿𝐿( ) A machine learning model 
𝑀𝑀𝑀𝑀𝑀𝑀ℎ( ) A mechanistic model 
𝑅𝑅𝑅𝑅( ) A neural network 
𝑅𝑅( ) A Regularization Function 
𝑟𝑟𝑀𝑀𝑙𝑙𝑢𝑢( ) The rectified linear unit function 
𝜎𝜎( ) The Sigmoid Function 
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