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ABSTRACT

This study investigates the applications of machine learning (ML) to weather and climate mod-

eling. We first show the potential for data-driven weather prediction by creating a low resolution,

ML-based global atmospheric model that predicts the 3-dimensional atmosphere in the same for-

mat as a physic-based numerical model. The ML-only atmospheric model is stable during 21-day

forecasts and can reproduce large-scale atmospheric dynamics (e.g. Rossby waves). The ML-only

model is able to outperform persistence and climatology for the first three forecast days in the

midlatitudes. When compared to a simplified atmospheric general circulation model (AGCM), the

ML-only model performs best for variables most heavily influenced by parameterizations in the

AGCM (e.g. low level specific humidity).

Next, we combine a parallel, machine learning algorithm with a coarse resolution AGCM

(SPEEDY) to create a hybrid atmospheric model. The hybrid model produces more accurate fore-

casts for all variables for at least the first 7 forecast days when compared to the host AGCM. Appli-

cations of the hybrid model for climate research are explored with a 11-year free run. The hybrid

model is free of instability and can simulate the past climate with substantially smaller systematic

errors and more realistic variability than the host AGCM.

Lastly, we show potential of ML for Earth System modeling by dynamically coupling a hybrid

atmospheric model and a ML-based ocean model trained to predict the sea surface temperature

(SST). The ML-only ocean model is able to reproduce SST dynamics with minimal biases for

the past and present climate. The coupled model can simulate long-term variability in both the

atmosphere and ocean (e.g. El Niño–Southern Oscillation). During a 70-year free run, we find that

the coupled model does not exhibit climate drift and able to conserve total atmospheric mass and

water vapor mass.
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AGCM atmospheric general circulation model
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1. INTRODUCTION

For the last several decades, numerical weather prediction (NWP) has been backbone of op-

erational weather prediction (e.g., Lynch 2006; Harper 2008). NWP models rely on numerically

solving the discretized physic-based governing equations to evolve a finite-resolution prediction

of the atmospheric state in space and time. Many important atmospheric processes occur at scales

(e.g. cloud microphysics) too small to be resolved directly by the dynamical core of the model. The

cumulative effects of these processes have to be parameterized. The parameterization schemes are

imperfect and typically make theoretical or empirical considerations (e.g., Stensrud 2007; Haupt

et al. 2008). They also are computationally expensive and take up a significant fraction of the com-

putations in a modern NWP model. The initial conditions of the numerical model solutions are

observation-based estimates (analyses) of the state of the atmosphere, and the computational pro-

cess that produces these estimates is called data assimilation (e.g., Szunyogh 2014). The advances

in modeling and data assimilation techniques, alongside with the increase of computing power and

the number of observations available for assimilation, led to a “quiet revolution of NWP” (Bauer

et al. 2015).

During this same period, there was a significant amount of research into improved numerical

modeling of the general circulation of the atmosphere. Atmospheric general circulation models

(AGCMs) quickly became an important tool to study climate change and anticipate likely changes

to the climate in the future (e.g., Lynch 2008). AGCMs are now just one component of the state-of-

the-art climate models and are fully coupled to other Earth system components such as the ocean,

sea-ice, and the land surface (e.g., Golaz et al. 2019; Danabasoglu et al. 2020). These climate

models provide crucial information for the Intergovernmental Panel on Climate Change (IPCC) to

make projections and recommendations in their Assessment Reports (Arias et al. 2021). However,

state-of-the-art climate models still have large systematic biases when compared to observations

of the present climate (Flato et al. 2014). Reducing these biases remains a great challenge for

researchers and leads to uncertainty in climates projections. Zhu et al. (2020) found that the latest
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version of the Coupled Model Intercomparison Project version 6 (CMIP6) has a cold bias in the

North Pacific ocean and Li et al. (2019) found a relationship between an equatorial cold bias in the

ocean and the underestimation of precipitation in the Northwest Pacific for the climate models in

CIMP5. Bias correction methods and post processing (e.g., Ivanov et al. 2018; Vaittinada Ayar et al.

2021) are tools aimed to reduce these biases in climate model output before being used, however,

even the practice of bias correction remains controversial (Chen et al. 2021).

Machine learning (ML) is a powerful tool with the ability to perform a wide variety of tasks

including natural language processing, image classification, computer vision, and time-series pre-

diction (e.g., LeCun et al. 2015; Sarker 2021). Recently, there has been strong interest to leverage

the power of ML for Earth sciences, with data-driven approaches having been successfully applied

to a number of problems ranging from satellite estimation of tropical cyclone intensity to severe

weather prediction (Pradhan et al. 2018; Lagerquist et al. 2020; Flora et al. 2021). A particularly

promising application of machine learning is improving weather forecasts and climate simulations.

Machine learning, specifically neural networks (NNs), have been applied to climate model down-

scaling and postprocessing (e.g., Rasp and Lerch 2018), nonlinear weighting of ensembles (e.g.,

Campos et al. 2019), and quantifying forecast uncertainty (e.g., Scher and Messori 2018). How-

ever, these applications of ML are done outside of the numerical model. The incorporation of ML

techniques into the numerical model is a potential avenue to further forecast accuracy gains and

bias reduction in climate simulations by extracting additional information from observations.

The earliest applications of ML to atmospheric modeling focused on improving the computa-

tional efficiency of the physics-based numerical models (e.g., Krasnopolsky and Chevallier 2003;

Krasnopolsky et al. 2005; Krasnopolsky and Fox-Rabinovitz 2006; Krasnopolsky 2013). These ap-

plications employed neural networks to emulate the computationally most expensive physics-based

parameterization schemes at a reduced computational cost. Many of these first emulators focused

on radiative transfer schemes (Chevallier et al. 2000; Krasnopolsky and Chevallier 2003). The neu-

ral network based emulator of Chevallier et al. (2000) called ”NeuralFlux” was so successful that

it was quickly implemented into operational data assimilation (Haupt et al. 2008). The term hybrid
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model was first used in reference to models using this technique. One approach employed by this

type of hybrid models was to use a single neural network to emulate the combined effect of multi-

ple parameterized processes, such as cumulus convection, radiation, boundary layer transport, etc.

(e.g., Krasnopolsky et al. 2010; Krasnopolsky 2013; Brenowitz and Bretherton 2018, 2019; Rasp

et al. 2018). In these applications, the ML model components were often trained on data produced

by model simulations at higher resolutions, or with more sophisticated physical parameterization

schemes.

Another type of ML-based parameterization scheme (e.g., Gentine et al. 2018; Rasp et al. 2018;

Chattopadhyay et al. 2020), is trained on observations or observations-based reanalyses. Such a

scheme has the potential to learn about the effects of processes that the higher resolution and more

sophisticated model simulations are still unable to capture. ML techniques have also been consid-

ered for the estimation of the free parameters of physics-based parameterization schemes (Schnei-

der et al. 2017). This approach takes advantage of the knowledge built into the parameterization

schemes, but may suffer from the assumptions and approximations made by the schemes.

Numerical stability and climate drift is one of the biggest concerns with the hybrid models,

because typically the training of the ML-based parameterization schemes are done in a manner

that does not guarantee stability (trained “offline” to only to predict one-time-step into the future)

when the hybrid model is run for a long periods of time (Rasp 2020). To reduce instability and

climate drift, Brenowitz and Bretherton (2018) used a multi-time-step cost function and Yuval and

O’Gorman (2020) used a ML architecture that conserved energy. However, both of those studies

used an idealized atmospheric model on an aqua-planet and integrating the methods they proposed

into complex GCMs is still a challenge. Another interesting approach that may help tackle climate

drift and allow for hybrid models to be used for nonstationary climate simulations, is the scaling of

input variables in such a way so they are climate invariant (Beucler et al. 2021).

There has also been research into purely data-driven methods for weather prediction. One of

the first studies to investigate this problem was Dueben and Bauer (2018), who trained NNs using

reanalyses to predict a single variable (500-hPa geopotential height) at very coarse resolution, but
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with limited success. They, however, correctly outlined some of the difficulties that would be faced

in making a more complex data-driven weather model, including model/algorithm design, length

and quality of training data, and whether to use global or local ML operations. Subsequent stud-

ies (e.g., Weyn et al. 2019, 2020; Rasp and Thuerey 2021) quickly increased the complexity and

resolution of the ML-only models to predict a select number of 2-dimensional atmospheric state

variables. Scher and Messori (2018, 2019) trained their models to predict the three-dimensional

multivariate atmosphere, but they did the training on low resolution GCM simulation data instead of

observation-based reanalysis. More recently, Pathak et al. (2022) used state-of-art ML techniques

with a vast amount of reanalyses training data and computational resources to train a data-driven

model to predict the three-dimensional multivariate atmosphere at 0.25◦×0.25◦ horizontal resolu-

tion. Their preliminary results suggest that data-driven models are approaching the resolution and

forecast skill of operational NWP models in the day 3 forecast range.

One important feature of a purely data-driven model is that once it has been trained, the compu-

tational efficiency of themodel can be orders of magnitude faster than that of a traditional numerical

model. Taking advantage of this feature, Weyn et al. (2021) developed a ML-only based ensem-

ble system with 360 members for sub-seasonal to seasonal weather prediction. Using computer

hardware developed specifically for deep learning (GPU), their 360 member ensemble system was

able to make a 6-week forecast in just three minutes. Scher and Messori (2021) explored differ-

ent methods for creating individual ensemble members and optimal methods to perturb the initial

conditions for a neural network based ensemble system.

The hybrid modeling approach in this study belongs to a class of techniques that are different

from those mentioned thus far. Techniques of this class useML for the frequent periodic interactive

correction of the spatiotemporally evolving physics-based numerical model solution after training

on observational analyses. The specific approach used in this study was originally developed by

Pathak et al. (2018a) and later adapted to large dynamical systems by Wikner et al. (2020), who

named itCombinedHybrid-Parallel Prediction (CHyPP). It evolves the hybrid forecasts iteratively,

combining a short-term (e.g., 6 h) numerical forecast with a state-dependent ML correction in
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each “time step” of the “hybrid model integration”. CHyPP is not a postprocessing technique,

because each “time step” of the evolving hybrid model solution starts from the ML-corrected state

of the preceding step, whereas a postprocessing technique does not interact with the evolving model

solution. TheML component of CHyPP uses the computationally highly efficient parallel reservoir

computing (RC) algorithm of Pathak et al. (2018b). Wikner et al. (2020) demonstrated the potential

of CHyPP for predicting the evolution of a spatiotemporally chaotic system by experiments with

the Kuramoto-Sivashinsky (KS) model (Sivashinsky 1977), a model that has a single state variable

that depends only on a single space dimension in addition to time.

Farchi et al. (2021) applied a similar hybrid modeling approach using a deep learning neural

network and a two-layer quasi-geostrophic channel model. In their model, a short-term prediction

from their imperfect numerical model was combined with a the machine learning model to produce

a hybrid model prediction. Their hybrid model performed better than either just the imperfect

numerical model or the machine learning only model. Watt-Meyer et al. (2021) also used similar

hybrid modeling approach to the CHyPP, but instead of RC, they used a random forest-based ML

architecture. Their numerical model was FV3GFS, a finite-volume model on a cubed sphere. The

random forests were trained to nudge certain model variables based on 6-hour forecast errors of

the numerical model when compared to observational-based reanalysis. They found their hybrid

model to improve the forecast skill and to stay free of instability in a long (one year) simulation

run. Bretherton et al. (2022) furthered this work by correcting a coarse resolution numerical model

using a deep learning NN trained on a cloud resolving (3-km resolution) model to learn the nudging

for certain model variables.

Machine learning has been demonstrated to be a promising approach to improve weather fore-

casting and reducing biases in climate models. The parallel machine learning algorithm of Pathak

et al. (2018a) and the hybrid modeling approach of Pathak et al. (2018b) and Wikner et al. (2020)

were originally tested on relatively small spatio-temporal chaotic systems. The atmosphere has

multiple state variables with a wide range of values that depend on all three spatial dimensions.

Even at coarse horizontal and vertical resolution, the number of variables needed to be predicted
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is O(105). Implementing these approaches to the atmosphere also raises a number of challenges

related to algorithm design and scaling. The training of such a system requires significant computa-

tional resources. The main goal of the present study is to demonstrate the improvement in forecast

skill and reduction of biases for climate simulations by implementing CHyPP on the Simplified Pa-

rameterization, primitive-Equation Dynamics (SPEEDY) (Molteni 2003; Kucharski et al. 2006), a

reduced resolution AGCM.

In what follows, Chapter 2 describes performance of an ML-only global atmospheric model

based on the parallel RC algorithm of Pathak et al. (2018a). In Chapter 3, we describe the hybrid

approach of CHyPP and its implementation on SPEEDY in detail as well as discuss the results

of the forecast and climate simulation experiments. In Chapter 4, we describe an atmospheric

hybrid model that is coupled with a machine learning only based ocean model. We evaluate the

performance of this coupled model for both atmospheric and oceanic variability (e.g. annual cycle

and the El Niño-Southern Oscillation). Finally, in Chapter 5 we summarize our key findings and

draw our conclusions.
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2. A MACHINE LEARNING-BASED GLOBAL ATMOSPHERIC FORECAST MODEL*

2.1 Introduction

The ultimate goal of our research is to develop a hybrid (numerical-machine-learning) weather

prediction (HWP) model. We hope to achieve this goal by implementing algorithms developed by

Pathak et al. (2018a,b) andWikner et al. (2020): the first paper introduced an efficientML algorithm

for numerical-model-free prediction of large, spatiotemporal dynamical systems, based solely on

the knowledge of past states of the system; the second paper showed how to combine a machine

learning (ML) algorithm with an imperfect numerical model of a dynamical system to obtain a

hybrid model that predicts the system more accurately than either component alone; while the third

paper combined the techniques of the first two into a computationally efficient hybrid modeling

approach. The present paper implements the parallel ML technique of Pathak et al. (2018a) to

build a model that predicts the weather in the same format as a global numerical model. We train

and verify the model on hourly ERA5 reanalysis data from the European Centre for Medium-Range

Weather Forecasts (ECMWF) (Hans et al. 2019).

The work presented here can also be considered an attempt to develop a ML model that can

predict the evolution of the three-dimensional, multivariate, global atmospheric state. To the best

of our knowledge, the only similar prior attempts were those by Scher and Messori (2018) and

Scher and Messori (2019), but they trained their three-dimensional multivariate ML model on data

that was produced by low-resolution numerical model simulations. In addition, Dueben and Bauer

(2018) and Weyn et al. (2019, 2020) designed ML models to predict two-dimensional, horizontal

fields of select atmospheric state variables. Similar to our verification strategy, they also verified the

ML forecasts against reanalysis data. Compared to all of the aforementioned studies, an important

new aspect of our work is that we employ reservoir computing (RC) (Jaeger 2001;Maass et al. 2002;

Lukoševičius and Jaeger 2009; Lukoševičius 2012) rather than deep-learning (e.g. Goodfellow

*Reprinted with permission from “A Machine Learning-Based Global Atmospheric Forecast Model” by Troy J.
Arcomano,I. Szunyogh, J. Pathak, A. Wikner, B. R. Hunt, and E. Ott, 2020. Geophysical Research Letters, 47, ©
Copyright (07 May 2020) American Geophysical Union.
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et al. 2016), which is primarily motivated by the significantly lower computer wall-clock time

required to train an RC-based model. This difference in training efficiency would allow for a larger

number of experiments to tune the ML model at higher resolutions.

The structure of the paper is as follows. Section 2.2 describes the ML model, while section 2.3

presents the results of the forecast experiments, using as benchmarks persistence of the atmospheric

state, climatology, as well as numerical forecasts from a physics-based model of identical prognos-

tic state variables and resolution. Section 2.4 summarizes our conclusions.

2.2 The ML model

The N components of the state vector vm(t) of the ML model are the grid-point values as-

sociated with the spatially discretized fields of the Eulerian dependent variables of the model.

Training the model requires the availability of a discrete time series of past observation-based

estimates (analyses) va(k∆t) (k = −K,−K+ 1, . . . , 0) of the atmospheric states that use the same

N-dimensional representation of the state as the model. Beyond the training period, the analy-

ses va(k∆t) (k = 1, 2, . . . ) are used only to maintain the synchronization of the model state with

the observed atmospheric state. An ML forecast can potentially be started at any analysis time k∆t

(k = 0, 1, . . . ): the forecast is a discrete time series of model states vmk (k′∆t) (k′ = k+1, k+2, . . . ),

where k∆t is the initial time, va(k∆t) is the initial state, ∆t is the time-step, and (k′ − k)∆t is the

forecast time. The computational algorithm of the model is designed to take advantage of a mas-

sively parallel computer architecture.

2.2.1 Representation of the Model State

2.2.1.1 The Global State Vector

We define vm(t) by the grid-based state vector of the physics-based numerical model SPEEDY

(Molteni 2003; Kucharski et al. 2013). While SPEEDY is a spectral transform model, it uses the

grid-based state vector to represent the input and output state of the model, and to compute the

nonlinear and parameterized terms of the physics-based prognostic equations. The horizontal grid

spacing is 3.75◦×3.75◦ and the model has nv = 8 vertical σ-levels ( at σ equals 0.025, 0.095, 0.20,
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0.34, 0.51, 0.685, 0.835, and 0.95), where σ is the ratio of pressure to the pressure at the surface.

The model has four three-dimensional dependent variables (the two horizontal coordinates of the

wind vector, temperature, and specific humidity) and one two-dimensional dependent variable (the

logarithm of surface pressure). Thus the number of variables per horizontal location is nt = 4 ×

nv+1. Because there are nh = 96×48 = 36, 864 horizontal grid points, the total number of model

variables is N = nt× nh=1.52064×105. Before forming the state vector vm(t), we standardize each

state variable by subtracting its climatological mean and dividing by its standard deviation at the

particular model level in the local region.

2.2.1.2 Local State Vectors

The global model domain is partitioned into L = 1, 152 local regions. We use a Mercator

(cylindrical) map projection to define the local regions, partitioning the three-dimensional model

domain only in the two horizontal directions: each local region has the shape of a rectangular prism

with a 7.5◦×7.5◦ base (Fig. 2.1). The model state in local region ℓ (ℓ = 1, 2, . . . , L) is represented

by the local state vector vmℓ (t), whose components are defined by the Dv=4×nt = 132 components

of the global state vector in the local region. The model computes the L evolved local state vectors

vmℓ (t + ∆t) from vm(t) in parallel, and the evolved global state vector vm(t + ∆t) is obtained by

piecing the L evolved local state vectors together.

2.2.2 The Computational Algorithm

2.2.2.1 RC

The computation of vmℓ (t+∆t) from vm(t) requires the evaluation of a composite (chain) function

for each local state vector. Because we use an RC algorithm, this composite function has only

three layers: the input layer, the reservoir, and the output layer. A key feature of RC is that the

trainable parameters of the model appear only in the output layer, which greatly simplifies the

training process.
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Figure 2.1: Illustration of the local regions. The local regions are defined on a Mercator map projection,
where the black dots indicate the horizontal location of the grid-points of the model. The blue rectangles
mark the boundaries of nine adjacent local regions. The red rectangle indicates the boundaries of the extended
local region for the local region in the center. Reprinted with permission from Arcomano et al. (2020).

2.2.2.2 The Input Layer and Reservoir

The composite of the input layer and the reservoir is

rℓ(t+∆t) = Gℓ{rℓ(t),Win,ℓ[v̂mℓ (t)]}, (2.1)

where the functionWin,ℓ[·] is the input layer. The dimensionDr of the reservoir state vector rℓ(t) =

(rℓ,1, rℓ,2, . . . , rℓ,Dr) is much higher than the dimension Dv̂ of the input vector v̂mℓ (t). (The reservoir

is a high-dimensional dynamical system.) The input vector v̂mℓ (t) is an extended local state vector

that represents the model state in an extended local region. In the present paper, we define v̂mℓ (t) by

the grid points of local region ℓ plus the closest grid points from the neighboring local regions (see

Fig. 2.1 for an illustration). In the terminology of Pathak et al. (2018a), the locality parameter of

our model is 1. Using a nonzero value of the locality parameter is essential, because otherwise no

information can flow between the local regions. The dimension of the extended local state vectors

is Dv̂=16×nt = 528 for most ℓ. The exceptions are the local regions nearest to the two poles,

because for those, we add no extra grid points in the poleward direction. The dimension of the
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input vectors in these local regions is Dv̂ = 12× nt = 396.

The ‘local approach’ of Dueben and Bauer (2018), which was introduced independently of the

parallel technique of Pathak et al. (2018a), employs a localization strategy that is formally similar

to the one described here. There is, however, an important difference between the two localization

techniques: Dueben and Bauer (2018) trained a single common neural network for the different

local regions, while we train a different reservoir for each local region.

The input layer is implemented as Win,ℓ[v̂mℓ (t)] = Wv̂,ℓv̂mℓ (t), where Wv̂,ℓ is a sparse Dr × Dv̂

random matrix, whose entries are drawn from a uniform probability distribution in the interval

[−0.5, 0.5]. The reservoir dynamics is defined by

Gℓ{rℓ(t),Win,ℓ[v̂mℓ (t)]} = tanh [Aℓrℓ(t) +Wv̂,ℓv̂mℓ (t)], (2.2)

where tanh [·] is the component-wise hyperbolic tangent function and Aℓ is a Dr × Dr weighted

adjacency matrix that represents a low-degree, directed, random graph (Gilbert 1959). Each entry

of Aℓ has a probability κ/Dr of being nonzero, so that the expected degree of each vertex is a

prescribed number κ. Thus, κ is the average number of incoming connections (edges) per vertex.

The nonzero entries of Aℓ are randomly drawn from a uniform distribution in the interval (0, 1]

and scaled so that the largest eigenvalue of Aℓ is a prescribed number ρ. The parameter ρ, which

controls the length of the memory of the ML model dynamics, is called the spectral radius.

2.2.2.3 The Output Layer

The evolved local state vector is obtained by

vmℓ (t+∆t) = Wout,ℓ[rℓ(t+∆t),Pℓ], (2.3)

where the functionWout,ℓ[·, ·] is the output layer. This function is chosen such that it is linear in the

Dv × Dr matrix of trainable parameters Pℓ. To be precise,

Wout,ℓ[rℓ(t+∆t),Pℓ] = Pℓr̃ℓ(t+∆t), (2.4)
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where r̃ℓ(t+∆t) = (rℓ,1, r2ℓ,2, rℓ,3, r2ℓ,4, . . . , rℓ,Dr−1, r2ℓ,Dr
)(t+∆t).

2.2.2.4 Synchronization and Training

We define the local analysis vaℓ(k∆t) by the components of the global analysis va(k∆t) (k =

−K,−K+1, . . . ) that describe the state in local region ℓ. In other words, vaℓ(k∆t) is the observation-

based estimate of the desired value of the model state vmℓ (k∆t). Likewise, we define the extended

local analysis v̂aℓ(k∆t) as the observation-based estimate of the extended local state vector v̂mℓ (k∆t)

(k = −K,−K+ 1, . . . ).

The synchronization and training of the ML model starts with feeding the past analyses to

the reservoir, or more precisely, by substituting v̂aℓ(k∆t) (k = −K,−K + 1, . . . ,−1) for v̂mℓ (k∆t)

in Eq. (2.1). Thus the output layer, Eq. (2.3), is not needed to compute rℓ(k∆t) for k = −K +

1,−K + 2, . . . , 0: we generate rℓ(−K∆t) randomly, discard the transient sequence rℓ(k∆t), k =

−K,−K+ 1, . . . ,−Kt, and define vmℓ (k∆t) for k = −Kt+ 1,−Kt+ 2, . . . , 0 according to Eq. (2.1),

with Pℓ as yet undetermined.

The goal of the training is to find the Pℓ that minimizes the cost function

Jℓ(Pℓ) =

[
0∑

k=−Kt+1

∥vaℓ(k∆t)− vmℓ (k∆t)∥2
]
+ β∥Wout,ℓ∥), ℓ = 1, 2, . . . , L, (2.5)

where ∥ · ∥ is the Frobenius norm. The purpose of the Tikhonov regularization term β∥Wout,ℓ∥)

(Tikhonov and Arsenin 1977) of Jℓ(Pℓ) is to improve the numerical stability of the computations

and prevent overfitting to the training data by choosing large values of the components ofWout,ℓ.

BecauseWout,ℓ depends linearly onPℓ, the solutions of the Lminimization problems can be obtained

by a linear ridge regression. That is, Pℓ is computed by solving the linear problem

Pℓ

(
R̃ℓR̃T

ℓ + βI
)
= Va

ℓR̃T
ℓ , ℓ = 1, 2, . . . , L, (2.6)

where the columns of R̃ℓ are r̃ℓ(k∆t) (k = −Kt + 1,−Kt + 2, . . . , 0) and the columns of Va
ℓ are

vaℓ(k∆t) (k = −Kt+1,−Kt+2, . . . , 0). Notice that the dimension of the linear problem of Eq. (2.6)
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does not depend on the length Kt of the training period. To conserve memory, theDr×Kt matrixRℓ

need not be stored; theDr×Dr matrix R̃ℓR̃T
ℓ and theDv×Dr matrixVa

ℓR̃T
ℓ can be built incrementally,

passing the training data through the reservoir time-step by time-step (e.g., Lukoševičius and Jaeger

2009; Lukoševičius 2012).

2.2.3 Implementation on ERA5 Reanalysis Data

2.2.3.1 Training

The global analyses va(k∆t) (k = −K,−K+1, . . . ) are hourly ERA5 reanalyses interpolated to

the computational grid and adjusted to the topography of SPEEDY. The training starts at 0000 UTC,

1 January, 1981 and ends at 2000 UTC January 24, 2000 (K ≈ 1.66 × 105). We add a small-

magnitude random noise ε(t) to v̂aℓ(k∆t) (k = −K,−K + 1, . . . ,−1) before we substitute it for

v̂mℓ (t) in Eq. (2.1) in order to improve the robustness of the ML model to noise (Jaeger 2001). The

transient sequence of K− Kt discarded reservoir states corresponds to the first 43 days of training.

2.2.3.2 Code Implementation and Performance

The current computer code of the MLmodel is written in Fortran, using both MPI and OpenMP

for parallelization and the LAPACK routine DGESV to solve the linear problem of Eq. (2.6). The

computations of both the training and forecast phase are carried out on 1,152 Intel Xeon E5-2670 v2

processors. Training the model takes 67 minutes wall-clock time and requires 2.2 Gb of distributed

memory per processor. Our current code is designed to minimize the wall-clock execution time

given the available memory on a particular supercomputer, but the memory usage could be reduced

(e.g., by not keeping all training data inmemory simultaneously, or using single- rather than double-

precision arithmetic).

2.2.4 The Forecast Cycle

Beyond the training period, the analyses are used only to maintain the synchronization between

the reservoirs and the atmosphere. We use the hourly reanalyses for synchronization, but start a

new 20-day forecast only once every 48 hours. (Preparing a 20-day forecast takes about 1 minute
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of wall-clock time.) We prepare a total of 171 forecasts for the period from January 25, 2000

to 28 December, 2000. The forecast error statistics reported below are calculated based on these

forecasts.

2.2.4.1 Selection of the Hyperparameters

The dimension Dr of the reservoir, rank κ of the random network, spectral radius ρ, random

noise ε, and regularization parameter β are the hyperparameters of the RC algorithm. We found

suitable combinations of these parameters by numerical experimentation, monitoring the accuracy

and stability of the forecasts. All results reported in this paper are for Dr=9,000, κ=6, β = 10−5,

while ρmonotonically increases from 0.3 at the equator to 0.7 at 45◦ and beyond. The components

of ε are uncorrelated, normally distributed, random numbers with mean zero and standard deviation

0.28. For this combination of the hyperparameters, the ML model predicts realistic values of all

state variables for the entire globe and 20-day forecast period.

2.3 Forecast Verification Results

2.3.1 Benchmark Forecasts

We use daily climatology, persistence, and numerical forecasts for the evaluation of the ML

model forecasts. Persistence is based on the assumption that the initial atmospheric state will persist

for the entire time of the forecast. The numerical forecasts are prepared by Version 42 of the

SPEEDYmodel. While SPEEDY has been developed for research applications rather than weather

prediction, it can be considered a low-resolution version of today’s NWPmodels. Most importantly,

similar to all operational models, it solves the system of atmospheric primitive equations and has

a realistic climate. It provides a good benchmark in the current stage of our research, in which the

primary goal is to prove a concept rather than improve operational forecasts.

2.3.2 Results

We verify all forecasts against ERA5 reanalyses interpolated to the computational grid and ad-

justed to the SPEEDY orography. The magnitude of the forecast error is measured by the mean
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of the area-weighted root-mean-square difference between the forecasts and the verification data

for all forecasts. Results are shown for selected variables in the Northern Hemisphere (NH) mid-

latitudes for the first 72 forecast hours (Fig. 2.2). In this region, the ML model outperforms both

persistence and climatology by a large margin in the first 48 forecast hours. While the ML model

forecasts remain more accurate than persistence in the next 24 forecast hours, their skill, with the

exception of the temperature forecasts, degrades to that of climatology. In the tropics (results not

shown) the accuracy of the ML model is very similar to that of persistence and climatology

The performance of the ML model compared to SPEEDY is mixed: the ML forecasts are more

accurate for the specific humidity near the surface, especially at 24 h and 48 h forecast times,

while the SPEEDY forecasts are more accurate for the wind, particularly at the jet level. The ML

temperature forecasts are also more accurate in the tropics (results not shown), where the SPEEDY

forecasts rapidly develop a large bias in the upper troposphere.

To better understand the behavior of the root-mean-square error, we decomposed it into a

(square of) bias and variance component and also investigated the power spectrum of the vari-

ance in the NH midlatitudes with respect to the zonal wavenumber (results are not shown). On the

positive side, the ML forecasts of the different variables have little or no bias, and the variance of

the longer term forecasts saturates at a realistic level for zonal wave numbers larger than 6. On

the negative side, the variance saturates at unrealistically high levels at the lower wave numbers,

leading to an over-prediction of the spatial variability of the forecast fields at the longer forecast

times. The fast growth of the variance at the large scales, especially at wave number 4, is the main

deficiency of ML model in the midlatitudes. Fixing this problem could extend the time range of

forecast skill by days.

2.3.3 Near-Surface Humidity and Tropical Temperature Profiles

The short-term forecast advantage of theMLmodel over SPEEDY has two sources. First, while

the SPEEDY forecasts rapidly develop a near-surface humidity bias, the ML model forecasts are

free of such bias. Second, the variance of the ML model forecast errors is also lower initially. As
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forecast time increases, the advantage of theMLmodel remains in terms of the bias, but vanishes in

terms of the variance. Because the variance becomes the dominant component at the later forecast

times, climatology breaks even with the ML model forecasts by 72 h forecast time (bottom right

panel of Fig. 2.2). The spatial distribution of the difference of the errors (Fig. 2.3) suggests that

the ML model performs better in regions where parameterized atmosphere-surface interactions

play an important role in the moist processes in SPEEDY (e.g., regions of the ocean boundary

currents). Likewise, the advantage of the ML model in predicting the tropical temperature profiles

(not shown) is the result of large biases that are present only in the SPEEDY forecasts in the main

regions of parameterized deep convection. Finally, it should be noted that while the current version

of theMLmodel learns about atmosphere-surface interactions strictly from the atmospheric training

data, SPEEDY uses a number of prescribed fields to describe the surface conditions (e.g., a spatio-

temporally evolved sea-surface temperature analysis.)

2.3.4 Rossby Wave Propagation

The forecast variable for which SPEEDY clearly outperforms the ML model is the meridional

component of the wind: while the accuracy of the wind forecasts by the two models is similar at

24 h, the error of the ML model forecasts grows more rapidly beyond that time. The difference

between the errors of the two models grows the fastest in the layer around the jet streams of the

Northern Hemisphere (NH) midlatitudes (between 400 hPa and 200 hPa). Because the variability

of the meridional wind in this layer is dominated by dispersive synoptic-scale Rossby waves, the

aforementioned result suggests that the ML model may be inferior to the numerical model in de-

scribing the Rossby wave dynamics. To investigate this possibility, we plot Hovmöller diagrams

of the meridional wind for both forecasts and the verification data (Figure 2.4).

A pattern of negative (positive) values followed by a pattern of positive (negative) values indi-

cate a trough (ridge). Because the eastward group velocity of the dispersive Rossby waves at the

synoptic scales is larger than their eastward phase velocity, new troughs and ridges can develop

downstream of the original wave. Such developments are marked by oriented dashed black lines
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in the figure. In the first three days, the ML model captures the dispersive dynamics of the wave

packets accurately, but because the wave packets are composed of wave number 4-11 waves (e.g.

Zimin et al. 2003), the over-intensification of the wave number 4-6 components at the later forecast

times leads to a gradual shift of the carrier wave number toward lower values and a deceleration of

the group velocity.

Figure 2.2: Forecast verification results for the NH midlatitudes (30◦N and 70◦N). Results are shown for
(blue) the MLmodel, (green) SPEEDY, and (red) persistence. Shown is the area-weighted root-mean-square
error at the different atmospheric levels for (top row) the temperature, (middle row) meridional wind, and
(bottom row) specific humidity at (left column) 24 h forecast time, (middle column) 48 hour forecast time,
and (right column) 72 h forecast time. Reprinted with permission from Arcomano et al. (2020).
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Figure 2.3: Comparison of the near-surface humidity forecast errors between the SPEEDY and ML model
forecasts. Shown by color shades is the difference of the 925 hPa relative humidity root-mean-square errors
between the SPEEDY and ML model forecasts at forecast times (top) 12 h, (second from top) 24 h, (second
from bottom) 36 h, and (bottom) 48 h. Here, the mean is taken over all 171 forecasts. Positive (negative)
values indicate locations where the ML model forecasts are more (less) accurate than the SPEEDY fore-
casts.Reprinted with permission from Arcomano et al. (2020).
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Figure 2.4: Rossby wave packets in the model forecasts and verification data. The Hovmöller diagrams show
the propagation of waves packets in (left) a 10-day ML model forecast, (middle) related verification data,
and (right) related 10-day SPEEDY forecast. Shown by color shades is the latitude-weighted meridional
mean of the meridional coordinate of the wind for latitude band 30◦N-60◦N at 200 hPa. The forecasts start
at 0000 UTC 2 December, 2000. The propagation of the wave packets are marked by the directed straight
dashed lines. Reprinted with permission from Arcomano et al. (2020).

2.4 Conclusions

We demonstrated that a RC-based parallel ML model can predict the global atmospheric state

in the same gridded format as a numerical (physics-based) global weather prediction model. We

found that the 20-day ML model forecasts predicted realistic values of all state variables at all

forecast times for the entire globe. The ML model predicted the weather in the midlatitudes more

accurately than either persistence or climatology for most of the first three forecast days. This

time range could be significantly extended by eliminating, or at least reducing, the over-prediction

of atmospheric spatial variability at the large scales (wave numbers lower than 7). The forecast

variables for which the ML model performed best compared to a numerical (physics-based) model

of identical prognostic state variables and resolution were the ones most affected by parameterized

processes in the numerical model.

The results suggests that the current version of our ML model have potential in short-term

weather forecasting. Because the parallel computational algorithm is highly scalable, it could be
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easily adapted to higher spatial resolutions on a larger supercomputer. As the algorithm is highly

efficient in terms of wall-clock time, it could be used for rapid forecast applications and could

also be implemented in a limited-area rather than a global setting. The ML modeling technique

described here could also be applied to other geophysical fluid dynamical systems.
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3. A HYBRID APPROACH TO ATMOSPHERIC MODELING THAT COMBINES

MACHINE LEARNING WITH A PHYSICS BASED NUMERICAL MODEL*

3.1 Introduction

Numerical weather prediction (NWP) models have been the backbone of operational weather

prediction for several decades now (e.g., Lynch 2006; Harper 2008). A particularmodel implements

a numerical solution algorithm for the physics-based set of coupled partial differential equations

that govern atmospheric motion (e.g., Szunyogh 2014). The resulting numerical equations form the

dynamical core of the model. The effects of processes not resolved explicitly by the dynamical core

are taken into account by parameterization schemes that contribute to the forcing terms of the equa-

tions. These schemes are based on some combination of theoretical and empirical considerations

(e.g., Stensrud 2007). The initial conditions of the numerical model solutions are observation-based

estimates (analyses) of the state of the atmosphere, and the process that produces these estimates

is called data assimilation (e.g., Szunyogh 2014). The advances in modeling and data assimilation

techniques, alongside with the increase of computing power and the number of observations avail-

able for assimilation, led to a “quiet revolution of NWP” (Bauer et al. 2015). The incorporation

of machine learning (ML) techniques into the NWP process promises to lead to further forecast

accuracy gains by extracting additional information from the observations.

The earliest applications of machine learning (ML) to atmospheric modeling focused on im-

proving the computational efficiency of the physics-based numerical models (e.g., Krasnopolsky

et al. 2005; Krasnopolsky and Fox-Rabinovitz 2006; Krasnopolsky 2013). These applications em-

ployed neural networks to emulate the computationally most expensive physics-based parameteri-

zation schemes at a reduced computational cost. The term hybrid model was first used in reference

to models using this technique. One approach employed by this type of hybrid models is to use

*Reprinted with permission from “A hybrid approach to atmospheric modeling that combines machine learning
with a physics-based numerical model” by Troy J. Arcomano, I. Szunyogh, A.Wikner, J. Pathak, B. R. Hunt, and E. Ott,
2022. Journal of Advances in Modeling Earth Systems, 14, © Copyright (16 February 2022) American Geophysical
Union.
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a single neural network to emulate the combined effect of multiple parameterized processes, such

as cumulus convection, radiation, boundary layer transport, etc. (e.g., Krasnopolsky et al. 2010;

Krasnopolsky 2013; Brenowitz and Bretherton 2018, 2019; Rasp et al. 2018). For this purpose, the

ML systems are often trained on data produced by model simulations at higher resolutions, or with

more sophisticated physical parameterization schemes.

Another type of ML-based parameterization scheme (e.g., Gentine et al. 2018; Rasp et al. 2018;

Chattopadhyay et al. 2020), is trained on observations or observations-based reanalyses. Such a

scheme has the potential to learn about the effects of processes that the higher resolution and more

sophisticated model simulations are still unable to capture. ML techniques have also been consid-

ered for the estimation of the free parameters of physics-based parameterization schemes (Schnei-

der et al. 2017). This approach takes advantage of the knowledge built into the parameterization

schemes, but may suffer from the assumptions and approximations made by the schemes.

The hybrid approach we propose belongs to a class of techniques that are different from those

mentioned thus far. Techniques of this class use ML for the frequent periodic interactive correction

of the spatiotemporally evolving physics-based numerical model solution after training on obser-

vational analyses. The specific approach we propose was originally developed by (Pathak et al.

2018a) and later adapted to large dynamical systems by (Wikner et al. 2020), who named it Com-

bined Hybrid-Parallel Prediction (CHyPP). It evolves the hybrid forecasts iteratively, combining a

short-term (e.g., 6 h) numerical forecast with a state-dependent ML correction in each “time step”

of the “hybrid model integration”. CHyPP is not a postprocessing technique, because each “time

step” of the evolving hybrid model solution starts from the ML-corrected state of the preceding

step, whereas a postprocessing technique does not interact with the evolving model solution. The

ML component of CHyPP uses the computationally highly efficient parallel reservoir computing

(RC) algorithm of (Pathak et al. 2018b). The other hybrid approaches of the same class use either a

random forest (Watt-Meyer et al. 2021) or use a deep learning ML component (Farchi et al. 2021),

rather than one based on RC.

Wikner et al. (2020) demonstrated the potential of CHyPP for predicting the evolution of a spa-
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tiotemporally chaotic system by experiments with theKuramoto-Sivashinsky (KS)model (Sivashin-

sky 1977), a model that has a single state variable that depends only on a single space dimension

in addition to time. We implement CHyPP on the Simplified Parameterization, primitive-Equation

Dynamics (SPEEDY) (Molteni 2003; Kucharski et al. 2006) atmospheric global circulation model

(AGCM). Ours is the first implementation of the approach on a model that has multiple state vari-

ables with a wide range of values and depend on all three spatial dimensions. Because SPEEDY

has a substantially lower resolution than a state-of-the-art NWP or climate model, our primary goal

is to demonstrate the feasibility and potentials of CHyPP for an atmospheric application, rather than

to propose our current model as a potential replacement for a state-of-the-art numerical model. The

results of our forecast experiments show that the performance of the hybrid model is superior to

that of either SPEEDY, a model based only on ML, or a model that uses linear regression rather

than ML for the correction of the short term (“one time step”) numerical forecasts.

In what follows, we first describe the hybrid approach and its implementation on SPEEDY in

detail (section 3.2). Then, we discuss the results of the forecast experiments (section 3.3), and

then the climate simulation (section 4). Finally, we summarize our key findings and draw our

conclusions (section 3.5).

3.2 The Hybrid Model

In CHyPP, the physics-based numerical model state is evolved globally, while the ML correc-

tion is done in parallel, in small local domains (Pathak et al. 2018b). The model state of a local

domain is represented by a local state vector composed of the relevant components of the global

state vector. The global hybrid prediction is obtained by piecing together the local hybrid predic-

tions at the end of each ∆t-long “time step” of the “hybrid model integration”. This approach can

be implemented on any numerical model by adjusting the definition of the local state vectors to the

spatial discretization strategy of the model. We note that the localization strategy of CHyPP is sim-

ilar to that employed by the Local Ensemble Transform Kalman Filter (LETKF) data assimilation

scheme (Ott et al. 2004; Hunt et al. 2007; Szunyogh et al. 2008), which has been found to scale
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efficiently even for very high (kilometer) resolution operational weather prediction models (e.g.,

Schraff et al. 2016).

3.2.1 The Global State Vector

SPEEDY is a spectral transform AGCM that was developed to produce rapid climate simula-

tions, using simplified, but modern physical parameterization schemes (Molteni 2003). We im-

plement CHyPP on the standard configuration of Version 41 of the model: the spectral horizontal

resolution is T30, while the grid used for the computation of the nonlinear terms and parameteri-

zations has a nominal horizontal spatial resolution of 3.75◦×3.75◦ with state variables defined at

eight vertical σ-levels (0.025, 0.095, 0.20, 0.34, 0.51, 0.685, 0.835, and 0.95), where σ is the ratio

of pressure to the surface pressure. The three-dimensionally varying state variables of the model

are the two components of the horizontal wind vector, temperature, and specific humidity, while

the single two-dimensionally varying state variable is the natural logarithm of surface pressure.

The global computational grid and the state variables of the hybrid model are the same as those of

SPEEDY.

3.2.2 The Local State Vectors

In our implementation of CHyPP on SPEEDY, each local state vector represents the atmospheric

state in a three-dimensional local domain that has the shape of a rectangular box with a 7.5◦×7.5◦

(2 × 2 horizontal grid points) base and extends vertically from ground level to σ = 0.025. (The

boundaries of the horizontal footprint of a local domain are marked by a blue rectangle in Fig. 3.1

.) In what follows, we describe the computations carried out in parallel for each of the L = 1, 152

local domains to evolve the hybrid model state from time t to t+∆t.

Let v(t) be the local state vector for an arbitrary local domain at time t. The dimension of

this state vector is 4×(8×4+1)=132 (resulting from the 4 grid points of a local domain, the 8 σ-

levels, the 4 volume distributed state variables, and the natural logarithm of surface pressure state

variable). Because the different state variables have different units and ranges of values, where the

ranges also depend on the geographical location and vertical level, each grid-point value of each
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state variable is standardized to have a mean of 0 and a standard deviation of 1 before forming

v(t). The standardization is done by using ERA5 reanalysis data (Hersbach et al. 2020) for the

computation of the climatological mean and standard deviation of each grid-point variable. We

introduce the notation vp(t), vh(t), and va(t) for the local state vector of SPEEDY, the hybrid model,

and the reanalysis, respectively. We also introduce the notations vgp(t), vgh(t), and vga(t) for the

related global state vectors. For instance, the components of vga(t) in an arbitrary local domain are

the components of va(t). In what follows, we explain the steps of the computation of vgh(t + ∆t)

from vgh(t). A flowchart of these steps is shown in Fig. 3.2.a.

Figure 3.1: Illustration of the localization strategy. The black dots indicate the horizontal locations of the
grid-points of the model. The blue rectangle marks the horizontal boundaries of a particular local domain.
The red rectangle indicates the horizontal boundaries of the associated extended local domain. Reprinted
with permission from Arcomano et al. (2022).

3.2.3 Reservoir Dynamics

The ML model uses (RC) (Jaeger 2001; Lukoševičius and Jaeger 2009; Lukoševičius 2012) to

evolve the ML model component from time t to t+∆t. In RC, the ML model state is evolved by a

high-dimensional dynamical system which, for our RC implementation, is defined by the discrete
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time map

r(t+∆t) = tanh [Ar(t) + Buh(t)]. (3.1)

This dynamical system is the reservoir, r(t) is the reservoir state vector, and uh(t) is the local input

state.

During the training, the input term uh(t) in Eq. (1) is replaced by ua(t). The local input uh(t) in

our case is a m-dimensional extended local state vector, composed of the components of the local

state vector vh(t) plus additional components of the global state vector vgh(t) from the neighboring

local domains (see Fig. 3.1 for illustration), plus the prescribed incoming solar radiation at the top

of the atmosphere for the extended local domain. The latter component is included to help the

hybrid model to learn the diurnal cycle from the input data. (SPEEDY uses the daily average value

of the incoming solar radiation at the top of the atmosphere at all times of the day.) For all of the

local domains, m = 16× (8× 4+ 1+ 1), except at the local domains adjacent to the poles where

m = 12× (8× 4+ 1+ 1).

Referring to Eq. (1), the dimension Dr of the vector r(t) is much higher than that of a local

state vector vh(t) (e.g., 6,000 vs. 132 in the present article). The activation function with a vector

argument, tanh [·], is a vector of the same dimension (Dr) as its argument, and a component of this

vector is the hyperbolic tangent of the corresponding component of the argument vector. Thematrix

A is a sparse Dr × Dr weighted adjacency matrix that represents a low-degree, directed, random

graph (Gilbert 1959). Each entry ofA is randomly chosen with a probability κ/Dr of being nonzero,

where κ is the degree of the graph (the average number of incoming connections per node), and

with the nonzero entries of A randomly drawn from a zero-mean uniform distribution. (The ratio

κ/Dr is a measure of the sparsity of A.) After randomization, the entries of A are scaled such that

the largest eigenvalue of A is a prescribed number ρ (0 < ρ < 1), which is called the spectral

radius. The spectral radius controls the length of the memory of the ML reservoir, and a value

ρ < 1 typically makes the reservoir state r(t) depend only on the past states of the modeled system

(the atmosphere in our case), and not on the initial reservoir state, when t is sufficiently large. This

property of the reservoir is called the echo state property (Jaeger 2001).
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The matrix-vector product Buh(t) is called the input layer in RC. In our model, B is a m ×

Dr sparse random matrix with an equal number of nonzero entries in each row. These nonzero

entries, which are chosen randomly from a uniform distribution on the interval [−α, α], couple

the components of uh(t) to the reservoir nodes. The input strength α is an adjustable parameter

that controls the degree of non-linearity experienced by the input signal uh(t) from the activation

function.

3.2.4 The Hybrid Model

In addition to providing the input for Eq. (1), the global state vgh(t) is used as the initial condition

for a SPEEDY model forecast vgh(t+∆t). The next local hybrid model prediction is then obtained

by

vh(t+∆t) = W

vp(t+∆t)

r̃(t+∆t)

 , (3.2)

where the components r̃i(t+∆t) of the column vector r̃(t+∆t), i = 1, 2, ...Dr are defined by

r̃i(t+∆t) = ri(t+∆t), if i is odd, and r̃i(t+∆t) = r2i (t+∆t), if i is even, and the column vector

vp(t+∆t) represents the local state corresponding to the global SPEEDY forecast vgp(t+∆t). The

matrix-vector product on the right-hand side of Eq. (3.2) is the RC output layer. The matrixW is

a matrix of parameters to be determined by the training procedure described in Sec. 2.4.1. The

local vectors vh(t+∆t) for each local domain are combined to form the next global hybrid model

prediction vgh(t+∆t).

Equation (3.2) can be written in the equivalent form

vh(t+∆t) = Wmodvp(t+∆t) +Wresr̃(t+∆t), (3.3)

which corresponds toW = [Wmod Wres]. In the extreme case thatWmod = 0, which should be

the result of trainingwhen the numerical model has no skill according to the training data, the hybrid

prediction completely ignores the numerical model forecast vp(t+∆t). The other extreme case is
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Figure 3.2: A flow chart of (a) the hybrid model and (b) the training operation of the hybrid model. The
notation is defined in Secs. 2.2 and 2.3. The steps inside the red boxes are carried out in parallel for each
of the L = 1, 152 local domains. The training finds the W that minimizes the cost function of Eq. (4) by
solving Eq. (5). Reprinted with permission from Arcomano et al. (2022)

whenWmod = I andWres = 0, which should occur when the numerical model is perfect according

to the training data. In a typical case, which falls between the two extremes, the ML output and the

∆t-long numerical prediction are combined to maximize agreement with the training data.
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3.2.4.1 Training

Figure 2.b shows the flow of operations during training. First, we generate a sequence of per-

turbed global analyses vga(k∆t) + εg(k∆t), k = −K − Kt,−K − Kt + 1, ...,−1, where εg(k∆t)

is a small-magnitude, zero-mean, normally distributed random noise vector, uncorrelated in time

and uncorrelated between components of the noise vector. The role of this noise is to help the ML

model learn to return to the bounded set of realistic atmospheric states (the “attractor”) in the pres-

ence of perturbations that may arise in future forecasts (e.g., Jaeger 2001; Wikner et al. 2020). The

addition of noise to the global analyses during training is essential for the hybrid model to produce

stable, realistic predictions; predictions rapidly become unstable without it. Similar behavior has

been observed in RC applications involving the prediction of other spatio-temporal systems (e.g.,

Patel et al. 2021).

The local input state ua(k∆t) is the extended local state vector associated with vga(k∆t) +

εg(k∆t), for k = −K − Kt,−K − Kt + 1, ...,−1 for the particular local domain. The initial state

r[(−K−Kt)∆t] of the reservoir can be chosen arbitrarily, because only the evolved reservoir states

r[(k+1)∆t], k = −K,−K+1, . . . ,−1, are used for training. The purpose of discarding the reservoir

state of the first Kt (Kt ≪ K) iterations is to ensure that the reservoir state r(t) has sufficient time

to settle on its attractor. The unperturbed global analyses vga(k∆t) are also used as the initial

conditions for SPEEDY to obtain vgp[(k+ 1)∆t] for k = −K,−K+ 1, ...,−1.

Formally, the training is carried out by computing the weight matrix W = [Wmod Wres] that

minimizes the cost-function

J(W) =
0∑

k=−K+1

∥vh(k∆t,W)− va(k∆t)∥2 + βmod∥Wmod −Wprior∥2 + βres∥Wres∥2. (3.4)

The local hybrid states vh(k∆t,W), k = −K+1,−K+2, ..., 0, represent the results of Eq. (3.2)

at those times for a particular W, and va(k∆t) is the local state vector for the unperturbed global

analysis vga(k∆t). (Notice that we use the notation W for both the variable and the solution of
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the minimization problem.) The last two terms of the cost function, in which ∥ · ∥2 denotes the

sum of the squares of the entries of a matrix (the Frobenius norm), are regularization terms meant

to prevent overfitting, with βmod and βres being the regularization parameters for the numerical

model and reservoir component, respectively. With these terms, the direct solution of the least-

square problem is a ridge regression (Tikhonov and Arsenin 1977). The inclusion of the prior

matrix Wprior, which was not part of Wikner et al. (2020), allows for a choice like Wprior = I,

which dictates that in the absence of training data that demonstrates imperfections in the numerical

model, the hybrid model should be equivalent to the numerical model. In our experiments, we tried

bothWprior = I andWprior = 0, and found that the latter yielded better stability. Thus, we report

results withWprior = 0, but think that other choices for nonzeroWprior merit further study.

To obtain the direct solution for the matrix W that minimizes the cost function J, we define

matrix R̃ by choosing its column k to be r̃(k∆t) (see Eq. (3.2)), and matrix Vp by choosing its

column k to be the vp(k∆t) local state vector that corresponds to the global SPEEDY forecast from

vga((k− 1)∆t). In addition, we define matrix Va by selecting its column k to be the local analysis

va(k∆t). Then, it can be shown that the minimizingW is the solution of the linear problem

W

VpVT
p + βmodI VpR̃T

R̃VT
p R̃R̃T + βresI

 =

[
VaVT

p + βmodWprior VaR̃T

]
(3.5)

forW.

Because the dimension of thematrix products in this problem does not depend on the lengthK∆t

of the training period, the matrix products can be computed incrementally, without simultaneously

storing every column of R̃, Vp, or Va in memory (e.g., Lukoševičius 2012). That is, in terms

of computer memory usage, the resources used by the training do not depend on the length of

the training period. This is a highly desirable property for Earth system modeling, in which long

training periods are expected to be necessary. In addition, the corresponding columns of R̃, Vp,

and Va can be obtained by training on multiple time series of training data. For example, suppose

that the global analyses vga(t) have a temporal resolution ∆ta that is finer than the ∆t temporal

30



resolution of the hybrid model with ∆t = J∆ta, where J is an integer. Then, the number of time

series available for training is J; i.e., the first term in Eq. (3.4) can be replaced by

J−1∑
j=0

0∑
k=−K+1

∥vh(k∆t− j∆ta,W)− va(k∆t− j∆ta)∥2. (3.6)

3.2.4.2 Synchronization and Prediction

Let Kf∆t be the forecast start time. Starting the hybrid forecast requires the availability of the

global analysis vga(Kf∆t) and the reservoir state r(Kf∆t) for each local domain. Because according

to the “echo state property” r(Kf∆t) is determined by the past states of the atmosphere, it can be

obtained by synchronizing the evolution of the reservoir states with the analyses for a sufficiently

long time period that ends at Kf∆t. Let Ks∆t be the start time of the synchronization. Synchro-

nization is achieved by evolving the reservoir equation using uh(k∆t) = ua(k∆t) in Eq. (3.1) for

k = Ks,Ks+1, . . . ,Kf.

Piecing together the local hybrid forecasts for all local domains yields the global “one-step”

hybrid forecast vgh[(Kf + 1)∆t] (Fig. 3.2.a). The forecast can be extended arbitrarily far into the

future by using an iterative process for k = Kf+1,Kf+2, . . . , in which the extended local state vector

uh(k∆t) extracted from vgh(k∆t) is used as uh(k∆t) in the Eq. (3.1) to compute r[(k+ 1)∆t]. The

global “one-step” hybrid forecast vgh(k∆t) is also used as the initial condition of the vgh[(k+ 1)∆t]

SPEEDY component of the hybrid forecast. In a cycled forecast system of an operational NWP

center, in which analyses are prepared and forecasts are started with a regular frequency (e.g.,

6 h), the reservoir state can be kept continuously synchronized with the real-time evolution of the

atmosphere.

3.2.5 Implementation with ERA5 Reanalysis Data

We use interpolated hourly global ERA5 reanalyses to train and synchronize the hybrid model.

We do the horizontal interpolation of the reanalysis fields onto the computational grid of SPEEDY

by a 2-dimensional quadratic B-spline interpolation. We then compute the value of σ at each hori-
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zontal grid point and use a 1-dimensional cubic B-spline for the vertical interpolation of the model

state variables to the eight prescribed constant σ levels of SPEEDY. The training starts at 0000 UTC

on January 1, 1990 and ends at 2300 UTC on June 26, 2011 (K ≈ 3.14 × 104), with the data dis-

carded for the first 6.25 days (K = 31355 and Kt = 25).

3.2.6 Selection of the Hyperparameters

Hyperparameters are adjustable parameters (e.g. κ, ρ, α, Dr,βres, βmod, ε, and ∆t) that control

overall characteristics of the hybrid model and require “tuning” to produce desirable results. There

exists “tricks of the trade” practical rules for the selection of the hyperparameters of an RC model

(Lukoševičius 2012). These general rules also work for the hyperparameters of the hybrid model.

First, the hybrid model is only weakly sensitive to κ and ρ. While we use κ = 6, other small values

of κ (e.g., κ = 3) work similarly well. We use a value of ρ that monotonically increases toward the

poles from 0.3 at the equator to 0.7 at 45◦, so that the reservoir mimics the general property of the

atmospheric dynamics that its memory is shorter in the tropics than the extratropics. Changing these

values by±0.1−0.2 has little effect on themodel performance. We chooseDr = 6, 000, becausewe

find that further increasing the reservoir size does not lead to substantial further improvement of the

model performance. We find the hybridmodel performance to be somewhat sensitive to the value of

α, which controls the amount of nonlinearity of the reservoir dynamics. Setting α ≤ 0.3 or α ≥ 0.7

yields noticeable degradation of the errors compared to the value we use, α = 0.5. For each of the

optionsWprior = I andWprior = 0, we tried various powers of 10 for the regularization parameters

βres and βmod; we found that Wprior = 0 yielded better stability, and found that βres = 10−4 and

βmod = 100 led to good model performance. Among the several values we tried, in increments

of 0.05, for the standard deviation of the components of the random noise ε added to the training

data, we chose the smallest value (0.20) for which all hybrid forecasts were stable. The time step

∆t is another important hyperparameter to tune; we chose ∆t = 6 h, because using ∆t = 1 h or

∆t = 3 h (with other hyperparameters tuned accordingly) led to clearly poorer model performance.

Moreover, we use a time step of∆t/24 = 0.25 h for the numerical integration of SPEEDY, because
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longer time steps degraded the 6 h forecast performance of SPEEDY. Since the temporal resolution

of the ERA5 reanalyses is 1 h (∆ta = 1), the training is done on ∆t/∆ta = 6 time series of data.

3.3 Forecast Experiments

We compute forecast error statistics based on 100 21-day forecasts, with start times equally

spaced every 4 days between 0000 UTC, June 27, 2011 and 0000 UTC, July 28, 2012. We evaluate

the forecast performance of the hybrid model by comparing it to that of a variety of benchmark

forecasts started from interpolated ERA5 reanalyses.

3.3.1 Benchmark Forecasts

The set of benchmark forecasts includes numerical forecasts produced by SPEEDY, a model

based only on ML, and a model in which the 6 h SPEEDY forecasts are corrected by linear regres-

sion rather than by ML. We call the latter benchmark SPEEDY-LLR, where LLR stands for local

linear regression.

Comparing the performance of the hybrid model to that of a model based only on ML is impor-

tant, because ML-only models (e.g., Arcomano et al. 2020; Rasp and Thuerey 2021; Weyn et al.

2020) are considered a potential alternative to the hybrid approaches for the utilization of ML in

Earth system modeling. Our ML model is formally the same as our hybrid model except that we

use the constraint Wmod = 0 in Eq. (3), with Eqs. (4) and (5) modified accordingly, and the hy-

perparameters are different: Dr = 9, 000, βres = 10−6, ∆t = 3 h, and ε has a standard deviation

of 0.28. (The smaller reservoir size necessary to obtain good results from the hybrid as compared

to the ML-only model is an important advantage of the hybrid model.) While this ML-only model

is formally identical to the one described by Arcomano et al. (2020), its forecast performance is

better, thanks mainly to using a time step of ∆t =3 h rather than ∆t =1 h and the addition of the

incoming solar radiation to the input of the reservoir.

The SPEEDY-LLR is the same as the hybrid model except that Wres = 0. In this model, a

larger regularization parameter is necessary to produce stable forecasts for at least 10 days. We

use βmod = 1600, which provides the most accurate short and medium range (1-5 days) forecasts
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that also remain stable for at least 10 days. The stability of the SPEEDY-LLR forecasts can be

improved by further increasing βmod, but only at the price of degrading the short and medium range

forecast accuracy. (For βmod → ∞, SPEEDY-LLR becomes SPEEDY, which produces stable

forecasts for indefinitely long lead times). Since, SPEEDY-LLR does not include the nonlinear

ML correction of the hybrid model (the second term on the right side of Eq. (3)), training is a

simple linear regression of the numerical model forecast. With the help of this benchmark, we can

assess the relative importance of making periodic corrections to the numerical forecasts based on

linear regression of the model state alone versus making those corrections by the proposed hybrid

technique.

To assess whether a model forecast has skill, the figures also include comparisons to forecasts

based on persistence and daily climatology. The persistence forecasts are based on the assumption

that the state of the atmosphere at the beginning of the forecast persists for the entire duration of

the forecast, while the climatological forecasts are based on the daily climatological mean for the

calendar day at the particular geographical location and pressure level for years 1990-2010.

3.3.2 The Measure of the Forecast Error

The error of each forecast is measured by the area-weighted root-mean-square error,

RMSE =

√√√√ 1
NlonNlat

Nlon∑
i=1

Nlat∑
j=1

a(j)(Vf
i,j − Va

i,j)
2, (3.7)

where,

a(j) =
cos (φ(j))

1
Nlat

∑Nlat
j=1 cos (φ(j))

. (3.8)

Here the subscript i, j refers to the value of a scalar state variable V for a specific forecast lead

time at a particular pressure level at grid point i, j of the verification region defined by Nlon discrete

longitudes and Nlat discrete latitudes. The RMSE is averaged over the 100 forecasts to obtain a

single scalar measure of the forecast error for each state variable, pressure level, and forecast lead
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time. In what follows, the term forecast error refers to this scalar measure. We call a forecast

more accurate than another, if the forecast error is lower for the former than the latter forecast.

In addition, we say that a model forecast has forecast value, if its forecast error is lower than

that of both persistence and climatology (the latter two are available without the substantial cost

of preparing model forecasts). The qualitative behavior of the errors of the model forecasts with

respect to the errors of these two references is well understood. In particular, if the model has

realistic climatology, in the sense that it represents the atmospheric variability (the variability of

the atmospheric state) correctly, the error of the model forecasts and the error of persistence saturate

at the same level. While the error is initially lower for persistence than climatology, its saturation

value is higher by a factor of
√
2 (e.g., section 3.8 of Szunyogh (2014)).

3.3.3 Comparisons of the Forecast Accuracy

3.3.3.1 Synopsis of the Forecast Verification Results

Figures 3.3 and 3.4 illustrate the temporal evolution of the forecast errors for the first five fore-

cast days in the NHmidlatitudes and Tropics, respectively. The errors are shown for the temperature

(top row), meridional component of the wind vector (middle row) and specific humidity (bottom

row) at forecast lead times day 1 (left column), day 3 (middle column), and day 5 (right column).

In general, the hybrid forecasts (blue curves) have forecast value, except for the specific humidity

at day 5 in the NH midlatitudes, for which they are only about as accurate as the forecasts based on

climatology. In addition, the hybrid forecasts are either more accurate than all benchmark forecasts,

or similarly accurate to the most accurate benchmark forecast. The hybrid model performance in

the SH midlatitudes (not shown) is similar to that in the NH midlatitudes. The advantage of the

hybrid model compared to the different benchmarks, however, strongly depends on the forecast

variable and lead time. Next, we discuss this dependence, as it provides important insight into the

mechanisms by which CHyPP improves the numerical forecasts.
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Figure 3.3: Northern Hemisphere midlatitudes (between 30◦N and 70◦N) forecast verification results. Re-
sults are shown for the (blue) hybrid model, (green) SPEEDY, (orange) ML-only model, (purple) SPEEDY-
LLR model, (red) persistence, and (black) climatology. Shown is the area�weighted root�mean�square
error at the different atmospheric levels for (top row) the temperature, (middle row) meridional wind, and
(bottom row) specific humidity at (left column) day 1, (middle column) day 3, and (right column) day 5
forecast time. Reprinted with permission from Arcomano et al. (2022).

3.3.3.2 Hybrid Versus SPEEDY Forecasts

Compared to SPEEDY, the advantage of the hybrid model is the largest for the temperature.

While all hybrid temperature forecasts have substantial forecast value for the first 5 forecast days,

the SPEEDY day 5 temperature forecasts have no forecast value in the Tropics and in the strato-

sphere in the NH midlatitudes. In addition, the SPEEDY forecasts have little forecast value at day
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Figure 3.4: As in Fig. 3.3 for the Tropics (between 30◦S and 30◦N). Reprinted with permission from Arco-
mano et al. (2022).

5 in the midlatitudes. The benefit of the ML correction is particularly striking in the tropical upper

troposphere, where the SPEEDY forecasts have a large error with a maximum of 6 K at 200 hPa,

while the error of the hybrid forecasts remains below 1 K.

In addition to the temperature, the hybrid forecasts are also substantially more accurate than the

SPEEDY forecasts for the specific humidity, especially, in the lower troposphere, where parame-

terizations play an important role in modeling the effects of moist atmospheric processes. While

in the NH midlatitudes the hybrid forecasts degrade only to the level of the forecasts based on

climatology by day 5, the error of the SPEEDY forecasts reaches saturation by that time.
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In the two midlatitudes, the state variable for which the advantage of the hybrid model is the

smallest compared to SPEEDY is the meridional component of the wind vector. This result is

not surprising, as numerical models are known to capture synoptic-scale Rossby wave dynamics,

which dominate the variability of weather in the midlatitudes. In contrast, in the Tropics, where

wave dynamics is coupled to the parameterized process of deep convection, the advantage of the

hybrid model for the meridional wind component is more substantial.

To explore the scale-dependence of the performance of the hybrid and benchmark forecasts, we

examine the spectrum of the errors for themeridional component of the wind at 500 hPawith respect

to the zonal wave number (Figure 3.5). (This figure also shows results for day 10, in addition to

the results for forecast days 1, 3, and 5.) The left panel shows the results for the hybrid and the

SPEEDYmodel. Because SPEEDY is a spectral transformmodel with cut-off wave number 30, the

spectrum for SPEEDY has no power at all beyond that wave number, and it is heavily dampened

at wave numbers larger than about 20. Therefore, the errors of the hybrid forecasts, which have

realistic power at all wave numbers, are expected to saturate at a level that is higher than that for

SPEEDY at the tail-end of the spectrum. At day 1, the hybrid forecasts have a clear advantage over

the SPEEDY forecasts at the synoptic and large scales (zonal wave numbers lower than about 20).

A smaller, but spectrally similar advantage still exists at day 3, while the advantage of the hybrid

forecasts disappears, except at wave numbers 5 and 6, by about day 5.

3.3.3.3 Hybrid Versus ML-only Forecasts

While the errors of the ML-only forecasts (orange curves in Figs. 3.3- 3.5) are only slightly

larger than that of the hybrid forecasts at day 1, they grow much faster in the next four days and

the ML forecasts typically have no value by day 3. This result suggests that while the RC-based

ML technique can produce accurate forecasts in the short range (day 1-2), it is more effective in

assisting SPEEDY than directly predicting the weather beyond that range. A comparison of the left

and middle panels of Fig. 3.5 suggests that the information provided by SPEEDY to the hybrid is

particularly beneficial at the large scales (wave numbers lower than about 6).
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3.3.3.4 Hybrid Versus SPEEDY-LLR Forecasts

Next to the hybridmodel, the benchmark that performs the best in themedium (day 2-5) forecast

range is the SPEEDY-LLR (purple curves). While the hybrid forecasts are more accurate than the

SPEEDY-LLR forecasts, the forecast error differences between the two models are modest, except

for those in the stratosphere. The fact that the forecast error differences are smaller for the hybrid

model versus SPEEDY-LLR than for the hybrid model versus SPEEDY indicates that the periodic

interactive correction of the SPEEDY forecasts itself makes an important contribution to the good

performance of the hybrid model. The additional forecast improvement, however, is not the only

benefit of using ML rather than local linear regression for the forecast correction: while the hybrid

forecasts remain stable indefinitely (see section 3.4), some of the SPEEDY-LLR forecasts fail as

early as day 11 lead time, with about 60% of the forecasts reaching the intended 21 days.

It should be noted that the fact that local linear regression can efficiently correct the errors of

a 6 h forecast is not completely surprising, considering that linear regression can be used to model

the short-term forecast error dynamics for even a state-of-the-art NWP model (Bishop et al. 2017),

in which nonlinear effects are expected to play a more important role even at short lead times. It is

a nontrivial result, however, that the information provided by such a linear approach can be used

for the periodic, interactive correction of an evolving numerical forecast. It is also a nontrivial

result that an RC-based ML technique stabilizes the resulting hybrid model indefinitely, and leads

to further forecast improvement in the short and medium (day 1-5) range.

3.3.4 Global Mean and Spatially Varying Errors

To gain further insight into the ways the hybrid approach improves forecast performance, we

decompose the global RMSE into a bias and a standard deviation component. (The sum of the

squares of the two components is equal to the square of the root-mean-square error.) The bias

measures the global mean error, while the standard deviation measures the spatially varying part of

the forecast error. The time evolution of the two error components, averaged over the 100 forecasts

is shown for three representative state variables in Fig. 3.6.

39



1 3 5 7 10 30 50
Zonal Wave Number

10 1

100

101
[m

/s
]2

k 3

Hybrid vs SPEEDY
500 hPa V-wind

Hybrid Model
SPEEDY

1 3 5 7 10 30 50
Zonal Wave Number

10 1

100

101

k 3

Hybrid vs ML
500 hPa V-wind

Hybrid Model
ML

1 3 5 7 10 30 50
Zonal Wave Number

10 1

100

101

k 3

Hybrid vs SPEEDY-LLR
500 hPa V-wind

Hybrid Model
SPEEDY-LLR

Figure 3.5: Spectral distribution of the 500 hPa meridional wind forecast error in the NH midlatitudes (be-
tween 30◦N and 70◦N) with respect to the zonal wave number. The power spectra of the forecast errors are
shown (left) for the the hybrid model (blue) vs SPEEDY (green), (middle) the hybrid model (blue) vs the
ML-only model (orange), and (right) hybrid model (blue) vs SPEEDY-LLR (purple) at day 1 (solid square),
day 3 (open circle), day 5 (solid triangle), and day 10 (open diamond). Reprinted with permission from
Arcomano et al. (2022).

For the temperature near the surface (at 950 hPa, top panel), SPEEDY rapidly develops a warm

bias that oscillates around amean of 0.75Kwith the diurnal cycle. This bias is the result of SPEEDY

using a single daily average value of the incoming solar radiation at the top of the atmosphere at all

times of the day. The hybrid model greatly reduces the magnitude of the bias and also removes its

diurnal oscillation. The biases of the ML model and SPEEDY-LLR are comparable to that of the

hybrid model in magnitude, but the SPEEDY-LLR bias exhibits diurnal variability.

The spatially variable component of the low-level temperature error remains lower for the hy-

brid model than for SPEEDY throughout the 14-day period shown in the figure. The same com-

ponent is initially similarly low for the hybrid and ML-only model, but it increases much more

rapidly for the ML-only model. (Even with this rapid increase, the ML-only forecasts remain more

accurate than the SPEEDY forecasts until about day 4). This component is initially lower for the

hybrid model than for SPEEDY-LLR, but their accuracies are essentially the same after about day 8.

Also, while the curves for SPEEDY and the hybrid model saturate at the same level as persistence,

the curve for the ML-only model saturates at a higher level, indicating that the ML-only model
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overestimates the spatial variability of the low-level temperature at the longer forecast times.

SPEEDY rapidly develops a positive specific humidity bias near the surface (950 hPa, middle

panel) that saturates at about 1 g/kg at day 7 lead time. Both the hybrid model and the other

two benchmarks eliminate most of this bias. The spatially varying component of the error behaves

similarly to that for the low level temperature, with the hybridmodel outperforming the benchmarks

for lead times from 1-7 days.

For the meridional wind component in the upper troposphere (200 hPa, bottom panel) none of

the models develop a noteworthy bias. Thus, the differences in forecast performance are solely

due to differences in the spatially varying component of the forecast error. This error component is

still smaller for the hybrid model than SPEEDY for the first 9 forecast days, and than for the other

benchmarks for the the first 6 forecast days.

3.3.5 Atmospheric Balance

Maintaining the delicate balance between the wind (momentum) and mass field in a numerical

model, especially at short forecast lead times, has been one of the biggest challenges of atmospheric

modeling since the dawn of NWP (e.g., Lynch 2006). In amodernNWPmodel, a weakened balance

is a short-lived transient property and themagnitude of the initial transient can be greatly reduced by

initialization techniques (e.g., section 8 of Lynch (2006)). In the hybrid model and SPEEDY-LLR,

however, no initialization is done before a corrected 6 h forecast is used as the initial condition of

the next 6 h numerical forecast. Hence, the corrections inevitably upset the balance in the numerical

component of the hybrid forecasts every 6 h. The forecast verification results discussed thus far

suggest that these imbalances do not outweigh the positive effects of the corrections on the accuracy

of the hybrid forecasts. But, can the hybrid model produce realistic surface pressure tendencies by

also correcting the surface pressure field for the effects of gravity waves excited by the imbalances?

We investigate this possibility by examining the global root-mean-square of the surface pressure

tendency in the forecasts for the hybrid and the benchmark models (Fig. 3.7). We assume that the

value computed for ERA5 (red curve), which is about 0.4 hPa/h, provides a realistic estimate of the

41



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Forecast Day

0

1

2

3

4

5

E
rr

or
 (K

el
vi

n)

Global Mean and Standard Deviation of the Error 
 950 hPa Temperature

SPEEDY Mean Error
SPEEDY SD Error
Hybrid Mean Error
Hybrid SD Error
Persistence Mean Error
Persistence SD Error
LLR Mean Error
LLR SD Error
ML Model Mean Error
ML Model SD Error

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Forecast Day

0.0

0.5

1.0

1.5

2.0

E
rr

or
 (g

/k
g)

Global Mean and Standard Deviation of the Error 
 950 hPa Specific Humidity

SPEEDY Mean Error
SPEEDY SD Error
Hybrid Mean Error
Hybrid SD Error
Persistence Mean Error
Persistence SD Error
LLR Mean Error
LLR SD Error
ML Model Mean Error
ML Model SD Error

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Forecast Day

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

E
rr

or
 (m

/s
)

Global Mean and Standard Deviation of the Error 
 200 hPa V-wind

SPEEDY Mean Error
SPEEDY SD Error
Hybrid Mean Error
Hybrid SD Error
Persistence Mean Error
Persistence SD Error
LLR Mean Error
LLR SD Error
ML Model Mean Error
ML Model SD Error
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global root-mean-square of surface pressure tendency in the atmosphere.

As can be expected from a numerical model started from an uninitialized initial condition, the

initial tendency for SPEEDY (about 1 hPa/h) is higher than desired. As forecast time increases,

the the magnitude of the mean tendency drops, first rapidly, and then at a decreasing rate until it

settles below the natural level, at about 0.28 hPa/h. The latter behavior suggests that the diffusion

built into the model to combat imbalances over-smooths the temporal variability of the forecasts

beyond day 1. While the magnitude of the mean tendency for the hybrid forecasts (about 0.38

hPa/h) is initially slightly smaller than the natural value, and further decreases in the first 72-84 h

(to about 0.36 hPa/h), it is closer to the natural value than those for the benchmark forecasts. The

SPEEDY-LLR is less effective than the hybrid model in eliminating the initial transient and it also

produces an average tendency at the later forecast times (about 0.30 hPa/h) that is further below the

natural level. The ML-only model behaves similarly to the hybrid model for the first two forecast

days, but the saturation value is clearly lower (about 0.33 hPa/h) than for the hybrid model.

3.3.6 Sensitivity to Training Length

To test the sensitivity of the performance and stability of the hybrid model to the training length,

we carry out a series of experiments with the same hyperparameters as before, but for shorter

training periods. In particular, we train the model on 2 years, 5 years, or 10 years of reanalysis

data, with the training always ending at 2300 UTC, June 26, 2011, as for the original forecast

experiments. (We recall that the length of the training for the original experiments is 20.5 years.)

The results of these experiments for the usual 100 21-day forecast cases for select variables are

summarized in Fig. 3.8.

While training the hybrid model for only 2 years already significantly improves the forecast

performance for the near-surface temperature and specific humidity compared to that of SPEEDY,

extending the training length further improves the forecasts. The hybrid model trained for 2 years

does not improve the meridional wind component in the upper troposphere, and actually degrades

the forecasts beyond 3 days. A longer training makes the hybrid model perform better initially than
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Figure 3.7: Atmospheric balance in the model forecasts. Shown is the global root-mean-square of the ap-
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hybrid model, (green) SPEEDY, (orange) ML-only model, and (purple) SPEEDY-LLR model. The (red)
value computed for 2011-2012 based on the ERA5 reanalyses is also shown for reference. Reprinted with
permission from Arcomano et al. (2022).

SPEEDY. The length of the superior performance of the hybrid model becomes longer as the length

of the training period increases. The results shown in Fig. 3.8 also suggest that a further modest

improvements of the forecast performance could be achieved by using a training period even longer

than 20.5 years.

3.4 Climate Simulation Experiment

To evaluate the long term stability of the hybrid model and its ability to simulate the climate,

we compute an 11 year long free run with the model. For this simulation experiment, the hybrid

model is trained on ERA5 reanalyses for the 19-year period from January 1, 1981 to December

27, 1999. The simulation starts from the ERA5 reanalysis valid at 0000 UTC, January 1, 2000. To

suppress the effects of initial transients and the initial condition on themodel diagnostics, we discard

the data from the first year of the simulations before computing the diagnostics. To compare the

performance of the hybrid model and SPEEDY in simulating the climate, we assume that the two
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Figure 3.8: Time evolution of the global root-mean-square forecast error for different lengths of the training
of the hybrid model. Results are shown for a (purple) 2 years, (green) 5 years, (red) 10 years, and (blue)
20.5 years training period. For reference, the forecast errors are also shown for (brown dashes) SPEEDY
and (black dashes) climatology. Reprinted with permission from Arcomano et al. (2022).

simulations attempt to simulate the climate of the 10-year period from 2001-2010 as represented

by ERA5.
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3.4.1 Zonal Mean Biases

Figures 3.9 and 3.10 show the zonal mean biases of the simulations by SPEEDY (left panels)

and the hybrid (right panels) for the boreal winter (December, January, and February) and boreal

summer (June, July, and August), respectively. These figures can be used, not only to compare the

quality of the two simulations, but also to assess the average magnitude of the corrections made by

the ML component of the hybrid model. In particular, the difference between a left panel and the

corresponding right panel is the zonal mean of the ML correction for a particular state variable.

The top left panels show that SPEEDY has a large upper tropospheric warm bias for the tropical

regions, during both the boreal winter and summer. In both polar regions SPEEDY has a cold

bias for the upper troposphere and stratosphere during the boreal winter and a warm (cold) bias in

the southern (northern) polar region during the boreal summer. The magnitude of the bias is not

surprising given the coarse resolution and simplified parameterizations used in SPEEDY (Molteni

2003). The top right panels show that the hybrid model greatly reduces, but does not completely

eliminate, these biases when the model is cycled over a long period of time. The bias reduction

is particularly notable in the the tropics and the midlatitudes. The largest remaining biases are in

the polar regions. The hybrid model reduces the zonal component of the wind bias, especially in

the stratosphere and upper troposphere, and in the lower troposphere in the SH midlatitudes in the

boreal summer. The only exception is the introduction of a positive zonal component of the wind

bias in the stratosphere in the tropics. The hybrid model also greatly reduces the large positive

humidity bias of SPEEDY with maxima in the tropics.

Figure 3.11 shows themean surface pressure biases for the simulations by SPEEDY (left panels)

and hybrid model (right panels) for the boreal winter (top row) and boreal summer (bottom row).

The mottled short scale patterning seen in the two left panels of the figure are due to the spectrally

truncated topography of SPEEDY, which is much smoother than the topography determining the

interpolated ERA5 reanalyses used for the evaluation of the simulations, and for the training of

the hybrid model. In combination with the artifacts caused by the spectral truncation in SPEEDY,

the large local differences in the mountainous regions lead to substantial surface pressure biases in

46



25
100
200
300
400
500
600
700
800
900

hP
a

SPEEDY Temperature Bias-80.0

-70.0 -60.0

-60.0

-50.0-40.0

-40.0

-30.0
-20.0

-10.0
0.0

10.0

20.0

Hybrid Temperature Bias

-8
0.

0

-7
0.

0

-60.0-6
0.

0

-50.0
-40.0

-40.0

-30.0
-20.0

-10.0
0.0

10.0

20.0

25
100
200
300
400
500
600
700
800
900

hP
a

SPEEDY Zonal Wind Bias
-10.0

0.0

0.0

0.0

0.010.0

10.0

20.0
20.030.0

Hybrid Zonal Wind Bias
-10.0

0.0

0.0

0.
0

0.010.0

10.0

20.0 20.0
30.0

60°S 30°S EQ 30°N 60°N
Latitude

400

500

600

700

800

900

hP
a

SPEEDY Zonal Specific Humidity Bias

2.0

4.0

6.0

8.0
10.0
12.0
14.0

60°S 30°S EQ 30°N 60°N
Latitude

Hybrid Zonal Specific Humidity Bias

2.0

4.0

6.0
8.0
10.0
12.0
14.0

9
6
3

0
3
6
9

K
el

vi
n

18
12
6

0
6
12
18

m
/s

2.0
1.6
1.2
0.8
0.4

0.0
0.4
0.8
1.2
1.6

g/
kg

Figure 3.9: Comparison of the zonal mean biases of the SPEEDY and hybrid simulation simulations for
the boreal winter (December, January, February). Results are shown for (top) the temperature (middle),
zonal wind, and (bottom) specific humidity for (left) SPEEDY and (right) the hybrid model. Reprinted with
permission from Arcomano et al. (2022).
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Figure 3.10: Same as Fig. 3.9, except for the boreal summer (June, July, August). Reprinted with permission
from Arcomano et al. (2022).

the SPEEDY simulations. The hybrid model corrects the large local biases, but still has smaller

magnitude large scale biases. The wave-number-two structure of the large-scale hybrid model bias
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in the NH suggests that these biases are related to the low resolution representation of the topog-

raphy and the land-sea contrasts in the numerical model. The remaining biases are also relatively

large in the polar regions, especially in the boreal summer. We speculate that the bias of the hybrid

model in the polar regions might be related to our particular strategy to do the localization on a

cylindric (Mercator) map projection. On the other hand, the bias is not concentrated at the poles

for the variables shown in Figures 9 and 10.
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Figure 3.11: The mean surface pressure bias in the SPEEDY and hybrid climate simulations. Shown is
the bias for (top) the boreal winter (December, Januar, February) and (bottom) boreal summer (June, July,
August) for (left) SPEEDY and (right) the hybrid model. Reprinted with permission from Arcomano et al.
(2022).

3.4.2 Temporal variability

To investigate the temporal variability of the atmosphere in the SPEEDY and hybrid climate

simulations, we examine the temporal dependence of the 950 hPa temperature at the four model

grid points that fall in the Sahara Desert. The top two panels of Fig. 3.12 show the power spectra

of the temporal variability for the two models. These power spectra are computed by applying a

Hamming filter first, and then a discrete Fourier transform to the 10 years of 6-hourly simulation
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data, and finally computing the square of the absolute value of the Fourier coefficients. The results

show that both simulations correctly capture the variability at time scales longer than about a week.

At the shorter time scales, however, SPEEDY increasingly underestimates the variability. The

ML correction greatly reduces, but does not completely eliminate, this problem: the hybrid model

underestimates the variability at the scales between one week and one day only slightly, and reduces

the underestimation by SPEEDY at the even shorter scales. Most importantly, unlike SPEEDY, the

hybrid model has a strong diurnal cycle. It should be noted that an earlier version of the hybrid

model, which did not include the incoming solar radiation at the top of the atmosphere as an input

to the reservoir, lost the diurnal cycle at around the end of year 4. This motivated us to add the

incoming solar radiation as an input parameter, even though it had no significant effect on the

forecast accuracy. We find it a noteworthy, nontrivial result that the earlier version of the hybrid

model was able to learn the diurnal cycle strictly from the training data.

The fact that a simulation correctly captures the variability at a number of frequencies does not

guarantee that the phases of the temporal changes (e.g. the timing of the seasons) are also correct.

To exclude the possibility of such a flaw of the simulations, we plot (bottom panel of Fig. 3.12)

the time series of the average 950 hPa temperature for the same four Saharan grid points for the

last full year of the simulations. The points along these curves should fall within two standard

deviations from the mean for the given date and time (the interval marked by gray shading) with a

95% observed frequency. Based on the full ten years of data, the observed frequency is 88.2% for

SPEEDY and 98.0% for the hybrid model.

3.5 Conclusions

In this paper, we described results from the first implementation of the hybrid modeling ap-

proach CHyPP of Wikner et al. (2020) on a realistic atmospheric model. We used a low-resolution

AGCM based on the full set of primitive equations, along with ERA5 reanalysis data for train-

ing and verification, to demonstrate the potentials of CHyPP for both NWP and climate modeling.

The spatio-temporal structure of the improvements of the forecasts and simulations suggests that
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the ML component of the model primarily corrects for errors caused by the limitations of the pa-

rameterization schemes of the AGCM. While state-of-the-art numerical models have much higher

resolutions and more advanced parameterization schemes than SPEEDY, the weather forecasts and

climate simulations they provide still have substantial biases. We expect the hybrid approach to

effectively reduce these biases.

Because the ML component of the hybrid model is based on RC, training the model is computa-

tionally highly efficient. Specifically, the training described in this paper requires only 30 minutes

wall-clock time using 1,152 Intel Xeon E5-2670 v2 processors on a supercomputer that is much

less powerful than those at the operational NWP centers. Using the same computational resources,

preparing a 21-day forecast takes about 52 seconds, while carrying out a one-year simulation takes

about 15 minutes. These numbers are only 25% higher than those for SPEEDY, and the extra time

is mainly due to the overhead associated with the frequent restart of SPEEDY.

Due to the parallel nature of the computational algorithm, we expect it to scale well for higher

model resolutions and larger number of processors. A modification of the current implementation
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of our method that might be helpful for scaling is vertical localization. By “vertical localization”

we mean the use of local domains that, as well as being limited in horizontal extent as shown in

Fig. 3.1, are also of limited height and are stacked vertically with overlap from ground-level to the

top of the atmosphere. Though we do not use vertical localization in this article, we plan to test it

soon for potential improvements with SPEEDY.

The ideal size of a local domain still needs to be determined through additional experimentation,

both for SPEEDY and for higher-resolution models. Thus, it is hard to make a precise quantitative

projection for scaling, but here is a comparison that indicates feasibility for operational models.

The current computer of ECMWF has 129,960 processors (about 100 times more than what we

used), and their operational model has 6.5×106 horizontal grid points (about 180 times more than

SPEEDY) (ecm 2020). If the local regions for the ECMWF model would be defined by four hor-

izontal and all vertical grid points, as in our paper, each processor would have to handle less than

twice as many local regions at ECMWF than in our model. Also, there is no obvious reason to

believe that the computational overhead of the hybrid model would be substantially higher than

the 25% we found for SPEEDY. The high computational efficiency of the approach would allow

for a large number of experiments to find the optimal configuration of a future operational hybrid

model. Developing an efficient systematic approach to find a near optimal combination of the hy-

perparameters, nevertheless, would be highly desirable and is one of the subjects of our ongoing

research efforts. An unknown factor that could have a very favorable impact on future scaling

considerations is the ongoing rapid technological developments of alternative, fast, cheap physi-

cal implementations of reservoir computing, e.g., implementations based on photonics or on Field

Programmable Gate Arrays.

We emphasize that while the ML component of the hybrid model is highly efficient in correct-

ing the biases of the forecasts and simulations prepared by the host model, it is not a ML-based

postprocessing technique. While a technique of the latter type corrects the numerical-model-based

forecasts of a specific forecast variable or phenomenon (e.g., Rasp and Lerch 2018; Chapman et al.

2019; Kim et al. 2021) without interacting with the numerical model, the ML component of the hy-
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brid model makes frequent periodic interactive corrections to the numerical model solution. Hence,

it also greatly improves the representation of the spatiotemporal variability of the atmospheric state

by the model.

We expect that the performance of the hybridmodel can be further improved by investigating the

relationship between the parameters of the ML model and the representation of basic atmospheric

processes. Such an investigation could lead to further improvements of the model, similar to the

way studies of the interactions between numerics and dynamics (e.g., Arakawa and Lamb 1977)

led to much improved physic-based numerical models. For instance, one potentially important

fundamental question is the optimal relationship between the size of the local domains, the overlap

between the local domains in the input of the reservoir, and the length of the time step ∆t. The

fact that the ML component is more effective in correcting localized errors than errors at the larger

scales in the current version of our hybrid model may be partly the result of using local domains and

an overlap that are less than optimal for the selected time step. In our experiments, the size of the

overlap was primarily dictated by the structure of our code and the available computer resources,

but larger local domains and a larger overlap could be used in the future.

An intriguing possibility is to use the hybrid model for data assimilation in addition to forecast-

ing, as data assimilation could greatly benefit from the higher accuracy and smaller biases of the

short term hybrid forecasts used as background. Furthermore, integratingML and data assimilation

may allow in the future to do online training of the ML component of the hybrid model on real-

time observations rather than canned reanalyses data. The availability of such training procedure

would make it possible to extend the hybrid modeling approach to numerical models for which

high-quality reanalysis data are not available (e.g., an AGCM that also includes a sophisticated

model of the upper atmosphere well beyond the lower stratosphere). It could also allow the ML

component of the model to adjust to variability and changes of the climate. We have made a first

step toward this ambitious goal, in which we iteratively use the hybrid model to prepare an updated

set of analyses, which is then used to train the next iteration of the hybrid model (Wikner et al.

2021). Our plan is to test this approach with the hybrid model of the current paper.
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4. COUPLING THE ATMOSPHERIC HYBRID MODEL WITH A MACHINE LEARNING

OCEAN MODEL

4.1 Introduction

Over the last several decades there has been significant advancement in global climate models

(GCMs) with the development of coupled GCMs that can numerically simulate the interactions

between the various Earth system components (e.g. atmosphere, ocean, cryosphere). Earth System

Models (ESMs) add the simulation of chemical and biological processes and their interactions with

the Earth system. GCMs and ESMs are the main tools for providing insight on possible future

climates caused by anthropogenic activities (e.g. Lynch 2008). Simulations of hypothetical, future

climates from GCMs are crucial for making recommendations on future climate risk and allow

for mitigation to reduce impacts of climate change (e.g. Arias et al. 2021). GCMs have steadily

improved at replicating the present and past climate due to advances in high performance computing

allowing GCMs to be run at higher spatial resolutions (e.g. Ma et al. 2015; Caldwell et al. 2021).

At the same time advancements in parameterization schemes have improved effects of subgrid

processes not explicitly resolved by the dynamical core of climatemodels (e.g. cloudmicrophysics)

(Lynch 2008). Even with these advancements, state-of-the-art climate models continue to have

large systematic biases especially for atmospheric variables heavily influenced by parameterization

schemes (e.g. precipitation and clouds), sea surface temperatures in the ocean models, and sea ice

(e.g. Danabasoglu et al. 2020; Golaz et al. 2019; Zhang et al. 2019).

Recently, the incorporation of machine learning (ML) into the numerical weather prediction

(NWP) process has been shown to improve short-term weather forecasts and reduce the biases

of atmospheric general circulation models (AGCMs) when compared to the past and present cli-

mates. These hybrid models that combine machine learning with a traditional numerical model

offer a pathway to reduce forecast error and model bias by using ML to make frequent periodic

interactive correction to the evolving model solution. Watt-Meyer et al. (2021) used deep learning
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and random forest-based ML architectures to learn the nudging tendencies for select variables in a

coarse AGCM using reanalysis. Clark et al. (2022) and Bretherton et al. (2022) expanded this work

by using ML to learn the nudging produced by cloud resolving ( 3km) simulations in stationary and

nonstationary climates. The hybrid modeling approach described in Section 3 of this dissertation

that combines a coarse AGCM (SPEEDY) with a parallel, reservoir-computing-based (RC) algo-

rithm. As already shown in Section 3, the hybrid model improved short to medium range weather

forecasts and greatly reduced the biases of SPEEDY during an 11-year free run.

Another promising approach to improving weather forecast and climate models is to use purely

data-driven models for a time-series prediction of various Earth System components. Recently,

machine learning only models for weather prediction has become an area of active research (e.g.

Weyn et al. 2019, 2020; Scher and Messori 2019; Rasp and Thuerey 2021). Data-driven models

offer a major advantage to numerical-based models, because once trained, ML models can make

predictions significantly faster than traditional numerical models (e.g. Pathak et al. 2022). For cli-

mate change projections, having an ensemble of models can help quantify uncertainty and deliver

probabilistic forecasts that are crucial for policy makers (Arias et al. 2021). GCMs are run for

decades or centuries and typically need to be run on high performance computing cluster. In con-

trast, once trained, ML models can be run on a small number of CPUs or GPUs. Taking advantage

of this computational efficiency, Weyn et al. (2021); Scher andMessori (2021) were able to create a

large ensemble system with more ensemble members than what would have been computationally

feasible using numerical models, allowing for the possibility to improve subseasonal to seasonal

forecasts.

The ocean is one of the most important components of the Earth system. The sea surface tem-

perature (SST) is particularly important, because it is the interface between the ocean and atmo-

sphere, playing key roles in the Earth energy budget and water cycle. Ocean modeling also poses

unique challenges compared to the atmosphere due to processes such as land-ocean interface and

sea ice. The oceanicc components of modern GCMs and ESMs are sophisticated ocean models

that are computationally expensive and still suffer large SST biases when compared to past and
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present climate (e.g. Golaz et al. 2019; Capotondi et al. 2020; Zhu et al. 2020). Data-driven models

have been developed to predict sea surface temperatures (SSTs) and other various ocean phenom-

ena (e.g. El Nino Southern Oscillation) with the hopes to improve predictability and reduce biases.

Deep learning methods have been used to extend ENSO predictability and try to break the ”spring

predictability barrier”, a challange current numerical models struggle with (e.g. Ham et al. 2019).

There has also be development using deep learning to predict local and global SSTs (e.g. Xiao et al.

2019; Sarkar et al. 2020; Taylor and Feng 2022).

Unlike the authors of aforementioned publications, we propose a global ML-ocean model that

utilizes the parallel, reservoir computing-based (RC) approach of Pathak et al. (2018a) and Ar-

comano et al. (2020) rather than deep learning to predict SST from past oceanic and atmospheric

states. Walleshauser andBollt (2022) inwhich the authors used the same parallel, reservoir computing-

based algorithm as us to build a stand-alone MLmodel for the prediction of the global SST dynam-

ics. In our model, the ML model of the SST dynamics is coupled to the hybrid model described in

Section 3.

The work presented here can be considered a first step towards creating a fully coupled GCM

that utilizes machine learning to couple and predict various Earth system components (e.g. atmo-

sphere, ocean, cryosphere).We will show that the coupled model is stable during a 70-year free

run and it is able to reproduce the present climate with significantly less bias than the AGCM

(SPEEDY). The coupled model can simulate long-term climate variability for both the ocean and

atmosphere (e.g. El Niño–Southern Oscillation).

In what follows, we first describe the coupled model (Section 4.2). Then, we discuss the results

of the 70-year climate free run (Section 4.3). Finally, we summarize our key findings and draw

our conclusions (Section 4.4).

4.2 The Coupled Model

The coupled model has two components: a hybrid atmospheric model similar to the one de-

scribed in Section 3 and, a machine learning ocean model that uses the parallel RC algorithm de-
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scribed in Section 2.2 and 3.2.3 to predict the SST. Like numerical physics-based coupled GCMs,

the two components of our coupled model evolves at different timesteps (∆tatmo and ∆tocean):

∆tatmo = 6 hours and ∆tocean = 7 days. In the prediction phase the hybrid atmospheric model

is dynamically coupled to the ML-ocean model. Each component of the coupled model evolves at

its respective timestep and exchange information every 7 days. A flowchart showing the exchange

of information in the prediction phase is provided in Figure 4.2.

4.2.1 Machine Learning Only Ocean Model

4.2.1.1 The Local State Vectors

In our implementation of the parallel RC-based algorithm for predicting the SST, each local

state vector represents the SST state in a two-dimensional local domain that has the shape of a

rectangular box with dimensions of 7.5◦×7.5◦ (2 × 2 horizontal grid points). In what follows,

we describe the computations carried out in parallel for each of the L local domains to evolve the

ML-ocean model state from time t to t+∆tocean.

Let v(t) be the local state vector for an arbitrary local domain at time t. The dimension of this

state vector is 4 (SST value at each grid point). The state vector is standardized to have a mean of

0 and a standard deviation of 1 before forming v(t). The standardization is done by using ERA5

reanalysis data (Hersbach et al. 2020) for the computation of the climatological mean and standard

deviation for each local domain.

The local input u(t) is an m-dimensional extended local state vector, composed of the com-

ponents of the local state vector v(t), plus the additional components from the neighboring local

domains, plus the rolling mean of the two components of the wind vector, temperature, and specific

humidity for ∆tocean at σ=0.95, plus the rolling mean of the natural logarithm of surface pressure

and the prescribed incoming solar radiation for∆tocean at the top of the atmosphere for the extended

local domain. For all of the local domains, m = 16× (4+ 1+ 1+ 1), except at the local domains

adjacent to the poles where m = 12× (4+ 1+ 1+ 1).
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4.2.1.2 Training

The reservoir evolves by the discrete time mapping

r(t+∆t) = tanh [Ar(t) + Bu(t)], (4.1)

where r(t) is the reservoir state, and u(t) is the input vector. In the training phase u(t) is ERA5

reanalysis data (Hersbach et al. 2020). The matrix A is a sparse weighted adjacency matrix that

represents a low-degree, directed, random graph Gilbert (1959). Each nonzero element of A is

randomly chosen from a zero-mean uniform distribution, with the number of nonzero elements

being prescribed by a specified sparsity. To ensure that the reservoir has the echo state property

(Jaeger 2001), the values of the nonzero elements are scaled such that the largest eigenvalue of A

is a prescribed value that is between 0 and 1. The matrix-vector product Bu(t) is called the input

layer of RC. In our model, B is a sparse random matrix with an equal number of nonzero entries in

each row. A flowchart of the different parts of the RC are shown in Fig. 4.1.

Similarly to Section 2, the ML ocean model prediction is obtained by

v(t+∆tocean) = W[r(t+∆tocean)], (4.2)

whereW is the output layer. The output layerW is a matrix of parameters that are determined by

training on a time series of SST reanalyses va(k∆tocean), k = −K − Kt,−K − Kt + 1, ...,−1. The

the reservoir states r(k∆tocean) for k = −K− Kt,−K− Kt + 1, ...,−1 are obtained by substituting

va(k∆tocean) for u(k∆tocean) in Equation 2.1. The W can be computed by minimizing the cost-

function

J(W) =
0∑

k=−K+1

∥v(k∆tocean,W)− va(k∆tocean)∥2 + β∥W∥2. (4.3)

The first term on the right hand-side of the equation minimizes the difference between a one-time-

step prediction from the reservoir and the reanalysis valid at the same time. The second term of the

cost function, in which ∥·∥2 denotes the sum of the squares of the entries of a matrix (the Frobenius
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norm), is a regularization term to prevent overfitting (Tikhonov and Arsenin 1977).

Figure 4.1: A flow chart of our implementation of reservoir computing. The notation is defined in Sec-
tion 4.2.1. The flow chart highlights the three main components of the algorithm: the input layer, the reser-
voir, and the output layer.

4.2.1.3 Sea ice and Coastlines

The ML-ocean model has the capability to simulate sea ice dynamics in a simplistic manner.

First, any local domain near the poles that are permanent sea ice during the period of 1981-2007

are ignored and are assumed to be sea ice during the entirety of the predictions. We determine if

sea ice is present by assuming any SST value less than -1C indicates sea ice. In the transitional

regions between permanent sea ice and water that were completely sea ice free during the training

period, we treat sea ice as part of the ocean. During prediction the reservoir may predict values less

than -1◦C, but to prevent instability any values below -1C are overwritten to be precisely -1◦C at

the end of each ocean time step.

Any local domain that contains only grid points over land is ignored. For reservoirs with local

domains that contain grid points over both the ocean and land, the grid points over land are ig-

nored. Thus, the local reservoirs make predictions only for oceanic grid points. Atmospheric input

variables are provided for all grid points in the local region, including those over land. If a grid

point in the extended local state vector u(t) is over land, we assign a constant land mask value to

the corresponding entry of u(t). This provides the reservoir with spatial information whether a grid

point is over the ocean or land.
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4.2.2 Hybrid Atmospheric Model

The atmospheric hybrid model is an updated version of the model described in detail in Section

3. The updates include the addition of the SST field to the local state vector to allow for the dynam-

ically coupling of the hybrid atmospheric model to the ML-ocean model in the prediction phase. In

the prediction phase, the SST field from the ML-ocean model provides the boundary condition for

SPEEDY. A flowchart of this is process shown in Fig. 4.2. We also add 6-hourly total precipitation

(TP) as a prognostic variable to the hybrid atmospheric model. Because SPEEDY does not provide

a short-term prediction of TP, the ML component of the hybrid model is solely responsible for the

prediction of TP. Because TP is highly skewed towards zero with the occasional nonzero value, we

apply a log-transformation to TP: log(1 + tp/ϵ), where ϵ is a tunable hyperparameter.

We also found a coding error related to the addition of noise to the training data. In Sections 2

and 3 we reported that a small-magnitude, zero-mean, normally distributed random noise vector

εg, uncorrelated in time and uncorrelated between components of the noise vector was added to

the global analyses to create a sequence of perturbed global analyses vga(k∆t) + εg(k∆t), k =

−K−Kt,−K−Kt+1, ...,−1. We discovered that because of the coding error, the noise vector was

multiplied element by element with the components of the global analyses instead of being added

to them. We found (by accident) that this method of perturbing vga helps stabilize the hybrid model

more than adding the noise vector to the training data. In fact, for the hyperparameters reported in

Section 3, we were unable to stabilize the hybrid model by the addition of noise.

4.2.3 Synchronization and Prediction

Synchronization is achieved by evolving the reservoir equation using reanalyses for both the

atmosphere and ocean components. In the prediction phase, all of the local predictions for the at-

mosphere and ocean are evolved time step by time step to produce a global coupled model forecast.

Because ∆tatmo ≪ ∆tocean, the hybrid atmospheric model takes several timesteps before the ocean

model takes another step. The two components of the coupled model exchange information only

once per oceanic time step. A flowchart of the coupled model for the prediction phase is shown in
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Figure 4.2.
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Figure 4.2: A flow chart of the hybrid atmospheric model coupled with a ML-based ocean model. The SST
from the ML-only ocean model is used as boundary condition for SPEEDY during the climate free run.

4.2.4 Implementation with ERA5 Reanalysis Data

ERA5 data is used for the training and synchronization of the hybrid atmospheric component

and the ML-only ocean component of the model. As in Sections 2 and 3, we first regrid the at-

mospheric fields to the horizontal grid of SPEEDY by a 2-dimensional quadratic B-spline inter-

polation. If a variable is 3-dimensional, we calculate the σ value for each grid point first and then

interpolate the fields of the atmsopheric variables to the σ-levels of SPEEDY vertically, using a

1-dimensional cubic B-spline. For the SST fields, we use the Climate Data Operators (CDO) soft-

ware (Schulzweida 2022) to interpolate the ERA5 SST reanalysis to the SPEEDY horizontal grid

using a 2-dimensional quadratic B-spline with a land mask.
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4.2.5 Selection of the Hyperparameters

As in Sections 2 and 3, there are a number of hyperparameters that require tuning to produce

stable and realistic results. To reduce the overall number of hyperparameters needed to be tuned,

we chose the same values as in Section 3 for the hybrid atmospheric model (see Section 3.2.6

for more detail). The addition of 6-hourly precipitation in the hybrid atmospheric model, however,

introduces the new hyperparameter ϵ that requires tuning. Using the values from Rasp and Thuerey

(2021) and Pathak et al. (2022) as starting points, we run experiments with ϵ = 10−3, ϵ = 10−4, and

ϵ = 10−5 and evaluate each by monitoring the annual precipitation bias and extreme precipitation

rates. Using a value of ϵ = 10−5 over-predicted extreme precipitation rates and has a significant

wet bias. For ϵ = 10−4 there is still a substantial wet bias, but the extreme rainfall rates match

ERA5 well. For ϵ = 10−3 the model tends to under-predict extreme rainfall rates, but it does not

have a significant wet or dry bias. We chose ϵ = 10−3, because it offers the best balance between

reducing biases and predicting extreme rainfall.

We found that using the same values of the hyperparameters κ and α for the ML-only ocean

model as for the hybrid atmospheric model (κ = 6 and α = 0.5) performed well. We varied

ρ from 0.3 to 0.9 in increments of 0.1 and found that ρ = 0.9 was needed to achieve stability.

The ML-only ocean model was found to not be sensitive to βres, and a value of βres = 10−3 was

chosen. After performing several experiments, we found that the smallest value of ε for which

the model was stable was 0.1. Dr = 4, 000 was chosen, because there was little improvement

found in performance using larger values. We found that the most important hyperparameter for

both stability and performance was ∆tocean. We tested ∆tocean = 1 day, ∆tocean = 7 days, and

∆tocean = 14 days. Using a ∆tocean = 7 days and ∆tocean = 14 days both produced stable coupled

predictions, but using ∆tocean = 7 days significantly decreased the SST biases.

4.3 Climate Simulation

To evaluate the long-term stability of the coupled model and its ability to simulate the atmo-

sphere and ocean climate, we compute a 70 -year long free run with the coupled model. For this
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simulation, the coupled model is trained on ERA5 reanalyzes for the 26-year period from 1 Jan-

uary 1981 to 1 December 2006. After training both the atmospheric hybrid model and the ML-only

ocean model are synchronized with ERA5 reanalyzes for the month of December 2006 until the

simulation starts with the ERA5 reanalysis valid at 0000 UTC, 1 January 2007. During the free run

the atmospheric hybrid model and ML-only ocean model evolve together.

4.3.1 Zonal Bias

We compare the annual zonal mean biases of our coupled model to SPEEDY using ERA5 as

reference (Fig.4.3). Similar to A22, we find the coupled model is able to greatly reduce the zonal

mean temperature biases. SPEEDY develops a large warm bias in the Equatorial upper tropo-

sphere and is too cold in the polar stratospheres. The machine learning component of the hybrid

atmospheric model is able to correct these biases but not completely eliminate them.

SPEEDY has significant biases for zonal wind in the jet stream layer of the midlatitudes and in

the stratosphere. Overall, the coupled model greatly reduces these biases but can not completely

eliminate them. The coupled model does, however, introduce a large positive bias in the equatorial

stratosphere. We found that this was related to the coupled model’s inability to simulate the quasi-

biennial oscillation (QBO) correctly. Instead of oscillating between the positive and negative phases

of the QBO every 12-18 months, the coupled model stays in a near permanent positive phase during

the entirety of the 70-year free run. This behavior was also observed in Section 3, suggesting that

this is not related to coupling to the ML-only ocean model or the addition of precipitation as a

prognostic variable.

The hybrid model greatly reduces the large positive humidity bias of SPEEDY with maxima

in the tropics. The reduction of specific humidity biases in our coupled model is slightly worse

than the hybrid atmospheric model Section 3 which does not predict 6-hourly precipitation. The

addition of precipitation to our hybrid atmospheric model is what leads to this slight degradation

in bias reduction. The positive specific humidity bias in the Southern Hemisphere tropics may be

related to the wet bias in the precipitation climatology in the same area that we discuss in the next
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Figure 4.3: Comparison of the annual zonal mean biases of the SPEEDY and coupled model simulations.
Results are shown for (top) the temperature (middle), zonal wind, and (bottom) specific humidity for (left)
SPEEDY and (right) the coupled model.

4.3.2 Precipitation Climatology

Annual precipitation for SPEEDY and the coupled model are shown in Fig. 4.4, biases are

computed by comparing each model to ERA5 for a 40-year period. While SPEEDY can replicate

the overall global precipitation patterns, there are significant biases, most notably, large dry biases

in the midlatitudes over the ocean. These dry biases are down-wind of major ocean currents (e.g.

Gulf Stream and Kurisho Currents), suggesting that SPEEDY may underestimate the precipitation

associated with midlatitude cyclones. SPEEDY exhibits a wet biases in the western Indian Ocean

and Tropical Pacific. There are also wet biases over land in Central Africa, the Rocky Mountains

of North America, and in Eastern Asia.

Overall, the coupled model greatly reduces the annual precipitation bias compared to SPEEDY,

reducing the global annual precipitation RMSE of 1.29 mm/day in SPEEDY to 0.63 mm/day in
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the coupled model (Table 4.1). The largest magnitudes of biases are also reduced in the coupled

model (5.17 mm/day) compared to SPEEDY (-10.50 mm/day). The spatial correlation of the an-

nual precipitation pattern in the coupled model matches better with ERA5 than SPEEDY (Pearson

correlation coefficient of 0.96 vs. 0.82). The coupled model nearly eliminates the dry biases in the

midlatitudes and improves rain climatology over land, most notably in the Rocky Mountains of the

United States and China. The major expectation is over regions of the Tropical Pacific, where the

coupled model has a larger biases than SPEEDY. The coupled model overestimates precipitation

in that region and suggests the coupled model has too much convection near the equator and just

south of the equator. The excessive amount of precipitation near and slightly south of the equator

in the Pacific Ocean may be a manifestation of the double Intertropical Convergent Zone (ITCZ)

problem commonly seen in coupled numerical models (Zhang et al. 2019). The excessive amount

of precipitation may also be a symptom of the coupled model’s positive specific humidity bias in

the Southern Hemisphere tropical region (Fig.4.3).

Annual Precipitation (mm/day)
Model/ERA5 Global Max Global Mean Correlation to ERA5
ERA5 20.25 2.95 1.0
Coupled Model 18.32 3.15 0.96
SPEEDY 18.12 2.88 0.82

Annual Precipitation Bias (mm/day)
Model Min Bias Max Bias Mean Bias RMSE
Coupled Model -3.83 5.17 0.19 0.63
SPEEDY -10.50 10.29 -0.08 1.29

Table 4.1: Summary of annual precipitation climatology (top table) for ERA5, our coupled model, and
SPEEDY. Summary of annual precipitation biases (bottom table) for our coupledmodel and SPEEDY. Lower
biases mean better simulation of annual precipitation.
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Figure 4.4: The comparison of the total annual precipitation (top row) for SPEEDY (left), the coupled model
(middle), and ERA5 (right). The biases for annual precipitation (bottom row) are show for SPEEDY (left)
and the coupled model (center). Also shown (bottom right) is the difference between the magnitude of the
biases for SPEEDY and the coupled model (blue colors indicates locations where the coupled model has a
lower bias than SPEEDY).

4.3.2.1 Precipitation Extremes

Understanding the change to precipitation extremes in future climates and being able to make

short-term predictions for weather forecasts are important due to the wide-ranging socioeconomic

effects they have from flooding to crop failure to wildfires. As discussed in Section 4.2.5, the

prediction of extreme rainfall is heavily influenced by the choice of hyperparameters in the hybrid

atmospheric model. For this dissertation, we compromised between annual precipitation bias and

extreme rainfall prediction, but with tuning it is possible to better predict extreme rainfall rates at

the expense of the model developing larger biases.

To evaluate how well the coupled model captures precipitation extremes, we examine 6-hourly

total precipitation percentiles. Like Pathak et al. (2022) and Fildier et al. (2021), we use 100

logarithmically-spaced bins from the 0% to the 99.999%, in order to capture the most extreme

values (Fig. 4.5). The coupled model and ERA5 are in general agreement until 99% percentile.
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In contrast, SPEEDY does not match with ERA5 closely even at percentiles near 90%. Overall,

SPEEDY overestimate the occurrence of low precipitation rates, while it underestimates the ex-

treme high precipitation values. The overestimation of low precipitation rates and being unable

to capture the most extreme precipitation rates is not unusual for a coarse resolution AGCM (e.g.

Stephens et al. 2010). The coupled model tends to under-predict extreme precipitation events, how-

ever, the general slope of precipitation rates as a function of percentile generally matches ERA5.

We note, that similar behavior of under-predicting extreme rainfall rates was observed in Pathak

et al. (2022).
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Figure 4.5: Comparison of extreme percentiles of 6-hourly total precipitation for ERA5 (blue), the coupled
model (orange), and SPEEDY (green).

4.3.3 Ocean Climatology

The machine learning ocean model when coupled with the hybrid atmospheric model produces

realistic ocean dynamics (e.g. annual cycle) and closely matches ERA5. The annual ocean cli-

matology and the biases compared to ERA5 are shown in Figure 4.6. Overall, the coupled model
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exhibits small biases with a RMSE of 0.43◦C. There are several areas of notable biases, first there

is a 1-2◦C bias in the North Atlantic, near the Labrador Sea. The Labrador Sea cold bias may be

explained by our simplistic handling of sea ice in our coupled model, although we do not see a

similar bias in the Southern Ocean. There is also a 1◦C warm bias in the Equatorial Pacific near

the coast of South America. This bias is attributed to the ML-only ocean model having a slight bias

toward the El Niño phase of the El Niño Southern Oscillation (ENSO).

To investigate the temporal variability of the ocean, we computed the average standard deviation

of the monthly mean SST at each grid point (Fig. 4.7). The ML-ocean model is able to capture the

spatial pattern of ocean variability seen in ERA5. Large variability in the SST fields are found in

areas with ocean currents (e.g. Gulf Stream and Kursoshio Extension Region) and the Equatorial

pacific (ENSO). The ML-ocean model tends to under-predict variability in areas influenced by

ocean currents, however, the spatial characteristics match well with ERA5. Ocean variability near

the interface between permanent sea ice and open ocean are also under-predicted, suggesting that

the ML-only ocean model may not capture variability in the extent of sea ice, or the timing of the

creation/melting of sea ice. We discuss ENSO in our coupled model in detail in the next section,

but it should be noted that the ML-ocean model does have too much variability especially, near the

coast of South America.

4.3.4 Variability

4.3.4.1 El Niño Southern Oscillation

The most important variability associated with the nonlinear dynamical coupling between the

atmosphere and ocean is the El Niño Southern Oscillation (ENSO). ENSO can be described by the

relationship between the change of near surface atmospheric winds, SST, and the equatorial Pa-

cific thermocline (Bjerknes 1969). As such, AGCMs cannot replicate ENSO. Typically, traditional

physics-based coupled climate models require a sophisticatedmulti-layer oceanmodel to reproduce

ENSO. Our coupled model consisting of only a hybrid atmospheric model and a ML-based ocean

model trained to predict the SSTs, can reproduce an ENSO-like signal in both the atmosphere and
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Figure 4.6: Annual Averaged sea surface temperatures for the coupled model (top panel), ERA5 (middle
panel), and the model bias (bottom panel). The annual SST climatology for the coupled model is from the
first 40 years of the free run and ERA5 is averaged from 1981-2021.

the SST fields. Two of the most common metrics used to diagnose ENSO phase is the Oceanic

Nino Index and the Southern Oscillation Index. ONI represents the a 3-month running mean of

SST anomalies in the Niño 3.4 region (5◦S-5◦N, 120◦W-170◦W). SOI measures the monthly stan-

dardized atmospheric pressure difference between Tahiti and Darwin, Australia. Figure 4.8 shows

the evolution of the ONI and SOI during the first 55 years of the climate simulation. The coupled

model is able to simulate the inverse relationship between the ONI and SOI.

To further examine ENSO in our coupled model, we use wavelet analysis (Torrence and Compo

1998) with HadISST used as reference (Rayner et al. 2003) (Fig 4.9). The coupled model has sharp

peak at 5 years, and is in general agreement with HadISST which has a broad peak between 3.5

and 5 years. Generally, the coupled model has too much variability from 1 year onward. State-of-
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Figure 4.7: Average monthly sea surface temperature standard deviation for the coupled model (top panel),
ERA5 (middle panel), and the model bias (bottom panel). The monthly SST standard deviation climatology
for the coupled model is based off the first 40 years of the free run and ERA5 is for the period of 1981-2021.

the-art ESMs such as E3SM and CESM2 have similar problems with too much variability in the

2-5 year period (Golaz et al. 2019; Capotondi et al. 2020).

The autocorrelation functions of the Niño 3.4 SST anomalies are shown for ERA5 and the

coupled model ( Fig. 4.10). The coupled model is in strong agreement with ERA5 for the first 6

months of lag. However, the coupled model fails to capture the correct timing of the cross over

into negative correlation occurring at 10 months for ERA5, which occurs at 15 months instead. The

coupled model does capture the magnitude of minimum correlation (-0.30), but is delayed, having

the minimum at a lag of 34 months rather than 24 months. This result indicates that the coupled

model is delayed in transitioning from one phase of ENSO to another.

Some climate models fail to properly capture the western extent of the ENSO variability, pro-

ducing too much variability in that region (e.g. Menary et al. 2018). The spatial pattern of variabil-

ity in our coupled model in the western Tropical Pacific, especially west of 180W, matches well

69



0 5 10 15 20 25 30 35 40 45 50 55
Years into Simulation

3

2

1

0

1

2

3
O

N
I

Hybrid Model ONI 3 Month Average
Hybrid SOI 1 Month Average
Hybrid SOI 5 Month Average

20

15

10

5

0

5

10

15

20

SO
I

Oceanic Nino Index / Southern Oscillation

Figure 4.8: A time-series showing the Ocean Nino Index (ONI) and the Southern Oscillation Index (SOI)
for the first 55 years of a 70-year free run. The color fill of the ONI indicates when the criteria is met to
be classified as an El Niño (red fill) and La Niña (blue fill). The monthly SOI value and trailing 5-month
average are show. Negative SOI values typically occur during an El Niño and positive values during an La
Niña.

with ERA5 showing minimal bias in this region, indicating that our coupled model can capture the

western extent of ENSO variability (Fig. 4.7).

4.3.4.2 Atmosphere Variability

We investigate sudden stratospheric warming (SSW) in our coupled model to evaluate the

model’s atmospheric variability and the ability for our coupled model to simulate troposphere-

stratosphere coupling. SSW events are caused by the disruption of the winter Northern Hemisphere

stratospheric polar vortex from upward propagating tropospheric waves (Andrews et al. 1987). In

order to simulate stratospheric dynamics, physics-based models require higher vertical resolution

and more model layers in the stratosphere than our hybrid atmosphere mode. SPEEDY, which

has the same vertical resolution and model levels as the hybrid atmospheric model, is unable to

correctly simulate stratospheric dynamics. This can be seen by SPEEDY’s large zonal biases in
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Figure 4.9: Wavelet power spectrum of ENSO (Nino3.4) using a Morlet wavelet of degree 6 for the coupled
model (red) and HadISST (black).

the stratospheric for both temperature and zonal wind (Fig. 4.3). The hybrid atmospheric model

significantly reduces these biases, while it also better captures the variability in the stratosphere.

Looking at the 20 hPa zonal wind climatology between 55◦N-65◦S, our coupled model matches

well with ERA5 (Fig. 4.11). The coupled model is able to capture the annual cycle with strong

westerlies during the winter months, and then the weakening of the winter stratospheric polar vor-

tex during early spring, and finally reversal of the winds to easterlies during the summer months.

SPEEDY consistently has a positive bias, with winds too strong in each month of the year and it

does not capture the reversal of winds during the summer.

The grey shaded regions of Figure 4.11 represent±2 standard deviations from the mean. Using

this as proxy for variability, we see that during the winter months ERA5 has large variability, with

values ranging from 55 m/s to -10 m/s. This large variability is dominated by the varying year-

to-year strength of the winter stratospheric polar vortex and the occasional SSW where the polar

vortex is severely disrupted and easterly winds can develop for a short time. SPEEDY being a
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Figure 4.10: The autocorrelation functions of Niño 3.4 for the coupled model (blue) and ERA5 over the
period of 1981-2021 (orange).

coarse resolution model with insufficient vertical resolution in the stratosphere is unable to replicate

this variability. The coupled model is able capture this variability, with values closely matching

ERA5, which indicates that the coupled model can simulate SSW events.

To identify SSW events in our coupled model, we use the same criteria as Charlton and Polvani

(2007) except we look at 20 hPa zonal mean winds at 60◦N instead of 10 hPa zonal mean winds.

Because the top of the coupled model is at σ = 0.025, we first convert to pressure coordinates

and then linearly interpolate to 20 hPa. We found that our coupled model slightly over-predicts the

occurrences of SSW events (0.84 per year) during the 70-year free compared to the observed value

of ~0.6 per year (Charlton and Polvani 2007). It should be noted, SSW events are almost completely

exclusive to the NH and only one has ever been observed in the SH. The coupled model did not

produce any SSW event during the 70-year free run. A significantly longer simulation would be

necessary to determine if the coupled model would be able to produce infrequent SSW events in

the SH.
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Figure 4.11: 20 hPa mean wind (blue line) and 2 standard deviations (grey shaded region) for ERA5 1981-
2018 (left panel), our coupled model (center panel), and SPEEDY (right panel).

4.3.5 Stability and Climate Drift

One of the major challenges with incorporating machine learning into NWP is instability and

climate drift. Traditional numerical physics-based climate models enforce the conservation laws

(e.g. mass and global water budget). This allows a well-designed climate model to produce long

simulations without a significant drift of the mass or energy of the atmosphere. We evaluate the

conservation of total atmospheric mass and the total mass of water vapor in our coupled model to

determine whether there is an considerable mass or water vapor change over the 70-year free run.

Values for the total atmospheric mass and water vapor contribution were calculated similarly to

Trenberth and Smith (2005). We also compare our coupled model to ERA5 and SPEEDY.

We found our coupled model does conserve the total mass of the atmosphere well with no sig-

nificant trend observed (-0.02% per century) (Fig.4.12). However, the total mass of the atmosphere

is much more variable for the coupled model than for ERA5 or SPEEDY. The coupled model does

well with conserving total atmospheric mass of water vapor (Fig. 4.13). While there is a strong
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annual cycle in the total mass of water vapor, there is no trend during the 70-year free run. We also

note that the total mass of water vapor and the range of the annual cycle is in good agreement with

ERA5 and calculated values from other reanalysis products (Trenberth and Smith 2005).

To evaluate climate drift of our coupled model, we look at the globally averaged lowest model

level temperature during the 70-year free run. The lowest model level global mean temperature is

stable during the 70-year free run with almost no linear trend (0.077 ◦C per century) (Fig. 4.14).

0 10 20 30 40 50 60
Years Into Simulation

5.1150

5.1175

5.1200

5.1225

5.1250

5.1275

5.1300

5.1325

5.1350

To
ta

l A
tm

os
ph

er
ic

 M
as

s 
(k

g)

1e18

Hybrid
Hybrid Trend
SPEEDY
ERA 5

Figure 4.12: Time series of total atmospheric mass for the coupled model (solid blue line) and linear trend
during the free run (dashed black line). 10 years of ERA5 (solid red line) and themean for 1981-2018 (dashed
red line) and 10 years of SPEEDY (solid green line) and mean (dashed green line) are shown for reference.

4.4 Conclusion

In this chapter, we described results of a coupled hybrid atmospheric model with a machine

learning-only ocean model. We trained a parallel, reservoir computing based model using ERA5

to predict the sea surface temperatures from past ocean and atmosphere states. The ML-only based

ocean model was then coupled to the hybrid atmospheric model. This coupled model can repro-
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Figure 4.13: Same as Figure 4.12 for total atmospheric water vapor mass.
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Figure 4.14: Time series of the area averaged annual mean temperature of the lowest model level in our
coupled model during the 70-year free run (solid blue) and linear trend (dashed black).
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duce long term variability of both the atmosphere and ocean (e.g. ENSO and sudden stratospheric

warming).

Compared to state-of-the-art climatemodels, our coupledmodel requires significantly less com-

putational resources. Once trained, the coupled model can be run on any desktop or small computer

cluster, the only requirement being the availability of 32 Gigabytes of RAM. Modern climate mod-

els typically require a high performance computing cluster with thousands or tens of thousands of

processors and can only simulate a decade or two per day (e.g. Golaz et al. 2019). For the climate

experiment presented in this study, we use 32 Intel Xeon 6248R processors and can simulate 4

years per hour (96 simulated years per day). The addition of the ML-ocean model does not add

any significant run time when compared to a stand-alone version of the hybrid atmospheric model.

In forecast mode the computational bottlenecks are the IO associated with restarting SPEEDY for

each hybrid atmospheric timestep.

The coupling of an ML-ocean model to our hybrid atmospheric model is a major step towards

our ultimate goal of using the coupled model for climate change research. While we show that

the coupled model is able to replicate the past and current climate, climate change is inherently a

nonstationary dynamical problem. Patel et al. (2021) and Patel and Ott (2022) outline a method to

incorporate nonstationarity into a hybrid model similar to the one presented in this study. Using this

method, their hybrid model was able to anticipate tipping points and simulate post-tipping point

climates in toy models. Our plan is to apply this method to the coupled model presented in this

study for climate change research.
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5. CONCLUSIONS

In this study, we used the parallel, reservoir-computing algorithm of Pathak et al. (2018a) and

the hybrid modeling approach of Pathak et al. (2018b) andWikner et al. (2020) to demonstration the

potential of machine learning for improved weather and climate modeling. Our results in Section

2 showed that a machine learning-based global atmospheric model can predict the 3-dimensional

atmosphere in the same format as a NWP model. Once trained, the global ML weather model is

significantly faster than a traditional numerical physics-based model producing 21-day forecasts in

30 seconds.

Next, we combined this parallel, reservoir-computing algorithm with a simplified AGCM for

weather prediction and climate simulation. Using a variety of verificationmetrics, including RMSE

and model bias, we demonstrated that the hybrid model can improve weather forecasts compared

to the host AGCM for all variables for at least the first seven forecast days. Forecasts from the

hybrid model are well-balanced and had improved variability, highlighting the potential application

for using the hybrid model for data assimilation. Future work will utilize the iterative method of

Wikner et al. (2021) to produce analyses using the hybrid atmospheric model.

To test the stability and the ability of the hybrid model to simulate the past and present cli-

mate, we carried out a 11-year free run. Zonal mean biases of temperature, wind, and specific

humidity were greatly reduced compared to the host AGCM. For temperature and zonal wind, the

hybrid model produced biases on par with state-of-the-art GCMs, but requiring significantly less

computational resources.

Finally, we demonstrated the potential ofML for coupling a computationally inexpensivemodel

of another Earth system component by dynamically coupling an ML-only ocean model of the SST.

This coupled model was stable and did not exhibit a climate drift during a 70-year free run. The

coupled model could reproduce important components of the atmosphere and ocean variability

without significant biases. We investigated the skill of our coupled model in simulating ENSO and

found that the coupled model was able to produce an ENSO-like response in both the atmosphere
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and ocean. This indicates that our model can capture nonlinear interaction between the atmosphere

and ocean. The spatial extent and frequency of ENSO matches well with observations, but, like in

many GCMs, in our model the SST has too much variability in the El Nino region in the 2-5 year

period range and it is delayed in switching the phase of ENSO. To the best of our knowledge, this

is the first time that a ML-based ocean model has been coupled to a hybrid atmospheric model,

representing a major step of applying ML for Earth System modeling.
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