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ABSTRACT

Low-frequency acceleration measurements are a vital component to many technologies and

fields of science. High-precision, low-frequency accelerometers are used for inertial navigation,

seismology, geophysics, satellite geodesy missions, gravitational wave detectors and more. How-

ever, many such devices are heavy, have large test masses, and are not easily portable, which limit

the applications in which they can be deployed.

This dissertation covers the development of an optomechanical low-frequency accelerometer

which couples monolithic fused silica mechanical resonators with compact high-precision optical

readout systems. Fused silica has extremely low losses, which allows us to create highly sensi-

tive devices with comparatively small test masses. Accelerometers that use such resonators are

consequently more compact, lightweight, and portable.

These resonators are designed and simulated using finite element analysis and models based on

first principles and detailed experimentation. Furthermore, prototype optomechanical accelerome-

ters have been developed and tested in the laboratory, demonstrating the capability to detect seismic

noise down to 1 mHz. These experimental studies have been conducted together with a commercial

seismometer for comparison purposes. Finally, we present several fused silica resonator topologies

developed for other inertial sensing applications.
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1. INTRODUCTION

1.1 Accelerometry

The ability to measure accelerations is a core capability that is required for many different tech-

nologies and industries. A few select everyday applications of accelerometry include the electronic

stability controls (ESCs) in automobiles [8], navigation in aircraft [9], and human activity detection

in commercial electronics such as smartphones and smartwatches [10]. Furthermore, many scien-

tific investigations require high-sensitivity acceleration measurements, the bandwidths of which

varying by application. The Laser Interferometric Gravitational wave Observatory (LIGO) de-

tectors, for example, use acceleration data ranging from the mHz regime to hundreds of Hz for

active feedback seismic isolation and for identifying noise in the detectors in order to achieve test

mass displacement stabilities on the order of 1 × 10−19mHz−1/2. Satellite geodesy and climate

experiments like the Gravity Recover And Climate Experiment (GRACE) and GRACE Follow-

On (GRACE-FO) [11, 12] make use of on-board low-frequency accelerometers the detection of

non-inertial forces such as radiation pressure and air drag so these effects can be removed from

data. Moreover, space missions are especially challenging because the demand for high precision

over a wide bandwidth is always in competition with the desire for small size, weight, and power

(SWAP).

Accelerometers typically feature test masses which are subjected to the accelerations one wants

to measure. By measuring the movement of the test mass, the acceleration that caused its motion

can be recovered. The ultimate noise floor of an accelerometer is limited by the thermal motion

of the test mass, which is in turn dependent on the size of the test mass and its mechanical loss

coefficient. Large test masses made from low-loss materials offer lower thermal noise and better

acceleration sensitivity. Many low-frequency accelerometers, such as commercial seismometers

for example, use heavy test masses to obtain low acceleration noise [13]. This can result in sensors

with total masses exceeding 10 kg, which restricts their portability and is disadvantageous for ap-
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plications such as field work or space mission applications. However, the need for large test masses

can be lessened by utilizing low-loss materials. Fused silica glass, for instance, has demonstrated

mechanical quality factors much greater than 1 × 106 [14, 15] whereas metals typically have Q-

values of at most 1 × 103-1 × 104 [16]. To this end, we propose the use the use of fused silica to

create high-sensitivity low-frequency accelerometers that are smaller and more portable than their

commercial counterparts while maintaining competitive noise floors.

Moreover, many acceleration sensing technologies use electrostatic readouts to track the test

mass motion. Micro-electromechanical systems (MEMS), for example, are used to make many dif-

ferent types of compact and highly portable sensors, including accelerometers and inertial sensors

[17, 18]. However, their electrostatic readout scheme makes them sensitive to the local magnetic

field and stray capacitances. Furthermore, MEMS devices typically exhibit noise floors several

orders of magnitude worse than other types of accelerometers. Other examples of electrostatic ac-

celerometers are the devices on-board the GRACE and GRACE-FO satellite constellations, which

featured electrically suspended, quasi-free falling test masses. Despite demonstrating excellent

acceleration sensitivities, these accelerometers could not be tested on ground, which posed signif-

icant challenges for the development of these experiments. As such, we also propose the use of

optomechanical readout schemes which avoid the problems listed above by exploiting the exquisite

temporal and spatial coherence of laser light to make precision displacement measurements.

1.2 Optomechanics

Optomechanics, which studies the interactions between optical and mechanical processes, has

emerged over the past two decades as a promising solution for many high precision sensing appli-

cations. Devices developed using optomechanics include, but are not limited to, force sensors [19],

magnetometers [20], displacement sensors [21], acoustic sensors, and atomic force microscopy. In

the context of accelerometry, optomechanics is used to measure the displacement of the test mass.

High-frequency optomechanical accelerometers have been developed using Fabry-Perot cavities

which have demonstrated exquisite displacement sensitivities [22]. The nominal cavity length is

tuned to have a resonance near the wavelength of the input laser beam. As the test mass oscillates,

2



the cavity length and its resonant wavelength change in accordance with:

dL

L
=

dλ

λ
(1.1)

where L is the cavity length and λ is the resonant wavelength. The changing cavity resonance

consequently changes the optical power transmitted and reflected by the cavity, the measurement

of which is used to recover the test mass motion.

However, this cavity readout approach is limited to high-frequency devices which have rela-

tively small dynamic test mass ranges. A 10 kHz mechanical resonator for example would deflect

from equilibrium by only 2 nm under the force of gravity. A low-frequency device, can have dis-

placements exceeding 1mm under that same force. A cavity readout would not be appropriate for

this case because the test mass can displace by many free spectral ranges of the cavity. Instead,

heterodyne laser interferometry is a popular method for low-frequency test mass readout, being

used in experiments such as the Laser Interferometer Space Antenna (LISA) Path Finder satellite

[3]. Heterodyne inteferometry uses a Mach-Zedner type optical arrangement with two input beams

of unlike frequency. As the test mass moves, a phase change is imprinted into the beatnote of the

two beams, typically on the order of kHz or MHz. Measurement of the beatnote with a phaseme-

ter allow for an observation of the test mass motion. As this project focuses on the development

of a low-frequency optomechanical accelerometer, this heterodyne readout scheme will be used

throughout the work presented in this dissertation.

1.3 Dissertation Outline

The work presented in this dissertation is developed in part from results of a combination of

journal publications [23, 7] interlaced with supporting research and analyses that at this time have

not been published. The chapters are organized as follows:

• Chapter 2 applies the research of the LIGO Scientific Collaboration (LSC) to a low-frequency

fused silica resonator with parallelogram flexures to identify fundamentally limiting noise

sources and ways to reduce them. Using theoretical and experimentally-derived models
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for various mechanical loss mechanisms, we predict the thermal motion of the resonator

to estimate the lowest possible acceleration noise floor obtainable with this optomechanical

resonator. Furthermore, we use finite element analysis (FEA) to simulate damping caused

by air resistance and parasitic effects of the resonator mounting apparatus. Finally, prelim-

inary characterization measurements of the resonator which demonstrate high mechanical

Q−values are presented. This chapter is based on the journal publication [23].

• Chapter 3 discusses the drawbacks of the optomechanical resonator presented in Chapter 2

and uses the noise models developed in that chapter to optimize this resonator topology for

low-frequency acceleration sensing.

• Chapter 4 presents a second iteration design of our optomechanical accelerometer with a new

resonator and laser interferometer setup. We demonstrate our optomechanical accelerome-

ter’s ability to detect seismic noise by comparing results to those of a commercial seismome-

ter. Moreover, we identify postcorrection methods of removing noise originating for the

ambient environment and the laser source to improve our acceleration noise by as much as

an order of magnitude. These results are then used to estimate the temperature stability and

laser frequency stability required to achieve a thermally-limited acceleration measurement.

This chapter is based on the journal publication [7].

• Chapter 5 investigates the temperature-dependent performance of our optomechanical ac-

celerometer. Starting from theory, we derive equations predicting the change in mechanical

resonance due to several thermal effects and compare to experimental results. Furthermore,

we derive a model for the acceleration noise induced by the changing resonance.

• Chapter 6 discusses the process of integrating a compact heterodyne interferometer. New

acceleration measurements are presented to demonstrate the device’s seismic sensing capa-

bilities as well as estimate its acceleration noise floor.

• Chapter 7 presents optomechanical resonator topologies designed for different applications,
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including a double-mass resonator for improved acceleration sensing over an extended band-

width and a drum-head resonator for novel hybrid atom interferometry techniques. The atom

interferometry portion of this chapter is based on the publication [2].

5



2. FIRST ITERATION LOW-FREQUENCY OPTOMECHANICAL ACCELEROMETER *

The development of a novel optomechanical accelerometer necessitates an in-depth under-

standing of its fundamental sensitivity limit to inform us on how to achieve the lowest acceleration

noise floor we can. In high-frequency devices, this fundamentally limiting noise is approximately

white, providing broadband sensing capabilities over kHz bandwidths or larger. Low-frequency,

on the other hand, are known to be limited by pink noise that goes like f−1/2, indicating that this

class of devices is subject to fundamentally by different noise sources. Models for low-frequency

acceleration noise can be derived from the work of the LIGO Scientific Collaboration, which has

developed the theoretical framework of thermal noise and studied mechanical losses in fused silica

glass. In this chapter, based on the article [23], we utilize these models to predict the accelera-

tion noise floor of an optomechanical resonator, from which we argue that optomechanics has the

potential to produce high-sensitivity inertial sensing devices that are competitive with commer-

cial technologies. Moreover, we present an optomechanical resonator that can used to create a

low-frequency accelerometer. We perform preliminary characterization measurements to demon-

strate its acceleration sensing capabilities and compare the results to simulated values. The work

presented in this chapter represents the starting point of this low-frequency optomechanical ac-

celerometer project which later developments stem from. The work shown in this chapter was

done in collaboration with Dr. Felipe Guzmán, Dr. Logan Richardson, and Hayden Wisniewski

who all contributed to the experimental design. Furthermore, the fused silica resonator used in this

chapter was designed by Dr. Guzmán. My contributions to this work include the construction of

the experimental setup, data collection and analysis, and writing an article for journal publication.

We present a performance analysis of compact monolithic optomechanical inertial sensors that

describes their key fundamental limits and overall acceleration noise floor. Performance simula-

tions for low frequency gravity-sensitive inertial sensors show attainable acceleration noise floors

*Reprinted with permission from “Optomechanical inertial sensors” by Adam Hines, Logan Richardson, Hay-
den Wisniewski, and Felipe Guzman, 2020. Applied Optics, Vol. 59, pp. G167-G174, Copyright 2022 by Optica
Publishing Group.
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of the order of 1 × 10−11m/s2/
√
Hz. Furthermore, from our performance models, we devised

an optimization approach for our sensor designs, sensitivity, and bandwidth trade space. We

conducted characterization measurements of these compact mechanical resonators, demonstrating

mQ-products at levels of 250 kg, which highlight their exquisite acceleration sensitivity.

2.1 Introduction

Commercially available high-sensitivity inertial sensors are typically massive systems that

are not easily transportable and deployable due to their total mass and dimensions. Conversely,

compact commercial systems, while easily transportable and field capable, exhibit comparatively

higher acceleration noise floors, especially at low frequencies.

Spring gravimeters and relative gravimeter technologies [24, 25, 26] tend to be large, expen-

sive, and offer limited sensitivity. These systems use a mass-spring system, which measures the

local acceleration by tracking the spring extension [27, 28], usually with electrostatic measurement

techniques. One such example is the Scintrex CG-6 gravimeter that can achieve acceleration sensi-

tivities of 10−9 g/
√
Hz over a bandwidth of up to 10Hz [29]. Superconducting relative gravimeters

create ideal springs by levitating a superconducting niobium sphere in a non-uniform magnetic

field [30, 31]. In this way, one can measure the local gravity with a sensitivity of 10−9m/s2
√
Hz

over a bandwidth of 250mHz [32]. However, due to the intensive operation requirements and

maintenance, these systems are not suitable for deployment, since exposure to large accelerations,

as usual in the field, can cause jumps in the data. Micro-electromechanical systems (MEMS) are

typically small and low-cost in comparison to other types of gravimeters and utilize small mass-

spring systems that are read out electrostatically. Recent development in MEMS devices have

demonstrated sensitivities at levels of 30 ng/
√
Hz over a bandwidth of 1Hz [17, 33, 18], however,

these sensitivity levels are comparatively lower by one to two orders of magnitude with respect to

other commercial systems.

Absolute gravimeters, such as the Micro-G Lacoste FG5 and atom interferometers, offer long

term stability in gravitational measurements [34, 35, 2]. When operated alone, however, they are

susceptible to external vibrations, which obscure the acceleration measurement and ultimately limit
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the performance and their deployment capabilities for field operation [34, 36]. Furthermore, the

Micro-G Lacoste FG5 require cost-intensive and frequent calibrations, and the aging of the springs

causes drift over time.

Advances in optomechanics over the past decade and research into their fundamental limits

have paved the way for the development of novel compact and highly sensitive inertial sensors

operating at low frequencies [37]. The thermal acceleration noise floor and mechanical losses

have been studied extensively, for example, in the context of suspensions and mechanical systems

for ground-based gravitational wave observatories, such as the Laser Interferometer Gravitational-

Wave Observatory (LIGO)[38, 39].

In this dissertation, we present the results of investigations regarding compact optomechanical

inertial sensors that consist of monolithically micro-fabricated fused silica mechanical resonators

and experimentally demonstrate high acceleration sensitivities and measure mQ-products above

240 kg. Furthermore, we studied the mechanics of compact mechanical resonators using computa-

tional simulations, particularly on various loss mechanisms that would impact their sensitivity and

conducted a trade-off analysis to determine resonator topologies that exhibit the best performance.

These results inform our efforts to develop novel compact and highly sensitive optomechanical

inertial sensors, as presented in this dissertation.

Our optomechanical sensors provide numerous advantages over traditional acceleration sens-

ing technologies due to their comparatively compact size and low mass, as well as their inherent

vacuum compatibility, optical readout, and monolithic composition. Here, we present an optome-

chanical resonator, capable of achieving acceleration noise floors at levels of 1×10−11m/s2/
√
Hz

with a footprint of 48mm × 92mm and a mass of 26 g, making it small and transportable. The

optical laser-interferometric readout of our sensor provides a significantly higher sensitivity than

typical electrostatic techniques, and is insensitive to external electro-magnetic fields. Moreover,

our sensors are monolithically fabricated from very low loss materials, such as fused silica, allow-

ing us to achieve high mechanical quality factors. This oscillator is intended to be installed and

operated inside a compact and portable vacuum package with a miniaturized high-sensitivity laser
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displacement interferometer that is currently under development [40].

Similar compact, monolithic, optomechanical sensors with high resonant frequencies have al-

ready shown by Guzmán et al. to have excellent acceleration noise floors at the nano-g
√
Hz level

over 10 kHz, as well as laser-interferometric displacement sensitivites of 1 × 10−16m/
√
Hz [22].

However, the sub-Hz regime is an under-explored design space for optomechanical accelerometers.

In this chapter we present a prototype optomechanical sensor with a resonant frequency of

10Hz that targets high acceleration sensitivities at low frequencies. Lowering the resonant fre-

quency of the sensor increases the acceleration sensitivity and greatly expands the utility, espe-

cially for space applications. The portability, comparatively low cost, and monolithic composition

of our devices make them excellent candidates for a broad spectrum of applications, including

gravimetry and gravity gradiometry, geodesy, seismology, inertial navigation, vibration sensing,

metrology, as well as other applications in geophysics. The sensor design and performance mod-

elling presented in this dissertation allow us to understand how we can use optomechanical sensors

as low frequency accelerometers, and to understand their sensitivity limits.

2.2 Sensitivity and losses in optomechanical inertial sensors

Our sensor consists of monolithic fused silica resonators based on a parallelogram dual flexure

design that supports the oscillating acceleration-sensitive test mass (Figure 2.1). We use a dis-

placement readout laser interferometer to measure the dynamics of the test masses (Section 2.5).

The total mass of our resonator head is approximately 26 g with an oscillating test mass of 0.95 g.

The spring flexures supporting the test mass are 0.1mm thick by 60mm long which yields a res-

onance frequency of about 10Hz. We place an aluminum-coated fused silica mirror on top of

the test mass with no adhesive for the laser interferometer, which reduces the measured resonant

frequency to 3.8Hz due to the added 1.25 g mass. Micro-fabricated by laser-assisted dry-etching,

the overall resonator is 48mm x 92mm x 3mm, making it very compact, and is constructed from

a monolithic fused silica wafer for its low-loss properties at room temperature [41], which makes

these devices easy to operate and deploy in the field. Low losses in fused silica result in low

frequency-dependent damping, high mechanical quality factors, and low thermal noise.
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Figure 2.1: Geometry of our optomechanical resonator generated in COMSOL. From this model,
we calculate the mechanical properties of our sensor, including the resonant frequency and energy
loss mechanisms. The sensor described in this work has overall dimensions of 48mm× 92mm×
3mm and mass of 26 g. Two oscillating test masses each with a mass of 0.95 g are supported by
two flexures each with a thickness of 100 µm.

The acceleration sensitivity of the optomechanical sensors is limited by the thermal noise floor

of its oscillating test mass and the sensitivity of the test mass displacement sensor. Thermal noise

has been experimentally observed in optomechanical systems for frequencies on the order of 3-

100Hz [42]. However, our inertial sensor is intended to measure signals in the sub-Hz regime,

which requires the analysis of the behavior of loss mechanisms and potentially limiting effects at

low frequencies.

Within an optomechanical resonator, there are various mechanisms that dissipate energy. These

mechanisms can be separated into two categories: external velocity damping (eg. gas damping)

and internal damping (eg. surface damage). Therefore, we treat the resonator as a mass-spring

system with a velocity damping term and a complex spring constant. The equation of motion of

such a system is given by [43]:

F = mẍ+mΓvẋ+mω2
0(1 + iϕ(ω))x, (2.1)
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where m is the resonator’s mass, Γv is the velocity damping rate, ω0 is the resonant frequency,

and ϕ(ω) is the loss coefficient for internal losses. The thermal motion of the resonator is derived

from Equation 2.1 via the Fluctuation-Dissipation Theorem [43]. Using this technique, we find the

power spectral density of the thermal motion to be:

x2
th(ω) =

4kBT

mω

ωΓv + ω2
0ϕ(ω)

(ω2
0 − ω2)2 + (ωΓv + ω2

0ϕ(ω))
2
, (2.2)

where kB is Boltzmann’s constant, T is temperature, and ω is angular frequency. Furthermore,

from Equation 2.1 we also note that the transfer function relating displacement to acceleration is

given by:
x(ω)

a(ω)
=

−1

ω2
0 − ω2 + i(ωΓv + ω2

0ϕ(ω))
. (2.3)

Using Equation 2.2 and Equation 2.3, we immediately find that the thermal acceleration noise is

given by:

a2th(ω) =
4kBT

mω
(ωΓv + ω2

0ϕ(ω)). (2.4)

By inspection, we see that in the high-frequency regime (ωΓv >> ω2
0ϕ(ω)), Equation 2.4 is dom-

inated by velocity damping and asymptotically approaches a constant. This is consistent with ob-

servations of uniform thermal noise at high frequencies. At low frequencies, however, the thermal

acceleration noise is dominated by internal losses and has a ω−1 dependence.

In order to predict the thermal motion of our optomechanical resonator, we need to know the

velocity damping rate and the mechanical loss coefficient. The velocity damping is dominated by

gas damping, which is determined computationally and is discussed further in Section 2.42.4.1.

The mechanical loss coefficient originates from four main loss mechanisms in our resonators: bulk

losses, surface losses, thermoelastic losses, and anchor losses. Thus, the total mechanical loss in

the resonator is given by [38, 39]:

ϕ(ω) = ϕsurface + ϕbulk(ω) + ϕthermo(ω) + ϕanchor(ω). (2.5)
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In our analysis, we assume negligible variation in flexure thickness, which was experimentally

verified by microscope measurements to be less than 10 µm along the full length. Furthermore,

since elastic energy is stored in the flexures, we do not consider the test mass geometry in our

analysis. We further discuss this point in Section 2.3.

2.2.1 Bulk and Surface Losses

Bulk losses are a result of energy losses intrinsic to the material. We use the model exper-

imentally determined by Penn et al. [44] to determine the contribution from bulk losses in our

resonator:

ϕbulk(ω) = 7.6× 10−10

(
ω

2π

)0.77

. (2.6)

Surface losses encapsulate the intrinsic losses at the surface of the material resulting from damage,

or surface imperfections from manufacturing process. We can model surface losses for an arbitrary

flexure shape as[45]:

ϕsurface = µhϕs
S

V
, (2.7)

where µ is a constant dependent on the shape of the flexure, h is the skin-depth of the surface, ϕs

is the intrinsic loss at the surface, S is the surface area of the flexure, and V is its volume. The fab-

rication of our resonator could lead to a substantial amount of surface losses if the surface quality

is non-ideal. However, the surface losses for ideal fused silica is better documented than that for

non-pristine samples. To determine the surface losses for ideal flexures in a given geometry, we

model the surface losses of ideal fused silica fibers; such as those which are flame or laser-pulled

and exhibit high surface quality. For such fibers, Gretarsson et al. experimentally determined hϕs

to be 6.15 pm. For a flexure with a rectangular cross section, Equation 2.7 becomes:

ϕsurface =
3 + A

1 + A
hϕs

2(x+ y)

xy
, (2.8)

where x and y are the flexures cross-section dimensions, and A is the aspect ratio of the rectangular

cross-section [45]. Our flexures have 0.1mm × 3mm cross-section and an aspect ratio of 30.
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Mechanism Expected Value at 10mHz
Surface 1.3× 10−7

Thermoelastic 2.9× 10−10

Bulk 2.2× 10−12

Table 2.1: A summary of the intrinsic loss mechanisms and their expected values for frequencies at
10mHz. These values were obtained by evaluating Equations 2.6, 2.8, and 2.9 using the material
properties of fused silica.

2.2.2 Thermoelastic Losses

Thermoelastic losses describe bending of the flexures due to spontaneous temperature fluctua-

tions and can be theoretically derived from:

ϕthermo(ω) =
Y Tα2

ρC

ωτ

1 + ω2τ 2
, (2.9)

where Y is the Young’s modulus, ρ is the mass density, C is the specific heat capacity, and α

is the coefficient of thermal expansion [38, 39]. For fused silica, these values are Y = 72GPa,

ρ = 2.2 × 103 kgm−3, C = 6.7 × 102 J kg−1, and α = 5.5 × 10−7K−1. In our simulations we

assume operation at room temperature, T = 293K. The term τ is the characteristic time needed

for heat to travel across the cross section of the flexure. For rectangular cross sections, this time is

given by:

τ =
ρCt2

π2κ
, (2.10)

where t is the thickness of the flexure and κ is the thermal conductivity [38, 39]. The thermal

conductivity of fused silica is taken to be κ = 1.4Wm−1K−1.

A summary of the different intrinsic loss mechanisms is shown in Table 2.1, outlining the

expected losses at 10mHz. We find that at this frequency, surface losses are the main dominant

factor by nearly three orders of magnitude.
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2.3 Optomechanical Inertial Sensor Performance

From Equation 2.2 and Equation 2.4, we can calculate the individual contributions from each

loss mechanism to compute the expected displacement and acceleration amplitude spectral densi-

ties for a given resonator. Assuming operation at sufficiently low pressures for the velocity damp-

ing rate to be negligible with respect to other loss mechanisms, we show the computed linear

spectral densities in Figures 2.2 and 2.3. For an oscillator with a resonant frequency of 3.8Hz and

a test mass m = 2.2 g, surface losses dominate the spectrum at low frequencies with thermoelastic

losses only becoming relevant near resonance. We observe that bulk losses are a much smaller

contribution compared to the other mechanisms for the bandwidth of interest. This is consistent

with Equations 2.6, 2.7, and 2.9, which suggest that the bulk losses are several orders of magnitude

smaller than those from the other loss mechanisms.

2.4 Computational analysis

2.4.1 Simulated gas damping

To better understand how the flexure and test mass geometry affect loss mechanisms, we uti-

lized finite element analysis and modeled our resonator in COMSOL 5.4 (see Figure 2.1). We used

the Solid Mechanics module to calculate the eigenfrequencies of the resonator, and the Creeping

Flow fluid dynamics module to estimate the quality factor of this resonator at atmospheric pres-

sure. We modeled the mechanical oscillator assuming a large airbox surrounding the test mass and

its flexures. The inlet and outlet of the air box were given a pressure differential that generated

a 1 µms−1 air current at the test mass position. We used COMSOL to calculate the steady-state

solution to this airflow, and we found the net force acting on the test mass by integrating the pres-

sure over its surface (Figure 2.4). From the calculated force, we found the linear drag coefficient,

and then we applied the air resistance to the test mass as a boundary load. Performing an eigenfre-

quency analysis, this time without the air box, COMSOL produced the mechanical quality factor

of the resonator in air. For our 10Hz resonator, we found this Q to be ≈ 7.0× 102 with a damping

rate of 9.0× 10−2 s−1.
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Figure 2.2: The calculated linear spectral density of acceleration thermal noise for a 3.8Hz, 2.2 g
test mass is plotted on the left axis. The resonant frequency is denoted by a vertical line. We also
plotted the contribution from each loss mechanism, from which we can see that surface losses are
the dominant noise source for frequencies below resonance. On the right axis, the loss coefficient
is plotted as a function of frequency.
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Figure 2.3: Calculated linear spectral density of displacement thermal noise floor for a 3.8Hz, 2.2 g
test mass. Each loss mechanism’s contribution is included. As shown, a read-out system would
need to have a displacement sensitivity on the order of 1 × 10−14 m/

√
Hz to resolve the thermal

noise floor.
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Figure 2.4: Simulated airflow around an optomechanical resonator. Lighter colors indicate higher
airflow speed, whereas darker colors indicate a lower velocity. The inlet of the airflow is the left
of the test mass, causing the air to move to the right. By integrating the pressure along the surface
of the test mass and flexure, we compute the air drag force and mechanical quality factor of the
resonator at atmospheric pressures.

2.4.2 Simulated elastic energy distribution

To support the claim that we only need to consider the flexure geometry to calculate the me-

chanical losses, we use COMSOL to calculate the elastic energy density throughout the resonator.

When performing an eigenfrequency analysis of the resonator, COMSOL outputs the distribution

of elastic energy. From this, we calculate that over 99% of the elastic energy is located within the

flexures, 0.14% is within the test mass, and 0.09% is within the remainder of the fused silica wafer.

We depict the elastic energy density in Figure 2.5. Evaluation of the bulk, surface, and thermoe-

lastic losses for the test mass yields a mechanical loss coefficient of 2.0 × 10−7. However, when

weighted by the amount of elastic energy stored in the test mass, this gives a net mechanical loss

coefficient of 2.9× 10−10. This value is negligible since it is more than three orders of magnitude

lower than the losses in the flexures (≈ 4.8× 10−7). Furthermore, the fraction of the energy stored

in the mirror on the test mass was found to be 6.9×10−8, suggesting that the losses from the mirror
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are negligible as well.

Figure 2.5: A COMSOL simulation of the elastic energy density in our inertial resonator at its
resonant frequency with a mirror on top of the test mass. The units on the legend are arbitrary. In
this figure, red represents a greater energy density, and blue indicates a low energy density. The
outline represents the equilibrium position of the test mass. From this simulation, we confirm that
mechanical losses in our resonator are mostly located within the flexures, as opposed to within the
test mass.

2.4.3 Simulated anchor losses

We can extend this exercise to estimate anchor losses by modeling the mounting apparatus.

To mitigate anchor losses, and for the purpose of testing and characterizing our optomechanical

inertial sensor, we fabricated a mount for the resonator that reduces the contact area between

the fused silica and the rough aluminum surface of the mount with higher losses. This mount

holds the resonator in place using thirteen 3/32inch diameter aluminum ball bearings, which limits

the amount of energy lost to the mounting apparatus, and allows us to tilt the sensor vertically.

Figure 2.6 depicts a computer rendering of this mount. The eigenfrequency analysis tells us that

the fraction of the elastic energy contained within the ball bearings is 3.4 × 10−7. The internal
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Figure 2.6: Model of resonator mount. The small holes in the walls and bottom of the mount
hold ball bearings, which prevent the fused silica from contacting the aluminum mount. The larger
holes are threaded to place a lid over the resonator. This mount also secures the resonator so that it
can measure in the vertical orientation.
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losses of aluminum are on the order of 1 × 10−2 [46]. Therefore, we can safely expect the losses

from the mounting apparatus to be several orders of magnitude lower than the losses from the

flexures, meaning that anchor losses are not the dominant loss mechanism in our current setup.

2.4.4 Optimization of flexure dimensions

In addition to calculating the mechanical quality factor, Equation 2.5 allows us to compute the

flexure dimensions that optimize the resonator sensitivity. By noting that the mechanical quality

factor of a resonator is related to the loss coefficient by:

Q =
1

ϕ(ω0)
, (2.11)

we evaluate Equations 2.5, 2.6, 2.7, and 2.9 for a given resonance and range of flexure thick-

nesses. In doing so, we determine the quality factor as a function of the flexure dimensions. We

then optimize the dimensions by finding the thickness and length combination that produces the

desired resonance with the largest mQ/ω value, ensuring that the optimized dimensions produce

the lowest acceleration noise floor possible. The optimization of a 3.8Hz, 2.2 g test mass is de-

picted in Figure 2.7. We see that there is a local mQ/ω0 maximum when the flexure thickness

is approximately t = 83 µm. At this thickness, mQ/ω0 = 3.9 × 102 kg · s and Q ≈ 4.2 × 106.

Such a resonator would have a thermal noise floor of approximately 1.0 × 10−11m/s2/
√
Hz. In

principle, we can potentially achieve even larger mQ/ω0-values for thicker (>1mm as opposed

to 0.1mm) flexures; however, the flexure length in such a resonator would be much larger for the

same resonant frequency. For instance, COMSOL simulations suggest that 1mm thick flexures

would need to be >0.5m long to retain a resonance of 3.8Hz. Such long flexures do not follow our

development goals of compact and portable optomechanical inertial sensors.

Note that the theoretical basis for this optimization is laid out in Section 2.2, and can be ap-

plied to other topologies with a test mass supported by flexures or fibers with uniform thickness.

Other topologies are not considered in this optimization because the relevant topology is highly

dependent on application. Parallelogram optomechanical oscillators have demonstrated excellent
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performance as accelerometers [37, 22] and force sensors [19]. The analysis of mechanical losses

presented here for thin flexures, has been done for other topologies, including a drum-head res-

onator to be used for atom interferometry [2].

The width of the flexures was not considered in this optimization, due to the following: a)

increasing the width can make the test mass significantly larger, lowering the thermal acceleration

and displacement noise; and b) decreasing the width decreases the size of the test mass, but also

lowers the frequency of higher order resonator modes.

10-3 10-2 10-1 100 101

101

102

103

Figure 2.7: An optimization model of mQ/ω0 for various flexure thicknesses of a 3.8Hz resonator.
In this simulation, the resonant frequency is held constant. When varying the thickness of the
flexures’ smallest dimension, we assume the length of the flexures also vary to keep the resonance
constant. We evaluated the surface, bulk, and thermoelastic loss models for a range of flexure
thicknesses. The local maximum around 8.3 × 10−2mm indicates the optimum flexure thickness
which yields the lowest noise floor. For comparison, our current resonator has 0.1mm flexures,
denoted by a vertical line in the plot.
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2.5 Test Mass Displacement Interferometer

In order to verify these models, we need a method for detecting test mass displacement. In this

section, we outline the construction of a test read-out system for this purpose. However, this inter-

ferometer is used to characterize the resonance and quality factor of the mechanical resonator and

is not developed to achieve high sensitivities. In the future, the resonator will be fully integrated

with a high-sensitivity displacement readout interferometer [40] to create the final optomechanical

sensor. When conducting measurements on our sensor in a laboratory environment, we can expect

test mass displacements well over several microns. We therefore require an interferometric readout

method that provides a sufficiently large dynamic range and allows for high displacement sensi-

tivity in future developments. To this end, we built a heterodyne laser interferometer (Figure 2.8),

which is capable of measuring displacements significantly larger than an interferometer fringe to

characterize the mechanical resonator and directly measure its resonant frequency and Q. In order

to enable the deployment of these sensor in the field, adequate test mass stoppers that constrain the

test mass displacement range should and can easily and monolithically integrated into the future

sensor fabrication approach.

To track test mass displacement, we placed an external mirror on top of the test mass and

mounted a second mirror on the frame of the resonator to provide an interferometric reference

phase that allows for differential measurements. Except for the mirrors reflecting their respec-

tive signal arms, the two interferometers share many optical components to facilitate common-

mode noise rejection. To reduce gas damping, we placed the optomechanical resonator into a

low-pressure chamber that reaches 0.9mTorr. This chamber contains a viewport for optical ac-

cess to the two mirrors placed on the resonator. This interferometer is operated in air outside the

chamber, except for the mirrors placed onto the resonator.

2.6 Experimental results

From the interferometers described above, we were able to perform preliminary tests of the

COMSOL models. We measured the quality factor of the resonator from ringdown measurements,
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Key:

A - dielectric mirror           E - plate non-polarizing beamsplitter

B - quarter wave plate        F - half wave plate

C - photodiode         G - polarizer

D - cube polarizing beamsplitter

D
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Figure 2.8: Diagram of the interferometers used to measure acceleration and displacement power
spectral densities. A heterodyne laser beam consisting of two frequencies is split in two by a non-
polarizing beam splitter. The light is equally split between the two interferometers, measurement
and reference. The signal arm of measurement interferometer reflects off of the mirror placed
on the test mass. The signal arm of the reference arm reflects off a mirror placed on the frame
of the resonator. The reference arm of both interferometers reflect off a common mirror. The
displacement of the test mass is measured by subtracting the phases of the two interferometers.
Using two interferometers allows for the rejection of common-mode noise, lowering the total read-
out noise.
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which analyze the decay envelope of the maximum test mass displacement over time.

Ringdown measurements at atmospheric pressure yielded quality factors of Q = 600 − 700,

in good agreement with the COMSOL simulations. We then pumped the vacuum chamber down

to 0.9mTorr and recorded a ringdown of the resonator over one hour. The decay envelope, shown

in Figure 2.9, yields a mechanical quality factor of Q = 1.14 × 105. This corresponds to an mQ-

product of 250 kg and a thermal noise floor of ath = 4.03×10−11m/s2/
√
Hz at higher frequencies,

increasing with a slope of 1/f towards low frequencies. In our current experimental setup, we

use a heterodyne laser interferometer of limited sensitivity with the purpose of characterizing the

mechanical properties of our resonator. This is not intended to directly observe the acceleration

noise floor of the device. To this end, an isolated platform such as a torsion balance or similar may

be needed to effectively access acceleration noise floors at 1 × 10−11 m/s2/
√
Hz. However, we

anticipate that the thermal noise can be resolved when the resonator is coupled to a high-precision

laser interferometer [40] and operated on a platform with appropriate seismic isolation.

When studying and measuring the quality factor, we observed that there is a strong dependence

on pressure, even when pumping down to the mTorr regime, which is expected. This behavior

suggests that Q is still limited by gas damping. Figure 2.10 shows the quality factors we have

observed versus pressure. Gas damping losses limit the quality factor of the resonator at this

pressure regime to a so-called ballistic regime that can be determined by [47]:

Qgas =
a

P
, (2.12)

where a is a parameter dependent on temperature and the properties of the gas. The reciprocals of

quality factors add linearly:
1

Q
=

1

Qgas

+
1

Q0

, (2.13)

where Q0 is the quality factor due to other loss mechanisms. By fitting the data in Figure 2.10

we obtain that a = 205Torr and Q0 = 2.17 × 105. The Q vs. pressure data points on the plot

clearly follow a trend in agreement with gas damping, indicating that this the current dominant
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Figure 2.9: Decay envelope of the test mass oscillations during a ringdown. Fitting to an exponen-
tial decay, we find Q = 1.14× 105. This fit has an r2 value of 0.989.
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loss mechanism in our system for pressures at the mTorr level.

Figure 2.10: Quality factors obtained from ring-downs are plotted versus the pressure in the vac-
uum chamber. From the fit, we infer that the quality factor of the resonator in our test setup is
limited by gas damping at the pressures we can achieve.

2.7 Outlook

In this work, we modeled the energy loss mechanisms limiting the sensitivity of a novel 10Hz

optomechanical inertial sensor. In contrast to previous work in optomechanical accelerometers

over kHz frequencies [22], the low-frequency resonance of this sensor allows for better sens-

ing of low-frequency signals. Using two heterodyne interferometers as displacement sensors,

we presented preliminary measurements of the resonator’s quality factor at various pressure lev-
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els. Improvements to our low-pressure and vacuum facilities are currently under commission-

ing, and we expect that these improvements will lead to significantly lower gas damping losses,

laser-interferometric displacement and acceleration noise floors in our optomechanical inertial

sensors. We have demonstrated that our mechanical resonator can achieve a mQ-product of

250 kg under our current experiment conditions, leading to acceleration noise floors at levels of

4 × 10−11m/s2/
√
Hz for frequencies above resonance. However, we anticipate to achieve higher

mQ-products as we improve our vacuum systems.

These investigations show that our sensor’s compact dimensions, magnetic field insensitivity,

and high mechanical quality factor make low-frequency optomechanical inertial sensors promising

candidates for field high sensitivity acceleration measurements.
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3. RESONATOR TOPOLOGY OPTIMIZATION

The work presented in Chapter 2 highlighted a significant drawback to our first resonator de-

sign: the inability to integrate the optical readout onto the wafer of the resonator. In addition to

the surface area of the wafer being insufficient to hold a laser interferometer, the test mass could

only be tracked by placing a mirror on top of the test mass. If rotated vertically, the lever arm

of the mirror changes the mechanics of the test mass’ rectilinear motion, potentially introducing

significant acceleration noise through the tilting of the test mass. To ensure our optomechanical

accelerometer can operate along any axis, we desire want the test mass mirror to be flush with the

surface of the test mass, which required a redesign of the resonator.

Redesigning the resonator so it can appropriately hold optical hardware is straightforward,

requiring only a larger wafer and a test mass cutout which can house a mirror. However, designing a

new resonator allows us to leverage the models developed in Chapter 2 to optimize the performance

of our optomechanical accelerometer. In this chapter, we detail this optimization process that we

utilized to design novel fused silica resonators.

Recall that this project targets the sub-Hz regime as its acceleration detection bandwidth. We

therefore require a mechanical resonator whose stiffness is conducive to the detection of such

low-frequency signals. In Chapter 2, we derive the transfer function of external accelerations

to test mass motion, as demonstrated in Equation 2.3. The magnitude of this transfer function,

plotted in Figure 3.1, informs us how the test mass responds to vibrations at different frequencies.

Above the resonant frequency of the test mass, vibrations couple into the resonator motion with an

efficiency of 1/ω2. Below resonance, that coupling efficiency approaches 1/ω2
0 . Therefore, for any

desired detection bandwidth the frequency of the mechanical resonator should be just larger than

the highest-frequency signal you want to measure. A higher frequency resonator would diminish

the sensitivity to the desired signals whereas a lower frequency resonator would leave the resonant

peak of the test mass in the bandwidth of interest, obscuring a portion of the signal. In the case

of a sub-Hz detection bandwidth, it is therefore appropriate to use a mechanical resonator with a
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Figure 3.1: The transfer function of external acceleration to test mass displacement. Above the
resonant frequency of the test mass, vibrations do not strongly couple into the test mass motion.
Below resonance, vibrations are imprinted into the test mass oscillations with a coupling factor of
approximately 1/ω2

0 . This plot informs us what resonant frequency is appropriate for detection of
noise in the sub-Hz regime.
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frequency on the order of 1Hz, and for the remainder of this chapter we select a target resonance

of 5Hz.

As the resonator oscillates, it gives up energy to various mechanical loss mechanisms. The

energy dissipated creates thermal motion in the flexures which in turn contributes to the accelera-

tion noise floor of the accelerometer it constitutes. These loss mechanisms can be categorized into

external and internal losses based on the cause of the energy dissipation and way the mechanism

is mathematically modeled. External losses primarily include gas damping, modeled as a velocity-

damping term in the equation of motion of the test mass. Internal losses on the other hand are

modeled as a complex spring constant and are comprised of mechanisms that happen through the

material of the resonator. Both damping categories depend on the material choice and topology of

the resonator, however gas damping is mitigated by operating in a vacuum. Internal losses cannot

be muted by changing the testing environment. Because of this, it is natural to optimize the topol-

ogy of our resonator to minimize the internal energy dissipation. These mechanisms include losses

through the bulk material, through the surface of the material, and through temperature fluctuation-

induced bending. Equations for the bulk [44], surface [45], and thermoelastic [38, 39] losses that

happen within the fused silica resonator are given by:

ϕbulk(ω) = 0.76× 10−10 × (
ω

2π
)0.77 (3.1)

ϕsurface =
3 + a

1 + a
(6.15 pm)

2(w + t)

wt
(3.2)

ϕte(ω) =
Y Tα2

ρC

ωτ

1 + ω2τ 2
(3.3)

where w and t are the dimensions of the cross-section for a rectangular flexure, a is the aspect

ratio of that cross-section, Y is Young’s Modulus, T is temperature, α is the coefficient of ther-

mal expansion, ρ is the mass density, and C is the specific heat capacity. Furthermore, τ is the
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characteristic time for heat to flow from one side of the flexure to the other, given by [38]:

τ =
ρCw2

π2κ
(3.4)

where w is the flexure width and κ is the thermal conductivity. The total mechanical loss coefficient

for the resonator is simply the sum of Equations 3.1-3.3:

ϕ(ω) = ϕbulk(ω) + ϕsurface + ϕte(ω) (3.5)

Note that surface and thermoelastic losses both depend on the flexure dimensions, suggesting that

it is possible to minimize these energy dissipation mechanisms by carefully selecting the flexures’

width and thickness. As demonstrated in Section 4.1.2, thermal acceleration noise goes like the

square root of the loss coefficient and so lowering the losses in the resonator will lower the thermal

noise floor. However, we must also ensure the flexure size allows us to meet our other design

constraints. We summarize the objectives of our topology optimization below:

• Minimize the mechanical losses.

• Maximize the test mass.

• Achieve the target resonant frequency.

• Have higher-order modes have frequencies 10× larger than the

• Maintain a compact resonator footprint of approximately 100×100mm.

• Prevent the flexures from snapping under typical handling and operating conditions.

These objectives are evidently in competition. Rather than a formal optimization, we utilize models

and simulations to gain sufficient insight to make informed design choices. In Equations 3.2 and

3.4, t is the thickness of the flexure and is identical to the thickness of the wafer from which the

resonator is etched. The flexure width w represents the shorter dimension of the flexure cross-

section that allows the resonator to oscillate. The test mass is first maximized by selecting the
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thickest wafer that can be etched, t=6.6mm in the case of fused silica. As a starting point for

our calculations, we also assume the test mass is 15mm wide × 12mm tall for a total mass of

2.6 g. With this value of t and a predetermined target resonance of ω0 = 2π × 5Hz, Equations

3.1-3.5 are used to find an optimal width w that minimizes the mechanical losses. Because the loss

coefficient is frequency dependent, we chose to optimize the losses at ω = ω0. Specifically, by

inspecting Equation 2.4 we select the quantity mQ
ω2
0

to be optimized because Q contains the desired

loss coefficient and scaling by m
ω2
0

readily allows for comparing the thermal noise in resonators with

different topologies, test masses, and resonant frequencies. Evaluating this quantity for a range of

flexure widths produces the plot in Figure 3.2.

Figure 3.2: The optimization curve of our 5Hz resonator as a function of flexure width as well as
the contributions from bulk, surface, and thermoelastic losses. Maximizing mQ

ω2
0

results in lower
thermal acceleration noise. The grey vertical line indicates the calculated optimum flexure size.

32



We find that a 2.6 g fused silica resonator with a natural mode of 5Hz has a local maximum of

10.4 kgs2 in the optimization parameter at w=75 µm, but higher values can be achieved by increas-

ing the flexure width to several millimeters or thicker. However, in performing this exercise, there

is an implicit assumption that when changing the flexure width, the flexure length is also modified

in order to keep the resonant frequency constant. Using COMSOL’s Solid Mechanics module, we

find that without changing the size of the 2.6 g test mass, 1mm wide flexures would need to be

approximately 480mm long to keep the resonant frequency at 5Hz, 5× larger than the size con-

straint previously defined. Furthermore, the out-of-plane motion of the test mass for a resonator

this size would have a resonant frequency under 20Hz, going against the constraint imposed on

higher-order modes. In principle, the frequency of the out-of-plane motion could be increased by

making the flexures and test mass thicker. However, this solution is not practical as we have al-

ready chosen the maximum fused silica wafer thickness that can reliably be etched. Because of

these issues, we instead chose a flexure width near the local maximum at 75 µm.

Yet, smaller flexures encounter the problem of having too much stress in them under normal

loads. The bending strength of fused silica samples is known to be 67MPa [48]. Our COMSOL

simulations suggest that a 2.6 g test mass with 53×0.075× 6.6mm flexures would have a resonant

frequency of 5.1Hz, but the stress in the device when gravity is pointed along the axis of test mass

motion would be as high as 50MPa. While still 25% under the bending strength of the material,

this design would not afford much room for error while handling the device and is not ideal for our

purposes.

Instead, we choose a width of w =100 µm which has been previously demonstrated in past res-

onator designs [23]. The maximum stress in the flexures in this scenario is estimated to be 35MPa

when gravity is along the axis of the test mass motion, which is comfortably below the material

bending strength. Table 3.1 summarizes our the different flexure widths we simulated to identify

the optimum design for our resonator. The different simulated resonators are also visualized in

Figure 3.3. The final redesign of the resonator is presented in the next chapter.
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Figure 3.3: A comparison of fused silica resonators with different flexure widths. Color indicates
the Von Mises stress with the flexures under a 1 g acceleration along the axis of the resonator’s
natural frequency. All three designs have resonance frequency of approximately 5Hz. We observe
that thinner flexures, while more compact, experience greater stresses which make them more
likely to break. Wider flexures experience the least amount of stress, but must be much longer to
maintain a low resonance.
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width length stress higher-order frequency

75 µm 53mm 50MPa 163Hz
100 µm 68mm 35MPa 130Hz
1mm 480mm 13MPa 19Hz

Table 3.1: A table summarizing our simulations of resonators with different flexure widths. The
flexure length is the length needed to create a resonant frequency of approximately 5Hz, the stress
is the maximum von Mises stress in the flexures when gravity is pointed in the plane of motion,
and the higher-order frequency is the frequency is the second-lowest mode. This data is used to
evaluate what size ribbon allows the resonator to meet our experimental constraints.
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4. SECOND ITERATION LOW-FREQUENCY OPTOMECHANICAL ACCELEROMETER*

The topology optimization work presented in Chapter 3 resulted in a new resonator design

for our optomechanical accelerometer. This design featured a thicker wafer and larger test mass,

which is anticipated to exhibit lower thermal motion and produce a more sensitive accelerometer.

Moreover, the design is novel in that it has cutouts on the wafer and test mass, intended to hold

optical hardware for laser interferometric displacement readout. Integrating the readout scheme

onto the fused silica resonator is advantageous because it results in a more compact accelerometer,

which is lighter, more portable, and less susceptible to noise originating from thermal expansion.

At the time of fabricating this new resonator, the compact laser interferometer was not ready to be

bonded to the wafer. Rather, the first task carried out with this design was to characterize its reso-

nant frequency and mechanical quality factor, and to demonstrate its ability to detect seismic mo-

tion. Furthermore, preliminary measurements allow us to identify several noise sources that limit

our sensitivity below 100mHz and estimate the temperature stability and laser frequency stability

requirements to achieve a thermally-limited acceleration measurement. This chapter, based on the

2022 Remote Sensing article [7], discusses our work to characterize this new resonator. The work

presented in this chapter was done in collaboration with Dr. Felipe Guzmán, Dr. Guillermo Valdes,

Dr. Jose Sanjuan, Dr. Yanqi Zhang, Andrea Nelson, and Jeremiah Stoddart who all contributed to

the experimental design and analysis. In particular, Dr. Yanqi Zhang aided in the development of

our heterodyne laser interferometer and Dr. Jose Sanjuan provided valuable insight regarding data

correction techniques. My contributions to this work include the construction of the experimental

setup, the design of the fused silica resonator, data collection and analysis, and writing an article

for journal publication.

We present a novel optomechanical inertial sensor for low-frequency applications and corre-

sponding acceleration measurements. This sensor has a resonant frequency of (4.715± 0.001)Hz,

*Reprinted with permission from “Optomechanical Accelerometers for Geodesy” by Adam Hines, Andrea Nelson,
Yanqi Zhang, Guillermo Valdes, Jose Sanjuan, Jeremiah Stoddart and Felipe Guzmán, 2022. Remote Sensing, Vol.
14, Copyright 2022 by MDPI.
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a mechanical quality factor of (4.76± 0.03)× 105, a test mass of 2.6 g, and a projected noise floor

of approximately 5 × 10−11ms−2/
√
Hz at 1Hz. Such performance, together with its small size,

low weight, reduced power consumption, and low susceptibility to environmental variables such as

magnetic field or drag conditions makes it an attractive technology for future space geodesy mis-

sions. In this chapter, we present an experimental demonstration of low-frequency ground seismic

noise detection by direct comparison with a commercial seismometer, and data analysis algorithms

for identification, characterization and correction of several noise sources.

4.1 Methods

4.1.1 Optomechanical accelerometers

Our optomechanical accelerometer is composed of two main components: the mechanical res-

onator and the laser interferometric readout. In this section we discuss the design of both parts and

present characterization measurements which can be used to project the acceleration noise floor of

our device.

4.1.1.1 Resonator - design and characterization

We have designed a resonator intended to be used for 1D acceleration measurements, though a

triaxial device would be a straightforward extension of the topology presented here. This resonator

is laser-assisted dry-etched from a single monolithic fused silica wafer and is 90mm × 80mm ×

6.6mm in volume with a total mass of 58.2 g. Our accelerometer has a smaller form and lighter

weight than the GRACE-FO accelerometer, representing a major advantage for satellite missions.

An image of our resonator is shown in Figure 4.1. Our design consists of a 2.6 g parallelogram test

mass supported by two 100 µm thick leaf-spring flexures.

Finite Element Analysis (FEA) simulations performed in COMSOL predict a 5.5Hz resonant

frequency, which makes our resonator suitable for measuring non-inertial disturbances below 1Hz.

At frequencies below resonance, the test mass response x to an external acceleration a is approxi-

mately given by:

x ≈ a

ω2
0

(4.1)
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Figure 4.1: A diagram of our 5Hz resonator. A penny is added for reference.

where ω0 is the angular resonant frequency. There is a trade-off between the required displace-

ment sensitivity, how low the resonance can be in a practical resonator, and its final dimensions.

Therefore, a resonance on the order of 1Hz allows this low-frequency noise to couple into the

test mass motion better than a high resonance device, which in turn relaxes the required test mass

readout precision. Conversely, a lower resonance device requires a larger resonator, which quickly

becomes more difficult to work due to the low-stiffness.

Furthermore, our simulations predict that all higher-order modes have frequencies above 130Hz,

significantly higher than the lowest resonance by a over an order of magnitude. This is desired for

mitigating the cross-talk between modes that appears in our measurements, which in turn reduces

the noise in our data. Figure 4.2 shows the first two modes of this resonator: the first being the

translational mode of the test mass and the second being a violin mode of the flexures with a

significantly higher frequency.

The acceleration experienced by the resonator is recovered by applying a transfer function,
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Figure 4.2: The first two eigenmodes of our 5Hz resonator modeled in COMSOL. Note that the
second mode is larger than the first by more than a factor of 10. Having higher order modes that
are substantially higher than the first mode is desired for minimizing the cross-talk between modes
observed in measurements.

which is defined by the resonance and quality factor, to the test mass displacement data. This

transfer function is given by [23]:

x̃(ω)

ã(ω)
=

−1

ω2
0 − ω2 + iω0ω/Q

(4.2)

where x̃(ω) is the test mass motion, ã(ω) is the acceleration coupling into the resonator, ω0 is the

resonant frequency, and Q is the mechanical quality factor. Note that when ω << ω0, Equation 4.2

simplifies to Equation 4.1. To characterize the acceleration sensing capabilities of our resonator,

we experimentally determine these parameters using a ringdown test where we deliberately excite

the test mass motion and track its oscillations. In the absence of other perturbations, the oscillation

amplitude will exponentially decay, allowing for an easy calculation of Q. Figure 4.3 depicts the

decay envelope of our ringdown measurement, which was performed over 14 hours at a vacuum

pressure of 10 µTorr. From this measurement we find a Q-factor of (4.76 ± 0.03) × 105 and
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an mQ-product larger than 1250 kg. Furthermore, taking the Fast Fourier Transform (FFT) of

the raw data yields a resonant frequency of f0 = (4.715 ± 0.001)Hz, in good agreement with

our simulated value of 5.5Hz. The transfer function in Equation 4.2 can then be evaluated using

our experimentally determined parameters. We apply this transfer function to the displacement

measurements in the frequency domain to convert the signal to acceleration noise.

Figure 4.3: Decay envelope of our ringdown measurement fitted to an exponential. The resonant
frequency is removed with a low-pass filter, allowing us to calculate the Q-factor to be (4.76 ±
0.03)× 105.

4.1.1.2 Laser interferometer - design and characterization

In order to measure the local acceleration noise we must measure the displacement of the test

mass from its equilibrium. For this, we constructed a heterodyne displacement interferometer with

a differential phase readout. Cutouts on the test mass and the u-shaped frame of our resonator,

shown in Figure 4.1, allow for easy implementation of mirrors that complete this laser interfer-

ometer. The optical methods and noise rejection schemes used for this readout are discussed in

greater detail in [49], though an overview of this optical readout is provided in this section. Fig-

ure 4.4 contains a diagram of our laser interferometer. A fiber-coupled 1064.181 nm beam is split
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and frequency-shifted by two accoustic-optical modulators (AOMs) to create a 5MHz heterodyne

frequency. The frequency shifted beams are then injected into a series of prisms that create two

distinct Mach-Zehnder type interferometers: one that tracks the test mass motion and one that acts

as a reference.

The measurement interferometer sends one beam to a mirror on the test mass, MM , where

the displacement information is imprinted on the phase of the reflected beam. Similarly the ref-

erence interferometer reflects one beam off a stationary mirror, MR. The second beams for both

interferometers reflect off the same common mirror, M . Common mode noise sources, such as

temperature fluctuations in the prisms, will coherently affect both interferometers. Therefore a

differential phase measurement rejects some environmental noise and allows for a high-sensitivity

displacement sensing.

Furthermore, the laser adds noise to our data in the form of laser frequency noise. To combat

this we also introduce a delay-line interferometer to the setup. This interferometer allows us to

make independent measurements of the frequency noise by interfering one beam from the laser

with a delayed copy of itself. By creating a path-length difference of 2m in the delay-line in-

terferometer arms, laser frequency fluctuations becomes the dominant noise source in this fiber

interferometer, although its signal-to-noise ratio (SNR) decreases toward lower frequencies due

to fiber noise. With this measurement we can remove most of the laser frequency noise from

the resonator data in post-processing. However, for example, in future space geodesy missions, a

frequency-stabilized laser source will be available, offering enhanced stability than can be achieved

through post-correction and therefore eliminating the need for a delay-line interferometer. The

readout displacement noise, taken with a stationary mirror in place of the test mass mirror, is

shown in Figure 4.5. We find that this interferometer can measure displacement with a sensitivity

of 3 × 10−12m/
√
Hz at 1Hz and 7 × 10−10m/

√
Hz at 1mHz. The peaks near 0.4Hz and 1Hz

are caused by the mechanical resonances of a vibration isolation platform the interferometer was

placed on while testing.
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Figure 4.4: A diagram of the heterodyne readout used for our measurements. In this schematic,
the mirrors M and MR are stationary while MM is the mirror on the test mass.

Figure 4.5: A plot of the displacement noise in our heterodyne interferometer. As this measurement
was taken without our resonator, seismic noise is not present in the data. The shaded area represents
the estimated error bars of the spectrum.
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4.1.2 Accelerometer noise floor

The acceleration sensitivity of our optomechanical accelerometer is anticipated to be limited by

both the thermal noise of the resonator and the displacement noise from the readout interferometer.

In this section we estimate both contributions in order to calculate the acceleration noise floor.

Thermal noise, which represents the ultimate acceleration sensitivity that can be achieved with

our resonator, is caused by gas damping and internal loss mechanisms within the fused silica.

These loss mechanisms include bulk losses, surface losses, and thermoelastic losses. The thermal

acceleration noise can be derived from theory starting from the equation of motion for a resonator,

given by [23, 50]:

ma = mẍ+mΓẋ+mω2
0(1 + iϕ(ω))x (4.3)

where m is the test mass, Γ is the gas damping rate, and ϕ(ω) is the internal loss coefficient

of our fused silica oscillator. Converting to the frequency-domain and applying the Fluctuation-

Dissipation Theorem [50], we find that the thermal acceleration noise is given by:

ã2th(ω) =
4kBT

mω
(ωΓ + ω2

0ϕ(ω)) (4.4)

where T is the temperature of the test mass and kB is Boltzmann’s constant. In general, both

gas damping and internal losses contribute to the thermal noise. However, because our testing

environment can reach µTorr pressures, we operate under the assumption that gas damping is

negligible in comparison to internal losses. Previous work on a similar resonator estimated that the

a vacuum pressure of 10 µTorr would be sufficient for making gas damping negligible compared

to other mechanical losses, which is achieved both in laboratory environments, portable vacuum

enclosures, and certainly space geodesy missions. Therefore, for the remainder of the paper we let

Γ = 0.

We can calculate ϕ(ω) using known equations for the different loss mechanisms [38, 39, 44,

45], but this is not ideal for our purposes. The mechanical losses of fused silica have been stud-

ied intensively by the gravitational wave community for use in low-thermal noise test mass sus-
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pensions. The models developed by these investigations are useful for optimizing a fused silica

sensor’s topology, but the only information we can experimentally obtain for ϕ(ω) is the Q-factor.

Therefore, we want an equation for the thermal noise in terms of Q rather than ϕ(ω). For this we

assume that the internal losses are constant in the bandwidth of interest and are given by:

ϕ(ω) =
1

Q
(4.5)

Using these assumptions, we simplify Equation 4.4 to:

ã2th(ω) =
4kBTω

2
0

mQω
(4.6)

This is the final equation we use to calculate the thermal acceleration noise. Note that larger Q-

factors lead to lower thermal noise, highlighting the importance of fused silica as a material choice.

Fused silica is known to have very low internal losses at room temperature, with Q-factors well

above 1×106 for high-frequency resonators [14, 15, 51, 52, 53] and above 1×105 for low-frequency

devices [23]. Research into the material properties of fused silica at cryogenic temperatures has

shown that the mechanical losses ϕ of this material increases substantially as temperature decreases

[54]. At 30K these losses can increase by as much as four orders of magnitude, which would in

turn increase the thermal acceleration noise of our optomechanical accelerometer by a factor of

100. Moreover, this work suggested a fused silica resonator could be operated at temperatures

as low as 225K with minimal quality factor degradation of at most a few percent. Hence, we

adopt 225K as the minimum operating temperature of our accelerometer, which is not anticipated

to impede our device’s performance in the context of space geodesy, as such systems typically

operate near room temperature.

In addition to thermal motion, displacement readout noise from the laser interferometer con-

tributes significantly to the acceleration noise floor of our optomechanical accelerometer. For

this section, we note that the Laser Interferometer Space Antenna (LISA) Pathfinder mission has

demonstrated an optical readout with a sensitivity reaching 35 fm/
√
Hz [3], representing an ex-
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cellent sensitivity level that can be used to model our own projected noise floor. To convert this

displacement noise to acceleration, we simply apply the transfer function in Equation 4.2. This

readout noise is assumed to be incoherent with the thermal motion of the resonator, so the two

noises add in quadrature:

ã2floor(ω) = ã2th(ω) +
∣∣ ã(ω)
x̃(ω)

∣∣2x̃2
int(ω) (4.7)

Equation 4.7 is plotted in Figure 4.6a, where we observe the acceleration sensitivity is anticipated

to be 5 × 10−11 ms−2/
√
Hz at 1Hz and increases towards low frequencies as f−1/2. Above res-

onance, the noise floor increases rapidly, dominated by readout noise, while below resonance the

thermal motion is sufficiently low that the noise floor is 1× 10−9ms−2/
√
Hz at 1mHz.

Figure 4.6: (a) The acceleration noise floor of our optomechanical accelerometer including thermal
motion from the resonator and readout noise from the laser interferometer. (b) The correspond-
ing displacement readout noise floor required to observe this acceleration noise level. Both plots
assume a mechanical Q-factor of (4.76 ± 0.03) × 105 and a readout noise consistent with that
achieved by LISA Pathfinder [3].

4.2 Results

To demonstrate the acceleration sensing capabilities of our device we take simultaneous mea-

surements with the optomechanical accelerometer and a Nanometrics Trillium Horizon 120-2

(T120H) seismometer [13]. The T120H seismometer is placed on top of the vacuum chamber
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that houses the resonator to ensure seismic noise couples into both accelerometers coherently.

Moreover, the axis of motion for the resonator has been set up to coincide with the x-axis of the

seismometer, allowing for an easy comparison of the two sensors. Photos of this setup are shown

in Figure 4.7. In this section, we present preliminary measurements taken with our optomechanical

accelerometer and describe correction methods we use to remove various noise sources.

4.2.1 Measuring seismic noise

Data was taken for 60 hours allowing us to observe frequencies as low as 4.6 µHz. The accel-

eration noise observed by both devices are shown in Figure 4.8, where we note agreement in the

micro-seismic band between 100mHz and 500mHz. The seismometer detected less noise at fre-

quencies below this bandwidth, indicating that our optomechanical accelerometer was limited by

environmental noise below 100mHz. Even though our optomechanicl accelerometer’s observed

noise is significantly higher than the measured optical readout noise in Figure 4.5, the laser path

length difference between the measurement and reference interferometers when the resonator is

incorporated in the setup is greater than 1 cm. This in turn enlarges the laser frequency noise in

comparison to what was observed in the interferometer stability test.

4.2.2 Data Post-Correction

The data taken with our optomechanical accelerometer presented in Section 4.2.1 was initially

unable to observe the same acceleration noise as our T120H seismometer below 100mHz due to

a combination of signals originating from the environment and the optical readout. However, with

careful environmental monitoring some of this noise can be removed in post-correction. In this

section we discuss the different noise removal methods we utilize in our data to achieve a better

acceleration sensitivity, and correspondingly better agreement with the commercial seismometer.

4.2.2.1 Time Domain Linear Regression

A portion of the environmental noise in our data can be removed by performing linear fittings

to different sets of environmental data taken at the same time as the acceleration measurement. In

addition to the previously discussed delay-line interferometer, this environmental data includes the
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Figure 4.7: (a) An image of our experimental setup, including our fused silica resonator, hetero-
dyne laser interferometer, and delay-line interferometer. (b) An image of the commercial seis-
mometer’s setup relative to our vacuum chamber, which houses the items shown in (a).

Figure 4.8: The acceleration noises measured by our optomechanical accelerometer and Trillium
Horizon 120 seismometer. We observe good agreement between 100mHz and 500mHz. The
shaded areas represent the estimated error bars of the spectra.
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room temperature, vacuum chamber temperature, vacuum pressure, and the heterodyne signal am-

plitudes of the measurement, reference, and delay-line interferometers. Furthermore, we retrieved

data on the ambient weather conditions from Texas A&M University’s Research Farm [55] as the

changing barometric pressure can induce tilting in our optical bench which causes a projection of

the local gravity into the resonator’s axis of motion.

For frequencies below 100 µHz we find that the barometric pressure dominates the resonator’s

acceleration noise, with a coupling coefficient of −29.24mms−2 Bar−1 found by linear regres-

sion in the time domain. To isolate the frequency band where the pressure noise dominates, this

linear regression is performed on bandpass-filtered data. While effective, the efficacy of this post-

correction is limited by the data acquisition of the weather station at Texas A&M’s Research Farm,

which reports hourly averages. The ultra-low Nyquist frequency of 139 µHz restricts our ability to

correct our data for barometric pressure fluctuations above that frequency. As part of our ongoing

efforts to develop this technology, we will include in-house measurements of the ambient labora-

tory air pressure taken with a commercial barometer sampled at a much higher rate to avoid this

problem.

The acceleration noise caused by laser frequency noise is found in a similar way. Laser fre-

quency fluctuations appear in our resonator data as a bump around 12mHz, which can be observed

in Figure 4.8. By applying a bandpass filter with corner frequencies of 5mHz and 40mHz to the

resonator and delay-line interferometer data, we find a coupling coefficient of 1.1421 µms−2 rad−1.

This coupling coefficient informs us on how stable a laser would need to be in order for our res-

onator to be thermally limited. The phase of our delay-line interferometer, ϕdelay, is proportional

to our laser source’s frequency noise, νlaser, by [1]:

ϕdelay =
2π∆L

c
νlaser (4.8)

where c is the speed of light and ∆L is the path length difference in the delay-line interferom-

eter, which is 2m in our case. This suggests that the coupling factor between our resonator’s
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acceleration, a, and the laser frequency noise νlaser is 4.709 × 10−14 ms−2Hz−1. Using our pro-

jected thermal acceleration noise shown in Figure 4.6, we anticipate a laser frequency stability of

1.06 kHz/
√
f is required for observing the thermal motion of our resonator. This stability is very

achievable and the frequency stability of the laser onboard GRACE-FO is much better than this

requirement [56].

Figure 4.9: (a) The transfer function between vacuum chamber temperature and acceleration. Note
that between 300 µHz and 50mHz, the amplitude varies by nearly factor of 5, suggesting that a
linear regression would not be suitable for this data set. The transfer function is not plotted below
300 µHz because the low number of averages causes large uncertainties. The shaded area represents
the estimated error bars of the spectrum.

4.2.2.2 Transfer Function

The linear regression method of noise subtraction that we use for the barometric pressure and

laser frequency corrections assumes that the phase and amplitude of their respective coupling co-

efficients are uniform over the bandwidths we are correcting. However, noise generally does not

couple into a given system uniformly in frequency; both the amplitude and phase of the coupling
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factor can be frequency dependent. The temperature inside our vacuum chamber for example is a

significant source of noise in our experiment, but it does not couple uniformly in frequency. Be-

cause of this we must use a different approach to remove temperature effects from our data. We

correct for the vacuum chamber temperature by calculating a transfer function, HTa(ω), between

the temperature and acceleration data [57]. This transfer function is typically estimated by tak-

ing the ratio of the cross power spectral density (CPSD)of the acceleration and temperature data,

STa(ω), and the power spectral density (PSD) of the acceleration, Saa(ω) [58]:

HTa(ω) =
STa(ω)

Saa(ω)
(4.9)

For this spectral analysis, we use a Nuttall window function and 1.98×105 samples. The number of

averages increases with frequency. The lowest frequency bin, 5 µHz has only one average, which

increases to over 1100 averages at 0.5Hz. At 230 µHz, there are 10 averages, and so we adopt

this frequency as the approximate cutoff below which the spectral analysis has too few averages to

be reliable. This analysis is performed with LTPDA, an open-source MATLAB toolbox for data

analysis and signal processing developed and distributed by the LISA Pathfinder community [59].

The amplitude of the transfer function between the vacuum chamber temperature and the res-

onator’s acceleration after removing laser frequency and barometric pressure noise is shown in

Figure 4.9. We observe a frequency dependent transfer function amplitude ranging from 2 ×

10−3 ms−2K−1 to 1 × 10−2 ms−2K−1. Similar to laser frequency noise, the transfer function pre-

sented in Figure 4.9 can be used to estimate the temperature stability required for the resonator

to be limited by thermal motion. At 10mHz the amplitude of this transfer function is on the

order of 10mms−2K−1 while the thermal acceleration noise at this frequency is approximately

4 × 10−10 m/s2/
√
Hz. This suggests that a thermally limited acceleration measurement would

require an environmental temperature stability of 4 × 10−8 K/
√
Hz. This requirement being very

improbable to achieve, we instead will investigate the precise mechanism through which tempera-

ture couples into our setup and reduce it to relax the temperature stability we need to reach.
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The typical transfer function one might expect for temperature coupling is one that resembles a

low-pass filter [57], which is not fully observed in our setup. This behavior could be due to the fact

that temperature is a ubiquitous effect, present everywhere in the setup. The complicated transfer

function could be composed of several thermal effects occurring simultaneously in different parts

of the experiment. The exact mechanism causing temperature fluctuations to couple into our setup

in this manner is currently under investigation.

We also calculate the uncertainty in the transfer function, which depends on the transfer func-

tion amplitude, the coherence between vacuum temperature and acceleration CTa(ω), and the num-

ber of averages in each frequency bin [58]. In bins where either the coherence between the two

time-series is poor or the number of averages is low, the variance in the transfer function will be

large. The coherence, shown in Figure 4.10, is estimated by taking the ratio of the magnitude of

the cross-spectral density, |STa(ω)|2, and the product of the power spectral densities Saa(ω) and

STT (ω) [58]:

CTa(ω) =
|STa(ω)|2

Saa(ω)STT (ω)
(4.10)

The coherence between the vacuum chamber temperature and the acceleration data is larger than

0.8 between 300 µHz and 60mHz, indicating that temperature fluctuations are a dominant noise

source in this frequency band. Above 60mHz there is a sharp decrease in the coherence, explaining

the corresponding decrease in transfer function amplitude and the increase in the transfer function

uncertainty.

The temperature-induced acceleration noise is calculated by taking the FFT of the temperature

data, applying the transfer, and then taking the inverse-FFT to return to the time-domain. The

inverse transform step of this process, while not strictly necessary if one wants frequency-domain

results [58], is useful for visualizing the data and identifying the next limiting noise source.

The noise breakdown for this measurement is shown in Figure 4.11(a) as well as the resid-

ual after removing the laser frequency, pressure, and temperature noise. This post-correction is

compared to the measured interferometric readout noise, from which we see that the resonator’s
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Figure 4.10: The magnitude of the coherence between our vacuum chamber temperature and our
resonator’s acceleration data. The coherence is greater than 0.8 between 0.3mHz and 60mHz,
indicating that temperature is a significant noise source. The coherence function is not plotted
below 300 µHz because the low number of averages causes large uncertainties. The shaded area
represents the estimated error bars of the spectrum.

acceleration data is above the acceleration noise of the interferometer. This suggests that the noise

we are observing is real signal with seismic or environmental origins. Figure 4.11(b) also shows

the difference between our optomechanical accelerometer data and the seismometer data. We ob-

serve that this difference is larger than the readout-induced acceleration noise, suggesting that the

residual is limited by noise not originating from the optical readout. Our data does not show any

more significant coherences between our acceleration and environmental monitoring. As such, we

consider the possibility that the residual noise in our accelerometer data was, at least partially, in-

troduced through post-correction. For example, if the self-noise of our temperature sensors is on

the order of 100 µK/
√
Hz at 10mHz, that self-noise would be added to our acceleration measure-

ments during post-correction at a level of approximately 2× 10−7 ms−2/
√
Hz, ultimately restrict-

ing our final sensitivity. This highlights the importance of investigating and characterizing these

noise sources as reducing their physical coupling into the experiment will offer better results than
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Figure 4.11: (a) The amplitude spectral density of a seismic measurement taken with our op-
tomechanical accelerometer alongside the noise contributions from laser frequency fluctuations,
barometric pressure, and vacuum chamber temperature. Also shown is residual after removing all
three noise sources, demonstrating a significant reduction in noise from 0.2mHz to 100mHz and
below 100 µHz. (b) A comparison of the post-corrected resonator data to the seismometer data.
The good agreement between the two devices now extends down to 1mHz. The shaded areas rep-
resents the estimated error bars of the spectra.

53



decohering our data in post-corrections.

Furthermore, we find that after removing the temperature and barometric pressure fluctuations,

the good agreement between our resonator and seismometer data extends down to 1mHz, which

can be visualized in frequency-space in Figure 4.11a and in the coherence between the two data

sets in Figure 4.12. The bump in the post-corrected resonator data between 100 µHz and 400 µHz

is likely residual barometric pressure noise that could not be removed due to the low Nyquist

frequency of the pressure measurement. Moreover, we can visually compare the data from both

accelerometers in the time domain to demonstrate the agreement between the sensors. In Figure

4.13 we plot a 1000 second segment of both data streams and in doing so, we observe excellent

agreement in both the magnitude and phase of the two devices. These comparisons validate our

resonator’s ability to detect seismic noise above 1mHz.

Figure 4.12: The magnitude of the coherence between our post-corrected resonator data and seis-
mometer data both before and after removing environmental noises. It can be seen that by remov-
ing temperature, pressure, and laser frequency fluctuations from the resonator data, the coherence
above 1mHz improves significantly. The shaded areas represents the estimated error bars of the
spectra.
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Figure 4.13: A 1000 second-long subset of the acceleration time series obtained by our optome-
chanical accelerometer and seismometer, in which we see excellent agreement between the two
time series. Both traces are high-pass filtered above 0.8mHz for better comparison of the fre-
quency band with high coherence.

4.3 Discussion

4.3.1 Comparative Technology Assessment

In Section 4.1.2 we calculated the noise floor of our optomechanical accelerometer using es-

timates of the optical readout noise and the thermal motion associated with our experimentally

measured Q-factor. This noise floor can be compared to existing technologies to assess the via-

bility of our accelerometer for different applications. In Figure 4.14, we plot our estimated noise

floor against the GRACE[4] and GRACE-FO[5] accelerometers, as well as several ground-based

seismometers including the Geotech S-13, the Nanometrics Trillium 360, and the Nanometrics

Trillium 120, which is the one we utilized in our laboratory for the comparison measurements

presented in Section 4.2.1[6]. We observe that our accelerometer is anticipated to have a com-

petitive, if not lower, acceleration noise than the ground-seismometers, suggesting that our device

will be useful for seismometry and ground-based geodesy studies. Moreover, our accelerometer

has a mass of 58.2 g, and we anticipate the realization of a highly compact and lightweight system

compared to existing systems. Because of this, our optomechanical accelerometer is more smaller,

more portable, and better suited for field work than these commercial technologies.

When compared to the GRACE and GRACE-FO accelerometers, our optomechanical accelerom-
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eter is competitive at higher-frequencies around 1Hz, but is expected to be noisier at lower-

frequencies. However, current mass change measurements taken by satellite gravity recovery mis-

sions are limited primarily by temporal aliasing errors, not accelerometer noise[60]. Hence, despite

this slightly higher noise floor at low frequencies, we expect our optomechanical accelerometers

to be able to provide meaningful data for science observations. Rather, with the advantages exhib-

ited by our optomechanical accelerometer, incuding a lower weight, more compact form, and the

ability to be tested on-ground, our accelerometer is still valuable for satellite geodesy missions.

Figure 4.14: The projected noise floor of our optomechanical accelerometer compared to those of
other technologies, including the GRACE[4] and GRACE-FO[5] accelerometers and the Geotech
S-13, Trillium 120, and Trillium 360 seismometers[6]. Two traces are plotted for the noise floor
of our accelerometer: our current best estimate using our experimental value of the Q-factor, and
our resonator design using a value of Q calculated using models for the loss mechanisms of fused
silica.
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4.3.2 Planned Developments

In the measurements presented in this dissertation, we encountered several noise sources, such

as instabilities in the laser frequency and the optical readout, limiting our ability to detect low-

frequency signals. Future measurements will be conducted with a frequency-stabilized laser and

compact quasi-monolithic interferometers to improve our sensor’s low-frequency sensitivity. This

interferometer operates on the same principles as our current readout. It consists of prisms and

beamsplitters bonded together and small enough that they can be integrated onto the wafer of our

resonator, miniaturizing our current experimental setup while offering better mechanical stability.

A photo of this interferometer is shown in Figure 4.15(a).

Other improvements that can be made to reduce the measurement noise include thermally iso-

lating the system to dampen temperature fluctuations as well as investigating noise due to tilt-to-

length coupling and non-linear optical path length differences.

Furthermore, we will experimentally measure the thermal noise floor of our accelerometer

by performing a Huddle test. The test consists in placing two identical resonators close to each

other. The seismic noise would couple into both devices coherently. After removing that correlated

seismic noise, the remaining noise will be the uncorrelated noise originated by the resonators

themselves.

These developments and a better understanding of low-frequency environmental noise sources

will allow for other tests to characterize our acceleration sensing capabilities, e.g., to monitor the

lunar and solar tidal acceleration changes.

Finally, there are several extensions of the work presented in this dissertation that would make

this optomechanical accelerometer technology ready for use onboard a space geodesy satellite.

Specifically, we are currently developing appropriate mounts and launch-lock mechanisms for the

accelerometer that facilitate its deployment and protect the dynamic test mass during installation

and launch. This cage should include a method of securing the test mass and flexures to avoid

damage while not in use, such as during launch when significantly higher accelerations and shock

are expected in contrast to science operation. To this end, the higher-order violin modes of the
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flexures in our accelerometer should be investigated in greater depth to ensure compatibility with

the vibrational loads present during launch.

Moreover, a triaxial optomehanical accelerometer could be constructed from a series of res-

onators operating along different axes, which is required for observing all non-inertial perturba-

tions while in orbit. A concept design of such a sensor is depicted in Figure 4.15(b), which has

a volume of 110 × 110 × 22mm and a mass of 0.282 kg, not including the masses of the optical

readout, which should be low overall as each quasi-monolithic interferometer assembly weighs

only 4.5 g. This design is a quasi-monolithic assembly of two layers of fused silica resonators

that are separated by spacers. The top layer holds two orthogonal resonators identical to the one

presented in Section 4.1.1.1 operating along the x and y axes. Because these resonators share the

same topology as the one presented in this paper, they will have the same noise floors shown in

Figure 4.6. Also on the top layer is a cutout that houses the optical readouts for all three axes. An

interferometer reaches the test mass of the bottom layer through a hole in the top layer covered by

a pentaprism.

Figure 4.15: (a) A visualization of our quasi-monolithic interferometer integrated onto the wafer
of our resonator. A US nickel is included for scale. (b) A rendering of a triaxial accelerometer
concept. This design consists of two layers: the top containing resonators oscillating in the x and
y-axes and the bottom with a resonator operating along the z-axis.

The bottom layer contains a resonator that measures out-of-plane accelerations along the z-

axis. However, due to limitations in fabrication a different topology is required for measuring the

out-of-plane motion. To this end, we have developed a preliminary design for the bottom layer
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resonator which consists of a 12 g rectangular prism test mass supported by flexures on four sides.

These flexures have cross sections of 8×0.1mm and are oriented such that the test mass oscillates

along the z-axis. Tuning the lengths of the flexures as well as the test mass allows for a natural

frequency less than 10Hz, which improves the resonator’s low-frequency sensing capabilities. Like

the resonator presented in Section 4.1.1.1, we require all higher order modes to have resonances

larger than the natural mode by an order of magnitude. In the topology we have chosen for the

bottom layer resonator, however, tip-and-tilt modes can have a low enough frequency to allow

cross-talk between the modes of the resonator.

Figure 4.16: (a) A close-up of the z-axis test mass and its flexures. Note that the flexures are not at
the mid-point of the wafer, but have different offsets to increase the stiffnesses and frequencies of
tip-tilt modes. (b) The tip-tilt mode of the z-axis resonator as seen from the underside of the three-
axis resonator. The colors indicate the total displacement, with light green being the stationary and
purple being the largest displacement.

Figure 4.16(a) visualizes this tip-and-tilt mode. To combat this, we offset the flexure heights

relative to the bottom of the wafer. Two flexures are 1mm above the bottom of the wafer and the

other two are 1mm below the top of the wafer. Having the test mass and flexures connected at

multiple points along the z -axis increases the frequency of this tip-tilt mode to above the 10×

threshold. Figure 4.16(b) depicts a close-up of the test mass and flexures to show this offset.

With the aim of developing a triaxial accelerometer with equal noise floors along all three axes,

an optimization of the bottom layer resonator must be performed to ensure it has comparable noise
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to the top layer resonators. This optimization includes adjusting the test mass and cross-section to

lower its resonance and reduce its thermal motion while keeping the stress in the flexures within a

safe operating range.

4.4 Conclusion

In this chapter we demonstrate that a compact and lightweight optomechanical accelerometer

etched from a monolithic wafer of fused silica with dimensions of 90mm× 80mm× 6.6mm can

detect seismic noise above 1mHz in good agreement with commercial seismometer technologies.

This device has a test mass that is suspended mechanically by thin flexures, allowing it to be tested

on ground where some electrostatic devices cannot. As such, we propose the use of this tech-

nology onboard future space geodesy missions, as well as in ground-based planetary and geodesy

applications, for measuring non-inertial disturbances.

Although a direct measurement of the accelerometer’s noise floor is not possible due to our

testing environment being flooded with signals, there is presently no evidence of noise sources that

would prevent us from observing the self-noise of our accelerometer with a sufficiently quiet test

bed. The anticipated thermal acceleration noise is approximately 5 × 10−11ms−2/
√
Hz at 1Hz,

making this technology competitive with the accelerometers that have flown on space geodesy

missions such as GRACE and GRACE-FO. As such, our optomechanical accelerometer is expected

to be suitable for satellite geodesy missions, among other applications.

The resonator’s displacement is measured optically with a heterodyne interferometer and a

1064 nm laser that is not currently frequency stabilized. Below 100mHz the acceleration data ob-

tained by our resonator is dominated by laser frequency noise as well as temperature and pressure

fluctuations. These noise sources can be partially removed by careful environmental monitoring,

significantly increasing the coherence between our resonator and a commercial seismometer. Fu-

ture works will incorporate improvements to our optical readout, laser source, and environmental

monitoring to further enhance our acceleration measurements.
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5. TEMPERATURE DEPENDENCE OF FUSED SILICA RESONATORS

The performance models for the sensitivity of an optomechanical accelerometer developed in

Chapters 2-4 have implicit and explicit dependencies on the temperature of the mechanical res-

onator, but until now we have assumed that temperature to be stationary in time. Fluctuating tem-

peratures can change the mechanics of the resonator and introduce noise in our measurements. In

this chapter, we adapt our analysis of the resonator mechanics to study the temperature dependence

of our optomechanical accelerometer.

We model the resonant frequency as a cantilever system with a mass on one end. The equation

of this resonance is given by [61]:

f0 =
1

2π

√
k

Mtest +Mflexure

, k =
Y wt3

4L3
(5.1)

where k is the flexure stiffness, Mflexure is the flexure mass, Mtest is the test mass, Y is Young’s

modulus, and w, t, and L are the flexure dimensions. By inspection, there are two mechanisms

through which temperature effects can couple into the resonant frequency: thermal expansion of

the flexures and the temperature dependence of Young’s modulus, which are given by [39]:

α =
1

L

dL

dT
, β =

1

Y

dY

dT
(5.2)

where α is the coefficient of thermal expansion, β is the temperature rate-of-change of Young’s

modulus. Equations 5.2 have simple exponential solutions that can be substituted into Equation

5.1 to model the temperature dependence of a cantilever stiffness. Doing so yields the equation:

k(T ) =
Yiwit

3
i

4L3
i

e(α+β)(T−Ti) = kie
(α+β)(T−Ti) (5.3)

where Ti is a reference temperature and ki, Yi, wi, ti, and Li are the cantilever properties at that
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reference temperature. With this result, Equation 5.1 can be rewritten as:

f 2
0 (T ) = f 2

0,ie
(α+β)(T−Ti) (5.4)

For fused silica, the values of α and β are 5.5× 10−7K−1 and 1.52× 10−4K−1, respectively [39].

Hence, we anticipate the change in Young’s modulus to be the dominant mechanism through which

temperature couples into our resonator’s frequency.

Equation 5.4 can be verified experimentally by computing a spectrogram of the test mass dis-

placement. Over the span of several days or longer, the vacuum chamber which houses the res-

onator will heat and cool with the ambient room temperature with fluctuations as large as 1K. For

such temperature fluctuations, Equation 5.4 is approximately linear, with the resonance changing

as much as 300 µHz. To visualize this experimentally, we take the spectrogram of a 144 hour mea-

surement, with each FFT segment containing 220 samples. With a sampling frequency of 37.25Hz,

we obtain a frequency resolution of approximately 18 µHz in each FFT of the spectrogram, which

is anticipated to allow us to measure the resonant frequency to within 10% at 35 timestamps. Fig-

ure 5.1 compares the resonant frequency to the vacuum chamber temperature over 144 hours, from

which we observe good agreement between the two.

Moreover, Figure 5.2 depicts the resonant frequency plotted against temperature, which demon-

strates a linear relationship. This agrees well with Equation 5.4, which is approximately linear for

small temperature changes. A simple Taylor expansion of Equation 5.4 yields a linearized form

which can be fit to our experimental data:

f 2
0 (T ) ≈ f 2

0,i(1 + (α + β)(T − Ti)) (5.5)

From a least-squares fit, we find a α + β value of (2.3± 0.4)× 10−4 K−1.

Although the change in resonant frequency less than 1mHz under normal operating conditions,

this effect can introduce noise into our acceleration measurements by changing the transfer func-

tion of displacement to acceleration. Recall from Chapter 2 that the transfer function depends on
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Figure 5.1: Time series plots of the resonant frequency of our resonator and the temperature inside
the vacuum chamber.
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Figure 5.2: Time series plots of the resonant frequency of our resonator and the temperature inside
the vacuum chamber.
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the resonant frequency:

ã(ω) = −(ω2
0 − ω2 + iω0,iω/Q)x̃(ω) (5.6)

We can calculate the noise introduced through the changing natural frequency by defining the

acceleration ã as the sum of the mean acceleration ā and a noise term:

ã(ω) = ā(ω) + δa(ω) (5.7)

We can further substitute Equation 5.4 into Equation 5.6:

ā(ω) + δa(ω) = −(ω2
0,ie

(α+β)(T−Ti) − ω2 + iω0,iωe
1
2
(α+β)(T−Ti)/Q)x̃(ω) (5.8)

Expanding the above equation for small temperature fluctuations using a Taylor series yields:

ā(ω) + δa(ω) = −[(ω2
0,i − ω2 + iω0ω/Q)+

(ω2
0,i(α + β)(T − Ti) +

1

2Q
iω0,iω(α + β)(T − Ti))]x̃(ω) (5.9)

By inspection, we find the error term to be:

δa(ω) = −(ω2
0,i(α + β)(T − Ti) +

1

2Q
iω0,iω(α + β)(T − Ti))x̃(ω) (5.10)

For frequencies much below resonance, Equations 5.10 and 4.1 inform us that the acceleration

noise induced by the changing resonant frequency is proportional to acceleration by a factor of

(α + β)(T − Ti). Hence, under realistic operating conditions this noise source is not expected

to significantly contribute to measurements. This is illustrated in Figure 5.3 which depicts the

acceleration noise measured over a 6-day period and the expected noise caused by the changing

resonance.

The results of this section have yielded valuable insights on how temperature fluctuations in

our optomechanical accelerometer affect its mechanics and its acceleration sensitivity. Most im-
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Figure 5.3: Linear spectral densities of a 6-day measurement comparing the observed acceleration
noise and the calculated noise caused by temperature-induced resonance changes. We find that the
resonance change noise is several orders of magnitude lower than the acceleration noise.
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portantly, it has experimentally demonstrated that temperature-induced resonance change of the

test mass is in good agreement with theoretical predictions. However, there are several flaws with

the experimental approach presented here that if rectified could produce even more insights. Be-

cause the temperature fluctuations inside the vacuum chamber were small, about 1K, the change

in resonant frequency was less than 1mHz. Not only does this measurement probe just a small

temperature range, each FFT of the spectrogram requires more than 3 hours of data to adequately

resolve one observation of the resonant frequency.

Rather than allowing the temperature to drift in accordance with daily cycles of the room tem-

perature, this measurement could be improved by driving the temperature of the resonator with a

polyimide heater. These electronic devices use resistive elements to produce heat through Joule

heating and can reach temperatures greater than 200 ◦C with watt densities of several W inch−2

[62]. From Equation 5.4, to heat the entire wafer of our optomechanical accelerometer from room

temperature to 200 ◦C would change the resonant frequency by approximately 48mHz. Hence,

taking the FFT of a 200 second-long segment of data would be sufficient to resolve this frequency

change to within 10%. In this way, the temperature dependence of our accelerometer could be

probed over a much broader temperature range and in significantly less time.
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6. INTEGRATION OF THE OPTICAL READOUT AND MECHANICAL RESONATOR

Despite our optomechanical accelerometer being designed to be easily integrated with a quasi-

monolithic interferometer unit, the work presented in Chapter 4 did not use this compact optical

unit. While the quasi-monolithic interferometer was under development and inspection, a larger

heterodyne interferometer which operates on the same principles as the quasi-monolithic option

was use to track the test mass of our optomechanical accelerometer. This readout solution was suf-

ficient for the work in Chapter 4, however the larger optical setup introduced additional measure-

ment noise as longer baselines are more susceptible to thermal effects and mechanical instabilities.

In this chapter, we describe the the process of implementing the quasi-monolithic interferometer

and present corresponding acceleration measurements. The design and testing of this optical unit

was carried out by Dr. Yanqi Zhang. I then implemented the interferometer into our accelerometer

setup and performed additional noise characterization.

Our quasi-monolithic interferometer, a diagram of which is shown in Figure 6.1, is a mini-

tiarized version of the optical readout used in Chapter 4 which is adhered directly to the fused

silica wafer. As a first attempt, double-sided tape was used to bond the optical unit to the wafer.

Double-sided tape is advantageous as a short-term bonding solution because it has a uniform thick-

ness and is easy to remove. Many industrial adhesives, on the other hand, allow optical alignments

to drift while the glue cures if applied non-uniformly. This in turn can introduce significant noise in

the our acceleration measurements through tilt-to-length coupling or worse ruin the optical align-

ment completely. Other rapidly curing adhesives, such as UV curing solutions, are difficult to

remove making them unsuitable for a first attempt at bonding tilt-sensitive optical components.

An image of of our optomechanical accelerometer with the implemented quasi-monolithic in-

terferometer is shown in Figure 6.2. Comparing this image to Figures 4.7 and 4.15(a) demonstrates

the compact form of this interferometer in comparison to previous optical readouts. Particularly,

the path length difference between the test mass mirror and the reference mirror, which is also

bonded to the wafer, is significantly smaller. This consequently reduces the noise introduced
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Figure 6.1: A rendering of the quasi-monolithic interferometer unit. The red and blue lines repre-
sent the paths of two laser beams with unlike frequency. In our setup, the frequency difference is
1MHz.

through laser frequency fluctuations and temperature fluctuations.

To test the acceleration noise floor achievable with the quasi-monolithic interferometer, we lock

the test mass in place so that seismic motion does not couple into the measurements. This is shown

in Figure 6.3, where we observe an acceleration noise floor as low as 1 × 10−9 ms−2Hz−1/2 near

1Hz. The noise at 10mHz is approximately 3 × 10−7 ms−2Hz−1/2, better than the postcorrected

trace in Figure 4.11(a) by more than a factor of 2. Moreover, this improvement in acceleration noise

was achieved without decohering environmental variables. Compared to previous measurements,

we did not observe laser frequency noise in this measurement as a result of the short path length

difference between the measurement and reference interferometers. In addition, we did not observe

a significant coherence between acceleration and temperature above 300 µHz as we had in Chapter

4, indicating that the quasi-monolithic interferometer is less susceptible to temperature fluctuations

in our optomechanical accelerometer. Similarly, we did not observe a significant noise contribution

from barometric pressure like we had with our previous interferometer. Figure 6.4 depicts the

coherences of temperature and barometric pressure with our measured acceleration noise where

we a large reduction in coherence compared to the measurement presented in Figure 4.10.
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Figure 6.2: A photo of our optomechanical accelerometer setup using a quasi-monolithic intefer-
ometer for test mass displacement measurement. This image can be compared to Figure 4.7 to
visualize the size difference between the interferometers used in this work.
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Figure 6.3: A photo of our optomechanical accelerometer setup using a quasi-monolithic intefer-
ometer for test mass displacement measurement. This image can be compared to Figure 4.7 to
visualize the size difference between the interferometers used in this work.

However, this measurement detected excess noise around 1mHz, which is similarly found in

spectrum of the heterodyne signal amplitude. Figure 6.5 depicts the noise in the peak-to-peak

heterodyne signal voltages of the measurement and reference interferometers, demonstrating that

the reference interferometer found also found excess noise at 1mHz, but not the measurement in-

terferometer. This indicates a periodic loss of fiber coupling efficiency due to a misalignment of

the reference interferometer through tilting of the stationary reference mirror on the fused silica

wafer or a mechanical instability of the output fiber collimation arm. The source of these mechan-

ical instabilities are currently under investigation. To help diagnose these instabilities, quadrature

photodetectors (QPDs) could be implemented into the setup to monitor the interferometer output

beams. QPDs are photodetectors whose light detection surfaces are split into quadrants. If the

output beams drift over time, the optical power on each quadrant will change. Hence, misalign-

ments in the optical setup can be identified by comparing the relative intensities observed by each

quadrant of the QPD.
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Figure 6.4: The coherences of temperature and barometric pressure with acceleration in our quasi-
monolithic interferometer. Compared to measurements taken with the optical readout in Chapter
4, we observe a significant reduction in these coherences suggesting the quasi-monolithic interfer-
ometer is less susceptible to these noise sources.

Figure 6.5: The amplitude spectral densities of the peak-to-peak voltage amplitude of the hetero-
dyne beatnote in the measurement and reference arms of our quasi-monolithic interferometer. We
observe the reference interferometer experienced excess noise around 1mHz, the same band of the
excess noise in the corresponding acceleration measurement.
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7. OPTOMECHANICAL RESONATOR TOPOLOGIES FOR OTHER APPLICATIONS *

7.1 Double-Mass Resonator for Extended Bandwidth Sensing

As shown in Chapter 3, low-frequency resonators are advantageous for detecting low-frequency

noise due to the larger coupling factor between external acceleration and test mass motion. How-

ever, these resonators are simultaneously insensitive to accelerations at frequencies above reso-

nance, which fundamentally limits the operational bandwidth of the accelerometer. For applica-

tions demanding the high-precision detection of noise both spanning multiple frequency regimes,

the optomechanical resonator topology presented in Chapters 2-6 would not be sufficient. Rather,

we propose an extension of this topology consisting of two resonators with different resonances to

develop an optomechanical device appropriate for these applications. Both test masses use distinct

optical readouts to take simultaneous measurements. Signals on the lower end of the detection

band will couple more efficiently into the lower resonance test mass while signals on the higher

end couple more efficiently into the higher resonance test mass. The two channels can be merged

using a Kalman filter to create one data stream that contains the better performances of both test

masses [63, 64]. For example, a double-mass resonator consisting of 10Hz and 50Hz would be

suitable for detecting seismic noise in the sub-Hz regime as well as anthropogenic noise above

1Hz. Such a device, a photo of which is shown in Figure 7.1, could be used in LIGO detectors,

which requirement the detection of vibrations both within and below their measurement bandwidth.

The noise floor of a double-mass optomechanical accelerometer can be estimated using the

models developed in Chapters 2 and 4. Equations 4.2, 4.6 and 4.7 can be used to evaluate the ac-

celeration noises of the two resonators, ã10(ω) and ã50(ω), independently. The noise of the merged

signal is approximated as the smaller value of the two acceleration spectra at all frequencies:

ãmerged(ω) = min(ã10(ω), ã50(ω)) (7.1)

*Part of this chapter is reprinted with permission from “Quantum hybrid optomechanical inertial sensing” by
Logan Richardson, Adam Hines, Andrew Schaffer, Brian P. Anderson, and Felipe Guzman, 2020. Applied Optics,
Vol. 59, pp. pp. G160-G166, Copyright 2022 by Optica Publishing Group.
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Figure 7.1: A double-mass resonator with frequencies of 10Hz and 50Hz. This device is appro-
priate for detecting anthropogenic noise above 1Hz and seismic noise below 1Hz.
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Figure 7.2: A double-mass resonator with frequencies of 10Hz and 50Hz. The dashed lines
represent the acceleration noises of the two test masses independently of each other, assuming
Q−values of 4.77 × 105 and displacement readout sensitivities of 1 × 10−14 mHz−1/2. The solid
line represent the acceleration noise of this optomechanical accelerometer when the data from its
two test masses are merged with a Kalman filter.

Equation 7.1 is plotted in Figure 7.2, under the assumptions both the 10Hz and 50Hz resonators

have mechanical Q−values of 4.77×105, a result that was experimentally demonstrated for a sim-

ilar resonator in Chapter 4. Furthermore, we assume that the displacements of both resonators are

measured using identical optical readouts, with a displacement sensitivity of 1 × 10−14mHz−1/2.

We observe that the use of two test masses for acceleration sensing lowers the resultant noise floor

of the device by a factor of 5-10 relative to the noise floors of the independent test masses, allowing

for improved broadband sensing.

7.2 Optomechanical Retroreflector for Novel Hybrid Atom Interferometer

In addition to standalone relative accelerometry solutions, optomechanical devices have the

potential to compliment absolute gravimeters such as atom interferometers which suffer from non-

75



inertial vibrations coupling into the apparatus. This section is based on the work in the following

paper [2], which was written in collaboration with Dr. Logan Richardson, Dr. Brian Anderson,

Dr. Felipe Guzman, and Andrew Schaffer. The description and analysis of the atom interferometer

found below was conducted by Dr. Logan Richardson. I designed the optomechanical retrore-

flector intended to reflect the Raman beam and measure non-inertial accelerations within the atom

interferometer.

Matter-wave interference of atoms enables repeatable precise measurement of inertial effects.

Atom interferometry has been demonstrated with warm vapor, Bose–Einstein condensates, and in

the case of this work, thermal cold atom clouds [65, 66]. We trap and cool an ensemble of atoms

in a magneto-optical trap (MOT), and once this is loaded, the ensemble is released from the trap

and falls along the direction of gravitational acceleration. By using timed pulses of light during

free fall, we can manipulate the matter-wave state of the atoms in such a manner that we can detect

the acceleration they experienced through their corresponding phase shift. We chose to perform

interferometry with 87Rb for compatibility with other atom interferometer systems.

During free fall we use counterpropagating two-photon Raman pulses to drive transitions be-

tween the two hyperfine states |F = 1,mF = 0〉and |F = 2,mF = 0〉of the 52S1/2 energy level

of 87Rb, which we simplify to |1〉and |2〉, respectively. We use these pulses to generate the matter-

wave analogue of an optical beam splitter (π/2 pulse) and mirror (π pulse)[67]. By arranging these

three pulses in a Mach–Zehnder-like configuration π/2 - π - π/2 with a separation time between

pulses T we create a matter-wave interferometer sensitive to inertial effects.

To meet the Raman condition required for inertially sensitive interferometry [67], a two-beam

counterpropagating configuration is realized by employing a retroreflection mirror. During the

finite time required to measure acceleration with atom interferometers, retroreflector dynamics

with frequencies higher than the measurement cycle frequency (fc) couple into the interferometer

and manifest as inertial noise in the measured matter-wave phase[68].

We designed the optomechanical retroreflector (OMRR) as a drumhead mechanical oscillator

that will allow us to place and quasi-monolithically attach a fixed mirror to the sensor in order to
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Figure 7.3: A diagram of the proposed testbed interferometer. The atom interferometer will consist
of two separate vacuum systems at two different pressures: one for atom interferometry and one
for the OMRR. The total free-fall distance from the center of the MOT to the detection region is
roughly 130 mm corresponding to a total free-fall time of TFF=162ms. The lower vacuum chamber
will house the OMRR. A cutaway of the proposed OMRR can be seen depicting the retroreflecting
test mass and support flexures. Atoms are cooled and trapped at the center of the MOT cham-
ber (F), and once loading is complete, they are released into free fall. The interferometry beam
(I) enters the system through the top of the MOT chamber (A) and is reflected off of the OMRR
(J) along the axis of gravitational acceleration, generating a counterpropagating configuration that
satisfies the conditions required for inertially sensitive interferometry. During free fall, three inter-
ferometry pulses separated by a pulse separation time T are used to generate a Mach–Zehnder-like
interferometer. Once the atoms reach the detection area (G), the phase-dependent relative output
population of the two-state system is measured, from which the acceleration of the atoms can be
determined. Signal from the OMRR can be used to correct for vibrations occurring during atom
interferometry, and the absolute measurement of the atom interferometer can be used to debias the
OMRR signal at frequencies below the atom interferometer cycle rate. This figure is taken from
[2].
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complete the Fabry–Perot cavity to be used to measure the OMRR test mass displacement. We

will coat the OMRR test mass on one (the inner) side with a highly reflective layer for 1560 nm

light as part of the Fabry–Perot optics and on the other (outer) side to reflect the Raman beam at

780 nm that is used for atom interferometry. A diagram of the proposed atom interferometer with

the optomechanical retroreflector is shown in Figure 7.3.

Physically, we are constrained to the dimensions of the 2.75" (69.85 mm) chamber cube shown

in Figure 7.3, which has a bore distance of ∅=38.1mm. We run numerical analysis using COMSOL

to determine a sensor design of suitable dimensions for this vacuum chamber. The optimized

design yielded a cylindrical sensor with resonance 2π×1013.9Hz, a frame diameter of 35.5 mm,

and a height of 27.9 mm. The test mass of the OMRR has a diameter of 17.3 mm, thickness of 3.6

mm, and mass of 2.3 g. The test mass is supported by four flexures; each flexure has a length of

7.6 mm, width of 5 mm, and thickness of 310 µm.

We modeled the dynamics of the OMRR sensor assuming a mechanical quality factor of 4.77×

105 [7], and we conducted a finite element analysis to determine the first three mechanical modes,

which are a) the fundamental test mass displacement mode at ω0=2π×1013.9Hz, b) a tip-tilt mode

at ω1=2π×2045.4Hz and c) a translational displacement mode at ω0=2π×18.4 kHz. Figure 7.4

illustrates the fundamental oscillation of the sensor as well as these higher-order modes. Under

a change of acceleration of 1 g, the maximum displacements for each mode are 2 × 10−7 m, 6 ×

10−8 m, and 7×10−10 m, respectively. We designed the OMRR mechanics such that the frequency

separation between the fundamental mode and higher-order modes, as well as any intermodal beats,

occur at frequencies higher than ω0 to minimize crosstalk.

The OMRR topology was optimizing following the procedure described in Chapter 3. Un-

like the low-frequency parallelogram flexure design used throughout this dissertation, the flexure

thickness of this new topology need not be constrained to a local maximum of the optimization

criterion which is dominated by surface and thermoelastic losses. The higher frequency of the

OMRR makes thicker flexures more accessible without the need for flexures that are impractically

long. This is demonstrated in Figure 7.5, where we observe the Q-factor of this topology becomes

78



Figure 7.4: Modal finite element analysis of the fundamental and higher-order harmonics of the
OMRR. Color indicates displacement from equilibrium, with red representing no displacement
and white representing the maximum. The first harmonic is ω1=2π×2045.4Hz and the second
harmonic is ω0=2π×18.4 kHz. Intentionally, the OMRR has been designed such that higher har-
monics are high enough in frequency to avoid intermodal beat notes at frequencies at or below the
fundamental resonance ω0. This figure is taken from [2].

bulk-limited above 200 µm. This is advantageous as the a bulk-limited resonator is anticipated to

be less sensitive to its surface quality, which is highly dependent on fabrication limitations. At the

chosen flexure thickness of 310 µm, we the mechanical losses of fused silica predict a Q-factor of

approximately 4× 106.

Furthermore, the acceleration and displacement noise floors of the OMRR can be modeled

using the work presented in Chapters 2 and 4. Because the OMRR has a resonance around 1 kHz,

the test mass’ dynamic range is expected to be less than 0.25 µm, indicating that this resonator’s

displacement is suitable for an optical cavity readout. High finesse cavities have demonstrated

displacement sensitivities on the order of 1 × 10−16 mHz−1/2 and we use this result to estimate

the noise floor of the OMRR [22]. Despite the topology optimization suggesting the feasibility of

Q-values above 1× 106, we assume a more conservative Q-factor of 4.77× 105 for modelling the

thermal motion of the OMRR. The displacement and acceleration noise floors are shown in Figure

7.6, where we observe that despite the high-precision displacement readout, the OMRR is only

expected to be thermally-limited below 10Hz. The acceleration noise floor is projected to reach
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Figure 7.5: The optimization curve of the optomechanical retroreflector topology following the
steps described in Chapter 3. The flexure thickness was chosen to be 310 µm, which corresponds
to a mechanical Q-value of approximately 4× 106.
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Figure 7.6: Simulations of the thermal motion and optical readout noise in our optomechanical
retroreflector using the models developed in Chapters 2 and 4. We assume a mechanical Q-factor
of 4.77 × 105 [7] and a displacement readout noise on the order of 1 × 10−16mHz−1/2. From the
displacement noise floor (left) we expect our acceleration noise floor (right) to be thermally limited
below 10Hz.

sensitivities of 4× 10−9ms−2Hz−1/2 at higher frequencies with a 1/f 1/2 low-frequency tail.
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8. CONCLUSION

This dissertation details our development of an optomechanical accelerometer that couples a

5Hz fused silica mechanical resonator with a heterodyne laser interferometer readout. This ac-

celerometer is designed to detect signals in the sub-Hz regime, making it suitable for seismology,

geophysics, gravitational wave detectors, inertial navigation, and more. Moreover, its compact,

portable form and inherent vacuum compatibility make it a possible solution for geoscience field

work and satellite geodesy missions. Our work encompasses the simulation, design, and optimiza-

tion of mechanical resonator topologies as well as the assembly and testing of the optomechanical

accelerometer. Preliminary measurements have demonstrated excellent coherence with a commer-

cial seismometer at frequencies down to 1mHz and have revealed several dominant noise soures

including temperature fluctuations, barometric pressure fluctuations, and laser frequency noise.

The work in this dissertation can be furthered in several ways. Our optomechanical accelerom-

eter is currently dominated by noise from various seismic and environmental sources that prevent

us from resolving the device’s noise floor. However, the simultaneous measurements of two iden-

tical optomechanical accelerometers all for the detection of common-mode noise between both

sensors. A differential measurement of the two accelerometers would reject that common-mode

noise, leaving only uncorrelated noise. In this way we can estimate the true acceleration noise

floor of our accelerometer. Furthermore, it was found in Chapter 4 that temperature drifts re-

strict our sensitivity at very low frequencies with relatively high coupling factors on the order of

1× 10−3 ms−2K−1. This effect likely originated from a measurement arm length difference of our

two interferometers, and reducing this arm length difference in Chapter 6 reduced the effects of

temperature noise at higher frequencies. However, temperature drifts were still found to introduce

noise at very low frequencies even with our quasi-monolithic interferometer and methods of de-

coupling our accelerometer from temperature should be investigated and implemented. Similarly,

in Chapter 4 we observed a strong coupling of laser frequency noise to acceleration noise and

estimated that a laser frequency stability of approximately 1 kHzHz−1/2 is required to achieve a
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thermally-limited acceleration measurement. This stability requirement can be accomplished with

existing stabilization techniques [56], and should be utilized in this experiment.

Finally, we present two new resonator topolgies useful for different applications. The double-

mass resonator uses two test masses with different resonant frequencies to extend the operational

bandwidth of the resulting accelerometer. This device would be suitable as auxiliary sensors in

gravitational wave detectors for the observation of both seismic noise and anthropogenic noise

that couple into the detector measurements. Furthermore, we present the design of an optome-

chanical retroreflector for use in atom interferometers, which use a retroreflector to create counter-

propagating Raman beams. This retroreflecting mirror however is susceptible to external vibrations

which couple into the atom interferometer by phase-shifting the Raman beam wavefront. To over-

come this effect, our optomechanical retroreflector is a drum-head shaped resonator where both

sides of the drum test mass take simultaneous measurements. The top surface of the test mass is

given a reflective coating to form the Raman beam retroreflector while the bottom surface is used

to create an optical cavity which tracks the motion of the test mass. The vibration measurements

obtained through the optical cavity can be used to remove the non-inertial noise added to the atom

interferometer. In this way, our optomechanical retroreflector allows for the creation of a hybrid

inertial sensor with a quantum atom interferometer for absolute gravimetry and long term stability

coupled with a classical relative accelerometer for seismic detection.
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