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ABSTRACT

The utility of machine learning for enhancing human well-being and health has risen to the core

discussion in both research and real-world application in today’s technological front-line. The fast-

growing artificial intelligence industry has innovated health-related applications. Inversely the real-

world challenges in accurate implementation of mobile and clinical health solutions have necessi-

tated advancements in theoretical and algorithmic development. The increasing rate of digitizing

medical records in hospitals has enable artificial intelligence with abundant data to train. In return

the trained models have shown to lower the uncertainty in clinical decision making. However, as

always, with opportunities comes new challenges. We have observed many discrepancies of com-

patibility between sophisticated machine learning models and the nuanced clinical needs, such as

fairness, personalized treatment through precise phenotyping and data shift in longitudinal medical

records. In modeling complex and heterogeneous health record-based machine learning and then

extrapolating through remote health applications, I have identified the need for advanced, multi-

modal models that continually learn risk representation from varied, heterogeneous data sources.

Broadly, I recognize a few gaps in different levels currently blocking us from enhancing continual

machine learning for health: 1) domain-, 2) class-, and 3) personal-level heterogeneity in real-

world healthcare data.

With the three proposed aims, I will target at using machine learning in a more robust and gen-

eralizable way towards real-world biomedical data and to enhance not only the prediction accuracy

but also the interpretation of the results. The proposed work will largely benefit both machine

learning domain as well as human-centered computing application. This dissertation will mostly

introduce and elaborate how to bridge the gap between algorithm in the lab and the open-world

challenges and hopeful will spur more research onto this interdisciplinary problem and bring about

real world improvements.
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1. INTRODUCTION AND LITERATURE REVIEW

To view heterogeneity issue in different granularity levels, I plan to introduce it in a top-down

fashion. 1) First, There are numerous aspects to domain level heterogeneity that impact model

performance. The definition medical domain can be a predefined cohort, type of disease, or data

collected from one hospital that carries patient information of similar demographics. The real

world medical implication of domain heterogeneity in healthcare data can be: domain shift (la-

bel/covariant distribution shift across train and test domains), hidden phenotype (intertwined dis-

ease/symptoms among patients), and data density discrepancy (imbalance between common dis-

ease and rare disease). If handled properly, the domain level heterogeneity research can shed light

on the opportunity on personalized phenotyping, rare disease discovery or domain generalization.

2) Second, middle-scale heterogeneity in healthcare data we observe is class level heterogeneity.

The class heterogeneity can lead to class imbalance issue, or fairness issues. For example, one

common class/ethnic group may have abundantly more data therefore their information will dom-

inate the learning models, which leads to the bias towards those bigger class or common ethnicity.

I found that with more personalized techniques towards class-level heterogeneity handling, we

can largely minimize the imbalance effect on the machine learning models for healthcare. The

uniqueness of medical data imbalance is that the minority class (for example, mortality in inten-

sive care units) is often more heterogeneous than the majority class (stable patients expected to be

discharged). Through fine-grained phenotyping, I find the risk factors that drive high risk more

scattered in a feature space, and ultimately guiding personalized risk estimates and thus personal-

ized treatment decision. 3) Third, down to the lowest level of healthcare data, we observe personal

level heterogeneity. In this heterogeneity we may observe that user’s behaviors in remote health

can change over time axis as context shift, or patient’s inter-personal variability in EHR can hin-

der adapting a generic model to a person under transfer learning. If handled properly, the trained

model can learn to accurately quantify this heterogeneity and then continually grow in capacity to

account for new and unseen contexts, such as emerging disease detection, adverse drug reaction
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discovery or unknown anomaly detection.

Diving into some real world applications and problems, applying machine learning techniques

to biomedical data to either maximize the clinical utility or general daily well-being tracking can

be beneficial. But directly applying any off-the-shelf methods onto real-world dataset may render

dissatisfaction because there are many aspects of heterogeneity of the data as we mentioned before.

For some tangible examples, in intensive care unit (ICU) setting, models producing accurate risk

prediction are often confounded by patient heterogeneity, where various patient co-morbidity may

result in different driving risk factors for risk scores, lengths of stay within the ICU, and requested

laboratory measurements and treatment decisions. This patient heterogeneity may weaken perfor-

mance, as well as hinder any clinical interpretation of the results if not handled by care. Another

example is in activity recognition with wearable sensor data. The problem can arise when the con-

text information is shifted to unknown domain. In wearable computing, context-awareness helps

recognize activities based on sensor measurements under different situations. Context can be de-

fined as “any information that can be used to characterize the situation” or to improve recognition.

Context-aware systems have previously been used in many applications, including activity recog-

nition, online, personalized and adaptive activity classification, and healthcare applications. The

definition of context heavily relies on domain knowledge, such as a user’s tasks (e.g., spontaneous

activity, engaged tasks) or a user’s social environment (e.g., co-location of others, group dynam-

ics), etc. However, in practice, predefined contexts may not always be available, or definitions of

contexts may change in different environments. Additionally, new unknown contexts may emerge

over time, realized as data heterogeneity. For these reasons, there is a general data insufficiency

and lack of contextual information to develop accurate context-aware activity recognition systems

that could adapt to these unknown contexts. All these can fall into the umbrella of heterogeneity

of the data in the wild, and the thus it requires the machine learning to be able to handle them

robustly.

In this dissertation, I propose to use three aims to tackle this problem. 1) First I propose

that the framework should be able to capture or quantify the heterogeneity. As the first step,
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if the model can detect the heterogeneous component in the data, such as shifting of the user

behavioral contexts by uncertainty quantification (UQ) or the hidden subtypes/phenotypes of the

patients in a medical dataset, the model will have a better chance to adjust or adapt to them in

the subsequent modeling. The heterogeneity can be demonstrated in different forms, such as data

missingness, data imbalance, or domain shift. A model trained in the lab environment might need

to retrain or re-calibrate when it is deployed in the real world environment, where the capturing

of the heterogeneity be extremely beneficial as the first step in a pipeline. 2) Second I propose

to divide and conquer the heterogeneity. As the term suggests, heterogeneity is a combination of

different forms of data distributions under different environments or contexts. Therefore, the most

intuitive way to tackle it is to break down into smaller problems and study each problem under a

microscope, so to speak. Many ensemble-based learning frameworks have demonstrate their power

in learning large and complex data so we are aiming to follow the same line of thought. However,

for biomedical data there has to be extra process involved, in that the data is a reflection of a

underlying mechanism of a user performing activities or a patient having an onset of a disease. So

the model should be able to gear towards learning the underlying mechanism as well, rather than

simply overfitting the data to get high accuracy. 3) Third, the model should be able to adapt or tailor

to heterogeneity because heterogeneity itself can be dynamically changing over time. This makes

the problem extra difficult since the first two aims may work under one particular circumstances

but as time progresses, the model needs to manual tuning the parameters or end up not accurate

anymore. There is a need to let the model adapt or generalize well once it is deployed in the real

world setting.

The real-world heterogeneity in biomedical data can be reflected in many aspects, but without

proper implementation and modeling the model might give flawed conclusion or subpar perfor-

mance. A challenge in developing machine learning models for patient risk prediction involves

addressing patient heterogeneity and interpreting the model outcome in clinical settings. Patient

heterogeneity manifests as clinical differences among homogeneous patient subtypes in observa-

tional datasets. The discovery of such subtypes is helpful in precision medicine, where different
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risk factors from different patient would contribute differently to disease development and thus

personalized treatment. In activity recognition task, the heterogeneity can manifest as user behav-

ioral shifts. The context, which is to describe this user behavior, can be the underlying mechanism

that can be informative for modeling. New unknown contexts may emerge over time but it can be

agnostic to the model. For these reasons, there is a general data insufficiency and lack of contex-

tual information to develop accurate context-aware activity recognition systems that could adapt to

these unknown contexts. While existing works are not adequate to address the challenges such as

a lack of context information in data while training the model, or the emergence of unknown con-

texts when the model is applied, we propose a data-driven approach with the capability to handle

many aspects of data heterogeneity in biomedical data to achieve better algorithmic performance

and better result interpretation. We break down the whole framework into three aims as follows:

1.1 Aim 1: Capturing and quantifying heterogeneity

The capturing of heterogeneity can be the leading step for any downstream machine learning

model because without this step, the model may make wrong assumption about the situation and

this will subsequently lead to poor performance. One method that can shine light in the capturing

stage is uncertainty quantification (UQ) which takes the model’s input to decide how much uncer-

tainty will arise after the prediction is made. UQ has been critical for robust learning under differ-

ent contexts (known or unknown) in mobile activity recognition, healthcare, signal processing, and

manufacturing. Existing models with Gaussian process or Bayesian approximation methods either

rely on the assumption that variables in a system can be characterized by explicit probabilistic re-

lationships (e.g., Bayesian models) or rely on generating one best model in the learning algorithm.

However, measuring the predictive uncertainty for deep neural networks remains a challenging

problem, closely related to the problem of detecting test samples that are drawn sufficiently far

away from the distribution of training samples. For example, Malinin & Gales proposed a frame-

work called Prior Networks (PNs) for modeling predictive uncertainty that explicitly modeled

distributional uncertainty, Hendrycks & Gimpel proposed a framework that utilized probabilities

from softmax distributions and detected out-of-distribution examples, by introducing confidence
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scores based on density estimators, later improved by processing the input and output of DNNs

in [8]. Lee et al. proposed a method for detecting abnormal test samples by including both out-

of-distribution and adversarial samples, to obtain the class conditional Gaussian distributions by

introducing confidence scores based on the Mahalanobis distance. Our method is different from

these works as we aim to learn a distribution of deep models rather than one single best one.

Other than wearable sensing application, the heterogeneity which is realized as uncertainty

can be also prominent in medical dataset. The data imbalance, for example, can be problematic

since the area with fewer data which is the minority class’s area, will cause the model to be more

uncertain. The performance of modern machine learning models is often biased in evaluation by

commonly reported metrics (such as area under the curve of the receiver operating characteris-

tic: AUC-ROC), often reporting overly-optimistic findings as a result of the imbalance between

those that observe medical adverse events and those that do not. The adverse event of interest is

often in the minority class. For example, in mortality prediction, patients with higher risk rep-

resent a smaller fraction in the cohort compared to most of the people who survive (thankfully).

Naively applying machine learning models may render dissatisfaction: the outcome of interest can

be extremely costly, either through unnecessary medical intervention (type 1 error) or misdiagno-

sis (type 2 error). We propose a framework to address class imbalance density and make use of

this imbalance to render density-aware training for improved risk prediction performance. First,

we decouple the training of representation learning and classification. Traditionally, representa-

tion learning and classification are trained jointly, but by decoupling, class specific features are

extracted and class-specific predictions made, removing a source of bias for the learned classifier.

Second, the density differences are important to learn, not eliminate, when modeling. Patients

with lower risk (majority) are often lower risk because they do not contain any of the common risk

factors (e.g. lack of hypertension, diabetes, prior myocardial infarction), and hence, form a dense

cluster. However, patients with higher risk (minority) may arrive at this high risk from different

factors (e.g. renal failure versus respiratory distress), thus scattering them in the data space. Our

approach is density-aware, by avoiding re-sampling or re-weighing pre-processing steps, and the
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decoupling approach improves risk prediction performance. We demonstrate this approach in two

different medical data scenarios: a randomized clinical trial dataset and an electronic health record

(observational) dataset.

1.2 Aim 2: Dividing and conquering heterogeneity

Patient heterogeneity in real-world clinical data poses potential challenges in actualizing ma-

chine learning models and further complicates clinical decision making. For example, in eval-

uating risk modeling, two patients with the exact same risk score from the model might have

different underlying driving factors, potentially rendering completely different treatments. Elec-

tronic health records (EHRs) are an example of a dataset with vast, heterogeneous clinical records

that contain intra-and inter-variability of measurements and treatments across patients. To date,

many deep learning techniques have begun exploring this data, often within subsets of clinical

questions or data type, for example deep embedding of patient representations, time series mod-

eling of structured clinical data with recurrent neural networks, and feature extraction techniques

with convolutional neural networks. However, these methods often depend on a single model with

‘one-size-fits-all’ approach. An opportunity exists to stratify patients heterogeneity and generate

explainable risk prediction from model-generated separation of subtypes, which may aid in clinical

decision making in response to risk model outputs.

In order to stratify the patient population into specific patient subtypes (i.e. homogeneous

subgroups) through a learnable ‘divide-and-conquer’ mechanism, we employ a mixture-of-experts

(MoE) model. As one realization of ensemble learning, traditional MoE models generally assume

a model containing a mixture of Gaussian experts. With the advancement of deep learning, the

Gaussian experts have been replaced by neural networks in many applications with more complex

architectures and larger learning capacity. However, such a larger feature space and bigger cohort

for these models may be difficult to interpret for clinical decision making. Unlike LASSO for linear

model interpretation, the introduction of sparsity to deep learning models, e.g. dropout and sparse

gating, traditionally aims to prevent overfitting or alleviate the computation overhead. We propose

that while all these methods with sparsity achieve strong predictive performance in their tasks,
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sparsity is not responsible for separating latent groups and reducing redundancy among different

parts of the model for explaining heterogeneity. Therefore, enhancing these techniques with added

interpretation of the patient subgroups is needed for successfully applying MoE model to clinical

settings.

This work proposes an MoE framework with a macroscopic-style sparse gating network to

address patient heterogeneity and provide interpretation to aid in clinical decision making, while

improving risk prediction. To enable automatic subtyping of patients, the sparse gating, when cou-

pled with an MoE framework, is to monitor the training activation of each expert rather than indi-

vidual neuron. The sparse gating network is a realization of model sparsity, extending the concept

of conditional computation, which has a trainable activation mechanism based on input examples.

Compared to dropout, this model sparsity better explains the derived prediction in MoE scenarios,

due to the fact that the sparse instance-based activation constrains each expert rather than neuron

to handle different subsets of training data (different subtypes) and thus better at interpretation.

Because the gating network and expert networks are trained concurrently, the label information is

embedded in the expert assignment in the gating network, making the representation learned for

each patient supervised and informative. In the experiment, we study the derived patient repre-

sentation through expert assignment, showing discovery of clinically meaningful and interpretable

patient subtypes. We demonstrate that sparse MoE not only learns to ‘divide-and-conquer’ a real-

world clinical dataset with vast patient heterogeneity, but also provides better interpretation than

raw features or generic encoding on how the model derives latent groups for prediction.

1.3 Aim 3: Adapting and tailoring to heterogeneity

As we have seen the data in the wild, the heterogeneity can be dynamically changing as well.

For example, data missingness can be one form of data heterogeneity and can cause problem for

modeling. Normally the imputation proposed can be useful under one circumstance but when the

circumstance changes the model needs to be re-calibrated. In wearable sensing applications, data is

inevitable to be irregularly sampled or partially missing, which pose challenges for any downstream

application. An unique aspect of wearable data is that it is time-series data and each channel can be
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correlated to another one, such as x, y, z axis of accelerometer. We argue that traditional methods

have rarely made use of both times-series dynamics of the data as well as the relatedness of the

features from different sensors. We propose a model, termed as DynImp, to handle different time

point’s missingness with nearest neighbors along feature axis and then feeding the data into a

LSTM-based denoising autoencoder which can reconstruct missingness along the time axis. We

experiment the model on the extreme missingness scenario (> 50% missing rate) which has not

been widely tested in wearable data. Our experiments on activity recognition show that the method

can exploit the multi-modality features from related sensors and also learn from history time-series

dynamics to reconstruct the data under extreme missingness.

Traditional missing value imputation techniques include filling with the mean value of a fea-

ture, or using forward or backward imputation. These static imputation methods do not reflect the

underlying time-varying dynamics of data and therefore may bias downstream predictions based

on the estimated likelihood of imputed values. Additionally, in wearable sensing applications, the

different sensing channels are often capturing the same events of interest, so multiple imputation

approaches may be suited to addressing this kind of missing data. However, these techniques have

remained static in imputation as well. For example, a Multi-layer Percep-tron (MLP)-based model

for irregular time-series data handling that accounts for such multiple imputation, still interpolates

only a single channel, handling time-dynamics but not able to model across all channels (in other

words, multiple models would be needed). On the other hand, MissForest, a tree-based machine

learning method that predicts missing values from related, non-missing data, overcomes these lim-

itations but does not make use of time-varying dynamics. In addition, the rate of missing data in

traditional studies is relatively low, ranging from 1.98% to 50.65%. A stronger imputation tech-

nique is needed for real-world applications with severe missingness testing. We propose to use

a long-short-term-memory-based denoising autoencoder (LSTM-DAE) to learn more robust im-

putation strategies for remote sensing data. The model has an encoder and decoder architecture

to embed signal data, then this encoded information is fed into the LSTM network to learn the

time-varying dynamics of the data. This architecture robustly imputes missing data from related
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channels and latest dynamics being measured by all sensor channels, even in the presence of high

rates of missing data. In order to demonstrate the utility of using both time-series dynamics and

feature relatedness, we experiment on datasets with both inherent missing values and increased

missing data (up to 60% missing across all the channels on a dataset with inherent 66% missing-

ness), which surpasses traditional missing rate study by a large margin.
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2. FIRST AIM: CAPTURING AND QUANTIFY HETEROGENEITY

2.1 A context-aware framework for uncertainty quantification under wearable sensing1

2.1.1 Introduction

2.1.1.1 Overview

Activity recognition in wearable computing faces two key challenges: i) activity characteristics

may be context-dependent and change under different contexts or situations; ii) unknown contexts

and activities may occur from time to time, requiring flexibility and adaptability of the algorithm.

We develop a context-aware mixture of deep models termed the α-β network coupled with uncer-

tainty quantification (UQ) based upon maximum entropy to enhance human activity recognition

performance. We improve accuracy and F score by 10% by identifying high-level contexts in a

data-driven way to guide model development. In order to ensure training stability, we have used a

clustering-based pre-training in both public and in-house datasets, demonstrating improved accu-

racy through unknown context discovery.

In wearable computing, context-awareness helps recognize activities based on sensor measure-

ments under different situations. Context can be defined as “any information that can be used to

characterize the situation” [9] or to improve recognition [10]. Context-aware systems have previ-

ously been used in many applications, including activity recognition [11], online, personalized and

adaptive activity classification [12], and healthcare applications [13, 14]. The definition of context

heavily relies on domain knowledge, such as a user’s tasks (e.g., spontaneous activity, engaged

tasks) or a user’s social environment (e.g., co-location of others, group dynamics), etc. How-

ever, in practice, pre-defined contexts may not always be available, or definitions of contexts may

change in different environments. Additionally, new unknown contexts may emerge over time. For

these reasons, there is a general data insufficiency and lack of contextual information to develop

1Reprinted with permission from Huo, Z., PakBin, A., Chen, X., Hurley, N., Yuan, Y., Qian, X., Wang, Z., Huang,
S. and Mortazavi, B., 2020, June. Uncertainty quantification for deep context-aware mobile activity recognition and
unknown context discovery. In International Conference on Artificial Intelligence and Statistics (pp. 3894-3904).
PMLR. Copyright 2020 by the authors.
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accurate context-aware activity recognition systems that could adapt to these unknown contexts.

While existing works are not adequate to address the challenges such as a lack of context infor-

mation in data while training the model, or the emergence of unknown contexts when the model is

applied [15, 16], we propose a data-driven approach with context-awareness capability to achieve

better activity recognition performance. Specifically, we develop an integrative α-β framework to

simultaneously learn unknown contexts and the distribution of each user’s specific activity like-

lihood within each context. In this framework, the α network is the context detector to learn a

distribution over contexts as a mixture of weights, and the β network models activity recognition

for context-specific sensor measurements. For example, given the sensor reading data from a user,

the α network detects the context by generating a distribution over different contexts; then, each

context has a dedicated β network that outputs a distribution over different activities.

We further extend our model with the ability to explore new unknown contexts by equipping

the α-β network with uncertainty quantification (UQ) based on the maximum entropy learning

(MEL) principal. MEL identifies the distribution of the parameters of a statistical model that bears

the maximum uncertainty, rather than one single best model, as a principle to achieve robustness

in prediction and modeling. The prediction model could refuse to predict on given data if the

uncertainty for making a prediction on this data is higher than a threshold. This method adapts to

data and effectively discovers unknown contexts with the UQ. This work allows for models trained

in laboratory settings to extend to natural environments for monitoring behaviors and performances

of users, as in Figure 2.1.

Our contributions are as follows. In this chapter, we propose a context-aware model for ac-

tivity recognition. The context and activity are simultaneously modeled by dedicated networks.

For unknown contexts, an overarching UQ method is applied to all the model parameters. This

provides robustness in testing new context that our model can uniquely offer, beyond a traditional

activity recognition technique. Finally, we demonstrate these findings in both a publicly-available

benchmark dataset and an in-house dataset we collected to identify confounded versions of human

motion, and make this data available for public use.
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2.1.1.2 Related Work

Context-Awareness: Mixture of Experts Model In many applications of machine learning,

heterogeneous data can be divided into smaller homogeneous groups that can be modeled more ac-

curately. Context-awareness, as an example, plays an important role in improving the performance

of activity recognition systems [17, 18]. In Mixture of Experts (MoE) models [19] such group-

level clustering and modeling comes as a single training step, rather than splitting data a prior then

building models. Elements are clustered based upon their relationship and the next level modeling

accuracy. MoEs have successfully served different applications from classification and regression

tasks [20][21] to phenotyping in medical datasets [22]. In [19][20][23], authors provided formu-

lations of probabilities of observed given different experts. The MoE structure consists of two

components: A gate and several experts. The gate is often modeled by Gaussian Mixture Mod-

els (GMM) [24][25] and neural networks [26], while expert modeling is more dependant on the

application including SVM [26] [27]. This work used neural networks for both.

Different methods have been used in the literature in order to determine the number of experts

for these models [20]: growing models where the experts with the worst performance decompose

into a MoE themselves [28] [29], pruning models where they start with a large number of experts

and reduce the number by combining/removing experts [30], and exhaustive search in cases where

tree topologies are not overly complex [31].

Uncertainty Quantification: Previous Studies UQ has been critical for robust learning under

different contexts (known or unknown) in mobile activity recognition [32], healthcare [33, 34],

signal processing [35], and manufacturing [36]. Existing models with Gaussian process [32] or

Bayesian approximation methods [37] either rely on the assumption that variables in a system can

be characterized by explicit probabilistic relationships (e.g., Bayesian models) or rely on generat-

ing one best model in the learning algorithm. However, measuring the predictive uncertainty for

deep neural networks remains a challenging problem, closely related to the problem of detecting

test samples that are drawn sufficiently far away from the distribution of training samples. For

example, Malinin & Gales proposed a framework called Prior Networks (PNs) for modeling pre-
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dictive uncertainty that explicitly modeled distributional uncertainty [38], Hendrycks & Gimpel

proposed a framework that utilized probabilities from softmax distributions and detected out-of-

distribution examples, by introducing confidence scores based on density estimators [39], later

improved by processing the input and output of DNNs in [8]. Lee et al. proposed a method for

detecting abnormal test samples by including both out-of-distribution and adversarial samples, to

obtain the class conditional Gaussian distributions by introducing confidence scores based on the

Mahalanobis distance [40]. Our method is different from these works as we aim to learn a distri-

bution of deep models rather than one single best one.

2.1.2 Methods

Contextual information can help model similar activities together, resulting in an improvement

of activity recognition performance by reducing the search space of activities to recognize given

a set of features. Our proposed α-β network integrates activity recognition with unsupervised

context detection, as detailed in Section 2.1.3. As context can vary from person to person, and

change over time for the same person, in Section 2.1.4, we present maximum entropy learning

(MEL) based UQ in the α-β network to discover unknown contexts when needed.

We further extend our model with the ability to explore new unknown contexts by equipping

the α-β network with uncertainty quantification (UQ) based on the maximum entropy learning

(MEL) principal. MEL identifies the distribution of the parameters of a statistical model that bears

the maximum uncertainty, rather than one single best model, as a principle to achieve robustness

in prediction and modeling. The prediction model could refuse to predict on given data if the

uncertainty for making a prediction on this data is higher than a threshold. This method adapts to

data and effectively discovers unknown contexts with the UQ. This work allows for models trained

in laboratory settings to extend to natural environments for monitoring behaviors and performances

of users, as in Figure 2.1.
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Figure 2.1: A conceptual overview of UQ integrated with the α-β network. Reprinted/adapted with permission
from [1].

2.1.3 Context-Awareness Processing

In this work we develop a mixture of CNNs, the α-β network, where each mixture component

is dedicated to one specific context. There are two types of networks: α and β. Given the sensor

data, the α network detects context by generating a probability distribution over all known con-

texts. Each context has a dedicated β network that outputs a probability distribution over different

activities. Our activity recognition problem features a latent context variable and can be formulated

as:

log p(ACTIV ITY |X, θ) =
N∑
i=1

log p(activityi|xi, θ)

=
N∑
i=1

log
Nc∑
c=1

p(activityi|ci = c,xi, θ)p(ci = c|xi, θ),

(2.1)

where θ denotes the mixture component parameters, N denotes the number of data samples,

and Nc denotes the number of expected clusters (contexts) to which each data point may belong.

Our objective is to maximize Eq. (2.1) with respect to θ. The log-likelihood has a lower bound,
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first formulated in [41]:

log p(ACTIV ITY |X, θ) ≥
N∑
n=1

Nc∑
c=1

q(ci = c) log
p(activityi|ci = c,xi, θ).p(ci = c)

q(ci = c)
,

where q(·) is the distribution over different contexts and p(·|context, x, θ) is the distribution over

activities given the context and the input. q(·) is modeled using the context-detecting α network,

and each p(·|context, x, θ) is modeled using a β network (each context has its own β network).

While [41] used a supervised technique to define contexts as specific locations, this work provides

for an unsupervised exploration of context. Additionally, in our implementation, we use a network

for context recognition (α network) and a dedicated network for each context (β network) whereas

[41] used only two networks regardless of the number of contexts. Following the EM algorithm, the

lower bound in Eq. (2.2) can be maximized. Specifically, the loss, the negative of the lower bound,

is minimized. In the E-step, q(·) is optimized which translates to optimizing α network while

freezing β networks. In the M-step, θ (model parameters) need to be optimized which translates to

optimizing β networks while freezing α network. The EM training alternates iterations of training

either α network or β networks while keeping the other(s) fixed. It should be noted that no labeled

contextual data is used in the training process for this α-β network.

2.1.4 Unknown Context Discovery

The α network enables context detection; however, in practice, contexts may change over time,

or may not always be pre-defined. It is possible to improve context-aware systems by detecting the

uncertainty of possible unknown contexts as a result of potential distribution mismatch between

known and unknown contexts. To identify unknown contexts, we combine the feature extraction

power of deep learning with the learning power of MEL to define a probabilistic mechanism for

unknown context discovery.

While many of the current works focus on revising general deep models with a probabilistic

evaluation of their model or prediction, here we have a different aim: We modify the α-β network
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to be adaptive to changing contexts hidden in data. We relax our expectation of identifying one

single optimal model of the α-β network; rather, we consider solving for a full distribution over

multiple models. The intuition is that many different models might generate relatively similar per-

formance, so it would be better to estimate a distribution over parameters p(w), from the output

layer of the α networks that detects context. This aligns with the basic principal of MEL. There-

fore, we equip the α-β network with UQ capacity based on the MEL principal by identifying the

distribution of the parameters of a statistical model that bears the maximum uncertainty.

2.1.4.1 Uncertainty Quantification via Minimizing Relative Entropy

To learn the distribution of the α-β network parameters that encode maximum uncertainty,

we employ the MEL formulation. There are two steps. First, we create constraints that encode

information from the data. For example, for each sample we derive a loss function such that the

expected prediction on this sample over all the possible model parameters matches the observed

outcome on this sample, as in traditional ML. Second, on the top of this constraint structure, the

learning objective of MEL is to learn the distribution of the model parameters with the maximal

entropy in terms of the parameter posterior distribution. Thus, unlike traditional machine learning

methods that estimate a single optimal setting of the parameter, MEL considers a more general

problem of these methods by solving for a full distribution over multiple p(w) values.

2.1.4.2 Analytical Details of MEL

To further illustrate this distribution approach, note that our context detection problem is also

a classification problem where the response variable is denoted by y taking values for different

contexts. Let xn = [x1, . . . ,xn] be an input feature vector as an aggregate of all the measures

from sensors for each window, and let D (xn|w) be the discriminant function parameterized by w

implemented in the α network. Traditional learning machines such as the max-margin methods

estimate the optimal ŵ that minimizes the classification error in predicting the labels of training

examples as:

ŷ = signD (xn|w) . (2.2)
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Based on this line of thought, we can classify margin as ynD(xn,w), and learn the optimal param-

eter setting w by the empirical loss and the regularization penalty as:

min
(w,γn)

R(w) +
∑
n

L(γn)

s.t. ynD(xn | w)− γn ≥ 0, ∀n.
(2.3)

where L(γn) is the loss function, a non-increasing and convex function of the margin, and R(w) is

the regularization penalty. Given p(w), we can recast (2.3) as an integration where the classifica-

tion constraints will also be applied in an expected sense. Instead of considering an expectation of

the regularization penalty functions, we can apply a canonical penalty function for distributions,

the negative entropy; minimizing the negative entropy is equivalent to maximizing the entropy.

Hence, we use the Shannon entropy defined as H(p(w)) = −
∫
p(w) log p(w)dw. This gives us

the following objective function to learn the distribution p(w) over the parameters w:

min
p(w)

H(p(w))

s.t.
∫
p(w)[ynD(xn,w)− γn]dw ≥ 0, ∀n.

(2.4)

As a result, MEL no longer finds a fixed set of the parameters, but a distribution over them. Learn-

ing such a distribution of model parameters does not rely on assumptions on the model’s mathe-

matical form. It also does not rely on knowing a particular distribution as is needed in Bayesian

learning frameworks. Therefore, MEL is more flexible than typical Bayesian learning methods

[42, 43] to characterize uncertainties associated with complex models such as the α-β network

here. To solve the MEL formulation (2.4), we could derive a Lagrangian J(p), and take the deriva-

tives with respect to w and set them to 0. To do that we first need to calculate the unconditional

maximum of the problem (2.4) plus the constraints added with some multiplying factors (the La-

grange multipliers), which give the probabilities in a functional form with the Lagrange multipliers

as parameters. Our UQ approach compares the uncertainty with a threshold to see whether a given

sample should be detected as belonging to a new context or not. We defined a classification with
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rejection option as ŷReji , where if a sample is rejected ŷReji = 0, and if it is accepted ŷi = ŷ,

where ŷ corresponds to the classification of the ith sample. Note that, a sample is rejected when

p(w|xi) < ϵ, and ϵ is chosen through cross-validation.

The distribution of parameters forms a quantitative evaluation of model uncertainty, which

could be further used in subsequent decision making by using probability laws to track the un-

certainty propagation process. In this chapter, we create a rejection option, a flexibility enabled

by the UQ capacity. The rejection option allows for the prediction model to refuse to generate a

prediction if the uncertainty is higher than a given threshold. This is typically solved by estimating

the class conditional probabilities and rejecting the samples that have lower posterior probability

of class.

2.1.5 Experiments

In this section, we discuss experiments with our deep context-aware mixture of experts for

activity detection coupled with maximum entropy based uncertainty quantification. We first in-

troduce the datasets, and then the detailed implementation of our models. Then, we show various

competitive baselines to demonstrate that our pipeline performs the best as evaluated by several

different metrics.

2.1.6 Datasets

UCI data. We used the UCI OPPORTUNITY dataset [44] for context-aware human activity

recognition. The dataset contained 18 different activities performed in five different contexts and

sensed by 72 different sensors. Each of the 18 activities had one of the five contexts, but not all

contexts contained every activity. Therefore, the UCI OPPORTUNITY dataset provided a realistic

capture of a situation where not all of the human activities occurred with an equal likelihood in

all contexts. The UCI OPPORTUNITY dataset has seven levels of hierarchical labels. Higher

level labels described details such as subject posture, while lower level labels described the hand

movements or interactions with other subjects. In this study, we chose a higher level label (e.g.,

cleaning time) as the context and a lower level (e.g., opening a door) label as the activity. We used
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all the body-worn sensors which included seven inertial measurement units (IMUs) and twelve

3D acceleration sensors. Five IMUs were on the upper body while two were on user’s shoes.

Accelerometers were on the upper body, hip, and leg, which translated to 133 columns in the raw

dataset.

In-house data. To generate a more realistic experimental setting, we have collected our data

to detect different types of human motion that may be confounded by environments factors. The

dataset is made publicly available, serving as extra part of our contribution in this chapter. The

motivations are three fold: 1) instead of collecting the data in a strict laboratory setting, we have

loosened all the rules for subjects, including their choice of rest time and the pace of activity. 2)

we have devised a set of much more realistic contexts to be detected. Those contexts can cover

almost all the real world setting a subject might face. 3) we have collected a much nosier dataset

compared to previous ones, with respect to the randomness we imposed on the data collection,

such as a rare activity as walking with one shoe off in both outdoor (lawn) and indoor (hardwood

covered by carpet). As a result we have 3 contexts with corresponding movements (1) outdoors:

Crawling, Jogging, Riding Bike, Sprinting, Walking, Walking with One Shoe (simulated limping),

Walking with Weight in Arms, Walking with Weight on Back. (2) Movements that happen in-

doors: Escalator Up, Escalator Down, Elevator Up, Elevator Down, Lying Down, Sitting, Stairs

Down, Stairs Up, Standing, Walking, Walk with One Shoe (simulated limping), Cooking, Danc-

ing, Eating, Reading, Sleeping, Talking on phone, Talking to Another Person, Using PC, and (3)

movements that happen outdoors but in vehicles: Driving Car, Riding Car, Riding Bus, Reading,

Device Usage. The movements, however, are not unique to each context, and the position of the

phone may change through usage. We collected data on 20 people, each doing 32 activities while

having 3 phones, one in hand, one in the pocket and one in the backpack, as those are the common

places for phone positions. The applications used on the phones for data collection was Readisens

[45]. The sensors used are: acceleration (in three axes), altitude, compass, gyroscope (in three

axes), GPS information (latitude, longitude), screen time information, and phone speed. This data

contains contextual information which is independent of the locations of the phone. Participants
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were given minimal instruction for the execution of the activities in order to allow for individual

variation. Participants were also wearing clothes of choice and the order of the activities were ran-

domized. This study was reviewed and approved by the Texas A&M Institutional Review Board

(IRB # 2018-210D). The data has been made available for public use.2

2.1.7 Implementation

In UCI dataset, 19 different preprocessed sensors were fed into the network. Time series data

were divided into non-overlapping segments of 1 second (30 samples). In each window, the fea-

tures of sensors are concatenated. We used a five-fold cross-validation to evaluate our models with

testing accuracy and micro F score as performance metrics. In our experiments, we used 3 con-

volutional layers followed by 3 fully connected layers for both α and β networks. Note that these

two networks’ architectures were different in terms of the number of neurons in the output layer.

Networks were trained using stochastic gradient descent with an initial learning rate of 0.001 and

a momentum of 0.9, which provided the best results in cross-validation.

Implementation of MEL. For maximum entropy classifier, we have the input from the pa-

rameter distribution derived from the α network. This network outputs ŷReji as a probability of

rejection, which is compared against a threshold that is derived from cross-validation to further

guide the β network for fine-grained activity detection under specific context. We defined a classi-

fication with rejection, where if a sample was rejected (if the uncertainty was higher than a specific

threshold), the prediction model refused to generate a prediction by setting the predicted context

to zero.

In the UCI OPPORTUNITY dataset we had five contexts: relaxing, coffee time, early morning,

clean-up, and meal time. To test our unknown context discovery, we adopted a rotating strategy.

In this strategy, we removed one context and its corresponding data from the training dataset at

each rotation, and trained an α − β network only on the remaining known contexts. In this case,

one context was assumed to be unknown and was treated as a hold-out to be used for unknown

context discovery assessment. The final evaluation was conducted through comparison of activities

2https://github.tamu.edu/guangzhou92/RealActivity
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that were sampled from both known and unknown contexts, to demonstrate the model’s ability to

distinguish the unknown context.

Pre-training. Initialization is an essential step for both the optimization and for the training of

the neural networks. Without proper initialization, the model collapses into selecting only one spe-

cific β network while eliminating the contribution of others, as is observed in many other mixture

network modeling. We have added pre-training to solve this problem and have compared it with

regularization. We have shown that it is much more effective in terms of accuracy. Pre-training

is an important stage in the α-β network training. The model could approach the base model of

a single neural network classifier without proper pre-training because of the large gradients at the

beginning of the training stage; large gradients cause the selector to saturate and select only one

β network. Therefore, the full capabilities of the α-β network can only be achieved using proper

pre-training, which proves useful in finding subgroups of data as well as in yielding a better perfor-

mance. We used the idea presented in [46] to cluster the activity data. In detail, a base network was

trained with sensor readings as input and activities as output. Next, the CNN segment of the net-

work was used to embed the sensor readings into the features which have proven to be descriptive

of the input data [47, 48]. Subsequently, we used K-means to cluster the input into a fixed number

of clusters. Finally, we trained our α network to learn the mapping between sensor readings of

activity to clusters.

2.1.8 Baseline

We compare our model against several baselines. The first baseline is a single β network,

which is a component of the α-β network. Another baseline, for each specific number of contexts,

is a β network which has wider hidden layers in order to have the number of parameters equal to

the α-β output (similar size). In other words, for a α-β network with the number of clusters equal

to k, given that α and β networks have the same size, the baseline is a β network with hidden

layers k + 1 times as large to have roughly the same capacity. Finally, in order to demonstrate the

performance of our UQ method, we design a similar probabilistic baseline, logistic regression, to

output a rejection likelihood and we compare it with our method to show the better unknown con-
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Figure 2.2: Predicted probability distributions when a context is removed v.s the aggregate of all
known contexts within each rotation. Reprinted/adapted with permission from [1].
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Figure 2.3: Predicted probability distributions when a context is removed v.s the aggregate of all
known contexts within each rotation. Reprinted/adapted with permission from [1].

text discovery performance from our UQ pipeline. Baseline doesn’t impose extra regularization,

and all parameters were selected through cross-validation.

2.1.9 Result of UCI dataset: UQ vs. Baseline

For the performance of UQ against baseline, results are shown in Table 2.1. As can be seen,

the proposed UQ method detects unknown contexts better than baseline in all evaluations.

Figure 2.2 and Figure 2.3 present a main result of UQ in this experiment from the UCI OP-
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Table 2.1: UQ results VS. baseline for unknown context discovery where contexts are 1 = Relaxing,
2 = Coffee time, 3 = Early morning, 4 = Clean up, 5 = Sandwich time. Reprinted/adapted with permission from
[1].

Performance
measure

Context number that
was removed each rotation

1 2 3 4 5
UQ

Sensitivity 0.63 0.71 0.75 0.62 0.73
Specificity 0.72 0.72 0.76 0.79 0.82
Testing accuracy 0.67 0.71 0.75 0.69 0.77
F-score 0.67 0.72 0.77 0.70 0.78

Baseline
Sensitivity 0.26 0.34 0.17 0.19 0.26
Specificity 0.75 0.79 0.81 0.80 0.80
Testing accuracy 0.66 0.72 0.64 0.64 0.69
F-score 0.26 0.34 0.17 0.20 0.27

PORTUNITY dataset. Here, the distribution of predicted probabilities of the removed context

(the red histogram) is shown with the distribution for all the other contexts combined (the blue

histogram). The UQ algorithm is able to detect the uncertainty for the unknown context, as the

unknown context usually leads to smaller probabilities in comparison with the distribution of the

known contexts.

2.1.10 Results of UCI dataset: α-β Network vs. Baseline

Table 2.2 compares the testing accuracy of the α-β network and the baseline (a single network

that is equivalent to a single β network) for predicting labels in the UCI OPPORTUNITY dataset.

The testing accuracies are averaged among all their corresponding bootstraps (bootstrapped 5

times). Table 2.2 shows that the mixture of the context-specific neural networks improved on

the accuracy of the baseline from 86% to 96% when using nine contexts. Thus, our context-aware

α-β network was able to find subgroups in the data in an unsupervised manner with different num-

bers of contexts This fact was reflected in the accuracy boost due to the subgroup modeling by

different β networks.
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Table 2.2: Accuracy (F score) for the α-β network and baseline which is a β network with the
same number of parameters for each specific number of clusters. For 1 cluster both the models are
the same. Reprinted/adapted with permission from [1].

Clusters 2 3 4
α-β 0.89(0.90) 0.89(0.90) 0.91(0.91)

baseline 0.81(0.81) 0.84(0.84) 0.84(0.83)

Clusters 5 6 7
α-β 0.92(0.91) 0.91(0.92) 0.96(0.96)

baseline 0.83(0.82) 0.86(0.86) 0.85(0.85)

Clusters 8 9 10
α-β 0.96(0.96) 0.96(0.96) 0.95(0.95)

baseline 0.84(0.84) 0.86(0.86) 0.86(0.86)

The α-β network is equipped with pre-training. The comparison in Figure 2.4 shows that pre-

training is extremely important, as the model without pre-training results in selection of only one

network, leading to model collapse. The effect of pre-training can also be seen in the network

performance. Figure 2.5 shows that pre-training is much more effective than regularization since

regularization just penalizes single network usage but does not use any knowledge about the data

in the process. We took the best number of contexts in terms of accuracy and F-score, 9, and

tried to train networks with the same number of contexts but without pre-training and by using

only regularization with different regularization coefficients. Without proper initialization, the α-β

network drops from 96% to 87% in accuracy and 0.96 to 0.87 in F-score. This is 4% less than the

performance of an identical α-β network with proper initialization in Table 2.2. This is roughly

equal to the performance achieved by a single β network (refer to baseline results in Table 2.2).

2.1.11 Results: In-house data

Having tested our methodology on the UCI OPPORTINITY dataset, we use our In-house

dataset to further assess α-β Network with UQ in a noisier environment. We first measure the

activity detection accuracy and F-score of the α-β network, shown in Table 2.3. It can be seen that

our method still outperforms the baseline (84% vs. 80%). Note that our model did drop accuracy
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(a) Without pre-training (b) With pre-training

Figure 2.4: Average of α network output in testing without (a) and with (b) pre-training. The
model collapses into a single network in the former. This shows the effectiveness of pre-training
in making sure that the α network finds subgroups in the data and hence can take advantage of
context-aware recognition. Reprinted/adapted with permission from [1].

Figure 2.5: Comparison between pre-training and regularization. Reprinted/adapted with permission from [1].

compared to the average results from Table 2.2 (84.3% (std 0.015)), showing we indeed collected

a noisier dataset which is more realistic. Secondly, to present the model’s ability to detect new
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Table 2.3: In house data, Accuracy and F score for the α-β network and baseline which is a β
network with the same number of parameters for each specific number of clusters. For 1 cluster
both the models are the same. Reprinted/adapted with permission from [1].

Performance Measures Accuracy F score
α-β Network 0.84 0.86

baseline 0.80 0.80

contexts on such a dataset, we present the UQ results as well, shown in Figure 2.6. It is clear that

unknown contexts are more spread out, whereas known contexts have more concentrated predic-

tive posterior probability distributions. We have further pushed the experimental setting harder

to make it more realistic. That is, in this dataset with three contexts we removed 2 contexts as

unknown contexts and just run the UQ solely on the seen contexts, and calculate the probabil-

ity distribution to see if it can distinguish different contexts. As a result, the model can still find

concentrated probability from known contexts but flat distribution for unknown ones, showing our

superior performance on unknown context discovery.

2.2 Task-agnostic continual learning with Bayesian Novelty as Uncertainty Quantification3

In conventional machine learning, data points are assumed to be identically and independently

distributed (iid) and all available at once. In contrast, the regime of continual learning (CL) presents

the new challenge of incrementally accumulating knowledge from past experiences, mimicking

human’s ability to learn with non-iid data streams in widely varying contexts. CL sequentially

learns novel concepts to achieve reliable predictions without catastrophically forgetting previ-

ously learned knowledge. It can be applied to many real-world applications, such as robotics

[49], computer vision [50], autonomous driving [51], and healthcare monitoring [32, 52, 53, 54].

To this end, many CL methods have been developed in attempting to solve the stability-plasticity

dilemma [55, 56, 57, 58, 59, 60, 61, 62, 63, 64].

Many existing CL methods assume that the data stream is explicitly divided into a sequence of

3Reprinted with permission from Ardywibowo, R., Huo, Z., Wang, Z., Mortazavi, B.J., Huang, S. and Qian, X.,
2022, June. VariGrow: Variational Architecture Growing for Task-Agnostic Continual Learning based on Bayesian
Novelty. In International Conference on Machine Learning (pp. 865-877). PMLR. Copyright 2022 by the authors.
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Figure 2.6: Predicted probability distributions when 1 context is removed vs. 2 contexts are re-
moved. Reprinted/adapted with permission from [1].
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transiting contexts, termed as tasks, with task information given at both training and testing time.

In real-world scenarios, however, there is no clear transition boundary between different contexts

or tasks, limiting the application of these CL methods in practice [65]. With this in mind, task-

agnostic CL performs continual learning without requiring task IDs and their transitions. This

new setting is challenging, dubbed as the single-headed setting, where existing task-agnostic CL

methods have significantly lower performance compared to their task-aware counterparts [66, 67,

68, 69, 70]. In this chapter, we focus on task-agnostic CL for classification problems.

Existing CL methods can be broadly categorized into 1) regularization-based, 2) memory-

based, and 3) expansion-based [71]. While regularization- and memory-based methods focus on

retaining the knowledge learned from the old tasks, expansion-based methods lean towards better

absorbing new knowledge and circumvent the capability saturation [72]. To the best of our knowl-

edge, though, methods that tackle both catastrophic forgetting and capability saturation, under the

task-agnostic CL paradigm, are lacking [73]. Bayesian inference offers a promising way to rec-

oncile this problem, with old data points naturally being summarized by a posterior distribution

that can be sequentially updated. The inherent uncertainty quantification capability enables ef-

fective task-agnostic CL without needing task information explicitly [74]. In particular, Bayesian

nonparametrics offer a natural solution to the stability-plasticity dilemma by principally increasing

model complexity as novel data arrives. However, the posterior distribution becomes intractable

with large and complex datasets, and existing sequential variational approximations are not flexible

enough to capture the complexity of these datasets [65, 75, 76, 77]. Promisingly, implicit varia-

tional inference enables flexible modeling of the posterior [78, 79, 80]. However, their application

to dynamically growing architectures for task-agnostic CL has not been previously explored.

In this chapter, we propose VariGrow, a Variational architecture Growing framework for task-

agnostic continual learning. To accomplish this, we first formulate model or network growing in

terms of Bayesian nonparametric distributions that define an infinite mixture of expert distribu-

tions, which can be considered as having an expansion-based backbone. This consists of an expert

distribution for each mixture component and a mixing distribution selecting from which expert the
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data originate. We then approximate these distributions using flexible implicit variational distribu-

tions, allowing us to more accurately capture the posterior at each incremental step. Specifically,

we design a mixing distribution using energy-based novelty scores to determine the mixture com-

ponent to which each data point belongs [81, 82]. This allows to dynamically decide whether to

grow a new mixture component for novel instances, or to assign it to an existing one. Meanwhile,

each component is handled by an expert distribution defined implicitly through Bayesian Neural

Networks (BNNs) [78, 79, 80]. By deriving tractable approximations to the Kullback-Leibler (KL)

divergence, we optimize the Evidence Lower Bound (ELBO) of our formulation through stochas-

tic gradient-based techniques along with a sparsification trick to ensure expressiveness. We have

tested VariGrow on several CIFAR and ImageNet-based benchmarks for the strict task-agnostic

(without using the ‘label trick’ [69]) CL setting, which demonstrates its consistently competitive

performance to existing task-agnostic CL methods. Interestingly, VariGrow even achieves compa-

rable performances to task-aware counterparts.

2.2.1 Related Work

Continual Learning: Continual learning models aim to learn new knowledge without catas-

trophically forgetting previously learned information. Methods in this domain can be broadly

categorized into three classes: 1) memory-based methods which store a subset of raw data or build

a generative model to generate synthetic data for replay [57, 60, 83, 84], 2) regularization-based

methods which focus on preserving old information when learning new ones by penalizing drastic

changes to a model’s parameters [56, 58, 85, 86], and 3) expansion-based methods which grow and

assign new model components for different tasks, keeping unrelated model parameters fixed. The

expansion can be based on neurons [87], layers [59, 88], or independent networks [62]. Most CL

methods require the task information during training and/or testing. For example, in the multi-head

setting, models would only need to predict among the classes in one task, instead of the whole class

set [73].

Task-agnostic continual learning: In many real-world applications, the current task informa-

tion is usually not given [65, 89]. Some methods proposed to tackle the task-agnostic setting, but
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Figure 2.7: VariGrow schematic: (a): The dynamically growing construct illustrated for two expert
components. The input x is passed into a Bayesian Neural Network f1 with weights ω1 ∼ qϕ(ω1)
multiplied by a binary mask m1 ∼ qϕ(m1), sparsifying the architecture. The output is used
to compute an energy-based novelty score ψ1

ϕ. As ψ1
ϕ(x) exceeds a threshold α, VariGrow ex-

pands and creates a second mixture component. The novelty scores are then used to construct
the mixing distribution and sample z ∼ qϕ(z|x), determining which expert component is used to
compute p(y|x,w, z). Through differentiable reparameterizations and approximations, gradient-
based optimization can be performed to learn the variational parameters that optimize the Evidence
Lower Bound (ELBO). (b): The graphical model of the nonparametric distribution that we ap-
proximate, consisting of mixture assignments zn for each data point according to prior probability
p(zn = k) = vk, and a mixture distribution where the expert parameters wk = {ωk,mk} are
sampled from. Reprinted/adapted with permission from [2].

only during testing [62, 73, 90, 91]. There are recently developed methods assuming that task

information is not given during training [65, 69, 92] but their performances are much lower com-

pared to their task-aware counterparts. Furthermore, the model training in these methods have

various drawbacks. [91] assumes that data in one batch comes from a single context (task), and

assume that task labels are available during training. The training of UCB [92] is extremely slow

due to their modified backpropagation formulation. In [65], CN-DPM has the least assumptions on

the data stream; however, their method requires performing density estimation through generative

modeling, which can be intractable and unstable [65, 93, 94, 95], causing their performance to be

significantly lower than task-aware CL methods.

Variational Inference for CL with Anomaly Detection: Our VariGrow is motivated by the

energy-based model (EBM), which maps an input to a single, non-probabilistic scalar called en-

ergy [81, 82]. This energy score has shown to outperform the softmax confidence score for OoD
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detection [39]. Some other works on OoD detection either develop deep generative models [95],

unify probabilistic and non-probabilistic models [96], or add background classes to enhance OoD

detection [97]. [98] analyzed non-stationary data using Bayesian neural networks and memory-

based online variational Bayes by implementing ‘Bayesian forgetting’ to selectively forget knowl-

edge not relevant to the current data distribution. [77] proposed a hierarchical Indian Buffet process

(IBP) to allocate resources when learning new tasks. However, training would still require task in-

formation for online inference. [69] proposed Bayesian Gradient Descent to train neural networks,

claiming that their closed-form update rule better fits task-agnostic training. However, a ‘label

trick’ was used to implicitly infer new tasks from novel labels. [99] proposed VCL, a variational

Bayesian interpretation of CL using exemplar data points and a KL divergence penalty to retain

previous information. But VCL is a multi-head formulation and requires task labels both during

training and testing. [89] proposed using likelihood-based mixture models to handle the multi-

modality of the different tasks. However, likelihood-based models fail on complex datasets and

often assign higher likelihoods to OoD data [95]. For this, they resort to use a pretrained model to

extract features for more complex datasets such as CIFAR100 [100] and ImageNet [101].

2.2.2 Methodology

Let {Dt}Ti=t be a stream of datasets with each Dt having input-output pairs (x, y). Bayesian

learning places a prior distribution p(θ) on the model parameters θ. In continual learning (CL),

the posterior distribution after observing t+ 1 datasets is obtained using Bayes’ rule:

p(θ|D1:t+1) ∝ p(Dt+1|θ)p(θ|D1:t). (2.5)

Here, the posterior obtained in the previous step t is treated as a prior for the current step t + 1.

As we observe more novel data points, the complexity of the evolving posterior given our dataset

increases. Hence it is important that our model scales accordingly [102].
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2.2.2.1 VariGrow

To this end, we design a dynamically growing model, VariGrow, parameterized as follows:

p(w, z|D1:t+1) ∝ p(Dt+1|w, zt+1)p(w, z|D1:t),

p(w, z|D1:t) =
t∏
i=1

p(wzi
|Di)p(z|D1:t).

Here, w denote the parameters of an expert module such as a neural network, while z determines

which expert mixture component p(wz) to sample w from. This mixing strategy naturally enriches

the model representation capacity when needed for continual learning. The schematic is shown in

Figure. 2.7. When training with large and complex datasets, the posterior distribution is intractable

and is typically approximated [103]. It is important that the distributions we use to approximate

the posterior via variational inference are flexible and expressive. For CL in particular, one must

ensure that these variational distributions can be robustly updated without requiring the access to

previously observed datasets [99]. In our CL settings, one would expect to grow more components

as we sequentially observe more data from novel tasks. There could be infinitely many expert mix-

ture components, presenting additional challenges in inference [102]. To address the mentioned

challenges, we define the following variational approximation to the above posterior:

qϕ(w, z|x) =
t∏
i=1

qϕ(wzi
)qϕ(z|x). (2.6)

To obtain an ideal approximate solution, it is crucial that both qϕ(z|x) and qϕ(wz) are expressive

and flexible. To this end, we will define these distributions implicitly. Also, note that we make

qϕ(z|x) covariate-dependent, allowing us to assign individual data points to any mixture com-

ponent. To deal with the potentially infinite number of expert modules, we can define qϕ(z|x)

through a set of K expert components, while the other mixture components can be defined in re-

lation to these main components. We describe these two distributions in detail in the following

subsections.
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For the moment, let us assume that these two distributions are given. Optimizing the variational

parameters ϕ corresponds to minimizing the negative ELBO at each CL step t:

L(ϕt+1) = Eqϕt+1
(w,z|x)[− log p(Dt+1|wzt+1)]

+ KL(qϕt+1
(w, z|x) ∥ qϕt

(w, z|x)).
(2.7)

The expectation can be approximated using a single sample of (w, zt+1) ∼ qϕt+1
(w, z|x), and

log p(Dt+1|wK+1) = NE(x,y)∼Dt+1 [log p(y|x,wK+1)] can be approximated using minibatches,

with N being the number of data points in Dt+1. When a novel task is detected by our variational

formulation, zt+1 > K, and a new expert mixture component K + 1 is created. So the ELBO

becomes

L(ϕt+1) = Eqϕt+1
(w,z|x)[− log p(Dt+1|wK+1)]

+ KL(qϕt+1
(wK+1) ∥ p(w))

+ KL(qϕt+1
(z|x) ∥ qϕt

(z|x)).

(2.8)

Here, since K + 1 indicates a new mixture component qϕt
(wK+1) = p(w), where p(w) is the

prior distribution on the expert parameters. Meanwhile when we observe data points assigned to

an existing mixture component, zt+1 = k ∈ {1, . . . , K}, we have:

L(ϕt+1) = Eqϕt+1
(w,z|x)[− log p(Dt+1|wk)]

+ nkKL(qϕt+1
(wk) ∥ qϕt

(wk))

+ KL(qϕt+1
(z|x) ∥ qϕt

(z|x)),

(2.9)

where nk is the number of data points previously assigned to expert k. Intuitively, as more data

points are assigned to expert k, we would expect the expert distribution qϕ(wk) to approach the

true corresponding posterior. Meanwhile, for new expert components, only a prior distribution is

given, and the component is free to learn from novel data.

To evaluate and optimize the ELBO above, it is important that we define our variational dis-
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tributions such that the KL terms defined above are easily computable, plus being flexible and

expressive. So we adopt an energy-based mixing construct for the variational distribution qϕ(z|x)

and define the expert weight distribution implicitly.

2.2.2.2 Energy-based Mixing Distribution

Here, we describe our specification for the expert mixing distribution qϕ(z|x). By Bayes’ rule,

we have

qϕ(z|x) =
qϕ(x|z)qϕ(z)∑∞

i=1 qϕ(x|z = i)qϕ(z = i)
. (2.10)

Although one would typically find qϕ(x|z) through density estimation, such as an agnostic method

CN-DPM [65], this involves the difficult optimization process of training generative models which

can be intractable and unstable to perform in practice [93, 94, 95]. Instead of relying on density

estimation for qϕ(x|z) we interpret it as an energy-based score function as in [82].

In energy-based models, the system is optimized such that x belonging to a particular mixture

component k will have low free energy ψkϕ(x) relative to component k [81, 82]. For example, in

classification problems, the Helmholtz free energy relative to component k can be written w.r.t. the

log-posterior predictive distribution ℓkϕ(x, c) = Eqϕ(w|z=k)[log p(y = c|x,w, z = k)]:

ψkϕ(x) = −T log

( C∑
c=1

exp(ℓkϕ(x, c)/T )

)
.

Here, C is all the known classes until current CL step, and T a temperature parameter of the free

energy of component k. Note that ℓkϕ(x, c) can be estimated using a single sample of w. Similar

energy functions can be derived for other tasks [81]. We would expect higher energy for data

points x not belonging to component k, allowing us to assign data points into their respective

mixture components. Specifically, for k ∈ {1, . . . , K}, we have

qϕ(z = k|x) =
exp (−ψkϕ(x))∑K

i=1 exp (−ψiϕ(x)) + e−α
,

where α is a parameter controlling the concentration of the mixture components. Meanwhile, for
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k > K, we have

qϕ(z = k|x) = e−α

2k−K
(∑K

i=1 exp (−ψiϕ(x)) + e−α
) .

Note that qϕ(z > K|x) = e−α/(
∑K

i=1 exp (−ψiϕ(x)) + e−α). Here, the number of active mixture

components K can dynamically grow as more data come in. Specifically, when qϕ(z > K|x) >

qϕ(zi|x),∀i ∈ {1, . . . , K}, we can allocate a new mixture component, growing a new expert

module that implicitly defines this distribution. From an energy-based perspective, α can be seen

as the average energy of all data points in the system. Such energy-based novelty scores allow us

to identify and handle novel data points in a Bayesian fashion.

Having specified our mixing distribution, we now show how to approximate its KL term. In-

stead of computing the KL term of this distribution directly, we derive a tractable upper bound to

the KL term. Specifically, we can divide the KL term into two parts as follows:

KL(qϕt+1
(z|x)||qϕt

(z|x)) =
K∑
i=1

qϕt+1
(z = i|x) log

qϕt+1
(z = i|x)

qϕt
(z = i|x)

+
∞∑

i=K+1

qϕt+1
(z = i|x) log

qϕt+1
(z = i|x)

qϕt
(z = i|x)

.

(2.11)

Then, by applying Jensen’s inequality to the second term:

KL(qϕt+1
(z|x)||qϕt

(z|x)) ≤
K∑
i=1

qϕt+1
(z = i|x) log

qϕt+1
(z = i|x)

qϕt
(z = i|x)

+ qϕt+1
(z > K|x) log

qϕt+1
(z > K|x)

qϕt
(z > K|x)

(2.12)

In other words, by defining the following K + 1 categorical distribution q′ϕ(z|x):

q′ϕ(z = k|x) = qϕ(z = k|x), k ∈ {1, . . . , K} (2.13)
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Table 2.4: Results on CIFAR100-B0 benchmark (averaged over three runs). Parameters are
counted by millions. *Dashes indicate results were not reported by the authors. Reprinted/adapted with permission
from [2].

Method
5 Steps 10 Steps 20 Steps 50 Steps

Params. Acc. (%) Params. Acc. (%) Params. Acc. (%) Params. Acc. (%)
Bound 11.2 80.40 11.2 80.41 11.2 81.49 11.2 81.74
iCaRL [83] 11.2 71.14 11.2 65.27 11.2 61.20 11.2 56.08
UCIR [104] 11.2 62.77 11.2 58.66 11.2 58.17 11.2 56.86
BiC [104] 11.2 73.10 11.2 68.80 11.2 66.48 11.2 62.09
WA [105] 11.2 72.81 11.2 69.46 11.2 67.33 11.2 64.32
PODNet [106] 11.2 66.70 11.2 58.03 11.2 53.97 11.2 51.19
AANets [63] 11.2 67.59 11.2 65.66 - - - -
RPSNet [64] 60.6 70.50 56.5 68.60 - - - -
DER [107] 2.89 75.55 4.96 74.64 7.21 73.98 10.15 72.05
CN-DPM [65] (Agnostic) 19.2 20.34 19.2 17.60 19.2 18.79 19.2 19.70
VariGrow (Agnostic) 2.97 75.50 4.88 75.04 7.30 74.03 10.25 72.21

q′ϕ(z = K + 1|x) = qϕ(z > K|x), (2.14)

we can use the KL divergence of this distribution as a tractable upper bound to the KL divergence

of our original distribution:

KL(qϕt+1
(z|x)||qϕt

(z|x)) ≤ KL(q′ϕt+1
(z|x)||q′ϕt

(z|x)).
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Figure 2.8: Class-incremental performance comparisons at each step for the CIFAR-100 dataset.
Reprinted/adapted with permission from [2].
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Table 2.5: Results on CIFAR100-B50 (averaged over three runs). Parameters are counted by
millions. Reprinted/adapted with permission from [2].

Method
2 Steps 5 Steps 10 Steps

Params. Acc. (%) Params. Acc. (%) Params. Acc. (%)
Bound 11.2 77.22 11.2 79.89 11.2 79.91
iCaRL [83] 11.2 71.33 11.2 65.06 11.2 58.59
UCIR [104] 11.2 67.21 11.2 64.28 11.2 59.92
BiC [104] 11.2 72.47 11.2 66.62 11.2 60.25
WA [105] 11.2 71.43 11.2 64.01 11.2 57.86
PODNet [106] 11.2 71.30 11.2 67.25 11.2 64.04
DER [107] 3.90 74.57 6.13 72.60 8.79 72.45
VariGrow (Agnostic) 3.63 74.62 6.01 73.97 8.55 72.75

2.2.3 Experiments

In this subsection, we conduct extensive experiments to validate the effectiveness of VariGrow.

We evaluate our method on 3 datasets: CIFAR-100 [83], ImageNet-100 [83], and ImageNet-

1000 [83], using two commonly used benchmark protocols. After detailing our experimental setups

and implementation details in subsection 2.2.3.1, we present and discuss experimental results on

the CIFAR-100 dataset and both ImageNet-100 and ImageNet-1000 datasets in subsections 2.2.3.2

and 2.2.3.3.
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Figure 2.9: Class-incremental performance comparisons at each step for the ImageNet-100 and
ImageNet-1000. Reprinted/adapted with permission from [2].
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Table 2.6: Results on ImageNet-B0 (averaged over three runs). Parameters are counted by millions.
Avg is the average accuracy (%) over steps. Last is the accuracy (%) evaluate on each task for the
model at the last incremental step. *Dashes indicate results were not reported. Reprinted/adapted with permission from
[2].

Method
ImageNet100-B0 ImageNet1000-B0

Params.
Top-1 Top-5

Params.
Top-1 Top-5

Avg Last Avg Last Avg Last Avg Last
Bound 11.2 - - - 95.1 11.2 89.27 - - -
iCaRL [83] 11.2 - - 83.6 63.8 11.2 38.4 22.7 63.7 44.0
BiC [104] 11.2 - - 90.6 84.4 11.2 - - 84.0 73.2
WA [105] 11.2 - - 91.0 84.1 11.2 65.67 55.6 86.6 81.1
RPSNet [64] - - - 87.9 74.0 - - - - -
AANets [63] 11.2 75.58 - - - 11.2 64.85 - - -
DER [107] 7.67 76.12 66.06 92.79 88.38 14.52 66.73 58.62 87.08 81.89
VariGrow (Agnostic) 7.82 76.04 65.87 92.51 88.17 14.89 66.58 58.47 86.88 81.70

2.2.3.1 Experimental Setups

Datasets: CIFAR-100 [100] consists of 60,000 32x32 pixel color images ranging over 100

classes. The dataset is divided into 50,000 training images with 500 images per class, and 10,000

images for evaluation with 100 images per class. ImageNet-1000 [101] is a large-scale dataset

consisting of 1,000 classes, including about 1.2 million RGB images for training and 50,000 im-

ages for validation. ImageNet-100 [62, 83, 104] is a subset of it by selecting 100 classes from the

ImageNet-1000 dataset.

Benchmark Protocols: For the CIFAR-100, we test our methods on two widely used pro-

tocols: 1) CIFAR100-B0 [62, 83]: a protocol which divides all 100 classes into 5, 10, 20, and

50 incremental steps with a fixed memory size of 2,000 exemplars over batches; 2) CIFAR100-

B50 [62, 104]: a protocol which starts from a model trained on 50 classes, while the remaining 50

classes are divided into splits of 2, 5, and 10 incremental steps with 20 examples as memory per

class. We compare the top-1 average incremental accuracy, which takes the average of the accu-

racy for each step. We follow similar protocols for ImageNet-100: 1) ImageNet100-B0 [62, 83]:

the protocol trains the model in batches of 10 classes from scratch with a fixed memory size 2,000

over batches; 2) ImageNet100-B50 [62, 104]: the protocol starts from a model trained on 50 classes

while the remaining 50 classes come in 10 steps with 20 exemplars per class. For fair comparisons,
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we use the same ImageNet subset and class order done by [83], [104], and [62]. For ImageNet-

1000, we evaluate our method on the ImageNet1000-B0 benchmark [62, 83], that trains the model

in batches of 100 classes with 10 steps in total and set a fixed memory size as 20,000 exemplars,

with the same class order by [83] for ImageNet-1000. For both ImageNet-100 and ImageNet-1000,

we compare the top-1 and top-5 average incremental accuracy, as well as the last step accuracy.

For the task-agnostic setting during training and testing we hide task IDs, which is called single-

head setting. The task-aware setting (i.e. multi-head) is using one prediction head for each task

and effectively predicting the labels within a task instead the whole label pool. For baselines, we

compare against various state-of-the-art (i) task-aware CL methods: iCaRL [83] is memory-based

that picks exemplars by balancing the number of class labels. UCIR [104], uses normalized fea-

ture vectors for prediction. BiC [104] trains a bias correction layer on a validation set. WA [105]

corrects biased weights by aligning the norm of the weight vectors of new classes to weight vec-

tors of old classes. PODNet [106] uses a spatial distillation loss penalizing parameter changes.

TPCIL [108] attempts to preserve the topology of the latent feature space, AANets [63] attempt to

solve the stability-plasticity dilemma by proposing stable and plastic blocks, RPSNet [64] is a path

selection algorithm that progressively chooses optimal paths as sub-network for the new classes.

DER [107] dynamically grows the network using given task labels. We also benchmark against (ii)

task-agnostic CL methods: CN-DPM [65], a hybrid expansion- and memory-based method, and

UCB [92], a regularization-based BNN model. We were not able to reproducible UCB’s results

reliably, with an accuracy of only 40.34% on the CIFAR10/100 testing protocol. One agnostic

method [68] was not considered due to the capacity can only handle smaller dataset.

Implementation Details: For all datasets, we adopt ResNet-18 [109] as the architecture of our

expert modules, following RPSNet [64] and DER [62]. We run experiments on three different class

orders and report the average of the results. In these experiments, we treat the exemplars varia-

tionally, following [99] and select new exemplars (i.e. coreset) as novel mixture components are

encountered based on the herding selection strategy [110]. We also use these exemplars along with

OoD datasets to further calibrate our energy-based novelty score, following the selection of [82].
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We use Tiny-ImageNet [111] and LSUN [112] as OoD datasets for CIFAR-100 and ImageNet

experiments respectively. We perform MAP estimation of the neural network weights ω using

Gaussian priors, equivalent to adding a 5 × 10−4 weight decay coefficient. We set λ = 1 for the

prior distribution of m, and set T = 1, and α = 18 for the energy-based novelty scores. We

optimize our formulation using SGD with a learning rate of 0.1, batch size of 128 for CIFAR-100,

and 256 for ImageNet. We train for 120 epochs and decay the learning rate by 0.1 after 30, 60, and

90 epochs.

2.2.3.2 Evaluation on CIFAR100

Quantitative Results: Table 2.4 and Figure 2.8 (left) show the results for CIFAR100-B0. We

can see that, without needing task labels nor task switching information, our method is competitive

with state-of-the-art CL methods which are task-aware. Meanwhile, ours significantly outperforms

CN-DPM, a task-agnostic online learning formulation, with an improvement of over +50%. More-

over, the margin between our method and CN-DPM continuously increases, indicating that our

method performs better over longer continual learning episodes with fewer parameters with our

sparsification. Note also that we are getting very close to the offline multi-task learning base-

line (Bound). This demonstrates that VariGrow is able to learn from a non-iid data stream without

much decrease in performance despite not having access to the entire dataset.

We further compare the performance of VariGrow on the CIFAR100-B50 benchmark in Ta-

ble 2.5 and Figure 2.8 (middle, right), again showing that our method is competitive with task-

aware continual learning methods. We note that DER is the most competitive task-aware method

in our benchmarks but it has to grow the network architecture with given task switching informa-

tion.

To further banchmark the efficacy of our method in handling task-agnosticism, we study the

effects of two settings where task-agnosticism can occur. One setting involves removing the clear

task boundaries, and instead gradually introducing data from novel tasks. This setting is similar to

the fuzzy task boundary experiment conducted by [65]. The other setting assumes that data from

previous tasks can be observed again in between task switches. Thus, our model needs to be able
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Table 2.7: Results on ImageNet-B50 (averaged over three runs). Parameters are counted by mil-
lions. *Dashes indicate results were not reported by the authors. Reprinted/adapted with permission from [2].

Method
ImageNet100-B50

Params.
Top-1 Top-5

Avg Last Avg Last
Bound 11.2 81.20 81.5 - -
UCIR [104] 11.2 68.09 57.3 - -
PODNet [106] 11.2 74.33 - - -
TPCIL [108] 11.2 74.81 66.91 - -
DER [107] 8.87 77.73 72.06 94.01 91.64
VariGrow (Agnostic) 8.94 77.64 71.48 92.84 89.95

to distinguish these instances and correctly assign them to an existing expert instead of growing

a new one. We denote both of these experiments as fuzzy and lookback respectively, and the

performance of our method in these settings on the CIFAR-100 dataset can be seen in Table 2.8.

As seen in Table 2.8, our method suffers only a slight degradation in accuracy in these settings

compared to the traditional setting. We hypothesize that this is caused by stray datapoints being

incorrectly assigned to the wrong expert.

Qualitative view on energy-based Novelty Score: We show the energy-based novelty score

at each timestep for the CIFAR100-B50 10-step protocol in Figure 2.10. Here, we see that our

novelty score clearly helps detect task changes, with significantly increased novelty scores after a

new task is observed. Note also that VariGrow is able to correctly detect that there are 10 tasks

with 10 observed peaks.

Table 2.8: Results on different task-agnostic settings on the CIFAR100-B50 benchmark.
Reprinted/adapted with permission from [2].

Setting
Accuracy (%)

5 Steps 10 Steps
Baseline 73.97 72.45
Lookback Old Tasks 71.21 70.98
Fuzzy Boundaries 70.03 69.19
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Figure 2.10: Novelty score values for each iteration on the CIFAR100-B50 10-step protocol.
Reprinted/adapted with permission from [2].

2.2.3.3 Evaluation on ImageNet

We show results for the ImageNet-100 and ImageNet-1000 datasets in Tables 2.6, 2.7, and

Figure 2.9. We see that our VariGrow is again competitive with task-aware methods for all splits

on these two datasets, which are more complex compared to CIFAR100. We note that the gap in

top-5 accuracy is smaller. We believe that this is because the top-5 accuracy is more tolerant to

slightly inaccurate predictions and thus less sensitive to catastrophic forgetting.
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3. SECOND AIM: DIVIDING AND CONQUERING HETEROGENEITY

3.1 Sparse Gated Mixture-of-Experts to Separate and Interpret Patient Heterogeneity in

EHR data1

3.1.1 Introduction

3.1.1.1 Overview

A challenge in developing machine learning models for patient risk prediction involves ad-

dressing patient heterogeneity and interpreting the model outcome in clinical settings. Patient het-

erogeneity manifests as clinical differences among patients in observational datasets, e.g. in elec-

tronic health records (EHRs), leading to latent homogeneous patient subgroups. The discovery of

such subgroups is helpful in precision medicine, where different risk factors from different patient

would contribute differently to disease development and thus personalized treatment. Therefore

the model development to account for patient heterogeneity requires a ‘divide-and-conquer’ mech-

anism. In medical terms, subtypes of patients have been critical in clinical decision making, but

finding meaningful subtypes of patients is not always obvious from traditional ‘one-size-fits-all’

models. Furthermore the subtypes discovered should be able to be interpreted by the correspond-

ing part of the model. In this paper, we use a Mixture-of-Experts (MoE) model, coupled with a

sparse gating network, to handle patient heterogeneity for prediction and to aid interpretation of

patient subtype separation. Different from traditional sparsity imposed on neuron activation in neu-

ral networks, we propose an expert-wise sparsity, leading to better macroscopic training footprints

for modeling and interpretation. We demonstrate the performance of this technique in a publicly

available intensive care unit (ICU) dataset, MIMIC-III, both through risk prediction metrics and

evaluation on interpretability.

Patient heterogeneity in real-world clinical data poses potential challenges in actualizing ma-

1Reprinted with permission from Huo, Z., Zhang, L., Khera, R., Huang, S., Qian, X., Wang, Z. and Mortazavi,
B.J., 2021, July. Sparse Gated Mixture-of-Experts to Separate and Interpret Patient Heterogeneity in EHR data. In
2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI) (pp. 1-4). IEEE. Copyright
2021 by the authors.
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chine learning models and further complicates clinical decision making [113]. For example, in

evaluating risk modeling, two patients with the exact same risk score from the model might have

different underlying driving factors, potentially rendering completely different treatments [114].

Electronic health records (EHRs) are an example of a dataset with vast, heterogeneous clinical

records that contain intra- and inter-variability of measurements and treatments across patients.

To date, many deep learning techniques have begun exploring this data, often within subsets of

clinical questions or data type, for example deep embedding of patient representations [115], time

series modeling of structured clinical data with recurrent neural networks [116, 117], and feature

extraction techniques with convolutional neural networks [118]. However, these methods often

depend on a single model with ‘one-size-fits-all’ approach. An opportunity exists to stratify pa-

tients heterogeneity and generate explainable risk prediction from model-generated separation of

subtypes, which may aid in clinical decision making in response to risk model outputs.

In order to stratify the patient population into specific patient subtypes (i.e. homogeneous

subgroups) through a learnable ‘divide-and-conquer’ mechanism [119], we employ a mixture-of-

experts (MoE) model. As one realization of ensemble learning [120], traditional MoE models

generally assume a model containing a mixture of Gaussian experts. With the advancement of

deep learning, the Gaussian experts have been replaced by neural networks in many applications

with more complex architectures and larger learning capacity [1, 28]. However, such a larger

feature space and bigger cohort for these models may be difficult to interpret for clinical decision

making. Unlike LASSO for linear model interpretation [121], the introduction of sparsity to deep

learning models, e.g. dropout [122] and sparse gating [28], traditionally aims to prevent overfitting

or alleviate the computation overhead. We propose that while all these methods with sparsity

achieve strong predictive performance in their tasks, sparsity is not responsible for separating latent

groups and reducing redundancy among different parts of the model for explaining heterogeneity.

Therefore, enhancing these techniques with added interpretation of the patient subgroups is needed

for successfully applying MoE model to clinical settings.

This work proposes an MoE framework with a macroscopic-style sparse gating network to
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address patient heterogeneity and provide interpretation to aid in clinical decision making, while

improving risk prediction. To enable automatic subtyping of patients, the sparse gating, when

coupled with an MoE framework, is to monitor the training activation of each expert rather than

individual neuron. The sparse gating network is a realization of model sparsity, extending the

concept of conditional computation [123], which has a trainable activation mechanism based on

input examples. Compared to dropout, this model sparsity better explains the derived prediction

in MoE scenarios, due to the fact that the sparse instance-based activation constrains each expert

rather than neuron to handle different subsets of training data (different subtypes) and thus better at

interpretation. Because the gating network and expert networks are trained concurrently, the label

information is embedded in the expert assignment in the gating network, making the representation

learned for each patient supervised and informative. In the experiment, we study the derived patient

representation through expert assignment, showing discovery of clinically meaningful and inter-

pretable patient subtypes. We demonstrate that sparse MoE not only learns to ‘divide-and-conquer’

a real-world clinical dataset with vast patient heterogeneity, but also provides better interpretation

than raw features or generic encoding on how the model derives latent groups for prediction.

3.1.1.2 Related work

Heterogeneity is an important issue when analyzing EHR data. [124] have proposed Het-

eroMed based on Heterogeneous Information Network [125], and address the heterogeneity prob-

lem of various diagnose sources (laboratory tests, measurements, etc.). Similarly, [126] analyzed

the same aspect of heterogeneous EHR data by using a probabilistic graphical model. However,

here we are addressing another level of EHR heterogeneity in terms of different patient cohorts,

among which ICU stay lengths, lab measurement frequencies, and phenotypes may vary drastically

in particular for MIMIC III. These types of heterogeneity require an instance-wise divide-and-

conquer regime, as opposed to feature-wise method [127], which has not been found in traditional

methods. MoE is a good fit for this problem because each expert can be assigned to a unique cohort

(a subtype) for personalized training and prediction.

The interpretability analysis in clinical data usually focuses on modeling patient representation

46



and finding similar subtypes to understanding the correlation of risk factors and mortality rate.

Some methods have been proposed for this purpose, such as deep representations [115, 128, 129],

sparse encoding [5], and prototype matching [130]. In our paper, we couple the model prediction

and interpretation together, as opposed to post hoc methods, where the learned patient representa-

tions (discovered subtypes) are supervised, providing additional predictive power.

We use MoEs to address the problem of heterogeneity and interpretability in clinical data.

MoEs have been widely used with strong capacity in healthcare and medicine, such as ubiquitous

computation [1, 131], and health informatics [132, 133]. However, these methods are usually not

capable of finding patient subtypes due to the fact that each expert’s specialty is not guaranteed,

for example, by a sparsity metric. When learning redundant information among the experts, it is

hard to interpret which expert is responsible for which cohort. We impose expert-level sparsity on

modeling MoE to handle clinical heterogeneity and interpretability.

3.1.2 Methodology

In order to develop a model that tackles patient heterogeneity and provides additional inter-

pretability, we propose a sparse MoE model, as illustrated in Fig. 3.1. The sparse MoE leverages

the divide-and-conquer strength of the general MoE framework, with the addition of a sparse gat-

ing network trained concurrently, deriving a parsimonious training regime, leading to a learned

patient representation that naturally subtypes. Since the expert assignment representation for each

patient is through supervised learning, it is more informative and predictive than general encoding.

3.1.2.1 MoE training process

An MoE model approaches the divide-and-conquer regime for highly specialized training [28].

By applying a gating mechanism to distribute data to different experts we can couple the training

of the group of expert networks and gating networks concurrently [134]. The training of this model

is often framed as a maximum likelihood estimation (MLE) problem. For this work, we consider
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Figure 3.1: Sparse Mixture of Experts framework. On the left is risk prediction module with gating
and expert network training concurrently, on the right is the sparse expert assignment module for
interpretability. Reprinted/adapted with permission from [3].

maximizing the ‘complete’ log-likelihood [19, 135], by introducing the hidden variable Z:

logLc(Θ;D) ∝ logP (Y,Z|X,Θ)

=
∑
i

∑
j

1{zi = j}log{gj(xi,v)P (y|xi, θj)},
(3.1)

where Θ is the model parameter set and D = {xi,yi}Ni=1 is the observational dataset. The function

g(·) represents the gating network parameterized by v, 1{·} denotes an indicator function and

P (y|x, θj) is the probability of an outcome given the input data as estimated by the selected expert.

The hidden variable Z = {z1, ..., zn} is introduced as the indicator of expert training assignment

[134], which allows for the gating function to be represented as:

gj = P (zi = j|xi) =
eβj∑
k e

βk
, (3.2)

where βj = vTj xi,, a multinomial logit representing the gating network’s assignment zi to expert

j.
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3.1.2.2 Parsimonious training of MoE

3.1.2.2.1 Sparse EM variant The aforementioned MLE problem for training MoE is usually

solved by the Expectation-Maximization (EM) algorithm, which has many variants [135, 136].

However, previous work along this line did not adopt a parsimonious training regime [134, 136].

In this work, instead of feeding each data point (one patient’s data) to all experts, we only activate

a small group of experts for training each patient by imposing sparsity. The key idea is to assign

each instance to experts parsimoniously, so that the one expert will be responsible for a small cohort

of instances, providing a more localized estimation of outcomes and subtyping by evaluating the

assignment of the data points to the individual experts. In order to accomplish this, we modify

the standard EM algorithm to enforce sparsity in the assignment of patients to individual experts.

This requires updating the EM steps incrementally (instead of a full expectation calculation in the

E-step) to calculate a partial expectation. To accomplish this, we first apply a ‘generalized’ EM

algorithm introduced by [137], where instead of a full maximization, they first redefine Lc(Θ,D)

as:

F (P̃ (Z),Θ) = EP̃ (Z)[Lc(Θ;D)] +H(P̃ (Z)), (3.3)

where H(P̃ (Z)) = −EP̃ (Z)[logP̃ (Z)] is the entropy of distribution P̃ (Z). The F function is

defined over a specific value of the observed data D = {xi,yi}ni=1 and is guaranteed to be non-

decreasing at each EM step. It is essential to note that Lc(Θ,D) is a continuous function of Θ,

from which one may assume that F is a continuous function of both Θ and P̃ (Z). We will use this

F function as a surrogate for the traditional Q function in EM algorithm. This modification allows

for the sparse training of experts. For additional details of F in EM and the guarantee of the same

global optimum as Q function, please see the supplement.

3.1.2.2.2 Modified gating function In order to use F , we adopt a modification of the gating

function introduced in [135]:

gj = P (zi = j|xi) =
αje

βj∑
k αke

βk
, (3.4)
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where αj ≥ 0 constructing the selection criterion for a data point’s posterior to be updated in the

E-step of the EM algorithm. In this work, we use the Top-k masking as the surrogate for αj [28]:

αj = Top-k(βj, k) =

 1 if βj in top k value of all β

0 otherwise.
(3.5)

A selection set for updating the posterior of zi at the t-th E-step can be denoted by S(t). As noted

in [28], Top-k masking seemingly imposes discontinuity in the output of the gating network; but in

practice (and in our experiments), this does not pose an issue. However, to prevent the preference

on an individual expert due to factors based upon initialization in early epochs, we adopt a load

balance constraint on training the MoE:

Lload-balance = CV(
∑
j

gj(x)), (3.6)

where CV stands for the coefficient of variant, also known as relative standard deviation (RSD).

This constraint will force the gating network to have more evenly distributed expert assignments,

thus avoiding training solely on favored experts. The final EM algorithm for training a sparse MoE,

as well as enforcing a load-balanced sparse selection, is summarized as follows:

E-step: Select one zi ∈ S(t), so that

P̃
(t)
i = argmax

P̃i

Fi(P̃i,Θ
(t−1)).

Set the rest P̃ (t)
j = P̃

(t−1)
j where i ̸= j

M-step: Θ(t) = argmax
Θ

F (P̃ (t),Θ)− λLload-balance,

(3.7)

where λ is a tunable hyperparameter for the load balancing constraint. Selection set S(t) corre-

sponds to the masking in Eq. (3.5).
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Figure 3.2: MIMIC-III data extraction pipeline. Reprinted/adapted with permission from [3].

3.1.2.3 Model specification of expert in MoE

The experts may be modeled in various forms in our method to train P (y|xi, θj) in Eq. (3.1),

contrary to [28], whose expert layer only has MLPs. This enables us to train individual experts

suitable for specific tasks, e.g. a convolutional neural network for computer vision, a recurrent

neural network for natural language processing. For our EHR application, the data comes in the

form of time series for each patient, therefore we adopt recurrent neural network architectures; we

have chosen LSTM [138] for our expert framework. The gating network will first take the input

xi and output a vector of length n, which is the number of experts. Each component gj in the

vector is the probability of expert j being chosen. The Top-k masking will enforce activation of a

parsimonious set of k experts, and thus deactivate the rest. This is corresponding to the E-step in

Eq. (3.7). The activated expert will take in data point xi and output P (y|xi, θj). In our time-series

data we have T time stamps, i.e. {xi}Tt>0, this will make LSTM have T -long sequence of hidden

states {h}Tt>0:

it = σ(xtiW
(xi) + ht−1W

(hi)),

ft = σ(xtiW
(xf) + ht−1W

(hf)),

ct = ft ⊙ ct−1 + it ⊙ tanh(xtiW
(xc) + ht−1W

(hc) + b(c)),

ot = σ(xtiW
(xo) + ht−1W

(ho) + b(o)),

ht = ot ⊙ σh(ct),

(3.8)

where the last time stamp of hidden state ht is fed into a softmax function for the final probability

P (y|xi, θj) which is the P̃ (t)
i in Eq. (3.7). The single probability output is due to the fact that
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we are interested in many-to-one sequence-based prediction in medical settings, e.g. mortality

prediction and phenotyping, rather than sequence-to-sequence prediction. The notations above

carry the traditional LSTM convention, where it denotes the input gate, ft for the forget gate, ct for

the cell state, and ot for the output gate. So each expert’s output will be determined as activated or

deactivated by the sparse gating in Eq. (3.4). If activated, the parameters will be optimized through

M-step in Eq. (3.7).

3.1.3 Experiments

Through the experiments in this subsection, we aim to illustrate that our sparse MoE model

can tackle heterogeneous real-world clinical data for corresponding medical prediction for each

individual patient, with good interpretability in terms of clinically meaningful patient stratification.

We test our model on a publicly available EHR dataset, i.e. MIMIC-III dataset [139], in two

tasks, which are mortality prediction and phenotyping. The mortality prediction is useful for risk

factor control and preliminary prognosis, to eventually have better resource reallocation and patient

outcomes in hospital. The phenotyping task is to classify patients by a group of separate binary

labels, in which the same group of patients would share similar outcomes of interest (e.g. adverse

events, commodities). Phenotyping can help personalized treatments and fine-grained diagnosis.

We will use these two tasks to demonstrate the advantage of our sparse MoE in handling patient

heterogeneity and interpretability, and further to show the interpretable patient stratification and

subtyping.

3.1.3.1 MIMIC-III dataset

MIMIC-III is one of the largest clinical datasets that has been made publicly available. It

contains multivariate time-series data from over 40,000 intensive care unit (ICU) stays. The types

of data range from static demographics such as gender and age to rapidly changing measurements

such as heart rate and arterial blood pressure. The heterogeneity is one of the major challenges

when analyzing this dataset, due to the diverse patient health conditions, rapidly changing hazard

ratio as well as the corresponding treatments. We focus on using only the first 48 hours after
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ICU admission for the prediction of both tasks. The intuition is that for early risk prognosis and

phenotyping, the precaution procedure can be undertaken, since the average ICU stay can be up

to 100 to 200 hours [139]. The data extraction and experiment setup are shown in Fig. 3.2. We

adopted the same data pre-processing steps as in a set of benchmark models in MIMIC-III (i.e.

imputation, normalization, data masking, etc) [140]. We followed their splitting of whole dataset

into training and testing sets of 17,903 and 3,236 instances, respectively. The positive (expired)

and negative (survived) distribution is shown in Fig. 3.2.

3.1.3.2 Experimental setup

We design our experiments to answer the following practical questions:

• Can an ensemble method be better at ‘divide-and-conquering’ patient clinical heterogeneity

to improve the risk prediction?

• Can model sparsity further improve the MoE model?

• Can the derived patient representation from proposed sparse MoE provide real-world clinical

interpretability?

First, we will discuss our baselines in two categories, i.e. single network and ensemble methods, to

answer the first question. For single network baselines, we first compare against a strong published

baseline in [140], which is based on a bidirectional LSTM. Harutyunyan et al. also presented an

improved baseline version (a channel-wise LSTM) for both mortality prediction and phenotyping,

where each time-series feature is trained independently on the first layer and then concatenated

in the second layer for all the features [140]. Another strong baseline for MIMIC-III mortality

prediction is Deep Supervision [116], where the authors used target replication for the supervision

of LSTM in each time stamp, and with changing loss function the model needed to predict repli-

cated target variables along with outcome. Note these baselines are carried out with dropout tuning

[116, 140], against which we compare the performance of our MoE with model sparsity as in the

gating network. Furthermore, to design an ensemble method without sparsity as the ensemble base-

line, we adopt the standard bidirectional LSTM architecture in the MIMIC-III benchmark [140] as
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Table 3.1: The mortality prediction results by the proposed sparse MoE and the baselines in AUC-
ROC and AUC-PR. (Mean and 95% CI) (S: single. E: ensemble). Reprinted/adapted with permission from
[3].

Performance Measures AUC-ROC AUC-PR
Standard LSTM (S) 0.855 (0.835, 0.873) 0.485 (0.431, 0.537)

Channel-wise LSTM (S) 0.862 (0.844, 0.881) 0.515 (0.464, 0.568)

Deep Supervision (S) 0.856 (0.836, 0.875) 0.493 (0.438, 0.549)

LSTM majority vote (E) 0.807 (0.793, 0.811) 0.521 (0.501, 0.533)

Sparse-MoE (E) 0.888 (0.879, 0.891) 0.530 (0.497, 0.570)

our individual expert, and constrain the neurons in the ensemble to be comparable to the baseline

LSTM (each expert is a smaller version of the original one), and the output is the majority vote of

the experts (instead of imposing sparsity, we activate all experts), with which we aim to answer the

second question. Finally, for our model, we introduce the sparse gating on top of the expert group,

to demonstrate the importance of our imposed model sparsity. We extract the patient representation

from the gating network of the expert assignment to answer the last question. We have adopted

the metrics AUC-ROC and AUC-PR, which are especially useful in imbalanced binary/multi-class

classification present in many healthcare applications, including MIMIC-III [140] For the detailed

architecture setting in the model, please refer to the supplementary material.

3.1.3.3 Results and discussion

We discuss the results in two corresponding tasks. First, for mortality prediction, as can be

seen in Table 3.1 (we denote the single network baselines by (S), and ensemble framework by (E)),

our model captures high risk patients and provides superior performance in predicting mortality

than all the baselines on both AUC-ROC and AUC-PR scores. 95% confidence intervals are also

shown by bootstrapping the test set 100 times. This validates that an ensemble method is nec-

essary. Moreover, the results from the LSTM majority voting shows that, without proper expert

collaboration monitoring, i.e. constraining each expert to be responsible for a small cohort, the

experts would sometimes disagree with each other. Interestingly, it is shown that it has much lower

AUC-ROC, but better AUC-PR than other baselines. AUC-PR is known for its good application in
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medicine because it captures better characteristics in imbalanced dataset where the minority class

is of interest (survived vs. expired) [141], and thus more applicable in medicine. So we speculate

that LSTM majority voting is better at finding the expired patients (higher risk) than other base-

lines, but slightly worse in terms of finding a balance between two classes. However, the sparse

gating mechanism in our new sparse MoE can properly constrain each expert to focus on a small

subset of the dataset, thus less likely to collide and overfit, giving an overall improvement on both

metrics.

We further examine the results in phenotyping, where the issue due to heterogeneity only wors-

ens. For phenotyping, the model needs to classify each patient into 25 binary labels, each of

which is a clinically meaningful acute care condition, and not mutually exclusive (one patient can

have multiple conditions concurrently). As shown in Table 3.2, we have calculated the individ-

ual performance of the 25 phenotypes and the macro-average of them, which is less affected by

class-imbalance than micro-average. We can see that phenotyping is better predicted through an

ensemble of experts than a single model. Our sparse MoE again performs better than the single

network baselines and the naive ensemble baseline of majority voting, demonstrating the necessity

of enforcing model sparsity. Note that the ensemble baseline is worse than the single network

counterpart in this scenario, indicating in a heterogeneous task such as phenotyping, the expert

collaboration is much more needed with fine-tuned sparsity.

Figure 3.3: KDE of survived and expired
patients from raw features. Reprinted/adapted with
permission from [3].

Figure 3.4: KDE of survived and expired
patients from single expert. Reprinted/adapted
with permission from [3].
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Table 3.2: The individual phenotype prediction results of proposed method and the macro compari-
son with baselines in AUC-ROC through only first 48 hours. (S: single. E: ensemble). Reprinted/adapted
with permission from [3].

Phenotype type AUC-ROC Phenotype type AUC-ROC
Acute and unspecified renal failure acute 0.766 Essential hypertension chronic 0.642

Acute cerebrovascular disease acute 0.902 Fluid and electrolyte disorders acute 0.738
Acute myocardial infarction acute 0.756 Gastrointestinal hemorrhage acute 0.754

Respiratory failure; insufficiency; arrest acute 0.821 Hypertension with complications chronic 0.732
Chronic kidney disease chronic 0.726 Other liver diseases mixed 0.714

Chronic obstructive pulmonary disease chronic 0.619 Other lower respiratory disease acute 0.602
Complications of surgical/medical care acute 0.695 Other upper respiratory disease acute 0.66

Pleurisy; pneumothorax; pulmonary collapse acute 0.657 Conduction disorders mixed 0.655
Congestive heart failure; nonhypertensive mixed 0.698 Pneumonia acute 0.74

Coronary atherosclerosis and related chronic 0.747 Cardiac dysrhythmias mixed 0.634
Diabetes mellitus with complications mixed 0.864 All diseases (macro-averaged) (E) 0.727

Diabetes mellitus without complication chronic 0.756 baselines
Disorders of lipid metabolism chronic 0.685 LSTM Majority vote (macro-) (E) 0.651
Septicemia (except in labor) acute 0.757 Deep Supervision (macro-) (S) 0.679

Shock acute 0.847 Channel-wise LSTM (macro-) (S) 0.708

Figure 3.5: KDE of survived and ex-
pired patients from LSTM majority vote.
Reprinted/adapted with permission from [3].

Figure 3.6: KDE of survived and expired
patients from sparse MoE. Reprinted/adapted with
permission from [3].

3.1.3.4 Interpretability and heterogeneity

In various clinical applications, patient subtyping is of great interest [5], due to the fact that

personalized treatment can lead to better resource allocation, medication adaptation and ultimately

patient outcomes [5]. Therefore patient stratification is a popular approach for clinical inter-
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Table 3.3: Patient demographic and phenotype distribution. Reprinted/adapted with permission from [3].

Example subtype 1 2 3 4 (survived)
Gender (female) 45.4% 50% 62.7% 57.6%
Age (average) 65.2 88.6 69.1 77.1

# of patients in peak 88 36 43 78
Acute/unspecified renal failure 25.1% (17.4%, 32.7%) 32.3% (25.4%, 39.3%) 11.5% (2.3%, 20.7%) 30.8% (22.1%, 39.5%)

Acute cerebrovascular disease 9.2% (5.5%, 12.9%) 3.4% (0.5%, 6.3%) 17.1% (16.4%, 17.7%) 10.9% (7.7%, 14.0%)

Acute myocardial infarction 24.3% (23.7%, 24.9%) 20.8% (4.7%, 36.8%) 15.9% (14.6%, 17.1%) 14.4% (11.5%, 17.3%)

Cardiac dysrhythmias 32.8% (28.2%, 37.4%) 37.1% (32.4%, 41.8%) 30.2% (26.0%, 34.3%) 20.6% (17.8%, 23.5%)

Chronic kidney disease 11.3% (8.9%, 13.7%) 21.8% (3.8%, 39.8%) 7.0% (5.7%, 8.3%) 11.7% (9.8%, 13.5%)

Congestive heart failure 35.4% (29.0%, 41.8%) 45.4% (36.7%, 54.1%) 31.5% (23.2%, 39.7%) 23.0% (17.8%, 28.3%)

Coronary atherosclerosis 32.7% (25.1%, 40.3%) 44.5% (32.1%, 56.9%) 26.9% (21.5%, 32.2%) 27.6% (24.7%, 30.6%)

Disorders of lipid metabolism 23.1% (18.0%, 28.1%) 4.8% (0.9%, 8.6%) 23.1% (17.8%, 28.5%) 22.5% (18.7%, 26.3%)

Fluid and electrolyte disorders 28.2% (25.4%, 31.0%) 53.2% (45.4%, 61.1%) 47.0% (44.4%, 49.6%) 30.4% (23.2%, 37.7%)

Gastrointestinal hemorrhage 14.2% (8.9%, 19.6%) 11.4% (4.5%, 18.3%) 3.0% (0.4%, 5.6%) 10.2% (6.7%, 13.6%)

Pleurisy; pulmonary collapse 4.9% (3.2%, 6.7%) 1.3% (0.8%, 3.5%) 13.1% (9.1%, 17.1%) 6.2% (1.9%, 10.5%)

Pneumonia 13.5% (12.7%, 14.4%) 22.2% (17.6%, 26.9%) 38.5% (29.3%, 47.7%) 25.7% (23.9%, 27.5%)

Respiratory failure 17.2% (14.5%, 19.9%) 24.9% (16.0%, 33.8%) 39.9% (38.6%, 41.3%) 29.3% (23.8%, 34.7%)

Septicemia 4.9% (3.2%, 6.7%) 19.6% (18.9%, 20.3%) 28.3% (25.0%, 31.6%) 25.3% (23.3%, 27.3%)

pretability. Most work along this line of research involves clustering patients’ clinical features

to identify patient subtypes. However, raw feature clustering is unsupervised and thus identified

clusters may not be directly amiable to provide useful clinical predictions or treatment suggestions.

In our sparse MoE, we have implemented a gating network with the imposed model sparsity, con-

currently trained with experts, to ensure that each expert is responsible for a subset of the overall

heterogeneity in the dataset, making the assignment supervised. First, we study the mortality pre-

diction task to show that the MoE can inherently ‘divide-and-conquer’ the hidden patient subtypes,

and then use the phenotyping task to further show that larger-scale heterogeneity can be handled

by ensemble learning. We note that subtypes here refer to the latent groups found by the model,

and phenotypes are clinically labeled outcomes from professionals in MIMIC-III.

Discovering subtypes through visualization For mortality prediction, we compare the subtype

discovery using 4 patient representations, i.e. 1) raw patient features, 2) single LSTM expert’s last

layer of hidden state representation, 3) fully activated expert group assignment, where the gating
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Figure 3.7: Kernel density estimation of
acute/chronic/mixed phenotype patients from
baseline. Reprinted/adapted with permission from [3].

Figure 3.8: Kernel density estimation of
acute/chronic/mixed phenotype patients from
Sparse MoE. Reprinted/adapted with permission from [3].

network does not impose sparsity, and 4) lastly our sparse MoE assignments. We use fast-tSNE

(t-Stochastic Neighborhood Embedding) [142] for dimension reduction as it has been shown to

better capture the local and global structures of the data in the embedded space. We then use kernel

density estimation (KDE) to visualize the aforementioned representations and plot the distributions

of two groups of patients, i.e. survived and expired, shown in Figs. 3.3, 3.4, 3.5, 3.6. For raw

feature embedding in Fig. 3.3, the two groups are almost completely overlapping, and slightly

distinguishable in single expert’s embedding in Fig. 3.4. The multiple LSTM framework produces

few subtypes to some extent in Fig. 3.5. Compared to these results, the survived and expired

patient groups by our sparse MoE are clearly separated in Fig. 3.6 inside which it has further

separation of the expired patients (high risk) into finer grained types, allowing for the discovery of

new patient subtypes with different causes.

Bridging discovered subtypes with phenotypes Furthermore, in Fig. 3.6 we pick four most dis-

tinctly discovered subtypes by sparse MoE to study their potential clinical interpretation, bridging

the gap between discovered subtypes and clinical phenotypes. Note that we pick those 4 by visual

appearances. In future we aim to propose some standardized metrics to choose distinctive peaks.

We first extract the representative patients (the data points in the peaks) and cross-refer to the pa-

tient demographic statistics in MIMIC-III (note that our model does not have this information) and

compare to check whether there are clinical differences between those subtypes. The demographic
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Figure 3.9: MIMIC-III data for tuning expert number and k% together.
Reprinted/adapted with permission from [3].

information is shown in the upper part of Table 3.3. As can be seen, subtype 2 is a significantly

senior group, and subtype 3 is predominantly female patients. Moreover, we want to verify the

discovered subtypes’ clinical meaning. We then consolidate the phenotype information from each

patient and compute the statistics within discovered subtypes, which is shown in the lower part

of Table 3.3 (again the phenotype labels are agnostic to the model). We choose a set of example

phenotypes that were recorded during the ICU stays. We calculate the percentages of the phe-

notypes in each discovered subtype of patients (with 95% confidence interval) and highlight the

significantly higher percentage.

As can be seen, subtype 1 has a higher percentage of acute myocardial infarction, disorders

of lipid metabolism and gastrointestinal hemorrhage than others. Subtype 2 has multiple higher

percentage of phenotypes, indicating a more clinically risk group, which is justified by the older

age. Subtype 3 generally has a higher percentage of respiratory related diseases (pneumonia,

pleurisy, etc.). Subtype 4 (survived after ICU) is not highly associated with any of them. Therefore,

the discovered subtypes can guide the clinical procedures and studies can be adopted accordingly
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to inspire new patient stratification routines.

Visualization in phenotyping task In the larger-scale heterogeneous task, i.e. phenotyping, we

also derived the patient latent representation from our model and one of the baselines (channel-

wise LSTM) to see if the ‘divide-and-conquer’ result is evident. We coarsely label each phenotype

according to the acuity type listed in Table 3.2, i.e. acute, chronic and mixed. Shown in Figs. 3.7,

3.8, the phenotyping task is giving trouble to the model since it is more complicated than binary

classification but Sparse MoE still seeks to find finer grained subtypes (more local peaks) among

the patients whereas the baseline is more obtuse (peaks are lumped).

Figure 3.10: Expert activation by gating network. Reprinted/adapted with permission from [3].

Visualization of patient representations by expert assignment vector Here we show the usage

of the expert assignment from the gating network for patient representation. The representation

is a vector of probabilities of which one patient’s data going through a specific expert network.

Ideally, different patients with different medical conditions would have a unique set of experts to

be activated. We have calculated the average activated probabilities on the 50 experts we choose

from all the patient cohort as the baseline (50 is the number of total experts in our best experimen-

tal setting). We then extract three patients’ expert assignment from the sparse gating network and
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subtract the average from them to demonstrate their excursion from the mean. Note that this repre-

sentation is from mortality prediction model. The reason we choose these three patients is because

they have similar risk scores (the last layer prediction, 1 being expired, and 0 being survived) but

different assigned phenotypes (we look for their corresponding phenotype labels in MIMIC-III,

since the mortality model does not know the phenotypes, we use it for proving that the model itself

is subtyping patients). The first patient has risk score 0.67, and the phenotypes assigned are: 1)

Cardiac dysrhythmias 2) Diabetes mellitus without complication 3) Essential hypertension. The

second patient has risk score 0.64 and phenotype label is Complications of surgical/medical care.

The third patient has risk score 0.7 and the assigned phenotypes are: 1) Acute and unspecified renal

failure 2) Chronic kidney disease 3) Congestive heart failure; nonhypertensive 4) Diabetes mellitus

without complication 5) Hypertension with complications 6) Pleurisy; pneumothorax; pulmonary

collapse. We can coarsely define the first patient’s issue is cardio related, second is from surgical

care, third one is mixed with multiple high risk factors. We have shown the expert assignment in

Fig. 3.10. As can be seen, the probabilities of each patient for activating an expert above average

are sparse (there is no ordinal order from x-axis, which is just experts’ indexes). Furthermore,

their corresponding activated experts are different as well. The cardio patient has clearly one ac-

tivated expert which stands out distinctively, whereas surgical patient and mixed patient each has

some distinctively activated experts, but each of them are different from each other. For proof-

of-concept, we want to know if the outstanding expert for cardio patient is mostly responsible for

similar phenotypes. The index of outstanding expert is 42, and we examine the phenotype labels

for all the patients going through this expert, as it turns out 100% of the cardio related phenotypes

went through this expert (all patients going through this expert have at least one cardio phenot-

pype, such as Coronary atherosclerosis and related, Congestive heart failure; nonhypertensive,

Essential hypertension, Cardiac dysrhythmias). So we can observe that the model intrinsically

trains cardio-related patients to a sparse set of experts, which means the model is innately pushing

similar patients to one expert without knowing their exact phenotype labels. So we have shown the

utility of using expert assignment to explain the subtypes as the footprint of each patient’s data in
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the network can be monitored better by this macroscopic style sparsity and thus provide a better

understanding than neuron wise explanation. This can be especially helpful in precision medicine

since the risk can be from different factors and only a score can not tell the whole story. While

professional clinicians’ opinion can be expensive and slow, the model generated subtypes can be of

great help in finding difference in patients and recommend personalized treatment. In the future,

we aim to study each expert’s expertise with knowledge from professional clinicians to further

shed light on this patient representation for practical usage.

3.1.3.5 Parameter analysis

Here we discuss the effect of sparsity tuning on the model performance, since it is the most im-

portant hyper-parameter in the model. We define k% as the percentage of the activated experts, i.e.

k/n, where n is the total number of experts and k is the number of experts to be activated in each

batch, shown in (3.5). We vary our MoE for different n and k% for the hyperparameter sensitivity

study based on the corresponding evaluation metric by conducting the mortality prediction task as

the performance measurement. We fit the distribution of the two variables into a kernel density

estimation plot where the height of the plot is indicated by AUC-ROC. We have tuned the number

of experts and the sparsity parameter simultaneously in a grid-search manner. The tuning shows

the model would likely have a global optimum of the sparsity parameter as shown in Fig. 3.9. The

trend shows that the number of experts should be large (∼100) but the activated experts in each

batch should remain low (0.1∼0.2). The plot validates that a network with large capacity should

carry the model sparsity so that the experts would work better at their corresponding specialty,

rather than a fully activated regime. This echos with the experiment results above that a simple

ensemble is not enough for a heterogeneous dataset as MIMIC-III, and a smart gating network is

necessary when properly tuned for sparsity in order to conduct risk assessing and prediction.

3.1.4 Conclusions

In this chapter, we have developed a sparse Mixture-of-Experts framework, a realization of

ensemble learning for heterogeneous patient data with interpretability for medical prediction. To
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make sure that each expert learns on a specialized, homogeneous subset of patients rather than

general information, we have introduced a mechanism realized by a sparse gating network. The

imposed sparsity pushes each expert to take part in a small portion of the overall heterogene-

ity. Therefore, the whole expert group can represent a large space of knowledge that may not

have been achieved by existing methods. We have evaluated our method on the real-world clin-

ical dataset with two tasks. The numerical results have shown that an ensemble is desirable for

a heterogeneous dataset and have further improved with model sparsity. In addition, our visual-

izations have demonstrated better discovery of subtypes within the supervised learning manner

as in the sparse gating network than other representations such as raw features. The discovered

subtypes have been interpreted through clinical phenotype distributions, which indicate that the

model intrinsically explores and distinguishes patients with different risk factors. This patient

representation from sparse learning can shed light on more interpretable patient subtyping from

a macroscopic point of view, whereas most of the existing work has not properly addressed the

issue. For future work, we will continue the in-depth study of discovered patient subtypes and

further explore the inner mechanism of patient stratification in the model. To use this framework

in real medical settings for phenotype discovery, we need to show that meaningful patient groups

can provide clinical practitioners actionable treatment decisions.

3.1.5 Supplementary Material

3.1.5.1 Consistency of the convergence of F and Q functions

In the paper we have used the following F function as a surrogate for the Q function in the

E-step of the expectation-maximization (EM) algorithm that was introduced by [137]:

F (P̃ (Z),Θ) = EP̃ (Z)[Lc(Θ;D)] +H(P̃ (Z)). (3.9)

As stated in the paper, H(P̃ (Z)) = −EP̃ (Z)[logP̃ (Z)], which is the entropy of P̃ (Z). In [137], the

F function is deemed as ‘variational free energy’ in statistical physics. Optimizing the F function

then can be understood as maximizing the model evidence Lc(Θ;D) or minimizing the surprise

63



−logP̃ (Z). In [137], they demonstrated that the convergence achieved by P̃ ∗(Z) and Θ∗ (that

locally maximizes the F function) is transformable to the convergence for Θ∗ for the Q function.

Therefore the original EM algorithm was then transformed into the form as follows:

E-step: Q(Θ,Θ(t)) = EP̃ (Z)[Lc(Θ,D)|Θ(t)]

M-step: Θ = argmax
Θ(t)

Q(Θ,Θ(t))

⇒
E-step: P̃ (t) = argmax

P̃

F (P̃ ,Θ(t−1))

M-step: Θ(t) = argmax
Θ

F (P̃ (t),Θ).

(3.10)

Different from the original EM on the left, the empirical probability instead will be calculated

P̃ (Z) that maximizes the F function in each E-step and use the probability as the posterior in M-

step to update parameters Θ (which is independent of the entropy term). Note that each iteration

above is a GEM step (generalized EM) that makes sure that F increases or at least stays the same

from one iteration t − 1 to the next t, rather than a full log-likelihood maximization. Having the

assumption that the local optimum of the F function is transformable to Q function, we can use

the GEM for our training regime.

3.1.5.2 Assumptions for our sparsely updating EM algorithm

In literature [137, 143], the independence is assumed, i.e. Z can be factored as (z1, ..., zn). We

can see each component in Z can be considered as a latent variable with a learnable probability

of an expert generating a data point (for generative Gaussian expert) or an expert being trained on

an instance (neural network expert), so the process of updating one would not interfere another in

the network. In addition, observational data {xi,yi}ni=1 usually are deemed as i.i.d. by default.

So the P̃ (Z) would be able to factor as P̃ (Z) =
∏

i P̃i(zi), which can ultimately give us the form

F (P̃ ,Θ) =
∑

i Fi(P̃i,Θ). Following Eq. (3.3), we can have Fi(P̃i,Θ) = EP̃i
[Lc(Θ, {xi,yi})] +
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H(P̃i). In this case, F function can be updated with one data point at a time:

E-step: Select one zi ∈ S(t),

so that P̃ (t)
i (zi) = argmax

P̃i

Fi(P̃i,Θ
(t−1)).

Set the rest P̃ (t)
j = P̃

(t−1)
j where i ̸= j

M-step: Θ(t) = argmax
Θ

F (P̃ (t),Θ).

(3.11)

According to [137], the incremental version where P̃ (t) was updated by one data point instead of

all, has the same convergence as using all of them, albeit with different convergence rate. The

E-step is not a full expectation any more, rather it is an incremental estimation of the posterior.

So this justifies the method to train the EM sparsely. The selection set S(t) in Eq. (3.11) dictates

which posterior of zi is updated.

Table 3.4: Model architecture and hyperparameter comparison between the baselines and our
sparse MoE framework. Reprinted/adapted with permission from [3].

Model dimension # of layers dropout bidirectional time step (hour)
Standard LSTM[140] 512 2 0.3 Yes 1

Channel-wise LSTM[140] 128 2 0.3 Yes 1
Deep Supervision[116] 128 1 0 No 0.8

Sparse MoE (each expert) 32 2 0.3 Yes 1

3.1.5.3 Subtype discovery

In the paper we use sparse MoE expert assignments to represent each patient’s data and use t-

SNE (t-Stochastic Neighborhood Embedding) for dimension reduction into two-dimensional sub-

space for visualization. The subtype is then associated with a set of clinically defined phenotypes

for distribution analysis, in order to validate the distinct difference in our discovered subtypes. The

process is stochastic due to the following factors, such as random initialization of neural networks,
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Figure 3.11: Raw t-SNE embedding. Reprinted/adapted with permission from [3].

Figure 3.12: GMM clustering. Reprinted/adapted with permission from [3].

Figure 3.13: KDE of t-SNE. Reprinted/adapted with permission from [3].
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Figure 3.14: Raw t-SNE embedding. Reprinted/adapted with permission from [3].

Figure 3.15: GMM clustering. Reprinted/adapted with permission from [3].

Figure 3.16: KDE of t-SNE. Reprinted/adapted with permission from [3].
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Figure 3.17: Raw t-SNE embedding. Reprinted/adapted with permission from [3].

Figure 3.18: GMM clustering. Reprinted/adapted with permission from [3].

Figure 3.19: KDE of t-SNE. Reprinted/adapted with permission from [3].
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Figure 3.20: Raw t-SNE embedding. Reprinted/adapted with permission from [3].

Figure 3.21: GMM clustering. Reprinted/adapted with permission from [3].

Figure 3.22: KDE of t-SNE. Reprinted/adapted with permission from [3].

Figure 3.23: Examples of four randomized trials of our model to show the model with ability to
innately subtype. Reprinted/adapted with permission from [3].
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Figure 3.24: Phenotype embedding all 25 labels. Reprinted/adapted with permission from [3].

expert selection by gating network, neighbor selection in embedding. So the phenotype distribution

is calculated by bootstrapping (with replacement) on the test set, from which the 95% confidence

interval is calculated. Here we will study how stable the subtypes are in our model to have ablation

study. We have four trial results shown in Fig. 3.23 as three columns, of which is raw t-SNE

embeddding, Gaussian Mixture Model (GMM) clustering, and kernel density estimation (KDE)

plots, respectively. As can be seen, all trials have the same subtype structures (minor variations) as

shown in the paper, and the GMM clusters can also identify those groups of patients when given

the number of clusters. Therefore, we have validated the experiments with multiple trials that the

subtypes we have found are stable and clinically differentiable groups. As can be seen, although

there are minor variations among those trials, all of them demonstrate distinguishable subtypes

among the high-risk patients (expired) and the survived patients themselves can be captured as a

cluster in both GMM and KDE.

Furthermore, the phenotyping task has the embedding plot from t-SNE as well. However, due

to space limitation we cannot incorporate all the 25 labels in the paper. Therefore we include it
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Table 3.5: MIMIC-III patient statistics and time-series feature type from the database tables.
Reprinted/adapted with permission from [3].

before processing after processing
train test

46,476 patients 15,331 2,763 patients
57,786 hospital admissions 17,903 3,236 ICU stays

61,532 ICU stays 17,903 3,236 Total samples

Variable Mode Variable Mode
Capillary refill rate categorical Diastolic blood pressure continuous

Glascow coma scale eye opening categorical pH continuous
Glascow coma scale motor response categorical Heart Rate continuous
Glascow coma scale verbal response categorical Glucose continuous

Glascow coma scale total categorical Height continuous
Mean blood pressure continuous Oxygen saturation continuous

Respiratory rate continuous Systolic blood pressure continuous
Temperature continuous Weight continuous

Fraction inspired oxygen continuous

in Fig. 3.24. Note that the results here is done on only 48 hours worth of data, which makes the

prediction more challenging than the full length as in [140].

3.1.5.4 Model/architecture details

For our sparse MoE model in the MIMIC-dataset, we have hyperparemeters for each experts,

including the LSTM depth and width, as well as the hyperparameters for the whole architecture,

including the number of experts. The optimal hyperparameters of each expert are given in Table

3.4, compared against the baselines. The time step indicates how much space between two readings

for the 48 hours mortality prediction. Simply put, for one hour time interval, we have 48 readings.

If the time-step needs to be smaller than that, we perform interpolation for data enrichment. For

phenotyping, we specially note here that our experimental setting is constrained for the first 48

hours, as opposed to the full length in baseline [140]. Moreover, the best number of experts is 120

while the k% = 0.2, which means that for each batch of data, the number of activated experts is at
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most 24. We used the Adam optimizer to minimize the cross-entropy loss, with the learning rate =

1e-6 and epochs = 1000, and batch size = 32.

3.1.5.5 MIMIC-III data details

Here we provide the details of the MIMIC-III dataset [139], including raw time-series feature

types and the total patients and ICU stays statistics, as shown in Table 3.5. For processing stan-

dards, such as removing patients with less than 48 hours ICU stay, splitting data into training and

testing set, we followed the work in [140].

3.2 Density-Aware Personalized Training for Risk Prediction in Imbalanced Medical Data2

3.2.1 Introduction

3.2.1.1 Overview

Medical events of interest, such as mortality, often happen at a low rate in electronic medi-

cal records, as most admitted patients survive. Training models with this imbalance rate (class

density discrepancy) may lead to suboptimal prediction. Traditionally this problem is addressed

through ad-hoc methods such as resampling or reweighting but performance in many cases is still

limited. We propose a framework for training models for this imbalance issue: 1) we first de-

couple the feature extraction and classification process, adjusting training batches separately for

each component to mitigate bias caused by class density discrepancy; 2) we train the network with

both a density-aware loss and a learnable cost matrix for misclassifications. We demonstrate our

model’s improved performance in real-world medical datasets (TOPCAT and MIMIC-III) to show

improved AUC-ROC, AUC-PRC, Brier Skill Score compared with the baselines in the domain.

Machine learning-based medical risk prediction models continue to grow in popularity [115, 129,

144]. However, the performance of these models is often biased in evaluation by commonly re-

ported metrics (such as area under the curve of the receiver operating characteristic: AUC-ROC),

often reporting overly-optimistic findings as a result of the imbalance between those that observe

2Reprinted with permission from Huo, Z., Qian, X., Huang, S., Wang, Z. and Mortazavi, B.J., 2022. Density-
Aware Personalized Training for Risk Prediction in Imbalanced Medical Data. Machine Learning for Healthcare
Conference (MLHC). PMLR. Copyright 2022 by the authors.
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medical adverse events and those that do not [145, 146, 147, 148]. The adverse event of interest

is often in the minority class [149]. For example, in mortality prediction, patients with higher risk

represent a smaller fraction in the cohort compared to most of the people who survive. Naively

applying machine learning models may render dissatisfaction: the outcome of interest can be ex-

tremely costly, either through unnecessary medical intervention (type 1 error) or misdiagnosis (type

2 error). Furthermore, it is important not only to rank expired patients higher than survived patients

w.r.t. probability output (e.g. AUC-ROC), but also the probability output is more calibrated [150].

While methods to tackle this imbalance issue via resampling or reweighting methods constitute

a popular approach [151, 152], their applications in the context of medical data are often heuristic

(or case by case) in nature. First, these techniques may give readjusted importance to the smaller

class, but the weighting ratio remains ad-hoc from dataset to dataset, therefore, manual tuning

might not be ideal. Second, apart from inter-class density discrepancy, one unique aspect of medi-

cal data is that even in the same risk group (same label), the patients may have different underlying

comorbidities or risk factor characteristics that arrive at potentially high risk for various reasons,

rendering intra-class heterogeneity [5]. This heterogeneity requires models to have a personalized

training regime to distinguish the nuanced differences [3], to address the imbalance in a standard-

ized/automated fashion. Rather than treating imbalanced densities as a problem, exploiting this

information in training may enhance performance [153].

We propose a framework to address class imbalance density and make use of this imbalance

to render density-aware training for improved risk prediction performance. First, we decouple the

training of representation learning and classification. Traditionally, representation learning and

classification are trained jointly [154], but by decoupling, class-specific features are extracted and

class-specific predictions made, removing a source of bias for the learned classifier [155]. Second,

the density differences are important to learn, not eliminate, when modeling. Patients with lower

risk (majority) are often lower risk because they do not contain any of the common risk factors

(e.g. lack of hypertension, diabetes, prior myocardial infarction), and hence, form a dense cluster.

However, patients with higher risk (minority) may arrive at this high risk from different factors
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(e.g. renal failure versus respiratory distress), thus being scattered in the data space [3]. Our

approach is density-aware, by avoiding re-sampling or re-weighing pre-processing steps, and the

decoupling approach improves risk prediction performance. We demonstrate this approach in two

different medical data scenarios: a randomized clinical trial dataset and an electronic health record

(observational) dataset. We show that our method can achieve high predictive performance in these

imbalanced medical datasets (imbalance ratio can range from 7 ∼ 10) and perhaps surprisingly it

can also achieve superior calibration than the baselines without an extra set of calibration data.

Generalizable Insights about Machine Learning in the Context of Healthcare

As sophisticated models for increasingly large medical datasets are developed and promoted, eval-

uation of the predicted outcomes, through the use of an appropriate set of metrics is necessary.

Medical data often contains low event rates for the major adverse events of interest. The primary

measures of their performance, either threshold specific-based classification techniques, which

may not properly account for the different costs of Type I and Type II errors, or the ability of the

model to discriminate those at risk and those not, through the AUC-ROC, become overconfident

in telling clinicians using the model who is not at risk. By leveraging the imbalance in the classes

modeled, we are able to more accurately estimate those at risk, by more accurately identifying

driving risk factors in the groups independently. As a result, this allows us to more concretely

evaluate why they individuals are at risk (rather than simply being not at low-risk), and provide for

better model calibration for medical decision making - through probabilistic interpretation of an

occurrence in a frequentist perspective.

3.2.1.2 Related Work

Supervised learning methods on imbalance dataset tasks often re-balance data via re-sampling,

such as oversampling [156], undersampling [157] classes. Others use synthetic samples to account

for imbalance, where new samples are generated from perturbations of old samples [158, 159].

Another common approach is via re-weighting, which re-assigns training weights for each class

based on criteria such as number of instances of each class [160], effective numbers [161] or the
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distance between loss [162]. However it is not clear the clinical utility of these methods since they

were developed in non-medical datasets.

Medical models often focus on risk of adverse event estimation, which intrinsically carries

data imbalance. Re-sampling has been widely applied [158, 163]. Cost-sensitive training is also

applied, for example on Intensive Care Unit (ICU) data [164]. Hybrid approaches, which combine

re-sampling and cost-sensitive training have also been applied [149]. These methods all are based

upon the ad hoc tuning, weighting, or re-sampling to address imbalance, but do not learn from the

imbalance information itself.

Furthermore, the imbalance issue in medical dataset not only affects the prediction, but also

calibration [150]. The currently used metrics in medical modeling are usually not geared towards

calibration and the metrics most widely used, such as AUC-ROC is susceptible to imbalance ra-

tio [148]. The modern-day neural networks have achieved astonishing accuracy but studies have

shown most methods are getting less and less calibrated [165]. Therefore we will demonstrate in

our model the calibration is an extra contribution on top of handling imbalance prediction

3.2.2 Methods

In this subsection, we introduce our framework. The approach first separates the training data

to different risk groups. Then, it uses a density-aware loss function to take into account the data

density difference between majority class and minority class. Finally, it uses a learnable cost

matrix to personalize misclassification. We stress that our framework is a training regime that can

apply to different backbones (e.g. different neural network architectures) and we will later show in

experiments this framework being used on real-world tabular as well as time-series medical data.

The overall pipeline is shown in Fig 4.1.

3.2.2.1 Decoupling training for imbalance classes

In neural networks, we can coarsely define the last layer (or last few layers) [155] as the output

classifier, since the output is used to determine the class of one specific instance. The previous lay-

ers of the network architecture can be deemed as the feature extractors or backbone. Traditionally
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Figure 3.25: Overall pipeline. The original medical dataset is sampled with two distributions, one
balanced and one imbalanced (default) batch. Both of the batches will go through the backbone
but the classifiers will utilize different batches to optimize the density-aware loss, rendering per-
sonalized decision boundaries for different classes. Reprinted/adapted with permission from [4].

these two parts are trained jointly and the distinctions between them are ill-defined [154]. How-

ever, [155] showed that the classifier portion of the network is more susceptible to data imbalance,

whereas the feature extractor is not, during training. Thus, we decouple training of the feature

extractor and classifier.

Formally, let I = {Ii} be a set of inputs, and Y = {yi} be the set of corresponding labels. For

a typical objective function, we write:

L =
1

N

|C|∑
c=1

|Nc|∑
i=1

l(h(Ici), yci), (3.12)

where l(·) is the loss function and h(·) is our model. |C| signifies the number of total classes and

|Nc| the number of instances in one specific class. In an imbalance setting, the larger class with

more training instances |Nc| will dominate the loss and thus make the model biased. A naive way to

tackle this issue is to adjust the sampling rate for the smaller class. For example, a class-balanced

sampling (CBS) is proposed [166], where the instances from each class are sampled with equal

probability so that the big class would not dominate the loss calculation and hence the density

discrepancy will have much less effect. However, the CBS strategy will likely induce the ill-fitting

problem because either the big class is under-sampled, inducing loss of information or small class

is over-sampled, inducing over-fitting [167]. We propose that for a well-trained neural network,
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a set of abundant and diverse training instances is required, so that the model can generalize well

in the testing set. A method is required to make use of the rich information in the big class but to

ensure the smaller class is well represented as well.

Inspired by [168], we are proposing a solution to use both class-balanced sampling and regular

random sampling, where the first would sample each instance to make sure each class has equal

probability and the latter one samples each instance with equal probability. The function can be

defined:

pj =
nqj∑|C|
c=1 n

q
c

, (3.13)

where pj indicates the probability of sampling a data point from class j and the range for q ∈ [0, 1]

and |C| is the number of classes. The regular random sampling entails the q = 1, meaning the

probability will be proportional to the cardinality of the class j. The class-balanced sampling

would entail q = 0 which means pj = 1/|C|, and therefore each class is balanced. These two

sampling strategies will generate two sets of batches, with each class’s density built in, and we will

train the feature extractor with both batches while the classifier will only train on the corresponding

batch. In this way the rich information of big class will be preserved and at the same time the

balanced classifier, which is eventually used for prediction during inference, will not be biased

towards one class.

3.2.2.2 Density-aware outlier detection loss

To further make use of the inherent density information among the classes, we will introduce

the density-aware training. There have been many cost-sensitive methods proposed to address the

imbalance issue. One of the most popular ones is the focal loss [169]. This method focuses on the

‘difficult’ examples, which means the predicted probability of the example is far away from the

true label. Based on previous discussion, we can treat the low risk patient as in-distribution data

and high risk patients (with different underlying factors) as out-of-distribution data, and use the

outlier detection technique to optimize the boundary [1].

By following this direction we propose a hinge loss based objective function. Hinge loss itself
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is less susceptible to density discrepancy among classes because it aims to optimize around support

vectors, thus focusing the ‘difficult’ examples which are close to the decision boundary. However

the traditional ‘max-margin’ training using the hinge loss did not take into account the class-wise

density, which renders a non-personalized training. Our proposed personalized training is through

a density-aware margin optimization [162]. This Density-Aware Hinge (DAH) loss can be written

as follows:

LDAH =
1

N

|C|∑
c

max(max
j ̸=c

{zj} − zc +∆c, 0)

where ∆c =
K

|Nc|1/4
, for c ∈ {1, ..., |C|},

(3.14)

where LDAH is the density-aware hinge loss, zj is the model j-th element in the output vector,

indicating the probability of this instance predicted to be j-th class, and zc is the predicted output

probability of the true class c. The form follows the traditional hinge loss, except the density-aware

component ∆c. The parameter K is a hyper-parameter, and |Nc| is number of examples in class c.

In [162], the exponential in |Nc|1/4 is derived by the trade-off of optimizing all the margins between

classes, so that the imbalanced test error can be smaller than a generalization error bound [170].

That is, γj ∝ |Nc|1/4, where γc is the margin in the hyper-plane for class c. Therefore we follow

this tuning. The hyper-parameter K is usually tuned by normalizing the last hidden activation and

last fully-connected layer’s weight vectors’ ℓ2 norm to 1, as noted in [171].

In practice, the hinge loss may pose difficulty for optimization due to its non-smoothness [172].

First we derive the softmax from the original form and thus a relaxed form of hinge loss for smooth-

ness is adopted to simulate the cross-entropy form:

LDAH =
1

N

|C|∑
c

− log σ(zc),

where σ(zc) =
exp(zc −∆c)

exp(zc −∆c) +
∑

j ̸=c exp(zj)
, and ∆c =

K
|Nc|1/4

, for c ∈ {1, ..., |C|}
(3.15)

The ‘max-margin’ form is relaxed to a softmax function in the cross-entropy-like optimization.

While some previous work [171, 173] adopted similar ideas, our proposed personalized margin ∆c
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Table 3.6: A typical cost matrix where the diagonal has zero cost, and CFN , CFP represents false
negative cost and false positive cost, respectively. Reprinted/adapted with permission from [4].

Cost Matrix Predicted as Positive Predicted as Negative
True Positive 0 CFN
True Negative CFP 0

can make use of the information in density discrepancy itself for training.

3.2.2.3 Trainable cost matrix

For personalized training, we propose to equip the density-aware loss with a trainable cost

matrix. Traditionally the cost of training has been set static throughout the whole training process

(e.g. false positive cost and false negative cost in binary classification). The default cost matrix can

be seen as table 3.6, where the CFN , CFP were traditionally set to 1 (Note that the cost matrix here

can only be applied to binary prediction). However this implies that the two types of cost are equal

throughout the whole training [174]. But as we discussed before, the big class and small class

would make the model more biased towards one versus the other due to the density disparity. But

we want to use some mechanism to rebalance the training so that the model would be less biased.

Thus instead of treating the costs as a prior knowledge, we make them as trainable parameters

along with the model as well [175, page. 66]. In this way, the model will dynamically learn the

cost to minimize the loss function. For an input and target pair (x, y), where the output of the

model is z = h(x), the loss function with incorporation of two costs under binary classification is

proposed:

L((x, y);h(·)) =− y log σ(CFNzmax)− (1− y) log(1− σ(CFP zmax))

subject to CFN > 0, CFP > 0, CFN > θCFP

(3.16)

The zmax indicates the largest logit along the output vector. The constraints above ensure that the

two types of misclassification cost will always be positive [174] and due to the minority class is the

prediction of interest (such as higher risk patients), we penalize more in the event of false negatives
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Table 3.7: Summary of the datasets and the tasks. Reprinted/adapted with permission from [4].

Dataset task #instances #features IR

TOPCAT
Mortality

1,767 86
7.92

hospitalization 1.71

MIMIC-III
Mortality

21,139 34
7.57

Phenotyping 10.32

verse false positives. Here, θ can be tuned as a hyper-parameter.

In practice, when applying stochastic gradient descent (SGD), the parameters can only be up-

dated without constraints. Here we relax the constrained problem as an unconstrained one, we thus

rewrite:

CFN = θCFP +D, (3.17)

where D is a regularization term. Therefore we will only need to make sure CFP > 0 during

training. We propose to minimize the objective loss function in terms of logCFP instead of CFP :

∂L((x, y);h(·))
∂ logCFP

= CFP
∂L((x, y);h(·))

∂CFP
, (3.18)

where the loss function can take the form as we defined above for density-aware training. Note

that there are generally two ways to handle the constraints for optimization: reparameterization

to an unconstrained minimization problem or projected gradient (PG) [176]. PG is to perform

unconstrained gradient updates, then project back onto the feasible space after each update. PG

directly solves the convex optimization problem, but the intermediate iterates can sometimes lead

to a possibly less stable or too aggressive trajectory [177]. Ours is similar to reparameterization

where numerical stability is more warranted in this regard.

3.2.3 Experiments

3.2.3.1 Datasets

In our experiment, we test our proposed model on two real-world medical datasets which in-

clude inherent imbalance issues and heterogeneous patients representations.
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1) The first dataset is TOPCAT (Treatment of Preserved Cardiac Function Heart Failure with

an Aldosterone Antagonist). TOPCAT is a multi-center, international, randomized, double-blind,

placebo controlled trial sponsored by the U.S. National Heart, Lung, and Blood Institute [178].

TOPCAT collects patients from the United States, Canada, Brazil, Argentina, Russia, and Georgia

between 2006 and 2013. The outcomes of interest were all-cause mortality and heart failure hospi-

talization through 3 years of follow-up. The data includes demographic and clinical data available

from patients in addition to laboratory data, electrocardiography data, Kansas City Cardiomyopa-

thy Questionnaire (KCCQ) scores (physical limitation score, symptom stability score, symptom

frequency score, symptom burden score, total symptom score, self-efficacy score, quality of life

score, social limitation score, overall summary score, and clinical summary score). The details of

the variables are listed in supplementary Table A.1.

2) The second dataset is MIMIC-III (Medical Information Mart for Intensive Care). MIMIC-

III is one of the largest clinical datasets that has been made publicly available [139]. It contains

multivariate time-series data from over 40,000 intensive care unit (ICU) stays. The types of data

range from static demographics such as gender and age to rapidly changing measurements such

as heart rate and arterial blood pressure. The heterogeneity is one of the major challenges when

analyzing this dataset, due to the diverse patient health conditions, rapidly changing hazard ratio

as well as the corresponding treatments. We focus on using only the first 48 hours after ICU

admission for the prediction of patient mortality and phenotyping. The intuition is that for early

risk prognosis and phenotyping, the precaution procedure can be undertaken since the average ICU

stay can be up to 100 to 200 hours [139]. We adopted the same data pre-processing steps as in a

set of benchmark models in MIMIC-III [179](i.e. imputation, normalization, data masking, etc),

where we used the same 17 clinical measurements and their derivations to construct in total 34

time-series features.

A summary of the datasets with the imbalance ratio (IR) is shown in Table 3.7. We test our

model on three binary classifications (2 from TOPCAT, 1 from MIMIC-III) tasks and a multi-class

classification task (MIMIC-III) to demonstrate our model can work under a variety of scenarios.
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Note that only the phenotyping task in MIMIC-III is a multi-class multi-label scenario, so the im-

balance ratio is calculated between the largest class and smallest class. The listing of phenotype

labels used is in supplementary Table A.2, along with their medical type to indicate this is a het-

erogeneous set of labels that have many underlying driving factors. The model is not trained on

a learnable cost matrix for phenotyping since the false positive and false negative is for binary

classification, therefore, we solely rely on decoupling training and density aware loss.

3.2.3.2 Experimental Setup

For each of the datasets and tasks, we selected strong baselines from existing benchmarks.

1) Baselines for TOPCAT:

• RF [180]: a Random Forest based method which is originally tested on TOPCAT dataset

• U-RF [181]: a balanced Random Forest that randomly under-samples each boostrap sample

to balance training

• R-MLP [152]: a Multi-layer Perceptron (MLP) model that uses reweighting in the training

For all the baseline with resampling or reweighting, we train the network on 80% of the data and

tune the hyper-parameters including the weighting ratio in 10% of the data, and test on the rest

10%. For our model to have a strong neural work backbone, we construct a multi-layer Perceptron

model as our backbone. The construction of the backbone is similar to R-MLP [152], training the

neural network with 200 epochs, with learning as 0.001 and batch size as 64. More specifically

this is a 4-layer fully connected NN, the first input layer is the same as number of features and

each hidden layer has 28 neurons with one residual skip connection block and output layer has 2

neuron which is later measured on cross-entropy loss. We have our model train with our proposed

decoupling and density aware loss, whereas R-MLP has under-sampling as their technique with

some stochastic measures.

2) Baselines for MIMIC-III:

• GRU-D [182]: a Gated Recurrent Unit (GRU) based method where the model has a trainable

decay component
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• bi-LSTM [179]: a bi-directional Long Short-term Memory (LSTM) based method with

channel-wise feature fusion

• flexEHR [183]: a GRU based method that uses word embedding technique to extract fea-

tures.

• GRU-U [151]: a GRU based method that utilizes both trainable decay and undersampling

technique for imbalance handling

• c-LSTM [179]: a channel-wise LSTM that process each variable independently in the first

layer then fuse them in the second layer

• Deep Supervision [116]: an RNN based model that uses target replication for the supervision

of LSTM in each time stamp, and with changing loss function the model needed to predict

replicated target variables along with outcome

For the MIMIC-III dataset, we follow the same 80/10/10 splits. And we construct our backbone

same as flexEHR [183] which is a GRU based method. We trained the models with 50 epochs with

an early stopping threshold of 5 epochs with no increase in AUC-ROC on the validation set. The

batch size is 128 and Adam optimizer is used with learning rate 0.001.

In addition to the traditional way of measuring probabilistic output of the medical models, i.e.

area under the receiver operating curve (AUC-ROC), we argue that we need to incorporate the

metrics that can represent the difficulties induced by imbalanced class densities. First AUC-ROC

only measures the true positives (TP) and false positive (FP) relationship, which can present an

overly optimistic view of an algorithm’s performance if there is large skew in the class distribution

[184]. On the other hand, area under precision-recall curve (AUC-PRC) can provide a more reliable

interpretation under imbalance, due to the fact that they evaluate the fraction of true positives

among positive predictions [185], and the precision-recall relationship will change when the test

set’s imbalance ratio changes, thus providing more sensitive evaluation [184]. Furthermore, in a

medical model, the conventional way of measuring the model is through Brier score [186], which

takes into consideration the calibration of the model. However, the Brier score is also susceptible to

imbalance ratio [175]. We propose to use Brier Skill Score (BSS) [175], where the model takes the
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Table 3.8: Results for TOPCAT dataset. Reprinted/adapted with permission from [4].

Task Methods AUC-ROC AUC-PRC BSS

Mortality

RF [180] 0.723 ± 0.003 0.512 ± 0.001 -0.357 ± 0.002
U-RF [181] 0.752 ± 0.002 0.532 ± 0.002 -0.103 ± 0.003
R-MLP [152] 0.736 ± 0.001 0.523 ± 0.005 -0.067 ± 0.003
Ours 0.794 ± 0.002 0.583 ± 0.002 0.166 ± 0.003

Hospitalization

RF [180] 0.763 ± 0.005 0.657 ± 0.006 -0.008 ± 0.0004
U-RF [181] 0.771 ± 0.005 0.674 ± 0.006 -0.005 ± 0.003
R-MLP [152] 0.789 ± 0.003 0.661 ± 0.005 -0.012 ± 0.001
Ours 0.788 ± 0.007 0.711 ± 0.003 0.132 ± 0.002

Table 3.9: Results for MIMIC-III dataset. Reprinted/adapted with permission from [4].

Task Methods AUC-ROC AUC-PRC BSS

Mortality

GRU-D [182] 0.852 ± 0.002 - -
bi-LSTM [179] 0.862 ± 0.004 0.515 ± 0.001 -0.801 ± 0.002
flexEHR [183] 0.878 ± 0.004 0.513 ± 0.002 -1.105 ± 0.003
GRU-U [151] 0.876 ± 0.006 0.532 ± 0.002 -
Ours 0.892 ± 0.001 0.586± 0.004 0.240 ± 0.003

Task Methods Macro AUC-ROC Micro AUC-ROC

Phenotyping
c-LSTM [179] 0.708 ± 0.0023 0.725 ± 0.0053
bi-LSTM [179] 0.770 ± 0.0081 0.791 ± 0.0048

(Multi-class, flexEHR [183] 0.755 ± 0.0052 0.814 ± 0.0071
Multi-label) Deep Supervision [116] 0.679 ± 0.0074 0.713 ± 0.0061

Ours 0.771 ± 0.0061 0.821 ± 0.0049

calculated Brier score and compare it to a reference point, i.e. a scaled Brier score by its maximum

score under a non-informative model [187], to show the improvement:

BSS = 1− BS

BSmax
(3.19)

We chose the reference BSmax to the the prevalence predictor to output the probability based on

the imbalance ratio, i.e. BSmax =
1
N

∑N
t=1(ft − ot)

2 and prediction ft is replaced by the event rate

and ot is the outcome label of interest [188].
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Figure 3.26: AUC-ROC comparison. Reprinted/adapted with permission from [4].
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Figure 3.27: AUC-PRC comparison. Reprinted/adapted with permission from [4].

3.2.3.3 Results

First, for the TOPCAT dataset in Table 3.8, we have compared our model with the baselines and

we repeated the experiments in a 5-fold cross-validation scenario and compute the 95% confidence

intervals. In the mortality prediction task, we are performing better on three metrics, especially

in the imbalance oriented metric, AUC-PRC and BSS. The margin improved on AUC-PRC is

obvious, showing the model is sensitive on finding a balance between precision and recall, both of
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which measure the performance of the class of interest (minority class where the patients eventually

expired). Furthermore, the baselines model all have negative BSS scores, showing that in this

mortality prediction scenario, the imbalance can pose a big challenge for a model to calibrate. In

fact negative BSS is not uncommon in existing work [189, 190], showing that many modern-day

models can have high predictive power but are poor at calibration, as noted in [165]. We will later

show that by comparing against with some post hoc calibration technique on the baselines, our

model can still stand out on both prediction and calibration. Next for hospitalization prediction,

our model also outperforms the baselines in two of the key metrics. The AUC-ROC is second to

the best, after the same model backbone trained on resampling. We suspect this is due to the fact

that the IR score is lower in this task, rendering less focus on difficulty induced by imbalance and

resampling is designed to handle the example-wise difficulty. However as we discussed before,

the AUC-ROC is not sensitive to class distribution so the majority class’s performance can lead

to the model having an overly optimistic evaluation. We compared the AUC-ROC plot and AUC-

PRC plot of our model and the R-MLP baseline in Figure 3.26 and 3.27. As can be seen, the

AUC-ROC plots of the two models are similar, however, the AUC-PRC plot shows on the upper

region of the curve the baseline is performing rather unstably but our model gives a more smooth

curve. In [185], this region is defined as early retrieval region, where is usually used to measure

in information retrieval application for when results of interest account for a small portion of all

the corpus [191, 192] (what is the model precision when recall rate is low). We can conclude our

model has better performance on AUC-PRC is due to the better part on early retrieval where it can

better handle the imbalance for the class of interest.

For the MIMIC-III dataset in Table 3.9, we also compared our model with the baselines (Note

some metrics are empty due to the original model did not report those metrics and there is no

publicly available code to replicate the results). First, for mortality prediction, our model is again

better across the board among all the three metrics, especially on BSS evaluation on the model.

It is perhaps surprising that traditional medical models were rarely optimized w.r.t. calibration,

which however is an important metric for medicine [193]. For the phenotyping task, due to multi-
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Table 3.10: Calibration study for TOPCAT dataset. Reprinted/adapted with permission from [4].

Methods AUC-ROC AUC-PRC BSS
RF [180] 0.723 ± 0.003 0.512 ± 0.001 -0.357 ± 0.002

w/ Califorest [150] 0.734 ± 0.003 0.498 ± 0.001 -0.052 ± 0.002
R-MLP [152] 0.736 ± 0.001 0.523 ± 0.005 -0.067 ± 0.003
w/ Temperature scaling [165] 0.744 ± 0.003 0.518 ± 0.001 0.102 ± 0.002
Ours 0.794 ± 0.002 0.583 ± 0.002 0.166 ± 0.003

class, multi-label scenario, the previously existing methods did not adopt AUC-PRC (precision,

recall are used mostly in binary classification) or BSS (Brier score is used in a 1-0 probabilistic

output model for calibration purposes.) So we instead use macro AUC-ROC and micro AUC-ROC

for model performance comparison. From the table, we can see our model is better than all the

baselines on these two metrics, showing the multi-class multi-label imbalance scenario can also be

handled by our framework.

In [165], the authors argued the confidence calibration, being the problem of predicting prob-

ability estimates representative of the true correctness likelihood, is important for classification

models in many applications, but modern neural networks are becoming increasingly lacking in

this respect. They proposed a temperature scaling method to calibrate the model which is a variant

of Platt scaling [194]. The method is to use sigmoid function as the transformation for model’s

output into proper posterior probability. Our method of distribution-aware loss resembles the tem-

perature scaling in that we have a component in the softmax to ‘soften’ the probability similarly

to the temperature variable. Furthermore the component is label distribution aware, making it par-

ticularly suitable for calibration in an imbalanced setting. We aim to compare against this method.

Furthermore, the tree-based methods all performed badly especially in terms of calibration. We

will use a calibration specifically designed for tree models, i.e. Califorest [150], where the authors

used Out-of-Bag (OOB) samples as the calibration set and each individual prediction is used to

calculate the weights for the samples. We will use these two methods as the post hoc calibra-

tion method (i.e. the model is calibrated after finished training, this will theoretically give them

more advantage since our model does not use any post hoc calibration) for the tree-based model
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and neural networks to study if the BSS metric for them can be increased to positive. We did

our experiment on TOPCAT dataset and the task is hospital mortality prediction. The results are

shown in Table 3.10. As we can see we have equipped the tree model, i.e. Random Forest, the

Califorest and R-MLP the Temperature scaling to calibrate after the training, which renders im-

provement on BSS for both of the cases. The RF has not been able to push BSS to positive but

the improvement is more substantial. The temperature scaling has pushed the neural network to

have postive BSS, meaning the calibration is better than a model that outputs the prevalence of the

events. However we should note that both of the post hoc calibration techniques have lowered the

AUC-PRC, meaning the predictive power is compromised for the calibration. In our model we can

observe high predictive power as well as calibration. We postulate that the decoupling training in-

deed separates the bias from imbalanced data to the classifier while the feature extractor maintains

the power of absorbing all information. The label distribution-aware loss, acting similarly to the

Temperature scaling (where the scaling factor is inherently tuned during training with our modified

softmax formulation), is calibrating the balanced classifier without sacrifice of predictive power.

To this end, without using the extra calibration dataset is not an issue anymore. We have tried to

test the Temperature scaling on our model but we did not observe improvement on calibration but

the AUC-ROC and AUC-PRC are slightly compromised as well.

Furthermore, as a proof-of-concept, we are particularly interested if our assumption holds, i.e.

the patients who survived would be similar to each other where the patients who expire would be

more dissimilar. We have extracted the embedded vector from our model whose backbone is based

on [183], carrying 256-dimension last hidden layer (before classifier) on the mortality prediction

task in MIMIC-III. And then we apply t-SNE [142] which is a visualization algorithm to embed

the data into 2 dimensions. We plot the embedding along with their labels to show the density

differences, shown in Figure 3.28. As we can see, the survived patients account for a small and

condensed space where the patients who expired would form different peaks, indicating different

local clusters (e.g. diseases/phenotypes). This can prove the assumption of the density discrepancy

as training information can be truly captured.
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Figure 3.28: Density plot of survived/expired patients. Reprinted/adapted with permission from [4].

Table 3.11: Ablation study for TOPCAT dataset. Reprinted/adapted with permission from [4].

Task Methods AUC-ROC AUC-PRC BSS

Mortality

MLP 0.736 ± 0.004 0.523 ± 0.002 -0.067 ± 0.001
MLP-TrainableCost 0.770 ± 0.003 0.541 ± 0.002 -0.188 ± 0.001
MLP-decoupling 0.778 ± 0.002 0.569 ± 0.005 -0.480 ± 0.004
MLP-FL 0.782 ± 0.004 0.541 ± 0.003 -0.080 ± 0.004
MLP-DAH 0.779 ± 0.001 0.549 ± 0.005 0.111 ± 0.004
MLP-Ours 0.798 ± 0.002 0.589 ± 0.001 0.178 ± 0.002

3.2.3.4 Ablation Study

We have a few components in our model such as decoupling training and density aware loss

function. We are interested to know what makes the model improve and how can we dissect

the model to demonstrate. We aim to study how does the decoupling help the prediction, and

specifically what has the model learned. Also by comparing density aware loss with vanilla version

(traditional cross-entropy loss) as well as another advanced version of loss function (focal loss
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Table 3.12: Ablation study for MIMIC-III dataset. Reprinted/adapted with permission from [4].

Task Methods AUC-ROC AUC-PRC BSS

Mortality

GRU 0.871 ± 0.004 0.514 ± 0.003 -1.116 ± 0.005
GRU-TrainableCost 0.879 ± 0.001 0.520 ± 0.002 -1.108 ± 0.005
GRU-decoupling 0.892 ± 0.003 0.577 ± 0.002 -0.909 ± 0.002
GRU-FL 0.875 ± 0.008 0.523± 0.007 -0.112 ± 0.007
GRU-DAH 0.876 ± 0.003 0.534 ± 0.005 0.078 ± 0.003
GRU-Ours 0.892± 0.001 0.586± 0.004 0.240± 0.004

[169]), we conduct a thorough comparison between them. In MIMIC, we have an existing strong

backbone that we can apply our techniques on [183], which is based on a GRU model. In the

TOPCAT dataset, to construct a strong backbone, we make use of the same MLP architecture as in

R-MLP [152] with a residual skip connection block [109] that can be further decoupled or trained

with different loss functions. We listed our ablation study in Table 3.11 and 3.12 in these two

datasets both for mortality prediction.
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Figure 3.29: Calibration plot comparison. Reprinted/adapted with permission from [4].

First, for the TOPCAT dataset, we can see that when fully applying our framework on the

backbone, the model would outperform all other variants in Table 3.11. Another finding is that
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the decoupling training is improving the AUC-PRC in a larger margin than others, suggesting that

this way of training can largely avoid the imbalance issue by through a more distribution-aware

metric. However the shortcoming of decoupling alone is that it is bad at calibration, where it is

among the worst BSS metric in the methods. Second, when applying density aware loss alone, we

can see the model can be better calibrated (i.e. positive BSS), which is usually an important aspect

of a medical model [180] because the output probability can be evaluated as the risk score for

further ranking. For the MIMIC-III dataset in Table 3.12, we can see that the decoupling itself can

improve significantly and this method alone can give good AUC-ROC (tied as best). We are then

interested to know how does this single trick compare to the full framework on improving BSS in

terms of calibration. The comparison is in Fig 3.29 where we can see our model’s calibration is

closer to diagonal, rendering a more natural ‘S’ shape [195], where the baseline GRU-decoupling

has poor calibrated range when the output probability is in mid/high range (which is the label

of high-risk patients). This is showing the model is overshooting for this range of probability,

likely due to an density discrepancy, because the model would assign overconfident probability

to the patients in higher risk, requiring a density aware training. The over-confident prediction

is prevalent in modern-day neural networks, where the mean predicted probability is higher than

the fraction of positive class in a certain bin as noted in [165]. However, when equipped with the

full framework, the performance of our model can increase significantly, especially on Brier Skill

Score for calibration and rendering the plot to be closer to the diagonal (perfect calibration).

3.2.3.5 Parameter study

Since we have incorporated a trainable cost matrix, and we are interested in how does the

parameter θ in Eq. 3.16 change the performance in the model. We have search on a space of

{1, 5, 10, 25, 50, 100} for θ, following [174]. On the TOPCAT dataset for mortality prediction we

conduct the experiments and show it in Figure 3.30. We can see that AUC-ROC peaks at θ = 5

while AUC-PRC can be θ = 10. However, given the confidence interval’s overlap, the significance

for choosing θ = 10 over θ = 5 for AUC-PRC can be statistically minimal, therefore θ = 5 is

chosen.
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Figure 3.30: Tuning of θ for AUC-ROC and AUC-PRC. Reprinted/adapted with permission from [4].

3.2.4 Conclusion

We proposed a framework to treat class imbalance, which is prevalent in medical datasets.

The introduced framework not only addresses imbalanced class densities but also makes use of

the density discrepancy to train a model. The decoupled training method alleviated bias caused

by the majority class, by ensuring faithful representation of the minority class. Further, we used

a density-aware loss to personalize training of each class, specifically: learning that lower-risk

patients arrive at low risk by calculation of the similar factors, forming a dense cluster in the data

space, but high-risk patients are dissimilar, driving them to different regions of the data space. We

demonstrated that our model, trained with this decoupling framework along with density-aware

loss and learnable cost matrix, outperformed baseline approaches when applied to risk prediction

in medical datasets. Furthermore, through experiments we find that traditional models were poorly

calibrated, calling for more comprehensive evaluation, especially geared towards imbalance issues.

Our framework overall has shown to be better at prediction as well as calibration, which can be of

great use in the medical domain.
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3.3 Sparse Embedding for Interpretable Hospital Admission Prediction3

3.3.1 Introduction

3.3.1.1 Overview

This work introduces a sparse embedding for electronic health record (EHR) data in order to

predict hospital admission. We use a k-sparse autoencoder to embed the original registry data into

a much lower dimension, with sparsity as a goal. Then, t-SNE is used to show the embedding of

each patient’s data in a 2D plot. We then demonstrate the predictive accuracy in different existing

machine learning algorithms. Our sparse embedding performs competitively against the original

data and traditional embedding vectors with an AUROC of 0.878. In addition, we demonstrate the

expressive power of our sparse embedding, i.e. interpretability. Sparse embedding can discover

more phenotypes in t-SNE visualization than original data or traditional embedding. The discov-

ered phenotypes can be regarded as different risk groups, through which we can study the driving

risk factors for each patient phenotype.

Emergency department (ED) admission is based on triage, which is a collection of data recorded

by the nursing staff in a number of categories, including demographics, chief complaint, and vital

signs. Patient disposition, either admission or discharge, will be made based on the triage data.

Prediction of hospital admission with a precise model can help improve patient care and logisti-

cal efficiency [196]. Early identification of admission can allow hospitals to optimize healthcare

resources and improve patient outcomes [197]. ED crowding, for example, is one of the prob-

lems that often occurs in hospitals, and it can incur higher readmission rates, longer hospital stays,

and even higher mortality rate [198]. A reliable prediction model for ED admission can aid these

problems.

Studies that predict ED admission by using triage data as input develop statistical models to

predict an outcome of disposition [196, 197, 199]. Triage data usually includes demographics,

3Reprinted with permission from Huo, Z., Sundararajhan, H., Hurley, N.C., Haimovich, A., Taylor, R.A. and
Mortazavi, B.J., 2019, July. Sparse embedding for interpretable hospital admission prediction. In 2019 41st Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 3438-3441). IEEE.
Copyright 2019 by the authors.
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vital signs, chief complaint, nursing notes, and early diagnostics. Additional models include hos-

pital usage statistics and patient past medical history [199], achieving an area under the receiver

operating characteristic (AUROC) curve of 0.849. Improvements through machine learning al-

gorithms have been limited due to the poor interpretability of these more complex models [200].

Each patient may have different admission risk factors, and early identification of a patient phe-

notype is important to medical decision support. High-risk patients may need different treatment

than low-risk patients. Therefore, patient stratification needs to be done along with the process of

prediction. A potential phenotyping method projects patient data into a 2D plot by using visualiza-

tion algorithms, and constructing patient phenotypes from the distribution. In each phenotype, a

customized classification method can be proposed and used to provide a more fine grained predic-

tion. However, the reasons that drive each patient into their corresponding phenotype, i.e. feature

attribution in phenotyping, need additional exploration.

In this paper, we propose an interpretable framework to study hospital admission and explore

the driving predictive risk factors for different patient phenotypes. First, triage data will be em-

bedded into low dimension vectors with sparsity as a training goal. Sparse embedding has been

proven useful for finding important features in a number of domains, including computer vision

[201], natural language processing [202] and time series modeling [203]. In the word embedding

domain, previous studies showed that sparsity can help preserve high level information and thus

give more interpretability to each word’s embedding when comparing their similarities. In [204],

authors proposed an enhanced k sparse autoencoder, which uses two sets of penalty to enforce

average and partial sparsity in the hidden layer. In general, sparsity forces models to concentrate

useful information in a much lower dimensional space, which helps important features stand out

when building a prediction model and also aids in grouping similar patients. After triage data is

embedded, we use t-distributed stochastic neighbor embedding (t-SNE) [205] to visualize the data,

which can be helpful for patient stratification. Phenotypes were extracted from the visualization

of embedded data. In each phenotype, we build a customized model specifically for that cohort,

and use feature ranking techniques to show what features are the most predictive in that cohort.
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Finally, we use the important features to describe each phenotype, which is regarded as the process

of feature attribution. Our contributions are as follows:

• We modify k-sparse autoencoding to further improve sparsity by pushing each dimension to

either 1 or 0.

• We use a visualization technique to demonstrate patient risk group stratification.

• We identify low- vs. high-risk patient phenotypes that describe patients that are admitted.

3.3.1.2 Related Work

Medical data science using EHR data has become increasingly popular to understand high-

dimensional data. In [115], authors used a denoising autoencoder to embed patient EHR data.

The input was first ‘corrupted’ by Gaussian noise to account for missingness in medical settings.

In [206], the authors aimed to model patient health state trajectories. They used Long short term

memory (LSTM) for the progression of illness parameterized by time. In their model, medical

intervention was incorporated to account for the course changes of illness. In [207], the authors

used non-negative tensor factorization to extract patients phenotypes iteratively, by using the data

from diabetic patients who are later diagnosed with chronic kidney disorder (CKD). In [208], the

authors used a recurrent neural network (RNN) with skip gram embeddings to predict all diagnosis

and medication categories in the EHR. In [209], the authors proposed a hierarchical framework by

using a denoising autoencoder through a semi-supervised learning scenario to conduct phenotype

stratification. The output was later fed into a random forest for prediction. By visualization of the

results, they show their model’s superiority of phenotype stratification. However, the demonstra-

tion of stratification was only in synthetic data.

3.3.1.3 Methodology

3.3.1.3.1 Sparse embedding We first introduce how we built a model for a k-sparse autoencoder

with a loss function that penalized any deviation of the preset activation distribution for the hidden

layer. We designed a secondary constraint in the training model to further push each dimension of
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the sparse embedding to be close to either 0 or 1, i.e. binarization. In this case, the sparse embed-

ding was forced to carry the most important information for each patient and the new embedded

vectors were regarded as the concentration of the original features.

Given a dataset D with size of D instances and F original features D = [X1,X2,X3, . . . ,XD]
T ∈

RD×F , we found the representations in the autoencoder’s hidden layer that preserved the important

information from the original features. We defined two mapping functions, and we framed the

classical autoencoder objective function as:

ϕ : X → X̃ψ : X̃ → X (3.20)

arg min
ϕ,ψ

1

|D|
∑D

i=1
||X i − (ϕ ◦ ψ)X i||22 (3.21)

Next, we enforced a k-sparse activation constraint that penalized the deviation of observed

average activation value from the pre-defined average activation value:

argmin
ϕ,ψ

∑
h∈ϕ,ψ

||max
(
0, ρh,D − ρ∗h,D

)
||2 (3.22)

where h ∈ H indicates neurons in the hidden layer and ρh,D is the expected average activation

values that parameterizes a Bernoulli distribution:

∑H

h=1
X̃h ∼ Bernoulli (ρh,D) (3.23)

Finally, we enforced a secondary constraint that further pushed each dimension to either 1 or 0

in order to achieve higher information concentration:

argmin
ϕ,ψ

1

|D|
∑D

i=1

∑H

h=1

(
X̃ i,h ×

(
1− X̃ i,h

))
(3.24)

3.3.1.3.2 Visualization through t-SNE We used a popular visualization algorithm, t-SNE, to vi-

sualize the original data and embedded data distributions. t-SNE is a commonly used visualization
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Table 3.13: Dataset Description. Reprinted/adapted with permission from [5].

Category Number of variables Category Number of variables
Response variable 1 Past medical history 281

Demographic 9 Outpatient
medications

48

Triage evaluation 13 Historical vitals 28
Chief complaint 200 Historical labs 379
Hospital usage

statistic
4 Imaging/EKC counts 9

Total 972

tool that can nonlinearly reduce data dimensionality while preserving the similarity among data

points, and is well-suited for embedding high-dimensional data to two or three dimensions for

visualization. After plotting patient data through t-SNE, we visually see the distributions.

3.3.1.3.3 classification with XGBoost We defined the patient cohorts in the visualization and

built models to fit only that specific cohort. We used XGBoost, a gradient boosting classification

algorithm and its internal feature ranking to determine important features for phenotype discovery.

3.3.2 Experiment

3.3.2.1 Data description

In this study we use health records of adult patients’ visits to the Yale New Haven Health

system, including one academic and two community emergency rooms, between March 2014 and

July 2017. All three EDs are part of a single hospital system, utilizing the Emergency Severity

Index (ESI) for triage. There were 560,468 patient visits in total. Each patient was assigned a

final disposition, i.e. the response variable, either admission or discharge. 971 variables were

collected during triage, serving as the patient information for the final medical decision-making.

Data description is provided in Table 3.13.

3.3.2.2 Sparse embeddding

We embedded the 971 features, excluding the disposition and ESI of each patient, into 100

sparse dimensions using the k-sparse autoencoding introduced above. For the sake of comparison,
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we also built a traditional autoencoder to 100 dimensions to highlight the benefit of sparsity. We

normalized the data to make all variables fall into the range of [0, 1] to align with the binary

features that make up the majority of the dataset. We visualized the encoding and density of all

the features in Fig 3.31. In Fig. 3.31, the y-axis represents patients and the x-axis represents each

dimension of the data. The sparse embedding impact is visually apparent versus the traditional

autoencoder, when reducing to 100 dimensions.

In order to prove the newly introduced sparsity did not lose important information, we then used

XGBoost to predict the disposition of each patient through original data, traditional autoencoder

output, and our sparse embedding. Using a five-fold cross-validation, we tested the AUROC of

each embedding method and present those results in Table II. As we can see, the result from sparse

embedding is still competitive. We will show what benefit we gain from sacrificing some marginal

accuracy.

3.3.2.3 Visualization through t-SNE

Fig. 3.33 shows the visualization of the data when using t-SNE. We use kernel density esti-

mation (KDE) to show the distribution. The red contour lines represent admitted patients, and the

blue represent discharged patients. For original data and traditional autoencoder output, we can

only see one peak of admitted patients, meaning that admitted patients are regarded as similar.

While this aligns with medical intuition based upon risk, we expect phenotypes that are admitted

for different reasons, independent of common risk factors. For our sparse embedding visualization,

we can see that it has two peaks for admitted patients, one smaller more concentrated peak and one

narrow but extended peak, as well as additional concentrations to the right of the figure. For the

sake of comparison, we give one plot with only admitted patients. The left peak has an admission

rate of 55% (812 out of 1474 patients), while the right peak has an admission rate of 45% (524 out

of 1160 patients). We extract patients from the peaks of original data and the peaks from sparse

embedding, and we use KDE to estimate the distribution in terms of ESI, as shown in Fig. 3.32

Given the distribution of ESI, we can see patient stratification when applying sparse embedding

on the original data. Although both of the peaks are admitted patients, we can roughly define the
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Figure 3.31: Comparison of original data (upper), traditional AE (middle) output and K-sparse
embedding (bottom). Reprinted/adapted with permission from [5].
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Figure 3.32: Comparison of ESI for the peak from original data and two most concentrated peaks
in sparse embedding. Reprinted/adapted with permission from [5].

patients from the left group as high-risk, and patients from the right peak as low-risk, based upon

ESI. This identifies different factors that drive admission not considered by ESI.

3.3.2.4 Classification with XGBoost

We built two XGBoost models to fit to new phenotype cohorts found in the concentrated peaks

in the visual embeddings, to predict hospital admission. These models also return the feature

importance of each model. We calculate the AUROC of admission prediction as well as the root

mean square error (RMSE) of ESI, shown in Table III. In Fig. 3.34 we show the top 20 features and

the importance value as ranked by XGBoost in each peak. Fig. 3.35 shows a few manually chosen

representative features that vary between the two peaks. This figure shows that the higher-risk

group is composed of elderly adults, who among other differences have more varied values for

PTT, a measurement of bleeding risk. The low-risk group has a relatively younger cohort and,

among other differences, higher eosinophil count. We therefore discover a younger cohort that

might not generally be considered at risk for admission (low ESI) that has a high concentration of

admissions as determined by the embedded models and can find unique phenotypes that are not

apparent when modeling on the entire population.
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Figure 3.33: Visualization of data through t-SNE. Reprinted/adapted with permission from [5].
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Figure 3.34: Top features as ranked by XGBoost in the two selected peaks from sparse embedding
and their feature importance. Reprinted/adapted with permission from [5].

3.3.3 Conclusion

In this paper, we proposed an interpretable framework for hospital admission prediction using

EHR data. The model has a hierarchical structure in which medical data are embedded into sparse

vectors to force feature concentration. The embeddings were then visualized through t-SNE. Pa-

tient data distribution showed that sparse embedding can push hidden phenotypes in the admitted

cohort to be more prominent, driven by the binarization of the features in the embedding. For fu-

ture work, we will further investigate the effect of sparsification and binarization, with the premise

that the lost accuracy can be better justified if we can quantify how much interpretability we can

gain by using our model. One example can be that the binary embedded dimensions are indica-
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Figure 3.35: Age, Partial Thromboplastin Time, international normalized ratio, and Eosinophils
difference between peaks in sparse embedding. Reprinted/adapted with permission from [5].

tors for phenotypes we found in the cohort, and sparsity can further help them to be more human

interpretable.
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4. THIRD AIM: ADJUSTING AND TAILORING TO HETEROGENEITY

4.1 DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and Tem-

poral Relatedness1

4.1.1 Introduction

4.1.1.1 Overview

Due to the changing dynamics in the data, the heterogeneity itself is constantly evolving and

thus giving difficulty to modeling. A perfect example can be the data missingness in wearable

sensors. Due to its temporal characteristics, the missingness may present different trends in differ-

ent timestamps. Therefore a model which assumes the data is from i.i.d. might not be realistic to

model the missingess.

We propose to use a long-short-term-memory-based denoising autoencoder (LSTM-DAE) to

learn more robust imputation strategies for remote sensing data. The model has an encoder and

decoder architecture to embed signal data, then this encoded information is fed into the LSTM

network to learn the time-varying dynamics of the data. The overall structure is shown in Fig. 4.1.

This architecture robustly imputes missing data from related channels and latest dynamics being

measured by all sensor channels, even in the presence of high rates of missing data. In order to

demonstrate the utility of using both time-series dynamics and feature relatedness, we experiment

on datasets with both inherent missing values and increased missing data (up to 60% missing across

all the channels on a dataset with inherent 66% missingness), which surpasses traditional missing

rate study by a large margin.

1Reprinted with permission from Huo, Z., Ji, T., Liang, Y., Huang, S., Wang, Z., Qian, X. and Mortazavi, B.,
2022, May. Dynimp: Dynamic Imputation for Wearable Sensing Data through Sensory and Temporal Relatedness. In
ICASSP 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3988-3992).
IEEE. Copyright 2022 by the authors.
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4.1.1.2 Related Work

There has been numerous studies on missing-data approaches which brought about promising

results for down-stream modeling. MissForest can handle mixed types of features and of missing

data value by using a tree-based method [210]. In [211], the authors proposed a bi-clustering based

data imputation technique using the mean squared residual metric that estimates the degree of co-

herence between each recorded cell of the dataset. In [212], the authors present the an imputation

method for missing data value in Internet of Things (IOT) device data, by applying context-based

linear mean, binary search method as well as a Gaussian mixture model. There are many deep

learning based methods as well, in [213], the authors a multi-layer perceptron coupled with inter-

polation technique. In [214], the authors chose not to directly impute, but rather treated the missing

values as extra source of information and used an LSTM model to train and predict the time series

data. This work will evaluate the strengths of each of these techniques in comparison to the work

proposed here.

Figure 4.1: Pipeline for Dynamic Imputation. Reprinted/adapted with permission from [6].

4.1.2 Methodology

Our proposed architecture is illustrated in Fig. 1. We will discuss the building components

of them in each following subsections. The architecture is split into an encoder/decoder archi-
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tecture. The time-series information is modeled by a LSTM-based autoencoder, coupled with

KNN-padding to exploit the feature relatedness in wearable data.

4.1.2.1 Denoising Autoencoder

The aims for autoencoder are delivered by learning representations (encoding) of a set of data

and reconstructing (decoding) the data from these representations. Through this encoding and

decoding process, the network can take care of data missingness and possible signal noise that lies

within the data. A generic autoencooder would be formulated as:

θ∗, θ′∗ = argmin
θ,θ′

1

n

n∑
i=1

L(x(i), z(i))

= argmin
θ,θ′

1

n

n∑
i=1

L(x(i), gθ′(fθ(x
(i)))),

(4.1)

where the encoding function is y = fθ(x) = f(Wx + b), and the decoding function to map the

latent representation back is z = gθ′(y) = g(W′y + b). L is represented as the loss function,

which can be taken as the form of reconstruction cross-entropy:

L(x, z) = −
d∑

k=1

[xk log zk + (1− xk) log(1− zk)]. (4.2)

The denoising autoencoder is to enforce some extra noise on the input vector so the input vector

will be corrupted. This is based on the assumption that the core data representation from a large

amount of training example will stay relatively stable even with background noises so the decoder

will learn to distinguish that from the stochastic noise [5, 215]. The stochastic mapping can be

written as x̃ ∼ qD(x̃|x). The mapping function can take various forms to corrupt the input vector.

We used a stochastic dropout as the function

rj ∼ Bernoulli(p),

x̃ = r · x,
(4.3)
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where r is a vector of independent Bernoulli random variables, each of which has probability p of

being 1. And ∗ is an element-wise product, so this vector is sampled and multiplied element-wise

with the input to give the corrupted signal.

4.1.2.2 Padding for Denoising Autoencoder

Traditional methods for training the neural networks would usually pad missing data with inter-

polated values or simply zeros [216]. However for a dynamic imputation scenario, the missingness

should be captured with an adaptive manner, which means as time goes on, the imputation should

also adjust with newer data coming in. We propose to integrate K-NN imputation with the neural

network. Therefore, in each time point, the model will have different nearest neighbors, and the

combination with autoencder can be used to capture this higher level of dynamics. Therefore our

hidden layer function can be further written as:

h(x̃(i)) = g[W′ · ((Mt ⊙ x̃(i)) +P) + b], (4.4)

where Mt is a masking matrix for indicating the missingness in input data, ⊙ is element-wise

production operator. Assume we have i-th data entry missing on t-th time point:

Mt = 1(m,l)

 0 if i = m, t = l,

1 otherwise,
(4.5)

where 1 is an indicator function. Furthermore the imputation matrix with nearest neighbor padding

P is as follows:

Pt =


∑

j x
(j)

k
if j in top k neighbors of i,

0 otherwise.
(4.6)

The missing value would be from the mean of k closes neighbor’s average, where the distance is

measured in Euclidean distance. Therefore we have constructed our denoising autoencoder with

nearest neighbor padding technique for time-series data.
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Table 4.1: Results for comparison between baseline imputation and dynamic imputation (in BA
and its confidence interval). Reprinted/adapted with permission from [6].

Level of missingness Filled Mean kNN imputer Missforest SparseSense [MLP] Indicator Variable [LSTM] DynImp [LSTM-DAE]

mild
10% 0.8259 ± 0.0069 0.8288 ± 0.0046 0.8458 ± 0.0027 0.8213 ± 0.0032 0.8248 ± 0.0085 0.838 ± 0.0095
20% 0.8065 ± 0.0051 0.8001 ± 0.0069 0.8364 ± 0.0052 0.8108 ± 0.0077 0.8081 ± 0.0078 0.8390 ± 0.0045

medium
30% 0.7871 ± 0.0043 0.7802 ± 0.00097 0.8131 ± 0.0046 0.7901 ± 0.0060 0.7852 ± 0.0060 0.8318 ± 0.0012
40% 0.7627 ± 0.0092 0.7570 ± 0.0106 0.7918 ± 0.0072 0.7647 ± 0.0079 0.7624 ± 0.0105 0.826 ± 0.0042

severe
50% 0.7367 ± 0.0087 0.7351 ± 0.0067 0.7541 ± 0.0066 0.7401 ± 0.0095 0.7401 ± 0.0104 0.831 ± 0.0071
60% 0.7043 ± 0.0085 0.7087 ± 0.0086 0.7131 ± 0.0093 0.6907 ± 0.0122 0.6907 ± 0.0071 0.8304 ± 0.0070

4.1.2.3 LSTM-based Autoencoder

In order to exploit time-series dynamics, we propose that the fully connected layer in traditional

autoencoder would need to replace the function y = fθ(x) = f(Wx + b) to a LSTM cell, where

each input feature x has a time-stamp, i.e. xt.

First the LSTM cell will generate a decision vector and select the candidate information. For

the current time stamp t, the vector It is a function of last hidden state ht−1 and input feature xt,

and the output gate will generate the hidden state ht conditioned on the output:

It = fi(wixt + wiht−1 + bi),

Ft = fg(wgxt + wght−1 + bg),

C̃t = fC(wcxt + wcht−1 + bc),

Ct = Ct−1Ft + C̃tIt,

Yt = fo(woxt + woht−1 + bo),

ht = Ytfh(Ct).

(4.7)

This hidden state will replace the original encoding function output fθ(x) = f(Wx+ b) and thus

will become the encoded information that is later fed into decoder for reconstruction, following

similar steps as above for time-series imputation.
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Table 4.2: Results for variants of DynImp for missingness. Reprinted/adapted with permission from [6].

DynImp Variations 10% 20% 30% 40% 50% 60%
(0-padding) 0.8262 0.8219 0.8239 0.8236 0.8288 0.8299

(Filled mean) 0.8266 0.8224 0.8219 0.8245 0.8232 0.8254
(Interpolation) 0.8284 0.8103 0.8291 0.8201 0.8263 0.8290

(kNN) 0.8380 0.8390 0.8318 0.8260 0.8310 0.8304

4.1.3 Experiment

4.1.3.1 Dataset

We use the UCSD ExtraSensory dataset for these experiments [217]. The UCSD ExtraSensory

dataset contains data from 60 users (34 female and 26 male). Data were collected through a

user’s personal smart phone (34 iPhone, 26 android). The sensors include high-frequency motion

reactive sensor (accelerometer, gyroscope, magnetometer, etc.). We chose this dataset because

the it collects motion-reactive sensor data and the dynamics of one sensor has potentiality to be

recovered by another one due to underlying relatedness [217]. The inherent missingness is 66% for

each sensor per their description. We also generate extra missingness at random across the sensors

to stress the limits of the traditional methods, where we randomly mask out the data points in the

2D data matrix which has a feature column and time column. And the rate to delete the data is

ranging from 10% to 60%.

4.1.3.2 Experimental Setup

We selected a group of features that represent data collected widely from wearable sensors

[217]. We considered raw measurements for the accelerometer, gyroscope, and magnetometer

across all three channels (axis). We also selected two features for the location sensor, which were

the mean absolute longitude and latitude. The total number of features (including all the axes of

each feature) is 14. We use a sliding window technique, where the window length is 24 minutes and

features are grouped by 1 minute intervals. So for each window we will use the features from each

sensor to predict the body movement label. Regarding to the labels, we have two concurrent labels
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for the users which are 4 body movements and 4 phone locations (where on the body). The 4 body

movements labels which are mutually exclusive in nature and combined into one multiple class

label, which are ’LYING_DOWN’, ’SITTING’, ’FIX_walking’, and ’others’. With these 4 body

movement labels, as well as their combinations with the 4 phone locations on the body, we have 16

labels in all the combinations. We used classification report from sklearn, and recorded balanced

accuracy (BA) as the model performances evaluation [217]. In order to achieve a stabilized result

and perform fair comparisons, we composed each kinds of testing with different setup mentioned

above 10 times (each time with different seed for random missingness generation) and average

the BA in validation set, and the corresponding confidence interval. Regards to different baseline

imputation method and different state-of-the-arts, we picked:

• Filled mean: each missing value is computed from the average of the time-series for that

sensor feature.

• kNN imputer: each missing value is computed by finding the nearest neighbors. The distance

is measured by euclidean distance of the remaining values for that sensor feature to the

neighbors.

• Missforest: a tree-based imputation method that learns to predict the missing values

• SparseSense (MLP) [213]: a neural network based framework that combines interpolation

and Multi-Layer Perceptron to predict the missing value

• Indicator Variable (LSTM) [214]: a LSTM-based method to use missing value as extra fea-

tures, an indicator (masking) feature vector to indicate the imputed value is missing or not,

where 1 is missing and 0 is not.

4.1.3.3 Results

We put the results of experiment into Table 4.1, illustrating the comparison between baselines.

The models performance were introduced regarding the balanced accuracy (BA) [217] in valida-

tion set. The row denotes for increasing random missingness generated in the data. From the

result tables overall we can discern a pattern for traditional imputation methods: as the level of

missingness increases, the model performance decreases drastically. We notice that Missforest can
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perform relatively well albeit marginal, when the missingness is mild, but still degrades quickly

when the missingness enlarges. We hypothesize that when coupled with similar tree-based classi-

fier, i.e. XGBoost, the Missforest can reconstruct the data that is best for a boosting classifier. One

previous study [218] showed the Missforest coupled with XGboost can perform relatively well

on mild missingness scenario (2.19% to 13.63%). But for our model, it outperforms not only the

traditional methods but also the methods that utilizes the neural networks such as MLP and LSTM.

The performs can hold even with extremely severe missingness.

Figure 4.2: Results comparison. Reprinted/adapted with permission from [6].
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4.1.3.4 Ablation Study

We have established the improvement of our model by making use of LSTM-DAE pipeline.

Next in order to study the necessity of using nearest neighbor as the padding strategy in our archi-

tecture we conduct a comparison among the variants:

• DynImp (0-padding): the missingness is replaced by zeros of the time-series for that sensor

feature before feeding to DynImp for training [216]

• DynImp (Filled mean): the missingness is replaced by average of the time-series for that

sensor feature before feeding to DynImp for training [116]

• DynImp (Interpolation): the missingness is replaced by interpolation of before and after

values before feeding to DynImp for training [213]

• DynImp (kNN): the missingness is replaced by kNN-imputer for k = 5 neigbhors, before

feeding to DynImp

As we can see in Table 4.2 the superior performance of our proposed scenario, even with the same

network architecture, the nearest neighbor method can further push the LSTM-DAE to have better

performance than baselines. A clear illustration of all methods is also shown in Fig 4.2.

4.1.4 Conclusion

In this paper we proposed a dynamic imputation technique for remote sensing data. The method

is through a trainable mechanism by the use of deep learning model to learn the missing dynamics

along the time axis to impute the missing data. The model shows strong performance compared to

baselines. While not particularly outstanding in mild missingness scenario, the model can maintain

high prediction accuracy in some extreme missingness scenarios. We also tested on variations of

the model to find out the best performing one. This dynamic imputation can be classifier-agnostic

so it can be compatible with any downstream methods. In the future we aim to study how does the

model perform in other scenarios in terms of different data types and features.
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4.2 Using Continuous Glucose Monitors to Estimate the Macronutrient Composition of

Meals2

Diet monitoring is an important component of interventions aiming to help patients man-

age blood glucose levels. However, existing diet monitoring methods are inaccurate and time-

consuming. To address this problem, we propose a method to predict the composition of a meal

automatically from its associated glucose response, as measured by a continuous glucose monitor

(CGMs). The approach relies on the observation that the glucose response to a meal depends on

its macronutrient composition (i.e., carbohydrates, proteins, and fats). To capture this information,

our method computes the area-under-the-curve (AUC) at different time intervals during the glu-

cose response to the meal using a family of Gaussian kernels. These AUCs are then passed to a

multitask neural network trained on the glucose response to a set of standardized meals. To test the

model, we conducted a study in which participants consumed nine meals with known macronu-

trients while wearing a CGM. We compared our model against two baseline methods, a linear

regression model and a single-task neural network. Our model outperformed both baselines, as

measured by the correlation coefficient between prediction and ground truth, and classification ac-

curacy, in both subject-independent and subject-dependent cases. These findings provide support

for using CGM signals to automatically predict food intake.

4.2.1 Introduction

One hundred and twenty million Americans are glucose intolerant. Glucose intolerance results

from the body’s inability to properly produce and respond to insulin sufficiently. Unless treated,

glucose intolerance progresses from pre-diabetes to the severe form, known as type 2 diabetes

mellitus (T2DM). This intolerance is often manifested by high glucose responses after a meal.

Therefore, an essential component of clinical interventions for T2DM is to monitor dietary in-

take to control blood glucose levels after eating a meal. However, conventional methods for diet

2Reprinted with permission from Huo, Z., Mortazavi, B.J., Chaspari, T., Deutz, N., Ruebush, L. and Gutierrez-
Osuna, R., 2019, May. Predicting the meal macronutrient composition from continuous glucose monitors. In 2019
IEEE EMBS International Conference on Biomedical and Health Informatics (BHI) (pp. 1-4). IEEE. Copyright 2019
by the authors.
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tracking rely on manual input, which is burdensome.

An unexplored opportunity to address the burden of logging diet has emerged with the advent

of continuous glucose monitors (CGMs). CGMs are inserted under the skin (subcutaneously)

with a small electrode to measure glucose levels in interstitial fluid. CGMs make it possible to

capture the blood glucose response to a meal, which is known to depend on the macronutrient

composition (i.e., carbohydrates, proteins, fats) of the meal. As an example, adding fat and protein

to carbohydrates generally reduces the glucose response and slows down the return to baseline

[219]. This suggests that the shape of the glucose response to a meal can be used to recover the

macronutrient composition of the meal, and therefore be used to log food intake automatically.

To test this concept, we conducted a study in which healthy subjects were asked to consume a

set of standardized meals (i.e., of known carbohydrates, proteins, and fats) while wearing a CGM.

Then, we built a neural-network regression model to estimate the macronutrient composition from

the measured post-prandial glucose response (PPGR) as captured by the CGM. Initial results from

this model were presented at the 2019 IEEE Biomedical and Health Informatics (BHI) conference

[7]. This manuscript builds upon on our earlier results by evaluating two techniques to improve

the accuracy of the model, which normalize the glucose response relative to the subjects’ fasting

glucose levels and their body composition. We also present a post-processing technique that im-

proves the interpretability of the results by classifying meal compositions into three categories:

low, medium, and high amounts of each macronutrient. The contributions of this paper are as

follows:

• We present a feature extraction technique that uses a family of Gaussian kernels to capture

the shape of the glucose response

• We propose a multitask neural network model that predicts the macronutrient composition

of a meal from the shape-related features, and

• We show that taking into consideration the body composition of subjects improves the accu-

racy of the model
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The rest of this paper is organized as follows. subsection 4.2.2 discusses related research and

findings. subsection 4.2.3 discusses the the multi-task learning method implemented, while sub-

section 4.2.4 discusses the experiments and findings. subsection 4.2.5 discusses the significance of

those findings, while subsection 4.2.6 highlights the limitations and future direction opportunities,

and subsection 4.2.7 concludes this work.

4.2.2 Related Work

4.2.2.1 Diet Monitoring Technology

Diet is typically tracked done using a written diary. This requires a high level of commitment

and often leads to poor adherence [220]. Several technology-based approaches have been proposed

to address this issue. As an example, computer vision techniques can be used to estimate the

contents of a meal. Hassanejad et al. surveyed computer vision techniques and wearable sensor

techniques in order to understand accurate food intake [221]. Their results show that vision based

solutions provide opportunity, however additional work is done, including needing reference food

image datasets, image segmentation is challenging, and while promising, most of this work needs

additional validation outside of laboratory environments [221]. More recently, Zhu et al. addressed

this image segmentation problem [222] and developing an end-to-end system that converts images

of food to caloric estimates[223]. Their results show that known meals can be estimated within 209

kcals, providing accurate estimates of energies for meals that were prepared for participants. While

their results are promising, they acknowledge a limitation of their system involves developing

a larger database of training images for the system to recognize, which remains a limitation of

vision-based solutions.

Wearable sensors can also be used to detect moments of dietary intake. For instance, Kalan-

tarian et al. [224] surveyed body-worn accelerometers to identify moments of food intake by rec-

ognizing hand and arm gestures typical of eating behaviors, which presents a number of sensing-

based solutions that focus first on detecting moments of dietary intake, then on the types of food

ingested. This included their own work using a sensor-based necklace to detect swallows [225].
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Using their method, they were able to achieve accurate determinations of swallows related to liq-

uids versus solid foods. Other studies surveyed focused on acoustic measurements with body-worn

microphones to characterize swallows and chewing [226, 227]. Body-worn accelerometers have

also been used to identify moments of food intake by recognizing hand and arm gestures typical

of eating behaviors [224]. One approach to the sensor-based solution was to use smart glasses

to merge the wearable sensors domain with the computer vision approaches to the diet problem

[228]. Zhang and Amft show that their system is able to translate from highly accurate laboratory

detection of eating moments (94%) to free environments with good accuracy (77%), however the

detection of the content of those meals was not studied. Some efforts involve instrumenting the

utensils used for eating, such as the smart fork work by Kadomura et al. [229]. Their results show

that eating behaviors can be detected, tracked, and modified, but do not focus on the contents of

those meals. Additional sensor-based methods detect moments of dietary intake with some accu-

racy [230, 231, 232], demonstrating the significance of the diet intake problem, but are not suitable

to estimate the contents of those meals, which is far more critical.

4.2.2.2 Measuring Blood Glucose

The most common method to measure blood glucose is through a glucometer, a device that

requires pricking the finger with a lancet. This procedure is inconvenient and painful, and only

measures glucose responses at specific times. CGMs dramatically reduce this burden and allow

glucose levels to be measured automatically and continuously (every 5 to 15 minutes, depending

on the CGM model). This frequent measurement makes it possible to capture detailed information

about the glucose response to a meal that would otherwise be lost with a traditional glucometer.

CGMs are commonly used for managing type-1 diabetes, where monitoring glucose levels is criti-

cal, but have yet to make an impact in the management of type-2 diabetes [233], the more prevalent

of the two conditions (90%). Earlier CGM instruments required users to calibrate the sensor with

a finger-prick measurement multiple times a day, but the newest generation of CGMs are able to

monitor glucose levels uninterruptedly for up to 14 days without requiring calibration. Earlier

CGMs were also limited by their high cost, but prices have dramatically fallen in the new gener-

116



ation of “flash” CGMs (i.e., Abbot Freestyle Libre) and many of these devices are now covered

by Medicare. This broadens the range of applications of CGMs beyond its primary use in type-1

diabetes.

4.2.2.3 Modeling Glucose Responses

Differences in macronutrient composition in meals lead to varied PPGRs. For example, simple

carbohydrates result in steep glucose spikes, while proteins and fats yield smoother, longer fluctu-

ations [232, 234]. A study examining 38 foods with isoenergetic portions found that protein-rich

foods produced the highest insulin secretion per gram of carbohydrate, followed by bakery prod-

ucts, snack foods, fruits, carbohydrate-rich foods, and cereals [235]. A number of studies have tried

to estimate periods of hyperglycemia and hypoglycemia as measured by CGMs. One such model

tries to learn and restrict what segments of glucose response can look like in T1D patients before

and after meal intake, in order to estimate the most likely periods of hypo- and hyperglycemia

[236]. By adding gut microbiome measurements, it is possible to personalize estimations of hypo-

and hyperglycemia to improve accuracy [18]. In addition to the improvement in hypo- and hy-

perglycemia estimates provided by the gut microbiome, additional sources of information, such

as daily physical activity, further improves the hypo- and hyperglycemia predictions [237]. Addi-

tional studies have focused on the variability present in glucose response as a result of a variety

of different mixed meals (of varying energy, carbohydrates, protein, and fat) [238, 239]. Wolever

and Jenkins, for example, studied the impact of proteins and fats on glycemic index, showing that

the glucose response differences in meals with varied proteins and fats can be described through

quantitative measures of the glycemic index of a meal [240]. Wolover and Bolognesi took meals of

varied glycemic indices in order to predict the glucose and insulin response [238]. Their findings

demonstrated that the carbohydrates alone did not describe the glucose response (nor did proteins

or fats), but that the glycemic index did describe the variation.

Rozendaal et al. provided healthy participants varied/mixed meals to evaluate glucose response

dynamics [239]. Their study found that area under the glucose response curve, as well as the

height of the peak, width, and rise time were necessary measurements to describe the dynamics
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of the glucose response. We consider features that extract area under the curve measurements at

different time frames to capture this information in our study. Gonzalez-Rodriguez et al. studied

the glucose repsonse in adults to determine if there were differences in men and women [241].

Their study examined the impact of clinical factors such as age, sex, and body composition to

describe glycemic responses, and concluded that CGMs provide important information about meal

responses and that the clinical characteristics described some of the variability recorded [241]. In

a landmark study [242, 243], researchers built a model that was capable of predicting the glucose

response to a variety of meals, including a number of personalized characteristics. In their study,

Zeevi et al. developed machine learning methods that looked at gut microbiome, physical activity

levels, and a number of other characteristics to categorize and estimate the glucose responses from

a variety of meals in a study of 100 individuals. Their study found that the glucose responses

were driven by both the composition of the meal as well as characteristics that personalize the

each individual, requiring accurate models to account for subject-to-subject variability in glucose

response to similar foods [242]. In contrast with these studies, which focus on predicting glucose

responses to different types of meals, our goal is the reverse: predicting meal composition from

their post-prandial glucose responses.

4.2.3 Neural Network Model

We aimed to design a model that can estimate macronutrient quantities from the PPGR signal

captured by the CGMs. The model would need to take features that represent the PPGR over the

8 hour study period, and inform us of the shape, amplitude, and general area under the curve,

to represent the size of the meal. Zeevi et al. demonstrated further that the combination of of

carbohydrates, proteins, and fats all influence the glucose response. As a result, we needed a model

that could incorporate features of the PPGR and simultaneously learn the impact of carbohydrates,

proteins, and fats on that signal, rather than learning each individually.

We designed and evaluated a multitask neural network to estimate the macronutrient composi-

tion of meals. The basic architecture of the model is illustrated in Fig. 4.3. The network takes the

glucose response to a meal and predicts the amount of macronutrients: carbohydrates, protein, and
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Figure 4.3: Structure of the multitask neural network. Reprinted/adapted with permission from [7].

fat. The network consists of a shared layer that generates a representation or embedding to capture

information that is common to the three macronutrients and a task-specific layer that predicts the

amount of each individual macronutrient. The hidden units use a Rectified Linear Unit (Relu) ac-

tivation function to capture non-linear information in the glucose response, and a linear activation

function for the task-specific layer to span the full range of macronutrient levels.

We extract a number of features from the glucose response, which are provided to the mul-

titask neural network as inputs. These features represent the area-under-the curve (AUC) of the

glucose response at various times over the 8 hours that follow consumption of a meal. The feature-

extraction process is illustrated in Fig. 4.4. We distribute a family of Gaussian kernels uniformly

over the glucose response, and then computed the AUC weighted by those kernels, with and with-

out subtracting the baseline glucose level (see subsections 4.2.4.3 and subsections 4.2.4.4), mea-

sured at time zero after consuming the meal. This allows us to capture the initial rise time, the

119



Figure 4.4: The extraction of 5 Gaussian AUC features, extended from [7] with the fasting glucose
subtracted to generate relative AUC values, over an 8 hour window. Reprinted/adapted with permission from [7].

duration of the elevated glucose response, and the recovery back to the baseline glucose level. We

set the standard deviation of the Gaussian kernel to σ = n/1.96 where n is the number of sensor

readings within a time interval. Fig. 4.4 shows the case for five Gaussian kernels, but different

numbers of kernels can be used to capture the glucose response at different levels of temporal

resolution.

We train the neural network using back-propagation and the Huber loss function. The Huber

loss uses a quadratic term for small errors and a linear term for larger errors, thus providing robust-

ness to outliers. The neural network has a hyper-parameter: the number of neurons in the hidden

layer, which we optimize using grid search through internal cross-validation, searched from 1 to

the number of inputs provided to the model. Using this technique (details not shown), we deter-

mine that the optimal number of hidden neurons is equal to the number of inputs. We select these

optimal hyper-parameters as those that maximize the Pearson correlation between ground truth

(amount of each macronutrient) and predicted values.
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Table 4.3: Macronutrient composition of the nine meals and their classification as low (1), medium
(2), or high (3), for carbohydrates (C), proteins (P), and fats (F). Reprinted/adapted with permission from [7].

Meal Name Carbohydrates (g) Protein (g) Fat (g)
C1P1F1 52.25 15 13
C2P2F2 94.75 30 26
C3P3F3 179.75 60 52
C1P2F2 52.25 30 26
C3P2F2 179.75 30 26
C2P1F2 94.75 15 26
C2P3F2 94.75 30 26
C2P2F1 94.75 30 13
C2P2F3 94.75 30 52

The network is a regression model that estimates a continuous value –the amount of each

macronutrient, but can also be used as a classification model. This requires discretizing the net-

work outputs into several categories 3. In our case, we discretize each output into three levels,

representing high, medium and low amounts of each macronutrient. We accomplish this by iden-

tifying two thresholds across the continuum of outputs. We optimize each threshold separately.

First, we find the optimal threshold between low amounts and high/medium amounts of macronu-

trients by linearly sweeping the threshold forward, as in the development of a receiver operating

characteristic (ROC) curve. We then repeated this process to find the ideal high vs. medium/low

threshold by beginning at the maximum value and sweeping backward.

We evaluate the model using two measures. For the regression task, we use the Pearson correla-

tion between ground truth macronutrient values and estimated values, for the classification task, we

analyze the confusion matrix of the model’s estimates, which we then convert into the conventional

measures: precision and recall. All the code for this study can be found online4.

4.2.4 Meal Macronutrient Results

This study proposes a technique to predict the amount of macronutrients in a meal from the

shape of the glucose response of the meal, using continuous glucose monitors and a novel multitask

3With this technique, we avoid the problem of misclassifying the two extreme categories (i.e. classifying lows and
highs, and vice versa), which would be a possibility if the network were trained as a ternary classification model.

4https://github.com/ZepengHuo/CGMmacronutrition
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neural network. Our results indicate that the amount of carbohydrates (and to a lesser extent fats

but not protein) can be predicted, as measured through regression and classification tasks. We

validated our approach in a series of experiments. We find that subject-dependent models, where a

separate model is trained for each subject, significantly outperform a subject-independent model,

where a single model is trained by pooling data from multiple subjects. This is consisted with other

studies which have shown that metabolism and therefore the glucose response to a meal is unique

to each individual [242]. We find that the multitask network, which jointly predicts the amount of

the three macronutrients, outperforms a single-task method that uses three separate networks (one

for each macronutrient).

We explored several techniques to improve model performance. First, we find that subtract-

ing fasting glucose levels improves performance when compared to using the absolute glucose

response. Second, we find that normalizing the amount of macronutrients relative to body com-

position (e.g., body weight) also improves model performance. These results show that fasting

glucose and body composition are part of the phenotype of each subject. Finally, we also find

that features extracted a multiple levels of resolution do not improve performance compared to

using features at a single time scale. We also examined evaluated the performance of the model

when used as a classification task, where the amount of each macronutrients was discretized into

three labels: low, medium and high. We find that obtaining class labels by training the neural net-

work as a regression model, and then discretizing the model outputs, provides higher classification

performance than training the network directly as a ternary classifier.

4.2.4.1 Data Collection

We recruited seven healthy subjects (not diagnosed with T2DM or pre-diabetes) ages 60-85

years and Body Mass Index in the range of 25-35. Each subject participated in 9 study days in

which they consumed a predefined meal in a randomized design. Each study day lasted approxi-

mately 8 hours and the procedures on the study days were identical, with the only change being the

macronutrient composition of the meal taken (e.g. varying low and high values of carbohydrates,

proteins, and fats). Subjects were asked to fast for at least 8 hours prior to the meal intake on each
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Figure 4.5: (a) Glucose response at increasing levels of carbohydrates, with protein and fat at fixed
levels. (b) Glucose response at increasing levels of protein, with carbohydrates and fat at fixed
levels. (c) Glucose response at increasing levels of fat, with carbohydrates and protein at fixed
levels. (d) Individual variability for the C2P2F2 meal. X axis are samples (taken every 15 minutes)
and Y axis are the blood glucose values. Reprinted/adapted with permission from [7].

study day, so that the first blood glucose reading would be their fasting glucose. The CGM was

placed on the first study day and replaced every 2 weeks. After taking a baseline blood sample the

morning of a study visit, a predefined meal was consumed. Subjects were then asked to remain in

a sedentary state and were not allowed to eat anything for the following 8 hours to remove impact

of physical activity on the PPGR, and also not eating anything else The blood samples served to

validate the CGM reading accuracy, as well as collect additional information such as insulin to be

used in future analysis out of the scope of this paper. The composition of the nine meals is shown

in Table 4.3. Subjects were asked to remain sedentary in the laboratory environment, removing the

confounding impacts of physical activity. It is important to note that a few subjects were missing

data on some meals, as the CGM fell out of their arm. Five of the subjects are missing a total

of seven meals because of errors in CGM readings, and no more than two meals were missed by
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Table 4.4: Pooled Pearson Correlation and Statistical Significance of Macronutrient Results for
carbohydrates (C), proteins (P), and fats (F). Reprinted/adapted with permission from [7].

Regression subject-independent subject-dependent
C P F C P F

Linear 0.32∗∗ 0.12 0.09 0.31∗∗ −0.29 −0.01
Multitask 0.31∗∗ 0.14 0.21 0.69∗∗∗ 0.23∗ 0.48∗∗

Significance: ***: p < 0.0001, **: 0.0001 ≤ p < 0.05, *: 0.05 ≤ p < 0.1

any one subject. This study was approved by the Texas A&M Institutional Review Board (IRB

#2017-0886).

4.2.4.2 Variability in Glucose Response

Fig. 4.5 illustrates the meal-to-meal variability in modifying meal macronutrients and the

subject-to-subject variability that exists within individual meals. Fig. 4.5 (a) shows the average

response across subjects as we increase the amount of carbohydrates (C1, C2, C3) while maintain-

ing the other two macronutrients at a fixed level (P2, F2). As shown, the glucose response becomes

more pronounced at higher levels of carbohydrates, both in terms of the maximum value and the

overall AUC. Fig. 4.5 (b) shows the average response across subjects as we increase the amount

of protein (P1, P2, P3) while maintaining the other two macronutrients at a fixed level (C2, F2).

As we increase the amount of protein, the glucose response becomes more moderate, with lower

maximum levels and slower return to the baseline. Fig. 4.5 (c) shows the average response across

subjects as we increase the amount of fat (F1, F2, F3) while maintaining the other two macronu-

trients at a fixed level (C2, P2). As in the case for protein, as we increase the amount of fat, the

glucose response becomes more moderate, with lower maximum levels and slower return to the

baseline. These results provide support to our overall strategy, as they show that the shape of the

glucose response depends on the constituents of the meal. Finally, Fig. 4.5 (d) shows the response

of each participant to the C2P2F2, which illustrates the high level of variability and the need to

develop personalized models.
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Table 4.5: Pooled Pearson correlation (with statistical significance) of four neural network models:
multitask vs. single-task models for 5 and 17 Gaussian AUCs for carbohydrates (C), proteins (P),
and fats (F). Reprinted/adapted with permission from [7].

subject-independent subject-dependent
C P F C P F

5M 0.35∗∗∗ −0.09 −0.03 0.76∗∗∗ 0.32∗∗ 0.57∗∗∗

17M 0.44∗∗∗ −0.10 −0.08 0.80∗∗∗ 0.28∗∗ 0.39∗∗∗

5S 0.11 0.09 0.01 0.38∗∗ −0.21 −0.15
17S 0.24* -0.09 0.17 0.70∗∗∗ 0.05 −0.08

Significance: ***: p < 0.0001, **: 0.0001 ≤ p < 0.05, *: 0.05 ≤ p < 0.1

4.2.4.3 Area Under the PPGR

In a first analysis, we analyzed the performance of the model as a regression task using 5

Gaussian kernels. Results are summarized in Table 2 in terms of the Pearson correlation be-

tween predictions and ground truth. We considered two types of models: subject-independent and

subject-dependent. In the subject-independent case we computed 9 models, each model trained on

6 participants and tested on the remaining participant (leave one subject out cross-validation). The

results in Table 2 represent the average response across those 7 models. In the subject-dependent

case, we computed 9 separate models for each subject, each model trained on 8 meals and tested

on the remaining meal (leave one meal out cross-validation). The results in Table 4.4 represent the

average response across those 56 models (7 subjects × 9 models/subject minus the 7 meals with

missing data.) For comparison purposes, we also included results for a linear regression model,

which we used as a baseline. The subject-dependent model significantly outperformed the subject-

independent model, as one might expect given the high degree of individual variability shown in

Figure 3(d). In the subject-independent case, both models (linear and multitask neural network)

achieved similar performance, and could (to some extent) predict the amount of carbohydrate but

not the amount of protein and fat. Results for the subject-dependent models are markedly differ-

ent. In this case, the multitask neural network significantly outperformed the linear model, and

was able to predict the amount of carbohydrate and fat (but not protein).
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4.2.4.4 Varying Input Features

In a second analysis, we examined whether extracting information from the glucose response

at multiple levels of resolution would increase model performance. For this purpose we used three

families of Gaussian kernels, consisting of 3 kernels, 5 kernels (as shown in Fig. 4.4) and 9 kernels,

or a total of 17 features. Additionally, we subtracted the baseline glucose value from these AUC

calculations. Given the poor results of the linear regression model, in this case we compared the

multitask neural network against a single task neural network (a separate network for each of the

three macronutrients). Results are shown in Table 4.5 for four different models:

• 5M: the previous multitask model with 5 Gaussian AUCs as inputs

• 17M: a multitask model with 17 Gaussian AUCs as inputs

• 5S: a single task model with 5 Gaussian AUCs as inputs

• 17S: a single task model with 17 Gaussian AUCs as inputs

By analyzing the two sets of results, we find that subtracting the baseline glucose levels (Ta-

ble 4.5) improves model performance compared to using the absolute glucose level (Table 4.4).

More specifically, we find that in the subject-independent case, AUC values relative to the base-

line glucose level improve the prediction of carbohydrates, while in the subject-dependent case

it improve carbohydrates, protein, and fat estimations and the level of statistical significance of

the findings for the latter two. Further, adding features at multiple levels of resolution to the 5M

model improved the prediction of carbohydrates for the four models, but not the prediction of

fat and protein. Most importantly, the multitask model significantly outperformed the single task

model for carbohydrate prediction (both in the subject-dependent and subject-independent cases)

and the protein and fat prediction for the subject-independent model. This result clearly shows the

advantage of the multitask architecture.
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Table 4.6: Performance of the subject-dependent model after accounting for each subject’s phys-
iological parameters. Two approaches were used: adding the physiological parameters as in-
puts to the network, and normalizing the network’s target value by the physiological parameter.
Reprinted/adapted with permission from [7].

Regression subject-independent
C P F

17 RMT 0.44∗∗∗ −0.10 −0.08
17 RMT + additional inputs 0.39∗∗∗ −0.04 0.20
17 RMT + normalized outputs 0.62∗∗∗ 0.23∗ 0.30∗∗

Significance: ***: p < 0.0001, **: 0.0001 ≤ p < 0.05, *: 0.05 ≤ p < 0.1

Figure 4.6: Best fit regression and 95% confidence interval of all test results pooled in a single
regression plot when predicting (a) absolute amount of carbohydrates and (b) values relative to
each subject’s body weight for carbohydrates (CHO). Reprinted/adapted with permission from [7].

Table 4.7: Confusion matrix for ternary classification. Reprinted/adapted with permission from [7].

Ground Truth
Carbohydrates Protein Fat

Low Medium High Low Medium High Low Medium High

Low 6 1 0 3 3 2 6 3 1

Direct Classification Medium 5 30 5 7 24 7 7 24 4

High 1 0 8 2 4 4 0 4 7

Pr
ed

ic
te

d

Low 11 2 0 7 2 1 10 8 2

subject-dependent Thresholds Medium 1 30 0 5 26 5 3 16 2

High 0 0 12 0 3 7 0 7 8
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4.2.4.5 Improving Subject-Independent Models with Body Composition Features

Next, we examined whether the subject-independent models could be improved by including

physiological parameters of each subject, e.g., body weight, lean body mass, fat mass, and body

mass index. For this purpose, we considered two strategies: (1) using these physiological param-

eters as additional inputs to the multitask neural network, and (2) dividing the network’s target

values by the physiological parameters (i.e., normalization of outputs). Results are shown in Ta-

ble 4.6 when using body weight as the physiological parameter; similar results (not included here)

were obtained when using lean body mass, fat mass, and body mass index. Adding the body weight

as an input to the model did not improve performance, arguably because of the small size of the

training set and difficulty in optimally training the input weights in the network. However, nor-

malizing the network’s target values relative to the body weight significantly improved the model

predictions for the three macronutrients. Thus, it was not the absolute amount of the macronu-

trients in the meal but the amount relative to each patient’s physiological parameters (in this case

body weight) that should be used as a target. Figure 4 illustrates the adjustment of the labels that

lead to the improvement in the subject-independent model, as a result of normalizing the output,

which has a correlation coefficient of 0.62 for carbohydrates (Figure 4b) versus 0.44 (Figure 4a).

4.2.4.6 Ternary Classification

In a final analysis, we evaluated the performance of the multitask neural network when used

for ternary classification in the subject-dependent case, in which macronutrient compositions were

collapsed into three levels: low, medium and high. As a reminder, for each of the 7 subjects, we

trained 9 models in the subject-dependent case: one model trained on 8 meals and tested on the

remaining 9th meal. We then determined the regression value threshold below which we would

classify “low” and above which we would classify “not low” (medium or high), by sweeping this

threshold from the minimum to maximum values provided in the training set, as in the creation of

a receiver operating characteristic curve. We selected the lowest such threshold that optimized the

f1 score for the low class for each macronutrient. We repeated this process for the highest such
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threshold that optimized the f1 score for the high class. Any value in between these thresholds was

classified as the medium class. In order to evaluate performance of our multitask neural network

with these subject-dependent thresholds, we compare our findings with a multitask neural network

trained for classification (rather than correlation).

Results for the classification task are summarized in Table 4.7 (pooled across all subjects). We

compare our approach, which applies a subject-dependent threshold to discretize model outputs

into three categories (i.e., low, medium, high), against a direct classification approach where the

neural network is trained as a classifier. For low carbohydrates (predicting low vs. medium/high),

we have the following results: (1) the precision, recall, and f1 score for the low class for our

subject-dependent threshold model are 0.85, 0.92, and 0.88; (2) the precision, recall, and f1 score

for the direct classification model are 0.86, 0.50, and 0.63 respectively. For medium carbohydrates

(vs. low/high), we have the following results: (1) the precision, recall, and f1 score for the low class

for our subject-dependent threshold model are 0.97, 0.94, and 0.95; (2) the precision, recall, and

f1 score for the direct classification model are 0.75, 0.97, and 0.85 respectively. For high carbohy-

drates (vs. low/medium), we have the following results: (1) the precision, recall, and f1 score for

the low class for our subject-dependent threshold model are 1.00, 1.00, and 1.00; (2) the precision,

recall, and f1 score for the direct classification model are 0.89, 0.62, and 0.73 respectively. We find

that the direct classification results, while accurate at f1 scores of 0.63 (low), 0.85 (medium), and

0.73 (high), the model does not account for extra penalties for lows classified as highs and highs

classified as lows. This is why our subject-dependent threshold model (picking subject-dependent

thresholds from the multitask neural network regression model) has more accurate f1 scores at 0.88

(low), 0.95 (medium), and 1.00 (high) respectively, because it is trained initially as a regression

model with optimal correlation coefficient.

We find the same classification improvements in proteins and fats. For proteins, the f1 score

for our subject dependent threshold model vs. direct classification is: 0.64 vs. 0.30 for low

(vs. medium/high), 0.78 vs. 0.70 for medium (vs. low/high), and 0.61 vs. 0.35 for high (vs.

low/medium). With the poorer performance in estimating proteins we find that the bulk of correct
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predictions come from estimating the majority class: medium. For fats, we find the two tech-

niques perform similarly: 0.61 vs. 0.52 for low (vs. medium/high), 0.62 vs. 0.72 for medium (vs.

low/high), and 0.59 vs. 0.61 for high (vs. low/medium). These findings indicate that the direct

classification tends to predict medium, while the subject-dependent threshold model varies low

and high predictions more, but the prediction performances are relatively similar. In both findings,

the classification results demonstrate accuracy in predicting low and high, even though the class

imbalance tends towards medium. However, Table 4.7 shows that the subject-dependent threshold

findings reduce the number of extreme misclassifications (lows as highs and highs as lows).

4.2.5 Discussion

This study proposes a technique to predict the amount of macronutrients in a meal from the

shape of the glucose response of the meal, using continuous glucose monitors and a novel multitask

neural network. Our results indicate that the amount of carbohydrates (and to a lesser extent fats but

not protein) can be predicted, as measured through regression and classification tasks. We validated

our approach in a series of experiments. We find that subject-dependent models, where a separate

model is trained for each subject, significantly outperform a subject-independent model, where

a single model is trained by pooling data from multiples subjects. This is consisted with other

studies which have shown that metabolism and therefore the glucose response to a meal is unique

to each individual [242]. We find that the multitask network, which jointly predicts the amount of

the three macronutrients, outperforms a single-task method that uses three separate networks (one

for each macronutrient). We explored several techniques to improve model performance. First,

we find that subtracting fasting glucose levels improves performance when compared to using the

absolute glucose response. Second, we find that normalizing the amount of macronutrients relative

to body composition (e.g., body weight) also improves model performance. These results show

that fasting glucose and body composition are part of the phenotype of each subject. Finally,

we also find that features extracted a multiple levels of resolution do not improve performance

compared to using features at a single time scale. We also examined evaluated the performance

of the model when used as a classification task, where the amount of each macronutrients was
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discretized into three labels: low, medium and high. We find that obtaining class labels by training

the neural network as a regression model, and then discretizing the model outputs, provides higher

classification performance than training the network directly as a ternary classifier.

4.2.6 Limitations and Future Work

Our study was conducted in a controlled setting, where participants remained stationary fol-

lowing consumption of a meal. As such, the model does not account for physical activity following

a meal, which is known to influence (i.e., reduce) the glucose response. Our approach extracts in-

formation over the eight hours that follow a meal, too long of a period in practice. It is possible

that similar prediction results could be achieved by extracting information over a shorter time pe-

riod (e.g., 2-4 hour) but this remains to be tested. Future work also needs to examine whether

results obtained on liquid meals generalize to realistic meals, which are generally solid and are

consumed over a longer period (compared to ingesting a liquid meal at one time). Finally, partici-

pants consumed each meal only once, so our study is unable to assess the levels of intra-individual

variability, which are also known to exist [242]. All of these limitations will be assessed in a forth-

coming study where participants will consume a number of solid and liquid meals over an extended

period while carrying out with their daily lives and monitoring their physical activity with fitness

trackers.

4.2.7 Discussion

This work showed that the carbohydrate and fat content of a meal can be estimated by analyzing

post-prandial glucose responses. Our study is related to but different from that of Zeevi et al. [242].

In that seminal work, the authors showed that the glucose response of a meal can be predicted from

the meal’s contents. Instead, our study addresses the reverse problem: predicting meals’ contents

from their glucose response. As such, we believe our study is the first of its kind. While not

definite, our results are encouraging and open the possibility of automatically tracking dietary

intake, an essential component in the management of diabetes.
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5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

The increasing attention and utility of machine learning for enhancing human well-being and

health has been the backbone research of this dissertation. Again, The fast-growing artificial in-

telligence industry has spurred some interesting health-related applications, and inversely the real-

world need of mobile and clinical health problems have pushed forward many theoretical findings

for algorithmic development. In this dissertation I have discussed the opportunities along with the

challenges in the field. We have observed many discrepancies of compatibility between sophisti-

cated machine learning models and the nuanced biomedical issues. I have discussed how we can

bridge the gap between the pure theory and the problem in the wild, any tangible development

would not render any satisfactory results.

For my research looking back for the dissertation, the main goal is to organically merge the

two fronts together and therefore the real-world health application can benefit from the powerful

machine learning models and at the same time the algorithm can be guided for social good in

general. My two main pillars of research interests lie in mobile health and clinical health, which are

seemingly different but very connected. 1) First the artificial intelligence applications have been

seen in some real-world clinical settings, such as risk prediction, phenotyping, or personalized

treatment. But either due to lack of in-depth machine learning expertise or clinical intuition, many

models are still in a primitive stage. For example, many clinical prediction models assume the

patient data is homogeneous or noise-free. However, in the real-world medical domain, this is still

a big challenge even with the curated clinical dataset. My work has focused on many aspects of

these discrepancies, such as data imbalance, missing values, hidden phenotypes. Many of those are

inspired by the unique challenges of clinical data but the developments of such models also shed

light on more theoretical model developments for the machine learning world at large. For one

tangible example, the patient outcome of interest always if not all accounts for a smaller portion

132



of the data, such as mortality in an ICU stay, or detection of COVID in a free-living environment.

This data distribution discrepancy among the classes can bias the model towards outputting the

prediction mostly aligned with the majority of the cohort, which in this case is the cohort without

carrying the high risk factor. However, any useful model should output not only prediction aligned

with some accuracy metric, but also differentiate the underlying latent subgroups that are hidden

in the data. I have conducted various experiments on that aspect for this purpose.

2) Second, beyond what we have inside the hospital, the most abundant information sources

for well-being monitoring are in free-living environments, which could not be captured by in-

hospital devices. With the growing number of smartphones and wearable devices, we have seen

the enormous opportunities of extending health modeling to many other aspects of people’s lives.

However, these opportunities are not going to present themselves unless we can solve many im-

minent challenges at hand. First in a free-living environment, users’ behaviors are out of control

compared to laboratory settings. We would envision many heterogeneous user behaviors and even

within one user, the behavior would likely change over time. How can we take that into account to

have a continually growing model for any given unknown context is of great interest. The uncer-

tainty quantification aspect of the model becomes very relevant, which has been intensively studied

through my research for mobile health application.

5.2 Future Work

The exciting trend of AI for health is the goal of my research, specifically targeting at data

heterogeneity at different granularity levels. To advance in that direction, I have put together

the pieces of some of my research outlooks in the following paths. First, I plan to continue the

translational research for algorithms that are developed towards the tangible benefit of their utility

towards human well-being monitoring, on both the population-level and personal-level heterogene-

ity. This requires combining some of the machine learning frontlines together such as continual

learning, multimodal learning, domain adaptation, to bring about more intelligent systems that

require minimal human intervention to operate under many noisy and uncertain real-world con-

ditions. For example, how does data source from one domain become useful in another one or
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the data source from previous data collection trial be useful for the current one, through learning

some time-invariant high-level representation. Second, I plan to dive deeper into the real-world

data analytics. For example, in the mobile health domain, users might not be willing to share their

raw data but how can we make use of tens of thousands of smart phone data without infringing

on personal privacy. Federated learning or swarm intelligence can be of great help when we train

the model locally and update the parameters remotely, for example through sharing the gradients

instead of the raw data. Another example can be the clinical health domain, where the low inter-

pretability has been the bottleneck for many machine learning models and therefore the adoption

rate in the hospitals for such algorithms are currently low. To make the model more transparent

without the sacrifice of accuracy is one of the key components toward AI for health. With many

prominent opportunities and challenges at hand, I plan to continue to build a more robust and gen-

eralizable machine learning pipeline to be useful in a more dynamic and uncertain environment for

the common good of human well-being.
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APPENDIX A

SUPPLEMENT MATERIAL

Table A.1: List of Candidate Variables used for Predicting Mortality of TOPCAT dataset.
Reprinted/adapted with permission from [4].

Variable Names Definition

age_entry.x Age entering the study

GENDER.x Gender of the subject

RACE_WHITE White or Caucasian

RACE_BLACK Race: Black

RACE_ASIAN Race: Asian

RACE_OTHER Race: Other

ETHNICITY Subject of Hispanic, Latino, or Spanish origin?

DYSP_CUR Dyspnea: Present at screening?

DYSP_YR Dyspnea: experienced in past year?

ORT_CUR Orthopnea: Present at screening?

ORT_YR Orthopnea: experienced in past year?

DOE_CUR Dyspnea on exertion: Present at screening?

DOE_YR Dyspnea on exertion: experienced in past year?

RALES_CUR Rales present at screening?

RALES_YR Rales: experienced in past year?

JVP_CUR JVP: Present at screening?

JVP_YR JVP: experienced in past year?

EDEMA_CUR Edema: Present at screening?

EDEMA_YR Edema: experienced in past year?

EF Ejection Fraction
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CHF_HOSP Previous hospitalization for CHF

chfdc_dt3 Time Between randomization and Hospitalization for Cardiac Heart

Failure (years)

MI Previous myocardial infarction

STROKE Previous Stroke

CABG Previous Coronary artery bypass graft surgery

PCI Previous Percutaneous Coronary Revascularization

ANGINA Angina Pectoris

COPD Chronic Obstructive Pulmonary Disease

ASTHMA Asthma

HTN Hypertension

PAD Peripheral Arterial Disease

DYSLIPID Dyslipidemia

ICD Implanted cardioverter defibrillator

PACEMAKER Pacemaker implanted

AFIB Atrial fibrillation

DM Diabetes Mellitus

treat_sp_cat Treat for diabetes mellitus: other: specify (categorical variable)

SMOKE_EVER Has subject ever been a smoker

QUIT_YRS How many years since quitting

alcohol4_cat How many Drinks do you consume per week (0/1-5/5-10/11+)

HEAVY_WK Exercise: Heavy

MED_WK Exercise: Medium

LIGHT_WK Exercise: Light

LIGHT_MIN Exercise: Light: Minutes

mets per week Activity Level (mets per week)

cooking_salt_score Cooking Salt Score
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nyha_class_cat NYHA class 3&4 vs 1&2

HR.x Heart rate

SBP Systolic blood pressure

DBP Diastolic blood pressure

gfr Glomerular Filtration Rate

NA_mmolL Sodium: Result (mmol/L)

K_mmolL Potassium: Result (mmol/L)

CL_mmolL Chloride: Result (mmol/L)

CO2_mmolL CO2: Result (mmol/L)

BUN_mgdL Blood Urea Nitrogen: Result (mg/dL)

GLUCOSE_mgdL Glucose: Result (mg/dL)

GLUCOSE_INDICATOR Whether the glucose measured was fasting or random

WBC_k/µL WBC count: Result (k/uL)

HB_gdL Hemoglobin: Result (g/dL)

PLT_k/µL Platelet Count: Result (k/uL)

ALT_UL Alanine Aminotransferase: Results (U/L)

ALP_UL Alkaline Phosphatase: Results (U/L)

AST_UL Aspartate Aminotransferase: Results (U/L)

TBILI_mgdL Total Bilirubin: Results (mg/dL)

ALB_gdL Albumin: Results (g/dL)

urine_val_mgg Urine Microalbumin/Creatinine Ratio: Result (mg/g)

QRS_DUR QRS Duration

ECG_AFIB Atrial fibrillation/Flutter

ECG_BBB2 Bundle Branch Block - Yes/No indicator

ECG_VPR Ventricular paced rhythm

ECG_Q Pathological Q waves

ECG_LVH Left ventricular hypertrophy
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drug.x Treatment Group (Spironolactone or Placebo)

BMI Body Mass Index

cigpacksperday Number of cigarettes per day

phys_limit_score KCCQ: Physical Limitation score

symp_stab_score KCCQ: Symptom Stability score

symp_freq_score KCCQ: Symptom Frequency score

symp_bur_score KCCQ: Symptom Burden score

tot_symp_score KCCQ: Total Symptom score

self_eff_score KCCQ: Self-Efficacy score

qol_score KCCQ: Quality of Life score

soc_limit_score KCCQ: Social Limitation score

overall_sum_score KCCQ: Overall Summary score

clin_sum_score KCCQ: Clinical Summary score
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Table A.2: Phenotype labels for MIMIC-III dataset. Reprinted/adapted with permission from [4].

Phenotype type
Acute and unspecified renal failure acute

Essential hypertension chronic
Acute cerebrovascular disease acute
Fluid and electrolyte disorders acute
Acute myocardial infarction acute
Gastrointestinal hemorrhage acute

Respiratory failure; insufficiency; arrest acute
Hypertension with complications chronic

Chronic kidney disease chronic
Other liver diseases mixed

Chronic obstructive pulmonary disease chronic
Other lower respiratory disease acute

Complications of surgical/medical care acute
Other upper respiratory disease acute

Pleurisy; pneumothorax; pulmonary collapse acute
Conduction disorders mixed

Congestive heart failure; nonhypertensive mixed
Pneumonia acute

Coronary atherosclerosis and related chronic
Cardiac dysrhythmias mixed

Diabetes mellitus with complications mixed
Diabetes mellitus without complication chronic

Disorders of lipid metabolism chronic
Septicemia (except in labor) acute

Shock acute
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