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ABSTRACT

Secure multi-party computation (MPC) is one of the most important and fundamental problems

in distributed computing. MPC allows a set of parties to compute an arbitrary function of their

(potentially private) inputs in a secure way even in the presence of an adversary. The problem has

been studied extensively in the synchronous setting, where it is assumed that there exists a global

clock and the delay of any message in the network is bounded. However, though theoretically

impressive, such networks do not model adequately real-life networks, like the Internet.

In this work, we present the first construction for MPC in the partial synchronous setting, where

there’s an unknown bounded delay on the message delivery time. Our protocol achieves optimal

resilience, involving n = 3t + 1 parties and tolerating a malicious adversary, capable of corrupting

up to t parties.
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1. INTRODUCTION AND LITERATURE REVIEW

Consensus algorithm (Byzantine Agreement), introduced by Lamport et al., [LSP82], is a fun-

damental primitive in distributed computing. The traditional setting in which the problem was

introduced and investigated considers synchronous communication and protocol execution, where

no network delay is assumed. Since studying the Byzantine problem in synchronous setting is un-

realistic when relating it to distributed computing, Dwork et al, [DLS88] extended the analysis and

studied the problem in the partial synchronous setting. According to [DLS88], in a partially syn-

chronous system: there’s a fixed unknown upper bound on the delay that the adversary may inflict

to the delivery of any message; and there’s a fixed unknown upper bound on the relative speed of

different processors. Dwork et al, proved that with or without public key infrastructure(PKI), the

protocol can’t tolerate more than n/3 malicious parties.

With the introduction of “Nakamoto” Consensus and blockchains e.g., Bitcoin [Nak09], it demon-

strated how can Consensus and Broadcast can be reached even in settings where a majority of

the participants might be adversarial, as long as the majority of the computation power remains

honest. Similar approaches were also used for alternative blockchains that relied on other differ-

ent assumptions about restricting different resources, such as proof of stake, proof of space,...etc.

In “Nakamoto” consensus [Nak09], parties engage and organize transactions in a ledger without

having any information about each other (Public Key Infrastructure) or knowledge of the number

of parties participating in the protocol at any given time. This contrasts with classical models and

results in consensus (Byzantine agreement).

This proposes the following question:

Could the resource-restricted paradigm be generically used to circumvent the classical strong

impossibility results or is the mismatch due to different model and goals?
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This work extends on the the initial formulation of RRC [Gar+20], where it considers crypto-

graphic protocols executing in an idealized synchronous network. Specifically, we address the

open applicability and relevance of the framework to more realistic network models that take into

account both communication delays and parties operating at different speeds due to different clock

rates—the so-called “partial synchrony” model (cf. [dls], [Bad+19]]).

This work also studies various cryptographic primitives in the bounded-delay network. It has come

to our attention how understudied this field is and we wanted to fill in the gap. As mentioned ear-

lier, the bounded-delay network is much more practical and relevant than the intensively-studied

synchronous setting. We believe that this work will be a milestone for the current-emerging appli-

cations, which their security is depended on the bounded-delay network.
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2. The justification and Significance of the Study

Byzantine agreement (BA), introduced by Lamport, Shostak, and Pease, is a well studied problem,

and and is at the core of many secure multi-party computation (MPC) protocols.[LSP82]. The

problem comes in two flavors; Consensus and Broadcast. Consensus considers a set of n parties

P = {P1, . . . , Pn} each of whom has an input xi, and who wish to agree on an output y

(Consistency) such that if xi = x for all honest parties then y = x (Validity), despite the potentially

malicious behavior of up to t of them. In the Broadcast version, on the other hand, only a single

party, often called the sender has an input xs, and the goal is to agree on an output y (Consistency)

which, when the sender is honest equals x (Validity).

The problem was originally studied in the synchronous setting, where parties proceed in rounds

at the same time and each party has a consistent view of the current round. The underlying com-

munication network is a complete point-to-point authenticated channels network, where every pair

(Pi, Pj) of parties is connected by a channel, such that when Pj receives a message on this channel

it knows it was indeed sent by Pi. In this synchronous setting, [LSP82] proved that there exists

no Consensus or Broadcast protocol which can tolerate t ≥ n/3 Byzantine parties, i.e., parties

controlled by a (central) active and malicious adversary. This is in the information theoretic model

(security with zero error probability) and no correlated randomness shared among the parties.

However, using PKI(public-key infrastructure), Dolev and Strong [DS83] proved that assuming

a PKI implying existentially unforgeable digital signatures (e.g., one way functions) Broadcast

tolerating arbitrarily many (i.e., t < n) malicious corruptions is possible.

In world-scale systems, it is difficult to argue for synchronous communication. Consequentially,

the focus has shifted away from synchronous systems towards asynchronous systems. In the asyn-

chronous setting model, for any message sent, the adversary can delay its delivery by any finite

amount of time. So, on the one hand, there is no bound on the time to deliver a message but, on the
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other hand, each message must eventually be delivered. It is much more challenging for an honest

party to assess whether another party is malicious, if that party’s messages can be indeterminately

delayed, but this scenario much better reflects that network reliability in the real world.

Unfortunately, the fundamental impossibility result of [FLP85] demonstrates that there is no deter-

ministic algorithm for achieving agreement in the asynchronous setting even against benign fail-

ures. One solution which overcomes this problem, first introduced by Rabin [Rab83] and Ben-Or

[Ben83], is to use randomisation.

To circumvent the [FLP85] impossibility result and to have a more flexible model, the notion of par-

tial synchrony was introduced by Dwork, Lynch and Stockmeyer in [DLS88]. A partial synchrony

model captures the intuition that systems can behave asynchronously (i.e., with variable/unknown

processing/communication delays) for some time interval, but that they eventually stabilize and

start to behave (more) synchronously. Therefore, the idea is to let the system be mostly asyn-

chronous but to make assumptions about timing properties that are eventually satisfied.

Dwork et al,. [DLS88] introduced to types of partial synchronous model;

Model 1:

1. there’s a fixed unknown upper bound 4 on the delay ( measured in number of rounds) that

the adversary may inflict to the delivery of any message.

2. there’s a fixed unknown upper-bound φ on the drift between any two parties

Model 2: For each execution, there is an unknown global stabilization time GST,where after GST

1. there’s a fixed known upper bound4 on the delay ( measured in number of rounds) that the

adversary may inflict to the delivery of any message.

2. there’s a fixed upper-bound φ on the drift between any two parties

4



[DLS88] determines the maximum resiliency possible for fault models in partial synchronous set-

ting. The following table summaries the paper’s results.

The blockchain era With the recent introduction of blockchain, "Nakamoto" consensus violated

the information-theoretic bounds{ no consensus for t ≥ n/3}, showing that even a majority of

corrupted parties can be tolerated as long as the majority of the computation resources remain at

honest hands, even without public key infrastructure.

An intriguing question comes to mind, can the dolev and strong impossibility bounds, where they

consider [LSP82] model (of instant delivery authenticated channels and full synchrony) be circum-

vented under the resource-restricting paradigm?

[Gar+20] answered this question in the affirmative, by representing resource-restricting paradigm

as an access restriction on the underlying communication network. Basically, the parties are re-

stricted from sending unbounded messages to other parties. The paper constructs the model in

Canetti’s Universal Composition framework [CA02], representing the restriction of the resources

available to the adversary by means of a functionality wrapper, which wraps a communication

network and restricts the ability of parties (or the adversary) to send new messages through this

network. The paper only deals with synchronous setting.

In this work, we build on the [Gar+20] paper, by extending the work to the partial synchronous set-

ting. We attempt to circumvent the bounds in [dls] using the same idea of the resource-restriction

paradigm. We attempt to answer whether the same model could be used to reach a better resiliency

in the partial synchronous bound or not.
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3. Foundations

3.0.1 Cryptographic Primitives

Protocols (or algorithms) take an input x, from a certain domain D, perform a computation x

and gives an output y = f(x). There are two types of algorithms; deterministic and randomized.

Deterministic means that given a certain input, it will always output the same value y. Unlike de-

terministic, randomized algorithms’ output depend on the randomness factor. Meaning, it doesn’t

always output the same thing. Essential properties of algorithms are whether they output the correct

computation, and how long they take to halt.

In a deterministic algorithm, if it has a polynomial upper-bounded computational worst-case com-

plexity, then we say it is called polynomial. For probabilistic algorithms, there are two types of

algorithms; Monte-Carlo and Las Vegas. For Monte-Carlo, all inputs produce the correct output

with a probability greater than 1/2, however, the protocol always terminates. For Las vegas, the

protocol isn’t guaranteed to always halt, however, whenever it does, it always outputs the correct

output. The protcol terminates with probability greater than 1/2 as well.

The main goal for cryptographic primitives is to provide secrecy and authenticity of information.

We say a protocol has negligible probability if it is exponentially small in the parameter k. To

prove a protocol is secure, we have to show that the adversary can’t break it with a probability

greater than negligible.
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3.0.2 Cryptographic Protocols

Protocol could be stated informally as a game between some players. Each player is able to send

and receive messages, perform a computation, and could also have access to a random oracle.

When we are talking formally, we say each player is a turing machine. Each turing machine has

an input tape, computation tape, and an output tape. If the turing machine is probablistic, then it

has a random tape as well.

The input tape is where the machine receives its communication from other parties, and it is a read-

only tape. The computation tape is a read and write tape. While, the output tape is a write-only

tape. Furthermore, all turing machines have pairwise communication; they all share tapes with one

another. If a turning machine wants to send data to another turing machine, it will right on the

other’s machine input tape.

When we say a machine took execution step, it means it received a finite number of input messages

from other parties, did some finite computation and made an output to another turing machine.

A protocol is either deterministic or randomized. Deterministic means that given a certain input, it

will always output the same value y. Unlike deterministic, randomized algorithms’ output depend

on the randomness factor. We say a protocol terminates if all party terminates.

3.0.3 Communication

For all algorithms, we assume a fully connected point-to-point network. This means to all players

share read-only and write-only tapes with each other. If we are talking about information-theoretic

protocols, then all these channels are secure. This means that an unconditionally-bounded adver-

sary can’t see any messages between honest parties. Channels are called "authenticated channels",

if the parties know who they received the message from and who they are sending the message

to. Channels are called "private", if the adversary can’t see the messages between honest parties.

Channels are "secure" if they are both private and authenticated.
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A protocol could have a broadcast primitive, meaning that each party could send one message to

everyone, and all parties will receive the same exact message. Among n parties, there are n pos-

sible way to construct broadcast channels, each party could act as a sender. A broadcast primitive

ensures that all parties receive the same message, even if the sender acted maliciously.

3.0.4 Synchronicity

Synchronicity setting is a major factor when studying the protocol. Network could either syn-

chronous, partial synchronous or asynchronous.

Synchronous:

• There’s a fixed known upper bound ∆ on the delay ( measured in number of rounds) that the

adversary may inflict to the delivery of any message.

• There’s a fixed upper-bound α on the drift between any two parties

Partial Synchronous:

• there’s a fixed known upper bound4 on the delay ( measured in number of rounds) that the

adversary may inflict to the delivery of any message.

• there’s a fixed upper-bound φ on the drift between any two parties

Asynchronous:

• No upper-bound on the message delay

• Eventual-delivery

3.0.5 Adversary

There are two types of adversaries; malicious and passive. A passive adversary follows the pro-

tocol, but try to gain information that’s not authorized to. A malicious adversary may steer away

from the protocol. He could either halt at a random point of the protocol(fail or stop), send wrong

8



messages or do wrong computation (malicious). A malicious adversary can read all the infomration

of its corrupted party and We say a protocol is t-resilient if it could withstand up to t-adversaries.

Usually, t is a function of the n number of players. We say a protocol assumes honest majority if it

requires t < n/2

3.0.6 Computational Power

The adversary could either has unconditional or conditional power. Conditional power if it is in

cryptographic setting. Meaning that the setting depends on some hard mathemtical assumptions

such as deffie helman or factoring of primes problem. An information-theoretic setting is when the

adversary has unconditional-power. Note that in the information-theoretic setting, we assume that

the channels between honest parties are secure
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4. Byzantine Generals Problem

Byzantine agreement (BA), introduced by Lamport, Shostak, and Pease, is a well studied problem,

and and is at the core of many secure multi-party computation (MPC) protocols.[LSP82]. The

problem comes in two flavors; Consensus and Broadcast. Consensus considers a set of n parties

P = {P1, . . . , Pn} each of whom has an input xi, and who wish to agree on an output y

(Consistency) such that if xi = x for all honest parties then y = x (Validity), despite the potentially

malicious behavior of up to t of them. In the Broadcast version, on the other hand, only a single

party, often called the sender has an input xs, and the goal is to agree on an output y (Consistency)

which, when the sender is honest equals x (Validity).

The problem was originally studied in the synchronous setting, where parties proceed in rounds

at the same time and each party has a consistent view of the current round. The underlying com-

munication network is a complete point-to-point authenticated channels network, where every pair

(Pi, Pj) of parties is connected by a channel, such that when Pj receives a message on this channel

it knows it was indeed sent by Pi. In this synchronous setting, [LSP82] proved that there exists

no Consensus or Broadcast protocol which can tolerate t ≥ n/3 Byzantine parties, i.e., parties

controlled by a (central) active and malicious adversary. This is in the information theoretic model

(security with zero error probability) and no correlated randomness shared among the parties.

10



5. Multi-Party Computation

Multi-party computation is one of the most fundamental problems in distributed computing. First

we provide an ideal definition for MPC. A computation in this ideal model proceeds as follows.

Beginning for a model to be ideal and has an ideal-model adversary. The adversary would chooses

to corrupt some parties as it desires. The corruption could be malicious or passive. The adevrsray

first learns their inputs, and perhaps changes it. After that, all parties give their inputs to a trusted

entity. The trusted party then computes the output based on the inputs given to it. The trusted party

then hands it to all parties. We don’t care about what the corrupted parties’ output. The honest

parties output the value received from the trusted party. We then say an MPC protocol is secure if

the execution in the real world is equivalent to the execution in the ideal model.

MPC must maintain the following properties:

• Correctness: The output must be the correct value of running the function on the parties’

inputs

• Privacy: none of the parties’ inputs is leaked.

MPC problem was intensively studied in different setting; synchronous, partial synchonous and

asynchronous. In the information-theoretic setting: the protocol can withstand up to t < n/3

malicious parties in the synchronous setting, and t < n/4 in the asynchronous setting. In the

cryptographic setting, a protocl could withstand up to t < n/2 in the synchronous setting, and

t < n/3 in the asynchronous setting.
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6. Resource-Restricted Cryptography

The blockchain era With the recent introduction of blockchain, ”Nakamoto” consensus vi- olated

the information-theoretic bounds no consensus for t ≥ n/3, showing that even a majority of cor-

rupted parties can be tolerated as long as the majority of the computation resources remain at hon-

est hands, even without public key infrastructure. An intriguing question comes to mind, can the

dolev and strong impossibility bounds, where they consider [LSP82] model (of instant delivery au-

thenticated channels and full synchrony) be circumvented under the resource-restricting paradigm?

[Gar+20] answered this question in the affirmative, by representing resource-restricting paradigm

as an access restriction on the underlying communication network.

Basically, the parties are restricted from sending unbounded messages to other parties. The paper

con- structs the model in Canetti’s Universal Composition framework [CA02], representing the

restriction of the resources available to the adversary by means of a functionality wrapper, which

wraps a communication network and restricts the ability of parties (or the adversary) to send new

messages through this network. The paper only deals with synchronous setting.

6.0.1 Revisiting Impossibility Theorem

In [DLS88], it provided two proofs; one for which communication is partially synchronous, and

one for which processors are partially synchronous. We attempt to propose a comparable proof

where both processors and communication are partially synchronous.

Lemma

For the case n=3 and t=1, the proof is based on constructing three scenarios σ1, σ2, and σ3.

In σ1, all initial values are 0, the processor P3 is initially dead, and the messages sent between P1

and P2 are delivered in exactly time 1. By t-resiliency, parties P1 and P2 decide 0 within some
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finite time; say TA.

In σ2, P2 is initially dead, and the messages sent between P1 and P3 are delivered in exactly time

1. By similar argument, P1 and P3 decide 1 within some finite time; say TB.

In σ3, P2 has initial value 0, and P3 has initial value 1, and P1 is byzantine. P1 behave with respect

to P2 like scenario σ1, and with respect to P3 like scenario σ2. The messages sent between P1 and

P2, as well as, P1 and P3 are delivered in exactly time 1, but all the messages between P2 and P3

are delivered within time TAB > 1. Also, party P3 has a clock-drift of -(TA-1), in other words, it

wakes up after time TA−1. Party P2 (respectively P3) acts exactly like in scenario σ1 (respectively

σ2. Therefore, P2 will decide 0 by time TA, and party P3 will decide 1 by time TA+TB−1. Hence,

arriving at contradiction.

Proof:

Theorem: Assume the model with byzantine fault, in which communication and and proces-

sors are partially synchronous. Assume,

pq <
1

(Φ + ∆) · γ · n
(6.1)

where p is the probability of success of random oracle query, q is the number of queries

0 < q ≤ 1, ∆ is the upper bound on message delay and Φ is the upper bound on the clock

drift. Then, the impossibility theorem from DLS doesn’t go through.

Proof. For simplicity, let ∆‘ = ∆ + Φ and pq = 1
(1+α)(Φ+∆)·γ·n .

In every fragmant of ∆′ rounds, the number of messages sent by the adversary (number of suc-

cessful random oracle queries) is distributed as binomial distribution with parameters ∆′ · q (trials)

and p(success probability). Let random variable Xi be 1 if i-th query is successful, and 0 other-

wise. Let k∆′ be the total number of rounds. We will show that the adversary can’t send more
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than < k messages except with negligible probability. Let X = Σk∆′
i=0Σq

j=1Σγ·n
k=1. It holds that

E[X] = k∆′ · q · γ · n · p. By an application of Chernoff bound, for δ = α we obtain

Pr[X ≥ (1 + δ)E[X] = Pr[X ≥ (1 + δ)k∆′qγnp]

= Pr[X ≥ k(1 + δ)

(1 + α)
]

= Pr[X ≥ k]

≤ e−
α2

2+α
k

(1+α)

≤ e−Ω(αk)

(6.2)

Hence, with negligible probability, the adversary will be able to send k or more messages in the

k∆′ rounds. On the other hand, any party can send at most k-1 messages with overwhelming

probability. Let Y = Σk∆′
i=0Σq

j=1.

Since,

Pr[Y < K] = 1− Pr[Y ≥ K] (6.3)

We need to show that Pr[Y ≥ K] is negligible so that equation (3) would have overwhelming

probability. It holds that E[Y ] = k∆′ · q · p. By an application of Chernoff bound for δ =

αγn+ γn− 1 we obtain

Pr[Y ≥ (1 + δ)E[Y ] = Pr[Y ≥ (1 + δ)k∆′qp]

= Pr[X ≥ k(1 + δ)

(1 + α)γn
]

= Pr[X ≥ k]

≤ e−Ω(αkγn)

(6.4)
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7. Broadcast Primitive in Bounded-delay Network

The protocol uses the following broadcast primitive from [ST05]. Basically, for a party i to accept

a message from party j, it has to receive at least 2t+1 (echo, j, m) messages. This helps in restricting

the adversary from sending two conflicting messages to honest parties.

The broadcast primitive achieves the following properties:

1. Correctness: if p is correct, all correct processors agree on the value of its message.

2. Reliability: If p is faulty then, either all correct processor agree on the same value or none of

them accepts.

Since we are assuming the unknown bounded model instead of GST, parties don’t have to keep

echoing the messages, resulting in lower communication complexity. This is due that messages

can be lost before GST, and parties need to keep echoing the message after N-2t messages are

received. No messages are lost in the unknown bounded model according to DLS definition.

Technical Remarks:

• Each party will wait for max(δ clock-ticks, before proceeding to the next round.

Broadcast primitive
• Party i sends (init,i,m) to all
• Code(party j)

– if received (init,i,m), send (echo,i,m) to all
– if received(echo,i,m) from N-2t distinct processors, send(echo,i,m) to all
– if received(echo,i,m) from N-t distinct processors, accept m from party i.

Figure 7.1: Broadcast Primitive
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• We will be using broadcast/accept instead of send/receive following the broadcast primitive

mentioned earlier.

• A value v is acceptable to p if p doesn’t have a lock on any value except possibly v.

Time Complexity: O(∆ · log(∆)) +O(t)
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Protocol
Algorithm (Pj)

1. δ ← 1
//Round s: Propose

2. k ← i mod n and s← 3k − 2
3. set δ = 2 · δ
4. Broadcast message (list, k), where list contains acceptable values that are also in the

proper list
5. if j = i mod n, wait to accept messages from N − t parties that finds v acceptable.

Else, choose a random value from its PROPER set and Broadcast (lock, v, k)
6. Start timeri [δ] if not yet done; wait until timeri [δ] has expires;

//Round s+1: Acknowledge
7. If j 6= i mod n, and has accepted (lock, v, k) message and accepted N-t (list, k)

messages from parties, lock v and send acknowledgment (ack, k) to party Pi.
8. Release any earlier locks on value v
9. if j = i modn and received acknowledgments from at least 2t+1 parties, decide v and

Broadcast (decide, v). Continue to participate in the protocol
10. Start timeri [δ] if not yet done; wait until timeri [δ] has expires;

//Round s+2: Lock-release
11. If j 6= i mod n and has a lock on same value v with associated phase h and has

accepted, at this round or earlier, a valid lock on w with associated phase h’, and if
w 6= v, and h′ ≥ h, then Pj releases its lock on v.

12. if a party accepts t+1 (decide, v) messages from different resources, it decides v and
broadcasts (decide, v).

13. if a party accepts 2t+1 (decide, v), it halts and outputs (decide, v)
14. Start timeri [δ] if not yet done; wait until timersi [δ] has expires;
15. Go to first round

Procedure: Weak Broadcast(m)
16. Party i sends (init, i,m) to all

// Code(party j)
17. if received (init, i,m), send (echo, i,m) to all
18. if received (echo, i,m) from N-2t distinct processors,send (echo, i,m) to all
19. if received (echo, i,m) from N-t distinct processors, accept m from party i

Figure 7.2: Consensus Protocol in the Partial Synchronous setting

17



8. MPC in Bounded-Delay Network

8.0.1 Redefining the UC Functionalities

In order to apply the resource restricted paradigm to the partial synchronous setting, we have to

redefine the UC functionalities.

To formalize the bounded-delay on message delivery, a modified version of the authentication

functionality from [Gar+20] will be used, however, the message will be delivered after a delay set

by the adversary rather than after a single round.

For the bound on speed-drift between honest parties, we use the following version of imperfect lo-

cal clocks from [Bad+19] that allow parties to proceed at roughly the same speed, where "roughly"

is captured by the upper bound φ on the drift between any two honest parties. The only difference

added to the functionality is that it returns the clock-value(whether correct or drifted) to the party,

instead of returning the boolean variable driftp. This facilitate the wrapper’s task in blocking the

messages according to the party’s current round.

By restricting the underlying communication network, restricting the adversarial party from send-

ing unboundedly many new messages than the other party, the impossibility results aren’t appli-

cable anymore. We achieve this with the help of a filtering wrapper functionality. The filtering

wrapper restricts the per-round access of each party to the functionality. Each party has a quota of

q send requests per round, and after a message has been sent through the filter, the sender, as well

as the receiver can re-send the same message for free.

8.0.2 Graded Consensus in the partial Synchronous Setting

In [Gar+20], it used graded consensus by Feldman [FM88] to reach consensus on the parties’

public keys. Since [FM88] only works in the synchronous setting, we had to design a graded
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Verifiable Secret Sharing in Partial Synchronous Setting
Sharing Phase:

• Step 1: Dealer send shares
1. The dealer choose bi-variate polynomial D such that D(0,0)=s
2. For each party Pi, the dealer sends D(x, αi) = Fi(x) and D(αi, y) = Gi(y)

• Step 2: Parties check inconsistencies (code for party Pi)
1. For every party Pj , party Pi sends Fi(αj) and Gi(αj)
2. if Fi(αj) = Gj(αi) and Gi(αj) = Fj(αi), send (authenticate, i, j)
3. If if Fi(αj) 6= Gj(αi) and/or Gi(αj) 6= Fj(αi), send complaint(i, j, Fi(αj),
Gi(αj))

• Step 3: Resolve inconsistencies (Dealer’s code)
1. the dealer checks if Fi(αj) = Gj(αi) and Gi(αj) = Fj(αi), if yes, it does noth-

ing.
if no, it broadcasts reveal(i, Fi(x), Gi(y))

• Step 4: Evaluate complaint resolutions (Code for party Pi):
1. For every j 6= k, party Pi marks (j, k) as a joint complaint if it viewed two

messages complaint(k, j, u1, v1) and complaint(j, k, u2, v2) broadcast by Pk and
Pj , respectively, such that u1 6= v2 or v1 6= u2.

2. Consider the set of reveal(j, fj(x), gj(y)) messages sent by the dealer: If there
exists a message in the set with j 6= i and for which fi(αj) 6= gj(αi) or gi(αj) 6=
fj(αi), then output complain(i,j,fi(αj), gi(αj), and go to last step .
If there exists a message in the set with j = i then reset the stored polynomials
fi(x) and gi(y) to the new polynomials that were received, and go to the last Step
(without broadcasting consistent).

• Step 5: output decision:
1. Wait until all joint complaints (j, k) are resolved for which the dealer broadcast
reveal(k, fk(x), gk(y)) or reveal(j, fj(x), gj(y)) and that the new polynomials
satisfy party P ′is polynomials: If pairwise authenticated 2t+1 parties, broadcast
(consistent)

2. wait until the receive of 2t+1 consistent messages, if Pi sent consistent, set si =
Fi(x), else set Si =⊥

Core-Set Protocol:
– Run n invocation of Byzantine Agreement for each Pj . If BA(Pi) =1. Add Pi to

the core-set C
– If lCl = n-t, start the reconstruction phase.

Reconstruction Phase:
1. Every party Pj in the core-set C, broadcast Fj(x)
2. Each party Pi needs to validate the Fj(x) with the points shared earlier, if so,

broadcast verify(i, j)
3. Wait until the receive of n-t verification messages(*, j), add Fj(0) to the interpo-

lation set I.
4. Wait until lIl = t+1 and Interpolate the secret s, broadcast(secret, s)
5. wait until the receive of 2t+1(secrect, s), terminate.

Figure 8.1: Verifiable Secret Sharing
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Verifiable Secret Sharing in Partial Synchronous Setting
Sharing Phase:

• Step 1: Dealer send shares
1. The dealer choose bi-variate polynomial D such that D(0,0)=s
2. For each party Pi, the dealer sends D(x, αi) = Fi(x) and D(αi, y) = Gi(y)

• Step 2: Parties check inconsistencies (code for party Pi)
1. For every party Pj , party Pi sends Fi(αj) and Gi(αj)
2. If if Fi(αj) 6= Gj(αi) and/or Gi(αj) 6= Fj(αi), A-cast (Complaint, i, j, Fi(αj),
Gi(αj))

• Step 3: Resolve inconsistencies (Dealer’s code)
1. the dealer checks if Fi(αj) = Gj(αi) and Gi(αj) = Fj(αi), if yes, it does noth-

ing.
if no, it A-casts (Reveal, i, Fi(x), Gi(y))

• Step 4: Evaluate complaint resolutions (Code for party Pi):
1. For every j 6= k, party Pi marks (j, k) as a joint complaint if it viewed two

messages (Complaint, k, j, u1, v1) and (Complaint, j, k, u2, v2) A-casts by Pk
and Pj , respectively, such that u1 6= v2 or v1 6= u2.

2. Consider the set of (Reveal, j, fj(x), gj(y)) messages sent by the dealer: If there
exists a message in the set with j 6= i and for which fi(αj) 6= gj(αi) or gi(αj) 6=
fj(αi), then output (Complaint, i, j,fi(αj), gi(αj).
If there exists a message in the set with j = i then reset the stored polynomials
fi(x) and gi(y) to the new polynomials that were received.

• Step 5: Core-Set Protocol:
– Run n invocation of for each Pj . If (Pj) =1. Add Pj to the core-set C
– If lCl = N-t, start the reconstruction phase.

Reconstruction Phase:
1. Every party Pi in the core-set C, A-casts Fi(x)
2. Each party Pj needs to validate the Fj(x) with the points shared earlier
3. Run n invocations of on party Pi’s input.
4. If (Fi(x)) terminates and it aligns with the points sent earlier, add Pi to set lIl.
5. Wait until lIl = N-2t and Interpolate the secret s, output(secret, s)

Figure 8.2: Verifiable Secret Sharing in bounded-delay
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FAUTH
∆

The functionality registers with the global clock Gclockφ, and is parameterized by a set of
possible senders and receivers, denoted by P, a list M ′, and integer variables of the form Dz,
where z ∈ {0, 1}∗ , that are dynamically created. For every party p ∈ P it maintains a fetch
counter fp . Initially, M ′ = ∅ and fp = 0, for every P ∈ P.

• Upon receiving (send,sid, m, Pj ) from Pi ∈ P, it sends (Clock-get, sidC, pj) toGclockφ.
it setsDmid := 1, Dmax

mid = 1 andM ′ = M ′||(m,Pi, P j,mid, τsid, clockpj), where mid
is a unique message-ID, and send (sent, sid, m, Pi , Pj , mid) to A.

• Upon receiving (delays, mid, d) from the adversary, for each pair(mid, d) do 1. IfDmax
mid

+ d ≤ 4 , then set Dmid = Dmid + d and Dmax
mid = Dmax

mid + d and return (delay-set) to
the adversary, otherwise, ignore message.

• Upon receiving (fetch,sid) from some honest party Pj ∈ P, increment fp by 1, set M =
∅, and do the following:

1. For all tuples (m, Pi , Pj , mid) ∈M ′ , set Dmid := Dmid − 1
- sends (Clock-get, sidC, pj) to Gclockφ, and update "clockpj"

2. For all tuples (m, Pi , Pj , mid) ∈M ′ , where Dmid ≤ 0, and τsid = clockpj , delete
(m, Pi , Pj , mid) from M ′ , and add (m, Pi) to M.

3. Send (sent, sid, mid) to Pj .
• Upon receiving (fetch-requests,sid, P) from A, output (fetch-requests,sid, fP )

Figure 8.3: Authentication Functionality

consensus protocol that works in the partial synchronous setting. The protocol uses the following

broadcast primitive from [ST05]. Basically, for a party i to accept a message from party j, it has

to receive at least 2t+1 (echo, j, m) messages. This helps in restricting the adversary from sending

two conflicting messages to honest parties.

Weak Broadcast Primitive
• Party i sends (init, i,m) to all

• Code (party j)

– if received (init, i,m), send (echo, i,m) to all

– if received (echo, i,m) from N-2t distinct processors, send (echo, i,m) to all

– if received (echo, i,m) from N-t distinct processors, accept m from party i.

The broadcast primitive achieves the following properties:
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ḠCLOCK
φ

The functionality manages the set P of registered identities, i.e, parties P = (pid,sid). It
also manages the set F of registered functionalities (together with their session identifier).
Initially, P = ∅ and F = ∅.
For each session sid, the clock maintains a variable τsid
For each identity P := (pid, sid) ∈ P it manages bit variables dp and dimp, and an integer
driftP . For each pair (F, sid) ∈ F it manages variable d(F, sid) ∈ 0, 1 (all these variables
are initially set to 0).
Synchronization:

• Upon receiving (clock-update, sidC ) from some party P ∈ P set dimpp := 1 and dp :=
1; execute Round-Update and forward (clock-update, sidC , P) to A.

• Upon receiving (clock-update, sidC ) from some functionality F in a session sid such
that (F, sid) ∈ F set d(F,sid) := 1, execute Round-Update and return (clock-update, sidC
, F) to this instance of F.

• Upon receiving (clock-push, sidC , P) from A where party p ∈ P , if dimpp := 1 and
driftP < φ clock then update dimpp := 0 and driftP := driftP + 1 and return (clock-
push-ok, sidC , P) to A. Otherwise ignore the message.

• Upon receiving (clock-get, sidC, pi ) from any participant P—including the environ-
ment on behalf of a party—or the adversary on behalf of a corrupted party P (resp.
from any ideal—shared or local—functionality F), execute procedure Round-Update;
return (clock-get, sidC, τ + driftp ) (resp. (clock-get, sidC , d(F,sid)))) to the
requester (where sid is the sid of the calling instance).

Procedure Round-Update: For each session sid do: If d(F,sid) = 1 for all f ∈ F and dp = 1
for all honest parties P = (·, sid) ∈ P, then update d(F, sid) = 0, update dp = 0 and driftP =
driftP − 1 for all parties, and set τsid = τsid + 1 P = (·, sid) ∈ P; for all P = (·, sid) ∈ P
with driftP < 0 reset dimpp := 0 and driftP := 0.

Figure 8.4: Global Clock Functionality
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Wrapper Functionality W p,q
FLT (F )

The wrapper functionality is parameterized by p ∈ [0, 1] and q , which restrict the probability
of success and number of F-evaluations of each party per round, respectively, and a set of
parties P. Assuming that 0 < q ≤ 1, set q = 1/q. The functionality registers with the global
clock Gclockφ. It manages the round integer variables τi for each party, the current set of
corrupted parties P, and a list T . For each party P ∈ P, it manages the integer variables tp and
fp . Initially τ = 0, T = ∅, and tp = 0, for each p ∈ P.
Filtering:
Upon receiving (send, sid, m, Pj ) from party pi ∈ P, execute Round-Reset, and do the
following:

• – If tpi ≥ q, with probability p, do:
1. set tpi = 0
2. Add (m, Pi) to T and output (success, sid) to Pi
3. On response (continue, sid, m) from Pi , forward (send, sid, m, Pj ) to F. In any

other case, send (fail, sid) to Pi.
• Upon receiving (resend, sid, m, Pj ) from honest party Pi ∈ P P ′, if (m, Pi) ∈ T then

forward (send, sid, m, Pj ) to F.
• Upon receiving (resend,sid, m, Pj ) from A on behalf of corrupted pi ∈ P ′, if (m, Pi)
∈ T for some P ∈ P, then forward (send,sid, m, Pj ) to F.

• Upon receiving (fetch,sid) from some party Pj ∈ P, if fp := 0, set fp :=1 and forward
the message to Fauth. Else, do nothing.

• Upon receiving (delay, mid, d) from the adversary, forward the message to Fauth.
• Upon F sending (sent,sid, m) to Pj , forward the message to Pj .

Standard UC Corruption Handling:
-Upon receiving (corrupt, sid, P) from the adversary, setP ′ = P ′

⋃
P.

General:
-Any other request from (resp. towards) any participant or the adversary, is simply relayed
to the underlying functionality (resp . any participant of the adversary) without any further
action.
Procedure Round-Reset:

• Send (clock-Get, sidC, pi ) to Gclockφ and receive (clock-Get, sidC , τpi ) from
Gclockφ

• If τ ′ - τ ≥ 0, then set tpi := tpi + τ ′ − τand fp := 0 for each pi ∈ P and set τ = τ ′.

Figure 8.5: Wrapper Functionality
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1. Correctness: if p is correct, all correct processors agree on the value of its message.

2. Reliability: If p is faulty then, either all correct processor agree on the same value or none of

them accepts.

Since we are assuming the unknown bounded model instead of GST, parties don’t have to keep

echoing the messages, resulting in lower communication complexity. This is due that messages

can be lost before GST, and parties need to keep echoing the message after N-2t messages are

received. No messages are lost in the unkown bounded model according to DLS definition.

The Graded Consensus Protocol definition follows from [Fit02]

Graded Consensus Protocol: Let P be a jointly terminating protocol. Each good player i outputs

a pair (codei, valuei), where codei is 0, 1. We say that P is a Graded-Consensus if the following

conditions are satisfied:

1. Validity: If all correct players hold the same input value v, all correct players will decide on

v and output codei = 1

2. Consistency: If any correct player i outputs codei = 1, then players j decide on the same

output value, valuei = valuej .

Technical Remarks:

• Assume v to be the value set by party i, v’ to be 1-v.

• "distinct" means different messages than the party’s own messages.

• We will be using broadcast/accept instead of send/receive following the broadcast primitive

mentioned earlier.

• In step 2, messages are numbered. For a party to accept(decide,v, 1) from party j, it must

24



Grade-cast
Common Parameters:

• n, the size of the network
• t, an upper bound on the number of bad players(t < n/3)
• vi, the value set by each party

Code (For every player i)
1. broadcast (init, vi) to all processors
2. Wait until the receipt of n-t acceptable messages.

(a) Set vi to the majority of the messages received.
(b) broadcast (decide, vi, 0*) to all parties

3. Wait until the receipt of
(a) 2t+1 (decide, vi, 0*) acceptable messages, output (vi, 1) and halt.
(b) 2t+1 (decide, vi, 0*) with at least one (decide, vi, 1*) acceptable messages, output

(vi,0)
(c) distinct t+1 (decide, v′i, 0*) acceptable messages, broadcast (decide,v′i, 1)

Figure 8.6: Gradecast

have accepted (decide,v,0) from the same party.

Lemma 8.0.1. If all parties start with the same value v, no party will send (decide, v’,0).

Proof. In step 2, honest parties wait to receive n-t acceptable messages before setting vi to the

majority of the messages received, and then sending (decide, vi, 0). Sine n− t ≥ 2t+ 1, the party

has to receive at least acceptable t+1 messages of the same v to adopt this value. since there are

are most t malicious parties and honest parties can’t send conflicting messages, all honest parties

will send (decide,v,0).

Lemma 8.0.2. If all honest players start with the same value v, every good player i outputs (v,1).

Proof. From lemma 0.1, if all honest parties start with the same value, all honest parties will send

(decide,v, 0). Since there are at most t malicious parties, no honest party will ever receive distinct

t+1 acceptable messages (decide,v’, 0). Also, since a party has to accept (decide,v, 0) before

accepting (decide,v,1), the adversary can’t send (decide,v,1) to force the honest parties to output
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(v,0). Eventually, all honest parties will receive 2t+1 acceptable (decide, v, 0) and output (v,1).

Lemma 8.0.3. If any honest player outputs (v,1), all other honest players will output (v,*)

Proof. For an honest player to output (v,1), he has to receive at least 2t+1 acceptable (decide, v, 0)

messages. Out of the 2t+1 messages, t is at most malicious. Therefore, every honest party i will

eventually receive t+1 acceptable (decide,v, 0). If i started with the same value v, it will halt with

output (v,1)/(v,0). If it started with v’(or sent (decide,v’,0)), it will send (decide,v,1) and halt with

(v,0).

In other words, based on the broadcast primitive, a faulty party can’t send two acceptable conflict-

ing messages to parties; he can only send either (decide,v, 0/1) or (decide,v’,0/1) to all parties.

If the parties started with the same value, the adversary’s messages won’t affect anything, and all

parties will halt with output (v,1) from lemma 0.2. If the honest parties didn’t start with the same

value, assuming n=4 for simplicity, two honest parties will send (decide,v,0) and one honest party

will send (decide, v’,0) message, one of the following scenarios could happen

1. If the adversary sends (decide,v,0), the two honest parties will output (v,1). The other party

that sent (decide,v’,0), will eventually receive t+1 acceptable (decide, 1-v’) from the honest

parties or the adversary and output (v,0)

2. If the adversary sends (decide,v’), parties will output different (v’/v,0). However, none will

output (*,1) as it needs to receive 2t+1 acceptable (decide,*,0) messages before, which can

never happen.

3. If the adversary doesn’t send anything, the single honest party with (decide,v’,0) will even-

tually receive t+1 acceptable (decide, 1-v’,0) messages from the two honest parties and will

send (decide, v,1) and output (v,0). The other two will output (v,0).
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Theorem 8.0.4. The graded consensus protocol is a t-resilient protocol, for t<n/3

Proof. From lemma 0.1, 0.2, 0.2 0.4, the protocol achieves Fitzi’s definition for graded consensus;

achieving validity and agreement.
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