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ABSTRACT

Laminar-to-turbulent transition of boundary layers remains a critical subject of study in aerody-

namics. The differences in surface friction and heating between laminar and turbulent flows can

be nearly an order of magnitude. Accurate prediction of the transition region between these two

regimes is essential for design applications.

The objective of this work is to advance simplified approaches to representing the laminar

boundary layer and perturbation dynamics that usher flows to turbulence. A versatile boundary-

layer solver called DEKAF including thermochemical effects has been created, and the in-house

nonlinear parabolized stability equation technique called EPIC has been advanced, including an

approach to reduce divergent growth associated with the inclusion of the mean-flow distortion. The

simplified approaches are then applied to advance studies in improving aircraft energy efficiency.

Under the auspices of a NASA University Leadership Initiative, the transformative technology

of a swept, slotted, natural-laminar-flow wing is leveraged to maintain laminar flow over large

extents of the wing surface, thereby increasing energy efficiency. From an aircraft performance

perspective, sweep is beneficial as it reduces the experienced wave drag. From a boundary-layer

transition perspective, though, sweep introduces several physical complications, spawned by the

crossflow instability mechanism. As sweep is increased, the crossflow mechanism becomes in-

creasingly unstable, and can lead to an early transition to turbulence. The overarching goal of the

present analysis then is to address the question, how much sweep can be applied to this wing while

maintaining the benefits of the slotted, natural-laminar-flow design? Linear and nonlinear stability

analyses will be presented to assess various pathways to turbulence.

In addition, companion computations are presented to accompany the risk-reduction experi-

ment run in the Klebanoff-Saric Wind Tunnel at Texas A&M University. Linear analyses assess

a wide range of various configurations to inform experimentalists where relevant unstable content

resides. A comparison between simulation and experimental measurements is presented, for which

there is a good agreement.
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NOMENCLATURE

English variables, lowercase

a Speed of sound

a, b Coefficients to Orr-Sommerfeld ODE: Eq. (5.3)

aL, aR O(1) constants used in the mean-flow distortion’s α limiters:
Eq. (5.22)

c Representative chord length along the x coordinate of the
wing

c1, c2, c3, c4 Complex-valued coefficients for the analytical solution v̂:
Eq. (5.4)

cp Specific heat at constant pressure

cph Three-dimensional phase speed of a disturbance: Eq. (6.8a)

~cph Three-dimensional phase velocity: Eq. (7.2)

cv Specific heat at constant volume

cst Arbitrary constant

dDRE Discrete roughness element (DRE) diameter

dθ Representative small angle: Fig. 2.1

e Internal energy

ês, êy, êz Unit vectors for the computational-relevant frame: §6.3.1

êXt , êYt , êZt Unit vectors for the wind-tunnel frame: §6.3.1

f Frequency

f(n,k) Nonlinear forcing vector in NPSE: Eq. (4.37)

fquad
(n,k) Quadratic (second-order) interaction terms: appendix B

f cubic
(n,k) Cubic (third-order) interaction terms: appendix B
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f Self-similar velocity whose ∂f/∂η = u/ue: §7.2.2

g Gravitational acceleration near Earth’s surface: 9.81 m/s2

gij Metric tensor

h Static enthalpy

h Arbitrary function of a single variable (Chapter 5)

hi Square root of gii entry, also known as a scaling factor for
orthogonal, curvilinear coordinates along coordinate xi: Eq.
(2.7)

htot Total enthalpy

i Index of discretized, streamwise coordinate s

i Imaginary unit whose square is −1

k Integer multiple on spanwise wavenumbers k ≡ β/β0

k1, k2, k3 Values of k for three disturbances: see §4.3.1.3

k1, k2 Wavenumbers for the analytical solution v̂: Eq. (5.4)

kB Boltzmann constant

kDRE Discrete roughness element (DRE) height

~k Complex-valued wave vector: Eq. (6.8h)

mean(Vhw, z) Spanwise average of Vhw

n Integer multiple on frequencies n ≡ ω/ω0

n1, n2, n3 Values of n for three disturbances: see §4.3.1.3

nsam Number of samples of a data set: §6.4

nsw Number of spanwise waves along curvilinear z

p Pressure

q Vector of flow variables [u, v, w, T, ρ]

q̂aug Augmented eigenfunction for LST: Eq. (4.5)

r1, r2, r3, r4 Real-valued coefficients for the analytical solution v̂ with
α = 0: Eq. (5.12)
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s1 First streamwise coordinate of s

sequi Equispaced s-domain

sg Preliminary surface coordinate of airfoil geometry (Chapter
3)

si, sf Initial and final values of the s coordinate

sstag Attachment-line value of sg (Chapter 3)

s̆ Slowly varying s coordinate: Eq. (4.9)

s, y, z Streamwise, wall-normal, and spanwise coordinates of an or-
thogonal, curvilinear coordinate system, right-handed

t Time

ûextr v̂ û evaluated at an extremum of v̂ inside the boundary layer

us, ws Velocity components parallel and orthogonal to the local in-
viscid streamline: Eq. (6.5)

u Measured hot-wire velocity within the boundary layer: only
§6.3.2

uavg Spanwise-averaged hot-wire velocity u: only §6.3.2

u, v, w Physical velocity components along the s, y, and z directions,
respectively

ut, vt, wt Velocity components along Xt, Yt, Zt: §6.3.1

uj Velocity along generalized coordinate xj

w0 Freestream velocity component parallel to the leading edge

x Abscissa of airfoil cross-section coordinates

x1, x2, x3 Generalized coordinates, right-handed

y Wall-normal coordinate (see s and z)

z Spanwise coordinate (see s and y)

English variables, uppercase

A Representative amplitude of a disturbance
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A0 Initial amplitude

Aξ, Bξ, aξ Coefficients associated with tanh-mapping: §3.3

C1 Continuity integration constant: Eq. (5.20)

C in
p , C

out
p Pressure coefficient values at the inboard and outboard of the

X207.LS model

CQ∞
p Pressure coefficient based on the resultant velocity: Eq. (3.1)

Cu∞v∞
p Pressure coefficient based on the leading-edge-orthogonal

velocity component: Eq. (3.1)

Cu∞v∞
p,max Maximally attainable isentropic pressure coefficient: Eq.

(3.2)

Cµ Sutherland’s combined constant: Eq. (2.6a)

D/Dt Substantial derivative operator: Eq. (2.3)

Ec Reference Eckert number

F quad
(m1,m2) Summand of fquad

(n,k) , accounting for harmonic balancing: ap-
pendix B

F cubic
(m1,m2,m3) Summand of f cubic

(n,k) , accounting for harmonic balancing: ap-
pendix B

Gr` Reference Grashof number

H Boundary-layer shape-factor: Eq. (6.6)

K Summation bound of k in NPSE ansatz: Eq. (4.22)

K Coefficient matrix to the Orr-Sommerfeld boundary-value
problem: Eq. (5.7)

Kpor Acoustic impedance of a cylindrical pore

L Representative length

LU LU-decomposition of L

M Reference Mach number

N N -factor, or integrated growth of a disturbance: Eq. (6.7)

N Summation bound of n in NPSE ansatz: Eq. (4.22)
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N Number of gas particles: Eq. (2.20)

Nm Number of Fourier modes necessary to solve PDEs for in
NPSE: §7.4.1.3

Nm, full Full number of Fourier modes in NPSE simulation (including
conjugates)

Ns,equi “Equivalent equispaced” streamwise resolution: Eq. (4.20)

Pr Reference Prandtl number

Q Arbitrary quantity

Q∞ Freestream resultant velocity

Re Reference Reynolds number

Re′ Unit Reynolds number

R1, R3 Radii of curvature in the s and z directions, respectively

R1,R2,R3 Rotation matrices: Eq. (6.11)

Rg Specific gas constant

Real, Imag Operators to select the real and imaginary parts of a complex
variable

Sµ Sutherland’s constant: Eq. (2.6a)

T Temperature

Tref Sutherland’s reference temperature: Eq. (2.6a)

Tv Vibrational temperature

U, V,W Velocity components along the (X, Y, Z) coordinates

U Measured hot-wire velocity in the inviscid flow: only §6.3.2

Vhw Velocity projected onto plane orthogonal to the hot-wire’s
axis: Eq. (6.14)

~V c Velocity vector in the computational-relevant frame: Eq.
(6.9)

~V t Velocity vector in the wind-tunnel frame: Eq. (6.9)
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X Logical coordinate, equispaced on [0, 1]: §3.3

X, Y, Z Cartesian coordinates, right-handed

X1, X2, X3 Cartesian coordinates, right-handed

Xt, Yt, Zt Coordinates for the wind-tunnel frame: §6.3.1

Yc Ordinate of airfoil cross-section coordinates

Miscellaneous symbols

` Representative length scale for nondimensionalization,
sometimes referred to as the Blasius length: Eq. (2.13)

∇· Divergence operator over Cartesian coordinates (X, Y, Z)

∝ “Proportional to”

Greek letters, lowercase

α Angle of attack

α Streamwise wavenumber along the s-coordinate

αmap, βmap, γmap Constants associated with power-law mapping: Eqs. (4.14)
and (4.18)

αi Imaginary part of α

α∗i1 First positive root of det(K) as a function of αi

αv∞u∞ Angle of attack defined as arctan v∞
u∞

β Spanwise wavenumber along the z-coordinate

β0 Smallest spanwise wavenumber in an NPSE simulation

βVT Volumetric coefficient of thermal expansion

βH Beta-Hartree parameter: Eq. (3.5)

γ Ratio of specific heats

δ Representative boundary-layer height

δ50 Height where u/ue = 0.50
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δ99 Boundary-layer height based on u/ue = 0.99

δ∗1 Boundary-layer displacement thickness

δhtot
100.1 Boundary-layer height where htot/htot,e = 1.001

ε Representative measure of error or uncertainty

εs Shift within power-law mapping: Eq. (4.18)

εtol,LST Convergence tolerance of the governing LST equations

εtol, nl Convergence tolerance of the nonlinear iterations in NPSE:
Eq. (4.53)

εtol, α Convergence tolerance of the auxiliary equation in PSE: Eq.
(4.40)

εα, (n,k) |∆α(n,k)|: Eq. (4.40)

εξ Shift within power-law mapping: Eq. (4.19)

εp Mathematical epsilon for perturbation variables: Eq. (2.21)

εs Mathematical epsilon for slowly varying variables: Eq. (4.9)

η Wall-normal self-similar coordinate for DEKAF

η Wall-normal logical coordinate over a domain [0, 1] for EPIC:
Eq. (4.7)

η∗ Wall-normal logical coordinate clustered via cosine map-
ping: Eq. (4.8)

θ Local angle along airfoil’s surface: Eq. (6.10)

ϑ Argument of the PSE wave: Eq. (4.56)

κ Coefficient of thermal conductivity

λ Resultant wavelength in the direction of the wave angle: Eq.
(6.8g)

λs Streamwise wavelength along the s-coordinate

λv Second viscosity coefficient

λz Spanwise wavelength along the z-coordinate
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λz,DRE Discrete roughness element (DRE) wavelength

λH Hermite constant

µ Dynamic viscosity coefficient

µB Bulk viscosity

µref Sutherland’s reference viscosity: Eq. (2.6a)

ν Kinematic viscosity µ/ρ

ξ Self-similar streamwise coordinate used in DEKAF: Eq.
(3.6)

ξ Streamwise logical coordinate as implemented in EPIC

ξi, ξf Initial and final values of the ξ coordinate

ρ Density

σ Relaxation parameter

σq′ Complex-valued streamwise wavenumber with non-parallel
effects from q′: Eq. (6.7)

σx Standard deviation of a data set x: §6.4

σx Standard deviation (error) of the mean of a data set x: §6.4

φ Arbitrary quantity

ϕ Representative phase of a wave

ψw Local inviscid streamline angle: Eq. (6.5)

ω Angular frequency 2πf

ω0 Smallest angular frequency in an NPSE simulation

Greek letters, uppercase

∆ Representative change of a quantity

Θ Boundary-layer momentum thickness

Λ Sweep angle

Λw∞√
u2
∞+v2

∞
Sweep angle defined as arctan w∞√

u2
∞+v2

∞
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Φ Representative norm for the N -factor: Eq. (6.7)

Φnum,Φden Representative norm values in the numerator and denomina-
tor of Eq. (4.39)

Φ̂(n,k) Intermediate forcing vector in LU substitution: Eq. (4.52)

Ωp Switch to include/exclude the streamwise pressure gradient
of the shape-function: Eq. (7.2)

ΩRe Switch to include/exclude slowly varying viscous terms: ap-
pendix A

Ω
(i,j)
s,` Collision integral of order (i, j) of species pair (s, `)

Calligraphic fonts

A,B, C Coefficient matrices for Linear Stability Theory (LST): Eq.
(4.3)

D̃os Orr-Sommerfeld parallel operator

D̃os, np Orr-Sommerfeld non-parallel operator

I Identity matrix

I Representative integral

L Discretized linear operator for PSE

L2,L1,L0 Coefficient matrices for LST as a quadratic, eigenvalue prob-
lem: Eq. (4.4)

Laug
1 ,Laug

0 Coefficient matrices for LST as an augmented, linear, gener-
alized eigenvalue problem: Eq. (4.5)

LNS Linearized Navier-Stokes operator

Msy,Myy,Ms,My,M0 Coefficient matrices for PSE on s and y

Mξη,Mη,Mξ,Mη,M0 Coefficient matrices for PSE on ξ and η

M̃ss, M̃sy, M̃yy, M̃s, M̃y, M̃0 Coefficient matrices for AH(L)NSE on s and y

N Nonlinear component of the Navier-Stokes operator

NS Navier-Stokes operator, assembling Eqs. (2.14)
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NS∂/∂t=0 Steady Navier-Stokes operator

O Zero matrix

T Viscous stress tensor: Eqs. (2.2) and (2.5)

T Temporal period 1/f = 2π/ω: Eq. (4.48)

V Velocity vector [U, V,W ] over Cartesian coordinates

V Volume

W(n,k) Weighted growth of complex α(n,k): Eq. (4.25)

Subscripts

qadiab Adiabatic surface quantity

qbase Quantity of a baseline resolution: Eq. (7.1)

qcrit Critical quantity

qDRE Quantity related to a discrete roughness element (DRE)

qe Edge quantity

qenth Quantity referring to a solution using the enthalpy form of
the energy equation

qfield Field of coordinates (both surface and off-wall)

qi Clustering value of some quantity

qi Quantity at streamwise station i (uncommon)

qi+1 Quantity at streamwise station i+ 1 (uncommon)

qint Quantity referring to a solution using the internal energy form
of the energy equation

qI,LPSE Quantity at the branch-I neutral point predicted by LPSE

qlam Quantity of a laminar boundary layer

qmax Maximum value of some quantity

qMFD Quantity of the mean-flow distortion (MFD)

qmin Minimum value of some quantity
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q(n,k) Quantity of (n, k)-Fourier mode

qph,ref Quantity at a reference phase location

qQ∞ Quantity whose reference velocity is the resultant

qref Reference quantity used for nondimensionalization: Eq.
(2.13)

qRMS Root-mean-square quantity

qSCF Quantity related to stationary crossflow

qsurf Surface coordinate

qtr Quantity of a transitional boundary layer

qtraverse Quantity corresponding to the traverse

qTCF Quantity related to traveling crossflow

qTE Quantity related to the airfoil trailing edge

qTS Quantity related to Tollmien-Schlichting

qus Quantity parallel to us

qu∞v∞ Quantity whose reference velocity is leading-edge-
orthogonal

qw Wall value of a quantity

qwall Surface or ‘wall’ value of a quantity

qws Quantity parallel to ws

qz, ref Reference spanwise freestream quantity

qξ Quantity related to the ξ coordinate

qδ99 Quantity at the δ99 height

q∞ Freestream quantity

Superscripts

qi+1 Quantity at streamwise station i+ 1

qlinear Linear component of a quantity
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qnew New quantity: Eq. (4.52)

qpnl Quantity at previous nonlinear iteration: §4.3.3.1

qpnl+1 Quantity at current nonlinear iteration: §4.3.3.1

qpα Quantity at previous α iteration: §4.3.1.5

qpα+1 Quantity at current α iteration: §4.3.1.5

qRMS Root-mean-square quantity

qquad Quantity related to quadratic (secord-order) interactions: ap-
pendix B

qcubic Quantity related to cubic (third-order) interactions: appendix
B

qT Transpose of matrix q

qu∞v∞ Quantity whose reference velocity is leading-edge
orthogonal

q∗ Dimensional quantity (Chapter 2)

q† Complex conjugate of some quantity

q(i) Quantity related to disturbance index i: appendix B

q′ Perturbation quantity

q′ Derivative of a function of a single variable (Chapter 5)

Accents

q Laminar base-flow quantity

q Dummy variable of integration (uncommon)

~q Vector quantity

q̃ Dummy variable of integration

q̂ Eigenfunction/shape-function quantity

q̆ Slowly varying quantity
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1. MOTIVATION AND BACKGROUND

1.1 Motivation

Navigating the space that is being human in modern civilization requires confronting the global

catastrophic risks our collective existence faces. With the advancement of technology across the

generations, so too has the number of existential threats drastically increased: artificial intelli-

gence, biotechnology, cyberattacks, nanotechnology, and nuclear destruction, to name a few. All

of these demand the close attention and research of scientists and thinkers across the globe. But

one imminent threat whose effects are already widespread in today’s setting is the climate crisis. To

address this, the Intergovernmental Panel on Climate Change (IPCC) issued a report in 2018 delin-

eating different approaches to limit global warming to 1.5◦C from pre-industrial levels [2]. IPCC

researchers estimated only an additional 420 Gt of carbon can be released into the atmosphere

such that there is still a 2/3 chance of restricting global warming to the level of 1.5◦C [3]. Beyond

these levels of warming, threats to human health, food, water, security, and economic growth all

increase, not to mention the irreversible damage and destruction to many ocean ecosystems: with

warmer ocean temperatures, less dissolved oxygen is available for marine life [2]. With an esti-

mated 42 Gt of carbon globally released into the atmosphere per year, 2028 is the projected year of

reaching the 1.5◦C warming limit [3]. However, this projected year may now be inaccurate, as the

most recent IPCC report of August 2021 has stated that the earth has already achieved warming of

1.1◦C from pre-industrial levels [4]. It is paramount that every sector of technology and industry

does its part to reach net zero carbon emissions immediately, else the global impacts of the climate

crisis will be devastating.

Within the aerospace industry, commercial aviation is responsible for 2-3% of the global carbon

emissions and is one of the top 10 carbon emitters [5]. In 2009, the International Air Transport

Association (IATA) established three targets to mitigate CO2 emissions from air transport: a) on

average, improve fuel efficiency by 1.5% per year until 2020; b) cap net emissions from 2020
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onward; and c) reduce net emissions by 50% by 2050, relative to 2005 levels. Realizing these

targets requires designing new ultra-efficient airframes, propulsion, and advancing the integration

of them both [6].

To this end, it is the goal of this research to use and advance computational models in aerody-

namics with a focus on improving energy-efficiency of subsonic and transonic commercial aircraft.

1.2 Objectives

The objective of this dissertation is to advance the capabilities of reduced-order methods for

boundary-layer stability and transition prediction. In the context of important engineering prob-

lems, the versatility of these codes such as DEKAF and EPIC will be demonstrated. For this

research, the application of boundary-layer stability analysis will focus on swept wings in com-

pressible flow.

1.3 Background on laminar-to-turbulent transition

Laminar boundary layers, when exposed to freestream disturbances and/or surface roughness, can

develop perturbations that grow exponentially, spawned by primary instability mechanisms. When

these perturbations become large enough, the boundary-layer mean flow deviates from the laminar

behavior, and this is often marked by an increase in wall shear or heat flux. This point may

be argued to be the onset of transition for the boundary layer after which secondary instability

mechanisms develop perturbations of their own. Upon significant growth of these, the transitional

boundary layer undergoes breakdown and turbulence soon follows.

This story in particular is but one pathway to turbulence from forcing environmental distur-

bances on a laminar boundary layer. Other pathways involve the mechanics of transient growth

and bypass [1, 7, 8]. However these are out of the scope of the current work. Figure 1.1 shows the

possible transition pathways. The first part of process, known as receptivity, is where freestream

disturbances (e.g., sound, vorticity, entropy variations) enter the boundary layer and form the ini-

tial conditions of the disturbance leading the laminar flow to breakdown. How the boundary layer

transitions to turbulence is ultimately determined by the amplitude of these environmental distur-
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Figure 1.1: The pathways from receptivity to transition [1].

bances: larger disturbance amplification leads to different pathways. The present work focuses on

path A with the lowest environmental disturbance levels, motivated by the fact that external flows

(e.g., flight) are often accompanied by weak freestream disturbances [7]. There is another observa-

tion that much of the streamwise extent of the transition process is governed by the linear growth

of primary modes compared to that of the nonlinear region for streamwise instabilities, so transi-

tion prediction methods of path A are often modeled by linear analysis including an amplification

factor [7]. In the present work, both linear and nonlinear analyses are applied to study comparative

growth for configuration studies and to assess the transition processes at play, respectively.

For completeness, the other pathways will be described briefly. Path B specifies that transient

growth occurs and provides a slightly higher initial amplitude to the primary modes before their

exponential growth. Path C experiences amplification through the nonorthogonality of eigenfunc-

tions in the spectrum of linear modes, often the continuous spectrum containing highly stable and

oblique modes. Path D is largely for internal flows (e.g., wind tunnels) with higher freestream
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disturbance levels. Path E has such large amplitude forcing that no linear growth occurs before

breakdown is reached [9].

For the foundational texts of boundary-layer stability theory, works by Mack and Arnal provide

extensive descriptions of the both incompressible and compressible stability problems, including

analysis of three-dimensional boundary layers [10, 11]. These include discussions on computa-

tional methods surrounding Linear Stability Theory (LST). For a more physically inclusive theory,

the Parabolized Stability Equations (PSE) incorporate non-parallel effects: see Herbert [12] for a

thorough discussion. These reduced-order models of boundary-layer disturbances will be lever-

aged heavily in the work presented in this dissertation.

Briefly, the work of theory, computations, and experiments have shown that the following

mechanisms can lead to transition for laminar boundary layers:

• Tollmien-Schlichting

• Görtler Instability

• Stationary Crossflow

• Traveling Crossflow

• First-Mode Instability (High-Speed Flow)

• Mack Second-Mode Instability

• Supersonic Mode

• Leading-Edge Contamination

• Attachment-Line Instability

• Transient Growth

All of these demand extensive theoretical discussion and experimental evidence. However, for the

scope of this dissertation, only a few relevant to the analysis presented will be highlighted.

The Tollmien-Schlichting (TS) instability is an unsteady wave of vorticity and is formed as a

result of a viscous mechanism (i.e., destabilized in the presence of dynamic viscosity) [10]. These

waves propagate in the boundary layer and are traveling approximately in the direction of the local

inviscid streamline angle. TS can be responsible for transition in 2-D flow over subsonic wings.

To stabilize the growth of these waves, favorable pressure gradients, wall suction, and wall cooling

may be used [10, 13].

The crossflow instability gives rise to a streamwise-oriented, co-rotating vortex in a bound-
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ary layer. The instability is present in flowfields where nonzero pressure gradients act on swept

surfaces or on rotating disks [14] and was first experimentally and theoretically analyzed by Gre-

gory et al. [15]. At the boundary-layer edge, the sweep and pressure gradient combine to create

curved inviscid streamlines. Within the boundary layer, streamwise velocity is reduced, but the

pressure gradient is identical. This leads to an imbalance between the centripetal acceleration and

the pressure gradient, twisting the velocity profile through the boundary layer. Since the crossflow

velocity component is zero at the wall and at the boundary-layer edge, this leads to an inflection

point which provides the source of the inviscid crossflow instability. The growth of this instability

may be stabilized by using minimal pressure gradients, wall suction, and low sweep while discrete

roughness elements may be used to control it [14].

1.4 Computational approach to laminar-to-turbulent transition

Given the involved physics and the additional effort required for stability analysis, there exist in

the literature several correlations that have been used for transition prediction. One example is

the ratio of Reynolds number based on momentum thickness divided by the edge Mach number

ReΘ/Me exceeding a certain criterion which provides an estimate of transition location. Reshotko,

however, has demonstated that this ratio is more accurately connected to an altitude from reentry

flights rather than a transition location [16, 17]. These methods can lose the physical basis of the

problem—that for many pathways to transition, the process is driven by small initial disturbances

that grow exponentially within the boundary layer [1].

Staying rooted in the physics, one of the first approaches to model instabilities within was

Linear Stability Theory (LST), which first originated in the 1930s [18, 19] and later significantly

advanced by Mack [10, 20]. Based on a modal form, LST can predict compute growth rates

and shapes of boundary-layer disturbances presuming parallel-flow, i.e., wall-normal velocity and

streamwise change are neglected. Based on order of magnitude arguments from the method of

multiple scales, linearization provides a powerful way to identify the linear dynamics of boundary-

layer disturbances. Through experience, experiment, and computation, it became evident that the

streamwise development of these disturbances needed to be included in order to more accurately
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describe the boundary-layer instability mechanisms. For that reason, Herbert & Bertolotti in the

early 1990s formulated the mathematics of the disturbance assumption known as the Parabolized

Stability Equations, or PSE [21, 22, 12]. The equations were written in both a linear (LPSE) and a

nonlinear (NPSE) variant, the latter of which would be able to optionally account for nonlinear pro-

cesses within boundary-layer stability (e.g., mean-flow distortion; subcritical and [simultaneous]

multiple instability mechanisms). Non-parallel effects and streamwise history could now be accu-

rately and seamlessly captured in the computational process. The method captured the attention

and application from researchers across the globe [23, 24]. Borrowing an idea from the method

of multiple scales, PSE leverages the assumption that the laminar base-flow and the disturbance

slowly evolve in the streamwise direction. This ultimately approximates the elliptic nature of the

wave-like disturbance as parabolic. Using NPSE, Haynes & Reed simulated a stationary cross-

flow vortex over a swept wing achieving excellent validation with the measurements by Reibert

et al. in the mid-1990s [25, 26]. Joslin et al. demonstrated strong agreement between Direct Nu-

merical Simulations (DNS) and NPSE for several different instability mechanisms at low-speeds

[27]. Parades et al. have shown that NPSE and DNS also match very well in highly compressible,

hypersonic flow [28].

The practicality of the method hinges on the assumption of slow streamwise variation. When

simulating flows with strong variation in multiple dimensions, more physically inclusive distur-

bance models may be required to accurately simulate the boundary-layer disturbances. With

the explosive growth in available computing power, the last two decades have seen a number of

methods developed to address boundary-layer instabilities over complex configurations. A two-

dimensional extension of LST is known as spatial BiGlobal (SBG), which may be oriented in

either a spanwise or streamwise direction [29, 30, 31]. Similarly, the extension of PSE is referred

to as plane-marching PSE [32]. Additional linear methods include linearized Direct Numerical

Simulations (LDNS) [33], One-Way Navier Stokes [34, 35], Adaptive Harmonic (Linear) Navier-

Stokes Equations [36, 37], forced DNS with sparsity-promoting Dynamic Mode Decomposition

[38], wavepacket tracking [39], and Input/Output analysis [40]. As they are linear methods, nonlin-
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ear physics are not captured (e.g., mean-flow distortion; secondary, subcritical, and [simultaneous]

multiple instability mechanisms). However, for crossflow and other vortical instabilities, if the

mean-flow distortion is captured in the basic state and these methods are then applied, secondary

instability mechanisms can be successfully modeled. All of these methods have promising futures

in the computational approach to laminar-to-turbulent transition analysis.

For the work presented in this dissertation, the applications will focus on flow over swept wings.

Given the assumption that the laminar base-flows are spanwise-invariant and slowly varying in the

streamwise direction, the PSE method is well suited for the analysis.

1.5 Background on present-day computational codes

To model the physics of various instability mechanisms, several boundary-layer stability codes

have been developed and are in used in the present-day transition community. These include

STABL2D/3D, LASTRAC, VESTA, and EPIC. STABL2D & STABL3D are two codes developed

by the engineers at University of Minnesota with capabilities of modeling the Linear Parabolized

Stability Equations (LPSE) including thermochemical nonequilibrium (TCNE) effects in the gas

modeling and a functional GUI for Linux workstations [41, 42]. LASTRAC is a code devel-

oped by engineers at NASA Langley with capabilities for various instabilities, both LPSE and

NPSE options, and extensive verification and validation published openly across all speed regimes

and canonical geometries [43]. NPSE is available for assumptions such as calorically perfect

gases (CPG), but has currently not been developed for high-enthalpy relevant assumptions such as

TCNE, whereas LPSE has been implemented for TCNE gases [44]. VESTA is a suite of codes

from boundary-layer stability solvers to computer algebra manipulation developed by students and

professors at the von Karman Institute of Fluid Dynamics (VKI) and is managed by Dr. Fabio

Pinna [45, 46]. Its modeling capabilities include the recently added NPSE with a gas in TCNE.

However, the methodology of the computer algebra manipulation makes it unfeasible to print out

the governing equations for code-to-code verification, as each species s of the mixture is directly

specified—all sums are made explicit. EPIC is the boundary-layer stability code developed by

students and professors at Texas A&M University and serves as the primary code relevant to this
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research’s work [47, 48, 49, 50]. At present, its capabilities include calorically perfect gases up

to NPSE and has been validated in hypersonics. It is paired with another in-house computer alge-

bra code written by the author called DERIVE which generates the disturbance equations used in

EPIC.

The main advantage to developing an in-house code rather than using another’s is direct access

and manipulation of source code. This permits the possibility to perform certain computational

modeling features that have not been implemented before: the leading edge of science is not just

obtainable, but can be directed. Additionally, it is powerful to have in-house computational capa-

bility in conjunction with such advanced experimental facilities here at Texas A&M for boundary-

layer transition: the Mach 6 Quiet Tunnel (M6QT; [51]) and the Klebanoff-Saric Wind Tunnel

(KSWT; [52]), to name a few.

1.6 Outlook

The work presented in this dissertation is a selection of analysis performed on swept wings as well

as theory and modeling to demonstrate code development. Chapter 2 lists the governing equations

of a compressible fluid and sets the stage for the laminar-to-turbulent computations. Chapter 3 out-

lines the methodology used to compute the laminar base-flows in this work, converting a wing’s

surface pressure into boundary conditions relevant for the boundary-layer code, DEKAF. Chapter 4

discusses the detail of various stability methodologies used in this dissertation and their implemen-

tation into the in-house code, EPIC. Chapter 5 mathematically analyzes some numerical phenom-

ena observed with the mean-flow distortion as simulated in the Parabolized Stability Equations

and proposes a new treatment to quell the numerical divergence. Chapters 6 and 7 demonstrate

both linear and nonlinear boundary-layer stability analysis over swept, slotted, natural-laminar-

flow wings in the subsonic and transonic speed regimes. Finally, chapter 8 provides cumulative

conclusions, summarizes the analysis, and outlines future work.
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2. GOVERNING EQUATIONS

2.1 Conservation of mass, momentum, and energy

Compressible flows are governed by the conservation of mass, momentum, and energy [53]. Below

are the dimensional equations expressed in a Cartesian coordinate frame for an unsteady, three-

dimensional, viscous flow [54].1 The order of the equations is given as a) conservation of mass,

b-d) conservation of X-,Y -, and Z-momentum, and e) conservation of energy.

∂ρ∗

∂t∗
+∇∗ · (ρ∗V∗) = 0, (2.1a)

ρ∗
DU∗

Dt∗
= − ∂p∗

∂X∗
+
∂T∗XX
∂X∗

+
∂T∗Y X
∂Y ∗

+
∂T∗ZX
∂Z∗

, (2.1b)

ρ∗
DV ∗

Dt∗
= − ∂p

∗

∂Y ∗
+
∂T∗XY
∂X∗

+
∂T∗Y Y
∂Y ∗

+
∂T∗ZY
∂Z∗

, (2.1c)

ρ∗
DW ∗

Dt∗
= − ∂p

∗

∂Z∗
+
∂T∗XZ
∂X∗

+
∂T∗Y Z
∂Y

+
∂T∗ZZ
∂Z∗

, (2.1d)

ρ∗
D
(
e∗ + |V∗ |2/2

)
Dt∗

= −∇∗ · p∗V∗ + ...

+
∂

∂X∗

(
κ
∗ ∂T

∗

∂X∗

)
+

∂

∂Y ∗

(
κ
∗ ∂T

∗

∂Y ∗

)
+

∂

∂Z∗

(
κ
∗ ∂T

∗

∂Z∗

)
+ ... (2.1e)

+
∂
(
U
∗T∗XX

)
∂X∗

+
∂
(
U
∗T∗Y X

)
∂Y ∗

+
∂
(
U
∗T∗ZX

)
∂Z∗

+ ...

+
∂
(
V
∗T∗XY

)
∂X∗

+
∂
(
V
∗T∗Y Y

)
∂Y ∗

+
∂
(
V
∗T∗ZY

)
∂Z∗

+ ...

+
∂
(
W
∗T∗XZ

)
∂X∗

+
∂
(
W
∗T∗Y Z

)
∂Y ∗

+
∂
(
W
∗T∗ZZ

)
∂Z∗

Here, asterisks are used to indicate all dimensional quantities. The velocity components U ∗ , V ∗ ,

and W ∗ are associated with the X∗-, Y ∗-, and Z∗ coordinates; t∗ is time, p∗ is static pressure, ρ∗

is mass density, and T ∗ is temperature. Note that the energy equation here is expressed in terms

of internal energy e∗. The pressure is linked to density and temperature through an assumption of

1These equations assume there is no body force (e.g., gravity), no chemical reactions, no radiative heat transfer
throughout the volume, no electric or magnetic fields, the internal energy distribution is accurately described by a single
temperature T , and that heat conduction follows Fourier’s law. The quantitative reasoning for neglecting gravity will
be demonstrated later in §2.3.
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an ideal gas: p∗ = ρ∗R∗gT
∗ , where R∗g is the specific gas constant. This assumption is appropri-

ate given the low static pressures experienced in most aerodynamic applications and temperatures

considered. The boldface V
∗ represents the vector [U

∗ , V ∗ , W ∗
], and κ∗ is thermal conductivity.

Suppose the fluid is Newtonian. Then T∗ is the symmetric, viscous stress tensor with its compo-

nents enumerated below:

T∗XY = T∗Y X = µ∗
(
∂V

∗

∂X∗
+
∂U

∗

∂Y ∗

)
T∗Y Z = T∗ZY = µ∗

(
∂W

∗

∂Y ∗
+
∂V

∗

∂Z∗

)
T∗ZX = T∗XZ = µ∗

(
∂U

∗

∂Z∗
+
∂W

∗

∂X∗

)
T∗XX = λ∗v(∇∗ ·V

∗
) + 2µ∗

∂U
∗

∂X∗

T∗Y Y = λ∗v(∇∗ ·V
∗
) + 2µ∗

∂V
∗

∂Y ∗

T∗ZZ = λ∗v(∇∗ ·V
∗
) + 2µ∗

∂W
∗

∂Z∗

(2.2)

where µ∗ is dynamic viscosity and λ∗v is the second coefficient of viscosity. The substantial deriva-

tive D/Dt
∗ is defined as

DQ

Dt∗
=
∂Q

∂t∗
+ U∗

∂Q

∂X∗
+ V ∗

∂Q

∂Y ∗
+W ∗ ∂Q

∂Z∗
(2.3)

for some quantity Q. These equations, both Eqs. (2.1) and (2.2), are foundational to simulating

the dynamics observed for a compressible fluid. For analyzing general geometries however, a

Cartesian frame is insufficient. Instead, we consider the above dimensional equations formulated

with general tensor calculus using the metric tensor gij .

∂ρ∗

∂t∗
+
(
u∗jρ∗

)
,j

= 0

ρ∗
∂u∗i

∂t∗
+ ρ∗u∗ju∗i,j = −gijp∗,j + T∗ij,j , ∀i ∈ [1, 2, 3]

ρ∗
∂h∗

∂t∗
+ ρ∗u∗jh∗,j =

∂p∗

∂t∗
+ u∗

j

p∗,j + gikT
∗kj
u∗

i

,j +
(
κ∗gijT

∗

,i

)
,j

(2.4)
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Subscript and superscript indices refer to covariant and contravariant indices, respectively and

indices following a comma specify differentiation with respect to that dimension: see Aris’ text

for an excellent review [55].2 Repeated indices in a single term are free and summed over using

Einstein’s summation notation. The independent variables are general position coordinates x∗i and

time t∗ .

For the work presented in this dissertation, the energy equation is expressed in terms of static

enthalpy h∗ as opposed to internal energy e∗.3 The viscous stress tensor is now more concisely

written given as:

T∗ij = λ∗vg
iju∗,k

k + µ∗
(
gjku∗,k

i + giku∗,k
j
)

(2.5)

Stokes’ hypothesis is assumed for the entirety of this work. That is, the bulk viscosity µ∗B ≡

0, implying λ∗v = −2/3µ∗. This is a common assumption in calorically perfect, compressible

flows. Sutherland’s law is used for µ∗. A constant Prandtl number is assumed, linking thermal

conductivity κ∗ directly to µ∗. Mathematically, the expressions are given as

µ∗ = Cµ
T
∗3/2

T ∗ + Sµ
, Cµ =

µ∗ref

T
∗3/2
ref

(
T
∗

ref + Sµ
)
, (2.6a)

κ∗ =
µ∗c∗p
Pr

(2.6b)

where c∗p is the specific heat at constant pressure. All used constants will be specified with the

corresponding analysis.

2Hildebrand is also a helpful text: [56].
3This statement does not include the section §4.4.
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2.2 Metric tensor

In this work, the coordinate system used will be orthogonal curvilinear. Then metric tensor then

may be expressed as a 3× 3 diagonal matrix whose elements are h2
i .

gij =


g11 0 0

0 g22 0

0 0 g33

 =


h2

1 0 0

0 h2
2 0

0 0 h2
3

 (2.7)

To discuss the general form, let us define an indexed set of Cartesian coordinates (X1, X2, X3) and

general position coordinates (x1, x2, x3). The entries of gij are then written as [55, Eq. (7.23.4)]

gij =
3∑

k=1

∂Xk

∂xi
∂Xk

∂xj
(2.8)

such that the diagonal entries gii simplify to the sum of the squares of the partial derivatives:

gii =
3∑

k=1

(
∂Xk

∂xi

)2

(2.9)

There is a common approximation made to this definition based on the fact that the metric tensor

relates distance to the infinitesimal coordinate increments by a scaling factor. Let the orthogonal

curvilinear surface coordinate x1 ≡ s. Suppose this is locally perpendicular to the wall-normal,

orthogonal curvilinear second coordinate x2 ≡ y. Then the h1 metric may be written relating the

surface distance to the off-wall streamwise distance for a small angle dθ. The sketch below in Fig.

2.1 demonstrates this local circular assumption where the streamwise radius of curvature at a given

point is R1.

The expression for h1 simplifies to

h1 = 1 +
y

R1

(2.10)
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Figure 2.1: A sketch of the scaling factor h1. The streamwise radius of curvature is R1 and a small
angle subtended is dθ. The wall-normal distance off of the surface is given by y. The surface arc
distance ∆s is shown by the green line: R1dθ. The off-wall streamwise arc distance on the grid is
similar: (R1 + y)dθ

Of course, this equation fails at the limit of R1 = 0, but the surface would represent a singularity

and is not physical. This usage of h1 approaches the definitions in Eqs. (2.7) and (2.9) as the

product R1dθ = ∆s→ 0. However, for finite ∆s, there is a slight error with respect to the original

definition. For the grids considered in this dissertation, the y coordinate does vary in s—grid

clustering is a function of s. The change of y, though, with respect to s is presumed to be small for

an appropriately small ∆s. This assumption on the wall-normal coordinate not changing over ∆s

is equivalently expressed as

h2 = 1 (2.11)

For very small R1, the present circular approximation is dubious and demands an extremely small

dθ. For the present application of swept wings, the only locations with small R1 are near the

leading edge. In that region, ∆s by construction is assigned to be very small as well to avoid

additional error.

For more general geometries that have a finite spanwise radius of curvature R3, say a cone,

then the sketch can be drawn analogously for the spanwise dimension. Then

h3 = 1 +
y

R3

(2.12)
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These approximations of h1, h2, and h3 in Eqs. (2.10), (2.11), and (2.12), respectively, are used in

this dissertation rather than the formal definition in Eq. (2.9).

2.3 Nondimensional equations

A deep and beautiful power in physics lies in the result of the Buckingham π theorem: that its

laws do not rely on any specific unit system. It is common, especially in fluid dynamics, to express

the equations without units, or nondimensionally. Let us nondimensionalize the above governing

equations then. All of the relevant definitions for nondimensionalization are shown in Eq. (2.13).

Most variables have been directly nondimensionalized by their reference quantities, denoted with a

subscript ref. The few exceptions are a) pressure is nondimensionalized by dynamic pressure, not

static; b) second viscosity coefficient by dynamic viscosity; and c) time by a length over velocity.

ρ =
ρ∗

ρ∗ref

, ui =
u∗

i

u∗
1

ref

, xi =
x∗

i

`
, ` =

√
µ∗refX

∗1
ref

ρ∗refu
∗1
ref

, t =
t∗`

u∗
1

ref

,

p =
p∗

ρ∗ref

(
u∗

1

ref

)
2
, Rg =

R∗g
R∗g,ref

, µ =
µ∗

µ∗ref

, λv =
λ∗v
µ∗ref

,

h =
h∗

h∗ref

, cp =
cp
∗

cp∗ ref

, cv =
cv
∗

cv∗ ref

, T =
T ∗

T ∗ref

, κ =
κ∗

κ∗ref

(2.13)

These reference quantities may be taken as freestream values or anywhere in the computational

solution with nonzero velocities. The length scale ` is sometimes referred to as the Blasius length

and the present choice of X∗1ref inside of the square root is arbitrary. Substituting these into Navier-

Stokes, the tensorial form of the nondimensional equations is written as

∂ρ

∂t
+
(
ujρ
)
,j

= 0 (2.14a)

ρ
∂ui

∂t
+ ρujui,j = −gijp,j +

1

Re
Tij,j , ∀i ∈ [1, 2, 3] (2.14b)

ρ
∂h

∂t
+ ρujh,j = Ec

(
∂p

∂t
+ ujp,j

)
+

Ec

Re
gikTkjui,j +

1

RePr

(
κgijT,i

)
,j

(2.14c)

where upon algebraic manipulation, the natural definitions of the reference, nondimensional pa-
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rameters are found as

γ =
cp
∗

ref

cv∗ ref

, M2 =

(
u∗

1

ref

)2

γR∗g,refT
∗
ref

, Re =
ρ∗refu

∗1
ref `

µ∗ref

,

Ec =

(
u∗

1

ref

)2

h∗ref

, Pr =
µ∗ref cp

∗
ref

κ∗ref

,

(2.15)

Here, γ is the ratio of specific heats, M is the Mach number, Re is the Reynolds number, Ec is the

Eckert number, and Pr is the Prandtl number. Note that the nondimensional pressure is written as

p =
ρT

γM2
(2.16)

Note for all thermally perfect gases, Rg = 1 (as that is a function of the molecular mass of the

gas), cp 6= 1, and cv 6= 1. For calorically perfect gases, however, cp = cv = 1 as well as h = T ,

since h∗ = cp
∗T
∗ . The Eckert number may be simplified for calorically perfect gases:

Ec =

(
u∗

1

ref

)2

h∗ref

=
γR∗g,refT

∗
ref

cp∗ refT
∗
ref

(
u∗

1

ref

)2

γR∗g,refT
∗
ref︸ ︷︷ ︸

M2

=
γR∗g,ref

cp∗ ref︸ ︷︷ ︸
γ−1

�
�
�
�7T
∗

ref

T
∗
ref

M2 = (γ − 1)M2
(2.17)

since from the definitions of the specific heats

cp
∗

ref − cv∗ ref = R∗g,ref ,

1− 1

γ
=
R∗g,ref

cp∗ ref

,

γ − 1 =
γR∗g,ref

cp∗ ref

.

(2.18)

For all analysis presented, the gas is assumed to be calorically perfect.

As an addendum, one may wonder why gravity has been neglected in the present governing

equations. Recall from White that buoyant forces scale with the ratio Gr`/Re2, where Gr` is the
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Grashof number [54, §4.14]. The definition is given as

Gr` =
g∗β

∗

VT ref ∆T
∗

ref `
3

(ν∗ref)
2 (2.19)

where g∗ = 9.81 m-s−2, β∗VT ref is a reference volumetric coefficient of thermal expansion of the

fluid, ∆T
∗

ref is a reference change in temperature, ` is a length scale relevant for buoyant effects,

and ν∗ref is a reference kinematic viscosity. For the present cruise applications of interest, suppose

an altitude of 44,000 ft, which implies T ∗ref = 216.65 K. From ideal gas relations,

β
∗

VT ≡
1

V

(
∂V
∂T

)
p

,

=
1

V

(
∂

∂T

NkBT

p

)
p

,

=
1

V

(
NkB

p

)
,

=
NkB

NkBT
,

=
1

T

(2.20)

where V is the volume of the fluid, p is absolute pressure, T is absolute temperature, N is the

number of gas particles, and kB is the Boltzmann constant. Recall the subscript p implies differen-

tiation while holding p constant. Then the coefficient β∗VT ref = 1/T
∗

ref . The adiabatic temperature

T
∗

adiab of the surface on the wing in flight is nominally 234 K for a large portion of the chord,

so ∆T
∗

ref = T
∗

adiab − T
∗

ref = 17.35 K. The laminar boundary-layer thickness is on the order of

δ99 = 3 mm. With standard parameters of Sutherland’s law, ν∗ref ≈ 5.7 × 10−5 m2-s−1. All to-

gether, the Grashof number based off of the boundary-layer thickness is Grδ99 ≈ 6.5 = O(1).

Since the Reynolds numbers based on the chord of the wing are O(106–107), the ratio Grδ99/Re2

is extremely small, which implies that buoyant effects may be safely neglected in the present anal-

ysis.

This completes the discussion on the governing equations. For the remainder of the disserta-

tion, all dimensional quantities reported will have their asterisks omitted for brevity.
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2.4 Decomposition into a laminar and perturbation component

To model the transition process of the boundary layer, the governing equations are derived based on

the principle that the vector of flow variables q = [u, v, w, T, ρ] can be decomposed into a steady,

laminar component q and a perturbation (or disturbance) q′.

q(s, y, z, t) = q(s, y, z) + εpq
′(s, y, z, t) (2.21)

The instantaneous flow q is presumed to satisfy the full Navier-Stokes equations, represented by

the operator NS and shown in the previous section as Eq. (2.14).

NS(q) = 0 (2.22)

The laminar base-flow is presumed to satisfy the steady Navier-Stokes equations, written as

NS∂/∂t=0(q) = 0. By substituting this into (2.22), the dynamics of the perturbation can be ex-

pressed as

LNS(εpq
′) = N (ε2

pq
′q′, ε3

pq
′q′q′) (2.23)

where LNS represents the linear operator on q′ from the Navier-Stokes equations, while N

accounts for the nonlinear terms. Note for compressible, calorically perfect gases, there are

both second- and third-order nonlinearities when the state vector q is expressed primitively as

{u, v, w, T, ρ}.4

The subject of the next chapter will detail some relevant methodology to compute the laminar

base-flow q over a swept wing. Following, the subsequent chapter will discuss the perturbation q′

in the context of both linear and nonlinear stability theories of LST, LPSE, and NPSE. Detail will

be provided as to how they are applied in the in-house stability code, EPIC.

4An example of a quadratic nonlinearity is ρ v′ ∂u′/∂y from momentum conservation expressed in a Cartesian
frame. A cubic nonlinearity is similarly written as ρ′ v′ ∂u′/∂y.
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3. SWEPT WINGS AND BOUNDARY-LAYER SOLUTIONS WITH DEKAF1

Swept wings are a canonical, complex configuration that are and will always be relevant across all

speed regimes. From subsonic aircraft to jets and shuttles with delta wings—even fins on cones

may be modeled as swept wings. Given their ubiquity in aerospace design, it is worth analyzing in-

depth such that the fundamental understanding of the complex configuration can then be transferred

across the application space.

The present chapter will discuss the methodology used to convert a pressure coefficient into

appropriate conditions to compute a viscous boundary-layer solution over a swept wing. These

methods are implemented in the open-source code DEKAF, co-developed by the author.

3.1 Overview

A pressure coefficient of the swept wing must be provided to the boundary-layer solver to generate

a viscous solution. There are several options to construct the pressure coefficient. First, one could

use a Navier-Stokes CFD solver (e.g., OVERFLOW) and extract the pressure at the wall. Second,

if the data are present, an experimentally measured pressure coefficient can prescribe boundary

conditions in a boundary-layer solver instead. Third, the pressure coefficient from an inviscid code

(e.g., MSES) can be input directly into in a boundary-layer solver [57]. Each has their benefits and

nuances. CFD of course provides higher-fidelity simulations over inviscid codes. However, there

is a greater computational cost and set-up time (i.e., grid generation). Experimental measurements

provide a chance for direct comparison with what is observed rather than simulated. However,

pressure taps installed on a model may induce uncertainty and other experimental complications

may need to considered. Various applications benefit by analyzing the resulting flowfield over

two or even all three of the stated methodologies. The work presented in this dissertation uses a

combination of a) OVERFLOW solutions and b) MSES solutions.
1Portions of this chapter are reprinted with permission from “Boundary-Layer Stability of a Natural-Laminar-Flow

Airfoil” by Koen J. Groot, Ethan S. Beyak, Daniel T. Heston and Helen L. Reed in AIAA 2020-1024. Copyright 2020
by Koen J. Groot, Ethan S. Beyak, Daniel T. Heston, and Helen L. Reed.
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Pivoting to the boundary-layer solver, let us first hash out some details on nomenclature and

conventions used. The coordinate system used in DEKAF is the leading-edge-orthogonal frame.

That is to say, the quantity s traces from the attachment line along the airfoil’s surface perpendicular

to the leading edge. The coordinate y is wall-normal and z is parallel to the leading edge. The

velocity components in these directions will be referred to as (u, v, w), respectively. Base-flow

quantities will be distinguished with an overbar.

The laminar basic state (i.e., base flow) is assumed to be steady: ∂/∂t = 0. Additionally, the

basic state is assumed to be spanwise-invariant: ∂/∂z = 0. Even though s represents a curved path,

the curvature of the path along the surface is neglected in the boundary-layer calculation as a conse-

quence of the boundary-layer assumptions. A critical assumption in boundary-layer theory is that

the flow is slowly developing in s [54]. For the swept wings of interest (e.g., Natural-Laminar-Flow

wings), there are no sudden geometric excrescences that would violate this assumption. However,

in transonic flow, the presence of shocks quickly violates this assumption and the simulation at and

beyond those stations should be neglected.

The working fluid is air, and the compressible conditions considered in this dissertation permit

the calorically-perfect-gas assumption. That is, the specific heat at constant pressure cp is constant.

Pressure p is assumed to satisfy the ideal gas relation, p = ρRgT , where ρ is the mass density of

the fluid, Rg is the specific gas constant, and T is the temperature. Sutherland’s law and Stokes’s

hypothesis are used for dynamic viscosity µ and the second viscosity coefficient λv, respectively.

A constant Prandtl number is imposed to calculate thermal conductivity κ. More sophisticated

models may be used for transport properties of course, but they are unnecessary and inappropriate

for the subsonic/transonic analysis present in this dissertation.

3.2 Conversion of pressure coefficient data into boundary-layer edge quantities

The pressure coefficient is defined in Eq. (3.1) and is used to construct edge conditions that satisfy

isentropic relations, which serve as boundary conditions for DEKAF. The following section will

delineate how it is implemented into DEKAF. This section will not go into detail on the boundary-

layer solver as a whole. The curious reader is referred to Groot et al. [58].
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Near the surface of the wing, the freestream velocity undergoes acceleration and evolves into

the inviscid-edge velocity components ue and we. Because of the spanwise-invariant assump-

tion, we is globally constant over the wing. For this, it is sometimes given a special subscript:

w0 ≡ we = w∞ for all s, y, and z. The attachment line is a defining characteristic of swept-

wing flows. Along it, the streamwise component of the inviscid-edge velocity ue = 0 while the

spanwise component still we 6= 0. When using the dynamic pressure scaled with the leading-edge-

orthogonal velocity component
√
u2
∞ + v2

∞ to construct the pressure coefficient, this coefficient

will reach its isentropic value. That is, with the pressure coefficient written as

Cu∞v∞
p ≡ pe − p∞

1
2
ρ∞ (u2

∞ + v2
∞)

=
p− p∞

1
2
ρ∞Q

2

∞ cos2 Λ
=

CQ∞
p

cos2 Λ
≥ CQ∞

p . (3.1)

the maximally attainable isentropic pressure coefficient is given as

Cu∞v∞
p,max =

p∞
1
2
ρ∞ (u2

∞ + v2
∞)

(
p0

p∞
− 1

)
=

2

γM2
u∞v∞

((
1 +

γ − 1

2
M2
u∞v∞

) γ
γ−1

− 1

)
(3.2)

Here, care is taken with subscripts and superscripts to indicate the reference velocity wherever

relevant. The Mach number Mu∞v∞ =
√
u2
∞ + v2

∞/a∞ is the leading-edge-orthogonal freestream

Mach number; and a∞ =
√
γRgT∞ is the freestream speed of sound.

DEKAF’s inputs require the pressure coefficient valuesCu∞v∞
p versus leading-edge-orthogonal

x/c, where c is a reference length along the x axis (commonly the chord). Converting the pressure

coefficient to edge values in DEKAF requires additional inputs, delineated below:
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airfoil thickness coordinate (versus x/c): Yc/c [−]

leading-edge-orthogonal chord: c [m]

resultant freestream Mach number: MQ∞
= Q∞/a∞ [−]

sweep angle: Λ = arctan
w∞√

u2
∞ + v2

∞
[deg]

angle of attack: α = arctan
v∞
u∞

[deg]

specific gas constant: Rg [J/(kg K)]

ratio of specific heats: γ [−]

freestream temperature: T∞ [K]

freestream static pressure: p∞ [kg/(m s2)]

Alternatively, there are some physical scenarios where Mu∞v∞ is a more useful input than MQ∞

(e.g., sweep variation while maintaining leading-edge-constant velocity). Either is acceptable as

an input.2 Next, the following steps are performed in DEKAF:

1. Build the airfoil geometry’s surface coordinate sg. Its origin is placed at the trailing edge,

wrapping clockwise around the airfoil in the xYc-plane.

2. Interpolate the geometry coordinates and the pressure-data coordinates onto a dense, equis-

paced sg grid.

3. Identify the attachment-line location on this dense grid sstag by querying for the maximum

value of Cu∞v∞
p . Spline interpolation is selected over alternatives for continuity of deriva-

tives. However, it has the unphysical side-effect from the overshooting to slightly move the

location of the attachment line on the wing with respect to the original data. Additionally, the
2As an aside, the pressure coefficient does intrinsically encode the freestream Mach number. It could be directly

extracted by inverting the maximally attainable pressure coefficient equation at the attachment line: see Eq. (3.2).
However, since DEKAF optionally performs Prandtl-Glauert transformations, always supplying the Mach number is
simpler programmatically.
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result of spline interpolation can cause the new maximum value of Cu∞v∞
p to either under- or

overshoot the maximally attainable isentropic pressureCu∞v∞
p,max . In these situations, surround-

ing data points serve as fixed anchors while the fit of the pressure coefficient in between the

anchors is gradually and iteratively adjusted until the Cu∞v∞
p,max is achieved and undershot with

a tolerance of 2.2× 10−16.

4. The edge temperature T e is computed through isentropic relations, whereas ρe is then given

through the equation of state. The dynamic viscosity µe is given by the desired transport

equation—typically Sutherland’s law.

5. Differentiate the pressure coefficient Cu∞v∞
p on the dense sg-grid with a fourth-order regular

finite difference scheme. A central-oriented stencil is used throughout the interior, while

mixed and one-sided stencils are used at the boundaries of sg, i.e., near the trailing edge.

This derivative is used to quantify dpe/dsg.

6. Integrate the compressible s-momentum conservation equation.

u2
e(sg) = u2

e,TE − 2

∫ sg

sg,TE

1

ρe(s̄g)

dpe
ds̄g

(s̄g) ds̄g, (3.3)

Here, ue,TE is assigned such that the velocity component at the attachment line is identically

zero, i.e., ue(sstag) = 0. Integration is performed from the trailing edge (TE) toward the

attachment line using integration matrices.

7. When taking the square root of u2
e, the sign of ue is set to be positive on the side of the wing

of interest. Here, the ‘sides’ of the wing are divided consequently by the location of the

attachment line, not necessarily by the geometric coordinates of the airfoil.

8. The quantity due/ds for all points except at the attachment line is found through rearranging

s-momentum.
due
dsg

= − 1

ρe ue

dpe
dsg

. (3.4)
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At the attachment line itself, we differentiate ue(sg) numerically, as the above formula would

achieve a singularity.

9. Calculate the Hartree parameter βH now that all of the required quantities have been com-

puted:

βH =
2ξ

ue

due
dξ

(3.5)

At the attachment line, βH ≡ 1.

10. Calculate the self-similar streamwise coordinate ξ as

ξ(sg) = ξ(sg,TE) +

∫ sg

sg,TE

ρe(s̄g)ue(s̄g)µe(s̄g) ds̄g, (3.6)

Here, the integration constant can be set as we so choose. It is convenient to enforce

ξ(sstag) = 0, so ξ(sg,TE) is assigned appropriately.

11. Similarly, define the surface coordinate s = ±(sg − sstag) such that s = 0 at the attachment

line and s > 0 in the downstream direction of interest. Remove the nodes where s is nega-

tive and interpolate onto the required ξ-grid with the appropriate resolution for a converged

boundary-layer solution.

This routine has generated the necessary inputs now for the standard operation of DEKAF. In

other words, this concludes the airfoil pre-processing routine. For a discussion on the remaining

methodology of DEKAF, see the paper by Groot et al. [58].

3.3 Streamwise mapping

As an appendix onto the last point in the above outline, typical analyses over swept wings thus

far have found Nξ = 2000 to be appropriate to demonstrate convergence when clustering with

the tanh-distribution. Briefly, the tanh-distribution is based on assigning a streamwise step of

∆ξ ∝ tanh(X ), where X is an equispaced domain from [0, 1] with Nξ points. Additionally, it is
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desirable to control the value of ∆ξ at X = 0, so we may add a shift of Aξ:

∆ξ(X ) =
(
Aξ + aξBξ tanh(aξX )

)
∆X (3.7)

Recall the integral of hyperbolic tangent is the logarithm of hyperbolic cosine. Then take the limit

as ∆X → 0 and from integration we have:

ξ(X ) = ξmin + AξX +Bξ ln(cosh(aξX )) (3.8)

where the coefficients depend on domain size and the streamwise clustering specified. The func-

tion ∆ξ is specified in the X∆ξ-plane by indicating a point on the curve as (Xi,∆ξi). Another

important parameter, as mentioned above in the context of Aξ, is ∆ξmin: the ∆ξ value at X = 0.

The asymptote of the tanh reaches ∆ξmax. Through some algebra, the appropriate coefficients are

found:

Aξ = ∆ξmin(Nξ − 1), aξ =
1

Xi
tanh−1

(
∆ξi

∆ξmax

)
,

Bξ =
ξmax − ξmin −∆ξmin(Nξ − 1)

ln(cosh(aξ))

(3.9)

where ξmin = 0, as ξ begins at the attachment line. Out of this wide array of constants, the analyst

can control two: Xi and the ratio ∆ξi/∆ξmax. The third and final constant is asserted in DEKAF

to equal

∆ξmin =
1

100

ξ(sg,TE)

Nξ − 1
(3.10)

Usual values are Xi = 0.5 and ∆ξi/∆ξmax = 0.85, which will be employed for all DEKAF

solutions present in this dissertation. When paired with Nξ = 2000 and a fourth-order accurate

marching scheme, the boundary-layer properties are often converged below O(10−6) for swept-

wing solutions. An example of this will be shown in Chapter 7. This function was created by Dr.

Fernando Miró Miró and the author, first presented in the conference paper [59] and later refined

in the journal article [60]. The curious reader is referred to the dissertation of Miró Miró for a

relevant sketch and more detail [46, §7.3.1].
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3.4 Preparation for stability calculations

After the laminar boundary layer has been calculated with DEKAF, the solution is interpolated

onto a different domain and a different set of points. This is required to prepare the input for the

stability problem that operates with a different discretization. To elaborate, the wall-normal extent

of the domain must be larger for the stability problem than that defined by ηmax for the boundary-

layer problem. The perturbation can extend much farther out beyond the boundary-layer height,

especially near the attachment line. As a result, extrapolation of the base-flow profiles must be

performed following the asymptotic relations of boundary-layer theory stated in (3.11).

∂v

∂y
(η > ηmax) =

∂v

∂y
(η = ηmax), q(η > ηmax) = q(η = ηmax), q ∈ {u,w, T , ρ} (3.11)

The profiles are extrapolated to a selected height. GICM interpolation is used on the DEKAF

profiles for the nodes whose η < ηmax, see [58] for an in-depth discussion on GICM. Clustering

is applied to the grid going into the stability problem by way of Malik’s mapping: yi is assigned

to be identical to that resulting from the Illingworth transformation on the DEKAF solution. The

grid’s resolution is assigned to be Ny = 250 with this GICM/extrapolation procedure. Following

this, the basic state is ready to be input into the in-house stability code, EPIC—the subject of the

next chapter. First though, contributions of the author specific to DEKAF are outlined below.

3.5 Contributions

It would be remiss to not mention many of the capabilities of DEKAF related to high-enthalpy

flows, as much research has been done using the high-enthalpy modeling capabilities of the boundary-

layer solver. The contributions of the author relevant to the high-enthalpy effects in DEKAF in-

clude but are not limited to:

1. Multi-species chemical assumptions, including chemical nonequilibrium (CNE) and local

thermodynamic equilibrium (LTE) with constant elemental composition.

2. Two-temperature thermal assumptions, i.e., thermal nonequilibrium (TNE) or grouping the
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translational and rotational energy modes into T and the vibrational, electronic, and elec-

tron energy modes into Tv. This may occur simultaneously with chemical nonequilibrium,

creating thermochemical nonequilibrium (TCNE).

3. Different diffusion indexing, i.e., modeling diffusion as each species into another species or

approximating diffusion by indexing only each species into the mixture as a whole.

4. Different working fluids based on air:

(a) containing chemical species like He, Ar, or CO2 from surface gas injection;

(b) under dissociation into the five core species of (N, O, N2, NO, O2);

(c) under ionization into the eleven core species including the additional six of (N+, O+,

N+
2 , NO+, O+

2 , e−), where e− represents a free electron;

(d) and carbon products from thermal protection systems: (C, C2, C3, CN, CO, CO2).

5. Different data sets of collision integrals Ω
(i,j)
s,` are tabulated to match the simulations of pre-

vious researchers, such as Stuckert, Park, and Mortensen [61, 62, 63].

6. Various transport models for dynamic viscosity and thermal conductivity including:

(a) Power law

(b) Sutherland’s law for the mixture

(c) Blottner’s curve fits [64] with Eucken’s relation [65] and Wilke’s mixing rule [66],

abbreviated as Blottner-Eucken-Wilke or BEW

(d) Sutherland’s law for each species and Wilke’s mixing rule

(e) Gupta’s curve fits [67] with Wilke’s mixing rule

(f) Chapman-Enskog (CE) [68, §7-8]

(g) Yos’ approximations to CE [69]

(h) Brokaw’s approximation [70]
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7. Diffusion models:

(a) Constant Schmidt number or Lewis number

(b) For binary diffusion coefficients, 1st-order Chapman-Enskog relations can be used.

(c) Multicomponent diffusion coefficients may be calculated with:

i. Ramshaw’s relations [71, 72]

ii. Stefan-Maxwell equations [68]

(d) Ambipolar diffusion, or diffusion caused by charge differences interacting with an elec-

tric field, may be accounted for in flows with ionization [71].

8. Thermal models assume Rigid Rotor and Harmonic Oscillator (RRHO) [73, 74, 75].

These various computational models have led to two co-authored journal articles ([76, 60]) as well

as two co-authored conference articles: [77, 59]. Other developments in DEKAF performed by the

author include

1. Converting the pressure coefficient into edge conditions that satisfy isentropic relations,

which serve as freestream boundary conditions for the boundary layer.

2. Verified DEKAF directly against DPLR calculations (one of NASA’s CFD codes)

3. Extended capability to complex configurations in hypersonics provided a surface pressure

distribution.

(a) For instance, work in Texas A&M M6QT has analyzed flow over a part-straight/part-

flared cone. Given the surface pressure from a DPLR solution, DEKAF was provided

the edge conditions again generated through isentropic relations and a boundary-layer

was computed. This computed boundary-layer solution matched the DPLR solution

excellently throughout the flare region, despite neglecting curvature and wall-normal

pressure variation. Some of the research performed by the author can be found in the

to-be-published conference article [78].
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4. Led the process to make DEKAF an official, open-source code endorsed by three interna-

tional universities: Texas A&M University, TU Delft, and The von Karman Institute for

Fluid Dynamics

5. Established the git repository for DEKAF on gitlab.com and added extensive documentation

to increase user-friendliness.

This concludes the main contributions by the author with regards to DEKAF. The next chapter

will discuss stability analysis and the various methodologies as implemented in the in-house code,

EPIC.

28



4. STABILITY ANALYSIS WITH EPIC

EPIC is an in-house stability code at the Computational Stability and Transition (CST) lab at

Texas A&M University. First primarily developed by Nick Oliviero in 2015, the core algorithms

for solving Linear Stability Theory (LST), the Linear Parabolized Stability Equations (LPSE), and

the Nonlinear Parabolized Stability Equations were established with verification on hypersonic

cones and subsonic swept wings [47, 48]. Travis Kocian significantly improved the capability

of EPIC by introducing wall-normal interpolation of arbitrary three-dimensional base flows for

stability analysis, analyzing crossflow and the fundamental breakdown in hypersonics [49]. The

author entered the lab in 2017 and led the development of a new in-house code known as DERIVE

that automatically derives the governing disturbance equations through a computer algebra system

known as Maxima [79]. Using DERIVE, the author and Alex Moyes determined that the equa-

tions implemented in EPIC for LPSE and NPSE were missing a handful of terms as a result of the

error-prone hand derivation done prior. This combined with the fact that that version of EPIC was

not easily workable prompted the author and Alex Moyes to rewrite EPIC using modern features

of Fortran. Extensibility and flexibility is the core of the code’s architecture, using language as-

pects such as derived types and modules to easily share data across the program while also creating

space for new features. Through reading and understanding modern Fortran tools and capability,

EPIC was (re-)created. While Moyes focused on translating the core numerical algorithms of LST,

LPSE, and NPSE, the author created the surrounding backbone, including but not limited to com-

pilation, regular finite differences for discretization, interpolation, interfacing with DERIVE, unit

testing, regression testing, input handling, and general Fortran utilities. With these tools estab-

lished, Moyes validated EPIC in the hypersonics regime—especially its NPSE capability—with

HIFiRE-5b flight tests and BOLT wind-tunnel tests, as well as direct numerical simulations [50].

Mullen used EPIC to analyze the sensitivity of various instability mechanisms to change in geom-

etry/computational mesh, as well as changes in vehicle conditions at hypersonic speeds [80]. EPIC

continues to be developed and used for analysis across the speed regimes. Work by Dr. Koen Groot
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& Jay Patel have analyzed energy budgets of stationary crossflow mechanisms on pitched cones in

hypersonic flow as well as the saturation and nonlinear development of Görtler vortices [81, 82].

Peck has demonstrated an excellent match between EPIC’s LPSE and the higher-fidelity, elliptic

equations of AHLNSE in supersonic flow for the oblique first mode [37].

With the background presented, let us now discuss the stability theory surrounding and imple-

mented in the code, starting with the fundamentals—Linear Stability Theory.

4.1 Linear Stability Theory

Given that the highest gradients in viscous boundary layers tend to be in the wall-normal y direc-

tion, Linear Stability Theory (LST) first supposes that the laminar base flow is only a function of y.

This is known as the parallel-flow assumption, as it demands the wall-normal velocity v to vanish.

On the other hand, the strong y-dependence lends form to the disturbance’s ‘amplitude-function’

to again only depend on y. The other dimensions of the problem—surface coordinate s, spanwise

coordinate z, and time t—are accounted for by assuming the disturbance is a wave. The first LST

analysis was demonstrated by Tollmien in 1930 followed by computations of Schlichting in 1933

[18, 19]. Thorough reviews are given by Reed et al. and Mack [13, 10]. A brief mathematical

description is given below. The laminar base-flow q and disturbance ansatz q′ are written as

q = q(y),

q′(s, y, z, t) = q̂(y)︸︷︷︸
shape

e(i(αs+βz−ωt))︸ ︷︷ ︸
wave

+ c.c.
(4.1)

Here, a complex-valued q̂(y) determines the shape and phase of the LST disturbance in y. It is a

vector that has five components with one entry for each state variable q̂ = [û, v̂, ŵ, T̂ , ρ̂]. Spatial

wavenumbers α and β are related to the spatial wavelengths λs and λz in the s and z directions,

respectively, as α = 2π/λs and β = 2π/λz. The angular frequency of the wave ω is related to

its frequency f by ω = 2πf . A negative sign is placed in front of ω in Eq. (4.1) by convention.

The ‘c.c.’ is short-hand for the complex conjugate of the previous term and is necessary because

the disturbance is real-valued in nature. To be explicit, the expression for the complex conjugate is

30



written as

q̂†(y) e(−i(α†s+β†z−ω†t)) (4.2)

where the dagger superscript † indicates complex conjugation. Depending on the framework cho-

sen, various wavenumbers may be strictly real, causing its complex conjugate to equal itself. For

example, the ‘spatial’ framework for solving LST assumes that ω is provided as a real input and

α and β are complex. In contrast, the ‘temporal’ framework assumes the contrapositive: α and β

are provided as real inputs while ω is complex. The focus of this dissertation will cast LST in the

spatial framework. Additionally, it is assumed that disturbances will not grow in the z direction,

but only the s direction. This has the consequence that β is real while α remains complex. Now

in this context, the real part of β is additionally input with ω and α is computed, following the

discussion below. From the form of Eq. (4.1), note that a negative imaginary part of α represents

exponential growth of the disturbance, whereas a positive imaginary part represents exponential

decay.

When one substitutes in the LST disturbance into the governing Navier-Stokes equations and

presumes a steady, laminar flow, the governing disturbance equations take the form

Ad2q̂

dy2
+ Bdq̂

dy
+ Cq̂ = 0 (4.3)

whereA, B, and C are coefficient matrices of size 5×5. Each entry corresponds to the terms acting

on a given variable in the vector q̂ within a given conservation equation. These coefficient matrices

are functions of α and the equation may be rewritten as

(
L2α

2 + L1α + L0

)
q̂ = 0 (4.4)

This form of the equations is mathematically a quadratic eigenvalue problem where α is the eigen-

value and q̂ is the eigenfunction.1 There is a clever algebraic manipulation of these equations that

1Once the problem is discretized in y, the nomenclature switches from ‘eigenfunction’ to ‘eigenvector’ for q̂.
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allows them to be written as a linear, generalized eigenvalue problem: see Bridges & Morris [83].

(Laug
0 − αLaug

1 ) q̂aug = 0 (4.5)

with the following substitutions

Laug
0 =

−L1 −L2

I O

 Laug
1 =

−L0 O

O I

 q̂aug =

αq̂
q̂

 (4.6)

where I and O are the identity matrix and zero matrix, respectively. The adjective generalized in

this context refers to the fact thatLaug
1 is not the identity matrix. As written, the augmented matrices

Laug
1 and Laug

0 are size 10×10. However, there are no physical terms in the governing conservation

equations that include second derivatives of ρ̂, so one row and column may be omitted. In sum, the

augmented matrix equation is 9× 9 when the state vector q̂ = [û, v̂, ŵ, T̂ , ρ̂].

For a computational approach, the flowfield is discretized along the wall-normal y direction

and each point in the grid must satisfy the governing Eqs. of (4.6), barring the prescribed boundary

conditions at the surface and in the freestream.

For surface or ‘wall’ boundary conditions, the instantaneous flow velocity is assumed to reach

zero according to the no-slip assumption and no-penetration. This propagates into conditions on

û = 0, v̂ = 0, and ŵ = 0 at the wall y = 0. For the temperature wall condition, if both the laminar

base-flow T and the instantaneous T are isothermal, then the disturbance T̂ = 0 at the surface.

On the other hand, if the laminar base-flow T is adiabatic, then the boundary condition is more

nuanced. It is argued that for stationary disturbances (ω = 0), the appropriate boundary condition

is indeed also adiabatic: dT̂ /dy = 0. For traveling disturbances (ω 6= 0), it is argued that the time

scale of the disturbance is much faster than the scale of heat transfer for the surface material. In this

instance, the disturbance achieves an isothermal boundary condition T̂ = 0 in spite of an adiabatic,

laminar base flow [10]. For density ρ̂, the equation corresponding to y-momentum is used as the

boundary condition. The nomenclature for this is y-momentum is a compatibility condition for ρ̂.
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For freestream boundary conditions at the top boundary, the disturbance is presumed to decay

to zero, as its energy is primarily located within the boundary layer. In this instance, û = 0,

v̂ = 0, ŵ = 0, and T̂ = 0 in the freestream at y = ymax. Alternatively, one may presume the

disturbance asymptotes to a zero slope in the freestream. This is helpful in scenarios when the

wall-normal domain must be small (e.g., a bounding shock from above or other reasons discussed

in chapter 5.) That is, dφ̂/dy = 0 for φ̂ ∈ {û, v̂, ŵ, T̂} at y = ymax. Some disturbances however

do propagate a significant amount of energy into the freestream and the above boundary conditions

are consequently inappropriate. An example of such a disturbance is the supersonic Mack mode

[84, 85, 86]. In those situations, reflecting boundary conditions are appropriate, but it is beyond the

scope of the dissertation. The density component ρ̂ may be presumed to be either a) zero valued,

b) zero slope, c) or satisfy some compatibility condition, such as continuity or y-momentum.

The boundary conditions in conjunction with the augmented system at each interior node of the

wall-normal grid form now a large matrix system of size 9Ny × 9Ny, where Ny is the number of

points in the y domain. With the mathematical form of a linear, generalized eigenvalue problem,

this may be numerically solved with standard LAPACK Fortran subroutines. A local approach

uses a Krylov-subspace method, and with an initial guess for an eigenvalue of interest, solves for

a finite number of eigenvalues nearby through approximation [87]. In this procedure, ultimately

the equation form is transformed back to a regular eigenvalue problem through a Hessenberg form,

permitting use of ZGEEV [88]. For reasonably resolved problems, a sample Krylov subspace di-

mension will be no more than 100 to obtain an appreciably accurate answer. A global approach

makes no approximations and solves for all of the eigenvalues of the matrix, i.e., the spectrum.

This procedure makes use of LAPACK’s ZGGEV using the classical QZ algorithm and is not often

performed due to the additional computational cost [89].

In the spectrum of eigenmodes, there are solutions that are near one another and form con-

tinuous branches throughout the complex plane while there also exist some solutions that are dis-

connected from these branches—deemed discrete eigenmodes. The curious reader is referred to

Grosch & Salwen for more detail [90]. The system’s dynamics are determined by the summation
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of all of the eigenmodes by way of eigenfunction expansion methods [91]. However, it is often

assumed with these modal stability theories that the system’s dynamics can be approximated by

considering just one of the discrete eigenmodes in the spectrum. This may not always be appro-

priate in boundary-layer stability analysis as some mechanisms are reliant not primarily on one

eigenmode, but two: see the analysis of the supersonic Mack mode by Tumin [91, 84]. For other

primary instability mechanisms such as Tollmien-Schlichting or stationary crossflow, a discrete

eigenmode is a reasonable approximation when compared to high-fidelity computations or exper-

imental measurements. After selecting a discrete eigenmode from the spectrum, the eigensolution

may be confirmed or ‘purified’ by substituting it into the governing ordinary differential equations

of Eq. (4.3) and iterating with Newton-Raphson until the residual is below some desired tolerance.

4.1.1 Wall-normal coordinate y

To cluster nodes in the wall-normal coordinate for the stability solution, the shape of laminar

boundary layer is leveraged. In the results section, specific values for clustering height yi and the

max of the domain ymax will be specified. With an equispaced, logical domain η = [0, 1], the

wall-normal clustering function used is

y =
ymaxyi η

ymax − yi − η (ymax − 2yi)
(4.7)

inspired by Malik & Orszag [92]. With this formulation, the computational nodes are split such

that half of them are placed below the clustering height yi to the surface, while the other half is

above yi up to ymax.

Note that this function may be used with a non-equispaced logical coordinate as well. For

example, a cosine-mapped η∗ may be input to (4.7) to maintain reasonable resolution at the bound-

aries. In this case, η∗ is a function of the equispaced, logical domain η = [0, 1] as

η∗ =
1

2
(1− cos(πη)) (4.8)
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such that η∗ ∈ [0, 1] as well.

4.2 Linear Parabolized Stability Equations

The disturbance formulation of LST may be expanded slightly to be more physically inclusive.

Streamwise development and non-parallel effects now are partially included in the formulation,

taking inspiration originally from the multiple-scales methodology [93]. The form of these equa-

tions, known as the Linear Parabolized Stability Equations (LPSE), were written first for in-

compressible flows by Herbert & Bertolotti [94], and then extended to compressible flows in

Bertolotti’s dissertation [22] and simultaneously by Chang et al. [23]. The seminal review for

PSE is written by Herbert [12]. A brief mathematical description is written below.

One may introduce a factor εs � 1 that follows the streamwise change of all flow variables

∂

∂s
= εs

∂

∂s̆
(4.9)

which yields a definition of a new streamwise coordinate s̆ = εss. With this substitution in mind,

consider now the compressible continuity equation for the laminar base-flow, assuming a Cartesian

coordinate system.
∂(ρ u)

∂s
+
∂(ρ v)

∂y
= 0,

εs
∂(ρ u)

∂s̆
+
∂(ρ v)

∂y
= 0,

=⇒ v = εs

(
− 1

ρ

∫ ymax

0

∂(ρ u)

∂s̆
dy

) (4.10)

which indicates that the wall-normal velocity component v is on the order of εs as well. In the

derivation process for LPSE—similar to that of LST—first-order terms of εs are kept while higher-

order terms εns , n ≥ 2 are assumed negligible.

The wave in the ansatz is also modified in PSE with respect to LST’s, borrowing a methodology

sometimes used in quantum mechanics known as the WKBJ technique [95]. Now the streamwise

wavenumber α obtains some of the streamwise variation in the coordinate s̆ as well as the shape-

35



function q̂. The base-flow assumption then with the LPSE disturbance ansatz is written as

q = q(s̆, y),

q′(s, y, z, t) = q̂(s̆, y) e
i
(∫ s̆
s̆1
α(s) ds+βz−ωt

)
+ c.c.

(4.11)

where s is a dummy variable of integration over s̆. This form is used in the derivation of the gov-

erning equations and subsequent analysis. Once implemented into the program for computations,

however, there is no distinction necessary between s and s̆. The governing equations from continu-

ity, momentum, and energy conservation are expressed now in terms of s with ∂/∂s terms acting

on q̂:

Msy
∂2q̂

∂s ∂y
+Myy

∂2q̂

∂y2
+Ms

∂q̂

∂s
+My

∂q̂

∂y
+M0 q̂ = 0 (4.12)

These disturbance equations for LPSE can be found in appendix A. Similar to LST, the wavenum-

ber β and angular frequency ω are provided and the equations must be solved for q̂ and α. However,

the problem formulation differs here, as it is no longer an eigenvalue problem with the presence

of the streamwise derivative ∂/∂s. A supplementary equation is provided, known as a normaliza-

tion condition or auxiliary equation, in order to close the system. The concept is to minimize the

streamwise change in q̂, since its second-order derivatives are neglected in the problem formula-

tion. From Herbert, one way to accomplish this is to minimize growth at a representative height

in the domain or in an integral sense over the entire boundary layer [12]. This is accomplished

iteratively by moving much of the shape-function’s streamwise growth and decay into the complex

wavenumber α. Details on this procedure will be left for nonlinear discussion in §4.3.

The mathematical form of the governing differential equation in Eq. (4.12) is now different

than that of LST. Instead of an ordinary differential equation, it is a partial differential equation.

With the appearance of only first-order derivatives in s, it is presumed to be parabolic in nature,

much like the heat equation. In this sense, an initial condition is provided at the first s-station, say

s1, and subsequently ‘marched’ downstream in the s coordinate as far as desired. Note, however,

the parabolic presumption is an approximation on the physical reality of the problem. With the
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inclusion of s-derivatives, there are second-order terms that do prompt the proper treatment as a

boundary-value problem. That problem formulation is elliptic in nature and must be computation-

ally solved everywhere in the domain simultaneously, which is discussed further in §4.3.

The initial condition can be prescribed in multiple ways, but by far the most common is to select

a single discrete eigenmode from LST. It is reasonably close to satisfying the PSE equations, but of

course there are discrepancies from non-parallel effects. This error then is visualized as a spatial

transient upon initialization. Often within 4-5 streamwise steps, this ‘LST-transient’ will decay

out and the proper PSE solution will be present. If the flow is appreciably non-parallel early on

and the parallel LST eigenmode is too far off in the complex plane from the corresponding PSE

solution, then solving the governing equations can fail catastrophically, as the solution begins to

hover near complex zero. Sometimes this is colloquially referred to as ‘losing the mode’ and often

indicates that the LST initial condition is inappropriate. In this regard, initializing LPSE with

an LST solution has a chance of failure, but for a wide range of scenarios, the methodology is

successful.

Another methodology to initialize LPSE is by providing another PSE solution or even a com-

ponent from a DNS simulation. These are helpful when available for verification between codes,

but is not commonly performed for most analyses.

The wall-normal boundary conditions for LPSE are formulated identically as LST’s, and for

brevity, are omitted. This completes the brief discussion on the LPSE formulation. The section on

discretization relevant to LPSE is given below.

4.2.1 Computational discretization

The wall-normal coordinate is clustered as used in the LST problem, that is, using the mapping

inspired by Malik & Orszag. However, for this formulation, note the distributions for yi and ymax

vary in s, causing the physical y grid to modulate. Additionally, the computed distributions of yi

or ymax can optionally be fit with a polynomial if desired. Briefly, polynomials of order 1 through

20 are queried for the fit. The order whose polynomial minimizes the square error with respect to

the original data is selected.
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4.2.2 Streamwise coordinate s

The streamwise surface coordinate s is generated by a cumulative sum of

si+1 = si +
√

(xi+1 − xi)2 + (Yc, i+1 − Yc, i)2 (4.13)

with s1 ≡ 0. Here, x is the leading-edge-orthogonal, chord-axis coordinate of the airfoil and Yc

is the vertical airfoil coordinate. The coordinate s in the grid used for stability analysis is, most

of the time, equispaced and is made so via spline-interpolated (not-a-knot). In these scenarios,

the logical coordinate ξ = s such that dξ/ds = 1. However, there are several cases relevant for

PSE application that warrant streamwise clustering. The first of which is characterizing the cross-

flow instability in swept-wing flows. The extremely favorable pressure gradients that follow in the

region of the attachment line trigger very high growth rates of the crossflow instability. A high

resolution in the stability grid is needed to successfully converge near-attachment line properties,

like the branch-I location of the disturbance. Additionally near the attachment line, there may

be appreciable surface curvature, thus demanding smaller ∆s to reduce the error incurred by the

approximation of the hi metrics (see §2.2). However, beyond the attachment-line region, the gov-

erning pressure gradients of a swept wing become much less severe farther downstream and surface

curvature decreases. In this region of the domain, streamwise clustering is no longer needed. Now,

the devil’s advocate may say, with modern computing power and near-endless storage, why not

just run a high streamwise resolution that is equispaced? That is a reasonable solution—in fact,

the author himself has done this for the much of the earlier linear analysis presented [96, 97]. In

the spirit of computational efficiency and speed however, deresolving the streamwise domain away

from regions of strong gradients is desired.

Another application that warrants streamwise clustering in PSE is characterizing the fundamen-

tal breakdown (also known as primary resonance) in a hypersonic boundary layer. In the complex

nonlinear transition process, there is the initial stage of linear growth of the (1, 0) Mack second

mode. Here, only a moderately low number of streamwise nodes are required for an accurate so-
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lution. It is not until the mean-flow distortion grows to a significant amplitude and the streamwise

vortex mode (0, 1) exceeds the amplitude of the (1, 0) second mode. At this stage, nonlinear ef-

fects are dominant and there can be abrupt changes in the shape-functions. See DNS results by

Hader & Fasel as a demonstration of the above transition process [98]. In the nonlinear regime,

a higher streamwise resolution may be desired—high enough to resolve the nonlinear dynamics

while avoiding the step-size criterion causing sudden divergence of the solution.

There are many different ways to cluster computational nodes. For instance, Malik mapping

is excellent for wall-normal distributions in unbounded shear flows (e.g., boundary layers). Here,

the author follows with a simple yet robust power law: s ∝ ξcst. The actual formula used has

additional properties to improve its practicality, shown below:

s− si + εs
sf − si

= αmap

(
ξ − ξi + εξ
ξf − ξi + εξ

)βmap

+ γmap

(
ξ − ξi + εξ
ξf − ξi + εξ

)
(4.14)

The only variables are s and ξ; the rest are constants. Constants si and sf indicate the initial and

final s values of the s coordinate, while ξi and ξf are analogous for the ξ coordinate. Constants εs

and εξ are numerical shifts to reduce numerical underflow. The primary mapping parameters are

αmap, βmap, and γmap. Here, αmap may be computed based where a third may be computed from

specifying βmap, and γmap, as shown below.

Each feature in Eq. (4.14) has its reasoning. The explanation and thought-process is outlined

below:

• Without the final linear term∝ γmapξ, the derivative ds/dξ at ξ = ξi would be zero, implying

that dξ/ds → ∞. This value, however unused directly by a PSE code,2 could be problem-

atic, as integration could propagate infinity throughout the domain, diluting a calculation. A

nonzero γmap then specifies the slope of s(ξ) near ξi.

• When performing any transformation between computational and physical variables, it is

ideal to have the numbers on the same order of magnitude to minimize any loss of preci-

2Values of dξ/ds are only used from a streamwise index of 2 and onward, i.e., directly after of ξi.
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sion in subsequent calculation, i.e., numerical underflow. For this reason, the choice was

made to assign ξi ≡ si and ξf ≡ sf , provided si < sf . Even though they have the same

numerical value, the s coordinate has dimensional units of length (e.g., meters) whereas the

ξ coordinate is unitless by construction. This choice leads to the function

s− si
sf − si

= αmap

(
ξ − ξi
ξf − ξi

)βmap

+ γmap

(
ξ − ξi
ξf − ξi

)
(4.15)

• The above formula is nearly there, but it has one flaw. For values of βmap < 1, the derivative

ds/dξ at ξ = ξi → ∞. We choose to then shift each numerator on the right-hand side by

some positive quantity, call it εξ. With a positive numerator now within the power law at ξ =

ξi, the derivative ds/dξ will stay finite for all βmap. We also include εξ in the denominator

such that evaluation of the argument at ξf goes to unity. With a shift on the right-hand side,

it is appropriate that the left-hand side also includes a shift, call it εs, bringing us to the final

form, repeated below for convenience:3

s− si + εs
sf − si

= αmap

(
ξ − ξi + εξ
ξf − ξi + εξ

)βmap

+ γmap

(
ξ − ξi + εξ
ξf − ξi + εξ

)
(4.16)

• Let us evaluate s(ξ) at the end points to give us two relations between these various constants.

ξ = ξi , s = si :
εs

sf − si
= αmap

(
εξ

ξf − ξi + εξ

)βmap

+ γmap

(
εξ

ξf − ξi + εξ

)
ξ = ξf , s = sf : 1 +

εs
sf − si

= αmap + γmap

(4.17)

3In programming this equation, the values of s(1) = si and s(Ns) = sf are assigned after the function evaluation
to ensure the domain exactly contains those input values. This accommodates for the natural and slight error through
underflow.
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• Solve for αmap in the second equation, substitute into the first, and solve for εs.

αmap = 1 +
εs

sf − si
− γmap

εs =
sf − si

1−
(

εξ
ξf−ξi+εξ

)βmap

(
(1− γmap)

(
εξ

ξf − ξi + εξ

)βmap

+ γmap

(
εξ

ξf − ξi + εξ

))
(4.18)

• Finally, choose εξ such that the positive constant is on the order of ξ, reducing numerical

underflow.

εξ = max(|ξi|, |ξf |) (4.19)

With these above equations, the equation leaves βmap and γmap as free parameters, allowing

the user to specify them as they please. Note that an equispaced domain is recovered if βmap = 1

and γmap = 0. For physical intuition, suppose γmap > 0. Then βmap > 1 implies clustering occurs

near the front of the domain, whereas βmap < 1 implies clustering downstream at the rear of the

domain. The former case may be useful for linear crossflow calculations on swept wings while

the latter may be helpful for nonlinear PSE calculations. Further, there are some combinations of

βmap and γmap that cause max(s) > sf or min(s) < si. These combinations are rejected for all

practical purposes, as monotonicity is required. A sample streamwise mapping to cluster near the

front of the domain uses γmap = 0.5 and βmap = 15. This clustering with Ns = 250 and s ∈ [0, 1]

is shown in Fig. 4.1. The top panel indicates s mapped against logical coordinate ξ, where sequi is

the equivalent equispaced domain. The orange circle indicates the last streamwise station where

clustering occurs, i.e., where ds/dξ < 1. The second panel indicates the change in s, calculated

by the chain rule ∆s ≈ ∆ξ ds/dξ. The third panel indicates what is referred to as the “equivalent

equispaced” streamwise resolution. That is, if the domain were equispaced for the current ∆s, the
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quantity represents the number of total nodes. This quantity is derived briefly as

∆s =
Ls

Ns,equi − 1
,

∆ξ
ds

dξ
=

Ls
Ns,equi − 1

,

=⇒ Ns,equi = 1 +
Ls

∆ξ ds
dξ

(4.20)

where Ls is the length of the domain in the s coordinate, i.e., sf − si. The third panel indicates the

power of the mapping: the domain may achieve a streamwise resolution of nearly Ns,equi = 1000

near the front while smoothly deresolving at the back of the domain where the changes in the

solution are less so. As mentioned earlier in the section, this is excellent for performing efficient

yet still accurate stability analysis of crossflow over a swept, natural-laminar-flow airfoil. Given the

steep slope in the pressure coefficient for these wings upstream for x/c < 0.05, high streamwise

resolution is required (e.g., Ns,equi ≈ O(1000)) to achieve appreciably small streamwise errors:

see Fig. 10a in [97]. At the same time, given the mild pressure gradient over the remainder of the

chord, extremely high streamwise resolution is no longer required and can be safely deresolved.

An alternative to this approach that may accomplish the same means follows the hyperbolic tangent

distribution for ∆s. Upon integration, a natural logarithm of a hyperbolic cosine is used for s =

s(ξ), akin to the one described in previous chapter: see §3.3. This particular mapping has the added

benefit of not successively deresolving at the back of the domain, however it is not yet implemented

into EPIC.

With the streamwise s domain defined, derivatives necessary for coordinate transformations are

readily computed from Eq. (4.7): ∂η/∂y and ∂2η/∂y2. After the derivatives ∂yi/∂s and ∂ymax/∂s

are computed via finite differences, the streamwise derivatives ∂η/∂s and ∂2η/∂s∂y are then com-

puted. Derivatives in the η direction are computed by polynomial differentiation described by

Weideman & Reddy [99, §2], using fourth-order accuracy. Note that differentiation of the base-

flow uses second-order accurate, central, regular finite differences in the streamwise s direction,

while it drops to first-order accurate, one-sided at the boundaries. To avoid the ill-posedness of
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Figure 4.1: Streamwise mapping on s for a selected Ns = 250, γmap = 0.5, and βmap = 15,
as given by Eq. (4.14). a) Streamwise coordinate s versus logical coordinate ξ, shown in black.
The dashed blue line indicates an equispaced s ≡ sequi, while the orange circle indicates the last
streamwise station where clustering occurs, found by examining the slope exceeding unity. b)
Difference in streamwise coordinate s, as calculated by ∆ξ ds/dξ. c) “Equivalent equispaced”
streamwise resolution Ns,equi as a function of s, as defined in Eq. (4.20).

PSE at these near-incompressible speeds (discussed in §4.3.3.2), a first-order backward regular

finite difference scheme is used for this problem.

Differentiation operators in terms of physical coordinates s and y are then expressed through
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the multivariate chain rule as

∂

∂s
=
∂ξ

∂s

∂

∂ξ
+
∂η

∂s

∂

∂η
,

∂

∂y
=
∂η

∂y

∂

∂η
,

∂2

∂s ∂y
=
∂η

∂y

∂ξ

∂s

∂2

∂ξ ∂η
+
∂η

∂s

∂η

∂y

∂2

∂η2
+

∂2η

∂s ∂y

∂

∂η
,

∂2

∂y2
=

(
∂η

∂y

)2
∂2

∂η2
+
∂2η

∂y2

∂

∂η

(4.21)

Note that ∂2/∂s2 is not needed since it is not present in the governing equations of the disturbance,

Eqs. (4.12). With these operators defined, derivatives of any quantity of interest (e.g., base-flow,

disturbance) are readily computed with respect to the physical coordinates.

This completes the description of the streamwise discretization. Let us move now to a longer

discussion on the nonlinear variant of PSE.

4.3 Nonlinear Parabolized Stability Equations

This section will thoroughly discuss the Nonlinear Parabolized Stability Equations, or NPSE,

methodology which serves as an extension of the LPSE methodology to finite amplitudes. A

derivation of the governing equations will be presented in conjunction with boundary conditions,

initial conditions, and a final outline of the solution procedure.

4.3.1 Derivation of the governing equations

It is common in physics and engineering to model a wave-like disturbance or a force as a sum

of finite harmonics—temporally and/or spatially [93]. The Parabolized Stability Equations (PSE)

approach does so as well, accounting for a selected number of disturbances that are multiples

of the fundamental frequency and spanwise wavenumber. The disturbance may be written as a

Fourier transform of the physical perturbation with respect to time t and spanwise coordinate z.

For practical computations, the infinite double sum is truncated in both time and space, given in
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Eq. (4.22), where there are 2N + 1 Fourier modes in time and 2K + 1 in span.

q′(s, y, z, t) =
N∑

n=−N

K∑
k=−K

A0 (n,k)

2
q̂(n,k)(s̆, y) e

i
(∫ s̆
s̆1
α(n,k)(s) ds+kβ0z−nω0t

)
︸ ︷︷ ︸

q′
(n,k)

(4.22)

Since the disturbance is real-valued, the summations consider the negative wavenumbers and fre-

quencies to effectively take the real part of the argument. This is because the (−n,−k)-harmonic

represents the complex conjugate of the (n, k)-harmonic. As an aside, in this dissertation, the

phrases ‘(n, k)-harmonic’ and ‘Fourier mode’ will be used interchangeably in the context of PSE.

This avoids the use of ‘mode’, as that is reserved for solutions to eigenvalue problems [9].

Here, A0 (n,k) is the amplitude at a certain reference location in s and can be complex-valued

to express phase relations of the different harmonics at that reference location. The division by 2

eases the assignment programmatically such that a value of A0 (n,k) is distributed equally across

the (n, k)-harmonic and its complex conjugate.4 The wavenumbers (ω0, β0) ∈ R are the smallest

nonzero spanwise wavenumbers and angular frequency of interest in the problem (smallest in terms

of absolute magnitude). The numerical problem now is centered around solving for the complex-

valued shape-function q̂(n,k) and the streamwise wavenumbers α(n,k) of each Fourier mode. Note

that the shape-function is a vector with 5 components here:

q̂(n,k) = {û(n,k), v̂(n,k), ŵ(n,k), T̂(n,k), ρ̂(n,k)} (4.23)

4.3.1.1 Negative wavenumbers and frequencies

Let us discuss further the presence of negative effective wavenumbers and frequencies present in

the PSE ansatz of Eq. (4.22). Since the total disturbance represents a physical value, q′ must be

real. Consider then a single (n, k) Fourier mode and assert that its complex conjugate must be

4Admittedly, the division by 2 is unnecessary in the problem formulation. Note that the mean-flow distortion (0, 0)
is its own complex conjugate, so the division by 2 is omitted only for this particular disturbance.
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equal to itself. Since (ω0, β0) ∈ R,

q̂(n,k)W(n,k)e
(i(kβ0z−nω0t)) = q̂†(n,k)W

†
(n,k)e

(−i(kβ0z−nω0t)) (4.24)

where the dagger superscript † indicates complex conjugation and W(n,k) is defined as A0 (n,k)

multiplied by the streamwise component of the wave:

W(n,k) ≡ A0 (n,k) e
i
∫ s
s1
α(n,k) ds̃ 6= 0 (4.25)

The variableW is chosen as an ode to WKBJ methods, as alluded to in the previous LPSE section

[95]. In the expression on the right of Eq. (4.24), switch the signs of (n, k) to (−n,−k):

q̂†(n,k)W
†
(n,k)e

(−i(kβ0z−nω0t)) = q̂†(−n,−k)W
†
(−n,−k)e

(−i(−kβ0z−(−n)ω0t))

= q̂†(−n,−k)W
†
(−n,−k)e

(i(kβ0z−nω0t))

(4.26)

Equate Eq. (4.24) and Eq. (4.26) to find

q̂(n,k) = q̂†(−n,−k),

W(n,k) =W†(−n,−k)

(4.27)

which implies the useful relations

q̂†(n,k) = q̂(−n,−k),

W†(n,k) =W(−n,−k)

(4.28)

Evaluating the expression forW(n,k) at the first streamwise node s = s1, the integral vanishes:

A†0 (n,k) = A0 (−n,−k) (4.29)
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Consider the expression forW(n,k) now for s > s1:

A†0 (n,k)e
−i
∫ s
s1
α†

(n,k)
ds̃

= A0 (−n,−k)e
i
∫ s
s1
α(−n,−k) ds̃

,

e
−i
∫ s
s1
α†

(n,k)
ds̃

= e
i
∫ s
s1
α(−n,−k) ds̃

,

−α†(n,k) = α(−n,−k)

(4.30)

The complex-conjugate relations for q̂(−n,−k) and α(−n,−k) in Eq. (4.28) and Eq. (4.30) imply that

not all considered (2N + 1)(2K + 1) Fourier modes need to be calculated directly by solving their

governing equation. Instead, only n ≥ 0 need to be considered across the entire nk-plane. And

along the k-axis, only k ≥ 0 need to be considered as well. The total number of Fourier modes

then that are solved via the governing PDEs reduces to (N + 1)(2K + 1)−K while the remaining

Fourier modes are computed with Eq. (4.28) and Eq. (4.30). A graphical example is shown in Fig.

4.2 to visualize this pattern.

Figure 4.2: Fourier modes (n, k) in the wavenumber-multiple nk-plane for N = 3 and K = 2.
Green circles indicate Fourier modes for which the governing PDEs must be solved, while purple
crosses indicates those for which complex-conjugate relations may be used.
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4.3.1.2 Symmetry relations in z

There exist relations in addition to the above conjugate relationships that arise when when w = 0.

These are:
q̂(n,k) = q̂(n,−k) q̂ 6= ŵ,

ŵ(n,k) = −ŵ(n,−k),

α(n,k) = α(n,−k)

(4.31)

which has the special implication for stationary Fourier modes with n = 0:

q̂(0,k) = q̂(0,−k) = q̂†(0,k) q̂ 6= ŵ,

ŵ(0,k) = −ŵ(0,−k) = −ŵ†(0,k),

α(0,k) = α(0,−k) = α†(0,k)

(4.32)

These equations imply that q̂(0,k), q̂ 6= ŵ and α(0,k) are real-valued, since they are equal to their

complex conjugates. On the other hand, ŵ(0,k) is purely imaginary since its equal to its negative

conjugate. The present symmetry conditions in z further reduce the Fourier modes needed to be

calculated via PDEs to only (n, k) where both n ≥ 0 and k ≥ 0. That is, in terms of the nk-space,

only the first quadrant needs to be considered in the simulation, solving (N + 1)(K + 1) PDEs in

total. These relations are crucial to enforce symmetry. Relevant examples include a Görtler vortex

at zero sweep or a fundamental breakdown on a cone, zero degrees angle of attack. See work by

Patel leveraging these symmetry conditions in EPIC [82].

4.3.1.3 Harmonic balancing

If the amplitudes are presumed to be infinitesimal, then the linear PSE (or LPSE) are recovered

for each considered Fourier mode. These equations are found by supposing εp � 1, i.e., ε2
p is

negligible in Eq. (2.23). However, if amplitudes are finite, nonlinear PSE (or NPSE) are required.

Consider substituting the PSE model, or ansatz, into the governing equations with only quadratic

48



terms. Then

LNS

(
N∑

n=−N

K∑
k=−K

A0 (n,k)q̂(n,k) e
i
(∫ s
s0
α(n,k) ds̃+kβ0z−nω0t

))
=

N

(
N∑

n1=−N

K∑
k1=−K

A0 (n1,k1)q̂(n1,k1) e
i
(∫ s
s0
α(n1,k1) ds̃+k1β0z−n1ω0t

)

N∑
n2=−N

K∑
k2=−K

A0 (n2,k2)q̂(n2,k2) e
i
(∫ s
s0
α(n2,k2) ds̃+k2β0z−n2ω0t

))
(4.33)

Equations 4.33 represent a system of (2N + 1)(2K + 1) equations where each harmonic (n, k) is

forced by particular interactions with the other harmonics in the system, represented by the Fourier

modes (n1, k1) and (n2, k2). These interactions are governed by harmonic balancing, which is

derived by equating the phases of the above equations that are independent in s and y. This uses

the fact that oscillating functions at unequal wavenumbers and frequencies are orthogonal to each

other on an appropriate domain. For each (n, k),

exp [i(kβ0z − nω0t)] = exp [i(k1β0z − n1ω0t)] exp [i(k2β0z − n2ω0t)],

kβ0z − nω0t = (k1 + k2)β0z − (n1 + n2)ω0t,

⇒ k = k1 + k2 and n = n1 + n2

(4.34)

In other words, for second-order (or quadratic) nonlinearities, the wavenumbers and frequencies of

the harmonics that force the (n, k)-mode are related by the conditions n = n1+n2 and k = k1+k2.

A straightforward extension of this holds for third-order (or cubic) nonlinearities, showing that the

tuple ((n1, k1), (n2, k2), (n3, k3)) forces the (n, k) Fourier mode if and only if n = n1 + n2 + n3

and k = k1 + k2 + k3. As an example, consider the case for when the double sum is truncated with

N = 1 and K = 1 for 9 total Fourier modes. All quadratic interactions that force the (1, 1) are
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listed as
(1, 1) = (0, 1) + (1, 0),

= (1, 0) + (0, 1),

= (0, 0) + (1, 1),

= (1, 1) + (0, 0)

(4.35)

where the + operator is equivalent to vector addition in the (n, k)-plane. An important example is

given by (0, 0) = (n, k)+(−n,−k) for all considered n, k. Hence, the number of forcing, second-

order interactions on the (0, 0) Fourier mode is simply equal to the number of Fourier modes

considered—9 in this example. Similarly for larger N and K, the (0, 0)-harmonic, also referred to

as the mean-flow distortion, is forced by all modes and their complex conjugates. Harmonics that

sit at a corner of the Fourier space are forced by the least number of Fourier modes. It is important

to note that an infinitely accurate solution would be represented with N and K tending to infinity

and there would be an infinite number of interactions for any harmonic. By truncating N and K,

dropping many of those interactions represents one of the introduced inaccuracies. For large n and

k, we expect that the amplitude of those harmonics tend toward zero, which reduces the magnitude

of the introduced inaccuracy.

4.3.1.4 Governing equations

Let us proceed with the derivation of the governing equation for the (n, k) Fourier mode. If the

base-flow is assumed to be a function of the streamwise coordinate s and wall-normal coordinate

y, as is appropriate for infinite swept wings, then Eq. (2.23) may be expressed as a system of non-

linear, partial differential equations: three equations for momentum conservation, one for energy

conservation, and one for mass continuity.

W(n,k)

(
M̃ss

∂2q̂(n,k)

∂s2
+ M̃sy

∂2q̂(n,k)

∂s ∂y
+ M̃yy

∂2q̂(n,k)

∂y2
+ M̃s

∂q̂(n,k)

∂s
+ ...

M̃y

∂q̂(n,k)

∂y
+ M̃0 q̂(n,k)

)
= f(n,k)

(4.36)

where the complex-valued coefficient matrices M̃ss, M̃sy, M̃yy, M̃s, M̃y, and M̃0 are functions
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of the base-flow, the metric tensor, the effective spanwise wavenumber β ≡ kβ0 and angular fre-

quency ω ≡ nω0, and the streamwise complex wavenumber α(n,k). The right-hand-side nonlinear

forcing f(n,k) term collapses the N operator from Eq. (2.23). Some authors evaluate the term in

physical space [100, 86, 101]. In the presently used implementation of the code, f(n,k) is evaluated

in the spectral domain directly. The evaluation of f(n,k) is detailed in appendix B.

With the appearance of the second streamwise derivative ∂2q̂(n,k)/∂s
2, the equation set would

have to be solved simultaneously for all s-stations, because this term renders an elliptic equation.

The approach used to solve the fully elliptic problem is called the Adaptive Harmonic (Linear)

Navier-Stokes Equations (AH(L)NSE), whose linear form is given in recent papers [36, 37]. This is

a computationally expensive procedure and beyond the scope of the dissertation. Instead of solving

the above equations of Eq. (4.36), NPSE asserts that the streamwise variation of the shape-function

is small, which allows ∂2q̂(n,k)/∂s
2 to be neglected while retaining first-order s derivatives. Addi-

tionally, v as well as streamwise derivatives of α(n,k), base-flow quantities, and curvilinear metrics

are assumed to be slowly varying with a scale εs � 1, such that ε2
s is negligible. Together, NPSE

solves the following equation set in Eq. (4.37):

Msy

∂2q̂(n,k)

∂s ∂y
+Myy

∂2q̂(n,k)

∂y2
+Ms

∂q̂(n,k)

∂s
+My

∂q̂(n,k)

∂y
+M0 q̂(n,k) =

f(n,k)

W(n,k)

(4.37)

where the tilde accents have been dropped from the coefficient matrices to indicate that their el-

ements have also changed by assuming ∂/∂s � 1. Some authors choose to additionally neglect

the mixed derivative ∂2q̂(n,k)/∂s ∂y, as it does originate from the viscous terms multiplied by

1/Re � 1. However, that is an additional assumption placed unnecessarily on the streamwise

variation and for the computations presented in this dissertation, the mixed derivative is included.

Note that if f(n,k) = 0, the linear equations (LPSE) are recovered. Setting εs = 0 recovers the

equations of linear stability theory (LST). The governing LPSE disturbance equations are detailed

in appendix A.

51



4.3.1.5 Auxiliary equation

Observe that the system of 5 equations of Eqs. (4.37) has 6 unknowns: the 5 components of q̂(n,k)

and α(n,k), as the wavenumber appears in the coefficient matrices and the nonlinear forcing vec-

tor. Therefore, an additional equation must be provided to close the system. In the literature, this

is often referred to as the auxiliary equation, or a normalization or supplementary condition. Its

formulation is not unique and there have been several analyses comparing the effect of different

auxiliary equations in the PSE system. The philosophy behind the auxiliary equation is to miti-

gate the effect of neglecting the shape-function’s ∂2q̂(n,k)/∂s
2 terms. In Herbert’s words, “ideally

we would like [the shape-function] to be independent of s [...]” [12]. To accomplish this, one

meaningful example is an integral norm that is based on the streamwise derivative of |q̂(n,k)|2:

∫ ymax

0

1

2

∂|q̂(n,k)|2

∂s
dy =

∫ ymax

0

q̂†(n,k) ·
∂q̂(n,k)

∂s
dy,

=

∫ ymax

0

(
û†(n,k)

∂û(n,k)

∂s
+ v̂†(n,k)

∂v̂(n,k)

∂s
+ ŵ†(n,k)

∂ŵ(n,k)

∂s
+ T̂ †(n,k)

∂T̂(n,k)

∂s
+ ρ̂†(n,k)

∂ρ̂(n,k)

∂s

)
dy

(4.38)

where the dagger superscript † indicates complex conjugation. Directly using this auxiliary con-

dition set to zero creates a system of nonlinear, integro-partial differential equations, which can

be arduous to solve. One could discretize the differentiation and integration operators (e.g., with

finite differences and a trapezoidal rule) and attempt to solve the resulting banded, algebraic sys-

tem. However, that is not the commonly taken approach in literature. Instead, an iterative loop

is performed. Let the superscript on α(n,k) indicate the iteration counter pα. Starting with an

assumed initial value for α0
(n,k) for the pα = 0 iteration, Eqs. (4.37) are solved for q̂(n,k). This

allows computing the nonzero value of the auxiliary equation Eq. (4.38), and placing that value

directly back into the imaginary part of α1
(n,k) for the for the pα = 1 iteration. This redirects the

computed growth from the shape-functions into the streamwise wavenumber, mitigating the effect

of neglecting the shape-function’s ∂2q̂(n,k)/∂s
2 terms. Instead of using the quantity in Eq. (4.38),

we may normalize that expression by the y-integral of the sum of squares of the shape-function
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components, following [100]. For the current α-iteration of pα + 1, αpα+1
(n,k) is then computed as

Φnum = û†(n,k)

∂û(n,k)

∂s
+ v̂†(n,k)

∂v̂(n,k)

∂s
+ ŵ†(n,k)

∂ŵ(n,k)

∂s
+ T̂ †(n,k)

∂T̂(n,k)

∂s
+ ρ̂†(n,k)

∂ρ̂(n,k)

∂s
,

Φden = |û(n,k)|2 + |v̂(n,k)|2 + |ŵ(n,k)|2 + |T̂(n,k)|2 + |ρ̂(n,k)|2 ,

αpα+1
(n,k) = αpα(n,k) − i

∫ ymax

0
Φnum dy∫ ymax

0
Φden dy

(4.39)

where the shape-function is evaluated at the previous iteration pα. Equation (4.39) then defines

one step of an α-iteration. When the iterative change in the nondimensional α(n,k) reaches below

a threshold for all considered Fourier modes, the α-iterations are deemed converged. That is,

suppose εα, (n,k) is defined as

εα, (n,k) =
∣∣αpα+1

(n,k) − α
pα
(n,k)

∣∣ ≡ |∆α(n,k)| (4.40)

Then the computations are deemed converged when max(n,k) |εα, (n,k)| is less than some chosen

tolerance εtol, α. An alternative approach, whose form resembles an original proposal by Airiau,

leverages a relative difference on both the real and imaginary parts of α(n,k) [24, §1.3.3]. That is,

computations are deemed converged when

∣∣Real
(
∆α(n,k)

) ∣∣
|αpα(n,k)|

< εtol, α and

∣∣Imag
(
∆α(n,k)

) ∣∣
|αpα(n,k)|

< εtol, α (4.41)

for all (n, k). Here, the operators Real and Imag select the real and imaginary parts of the complex

argument, respectively. This nomenclature is used to avoid confusion with the Reynolds number,

Re.
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4.3.1.6 Taylor-series expansion of transport variables

The transport variables of dynamic viscosity µ and thermal conductivity κ are expanded out to

linear Taylor series. In other words,

µ = µ+ µ′ ≈ µ+
dµ

dT
T ′ (4.42)

where the analogous expression holds for κ. Previous work by Moyes et al. has demonstrated

that for stationary disturbances in some hypersonic flowfields, a more accurate nonlinear solution

can be obtained by using Taylor series of order greater than one (e.g., quadratic, cubic, etc.),

which affects the higher superharmonics noticeably differently than those of the linear expansion

[102]. This nuance is neglected for the current subsonic and transonic analysis, as temperature

perturbations are small relative to the velocity perturbations.

4.3.2 Boundary conditions and initial conditions

4.3.2.1 Wall-normal boundary conditions

For each Fourier mode, the disturbance is assumed to satisfy no-slip and no-penetration at the

surface: u′(n,k)(s, 0) = 0, v′(n,k)(s, 0) = 0, and w′(n,k)(s, 0) = 0. This translates into the shape-

function components obtaining a zero value at the wall, also referred to as a homogeneous Dirichlet

condition: û(n,k)(s, 0) = 0, v̂(n,k)(s, 0) = 0, and ŵ(n,k)(s, 0) = 0.

The temperature boundary condition of each Fourier mode is dependent on the temperature

boundary condition of the base flow. That is, if the base flow is isothermal, then the total tempera-

ture disturbance T ′(s, 0) = 0, which is accomplished by assigning T ′(n,k)(s, 0) = 0 or T̂(n,k)(s, 0) =

0. This is not relevant for the cases considered in this dissertation, because all provided base flows

are assumed to be adiabatic. When the base flow is adiabatic, the set-up is not as clear. One could

suppose all unsteady Fourier modes cannot thermally equilibrate with the adiabatic wall tempera-

ture [103] while the steady Fourier modes can thermally equilibrate. This would lead to isothermal

conditions for the individual, unsteady Fourier modes while an adiabatic condition would be ap-
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plied to the individual, steady Fourier modes. In other words,

T̂(n,k)(s, 0) = 0, ∀n 6= 0,

∂T̂(n,k)(s, 0)

∂y
= 0, ∀n = 0

(4.43)

One could also presume though that all Fourier modes in the system can reach the adiabatic tem-

perature regardless of their frequency, i.e., ∂T̂(n,k)(s, 0)/∂y = 0. There is an inherent uncertainty

in the computational modeling regarding this boundary condition. Discrepancies in this modeling

process are not relevant for the data presented in the dissertation, as all results are based off of

stationary disturbances. As such, all wall disturbance boundary conditions are simply asserted to

be adiabatic, as the base flow is adiabatic.

The density boundary condition of each Fourier mode at the surface is given through a com-

patibility condition satisfying y-momentum. A choice could be made for continuity providing the

compatibility condition for ρ̂(n,k)(s, 0); however, some have noted the condition number of L of

various linear stability problems tends to worsen using compatibility conditions based on continu-

ity [104].

For the freestream boundary conditions, all disturbances are presumed to decay to zero for

velocity and temperature components, i.e.,

û(n,k)(s, ymax) = 0, v̂(n,k)(s, ymax) = 0︸ ︷︷ ︸
(n,k)6=(0,0)

, ŵ(n,k)(s, ymax) = 0, T̂(n,k)(s, ymax) = 0 (4.44)

The density perturbation is presumed to satisfy continuity in the freestream as a compatibility

condition. As an exception to the above boundary conditions, the mean-flow distortion Fourier

mode (0, 0) is handled specially in the freestream. The MFD can be viewed as the difference

between the time- and spanwise-averaged transitional boundary layer and the undisturbed, laminar

boundary layer. It is directly responsible for changes in displacement and momentum thickness of

the transitional boundary layer. Through a control volume analysis assuming incompressible flow,
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it can be shown that
δ∗1,MFD ≡ δ∗1,tr − δ∗1,lam ,

dδ∗1,MFD

dx
= v̂(0,0)|y→∞

(4.45)

provided a homogeneous Neumann boundary condition is applied to v̂(0,0) in the freestream [101].

Here, δ∗1 is the displacement thickness with the subscript ‘tr’ for a transitional boundary layer

and ‘lam’ for a laminar boundary layer [101]. This consequence of mass continuity demands that

v̂(0,0)(s, ymax) is nonzero, provided ymax is close enough to ∞ for the scale of the perturbation.

Many authors indeed prescribe a homogeneous Neumann condition for v̂(0,0)(s, ymax) [86, 101,

49, 50]. However some leave the value unprescribed, that is, the nonlinear governing disturbance

equations are simply evaluated at y = ymax for v̂(0,0) [100, 28].

Numerical experiments have shown that there can exist strong oscillations associated with the

MFD v̂(0,0), especially in subsonic flows and in freestream regions. In previous work analyzing

highly compressible, hypersonic flows, the mean-flow distortion exhibited strong oscillatory be-

havior in the freestream that tends to decay and settle after 20 streamwise stations or so. Hein

asserts that this behavior is due to a numerical inconsistency: a nonzero α(0,0) is inconsistent with

a homogeneous Neumann freestream boundary condition [101]. However, the proof was not de-

tailed. Assigning the wavenumber α(0,0) = 0 does remove these strong wall-normal oscillations

and allows the solution to converge beyond a few streamwise stations for subsonic/transonic flows.

This does come at a cost though, as now all of the streamwise growth of this Fourier mode is ex-

pressed directly in its streamwise derivative of the shape-function ∂q̂(0,0)/∂s, which ideally should

be small (algebraic) by the PSE approximation. Hence this assignment of α(0,0) = 0 should only

be made as a last resort. Other researchers have observed these oscillations as well creating diffi-

culty with NPSE initialization in incompressible flow. Airiau identified the source of the supposed

numerical instability in the freestream behavior of the mean-flow distortion [24]. As a remedy,

Airiau proposed a “cut-off” procedure, truncating the wall-normal domain to about 2 boundary-

layer thicknesses [24]. Chapter 5 discusses the numerical difficulties surrounding the mean-flow

distortion and the above claims in an incompressible context.
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4.3.2.2 Initial conditions

The initial condition at the first s-node s = s1 of the simulation depends on the Fourier mode.

If A0 (n,k) is prescribed, then q̂(n,k)(s1, y) and α(n,k)(s1) are provided by solving a compressible,

parallel, spatial LST formulation for the effective wavenumbers ω = nω0 and β = kβ0. For the

Fourier modes whose A0 (n,k) are left unspecified, then the shape-function is assigned to the trivial

vector: q̂(n,k)(s1, y) = 0. This is a reasonable guess, as it agrees with the prescribed boundary con-

ditions. The complex-valued wavenumbers α(n,k)(s1) are supplied based on simple wave addition

with respect to the already-initialized Fourier modes. For example, if Fourier modes (0, 1) and

(1, 0) have been found through parallel LST, a relation used at s = s1 could be written as:

α(n,k) = nα(1,0) + kα(0,1) (4.46)

however, this is not exactly as it is implemented in EPIC. For Fourier modes with both nonzero

n, k, there is a preference to the diagonal of the discretized Fourier space instead of the axes, as

Eq. (4.46) implies. For example, the real part of α(2,3) is given by the real part of α(2,2) + α(0,1),

which is unequal to the real part of 2α(1,0) +3α(0,1). This subtlety in implementation is quite useful

for mixed-mode simulations, and the author is in debt to those who created it [49, 50].

Note if spanwise subharmonics are considered, then the fundamental Fourier mode, say (0, k)

with k > 1, is found via LST. Then α(0,1) = (1/k)α(0,k) is defined, which permits use of Eq. (4.46)

for the remaining Fourier modes considered. The analogous routine would occur for temporal

subharmonics as well, relating the fundamental (n, 0) with n > 1 to the subharmonic (1, 0), i.e.,

α(1,0) = (1/n)α(n,0)

One methodology for initialization may use the above relations for the full, complex-valued

α(n,k) while another methodology may only use the real part of the resulting α(n,k) value and as-

signing the imaginary part to zero. The difference in these two methodologies is very small; in

a few streamwise stations, numerical experiments show the two solutions are essentially indistin-

guishable. The results in this dissertation will initialize with the real part only, keeping the initial
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imaginary parts zero for the harmonics for a few streamwise stations.

Initializing PSE with a solution from LST causes a spatial transient as the solution adjusts to

satisfy the governing PDE. Not only does this transient occur for the fundamental Fourier modes,

but there is an additional spatial transient as the solution recovers from the initial guesses of q̂(n,k)

and α(n,k) for the other harmonics. Attempting to converge all Fourier modes to prescribed tol-

erances in these first few streamwise stations can prove to be intractable because of these spatial

transients. As a workaround, the harmonics are excluded from the convergence criteria of the

nonlinear terms and α, i.e., excluded from Eq. (4.53) and Eq. (4.40), for the first few stream-

wise stations. Commonly, Fourier modes (n, k) 6= (0, 0) are excluded from convergence until the

streamwise s-index i = 5 and the mean-flow distortion (0, 0) is excluded from convergence until

i = 7. If not specified in the description of the analysis, these default values are used.

An additional effect that can worsen these initial spatial transients is incorporating the cubic

nonlinear terms in f(n,k) early on. This is not an issue for these near-incompressible flows discussed

in this dissertation, as the cubic-order terms result from density perturbations and the energy equa-

tion. However, for highly compressible flows (e.g., hypersonics), the initialization region may need

to exclude the cubic terms for the first several steps for solution convergence. For analysis in this

dissertation, cubic terms are included for all streamwise stations without concern.

Let us return to the shape functions for the (n, k) Fourier modes that are initialized with LST

eigenfunctions. The phase of these complex profiles q̂(n,k) can be left uncontrolled. That is to

say, when solving the LST eigenvalue problem, since the eigenfunction can be multiplied by any

complex constant and remain a solution to the equation, the complex phase of the collective profile

is arbitrary. Of course, the phase atan2(Imag(q̂(n,k)), Real(q̂(n,k))) is a function of y in general,

but the whole profile rotated in the complex plane by an equal amount is an equivalently appropriate

initial condition for PSE. This is essential when considering problems of initial phase differences

and their effect on say, a subharmonic-breakdown transition process [105].

The magnitudes of these disturbances initialized by LST eigenfunctions can be prescribed by

various definitions of A0 (n,k) = |φ̂(n,k)|ref . They can correspond to prescribing |φ̂(n,k)|ref to the
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wall-normal maximum value of |φ̂(n,k)| for a choice of the eigenfunction component, φ̂. Alterna-

tively, the wall value |φ̂(n,k) wall| could be selected as the prescribed |φ̂(n,k)|ref . Note φ̂ is commonly

chosen as û, T̂ , or p̂.5 For unsteady Fourier modes, when comparing results against that of ex-

periments, discussing physical perturbation amplitudes may be easier when expressed in terms of

root-mean-square values:

ARMS
0 (n,k) = |φ̂(n,k)|RMS =

√
1

T

∫ T
0

∣∣∣q′(n,k) (s, y, z, t)
∣∣∣2
ref

dt (4.48)

where T = 2π/(nω0) is the temporal period. Performing the integration after substituting the real

part of the definition from Eq. (4.22) at z = 0 gives

ARMS
0 (n,k) =


|φ̂(n,k)|ref n = 0

1√
2
|φ̂(n,k)|ref n 6= 0

using the half-angle identity 2 cos2 u = 1 + cos(2u).

As a brief note, the generalized eigenvalue problem for LST is solved using the Krylov sub-

space method [87]. One of the discrete eigenmodes is selected (as opposed to an eigenmode from

the continuous spectrum) for each Fourier mode of interest in NPSE. Then the solution is puri-

fied/confirmed by performing Newton-Raphson on the LST equations to a prescribed tolerance of

εtol,LST = 10−11.

5Since p̂ is not a component of the state vector, it must be reconstructed through use of the nondimensional, ideal
equation of state. At the initial s = s1, assume amplitudes are infinitesimal. Suppose this may be applied to any
(n, k)-harmonic that has been initialized with an eigensolution.

p =
ρT

γM2
=

1

γM2
ref

(
ρT + ρT ′ + Tρ′ + ρ′T ′

)
,

p′ =
1

γM2
ref

(
ρT ′ + Tρ′ + ρ′T ′

)
≈ 1

γM2

(
ρT ′ + Tρ′

)
,

p̂ =
1

γM2

(
ρT̂ + T ρ̂

) (4.47)
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4.3.2.3 Computational discretization

For base-flow quantities and curvilinear metrics, central, second-order accurate, regular finite dif-

ference stencils are used for ∂/∂ξ. At the streamwise boundaries, the accuracy drops to first order.

For the perturbation quantities q̂(n,k) and α(n,k), backward, first-order accurate, regular finite dif-

ference stencils are used. The number of streamwise points Ns for each case will be specified with

the results.

The equations as presented in Eqs. (4.37) previously are not directly solved within EPIC, as

s and y do not form an orthogonal grid. Instead, the differentiation operators are sent to the

orthogonal, logical coordinates ξ and η by inverting Eqs. (4.21). Performing the substitution and

collecting, we have

Mξη

∂2q̂(n,k)

∂ξ ∂η
+Mηη

∂2q̂(n,k)

∂η2
+Mξ

∂q̂(n,k)

∂ξ
+Mη

∂q̂(n,k)

∂η
+M0 q̂(n,k) =

f(n,k)

W(n,k)

(4.49)

where the coefficient matrices are defined as

Mξη =Msy
∂η

∂y

∂ξ

∂s
,

Mηη =Myy

(
∂η

∂y

)2

+Msy
∂η

∂s

∂η

∂y
,

Mξ =Ms
∂ξ

∂s
,

Mη =Myy
∂2η

∂y2
+Msy

∂2η

∂s ∂y
+My

∂η

∂y
+Ms

∂η

∂s

(4.50)

4.3.3 Solution procedure

4.3.3.1 Nonlinear iterations

An additional complication to solving Eqs. (4.49) is that the right-hand-side forcing vector f(n,k)

is a function of q̂(n,k) itself. This nonlinearity adds an additional iterative step to solving the

system. If we discretize the ξ-differentiation operators with backward stencils on ∂/∂ξ and the

η-differentiation operators with any stencil of our choice, we can express the partial differential
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equations of Eqs. (4.49) as the algebraic system

Lq̂i+1
(n,k) = f linear

(n,k) +
f(n,k)

W(n,k)︸ ︷︷ ︸
b(n,k)

(4.51)

where the superscript i + 1 indicates the current s-station being solved for. The term f linear
(n,k) arises

from the backward s-differentiation stencil, containing the previous shape functions from s-indices

i, i − 1, etc. —however long the stencil extends backward in s. It is typical to use first-order dif-

ferences for ∂/∂s, however higher-order stencils may be used provided the step-size criterion isn’t

reached [106]. As a side note, since the mean-flow distortion Fourier mode is entirely real, b(0,0)

must also be entirely real. Dealing with complex-valued data types programmatically unfortu-

nately allows slight underflow to the imaginary part of b(0,0)—often several orders of magnitude

smaller than 10−16. This imaginary part on the forcing is truncated out in the program, which

ensures that q̂(0,0) is entirely real after the solve phase.

The LHS matrix L can be decomposed into a product of lower- and upper-triangular matrices,

i.e., L = LU . Then, if we define Φ̂(n,k) ≡ Uq̂new
(n,k), through the two-step process of forward and

backward substitution, q̂i+1
(n,k) is obtained as

LΦ̂(n,k) = b(n,k) =⇒ Φ̂(n,k),

U q̂new
(n,k) = Φ̂(n,k) =⇒ q̂new

(n,k) = q̂i+1
(n,k)

(4.52)

The LU decomposition and substitution is performed with the state-of-the-art algebraic solver

MUMPS [107]. Since b(n,k) is a function of the shape-function itself though, this becomes an

iterative process. Let the second superscript on q̂i(n,k) indicate the iteration counter pnl. One could

guess the value of q̂i+1, 0
(n,k) at iteration pnl = 0 as identically equal to the converged shape-function

at the previous s-index, i.e., q̂i+1, 0
(n,k) = q̂i(n,k). Linear extrapolation could alternatively be performed

for the initial guess based on the streamwise derivative of the previous s-index: q̂i+1, 0
(n,k) = q̂i(n,k) +

∆s ∂q̂i(n,k)/∂s. This can speed up the iterative convergence of q̂i+1
(n,k), but in regions of sudden
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change, it can lead the solution astray, causing solution divergence. Once q̂i+1, 0
(n,k) is assigned, its

spatial derivatives are computed, and then b(n,k) is computed. Through substitution, Eqs. (4.52)

is solved, resulting in a value q̂i+1, 1
(n,k) for the pnl = 1 iteration. This process repeats to compute

q̂i+1, pnl+1
(n,k) from the previous value of q̂i+1, pnl

(n,k) . An iterative error εnl, (n,k) is then computed for each

of the shape-function components between the previous nonlinear iteration pnl and the current

nonlinear iteration pnl + 1 as

εnl, (n,k) =
maxy

∣∣∣φ̂i+1, pnl+1
(n,k) − φ̂i+1, pnl

(n,k)

∣∣∣
maxy

∣∣φ̂i+1, pnl

(n,k)

∣∣ ∀φ̂(n,k) ∈ {u(n,k), v(n,k), w(n,k), T(n,k), ρ(n,k)} (4.53)

Once Eq. (4.53) reaches below a given threshold for all shape-function components and all Fourier

modes considered in the simulation, then the nonlinear iterations are deemed converged. It is

common to choose this threshold for nonlinear convergence as εtol, nl = 10−8 or lower at 10−11.

With the nonlinear iteration procedure described, now one can see an advantage to performing

an LU decomposition on the LHS matrix L: factors L and U do not change between nonlinear

iterations, so the forward/backward substitution is a computationally efficient process. This also

provides reasoning as to why q̂i+1
(n,k) is chosen to be converged first through the nonlinear iterations

instead of converging α(n,k) first through the α-iterations.

When the nonlinear terms constructing b(n,k) become appreciable with respect to the linear

system, a numerical approach may require underrelaxation to prevent divergence of this simple

procedure. That is, instead of asserting q̂i+1, pnl+1
(n,k) = q̂new

(n,k), one can use a relaxation factor of

0 < σ ≤ 1 as

q̂i+1, pnl+1
(n,k) = σq̂new

(n,k) + (1− σ)q̂i+1, pnl

(n,k) (4.54)

There are various ideas for introducing a non-unity value for σ. If the nonlinear iterative error

|εnl, (n,k)| becomes large (e.g., O(1)), then one may want to decrease σ from its current value by

a small amount, say 0.1. Additionally, if the number of nonlinear iterations required are high,

that may be due to the shape-function hitting a limit cycle in the complex plane. In those cases,

decreasing σ further by a small amount may be just enough of a change to the system to cause
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q̂i+1, pnl+1
(n,k) to iteratively converge.

In another approach, one may provide σ based on some physical amplitudes of the problem.

That is, one could define σ based on the u′ amplitude of the mean-flow distortion (0, 0). For

example, one could say σ ought to reach a value of 0.5 once maxy |u′(0,0)| becomes 5% of u∞ and a

value of 0.25 once maxy |u′(0,0)| becomes 30%. These values could then be fit with an exponential

curve, defining a floor as σ = 0.1, such that the problem becomes successively more underrelaxed

as the MFD grows larger. These sorts of schedules for the relaxation parameter σ help converge

the perturbation much farther downstream with NPSE into the nonlinear stages of transition than

without relaxation: see Fig. 9 in Moyes et al. [102].

4.3.3.2 Regularization techniques for the ill-posedness of PSE

It has been shown that the formulation of PSE is inherently ill-posed [106]. This is a result of

treating the underlying boundary-value problem as an initial-value problem [34]. There is rich

spectral analysis that can be performed on the PSE operator revealing this ill-posedness, and the

curious reader is referred to the following papers: [108, 34]. Several approaches have been put

forward in the literature to regularize and stabilize the linear PSE marching procedure. The first

of which is using a streamwise step ∆s > ∆scrit such that for compressible, three-dimensional

disturbances,

∆scrit =
1∣∣∣Real(α) +

ωM2
ref−βMrefMz, ref

1−M2
ref

∣∣∣ (4.55)

where Mref and Mz, ref are the freestream Mach numbers in the streamwise and spanwise directions,

respectively [108]. Note the subscript of (n, k) has been omitted on α. The existence of this

limit ∆scrit makes it impossible to rigorously show numerical convergence of the solution in s as

∆s → 0. In practice, however, the linear PSE discretized is well-behaved if the step size exceeds

this limit while remaining small to capture the slow, algebraic variation of the shape function q̂

[108].

Consider the mean-flow distortion with Real(α) = 0 and (ω, β) = (0, 0). Then ∆scrit → ∞.

In this case, additional stabilization must then be applied to make PSE more useful. One technique
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is to affect the streamwise derivative of the pressure component of the shape function, ∂p̂/∂s,

borrowing the methodology from the Parabolized Navier-Stokes (PNS) approach [23, 109, 106].

∂p′

∂s
=

(
iαp̂+ Ωp

∂p̂

∂s

)
exp(iϑ) (4.56)

where some authors use the Vigneron parameter from PNS applied to Ωp based on the local Mach

number along the wall-normal profile. For the cases of interest, Ωp = 0 is assigned for all stationary

Fourier modes. Note, though, that this does not solve the issue outright—the targeted branch cut

is only modified, not removed [108, §2.2]. For stationary disturbances, it has been demonstrated

that dropping this term from the governing equations yields a very small model error [110, 111].

With the s-momentum equation (and the energy equation if using the enthalpy formulation)

as the only considered governing equations where ∂p/∂s appears, there are only a few terms in

its f(n,k) quadratic components that contain ∂p̂(n,k)/∂s. A rigorous suppression of the pressure

shape-function streamwise gradient would also eliminate this contribution. However, for simplic-

ity, the nonlinear contribution of ∂p̂(n,k)/∂s is not suppressed in the current analysis. Keeping this

nonlinear contribution may cause NPSE to diverge when marching through a strongly nonlinear

regime of a transitional boundary layer. Including it though does not incur any physical inaccuracy,

provided that the equations converge.

An additional method for PSE regularization has been proposed to damp the eigenvalues re-

sponsible for the ill-posedness by introducing a term proportional to the truncation error [112].

This method, however, is not used in this dissertation.

4.3.3.3 Outline of NPSE solution procedure

An outline of the programming procedure based on the above discussion is given below:

1. Solve LST for the effective wavenumbers of Fourier modes whose A0 (n,k) values have been

specified for initial conditions on α(n,k) and q̂(n,k).

2. Assign initial values of α(n,k) and q̂(n,k) to the remaining Fourier modes as discussed in

4.3.2.2 and Eq. (4.46). Begin marching in the streamwise coordinate s.

64



3. Given the solution at the previous s-index of q̂i(n,k) and αi(n,k), guess the values at the current

s-index q̂i+1
(n,k) and αi+1

(n,k) through a zeroth- or first-order extrapolation for all Fourier modes.

4. ComputeW(n,k) and the s-derivative of αi, pα(n,k).

5. Compute the matrix L and decompose it into its LU factors. Begin the nonlinear iterative

loop.

6. Compute the s-, sy-, y-, and yy-derivatives of q̂i+1, pnl

(n,k) for the first iteration, pnl = 0, for all

Fourier modes.

7. Compute f(n,k) (see appendix B) and adjust boundary values to be consistent with the pre-

scribed boundary conditions. Then compute b(n,k).

8. Enforce that the MFD is purely real by setting b(0,0) to be purely real, truncating off any very

small imaginary parts that arise through slight numerical underflow.

9. Perform forward/backward substitution to compute q̂new
(n,k).

10. Compute the iterative error εnl, (n,k) for each Fourier mode, and if desired, adjust the under-

relaxation value σ.

11. Compute q̂i+1, pnl+1
(n,k) via Eq. (4.54).

12. Update the complex conjugate Fourier modes’ shape-functions by the relation Eq. (4.28).

13. Repeat steps 6 through 12 until max(n,k) |εnl, (n,k)| < εtol, nl.

14. Compute αi, pα+1
(n,k) through the auxiliary condition of Eq. (4.39).

15. Update complex conjugate Fourier modes’ α(n,k) wavenumbers by the relation Eq. (4.30).

16. Repeat steps 3 through 15 until max(n,k) |εα, (n,k)| < εtol, α. The solution at s-index i + 1

is now deemed converged and the next streamwise station may be solved by repeating this

procedure. That is, march the disturbance in this fashion for the remaining s-coordinates of

the computational grid.
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4.4 Selection of the formulation for the energy equation

As an appendix onto the above discussions, it is worth discussing a small nuance in the com-

putational formulation for stability analysis regarding the choice of the energy equation form.

Mentioned in the governing equations of §2.3, the selected energy equation uses the enthalpy for-

mulation. That is,

ρ
∂h

∂t
+ ρujh,j = Ec

(
∂p

∂t
+ ujp,j

)
+

Ec

Re
gikTkjui,j +

1

RePr

(
κgijT,i

)
,j

(4.57)

However, just as easily, one may select the internal energy formulation of the energy equation,

written as
1

γ

(
ρ
∂e

∂t
+ ρuje,j

)
= −Ec p uj,j +

Ec

Re
gikTkjui,j +

1

RePr

(
κgijT,i

)
,j

(4.58)

The solutions to these equations are of course mathematically identical. However, in numerical

stability analysis, various steps in the methodology are performed such that the results are no longer

identical. The first of which is linearization. In the enthalpy formulation, the term ujp,j leads to

a triple product of perturbation quantities when pressure p = ρT/ (γM2). This term is simply not

present in the internal energy formulation, as there are no derivatives of pressure present: see the

term p uj,j . As a result, the linearization of each equation gives a different result. The disturbance

growth is distributed slightly differently across the shape-function components and the streamwise

wavenumber. In other words, since the pressure terms are nonlinear for this choice of the state

vector q, the linearizations of the two formulations are not equivalent. For nonlinear simulations,

there is still a discrepancy in the initial condition as supplied by the corresponding LST solution

for the distinct formulations.

The second approximation performed in stability analysis that causes these formulations to dif-

fer numerically is the presence of the pressure gradient term p,j . Recall from the PSE approxima-

tion that steady Fourier modes require the shape-function pressure streamwise gradient ∂p̂(0,k)/∂s

to vanish in order to regularize the equations (see the previous §4.3.3.2). Since the enthalpy form

of energy includes a pressure gradient term p,j whereas the internal energy form does not, the
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two equations then deviate slightly in their results when simulating steady Fourier modes in PSE.

In this regard, the internal energy formulation might be considered to be slightly more accurate;

however, numerical experiments with simultaneous verification against DNS would either support

or reject this claim. On another note, the internal energy form carries fewer terms in the govern-

ing equation, so the numerical procedure becomes more computationally efficient for PSE when

compared to that of the enthalpy form.

The third approximation performed in stability analysis is the discretization of the governing

equation. Since the differentiation stencils are applied to the streamwise coordinate s, each equa-

tion will commit slightly different discretization error. To demonstrate this in the enthalpy formula-

tion, ujp,j for a Cartesian coordinate system would produce the triple product u′ρ′∂T ′/∂s, among

others. Similarly, in the internal energy form, p uj,j would produce ρ′T ′∂u′/∂s. The discretization

of ∂/∂s applied to different shape-function components T̂ and û commits slightly different error

across the two forms.

The next section will compare NPSE solutions using either the enthalpy and internal energy

formulation, assessing the effect of these various approximations in highly compressible flow.

4.4.1 Nonlinear experiments comparing the enthalpy and internal energy formulations

Let us consider an example case then to demonstrate a case with minimal difference between

these two formulations as implemented in EPIC. One such case is flow over an axisymmetric,

flared cone as tested in the Boeing/AFOSR Mach 6 Quiet Tunnel (BAM6QT) at Purdue University.

The solution of the flowfield is computed with NASA’s CFD code DPLR, as shown in Fig. 4

of Moyes et al. [102]. Briefly, the conditions selected are given in Table 4.1, where Re′ is the

unit Reynolds number of the freestream (before/upstream the shock). The angle of attack is 0◦,

the constant Prandtl number is assumed as 0.72, and the cone is x = 0.49 meters long in axial

extent. Gas parameters used are Rg = 287.058 J/kg-K as well as Sutherland’s constants of µref =

1.716× 10−5 kg/(m s), Tref = 273.111 K, and Sµ = 110.556 K.

Linear analysis (not shown) reveals that for this flowfield, the most amplified frequency of the

Mack second mode is nominally f = 286 kHz. For the present NPSE simulation, the Mack second
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mode and the mean-flow distortion will be simulated.

M∞ Re′ (1/m) Tw (K) T∞ (K) p∞ (Pa abs.)

6 10.3× 106 300 52.8 611.1

Table 4.1: Selected conditions for flow over a flared, axisymmetric cone as tested in the BAM6QT.

The simulation inputs are briefly outlined. The s-domain is equispaced with Ns = 150 from

x = 0.1 m to the end of the cone: x = 0.49 m. The wall-normal y-domain has Ny = 200 and

has the boundary-layer clustering parameter defined as yi = δhtot
100.1, where δhtot

100.1 is the height where

total enthalpy htot/htot,e = 1.001. Here in supersonic flow, the edge value htot,e is defined as

the value just underneath/downstream of the enveloping shock wave at each streamwise location.

Before employing Malik’s clustering, a polynomial fit of 12th-order is applied to yi. The shock

height is estimated from heuristic rules off of local pressure gradients and the maximum height of

the domain ymax is selected as just underneath this wall-normal height, again fit with a polynomial:

9th-order here. Freestream Dirichlet conditions are supplied at this subsequent ymax height for all

shape-function components. Continuity is used as a compatibility condition on ρ̂(n,0) at the wall.

NPSE’s convergence criteria are selected as max(n,0) |εα, (n,0)| < 10−11 and εnl, (n,0) = 10−11. The

initial amplitude of the (1, 0) Fourier mode is selected as maxy |u′(1,0)|/uref = 10−7 at x = 0.1 m,

where uref = 871.6873 m/s. The initial phase of the (1, 0) is left uncontrolled from the selected

LST eigenmode. The mean-flow distortion’s streamwise wavenumber α(0,0) is nonzero and purely

imaginary. First-order Taylor series are used for the transport variables’ expansions.

Figure 4.3 shows the temperature amplitude distributions against the cone’s x for the two dif-

ferent energy equation formulations. In black, the results of the enthalpy formulation are shown

whereas in a dashed, red line, those of the internal energy formulation are shown. The left panel

indicates the distributions over the range relevant for the (1, 0) amplitudes, whereas the right panel
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zooms onto the intervals relevant post-saturation, highlighting the discrepancies between the two

solutions. From our earlier discussion, these discrepancies arise from several factors: a) the pres-

ence of the shape-function streamwise pressure gradient in the enthalpy equation, and b) different

discretization error.

Figure 4.3: a) Temperature amplitude distribution of a Mack second mode (1, 0) of f = 286 kHz
and the mean-flow distortion (0, 0) in hypersonic flow over a flared cone. The axial coordinate
x of the cone is shown in meters. The solution computed using the enthalpy form of the energy
equation is shown in black, whereas the result of the internal energy formulation is shown in a
dashed, red line. A dashed box shows the interval following saturation, which defines the bounds
for the right, zoomed figure. b) Temperature amplitudes are highlighted within the zoomed region,
as indicated in panel a).

The relative error between the solutions is computed and is shown in Fig. 4.4. Here, the relative

error is defined as

ε
(
T ′(n,0)

)
≡
∣∣maxy |T ′(n,0)|enth −maxy |T ′(n,0)|int

∣∣
maxy |T ′(n,0)|enth

(4.59)

where the subscript enth corresponds to the solution from the enthalpy formulation whereas int

corresponds to that of the internal energy formulation. From Fig. 4.4, the relative errors are less

than 10% for the (0, 0), barring the initialization of the (0, 0) soon after x = 0.1 m. For the (1, 0),

the largest discrepancy is 3% in the laminar breakdown region. These levels are not negligible,
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and perhaps are influenced by the large initial error in the mean-flow distortion that persists in the

flowfield as the disturbances advect downstream.

Figure 4.4: Relative error between the enthalpy and internal energy NPSE solutions versus x over
a flared cone in hypersonic flow. Error is defined in Eq. (4.59). The Mack second mode’s error is
shown in bright orange, whereas the mean-flow-distortion’s error is shown in purple.

In the spirit of computational efficiency, it is worth quantifying the change in the computation

time between the two cases. For the simulation using the enthalpy formulation, the computation

took 5 minutes and 30.5 seconds, whereas it took 4 minutes and 51.8 seconds for that of the internal

energy equation. In other words, the simulation was done in 88% of the time using the internal

energy equation. This is not insignificant, and is expected to scale for problems with additional

evaluations of the nonlinear RHS forcing vector (as we will see in the next example).

Continuing forward, it is worth quantifying the same discrepancy for another case in hypersonic

flow. This time, let us consider stationary crossflow saturation over the HIFiRE-5b flight case.

Similarly, the solution is computed with NASA’s DPLR code with the same gas parameters as

before. The test conditions are taken at a representative flight time of 514.8 s on the leeward side

of the elliptical geometry, indicated below in Table 4.2 and originally printed in Table 4 of Moyes
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et al. [102]. As a PSE simulation of stationary crossflow must eliminate the streamwise pressure

gradient of the shape-function, it is expected that SCF will exhibit higher levels of relative error

when comparing the results of the enthalpy form against that of the internal energy equation.

Linear analysis (not shown) reveals that for this flowfield, the most amplified SCF whose num-

ber of locally spanwise waves at the rear of the vehicle is nsw = 470. For the present NPSE

simulation, the SCF (0, 1) and the mean-flow distortion will be simulated.

M∞ Re′ (1/m) Tw (K) T∞ (K) p∞ (Pa abs.)

7.793 8.83× 106 373 216 3380

Table 4.2: Selected conditions for flow over the elliptical cone HIFiRE-5b in flight at 514.8 s.

The simulation inputs are briefly outlined. The domain is initialized near the LST neutral

point of the nsw = 470 disturbance at x = 0.1026 m. The marching path is chosen as a ‘vortex

path’, i.e., following the compressible, generalized inflection point of ρw in the flowfield. The

spanwise wavenumber β is locally varied in the streamwise direction s as the neighboring inviscid

streamlines converge and diverge: see chapter 4 of Kocian [49]. In spite of this, the term dβ/ds

is presently neglected in the governing equations. The s-domain has Ns = 159 points and is

equispaced. The y-domain contains Ny = 200 points. The shock height is found and underneath

it serves as the y-domain height ymax after being fit with an 11th-order polynomial. The clustering

height for the boundary layer is the same as before: yi = δhtot
100.1 and is subsequently fit with

a 4th-order polynomial. Freestream Dirichlet conditions are supplied at the ymax height for all

shape-function components. Continuity is used as a compatibility condition on ρ̂(0,k) at the wall.

NPSE’s convergence criteria are selected as max(n,k) |εα, (n,k)| < 10−11 and εnl, (n,k) = 10−11.

The initial amplitude of the (1, 0) Fourier mode is selected as maxy |u′(0,1)|/uref = 1.7 × 10−5,

where uref = 2237.338 m/s. The initial phase of the (0, 1) is left uncontrolled from the selected
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LST eigenmode. The mean-flow distortion’s streamwise wavenumber α(0,0) is nonzero and purely

imaginary. First-order Taylor series are used for the transport variables’ expansions.

Figure 4.5 shows the SCF temperature amplitude distributions against the cone’s x for the two

different energy equation formulations. The description matches the figure of the previous example

of the Mack second mode (Fig. 4.3). It is important to note that even though the fundamental has

its pressure gradient ∂p̂(0,1)/∂s = 0, the discrepancy between the two solutions is not appreciably

different than that of the Mack second mode case. Specifically, Fig. 4.6 shows the relative error

between the two cases, as defined before in Eq. (4.59). The error in the mean-flow distortion

(0, 0) is slightly above 10% just as SCF is saturating near x = 0.6 m, whereas the SCF (0, 1)

approaches 8% near x = 0.6 m as well. Recall from before that the Mack second mode only

reached maximum error levels of nominally 3% for the sample case—this suggests that error is

slightly higher for stationary instabilities. This is likely due to the assignment ∂p̂(0,k)/∂s = 0.

Figure 4.5: a) Temperature amplitude distribution of a stationary crossflow disturbance (0, 1) and
the mean-flow distortion (0, 0) in hypersonic flow over HIFiRE-5b in flight. The axial coordinate
x of the cone is shown in meters. The solution computed using the enthalpy form of the energy
equation is shown in black, whereas the result of the internal energy formulation is shown in a
dashed, red line. A dashed box shows the interval following saturation, which defines the bounds
for the right, zoomed figure. b) Temperature amplitudes are highlighted within the zoomed region,
as indicated in panel a).

72



Figure 4.6: Relative error between the enthalpy and internal energy NPSE solutions versus x over
HIFiRE-5b in flight. Error is defined in Eq. (4.59) analogously for T ′(0,k). The stationary crossflow’s
error is shown in light blue, whereas the mean-flow-distortion’s error is shown in purple.

As before, it is worth quantifying the computation time between the two cases. For the simula-

tion using the enthalpy formulation, the computation took 5 minutes and 10.2 seconds, diverging at

step i = 148; whereas it took 3 minutes and 41.2 seconds for that of the internal energy equation,

diverging at step i = 149. In other words, the simulation completed in 71% of the time using the

internal energy equation—even marching slightly farther down the cone. This is more significant

of a speed up than the previous example of the Mack second mode, and is expected to scale even

greater for problems with additional harmonics and long extents of nonlinear regions.

From these brief numerical experiments in hypersonic flow, it is clear that the choice of the

energy equation in NPSE has a noticeable effect on temperature disturbances for relevant, primary

instability mechanisms. To assess the physical accuracy, a close comparison and verification with

DNS must be made. As a representative verification, Paredes et al. demonstrate an excellent com-

parison between DNS and NPSE for an oblique breakdown in hypersonic flow [28], while in the

dissertation of Paredes, it is mentioned that the enthalpy formulation of the energy equation is used

[113]. For the remainder of the simulations in this dissertation, the enthalpy formulation of the

energy equation will be selected. This is done to remain commensurate with previous analysis
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performed with EPIC and other PSE computationalists.

This concludes the discussion on stability methodology in EPIC. The next section will detail

some of the author’s contributions to EPIC.

4.5 Contributions

Throughout the author’s time at Texas A&M, there have been several direct contributions in support

of EPIC and stability analysis. These include but are not limited to:

1. Creation of the computer algebra code, DERIVE, as written in Maxima. This code uses

the rules of algebra and calculus to derive the governing stability equations as used in EPIC

for all of its analysis: LST, LPSE, and NPSE. Even further, DERIVE has laid the neces-

sary groundwork for the other stability codes in the CST lab, such as Andrew Riha’s Spa-

tial BiGlobal code, BLAST, and Madeline Peck’s AHLNSE code, HAL. Those codes are

now running and performing stability analysis using the equations reliably created with DE-

RIVE. The general framework is established such that a relatively easy extension has been

performed for non-orthogonal grids and more physically inclusive disturbance models. DE-

RIVE has been written in a simple way such that extensions can easily be included without

breaking previous behavior. For instance, Madeline has already extended DERIVE’s capa-

bility to compute the non-reflecting boundary conditions in AHLNSE.

2. Implemented a more accurate LU solver into PSE. Previously, for much of the PSE analy-

sis performed with EPIC, a standard, lightweight LU algorithm was developed in the lab,

following the sorts of algorithms one might find in the standard text, Numerical Recipes

[88]. This lightweight algorithm allowed a straightforward parallelization of the routine

using OpenMP. However, it was discovered that for some cases, the standard, lightweight

LU algorithm experienced a numerical instability when attempting to solve certain algebraic

systems (e.g., hypersonic, traveling crossflow of a given wavenumber on a yawed cone).

This numerical instability quickly caused divergence of the solution within a few stream-

wise steps in PSE. The author pivoted and implemented the more robust LU solver known
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as MUMPS [107]. Upon retesting these problematic cases, the numerical instability was no

longer apparent—the PSE solution behaved well.

3. Implemented the z-symmetry conditions for NPSE as detailed in Eqs. (4.31). These have

been qualitatively verified by computing the saturation and nonlinear development of a

Görtler vortex at near-incompressible speeds: see Chapter 4 in Patel [82]. The resulting

flowfield is indeed symmetric in the z coordinate.

4. Extended capability to account for subharmonics in NPSE. All application of EPIC previ-

ously presumed the fundamental had the smallest wavenumber in the simulation. This is

not correct when simulating subharmonics, so a brief modification to the logic was made,

drastically increasing the physical capability of the EPIC NPSE solver.

5. Modeled Tollmien-Schlichting/stationary-crossflow (TS/SCF) interaction and TS subhar-

monic resonance in subsonic and transonic flow. These secondary instabilities had not been

simulated before with EPIC.

6. Added many miscellaneous functionalities to ease linear and nonlinear analysis from incom-

pressible to hypersonic speeds, such as:

(a) Streamwise mapping that is non-equispaced.

(b) Cosine clustering in the wall-normal domain that may occur before Malik mapping.

This is useful for stability problems whose freestream boundary ought to not apprecia-

bly deresolve in terms of grid resolution.

(c) Extension of wall-normal mapping such that the clustering height yi can be defined as

some scalar multiple of a selected boundary-layer height. The assignment yi = 7δ50 is

particularly useful for subsonic/transonic analysis, which is now made possible through

this capability.

(d) Porous surface boundary conditions. Briefly, Fedorov et al. modeled the wall-normal

perturbation v′ as related to the pressure perturbation p′ at the surface through an acous-
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tic impedance Kpor, assuming the surface consists of a regularly spaced array of cylin-

drical pores [114]. The author has implemented these surface conditions into both LST

and LPSE on conjunction with researchers from the von Karman Institute (VKI). LST

verification was performed privately—results are omitted from this document. The cu-

rious reader is referred to the author’s results presented in Miró Miró for quantification

of non-parallel effects using LPSE [46, §9.1.5].

(e) Compatibility conditions were extended to y-momentum at the surface for ρ̂ to improve

the conditioning of the coefficient matrices for some problems.

(f) Modeled isothermal disturbances in an adiabatic base-flow, as specified by Eqs. (4.43).

This is useful for subsonic/transonic problems with TS and the mean-flow distortion or

other steady disturbances simultaneously appearing in an NPSE simulation.

(g) Created a routine to easily initialize PSE upstream of LST branch-I neutral point. This

is helpful to accurately capture the branch-I location after the ‘LST-transient’ has de-

cayed out.

(h) Control phase of NPSE disturbances upon initialization.

(i) Improve memory usage during LPSE to use only one differentiation matrix for all of

the (ω, β)-disturbances considered.

(j) Option to purify the LST eigensolution after selecting it from the local spectrum deter-

mined by Arnoldi/Krylov subspace methods. This follows the methodology of Malik

et al. [100].

(k) Enforced the mean-flow distortion to be purely real in NPSE.

(l) Implemented the energy equation as formulated in terms of internal energy e into EPIC.

7. Made physical modifications to treatment of the mean-flow distortion relevant for subsonic

and transonic flows. These include the options to

(a) zero its complex wavenumber, i.e., α(0,0) = 0, as suggested by Hein [101].
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(b) eliminate its s-derivatives of the v̂(0,0) shape-function component. This is mathemati-

cally consistent with order-of-magnitude analysis from incompressible continuity when

α(0,0) = 0. For clarity, incompressible continuity in a Cartesian coordinate system for

the mean-flow distortion reduces to

∂û(0,0)

∂s
+
∂v̂(0,0)

∂y
= 0,

εs
∂û(0,0)

∂s̆
+
∂v̂(0,0)

∂y
= 0,

=⇒ v̂(0,0) = εs

(
−
∫ ymax

0

∂û(0,0)

∂s̆
dy

) (4.60)

following a procedure identical to that in Eq. (4.10). Then v̂(0,0) is O(εs), implying that

∂v̂(0,0)/∂s and ∂2v̂(0,0)/(∂s ∂y) are negligible.

8. Expanded EPIC’s accessibility to many different users and operating systems. EPIC is avail-

able to the aerospace community upon request with a user’s manual to learn from.

9. Created various features surrounding the code, such as:

(a) git version control.

(b) ssh authentication to the CST lab, increasing security.

(c) Regression tests as well as unit tests over most of the code, increasing the longevity

and reliability of EPIC.

This concludes the discussion of the author’s contributions to EPIC. The following chapter will

pivot and discuss some numerical difficulties with modeling the mean-flow distortion in PSE in

incompressible and subsonic flow.
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5. ON THE MEAN-FLOW DISTORTION IN THE PARABOLIZED STABILITY

EQUATIONS

The mean-flow distortion Fourier mode can be numerically problematic when solving NPSE.

Airiau from 1994 mentions that when solving the NPSE, significant and divergent growth was

observed in the û(0,0) component of the mean-flow distortion, causing the simulation to halt pre-

maturely [24]. Only by truncating the wall-normal domain to nearly two boundary-layer thick-

nesses could the code produce meaningful results that matched other PSE and DNS calculations

in subsonic flows. Schrauf et al. in 1996, when performing NPSE calculations to match measured

transition locations over a swept wing in subsonic flight, omitted the mean-flow distortion entirely

from their computations with no mention as to why [115]. Hein in his 2005 dissertation asserts

that a nonzero wavenumber α(0,0) is inconsistent with the mean-flow distortion’s homogeneous

Neumann condition, and therefore, asserts α(0,0) = 0 identically for all cases considered over the

subsonic/transonic speed regimes [101]. Even with this assertion, Hein achieved excellent verifi-

cation and validation with the NOLOT code against various computations and experimental data

for a wide array of instability mechanisms—stationary crossflow, Tollmien-Schlichting, to name a

few.

Other PSE analyses in subsonic contexts, however, mention no special treatment needed for the

mean-flow distortion. In Haynes’ 1996 dissertation demonstrating the classic validation of station-

ary crossflow with experiments by Reibert et al., there is no mention of any particular difficulty

[116, 26]. For instance, the selected stability wall-normal domain is not truncated to O(2δ), as

figures of shape-function profiles extend to at least 10δ. Malik et al. in 1999 performed NPSE

analysis for the same validation case with Reibert et al., generating stationary crossflow rollovers

with their own distinct NPSE code [100]. No special treatment of the mean-flow distortion was

mentioned.

This chapter intends to analyze the linear, freestream dynamics of a disturbance similar to

the incompressible mean-flow distortion using the Orr-Sommerfeld equation. The present anal-
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ysis will consider both homogeneous and inhomogeneous Neumann boundary conditions in the

freestream. The resulting Orr-Sommerfeld v̂ profiles will be compared directly against a mean-

flow distortion Fourier mode from a sample NPSE simulation. Using the analytical solution, the

domain height will be varied to assess the proposal by Airiau in the context of the present analysis.

Several proposed limitations on α(0,0) are provided if Airiau’s proposal is not sufficient. An out-

look for supplementary analysis is given, as well as Maxima code to generate the lengthy analytical

expressions used here.

5.1 Linear, freestream dynamics of the Orr-Sommerfeld operator

Continuing the discussion from NPSE on complex conjugates and symmetry relations (§4.3.1.1

and §4.3.1.2, resp.), let us first establish some truths for the mean-flow distortion Fourier mode.

Mathematically, it has a few idiosyncrasies compared to the other Fourier modes. In the NPSE

ansatz double summation of Eq. (4.22), the (0, 0) has no other complex conjugate, i.e., it is not

paired with any other harmonic. Since the disturbance q′ is real-valued, the mean-flow distortion’s

shape-function q̂(0,0) then must be purely real and its streamwise wavenumber α(0,0) is purely imag-

inary. If the laminar base-flow is symmetric in z, i.e., w = 0, then ŵ(0,0) must be identically zero.

This follows from the simultaneous requirements that q̂(0,0) is real and ŵ(0,0) is imaginary via Eq.

(4.32).

Recall from §4.3.1.3 that the quadratic harmonic interactions of (n, k) + (−n,−k) force the

(0, 0) Fourier mode. From this, one can rightfully state that the MFD is generated nonlinearly

through the various other harmonics in the system. With that being said, analyzing the linear dy-

namics, or the left-hand side operator, of the Fourier mode can be revealing inherently, disregarding

these nonlinear forcing terms. With that in mind, let us return to first principles and consider the

nondimensional, Orr-Sommerfeld equation with the parallel-flow assumption from [117, §2.3.5]

D̃os ≡ (−iω + iαu+ iβw)

(
d2

dy2
− α2 − β2

)
− iα

d2u

dy2
− iβ

d2w

dy2
− 1

Re

(
d2

dy2
− α2 − β2

)2

,

D̃osv̂ = 0

(5.1)
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The disturbance of interest is the mean-flow distortion, so for a similar disturbance character, let

us set β = ω = 0. Additionally, suppose the velocity profile u is constant in y, i.e., u = u∞.

Since the equations are nondimensional with respect to freestream values, u∞ ≡ 1. Then the

Orr-Sommerfeld equation simplifies to

(
iα

(
d2

dy2
− α2

)
− 1

Re

(
d2

dy2
− α2

)2
)
v̂ = 0 (5.2)

This is a fourth-order, homogeneous, ordinary differential equation with constant coefficients, ex-

pressed as

v̂′′′′ + av̂′′ + bv̂ = 0,

a ≡ −2α2 − iαRe,

b ≡ α4 + iα3Re

(5.3)

The general solution is given as

v̂(y) = c1eyk2 + c2e−yk2 + c3eyk1 + c4e−yk1 ,

k1 ≡

√√
a2 − 4b− a

2
, k2 ≡

√
−
√
a2 − 4b− a

2

(5.4)

where c1, c2, c3, and c4 are complex-valued constants to satisfy the boundary conditions on v̂.

Since we have assumed u = u∞, this solution is only appropriate in the freestream. The y domain

then should start not at the wall of y = 0, but some nonzero value, say y = δ. The prescribed

boundary conditions at y = δ are inhomogeneous Dirichlet and Neumann conditions, where these

nonzero values would be informed from a computation, if necessary. At the top boundary of the

wall-normal domain of height y = L, we prescribe a homogeneous Neumann condition and an

inhomogeneous Dirichlet condition, allowing the streamwise growth of the mean-flow distortion.
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Together, they are written as four equations:

v̂(δ) = v̂(δ), (5.5a)

dv̂(δ)

dy
=

dv̂(δ)

dy
, (5.5b)

dv̂(L)

dy
= 0, (5.5c)

v̂(L) 6= 0 (and finite) (5.5d)

Substituting in the general solution for v̂ into these four equations leads to

c1eδk2 + c2e−δk2 + c3eδk1 + c4e−δk1 = v̂(δ), (5.6a)

c1k2eδk2 − c2k2e−δk2 + c3k1eδk1 − c4k1e−δk1 =
dv̂(δ)

dy
, (5.6b)

c1k2eLk2 − c2k2e−Lk2 + c3k1eLk1 − c4k1e−Lk1 = 0, (5.6c)

c1eLk2 + c2e−Lk2 + c3eLk1 + c4e−Lk1 = v̂(L) (5.6d)

or, as a matrix equation:



eδk2 e−δk2 eδk1 e−δk1

k2eδk2 −k2e−δk2 k1eδk1 −k1e−δk1

k2eLk2 −k2e−Lk2 k1eLk1 −k1e−Lk1

eLk2 e−Lk2 eLk1 e−Lk1


︸ ︷︷ ︸

K



c1

c2

c3

c4


=



v̂(δ)

dv̂(δ)
dy

0

v̂(L)


(5.7)

whereK is defined as the coefficient matrix. The coefficients c1, c2, c3, and c4 can be solved for an-

alytically. Their values are omitted for brevity, but can be obtained using a computer algebra system

such as Maxima [79]. Example solutions for v̂ are shown below for δ = 1, L = 10δ, Re = 1000,

v̂(δ) = 1, dv̂(δ)/dy = 1, v̂(L) = 3, and, selecting αi ≡ Imag(α) = ±1/Re = ±0.001. The figure

shows that there a distinct change in character as αi changes sign. The positive-αi solution oscil-

lates with a very high amplitude relative to the prescribed, boundary condition values, whereas the
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negative-αi solution smoothly approaches the freestream condition in a polynomial/exponential-

like fashion.

Figure 5.1: Wall-normal profiles of Orr-Sommerfeld v̂(y) with (ω, β) = (0, 0) for two selected
values of αi. Left: αi = −0.001. Right: αi = 0.001.

5.2 Wavenumbers k1 and k2

The Reynolds-number dependence and the effect of the sign of αi on the wall-normal wavenumber

are shown below. Let us express the quantities k1 and k2 in terms of α = iαi, where 2k2
1 =

√
a2 − 4b− a and 2k2

2 = −
√
a2 − 4b− a.

a2 − 4b = −α2Re2 = α2
iRe2 ∈ R,

√
a2 − 4b = |αiRe| = |αi|Re,

2k2
1 =
√
a2 − 4b− a = |αi|Re− (2α2

i + αiRe) = Re(|αi| − αi)− 2α2
i ,

2k2
2 = −

√
a2 − 4b− a = Re(−|αi| − αi)− 2α2

i

(5.8)

where care has been taken recalling the fact
√
x2 = |x| for x ∈ R. With this, k2

1 and k2
2 may be
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written as piecewise functions dependent upon the sign of αi:

k2
1 =

 −α
2
i , αi > 0

−α2
i − αiRe, αi < 0

(5.9a)

k2
2 =

 −α
2
i − αiRe, αi > 0

−α2
i , αi < 0

(5.9b)

As αi increases from negative to positive, k1 changes from purely real to purely imaginary. On the

other hand, k2 remains purely imaginary for both negative and positive αi. The above expression

also reveals the zero of k1. If αi = −Re, then k1 = 0 while k2 = iRe 6= 0. Eq. (5.9) is plotted

against αi and expressed directly in terms of Re. Observe that for αi > 0, both wavenumbers

are purely imaginary with Imag(k2) > Imag(k1). In other words, k2 is directly responsible for

the small scale oscillations present in v̂(y), while k1 corresponds to the large scale oscillations

when αi > 0. Conversely, when −Re < αi < 0, there exists only one imaginary wavenumber

k2, i.e., v̂(y) may only have one oscillatory length scale. The interval of αi < −Re is not shown,

as instabilities with those growth rates are not of interest. As a side note, observe that the zero of

the wavenumber k1 (αi = −Re) is equal to analytical results described by Balakumar & Malik

in 1992—that is to say, equal to the lower half branch point for the viscous contribution to the

incompressible solution with ω = 0 [118].

The governing equation for nonzero αi in Eq. (5.4) indicates that the roots of the characteristic

equation are simply ±k1 and ±k2. In the language of systems and controls, these are also called

the poles, say pj , as they indicate the response of the homogeneous system. The solution character

can be succinctly described based merely on the location of the poles in the complex plane. For

the system at hand, there are two distinct cases of interest for nonzero αi, as shown in Fig. 5.2.

1. αi < 0

(a) k1 is real and k2 is purely imaginary. Then there are two real poles and an imaginary

pole pair, i.e., p(1,2) = ±k1 and p(3,4) = ±i Imag(k2).
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Figure 5.2: Real and imaginary parts of wavenumbers k1 and k2 shown against αi, as defined in
Eq. (5.5) and rearranged in Eq. (5.9).

2. αi > 0

(a) k1 and k2 are both purely imaginary. Then there are two imaginary pole pairs, i.e.,

p(1,2) = ±i Imag(k1) and p(3,4) = ±i Imag(k2).

For αi < 0, the real poles permit the solution v̂ to connect between the boundary condition at

y = δ and y = L without significant oscillation, even with the presence of an imaginary pole

pair. On the other hand for αi > 0, connecting the prescribed boundary conditions in the y-

domain can be strenuous, as the only available mechanics are oscillations of two very disparate

wavenumbers. This leads to large-amplitude oscillations of the solution v̂ in the freestream region.

To visualize this phenomenon, consider the same model problem as before: δ = 1, L = 10δ,

Re = 1000, v̂(δ) = 1, dv̂(δ)/dy = 1, and v̂(L) = 3. Vary αi and compute the corresponding

v̂. The maximum in |v̂| is extracted for each αi and is shown in Fig. 5.3. There appear to be

specific values of αi where the y-maximum in |v̂| diverges to very high values with some exceeding

maxy |v̂| = 1500—more than 500 times the value of the freestream Dirichlet boundary condition.

The extreme and sudden growth in |v̂| is associated to the determinant of the coefficient matrix K
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changing sign as it passes through zero, as shown in Fig. 5.4.

Figure 5.3: The y-maximum of |v̂| as αi varies for example boundary conditions. The black,
dashed line indicates the selected freestream Dirichlet boundary condition, v̂(L) = 3.

Figure 5.4: Determinant of coefficient matrix K against αi > 0. The dashed lines indicate where
det(K) crosses zero, which is associated with the extreme growth of |v̂| as shown in Fig. 5.3. K
is defined in Eq. (5.7).
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As the determinant changes sign, the coefficients ci traverse the complex plane suddenly for

small changes in αi.1 Since the system has two imaginary pole pairs for αi > 0, the coefficients

ci that correspond to each pole pair are complex conjugates of one another since v̂ ∈ R. That

is, c1 = c†2 and c3 = c†4, where the superscript † implies conjugation. To demonstrate the sudden

traversal of the coefficients ci in the complex plane, consider separately their magnitudes and

complex arguments in Fig. 5.5. Only c1 and c3 are plotted for brevity using the above conjugate

relations. There are several features to note.

1. Near αi values where |v̂| becomes large, the magnitudes |ci| grow suddenly and are asso-

ciated with a sudden argument shift of ±π radians for the coefficients. Here, the argument

is defined as Arg(ci) ≡ arctan2 (Imag(ci),Real(ci)). On the other side of the coefficient

traversal, the magnitudes return to a similar value as before and the argument settles.

2. For the pole pair associated with k2, the coefficients c1 and c2 appear to ‘roll’ in the complex

plane. That is, their arguments are nearly linearly varying in αi, apart from the abrupt shifts

as mentioned above. For the other pole pair associated with k1, the coefficients c3 and c4

stay near the imaginary axes with arguments ≈ ±π/2.

3. The abrupt shifts of the c3 and c4 arguments take on a different character that depends on

the local slope of the determinant of K. That is, for ∂ det(K)/∂αi < 0, the growth of |c3|

is extremely short in its αi-extent. Conversely, for ∂ det(K)/∂αi > 0, the growth of |c3| is

broader in its αi-extent. This difference in character is not observed for the other coefficients

c1 and c2 for this case.

This completes the characterization of the system for nonzero αi for this sample problem with

these prescribed boundary conditions. Let us now consider the case where αi identically equals

zero.
1Define ci as the coefficient c with subscript integer i, not as the imaginary part of some quantity c.
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Figure 5.5: a) Magnitudes and b) complex arguments of coefficients c1 and c3 shown against
αi > 0.

5.3 Solution for a neutrally stable disturbance

If αi could equal zero in Eq. (5.9), both wavenumbers k1 and k2 would equal zero. However, the

general solution to this fourth-order differential equation would no longer satisfy the boundary

conditions. Zero-valued wavenumbers cause v̂(y) to be constant in the wall-normal direction.

That could create an inconsistency between v̂(δ) and v̂(L), as they are not necessarily equal to

one another. It is a peculiar case where those boundary conditions are equal and it is entirely

valid. However, to complete the analysis of possible αi values when v̂(δ) 6= v̂(L), consider the

governing, ordinary differential equation of Eq. (5.2) again as it reduces to

v̂′′′′ = 0 (5.10)

which has the general solution of a cubic polynomial and is independent of Re. Applying the same
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boundary conditions as above, we can form four equations in the same fashion and solve for the

coefficients ri in v̂(y) = r3y
3 + r2y

2 + r1y + r0.



δ3 δ2 δ 1

3δ2 2δ 1 0

3L2 2L 1 0

L3 L2 L 1





r3

r2

r1

r0


=



v̂(δ)

dv̂(δ)
dy

0

v̂(L)


(5.11)

where v̂(δ), dv̂(δ)/dy, and v̂(L) are prescribed. Again, the coefficients ri are analytically solved

for using Maxima. As ri are more tractable in form than ci of the nonzero αi-solution, they are

written below:

r3 =
−1

(δ − L)3

(
2 (v̂(δ)− v̂(L)) +

dv̂(δ)

dy
(L− δ)

)
,

r2 =
1

(δ − L)3

(
3 (δv̂(δ) + Lv̂(δ)− δv̂(L)− Lv̂(L)) +

dv̂(δ)

dy

(
2L2 − Lδ + δ2

))
,

r1 =
−L

(δ − L)3

(
6δ (v̂(δ)− v̂(L)) +

dv̂(δ)

dy

(
L2 + Lδ − 2δ2

))
,

r0 =
1

(δ − L)3

(
3L2δv̂(δ)− L3v̂(δ) + δ3v̂(L)− 3Lδ2v̂(L) + L2δ

dv̂(δ)

dy
(L− δ)

)
(5.12)

Shown below is a graphical example of the αi = 0 solution between two nonzero-αi solutions.

Consider then the same boundary conditions as shown in Fig. 5.1, but now with αi = ±0.1/Re,

shown in Fig. 5.6. Curiously enough, the cubic polynomial is an asymptote of the general nonzero-

αi solution as αi → 0 in Eq. 5.4.

Let us note here that as a cubic polynomial, v̂ does not inherit any of the issues that are associ-

ated with the αi > 0 general solution—i.e., two imaginary pole pairs—as discussed in the previous

section.

5.4 Inhomogeneous Neumann boundary condition in the freestream

The above analysis presumes a homogeneous Neumann boundary condition on v̂ in the freestream.

As some PSE analysis has considered inhomogeneous boundary conditions, i.e., left unprescribed,
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Figure 5.6: Wall-normal profiles of Orr-Sommerfeld v̂(y) with (ω, β) = (0, 0) for three selected
values of αi: ±0.1/Re and 0, where Re = 1000.

it is worth revisiting the same model problem, but with a nonzero slope at the top boundary in

order to assess with numerical experiments if the homogeneous boundary condition is responsible

for this sporadic divergence of maxy |v̂|. The matrix equation given in Eq. (5.7) is rewritten but

with dv̂(L)/dy 6= 0:



eδk2 e−δk2 eδk1 e−δk1

k2eδk2 −k2e−δk2 k1eδk1 −k1e−δk1

k2eLk2 −k2e−Lk2 k1eLk1 −k1e−Lk1

eLk2 e−Lk2 eLk1 e−Lk1


︸ ︷︷ ︸

K



c1

c2

c3

c4


=



v̂(δ)

dv̂(δ)
dy

dv̂(L)
dy

v̂(L)


(5.13)

Note that the coefficient matrix K is unchanged from the previous set-up of Eq. (5.7). The matrix

equation is solved analytically using Maxima for the problem of both nonzero and zero-valued

αi. Consider then the same presentation as before: v̂ profiles for some small, representative αi

values, the maxy |v̂| distributions against αi, and the coefficients ci against αi. The prescribed

model parameters are δ = 1, L = 10δ, Re = 1000, v̂(δ) = 1, dv̂(δ)/dy = 1, v̂(L) = 3, and now,
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dv̂(L)/dy = 1/2.

Figure 5.7: Wall-normal profiles of Orr-Sommerfeld v̂(y) with (ω, β) = (0, 0) for three selected
values of αi: ±0.1/Re and 0, where Re = 1000. An inhomogeneous Neumann freestream bound-
ary condition is prescribed as dv̂(L)/dy = 1/2. Compare with the homogeneous Neumann case
in Fig. 5.6.

The distributions of maxy |v̂| and the complex coefficients ci in Figs. 5.8 and 5.9 respectively

are qualitatively similar to that of the homogeneous Neumann freestream boundary condition case

(Figs. 5.3 and 5.5). Quantitatively, there is a very slight difference in some of the brief explosions

of |ci|, but the overall trend is indeed the same. Performing this simple experiment for other

inhomogeneous values in the freestream (e.g., dv̂(L)/dy ∈ {−2, 10}, etc.) reveals indeed that the

coefficients ci undergo sudden growth in magnitude at the same particular αi locations, albeit the

magnitudes |ci| vary slightly in their magnitude. These numerical experiments then suggest that

this phenomenon is independent of the freestream Neumann boundary condition and is entirely

coded into the coefficient matrix K. Specifically, the locations where the determinant of K crosses

zero indicates the points of sudden growth in |ci| and consequently |v̂|.
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Figure 5.8: The y-maximum of |v̂| as αi varies for example boundary conditions. The black, dashed
line indicates the selected freestream Dirichlet boundary condition, v̂(L) = 3. An inhomogeneous
Neumann freestream boundary condition is prescribed as dv̂(L)/dy = 1/2. Compare with the
homogeneous Neumann case in Fig. 5.3.

5.5 Comparison of the freestream Orr-Sommerfeld to NPSE simulations

Before extrapolating trends from the behavior of D̃os to NPSE simulations, it is worth demon-

strating a comparison between the two methods. Let us use a sample stationary-crossflow NPSE

run for near-incompressible flow over a swept wing. The case description was originally printed

in [119] and will be rehashed later in this dissertation as well. The relevant details of the NPSE

simulation for this comparison are 1) a homogeneous Neumann freestream boundary condition is

applied, and 2) α(0,0) = 0, as suggested by Hein [101]. The analytical freestream solution to the

Orr-Sommerfeld equation with (ω, β) = (0, 0) is assigned the same values of the NPSE solution

for the boundary conditions: v̂(δ), dv̂(δ)/dy, and v̂(L). The value of δ is chosen appreciably above

the laminar boundary-layer height—about 3 boundary-layer thicknesses. The slope dv̂(δ)/dy is

approximated from the NPSE solution by a first-order, nonuniform stencil. Given that the NPSE

solution is slightly oscillatory from node to node in the freestream, an average is taken across the

neighboring values for an appropriate representation of v̂(δ) and dv̂(δ)/dy. Figure 5.10 shows
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Figure 5.9: a) Magnitudes and b) complex arguments of coefficients c1 and c3 shown against αi >
0. An inhomogeneous Neumann freestream boundary condition is prescribed as dv̂(L)/dy = 1/2.
Compare with the homogeneous Neumann case in Fig. 5.5.

the comparison between the NPSE mean-flow distortion and the freestream solution to the Orr-

Sommerfeld equation with (ω, β) = (0, 0).

There is a good agreement between the Orr-Sommerfeld (OS) and the NPSE solutions for

the (0, 0) disturbance, despite OS neglecting several relevant features. These include a) non-

parallel terms, b) surface curvature, c) nonlinearities, and d) compressible effects. Admittedly,

the nonlinearities at these x/c stations are quite small, as the amplitude of the MFD is only

10−5 < maxy |u′(0,0)|/Q∞ < 10−3. In addition, the compressible effects are weak with a freestream

Mach number of MQ∞ = 0.06. Regardless, the overall trend of the freestream profile is qualita-

tively captured in the D̃os differential operator’s dynamics with α(0,0) = 0. This suggests that the

mean-flow distortion’s behavior in the freestream may be mostly understood by considering the

linear dynamics of the differential operator D̃os. Let us now use this to assess Airiau’s “cut-off”

procedure, as originally proposed in 1994.
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Figure 5.10: Comparison of |v̂| of the mean-flow distortion from NPSE to the freestream Orr-
Sommerfeld analytical solution v̂ for a sample near-incompressible, stationary-crossflow NPSE
run with α(0,0) = 0. Colored lines indicate the NPSE MFD at various x/c stations and gray lines
with circles indicate the Orr-Sommerfeld (OS) solution evaluated on the same physical y grid.

5.6 Reduction of domain height L

Previously, Airiau identified the source of the supposed numerical error as originating from the

freestream behavior of the mean-flow distortion [24, §2.3.3]. As a remedy, Airiau proposed a “cut-

off” procedure, truncating the wall-normal domain to about 2 boundary-layer thicknesses. As the

dissertation of Airiau is written in French, a rough translation to English of the relevant section in

§2.3.3 is given below:

Initially, we were confronted with problems of explosion of numerical calculations;

the results from the DNS (Joslin et al. [120, 27]) show that the longitudinal velocity

fluctuation û(0,0) is strictly zero outside the boundary layer. Somewhere, the numerical

error, inevitable far from the wall, then plays a destabilizing role in the calculation, in

particular on the component û(0,0). To obtain suitable solutions, we have reduced the

y-domain’s definition to the neighborhood of the boundary layer (“cut-off”). Thus,

the boundary conditions on the modes (0, k), but especially for the mode (0, 0), are
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applied to the position y = 2`, where ` is the characteristic length which serves to

make the space variables dimensionless and which is of the order of the physical height

of the boundary layer. This process is radical and very effective since modes (0, k)

are generated which, quickly, behave like those obtained by other PSE calculations

(Bertolotti, Chang), or by DNS calculations.

This section intends to address this procedure, investigating the Orr-Sommerfeld solution for

(ω, β) = (0, 0) and its dynamics as L is decreased with all else constant, demonstrating simi-

lar trends are observed.

Consider the same model problem as before, but with L = 2δ: δ = 1, Re = 1000, v̂(δ) = 1,

dv̂(δ)/dy = 1, and v̂(L) = 3. It is important to note for this problem, the relevant length is not

directly L, but instead the freestream extent L− δ. Again, vary αi and compute the corresponding

v̂. The maximum in |v̂| is extracted for each αi and is shown in Fig. 5.11. Notice that there are

no points over the previously shown domain of αi ∈ (0, 6 × 10−3] where maxy |v̂| grows beyond

the value of the freestream inhomogeneous Dirichlet condition. Only for a much larger value of

αi ≈ 0.039 does a large and sudden growth of maxy |v̂| occur.

The extreme and sudden growth in |v̂| still remains associated to the determinant of the coeffi-

cient matrix K changing sign as it passes through zero, as shown in Fig. 5.12.

Figure 5.13 shows the magnitude and complex argument of the coefficients c1 and c3 for this

case with L = 2δ. Notice the same trend holds as before: for ∂ det(K)/∂αi < 0 at this point of

divergence near αi ≈ 0.039 = 39/Re, the growth of |c3| is extremely short in its αi-extent.

From the above analysis, we may observe when reducing Lwith all else constant, the particular

αi values near zero vanish entirely that can cause an explosion of |v̂|. Only at much larger, more

stable values of αi ∼ O(10/Re) does the phenomenon return.

The trend observed in Airiau’s “cut-off” procedure matches precisely the qualitative conclusion

of this analysis based solely on the differential operator D̃os in the freestream. Hence, it may be

fair to say that what Airiau has observed was not numerical error, but indeed truly a part of the

system’s freestream dynamics.
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Figure 5.11: The y-maximum of |v̂| as αi varies for example boundary conditions. The black,
dashed line indicates the selected freestream Dirichlet boundary condition, v̂(L) = 3. L = 2δ for
this case. Compare to Fig. 5.3 for the L = 10δ distribution.

Figure 5.12: Determinant of coefficient matrix K against αi > 0. The dashed line indicates where
det(K) crosses zero, which is associated with the extreme growth of |v̂| as shown in Fig. 5.11. K
is defined in Eq. (5.7). L = 2δ for this case. Compare to Fig. 5.4 for the L = 10δ distribution.
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Figure 5.13: a) Magnitudes and b) complex arguments of coefficients c1 and c3 shown against
αi > 0. L = 2δ for this case. Compare to Fig. 5.5 for the L = 10δ distribution.

5.7 Analysis of incompressible continuity

Recall the equation of mass continuity for an incompressible fluid is given as

∂u

∂s
+
∂v

∂y
+
∂w

∂z
= 0 (5.14)

Note that there are no nonlinearities in the incompressible context. That is, compressibility gives

rise to nonlinearities in continuity via products between density and velocity fluctuations. Since

the laminar base-flow is assumed to satisfy the corresponding divergence on ~V = [u, v, w], the

disturbance equation may be written as

∂u′

∂s
+
∂v′

∂y
+
∂w′

∂z
= 0 (5.15)

With the mean-flow distortion as the disturbance of interest, suppose then β = 0. This causes

96



∂w′/∂z to vanish. Substituting the PSE ansatz, the disturbance quantities are written directly in

terms of the shape-function components. Since α is purely imaginary for the mean-flow distortion,

iα = −αi. Then

− αiû+
∂û

∂s
+
∂v̂

∂y
= 0 (5.16)

Consider a point in the domain where ∂v̂/∂y = 0. Then continuity reduces to

∂û

∂s
= αiû (5.17)

A similar result to this has been mentioned before by Airiau [24, §2.3.3]. This equation can

be integrated in space along the path where ∂v̂/∂y = 0. By numerical experiments comparing

DNS to PSE, it is anticipated that a path of this nature exists within the boundary layer [27].

Additionally, from NPSE experimental validation of stationary crossflow at near-incompressible

speeds, the mean-flow distortion’s v̂ does reach an extremum within the boundary layer [116].

Note that this integration presumes that û is nonzero. However, in the degenerate case where û is

identically zero, by Eq. (5.17), ∂û/∂s = 0 directly. Upon integration, we have

∫
dû

û
=

∫ s

s1

αi(s̃) ds̃,

û = C1e
∫ s
s1
αi(s̃) ds̃

,

∂û

∂s
= C1αi e

∫ s
s1
αi(s̃) ds̃

,

(5.18)

where C1 is an arbitrary integration constant. Suppose s − s1 ≡ ∆s is small enough such that αi

may be approximated as constant over the interval. Then using the Taylor series for the exponential

function, we have

e
∫ s
s1
αi(s̃) ds̃ ≈ eαi(s−s1),

=⇒ ∂û

∂s
≈ C1αi

(
1 + αi(s− s1) +

(αi(s− s1))2

2!
+ ...

)
,

≈ C1αi, (αi(s− s1)� 1)

(5.19)
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5.7.1 Proposed limiters on the mean-flow distortion’s streamwise wavenumber in NPSE

In order for ∂û/∂s to remain small by the PSE approximation, the product C1αi then cannot be

large in the above Eq. (5.19).2 Since the value ofC1 = û/e
∫ s
s1
αi(s̃) ds̃ is not known a priori, one must

query the value of C1 during an incompressible NPSE simulation for the mean-flow distortion.

This must occur at a chosen height where where ∂v̂/∂y ≈ 0. There are several choices for the

local extremum: inside the boundary layer (provided it exists), or at the edge of the boundary

layer. Inside the boundary layer appears to be a better choice than at the edge, as û still has an

appreciable magnitude, which then makes C1 far from zero. That is, going off of observations

from both DNS and NPSE, the mean-flow distortion û component decays to zero in the freestream

[27, 24, 121].

Recall that the usual length scale associated with εs for boundary-layer development is εs ∼

O(1/Re) [54]. This may be assumed to be appropriate for PSE analysis as well. Then if |αi| is lim-

ited to stay smaller thanO(1/(|C1|Re)), then ∂û/∂s ∼ O(1/Re) at these points where ∂v̂/∂y = 0.

Note that this statement asserts that û is O(1), so the shape-function must be normalized by its

maximum magnitude when calculating C1. That is,

C1 =
ûextr v̂

maxy |û|
e
∫ s
s1
−αi(s̃) ds̃ (5.20)

where ûextr v̂ is the value of the shape-function û at the extremum of v̂ inside the boundary layer. If

there are multiple extrema inside the boundary layer, any one may be selected—the author’s choice

is the one that maximizes |C1|.

Since αi is not a function of y, the existence of even one point in the domain that satisfies

∂v̂/∂y = 0 then demands this limitation that |αi| < O(1/(|C1|Re)). If one uses a homogeneous

Neumann condition in the freestream, then this is clearly guaranteed. If one does not use this

boundary condition however, using a compatibility condition such as y-momentum, then there

may still exist a local wall-normal extremum in the profile v̂ elsewhere. This suggests that regard-

2Notice in Airiau’s quote at the beginning of this section, it is mentioned that the destabilizing nature of the system
is observed in the û(0,0) growth. The above analysis may support this observation.
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less of the freestream boundary condition used, a limitation ought to be placed on the mean-flow

distortion’s αi value in incompressible flows to stay consistent with the PSE approximation.

A limitation on αi though only needs to be enforced if the “cut-off” procedure of Airiau does

not work or is not applicable for the nonlinear simulation of interest. An example where trun-

cating the domain near 2δ is physically dubious is the nonlinear saturation of a Görtler vortex

and development downstream. In those problems, the upwelling of low-momentum fluid extends

far beyond the laminar boundary-layer height, even exceeding 2δ. Hence an assignment of say,

L = 4δ is worth attempting, but may be insufficient to quell the oscillatory, freestream nature of

the differential operator D̃os acting on v̂.

If the computationalist does not or cannot reduce the domain height then to O(2δ) to stabilize

the problem, as Airiau has proposed, then there are several different proposals to place a limitation

on αi for the mean-flow distortion:

1. Assign αi = 0 for all s, as suggested by Hein [101]. The assignment of αi = 0 is useful,

as the parallel-flow, differential operator D̃os reduces to polynomial general solutions which

do not possess freestream oscillations in v̂. However, this assignment may be too restrictive

and physically inaccurate. All of the disturbance growth of the harmonic is placed now

into the shape-function’s s-derivative, ∂q̂(0,0)/∂s, which is inherently limited by the PSE

approximation.

2. Limit αi as it varies in s with the following lower and upper bounds:

− aL
|C1|Re

< αi ≤ 0 (5.21)

where aL > 0 is some positiveO(1) constant to designate the lower bound of αi with respect

to the local Reynolds number, Re, based on the Blasius length scale. The integration constant

C1 is computed at runtime via Eq. (5.20) and can be updated during both the nonlinear- and

α-iterations. When applying the ∆α based on the PSE auxiliary condition for the mean-

flow distortion, care must be taken since −aL/(|C1|Re) now serves as a lower bound for
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α. If ∆α would cause αi to be less than −aL/(|C1|Re), then the update is overwritten to

be zero. This happens all the same for the upper bound: if ∆α would cause αi to exceed

zero, then the update is similarly overwritten to be zero.3 This has an advantage over the

αi = 0 assignment, allowing some exponential growth to be placed in the wave of the PSE

ansatz. The drawback is the procedure’s sensitivity to the numerical value for aL as well as

no exponential stabilization of the mean-flow distortion.

3. Limit αi as it varies in s with the following lower and upper bounds:

− aL
|C1|Re

< αi <
aR
|C1|Re

(5.22)

where aL and C1 are the same as in the previous proposal. The positive O(1) constant

aR is the analogous value of aL for positive values of αi. The advantage of this model is

that exponential stabilization of the mean-flow distortion is permitted within its streamwise

history. The drawback is the procedure’s sensitivity to aR and other potential oscillations

present as a result from the Orr-Sommerfeld operator acting on v̂ for stable αi > 0.

4. Limit αi as it varies in s with the following lower and upper bounds:

− aL
|C1|Re

< αi < min

(
aR
|C1|Re

,
α∗i1
2

)
(5.23)

where aL, aR, and C1 are the same as in the previous proposal. The selection of the posi-

tive α∗i1 is more delicate, however. Recall the numerical oscillations from D̃os acting on v̂

became worrisome for the sample problem as det(K) crossed zero: see Fig. 5.4. To avoid

αi becoming that positive to incur large oscillations in v̂, the following scheme is proposed.

An upper bound for αi would be the half the value of the first positive root of det(K). This

location is selected as a built-in ‘safety factor’ such that αi doesn’t get appreciably close to

where det(K) crosses zero. The equation for det(K) can be written ahead of time through

3An alternative strategy is correcting (truncating) the update of ∆α such that αi would directly equal
−aL/(|C1|Re).
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performing a symbolic Laplace expansion with a computer algebra code on the matrix K.

In other words, numerical computation of the Laplace expansion is not required to compute

det(K). Its first positive root α∗i1 may be found at each α iteration (or even nonlinear iter-

ation) during NPSE. Of course, the first positive root α∗i1 only needs to be computed if αi

is positive or if ∆α would make αi positive. This model has the benefit over the previous

one, allowing some exponential stabilization while avoiding oscillations spawned from the

Orr-Sommerfeld operator in the freestream. The drawbacks are the additional computation

of root finding at each desired iteration and the reliance on α∗i1/2 being appreciably far away

from α∗i1 . For some values of domain heightL, α∗i1 may be absurdly small. In these scenarios,

it may be best to limit αi to be strictly non-positive, as suggested in a previous limiter.

Both of the models with aL, aR, and α∗i1 rely on these factors to additionally account for a)

non-parallel, b) surface curvature, c) nonlinear, and d) compressible effects (if extended to a com-

pressible formulation), as these have been neglected in the present analysis. Non-unity values for

aL and aR also account for the truncation of the infinite Taylor series for the exponential function

going from Eq. (5.17) to Eq. (5.19).

5.8 Extensions of present analysis

Analyzing the mean-flow distortion from its linear, incompressible, freestream operator is a start to

making NPSE more robust in this speed regime for appreciable L. This analysis may be extended

in several ways.

1. A disturbance with (ω, β) = (0, 0) in compressible, parallel, freestream flow could be con-

sidered, following the analysis of Li & Malik [108]. This ideally would supply a compress-

ible form of the expression for C1, which would be useful for high-subsonic/transonic flows.

2. A disturbance with (ω, β) = (0, 0) in incompressible, freestream flow with nonzero wall-

normal velocity v could be considered. The v profile could be assumed to be linearly vary-

ing in the y direction. From boundary-layer asymptotics, the y-slope of v at δ would be

101



maintained for the freestream. That is to say, the nondimensional v may be written as

v(y) = v(δ) +
∂v(δ)

∂y
(y − δ), δ ≤ y ≤ L (5.24)

This causes the governing equation to no longer have constant coefficients, complicating the

general solution. Recall the non-parallel form of the Orr-Sommerfeld operator, from [117,

§2.3.4]

D̃os,np ≡ (−iω + iαu+ v
d

dy
+

dv

dy
+ iβw)

(
d2

dy2
− α2 − β2

)
+ ...

− iα
d2u

dy2
− iβ

d2w

dy2
− 1

Re

(
d2

dy2
− α2 − β2

)2

,

D̃os, npv̂ = 0

(5.25)

The same assumptions can be made from earlier. Set β = ω = 0. Suppose the velocity

profile u is constant in y, i.e., u = u∞ = 1. Then the non-parallel Orr-Sommerfeld equation

simplifies to

((
iα + v

d

dy
+

dv

dy

)(
d2

dy2
− α2

)
− 1

Re

(
d2

dy2
− α2

)2
)
v̂ = 0 (5.26)

which may be expressed in terms of parallel vs. non-parallel terms as:

v̂′′′′ + av̂′′ + bv̂︸ ︷︷ ︸
parallel

+ vv̂′′′ +
dv

dy
v̂′′ − α2vv̂′ − α2 dv

dy
v̂︸ ︷︷ ︸

non-parallel

= 0,

a ≡ −2α2 − iαRe,

b ≡ α4 + iα3Re

(5.27)

Since v is linear in y and acts on odd-orders d/dy and d3/dy3, the form of the differential

equation in Eq. (5.27) resembles that of the Hermite differential equation, except extended

to the fourth derivative. Recall the Hermite differential equation for a function h = h(x) and
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Hermite constant λH is written as

d2h

dx2
− 2x

dh

dx
+ λHh = 0 (5.28)

which can be solved using the series method. General solutions take the form of the confluent

hypergeometric function of the first kind and Hermite polynomials [122, 123]. This analysis

would ideally provide a more physically inclusive value for α∗i1 by examining the first root

of the determinant of its coefficient matrix applied to the same boundary-value problem.

5.9 Maxima code used for this chapter

Since Maxima is not a common language within the aerospace community, the author would like

to share a snippet of it. It can be quite readable when directly translating simple mathematical

manipulations. Presented is a brief script used to generate the analytical expressions for ci as

well as the determinant of K.4 Numerical calculations of det(K) matched against the analytical

expression within machine error, which verifies the below implementation.

/* Orr-Sommerfeld in the freestream with (omega, beta) = (0,0) */

detout : true;

/*dvdyL : 0;*/ /* Uncomment for homogeneous Neumann boundary conditions in the freestream */

/* First consider the case with alpha nonzero */

dirichlet_delta : exp(delta*k2)*c1 + exp(-delta*k2)*c2 + exp(delta*k1)*c3 + exp(-delta*k1)*c4 =

vdelta;

neumann_delta : k2*exp(delta*k2)*c1 - k2*exp(-delta*k2)*c2 + k1*exp(delta*k1)*c3 -

k1*exp(-delta*k1)*c4 = dvdydelta;

neumann_fs : k2*exp(L*k2)*c1 - k2*exp(-L*k2)*c2 + k1*exp(L*k1)*c3 - k1*exp(-L*k1)*c4 = dvdyL;

dirichlet_fs : exp(L*k2)*c1 + exp(-L*k2)*c2 + exp(L*k1)*c3 + exp(-L*k1)*c4 = vL;

eqns_alpha_nz : [dirichlet_delta, neumann_delta, neumann_fs, dirichlet_fs];

soln_alpha_nz : linsolve(eqns_alpha_nz, [c1, c2, c3, c4]);

soln_alpha_nz : factor(soln_alpha_nz);

4The Maxima version used to execute this script is 5.42.
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disp("For alpha nonzero:");

disp(string(soln_alpha_nz[1]));

disp(string(soln_alpha_nz[2]));

disp(string(soln_alpha_nz[3]));

disp(string(soln_alpha_nz[4]));

disp("And its determinant:");

K : matrix( [exp(delta*k2), exp(-delta*k2), exp(delta*k1), exp(-delta*k1)],

[k2*exp(delta*k2), -k2*exp(-delta*k2), k1*exp(delta*k1), -k1*exp(-delta*k1)],

[k2*exp(L*k2), -k2*exp(-L*k2), k1*exp(L*k1), -k1*exp(-L*k1)],

[exp(L*k2), exp(-L*k2), exp(L*k1), exp(-L*k1)]);

detK : factor(determinant(K));

disp(string(detK));

/* Then consider when alpha = 0 */

dirichlet_delta : c3*delta^3 + c2*delta^2 + c1*delta + c0 = vdelta;

neumann_delta : 3*c3*delta^2 + 2*c2*delta + c1 = dvdydelta;

neumann_fs : 3*c3*L^2 + 2*c2*L + c1 = dvdyL;

dirichlet_fs : c3*L^3 + c2*L^2 + c1*L + c0 = vL;

eqns_a0 : [dirichlet_delta, neumann_delta, neumann_fs, dirichlet_fs];

soln_a0 : linsolve(eqns_a0, [c0, c1, c2, c3]);

soln_a0 : factor(soln_a0);

disp("For zero-valued alpha:");

disp(string(soln_a0[1]));

disp(string(soln_a0[2]));

disp(string(soln_a0[3]));

disp(string(soln_a0[4]));

This concludes the present analysis of the mean-flow distortion Fourier mode. The next chapter

will now apply these stability theories, both linear and nonlinear, to a slotted, natural-laminar-flow

wing.
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6. X207.LS SLOTTED, NATURAL-LAMINAR-FLOW AIRFOIL1

For creating more energy-efficient aircraft, this work focuses on analyzing the external flow over

a wing as part of a NASA University Leadership Initiative (ULI). The aim of the effort is to de-

sign an ultra-efficient airframe for next-generation aircraft. Led by The University of Tennessee,

Knoxville (UTK), several universities across the U.S. paired with industry seek to accomplish this

goal together with A&M.

Air flow over subsonic aircraft has the following usual contributions to drag: skin-friction, lift-

induced, interference, and wave [124]. Out of these, the primary drag source is skin friction with

nominally 50% for transport aircraft [125]. Note that for a laminar boundary layer, the skin friction

can be as much as 90% less than that of a turbulent boundary layer of the same Reynolds number

[125]. Additionally, wings consist mostly of skin-friction drag and they contribute about 1/3 of

the total drag of a transport aircraft [126]. From these facts together, it is clear that designing a

wing that experiences a laminar boundary layer rather than a turbulent one can have a significant

impact on decreasing an aircraft’s drag and, consequently, on its energy efficiency.

Laminar flow over swept wings may be obtained through either passive or active methods,

referred collectively as Laminar Flow Control (LFC). Work in this chapter and the next will focus

on passive methods, namely, through the design of the airfoil shape itself, known as Natural-

Laminar-Flow airfoil design, or NLF. This approach creates favorable pressure gradients over the

majority of the wing, which tend to stabilize the growth of Tollmien-Schlichting waves. However,

since the wing is swept, the three-dimensionality of the boundary layer can trigger the crossflow

instability. And with crossflow destabilized by the favorable gradients of NLF, a crossflow-induced

transition has the possibility of negating the benefits of the NLF design.

1Portions of this chapter are reprinted with permission from two conference articles. The first of which is “Com-
putational Stability Analysis of a Variably Swept, Slotted Natural-Laminar-Flow Airfoil” by Ethan S. Beyak, Koen
J. Groot, and Helen L. Reed in AIAA 2021-0946. Copyright 2021 by Ethan S. Beyak, Koen J. Groot, and Helen L.
Reed. The second conference article is “Nonlinear Boundary-Layer Stability Analysis of a Swept, Natural-Laminar-
Flow Airfoil” by Ethan S. Beyak, Koen J. Groot, Jeppesen G. Feliciano, Jay M. Patel, Andrew K. Riha, James G.
Coder, and Helen L. Reed. Copyright 2022 by Ethan S. Beyak, Koen J. Groot, Jeppesen G. Feliciano, Jay M. Patel,
Andrew K. Riha, James G. Coder, and Helen L. Reed.
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As part of the ULI efforts to design an ultra-efficient wing, the team has proposed not just an

NLF airfoil, but a slotted, natural-laminar-flow (SNLF) airfoil known as the S207. The slot allows

increasing the extent of the portion of the chord subject to a favorable pressure gradient with

respect to a single-element-airfoil configuration, while maintaining a gradual pressure recovery to

the freestream value over the surface.

Immediately designing an appropriate SNLF for the transonic configuration space is nearly

intractable, and as such, requires preliminary steps in the design. One preliminary step is design-

ing a single-element, NLF airfoil for the transonic regime. After several iterations, Dan Somers

created the so-called X207.o, on which the author performed linear stability analysis previously

[96, 97]. Another preliminary step involves increasing the confidence in these computational meth-

ods through experimental validation. To accomplish this, after the SNLF S207 was designed, an

analogous SNLF known as the X207.LS was designed by Dr. James G. Coder to achieve similar

pressure gradients at incompressible speeds as experienced in the Klebanoff-Saric Wind Tunnel

(KSWT) at Texas A&M. Experimentalists Jeppesen Feliciano and Dr. Edward B. White then mea-

sured boundary-layer disturbance characteristics, providing an excellent test bed to validate the

computations [127].

This present analysis will focus on one part of the ULI’s scope: a wind-tunnel model of the

X207.LS. Linear dynamics will first be assessed for a wide range of geometric configurations to

inform the experimentalists the relevant ranges of strong linear amplification. Then, a comparison

is made between nonlinear simulation and experimental measurements for the development and

saturation of stationary crossflow vortices for a highly favorable pressure gradient case on the

X207.LS.

6.1 Laminar base flow

To study the stability of the boundary layer over a swept wing, several preliminary steps have

to be taken; the most prominent being the highly accurate computation of the laminar base flow.

Different approaches can be considered in order to generate representations of the laminar base

flow up to increasing levels of fidelity. Going from the highest to lowest fidelity, one can make use
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of several options to generate the laminar base flow: a) use a Navier-Stokes solver to model the

flow over the model in the KSWT as accurately as possible (i.e., accounting for the wind-tunnel

walls’ effect on the inviscid flow); b) use the experimentally measured pressure coefficient in a

boundary-layer solver; c) use the designed pressure coefficient from the inviscid code, MSES,

in a boundary-layer solver [57]. In this dissertation, calculations are performed with the third

methodology, i.e., assuming the designed pressure coefficient and importing it into a boundary-

layer solver. Following the computation of the basic state, stability analysis can be performed with

the in-house stability code, EPIC [47, 48, 49, 50].

To calculate the boundary-layer solutions used over the X207.LS in this work, the spectrally

accurate boundary-layer solver DEKAF is used [58, 96, 97]. In what follows, the conditions, the

DEKAF boundary-layer base flow, the measured flow in the KSWT, and the nonlinear stability

analysis will be discussed.

6.1.1 Conditions

In MSES, the freestream Mach number based on the resultant velocity, MQ∞
= Q∞/a∞, is 0.06

to closely match KSWT conditions [127]. The freestream Reynolds number based on resultant

velocity and chord reference length c, ReQ∞c = cQ∞/ν∞, is 1.0×106. The freestream temperature

and pressure in the wind tunnel are selected from data of a hot summer day in College Station:

29.60◦C and 761.85 torr (101.57 kPa), respectively. The thermophysical properties of air at these

conditions are described by Rg = 291.171 J/(kg K), and the ratio of specific heats, γ = 1.4.2

The reference length in the leading-edge-normal direction x is selected as c = 30.15 inches. The

Prandtl number is selected to be Pr = 0.72. The constants for Sutherland’s law are selected as

µref = 1.716× 10−5 kg/(m s), Tref = 273 K, and Sµ = 111 K.

This section will consider multiple sweep angles: Λ ∈ {0◦, 25◦, 30◦, 35◦}, as well as multiple
2This value ofRg is slightly non-standard, but is consistent from otherwise overdefining the thermophysical system.

With the Mach number MQ∞ , Reynolds number ReQ∞
c , freestream pressure p∞, temperature T∞, dynamic viscosity

µ∞, chord c, and ratio of specific heats γ all defined, the specific gas constant Rg is constrained to be

Rg =

(
cp∞MQ∞

/
(µ∞ReQ∞

c )
)2

γT∞
(6.1)
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angles of attack: α ∈ {−5.5◦, −2.25◦, 0◦, 2.25◦}. Following the nomenclature of [96, 97], the

prescribed sweep angle and angle of attack are defined by Eq. (6.2).

Λ = Λw∞√
u2
∞+v2

∞

(a)
≡ arctan

w∞√
u2
∞ + v2

∞
and α = αv∞u∞

(b)
≡ arctan

v∞
u∞

. (6.2)

Here, u∞ and w∞ denote the leading-edge-orthogonal and -parallel freestream velocity compo-

nents. The corresponding spatial coordinates are x and z. The freestream velocity component v∞

points in the direction orthogonal to the xz-plane, which is denoted by Yc. These definitions of

sweep and pitch indicate that, colloquially, sweep is applied first, then pitch is applied (about c/4).

Coordinate systems will be elaborated on extensively in §6.3.1.

MSES computes the pressure coefficient by solving the inviscid Euler equations and converges

them to essentially machine zero. The streamwise resolution selected is Ns = 305 on the fore

element and Ns = 197 on the aft element for a total of Ns = 502.

The output of MSES is a two-dimensional, inviscid pressure coefficient, defined as:

Cu∞v∞
p ≡ pw − p∞

1
2
ρ∞(u2

∞ + v2
∞)

(6.3)

As the wing is swept in the KSWT, the Reynolds number based on the resultant is constant:

ReQ∞c = 1.0 × 106. However, the provided MSES pressure coefficients for the various angles

of attack suppose a constant semi-resultant freestream Mach number of Mu∞v∞ = 0.06. These are

then corrected to the appropriate resultant velocity using Prandtl-Glauert relations [128].

Using the definition of sweep, Q∞ cos Λ =
√
u2
∞ + v2

∞. We may then relate the semi-resultant

based nondimensional numbers to that of the resultant, as outlined in Fig. 16 of [96].

Mu∞v∞ =

√
u2
∞ + v2

∞
a∞

=
Q∞ cos Λ

a∞
= MQ∞

cos Λ (6.4a)

ReQ∞c =
Q∞c

ν∞
=

√
u2
∞ + v2

∞c

ν∞ cos Λ
=

Reu∞v∞c

cos Λ
(6.4b)

Since MSES is a two-dimensional inviscid solver, the Reynolds number specified internally is
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Reu∞v∞c = ReQ∞c cos Λ, which clearly accounts for sweep Λ.

Figure 6.1: Airfoil cross-section and pressure coefficient as defined by (6.3) of the X207.LS for
various angles of attack α at Λ = 0◦, calculated with MSES. The thick, colored curves correspond
to that of the bottom side of the fore element for the varying α, while the gray curves correspond
to that of the top side of the fore element and the aft element. The division between top and bottom
is chosen to be the attachment line, indicated with a marker at Cu∞v∞

p ≈ 1. Reprinted from [129].

The X207.LS cross-section and resulting pressure coefficients from inviscid code MSES are

given for the various angles of attack in Fig. 6.1. The thick, colored curves correspond to that of

the bottom side of the fore element for varying α, while the gray curves correspond to that of the top

side of the fore element and the aft element. The division between top and bottom is chosen to be

the attachment line, indicated with a marker at Cu∞v∞
p ≈ 1. The highly favorable pressure gradient
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case of α = −5.5◦ will likely greatly destabilize the crossflow instability mechanism at high

sweep and stabilize the growth of Tollmien-Schlichting waves. At the other extremum, the angle

of attack α = 2.25◦ configuration undergoes a significant pressure gradient reversal. Downstream

of the stagnation point, an extremely favorable gradient is present—a typical characteristic of NLF

or supercritical airfoils. This is subsequently followed by an adverse gradient downstream of

x/c = 0.02, decaying to a zero-pressure gradient near mid-chord, and ultimately returning to a

slight favorable gradient at the aft end.

The inviscid pressure coefficient from MSES at α = −5.5◦ is given in Fig. 6.2 and is com-

pared against the measured results of experiment. The black line indicates the MSES result, with

red/blue lines indicating the inboard/outboard pressure tap measurements, respectively. Uncer-

tainty bounds are given in dash-dotted lines. The inboard and outboard locations are 30 inches

apart from each other along the leading-edge-parallel direction, z.3 For the majority of the chord,

there is good agreement, especially with that of the outboard taps. This lends credence to the exper-

imental setup and shows that the angle of attack α is close to commensurate between the inviscid,

spanwise-infinite simulation and experiment [127]. The pressure measurements also indicate the

very weak spanwise pressure gradient. The fact that the pressure at the outboard ports is slightly

lower than that at the inboard ones could be explained through effective blockage. The flow at

the outboard station experiences a slightly smaller cross-section, hence it experiences greater ac-

celeration than the inboard section and this induces the slightly lower pressure. There is a mild

discrepancy between MSES simulation and experiment from x/c = [0.05, 0.15] whose origin is

currently unknown.

3It is worth quantifying the experimental spanwise pressure gradient for this case and comparing it to the
streamwise pressure gradient. Consider then the pressure tap location x/c = 0.24, near the first location of hot-
wire boundary-layer scans at 25%. The outboard pressure coefficient is Cout

p = −0.08933 while the inboard is
C in

p = −0.05514. The distance between the pressure ports is 30 inches along the leading-edge-parallel z. A discrete
difference then can be computed across this span for (C in

p −Cout
p )/∆(z/c) for an approximation to the local spanwise

pressure gradient. Since the streamwise resolution of the pressure ports is small, a streamwise derivative approxima-
tion is relatively coarse. Then, to compute ∆Cp/∆(x/c), a first-order difference is applied to the MSES solution near
x/c = 0.24 for the local streamwise pressure gradient. The streamwise pressure gradient is nearly 36 times that of the
spanwise gradient magnitude, and from Fig. 6.2, appears to be similar over a large extent of the chord.
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Figure 6.2: a) Airfoil cross-section and b) pressure x/c coefficient Cu∞v∞
p as defined by Eq. (6.3)

of the X207.LS for angle of attack α = −5.5◦. The black line corresponds to MSES results for
Λ = 0◦. The red and blue lines refer to the inboard and outboard experimental measurements by
Feliciano, respectively. The dash-dotted lines indicate the uncertainty from the measured pressure
distributions, ε(Cu∞v∞

p ). The gray curves correspond to MSES results for sections of the wing
beyond the scope of present validation—that of the bottom side of the fore element and the aft
element. The division between the top and bottom sides is chosen to be the attachment line near
Cu∞v∞
p ≈ 1. Reprinted from [119].

6.1.2 Solution profiles

Generating the viscous boundary layer first begins with the inviscid pressure coefficient Cu∞v∞
p .

Edge conditions are constructed that satisfy isentropic relations, which serve as boundary condi-

tions for DEKAF. See section [96, §III.B] for an in-depth discussion for this procedure. With the

boundary conditions established, DEKAF is used to produce a laminar boundary layer. For more

details, see Beyak et al. [129].
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The boundary-layer solution is computed with Nξ = 2000 nodes for the ξ domain and Nη =

90 nodes for the η domain. These resolutions have previously been demonstrated to yield fully

converged results for the X207.LS [129]. Crossflow velocity profiles are shown for several x/c

stations of interest in Fig. 6.3. Crossflow velocity ws is computed as

us = u cos(−ψs)− w sin(−ψs),

ws = u sin(−ψs) + w cos(−ψs),

ψs = arctan
wδ99

uδ99

(6.5)

In other words, us and ws indicate the velocity components that are parallel/orthogonal to the local

inviscid streamline, respectively. The subscript δ99 indicates the value was selected at a GICM-

interpolated height for δ99. That is, uδ99/ue = 0.99. Briefly, GICM interpolation iteratively and

carefully inverts the three mappings used in DEKAF to transform from the computational domain

to the physical domain. These mappings are a) Illingworth, b) Chebyshev, and c) Malik. For details

on machine-accurate GICM interpolation, see Groot et al. [58].

Various boundary-layer properties are shown in Fig. 6.4. These properties include the pressure

gradient (Hartree) parameter, βH ; the surface streamwise curvature of the airfoil 1/R nondimen-

sionalized by c; and the boundary-layer thickness based on the 99% contour of u, δ99 (in mm).4

Note that the slight oscillations in βH from 40%− 70%x/c ultimately stem from the coarse sam-

pling of airfoil coordinates used to generate the MSES solution. A previous study by the author and

colleagues analyzed these oscillations’ effect on stationary crossflow for a transonic swept wing,

the X207.o, and found no macroscopic change in the resulting N -factor distributions: see Fig. 12

in [96]. These oscillations can then be assumed to be innocuous. By convention, R > 0 implies

convex surface curvature, R→∞ flat, and R < 0 concave surface curvature.

Recall that from a variety of computations in literature, it has been shown that the shape-

factor H of the boundary layer corresponds very well to the critical Reynolds number based on

4The quantity δ99 is computed through GICM-interpolation from the DEKAF solution. To be pedantic, it is not pre-
cisely commensurate with the experimental measurements of the boundary-layer thickness, as the hot-wire orientation
in the KSWT is not in-line with u—to be discussed later in this chapter.
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Figure 6.3: Crossflow velocity ws/w∞ profiles of the laminar boundary layer over the top side of
the X207.LS’s fore element at α = −5.5◦ and Λ = 35◦. Various profiles are shown for distinct
x/c locations disambiguated through line colors and markers. For this case, w∞ = 12.089 m/s.
Reprinted from [119].

displacement thickness, Re
Q∞
δ∗,crit. This correlation is built upon self-similar profiles by Obremski

et al. [130], non-self-similar profiles, Falkner-Skan wedges, flat-plate suction, blowing stability

computations of Tsou and Sparrow [131], and wedge flows with hot walls and variable viscosity

[132], all assembled by White [54, Fig. 5-12]. This may be used as an initial engineering estimate

for which configurations of the X207.LS at Λ = 0◦ will experience unstable Tollmien-Schlichting

instability. Additionally, this is useful to consider for the present configuration since it provides

a qualitative verification of EPIC. Near-incompressible TS hadn’t been computed with the code

until the present X207.LS application. Figure 6.5 recreates Fig. 5-12 of White in the context of the

X207.LS boundary layers at Λ = 0◦ for the various angles of attack [54]. In Eq. (6.6) below, H is

defined through

δ∗1 =

∫ ∞
0

(
1− ρ u

ρ̄eūe

)
dy, Θ =

∫ ∞
0

ρ u

ρ̄eūe

(
1− ū

ūe

)
dy, H = δ∗1/Θ (6.6)

where the integration is spectrally accurate and is consistent with the Chebyshev discretization of
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Figure 6.4: Boundary-layer properties versus x/c for the top side of the X207.LS at Λ = 0◦ for
various angles of attack. For the top βH panel, the incompressible self-similar separation value
βH = −0.198838 is shown for reference. The × markers indicate the station at which laminar
separation is reached. Streamwise radius of curvature is given by R in the middle panel. Reprinted
from [129].

the DEKAF solution: see Appendix A of Groot et al. for details [58]. This figure demonstrates

through engineering correlation that the α = 2.25◦ case is expected to experience significant TS

growth over the chord due to the adverse gradient, while the α = 0◦ case is expected to exhibit

only mild TS growth over the chord with its near-zero pressure gradient. The boundary layers of
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the other angles of attack α ∈ {−5.5◦,−2.25◦} are within the stable portion of the correlation until

x/c ≈ 0.8, so consequently TS is not expected to be unstable until the vicinity of the trailing edge.

This correlation is affirmed through the computed stability results presented later in this chapter:

see Fig. 6.6.

Figure 6.5: Displacement-thickness Reynolds number against the shape factor H and evolution of
H versus x/c at Λ = 0◦ for the various angles of attack. Black markers correspond to the critical
Reynolds number locations for the incompressible TS instability. The Blasius solution is given as
the large ‘+’ symbol in the top panel and as the dashed line in the bottom panel. Colored pentagram
symbols indicate the first streamwise station exceeding the critical Reynolds number threshold for
the considered angles of attack. The dashed line indicates the shape-factor of the Blasius flat plate
solution. Other markers correspond to those shown in Fig. 5-12 of White [54]. Reprinted from
[129].
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To prepare the DEKAF boundary-layer profiles for EPIC, the profiles’ wall-normal resolution

must be increased from the sparse Nη = 90 used in DEKAF. They are GICM-interpolated to a

y-resolution of Ny = 250 in each streamwise profile. Extrapolation is performed to a physical

y height of 0.61 m to capture the freestream extent of the disturbance shapes—see Eq. (3.11) to

review the methodology.

6.2 Linear stability analysis

For stability analysis on swept wings over a broad range of configurations, the present section will

highlight simulations of Linear Parabolized Stability Equations (LPSE). The LPSE methodology

is selected over LST, as experimental validation in the past has demonstrated the importance of

non-parallel effects on swept wings for physical accuracy [25].

Briefly, some simulation inputs are described. The disturbance is presumed to satisfy no-

slip and no-penetration at the surface. The freestream boundary conditions set the disturbance

to be zero-valued, i.e., a homogeneous Dirichlet condition is prescribed. A Neumann condition,

∂T̂ /∂y|w = 0, can be used for the stationary crossflow instability (SCF), simulating an adia-

batic wall, as the laminar base-flow is adiabatic. However, to simplify the calculations, Dirichlet

conditions are used for both stationary and unsteady disturbances, as the effect on N -factors is

measurably small for the near-incompressible conditions considered. The y-momentum continuity

equation is used as a compatibility condition for ρ̂ at the wall. The streamwise pressure gradient

of the shape function ∂p̂/∂s = 0 is assumed for all disturbances out of simplicity. For additional

details on LPSE, see Beyak et al. [129].

The amplification of the perturbations will be presented in terms of N -factors, which are log-

arithmic ratios of the disturbance amplitude with respect to the first neutrally stable point in the

domain. For LST disturbances, the streamwise growth of the instability is contained fully in the

negative imaginary part of the eigenvalue: −αi. However for PSE solutions, the streamwise growth

is contained in both the shape-function and −αi. To characterize this growth for PSE, often times

the leading-edge-normal momentum contribution of the shape-functions ρ̂u is used when calcula-

tions accompany hot-wire measurements oriented in the u direction from matching experiments.
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However, as these calculations are predictive, it is more appropriate to use a measure of the distur-

bance energy: the Chu norm [133]. This norm represents the total perturbation energy, and appears

as the integrand below which is integrated over the wall-normal profile for each streamwise station.

N(s) =

∫ s

sI,LPSE

−Imag(σq′)(s̄) ds̄, σq′(s) = α− i

Φ

∂Φ

∂s
,

|Φ(s)|2 =

∫ ymax

0

(
ρ
(
|û|2 + |v̂|2 + |ŵ|2

)
+

ρ

γ(γ − 1)M2 T
|T̂ |2 +

T

γM2 ρ
|ρ̂|2
)

︸ ︷︷ ︸
Chu norm

dy,


(6.7)

Here, sI,LPSE represents the most upstream neutral point of the LPSE solution (i.e., the first s

location where Imag(σq′) = 0).5 Integration in both y and s are performed using the trapezoidal

rule.

Equation (6.7) returns theN -factor as a function of s, depicting the integration of the instability

growth. Calculating thisN -factor for a sufficiently large set of frequencies and spanwise wavenum-

bers gives a maximum amplification factor for all s-locations, creating an N -factor envelope. The

N -factor envelope is useful from an engineering perspective to roughly quantify the overall ampli-

fication from the assembly of various frequencies and spanwise wavenumbers. With that said, the

N -factor envelope should be not be mistaken for the amplification of a specific frequency and/or

spanwise wavenumber. The values reached by the N -factor envelope can be compared against a

selected ‘critical’ N -factor value of the corresponding instability mechanism. A critical N -factor

value indicates the value above which a primary instability mechanism is anticipated to initiate the

onset of turbulence. The Tollmien-Schlichting mechanism is generally selected to have its criti-

cal N -factor be 9 units [134, 135]. Additionally, stationary crossflow-induced transition has been

observed for LPSE N -factors of 5 units [25].

For detail on frequency and spanwise-wavelength characterization, see Beyak et al. [129].

5Note that for LST, Φ = 1, as non-parallel effects are not incorporated. This is not used in this dissertation however,
as all results stem from integration of PSE.
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6.2.1 N-factor envelopes

Within each panel of Fig. 6.6, different N -factor envelopes are indicated: Tollmien-Schlichting

(TS) in green diamonds, traveling crossflow (TCF) in purple squares, stationary crossflow (SCF)

in blue, and the maximum of these three categories in red. By definition, all SCF disturbances

have a frequency of 0 Hz. Disambiguating between TS and TCF is not as clearly defined, so the

physical characteristics of these disturbances must be considered. As a brief aside, below are the

definitions of several important wave quantities:

cph =
ω√

α2
r + β2

(6.8a)

ψw = arctan

(
β

αr

)
(6.8b)

ψs = arctan

(
w0

ue

)
(6.8c)

f =
ω

2π
(6.8d)

λs =
2π

αr
(6.8e)

λz =
2π

β
(6.8f)

λ =
2π√
α2
r + β2

=
1√

1
λ2
s

+ 1
λ2
z

(6.8g)

~k = αr~es + β~ez (6.8h)

Equations (6.8) define the phase speed cph, wave angle ψw, streamline angle ψs, frequency f ,

leading-edge-orthogonal/parallel wavelength components λs and λz respectively, and wavelength

λ in the direction of the wave vector of the disturbance ~k. Note w0 ≡ w∞, and that~es and~ez are

unit vectors in the s- and z-directions, respectively. By definition, ψw and ψs are zero if the wave

vector and streamline are oriented in the leading-edge-orthogonal direction, respectively. When

computing the arctangents of (6.8b) and (6.8c), care must be taken with the different quadrant of the

arguments: atan2(y,x) is used programmatically. It should be noted that by these definitions, the
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total wavelength λ is not equal to the square-root-sum-of-squares of the component wavelengths.

That is to say, λ 6=
√
λ2
s + λ2

z.

The usual characteristics of the TCF mechanism for the incompressible speed regime are as

follows:

1. The most unstable wavelength is near λ ≈ 4δ99;

2. The phase speed cph is on the order of ws,max;

3. The wave angle ψw is oriented near to or opposite of the crossflow direction of the laminar

base flow;

4. The frequency f is typically below 200 Hz.

To contrast, the usual characteristics of the TS mechanism are the following:

1. The phase speed cph is near 0.2 to 0.4 of us,e (� ws,max);

2. The wave angle ψw is oriented roughly near the local inviscid streamline angle ψs;

3. The frequency f is around 300 to 900 Hz.

Returning to the original task at hand to disambiguate between TCF and TS content, the ori-

entation of the wave angle with respect to the streamline angle is used. For this analysis, the

TCF content has been categorized as any content whose wave angle is near orthogonal to the local

streamline angle at some s location downstream of its LPSE branch-I neutral point, with a toler-

ance subtending ∆ψTCF = 25◦ in both directions. The TS content is categorized similarly: its wave

angle is parallel to the local inviscid streamline angle with an angular tolerance of ∆ψTS = 35◦.

6.2.1.1 Analysis of N-factor envelopes

A comprehensive quantification of the growth of the various instability mechanisms present on the

top side of the fore element of the X207.LS is presented below in Fig. 6.6. The angles of attack

considered are α ∈ (−5.5◦,−2.25◦, 0◦, 2.25◦), and for the sweep angles, Λ ∈ (0◦, 25◦, 30◦, 35◦).
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Figure 6.6: Chu-norm LPSE N -factor envelopes vs. x/c for the considered sweep angles and
angles of attack. The overall maximumN -factor obtained for each configuration is indicated with a
gray circle, and its selectedN -curve is shown if the maximum is greater than 2. The corresponding
wave characteristics at that location at provided below in table 6.1. Reprinted from [129].

Each column of panels shows data for a given angle of attack, while each row shows data for a

given sweep, as indicated by the text box in the top left of the border panels. Note that for the

configuration of (Λ, α) = (0◦,−5.5◦), all relevant boundary-layer instability content is stable for

the top side of the wing.

For the Λ = 0◦, α = 2.25◦ configuration, there are some unstable TS waves that are highly

oblique—oblique enough to satisfy the TCF criterion of ∆ψTCF = 25◦. This N -factor envelope

is omitted from the top right panel of Fig. 6.6 as the crossflow mechanism also requires w 6= 0.
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Also, one may suppose that the value of ∆ψTS = 35◦ is rather large for deeming TS a ‘streamwise’

mechanism. However, using this value ensures that for the entire extent of the α = 2.25◦ configu-

ration, the maximum envelope is coincident with the TS envelope downstream of x/c ≈ 5%—an

expected trend for an adverse pressure gradient. A literature review of the work by Rozendaal

and Arnal shows that this value of ∆ψTS is reasonable [11, 136, 137, 138]. Similarly, the value

of ∆ψTCF = 25◦ was chosen to ensure that the maximum envelope is coincident with the TCF

envelope for the entire extent of the α = −5.5◦ configuration. Following the work of Mack, the

selected value of ∆ψTCF is quite similar [10, §13.3].

With the definitions of the various N -factor envelopes established, the critical N -factors may

be applied to the results shown in Fig. 6.6. If the critical stationary crossflow N -factor is naively

selected asNSCF,crit = 5, then none of the cases in the configuration matrix are expected to undergo

boundary-layer transition from SCF alone. It is worth recalling that the value of 5 assumes a

certain receptivity response from the surface roughness near the attachment line and from the

freestream disturbance levels. Experimentalists can use discrete roughness elements (DREs) and/or

alter the levels of freestream vorticity using turbulence grids to change this receptivity response.

This in turn would lead to a potentially drastic change in the NSCF,crit observed from experiments.

As demonstrated by Feliciano, using DREs on the α = −5.5◦ configuration at Λ = 35◦ forced

the stationary crossflow mechanism significantly and stationary streaks were visible near x/c =

0.20—approximately an N = 2 from Fig. 6.6. The description of the experimental set-up for this

configuration will be delayed until the later section considering nonlinear analysis: §6.3.

For traveling crossflow, if the critical N -factor is conservatively selected as NTCF,crit = 5,

then that would indicate the boundary layer of the (Λ = 35◦, α = −5.5◦) configuration would

undergo transition from TCF alone. Again, this assumes some receptivity response that appreciably

tunes into freestream sound and vorticity disturbance levels. At the lowest freestream-disturbance

conditions, it has been shown on previous geometries that SCF dominates the boundary-layer

transition process due to its larger initial amplitude: see the work by [139, 140]. If this trend

holds true for the X207.LS following the upcoming experiments of Feliciano et al. 2022, then a
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Table 6.1: Selected wave properties of the most amplified disturbance for each angle of attack and
sweep angle as seen in Fig. 6.6. The purple text highlights a property’s value indicative of the
traveling crossflow mechanism, and green text highlights that of the Tollmien-Schlichting mech-
anism. The points corresponding to this data are indicated by gray circles in Fig. 6.6. Reprinted
from [129].

Λ [◦] α [◦] x/c [%] Nmax 4δ99 [mm] λz [mm] λ [mm] f [Hz] cph/us,e cph/|ws,max| ψw − ψs [◦]

25 −5.50 64 2.0 9.2 9.0 8.6 75 0.026 0.7 +85.9
30 −5.50 76 3.7 10.2 10.0 9.5 100 0.038 1.0 +84.3
35 −5.50 81 5.6 11.5 11.0 10.0 100 0.041 1.1 +85.4

0 −2.25 82 1.0 11.3 ∞ 18.7 450 0.311 ∞ 0
25 −2.25 82 1.0 11.9 50.0 22.8 350 0.306 18.4 +7.1
30 −2.25 82 1.1 12.2 50.0 22.7 350 0.311 16.1 +2.8
35 −2.25 82 1.1 12.6 50.0 22.5 350 0.313 14.6 −1.9

0 0 31 1.2 7.5 ∞ 12.9 750 0.365 ∞ 0
25 0 34 1.3 8.1 30.0 14.1 650 0.358 57.7 +7.9
30 0 40 1.3 8.9 30.0 16.2 550 0.351 39.3 +8.3
35 0 81 1.8 13.8 30.0 20.4 350 0.280 18.1 +14.6

0 2.25 36 8.5 8.6 ∞ 13.8 750 0.372 ∞ 0
25 2.25 37 8.2 9.2 ∞ 14.4 650 0.351 32.4 −19.5
30 2.25 41 8.0 9.7 ∞ 16.0 550 0.336 30.8 −23.7
35 2.25 39 7.8 9.8 ∞ 15.4 550 0.329 24.5 −28.0

more appropriate value NTCF,crit may be derived.

For the Tollmien-Schlichting instability, if the critical N -factor is selected as NTS,crit = 9,

then strictly following the engineering eN prediction approach, boundary-layer transition is not

expected for any of the cases in the configuration matrix. However, for all of the adverse pressure

gradient cases of α = 2.25◦, NTS ≈ 8 at x/c ≈ 0.4, exhibiting significant TS growth nevertheless.

Therefore, the TS instability mechanism may lead to boundary-layer transition for all sweep angles

at α = 2.25◦, if the freestream disturbances corresponding to the same frequencies happen to have

large enough initial amplitudes. This is not expected to be the case when considering the low-

turbulence configuration of the KSWT.

The most amplified content indicated with gray circles in Fig. 6.6 can be further characterized

in terms of its wave properties, delineated in table 6.1. Note for the angle of attack α = −5.5◦, the

LPSE analysis predicts TCF wavelengths slightly less than 4δ99 and phase speeds on the order of

the maximum crossflow velocity of the laminar base flow. For the other angles of attack considered,

the TS phase speeds nondimensionalized by us,e range from 0.28 to 0.372: within the expected

122



range of 0.2 to 0.4. Additionally, for the zero sweep cases, the most amplified content is two-

dimensional, indicated by ψw = ψs = 0◦.

Curiously, for the adverse pressure gradient case of α = 2.25◦ at nonzero sweep, the most

amplified disturbance is two-dimensional (indicated by λz as infinite) despite the base flow being

three-dimensional. Locally, there exist three-dimensional TS disturbances that are more unstable

than the two-dimensional disturbances. However, these three-dimensional disturbances do not

remain unstable for long, reaching their branch-II neutral points sooner downstream than that of

the two-dimensional disturbances.

6.3 Nonlinear stability analysis for α = −5.5◦, Λ = 35◦

Let us pivot our attention to now the favorable gradient configuration—the α = −5.5◦ angle of

attack and compare nonlinear simulation results against the measured flowfield.

6.3.1 Coordinate system rotations

To compare the computational results to the experimental ones as carefully as possible, we need

to measure the correct velocity component at the right location. The next step is expressing the

velocity directly in a coordinate system relevant to the experiments rather than the computations.

The velocity vector in the computational-relevant frame ~V c is coordinatized along the streamwise

s, wall-normal y, and spanwise z coordinates. In the wind-tunnel-relevant frame, the velocity

vector ~V t is coordinatized along the global Xt through the test section parallel to the floor, the

global Yt out of the page, and the global Zt downward with gravity to complete the right-handed

system. The velocity ~V may be expressed in either inertial frame given as

~V c = uês + vêy + wêz

~V t = utêXt + vtêYt + wtêZt

(6.9)

where êqi is a unit vector along coordinate qi. The wing is first swept (shown in Fig. 6.7), then

pitch is applied about quarter chord (shown in Fig. 6.8).

The first rotation in this process is a rotation about Yt of an angle Λ to apply sweep (see Fig.
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Figure 6.7: Sketch of the wind-tunnel coordinate system {Xt, Yt, Zt} and the axes {x cosα, Yt, z}
after applying sweep Λ rotating about Yt. Sweep may also be written as Λ = Λw∞√

u2
∞+v2

∞
≡

arctan
(
w∞

/√
u2
∞ + v2

∞

)
. Reprinted from [119].

Figure 6.8: Sketch of the X207.LS cross-section and the associated coordinate systems. The wing
is pitched about quarter chord along the mandrel about z. Conventional airfoil coordinates are
given as {x, Yc, z} with z out of the page. The computational body-fitted orthogonal frame is
given as {s, y, z}. The angle of attack may also be written as α = αv∞u∞ ≡ arctan

(
v∞
/
u∞
)
. The

attachment line as pictured indicates a positive angle of attack for visualization purposes. Note the
airfoil coordinates have been defined such that the trailing edge does not lie on Yc = 0 or x/c = 1.
Finite thickness at the trailing edges facilitates ease of CAD and machining. Reprinted from [119].

6.7). The third coordinate is now leading-edge-parallel, denoted as z. The second rotation is a

rotation about z of an angle −α to apply pitch (see Fig. 6.8).6 The origin is now shifted from the

mandrel pivot point to the leading edge of the airfoil. The first coordinate is now in line with the

airfoil’s horizontal coordinate, denoted as x. The second coordinate is in line with the airfoil’s

conventional vertical coordinate, denoted as Yc. The third and final rotation necessary to marry the

6The standard definition of the angle of attack is clockwise, not counter-clockwise, because that yields larger lift as
the airfoil is pitched with respect to flow coming from the left. Hence, the negative sign is used because of the standard
convention that the airfoil must be pitched in the clockwise direction to yield larger lift.
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experimental frame to the computational frame is an adjustment to be locally tangent to the surface

of the wing. To be tangent, a final rotation about z of an angle θ is applied, where θ is defined at

the selected streamwise station (x/c)|traverse as

θ = arctan2(dYc, dx)|traverse = arctan2(dYc/ds, dx/ds)|traverse (6.10)

where the surface coordinate derivatives dYc/ds and dx/ds are computed with a central, fourth-

order accurate, regular finite difference at (x/c)|traverse on a hyperresolved s-domain. These rota-

tions are given in matrix form as

R1 =


cos Λ 0 − sin Λ

0 1 0

sin Λ 0 cos Λ

 (6.11a)

R2 =


cos(−α) sin(−α) 0

− sin(−α) cos(−α) 0

0 0 1

 (6.11b)

R3 =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 (6.11c)

such that the velocity vector coordinatized in the wind-tunnel frame may be rotated into the com-

putational frame by

~V c = R3R2R1
~V t (6.12)

The inverse relationship is the useful equation for our purposes, transforming the computational

frame to that of the wind tunnel. Since rotation matrices are orthonormal, we have that

~V t = RT
1 RT

2 RT
3
~V c (6.13)
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where the superscript T indicates the transpose operator. The hot wire effectively measures the

resultant velocity in the plane orthogonal to the wire’s axis. The hot-wire’s axis is parallel to the

wind tunnel Yt and the component of velocity parallel to that axis is not measured. In other words,

Vhw = ||~V t − vtêYt || =
√
u2
t + w2

t (6.14)

Following these equations (6.9) to (6.14) transforms the instantaneous variables u, v, and w from

PSE into the measured hot-wire velocity component Vhw.

To compare directly with the hot-wire measurements, Vhw must be shown against the wind tun-

nel Yt axis, as that is the axis in which traverse articulates. The computational field is transformed

and ultimately interpolated onto Yt instead of the locally tangent frame of s and the field of wall-

normal y. The surface coordinates of the computational grid are written as xsurf and Yc,surf and are

functions of s. Then by vector addition, the computational field off the surface can be written as

xfield = xsurf + y cos(θ + 90◦),

Yc,field = Yc,surf + y sin(θ + 90◦)

(6.15)

where θ is defined by (6.10). From inverting (6.11b), Yt,field is given as

Yt,field = xfield(− sinα) + Yc,field cosα (6.16)

Note that the surface of the wing does not have its Yt value equal to zero, so instead of plotting

against Yt directly, ∆Yt will be the ordinate such that the wall value of Yt has been subtracted off.

In other words, ∆Yt = Yt− Yt,wall. Let us define a query domain onto which the solution field will

be interpolated. Select a dense, equispaced ∆Yt as 0 to 4 mm with NYt = 200. The coordinates

indicated by (x/c)|traverse are not identically contained within the computational surface coordi-

nates and serve as the query x/c locations. One-dimensional spline interpolation along the surface

of the wing occurs then with xfield and Yt,field at these distinct (x/c)|traverse locations to compute
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Yt,wall. The line profile Yt is then computed as ∆Yt +Yt,wall and is used identically for all spanwise

locations in z.

To perform the interpolation from xfield and Yt,field to the grid along the queried (x/c)|traverse and

Yt profile, MATLAB R2019b’s griddata function is used with the ‘linear’ variable argument.

Cubic interpolation caused spurious oscillations near the surface of the wing and, for that reason,

is not selected for this application. This interpolation now computes Vhw directly on Yt such that

simulation data may be compared against that of the measured hot-wire velocities.

Another crucial detail is that the traverse articulates down the wing at a constant value of Zt in

the wind tunnel coordinate system. The computational methodology is formulated in z, not Zt, and

hence must be corrected by applying an appropriate shift in the NPSE ansatz. This ∆z is written

as

∆z = (x− xph,ref) tan Λ (6.17)

where xph,ref/c = 0.55.

6.3.2 Measured flow via naphthalene visualization and hot-wire scans

The experiments are conducted in the Klebanoff-Saric Wind Tunnel (KSWT) at Texas A&M Uni-

versity in College Station [141]. The KSWT is a low-speed, low-disturbance, closed-return facility

designed for boundary-layer stability and transition analysis. Descriptions of the facility, flow qual-

ity, calibration techniques, and data acquisition can all be found in [52, 142, 143]. The KSWT is

known for its extremely low freestream turbulence levels representative of flight: ≤ 0.02% (DC

– 300 kHz) [52]. The tunnel drives air into a test section with a cross-section of 1.4 m by 1.4 m at

the inlet [127]. Experiments used a custom mounting system designed and built by Feliciano, such

that both sweep and pitch are continuously variable [127]. A picture of the X207.LS in the tunnel

with the hot-wire traverse is shown in Fig. 6.9.

The X207.LS contains cylindrical discrete roughness elements (DREs) of diameter dDRE =

6.35 mm that are spaced λz,DRE = 12.7 mm apart along the z leading-edge-parallel axis. Here,

λz,DRE indicates the center-to-center distance of the cylinders. The height of each cylinder is
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Figure 6.9: The KSWT test section including the X207.LS and the traverse system. The wing is
shown at sweep Λ = 25◦ and pitch α = −5.5◦. In the top right is the temperature probe used for
the Reynolds-number controller and the freestream pitot tube. Reprinted from [119].

kDRE = 63.5µm, oriented wall-normal, such that the roughness Reynolds number is ReQ∞k ≡

kDREQ∞/ν∞ = 83. These relatively large DREs are needed to excite the crossflow instability,

given the low chord Reynolds number of ReQ∞c = 1.0 × 106. The DREs are installed at x/c =

0.018, slightly upstream of the branch-I neutral point for the λz = 12.7 mm SCF content, as

computed with LPSE in previous analysis [129]. The SCF wavelength λz = 12.7 mm will be

referred to as the fundamental stationary crossflow wavelength (0, 1), whereas λz = 6.35 mm is

associated to the (first) superharmonic (0, 2).

Naphthalene flow visualization (NFV) reveals the footprint of the flowfield on the surface of

the wing. Regions of higher skin friction/heat flux sublimate away the naphthalene mixture from

the wing, unveiling the aluminum beneath, where regions of lower skin friction/heat flux do not

sublimate. Experiments follow standard procedures as outlined by Mendes [144]. The most up-

stream application of the naphthalene is downstream of the DREs: near x/c ≈ 0.05. NFV exper-

imental results are shown in Fig. 6.10 with a near-surface picture given in Fig. 6.11 oriented in

the xz-frame. The experiment indicates staggered and defined periodic structures with a primary
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wavelength of approximately 12.7 mm in the leading-edge-parallel direction z. More faintly, there

appear to be streaks of a shorter spanwise wavelength nearly bisecting the primary wavelength.

These are presumed to be the wavelength imprint of the superharmonic.

Hot-wire anemometry techniques follow standard methods as outlined by Bruun [145]. The

temperature-calibration routine, King’s law, and the nonlinear fitting methods relating voltage to

velocity have been detailed by White [146]. Two hot wires attached to an automated traverse sys-

tem simultaneously measure the flowfield. One hot wire is submerged within the boundary layer,

while the other probes the inviscid flowfield. The ‘inviscid’ hot wire is 17 cm above the ‘boundary-

layer’ hot wire, as measured parallel to the axis Yt. The traverse affords sub micrometer-resolution

toward the model. In the inviscid region, the step size in Yt starts off as ∆Yt = 0.20 mm and

decreases quadratically once inside the boundary layer [127]. The boundary-layer hot wire does

not get closer to the surface once the velocity ratio between the two wires reaches 30%. Af-

ter crossing this cutoff, the hot wires are retracted to their initial position in the freestream and

then shifted by a spanwise step along the wing of ∆z = 2.12 mm ≈ 1/3 dDRE. This process

repeats until the end of the measurement window span: for this case, ∆z = 50 mm. The sam-

pling frequency of the hot wires is 10 kHz and measurements are taken for 2 seconds at each

location in space [127]. The traverse articulates to a farther downstream x/c location by moving

at a constant Zt value. For this configuration, the traverse halts at five x/c stations, selected as

(x/c)|traverse ∈ {0.25, 0.45, 0.55, 0.65, 0.70}. The hot wires measure data in a spanwise window

near the vertical Yt centerline of the tunnel. That is, the inboard and outboard pressure taps sur-

rounding the centerline nearly equally enclose the measurement window. For more information,

Hunt provides a complete description of the hot-wire data acquisition system [142].

A typical hot-wire scan of the boundary layer with the presently reported resolution can take

at least 90 minutes, if not more. Extended run times naturally cause the tunnel to slowly heat

up. With hotter air, viscosity increases, so the Reynolds number would decrease. The KSWT

however has a Reynolds-number controller which monitors the temperature near the ceiling of the

test-section inlet and adjusts the velocity appropriately to maintain a constant Reynolds number
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Figure 6.10: Picture of naphthalene flow visualization over the top side of the X207.LS’s fore
element. Flow is from left to right. The horizontal axis is approximately the wind tunnel Xt and
vertical axis is approximately parallel to Zt. Streamwise-oriented streaks are visible from nearly
x/c ≈ 0.20 onward. Photograph taken by Jeppesen G. Feliciano. Reduction of image quality
produces mild discoloration. Reprinted from [119].

Figure 6.11: Near-surface picture of naphthalene flow visualization over the top side of the
X207.LS’s fore element near x/c ≈ 0.45. The horizontal axis is approximately leading-edge-
orthogonal x and the vertical axis is approximately leading-edge-parallel z. Faint streaks nearly
bisecting the darker, primary streaks are visible. Units on the ruler indicate millimeters. Photo-
graph taken by Jeppesen G. Feliciano. Slight barrel distortion is visible given the wide angle lens.
Reduction of image quality produces mild discoloration. Reprinted from [119].

130



ReQ∞c . As such, a dimensional comparison of quantities is not meaningful between simulation and

experiment—the KSWT’s Q∞ is a function of time and consequently a function of space. The

experimental results are then plotted such that at every point, the velocity is nondimensionalized

by the measurement from the hot-wire probe in the inviscid flow. All velocities shown have been

time-averaged. Linear interpolation of experimental results is performed onto a grid with constant

Yt heights, leaving z non-equispaced from the natural stepping of the traverse.

Measured disturbance contours at x/c = 0.45 are shown in Fig. 6.12, where the vertical axis

indicates the distance from the wall along Yt and the horizontal is leading-edge-parallel z. The

velocity, denoted here as u, is measured by the boundary-layer hot wire, whereas the velocity U is

measured by the hot wire in the inviscid flowfield. The quantity uavg indicates a spanwise average

of u over the measurement window of 50 mm. The hot-wire anemometry reveals the off-wall,

stationary-disturbance structures that are responsible for the streaks as seen in the NFV of Fig.

6.11. Pairs of strong high-speed/low-speed regions are neighbored by weaker high-speed/low-

speed pairs.

Figure 6.12: Measured disturbance contours at x/c = 0.45. The horizontal axis z is the leading-
edge-parallel direction and the vertical axis indicates ∆Yt: the change in the wind-tunnel Yt from
the surface of the wing. Colored contours represent the stationary disturbance by subtracting out
the spanwise average uavg. Measured results are nondimensionalized by the velocity measured by
the hot-wire probe in the inviscid flow U affixed 17 cm higher in Yt than the boundary-layer probe.
Black contour isolines showcase u/U for [0.3, 0.9], ∆ = 0.1. Note that U = U(z, Yt). Reprinted
from [119].
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Dr. Edward B. White suggested that this flowfield resembles the summation of two cosines.

To demonstrate his intuition, consider a sketch of cos(z) summed with the superharmonic cos(2z)

in Fig. 6.13. When both are in phase, the summation reaches its global maximum at z = 0 with

the high positive amplitude (= 2), followed by a mild negative amplitude (≈ −1) and a point

of zero. When the superharmonic is out of phase by +90◦, the pattern is more intricate. For

cos(z) + cos(2z − π/2) = cos(z) + sin(2z), the sum reaches its global maximum of ≈ 1.76,

followed by an equal and opposite global minimum of ≈ −1.76. Mild local extrema reach ≈

±0.369 later in the domain, nearly five times smaller than the global extrema in magnitude. The

pattern is mirrored in z when the superharmonic is −90◦ out of phase. This pattern will be used

to heuristically assign the initial amplitudes of the (0, 1) and (0, 2) Fourier modes in NPSE. This

flowfield exhibits unusually high amplitudes of the superharmonic. Generally, the amplitude of the

(0, 2) is O(A2
(0,1)) for stationary crossflow simulations, but clearly from these observations, this is

not true. The (0, 2) may be forced by the configuration of the DREs themselves: recall that the

diameter dDRE = 6.35 mm, which is precisely the wavelength of the superharmonic.

Figure 6.13: Sketches of cos(z) summed with the superharmonic cos(2z). The solid red line
indicates the fundamental cos(z), the dashed red indicates the superharmonic cos(2z), and the sum
is given by the black line. The left plot shows no phase difference between the waves, whereas the
middle and the right plots show phase differences of ±90◦, respectively. Reprinted from [119].
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6.3.3 Stability analysis and comparison to measured flow

Briefly, the simulation inputs are described. The base-flow from DEKAF is first spline-interpolated

(not-a-knot) in s onto a selected equispaced resolutionNs = 250 from x/c = 0.02 to the end of the

X207.LS fore element. The resolution in wall-normal y is selected as Ny = 200 and is clustered

according to Eq. (4.7).

For initial conditions, finite amplitudes were assigned to both the (0, 1) fundamental station-

ary crossflow λz = 12.7 mm Fourier mode and the (0, 2) λz = 6.35 mm superharmonic. The

initial amplitudes were first set such that the maxy |u′(0,k)| amplitudes near x/c = 0.55 became

approximately equal from the linear dynamics. This heuristic approach follows Dr. White’s obser-

vation of the cosine-summation, as discussed previously in §III.6.3.2. A second iteration slightly

increased the amplitude for the (0, 2). Precisely, the fundamental initial amplitude at x/c = 0.02

is selected as maxy |u′(0,1)|/ue = 10−2 whereas the superharmonic’s initial amplitude is selected as

maxy |u′(0,2)|/ue = 1.25× 10−2.7

Figure 6.14 shows the maxy |u′(0,k)| amplitude distributions for each Fourier mode in the sim-

ulation. The fundamental SCF (0, 1) is shown in light blue, the superharmonic (0, 2) in red, the

mean-flow distortion (0, 0) in purple, and higher harmonics in gray. For this case, harmonics up

to the (0, 10) inclusive were accounted for. Linear behavior of the (0, 1) and (0, 2) is indicated

with dashed lines. The nonlinear effects in this simulation are measured to be quite weak, as

the fundamental and superharmonic only slightly deviate and stabilize with respect to their linear

dynamics.

With respect to the freestream resultant velocity, the initial amplitudes are written as

maxy |u′(0,1)|/Q∞ ≈ 6.34×10−3 and maxy |u′(0,2)|/Q∞ ≈ 7.92×10−3. By their respective branch-

I locations, maxy |u′(0,1)|/Q∞ ≈ 3.02× 10−3 at x/c ≈ 0.04 and maxy |u′(0,2)|/Q∞ ≈ 4.13× 10−3

at x/c ≈ 0.034. For reference, the validation of Haynes & Reed of stationary crossflow on a swept

wing reached an initial amplitude of maxy |u′(0,1)|/Q∞ ≈ 2.5/
√

2 × 10−3 ≈ 1.77 × 10−3 at its

7The dimensional value of the streamwise edge velocity ue ≈ 9.44278 m/s and is selected internally in EPIC as
the edge value at the first streamwise station included in the base flow.
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branch-I location of x/c = 0.05 [25]. It is interesting to note that the initial amplitude found by

Haynes & Reed and these initial amplitudes are on a similar order of magnitude, despite different

DRE configurations, sweep, Reynolds number, pressure distribution, and wing surface curvature.

Figure 6.14: Fourier-mode amplitude distributions against x/c. The signature Fourier modes of
the fundamental, the superharmonic, and the mean-flow distortion are shown in color with a pre-
scribed marker, while their linear behavior is indicated by dashed lines of the same color. The
other nonlinearly generated Fourier modes (greater superharmonics) are shown in gray. The DRE
location of x/c = 0.018 is marked with a dashed, vertical, black line. Reprinted from [119].

To compare the simulation results to the measured flowfield, details regarding flow reconstruc-

tion must be discussed. The resulting spanwise-periodic signal from NPSE is arbitrarily oriented

in space, as z = 0 has no unique significance. The NPSE signal then can be shifted in z without

loss of generality at a single reference x/c station to match between experiment and simulation.

For these results, the reference xref/c was selected as 0.55 where several structures qualitatively

aligned ‘by eye’.

These first simulations revealed that the computational results were entirely 180◦ out of phase

with respect to the measured flowfield. For example, where the measured flowfield indicated low-
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speed/high-speed regions, say, moving in +z, the simulation indicated high-speed/low-speed re-

gions. Recall that in the context of NPSE, initial amplitudes are complex-valued. The super-

harmonic’s initial phase then was adjusted by applying an 180◦ phase shift. That is, A0 (0,2) =

1.25 × 10−2eiπ = −1.25 × 10−2, which corrected the mismatch between experiment and simu-

lation at x/c = 0.45. This change in phase does not visibly affect the amplitude distributions as

shown in Fig. 6.14.

Upon applying the ∆z shift as described in Eq. (6.17), results qualitatively agreed between

simulation and experiment, shown in Figs. 6.15 through 6.19. These charts compare the measured

disturbance contours in the top figure to simulation results in the bottom figure at the various x/c

stations of the traverse. The horizontal axis z is the leading-edge-parallel direction and ∆Yt is

the change in the wind-tunnel Yt from the surface of the wing. Colored contours represent the

stationary disturbance by subtracting out the spanwise average mean(Vhw, z). Computational hot-

wire disturbance quantities are scaled by Vhw ref to achieve a value of nearly unity at ∆Yt = 4 mm.

Black contour isolines showcase Vhw/Vhw ref for [0.3, 0.9], ∆ = 0.1. These results indicate good

agreement between simulation and experiment for the physical flowfield, especially considering

only three, heuristic-driven iterations to match the measured, overall maximum amplitude at x/c =

0.55.

It is important to note here for the experimental results that despite the differences in span

across the measurement window, all measurements are equally valid representations of reality.

There is uncontrollable experimental error present.

There are several reasons for current discrepancies between simulation and experiment:

1. The stability analysis is built on the inviscid pressure coefficient as generated by MSES,

which was then input into the boundary-layer code, DEKAF. This creates some discrepancy

already with experiment, as the measured pressure coefficient along the wing varies slightly

given the weak spanwise pressure gradient. Future studies will use the measured Cu∞v∞
p

as inputs into the boundary-layer code and analyze the nonlinear stability of the resulting

boundary layer. This methodology mimics the validation by Haynes & Reed [25].
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Figure 6.15: Comparison of measured disturbance contours (top figure) to nonlinear computational
results (bottom figure) at x/c = 0.25. The horizontal axis z is the leading-edge-parallel direction
and ∆Yt is the change in the wind-tunnel Yt from the surface of the wing. Colored contours
represent the stationary disturbance by subtracting out the spanwise average mean(Vhw, z). Com-
putational hot-wire disturbance quantities are scaled by Vhw ref to achieve a value of nearly unity at
∆Yt = 4 mm. Black contour isolines showcase Vhw/Vhw ref for [0.3, 0.9], ∆ = 0.1. Reprinted from
[119].

2. The ratio of the (0, 1) and (0, 2) initial amplitudes may be slightly off, predicting inaccurate

distributions downstream. For instance, the measured flowfield at x/c = 0.70 in Fig. 6.18

appears to be periodic with each period divided into thirds. For the first third, the stationary

disturbance is measured to be locally high in speed, whereas for the other two thirds, the

disturbance is locally low-speed nearly uniform in magnitude. This is not the case in the

results of the simulation, as the flow in the last third differs qualitatively from that of the

second third.

3. Not just the ratio of the initial amplitudes, but the overall value of the initial amplitudes may

be slightly overestimated in the simulation when compared to the result of the experiments.

136



Figure 6.16: Continuation of Fig. 6.15 for x/c = 0.45. Reprinted from [119].

Figure 6.17: Continuation of Fig. 6.15 for x/c = 0.55. Reprinted from [119].
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Figure 6.18: Continuation of Fig. 6.15 for x/c = 0.65. Reprinted from [119].

Figure 6.19: Continuation of Fig. 6.15 for x/c = 0.70. Reprinted from [119].
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This is demonstrated by contour isolines of the simulation slightly farther in ∆Yt than that

of the measured flow for many (x/c)traverse.

6.3.4 Linear and nonlinear reconstruction of the flowfield

As mentioned previously, the nonlinearities present in this flowfield appear to be quite weak. That

then prompts the question: how does the summation of the linear dynamics of the (0, 1) and the

(0, 2) compare against the nonlinear dynamics of the system, including the mean-flow distortion

and higher harmonics? A comparison of the reconstructed flowfields of the linear dynamics versus

the nonlinear dynamics is shown in Fig. 6.20.

Figure 6.20: Reconstructed flowfield at x/c = 0.70 using only the simulation’s linear dynamics
or incorporating the entire nonlinear system. Top: summation of LPSE results of the (0, 1) and
(0, 2) only. Bottom: NPSE results including the (0, 0) and higher superharmonics up to the (0, 10),
inclusive. The plot description follows identically from prior figures (e.g., Fig. 6.15). Reprinted
from [119].

The sum of the linear dynamics is shown in the top figure, while the entirety of the nonlinear

system (NPSE) is given in the bottom figure of Fig. 6.20. Qualitatively, all of the relevant features

139



of the full nonlinear simulation are captured with the linear simulation. Amplitudes are slightly

higher when considering the linear dynamics only, as energy is not transferred into the mean-flow

distortion Fourier mode. This figure supports the observation that the measured flowfield is largely

a linear superposition of the fundamental and the superharmonic.

6.4 Conclusions

Boundary-layer disturbances on the X207.LS swept wing were quantified across a wide range of

geometric configurations as part of a preliminary study to inform the experimentalists the relevant

ranges of amplified content. Linear Parabolized Stability Equations (LPSE) indicated appreciable

crossflow growth at the angle of attack α = −5.5◦ and sweep Λ = 35◦, reaching an N = 4.

Significant Tollmien-Schlichting (TS) amplification was quantified over the wing at angle of at-

tack α = 2.25◦. Experimental stability measurements of the X207.LS in the Klebanoff-Saric

Wind Tunnel (KSWT) have been analyzed. Results are compared against simulations using the

Nonlinear Parabolized Stability Equations (NPSE). Coordinate systems have shown the necessary

transformations to align the computational frame with the experimental frame to directly compare

with the hot-wire anemometry data. Naphthalene flow visualization and hot-wire anemometry

data of flow over the wing have been presented. A heuristic approach has been used to assign

initial amplitudes of the fundamental stationary crossflow disturbance (0, 1) and its superharmonic

(0, 2), which qualitatively recovers the measured flowfield using PSE. There is a good agreement

between the simulations and the measured hot-wire velocity contours, matching the streamwise

vortices formed in both magnitude and phase at several chordwise stations of the wing. Discrepan-

cies between simulation and experiment exist from several sources: a) the laminar boundary layer

was generated with the inviscid pressure coefficient from MSES as opposed to the experimentally

measured pressure coefficient along the wing; and b) the values of the initial amplitudes for the

(0, 1) and (0, 2) differ slightly from those observed in experiment. Nonlinearities present in this

flowfield are quite weak, as the linear superposition of the fundamental and the superharmonic

qualitatively resembles that of the full NPSE simulation.

Future work will continue on several fronts:
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1. The spanwise interval will be phase-lock averaged in span, presenting the mean over an in-

terval of 12.7 mm. The standard deviation of the mean σx can then be reported as well. Here,

σx = σx/
√
nsam, where σx is the standard deviation of the data set and nsam is the number of

samples, assuming the spanwise data samples are uncorrelated. In truth, the distinct samples

along the span are correlated, as neighboring profiles are affected by the same DRE. How-

ever, the procedure to quantify the correlation coefficient is currently unknown. The mean

profile, as well as the mean bounded by ±σx, will serve to generate the initial amplitudes of

the (0, 1) and the (0, 2) for the NPSE simulations.

(a) Elaborating on this last point, the phase-locked data at the earliest measured x/c =

0.25 will be Fourier transformed to compute the (0, 1) and the (0, 2) components in

the wind-tunnel Yt direction in terms of the hot-wire velocity Vhw. With the rota-

tion angles known of Λ, α, and θ, the components of the vector in the wind-tunnel

frame ~V t = [ut, vt, wt] can be found iteratively (see Eq. (6.14)) and subsequently,

[u, v, w] in the body-fitted, computational frame. With these known at x/c = 0.25,

linear behavior may be presumed upstream, such that following LPSE development,

an initial amplitude may be found at an arbitrary initialization point upstream. This

could be at the DREs directly (x/c = 0.018) or slightly farther downstream at a

branch-I neutral point. Alternatively, instead of performing a Fourier transform, the

experimental data may be fit nonlinearly to the form A(0,1) sin(β(0,1)z + ϕ(0,1)). Here,

β(0,1) = 2π/(12.7 mm), whereas A(0,1) and ϕ(0,1) are the amplitude and phase respec-

tively, found through the fit at each y height. Similarly, the superharmonic could be fit

via A(0,2) sin(2β(0,1)z + ϕ(0,2)) instead of performing a Fourier transform.

2. The measured pressure distribution from the experiments can be used instead of that the

MSES code. As the experimental measurement window is between the inboard and outboard

taps, the pressure coefficients could be averaged and fit smoothly.

3. The mean-flow distortion’s streamwise wavenumber will be reassessed, either by considering
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Airiau’s “cut-off” procedure (see §5.6) or by implementing the proposed limiters (§5.7.1).

This concludes the chapter on the X207.LS analysis. The next chapter will analyze the boundary-

layer stability on the S207 wing in cruise at the design conditions of the NASA ULI vision vehicle.
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7. S207 SLOTTED, NATURAL-LAMINAR-FLOW AIRFOIL

Under the auspices of the NASA University Leadership Initiative, an effort is underway to design

and analyze a swept, slotted, natural-laminar-flow (SNLF) airfoil for transonic flight. Crafted by

Dan Somers, the S207 is a wing designed to promote favorable pressure gradients over the majority

of the chord. Since favorable gradients are known to stabilize the Tollmien-Schlichting (TS) insta-

bility, the likelihood for significant growth based solely on TS is low in cruise. From an aircraft

performance perspective, the introduction of sweep to the wing configuration is highly advanta-

geous. Sweeping the wing improves aircraft performance by not only permitting the aircraft to fly

faster for the same designed, leading-edge-orthogonal velocity; but it also simultaneously reduces

the amount of induced wave drag, which is catastrophic in transonic flight. In the language of

aircraft performance, sweep increases the drag-divergence Mach number.

From a laminar-to-turbulent transition perspective, the introduction of sweep, however, spawns

the stationary crossflow mechanism within the boundary layer. The misalignment of the inviscid

streamline and pressure-gradient direction produces a twisted boundary-layer profile whose in-

flection point gives rise to the crossflow instability. The natural surface roughness of the wing in

conjunction with any freestream vorticity provide a pathway for stationary crossflow disturbances

to initialize and develop down the wing. At appreciable sweep, the inflectional profile becomes

more unstable, and the disturbance can amplify several orders of magnitude. Once the crossflow

disturbance is significant in size, secondary instabilities of high frequency begin to grow in its

peaks and troughs. At this stage, laminar breakdown is imminent.

Not only is the primary instability of stationary crossflow a concern, but there exist additional

pathways to transition through other nonlinear interactions. Tollmien-Schlichting waves may non-

linearly interact with a weak stationary crossflow vortex to create a highly unstable oblique pair of

waves that resonate together and can cause catastrophic breakdown of the laminar flow. A separate

but possible nonlinear interaction that may occur is when a Tollmien-Schlichting wave is forced

by its subharmonic oblique pair. Both of these are examples of secondary instability mechanisms
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present over swept wings that need to be considered.

A natural question then is prompted to the boundary-layer transition analyst: how much sweep

can be applied to this wing while maintaining the benefits of the SNLF design? To address this

question fully, the nonlinear problem must be considered, assessing the various routes to distur-

bance amplification across different configurations while also quantifying inherent modeling un-

certainties. This is the subject of the present work.

7.1 Background

The S207 airfoil was designed for cruise at M = 0.70, Re = 13.2 × 106, and a section lift

coefficient cl = 0.70. By iterating on the shape of the airfoil cross-section and dividing the airfoil

into two—a fore and aft element separated by a small slot—Dan Somers designed the shape such

that the inviscid flow undergoes significant favorable pressure gradients over the wing, minimizing

the growth of Tollmien-Schlichting waves. These pressure distributions were first computed at

the mid-span angle of attack of α = −1.520◦ using the code MSES. Dr. James G. Coder then

accounted for twist at design conditions by considering a small range of angles of attack. Coder

computed OVERFLOW CFD solutions at various sweep angles as well in this range, all assuming

a spanwise infinite flowfield. The twist extrema include the most positive angle of attack, α =

−1.022◦, and the most negative α = −2.252◦. The extrema of twist will be the configurations of

interest for this chapter, which exacerbate the growth of various instability mechanisms.

At the heart of boundary-layer stability analysis is the core linear dynamics which cannot be

neglected. With that stated though, the present work will focus and magnify the nonlinear simula-

tions. In the words of Arnal and Saric,

Nonlinearities strongly affect the development of disturbances, and “it seems like

‘straining the gnat ...’ to discuss the direction of disturbance growth or the most am-

plified linear disturbance when the real issue is a full nonlinear problem.” [11]

Let us preface the stability analysis with a brief discussion on the laminar base flow.
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Figure 7.1: a) The S207 airfoil cross-section b) Pressure coefficient Cu∞v∞
p as a function of x/c

at sweep Λ = 0◦ for the fore element as calculated by OVERFLOW. The sonic limit indicates
when the boundary-layer-edge velocity is equal to the speed of sound. Angles of attack α =
{–1.022◦, –1.520◦, –2.252◦} are delineated with markers.
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7.2 Laminar base flow

The generation of the viscous boundary layer follows a similar methodology as performed before

for the X207.LS, described in Chapter 6. The pressure coefficient is provided by an OVERFLOW

CFD solution (as opposed to MSES) at Λ = 0◦. The OVERFLOW solution was computed by

Dr. James G. Coder from University of Tennessee at Knoxville. A leading-edge-parallel velocity

component w∞ is provided in the freestream within DEKAF to apply sweep to the wing. This

methodology was chosen, as some S207 simulations at appreciable sweep could not converge

given all the complications: transonic flow, the complex configuration of the slot geometry and

internal flow dynamics, the delicate interplay between computing laminar flow versus tripping

turbulence—to name a few.

7.2.1 Simulation inputs

Freestream conditions were chosen assuming 44,000 ft altitude cruise. From standard look-up

tables, this yields a temperature T∞ = 216.65 K and pressure p∞ = 15.4738 kPa. The dimensional

chord is restrained from a prescribed Reynolds and Mach number at a given altitude. With the

design Reynolds Reu∞v∞c = 13.2 × 106 and Mach Mu∞v∞ = 0.70, the chord reference length is

c ≈ 3.65084 m. This calculation presumes specific constants for Sutherland’s law: the reference

temperature is Tref = 273.15 K, reference dynamic viscosity as µref = 1.716 × 10−5 kg/m-s, and

Sutherland’s temperature Sµ = 110.6 K. The specific gas constant used is Rg = 287.058 J/kg-K

and the constant Prandtl number is Pr = 0.72, leveraged to compute thermal conductivity

κ = µ cp/Pr.

All inputs related to numerics for the viscous boundary-layer solutions of the S207 are identical

to that of the X207.LS analysis presented previously in Chapter 6. For brevity, they are omitted.

7.2.2 Convergence in self-similar coordinate ξ

For a high sweep case of Λ = 20◦ and two angles of attack of α = −1.022◦ and −2.252◦, let

us consider convergence in the self-similar ξ coordinate from the DEKAF solutions. The base

streamwise resolution is selected as Nξ = 2000 and the reference solution has Nξ,ref = 3999. The
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specific value of 3999 is selected because it is equal to Nξ,ref = 2Nξ − 1, and since the compu-

tational domains are produced with the same streamwise mapping parameters, the two grids will

share every other streamwise node identically. The same pattern holds for Nξ,ref = 3Nξ− 2: every

third streamwise node is identical between the grids, and et cetera for higher integers. This is an

incredibly useful technique to demonstrate convergence because the difference between solutions

does not demand any interpolation on the common nodes. This convergence methodology has been

performed in the past successfully on a swept, NLF airfoil, revealing the prescribed, fourth-order

streamwise accuracy of these DEKAF solutions [97].

Figures 7.2 and 7.3 demonstrate the ξ-convergence for various essential parameters of the

boundary-layer solution. The vertical axis demonstrates a relative error between the base res-

olution and the reference resolution, while the horizontal axis shows the x/c of the wing. For

clarity, the relative error for a quantity φ is defined as

ε(φ) =

∣∣φbase − φref

∣∣
|φref |

(7.1)

Here, φbase refers to φ evaluated on the base Nξ = 2000 grid whereas φref refers to that of the

reference solution evaluated on the base grid nodes (via the 2Nξ − 1 pattern as described before).

The quantity φ is selected as a) the shape-factor H, b) the shear at the wall expressed in self-similar

variables ∂2f/∂η2|w, and c) the extremum of the crossflow velocity within the boundary layer

ws,max.1 The relative errors are O(10−6) or lower for the majority of the chord. The regions with

worse error are not relevant for stability analysis. These intervals are a) x/c > 0.73 for the top

side at α = −1.022◦, as flow structures develop in front of the shock on the wing here, inducing

a sudden acceleration and deceleration; and b) x/c > 0.65 for the bottom side, as the flow enters

the slot of the SNLF which is beyond the scope of this present analysis. These levels of error are

considered appropriate, so the Nξ = 2000 baseline streamwise resolution is used for the following

1When finding the extremum of the crossflow velocity, care must be taken according to side of the wing the
boundary layer is on. For instance, on the top/suction side, ws is negative for positive sweep. Then the minimum
signed value of ws is used for the relative error. The opposite is true for the bottom/pressure side: the maximum
signed value of ws is selected.
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stability analysis for all sweep and angles of attack.

Once the boundary layer approaches a strong adverse gradient, the boundary-layer code begins

to diverge suddenly—This divergence is often referred to as the Goldstein singularity [54]. If

this occurs before the end of the domain, the grid is consequently truncated, resulting in points

fewer than the base resolution of Nξ = 2000. For instance, for sweep Λ = 20◦ at angle of attack

α = −1.022◦, the presence of the shock in the OVERFLOW solution causes DEKAF to halt

prematurely with 1867 points in the streamwise domain.

7.3 Stability analysis at Λ = 15◦ for α = −1.022◦

For the first set of analysis on the S207, consider the most positive angle of attack along the

twist at design conditions: α = −1.022◦. Following the linear analysis of Heston with the conser-

vative critical N -factors, this configuration at Λ = 15◦ was deemed critical for potential nonlinear

interaction. This sweep and angle of attack on top side then is the subject of the first stability

section.

7.3.1 Computational grid

The base-flow from DEKAF is first spline-interpolated (not-a-knot) in s onto a selected s-

resolution, Ns. For this problem, no streamwise clustering is used, i.e., s is equispaced. Then

the solution is spline-interpolated onto the wall-normal y domain, where the clustering height is

chosen to be yi = 7δ50, where δ50 ≡ u/ue ≈ 0.50. Extending this clustering height yi above

the usual δ99 is critical for subsonics to capture the shape of the disturbance as it extends into the

freestream, especially for the local maximum of |v̂|. The distribution of δ50 is first fit with a 6th-

order polynomial, then yi is constructed. The edge of the domain is then computed as ymax = 40yi,

permitting sufficient space in the freestream for the disturbance to smoothly decay toward zero.

7.3.2 Differentiation schemes

Differentiation of the base-flow uses second-order accurate, central, regular finite differences

in the streamwise s direction, while it drops to first-order accurate, one-sided at the boundaries. In

the wall-normal logical coordinate η, the base-flow quantities are discretized using fourth-order ac-
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Figure 7.2: Convergence of DEKAF boundary-layer solution in self-similar streamwise coordi-
nate ξ on the S207 at α = −1.022◦ and Λ = 20◦. Relative errors are shown between the base
resolution of Nξ = 2000 and the reference resolution Nξ,ref = 3999 for various boundary-layer
properties—the shape-factor H, the shear at the wall ∂2f/∂η2|w, and the extremum of crossflow
velocity ws,max.

Figure 7.3: Continuation of Fig. 7.2 at α = −2.252◦
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curate polynomial differentiation schemes described by Weideman & Reddy [99, §2]. The deriva-

tives of the shape function q̂(n,k) in the wall-normal direction use the same fourth-order accurate

polynomial differentiation, while the streamwise differentiation must be backward. To avoid the

ill-posedness of PSE, a first-order, backward regular finite difference scheme is used for this prob-

lem.

7.3.3 Boundary conditions

For each Fourier mode, the disturbance is assumed to satisfy no-slip and no-penetration at

the surface: u′(n,k)(s, 0) = 0, v′(n,k)(s, 0) = 0, and w′(n,k)(s, 0) = 0. This translates into the

shape-function components obtaining a zero value at the wall, also referred to as a homogeneous

Dirichlet condition: û(n,k)(s, 0) = 0, v̂(n,k)(s, 0) = 0, and ŵ(n,k)(s, 0) = 0. The temperature

boundary condition of each unsteady Fourier mode (n 6= 0) is asserted to be isothermal, whereas

stationary Fourier modes are presumed to be adiabatic. The density boundary condition of each

Fourier mode at the surface is given through a compatibility condition satisfying y-momentum.

For the freestream boundary conditions, all disturbances are presumed to decay to zero for

velocity and temperature components. The density perturbation is presumed to satisfy continuity

in the freestream as a compatibility condition. As an exception to the above boundary condi-

tions, the mean-flow distortion Fourier mode (0, 0) is handled specially in the freestream. Its v̂(0,0)

component must be allowed to be nonzero, so a homogeneous Neumann condition is applied to

accomplish this.

7.3.4 Initial conditions via linear analysis

Since the objective of this analysis is to assess nonlinearities of multiple linear mechanisms

simultaneously, we first consider the most linearly amplified content based on Chu-norm LPSE

N -factors. This content will serve as the initial condition for marching the NPSE disturbance

downstream by providing finite amplitudes to the various mechanisms of interest.

• SCF: (f, λz) = (0 Hz, 24 mm)

• TCF: (f, λz) ≈ (900 Hz, 25 mm) [147].
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• 3D TS: (f, λz) = (2300 Hz, ±35 mm)

• β = 0 TS: (f, λz) = (2700 Hz, ∞)

In transition processes on swept wings with significant TS growth, subharmonics too can play

an important role. The subharmonics can resonant nonlinearly with the fundamental disturbance,

supplying additional growth and ultimately breaking down the laminarity of the flowfield if am-

plitudes are sufficiently high. See [115] for an analysis on a swept wing in cruise demonstrating

a subharmonic breakdown process and [148] for an overview of secondary linear stability theory.

For this case, it is appropriate to also consider the presence of subharmonics in the flowfield for

the various TS content mentioned above:

• 3D TS subharmonics: (f, λz) = (1150 Hz, ±70 mm)

• β = 0 TS subharmonic: (f, λz) = (1350 Hz, ∞)

The goal of the present computation is to include all of these mechanisms simultaneously such

that if there is an interaction between the disparate mechanisms, the nonlinear simulation will cap-

ture it. However, the specific content of the mechanisms considered must be adjusted slightly such

that the discrete number of Fourier modes necessary to describe all content is low for reasonable

computation time. For example, the greatest common divisor of the frequencies [900, 2300, 2700]

Hz is 100, since 23 is prime. That necessitates ω0 ≡ 2π × 100 rad/s, and subsequently, an n = 27

would be needed to obtain the fundamental β = 0 TS disturbance. Assigning N = 27 is quite a

laborious computation needed to describe the interaction between the linearly most amplified a)

TCF, b) 3D TS, and c) β = 0 TS. Therefore, an approximation on the content’s λz and f must

be made to consider the simultaneous interaction. An outline is given below, homogenizing the

content’s wavenumbers to be small integer multiples of one another.

1. Consider TCF with the same λz as SCF, that is, TCF: (f, λz) = (900 Hz, 24 mm).

2. Consider the 3D TS λz such that its β is simply related to crossflow wavelength: (f, λz) =

(2300 Hz, ±36 mm) instead of the linearly most amplified 35 mm. With this adjustment,
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β0 ≡ 2π/72 rad/mm, such that the SCF Fourier mode of 24 mm can be described as the

(0, 3).

3. Consider the β = 0 TS frequency equal to that of the 3D TS. This choice is made instead

of setting the 3D TS frequency equal to that of the β = 0 TS because the flowfield is three-

dimensional, and the growth out of the 3D TS is greater than that of the β = 0 TS. Now,

β = 0 TS: (f, λz) = (2300 Hz, ∞) instead of the linearly most amplified 2700 Hz.

4. To homogenize the TS and TCF frequencies appropriately while also accounting for the sub-

harmonic content, the TCF frequency here may be assumed to be equal to the subharmonic

TS frequency. Both can be shifted such that their frequencies are 1100 Hz. This results in

five changes to the system’s content:

(a) β = 0 TS: (f, λz) = (2200 Hz, ∞) instead of the prior 2300 Hz

(b) 3D TS: (f, λz) = (2200 Hz, ±36 mm) instead of the prior

(f, λz) = (2300 Hz, ±36 mm)

(c) TCF: (f, λz) = (1100 Hz, ±24 mm) instead of the prior (f, λz) = (900 Hz, ±24 mm)

(d) 3D TS subharmonics: (f, λz) = (1100 Hz, ±72 mm) instead of the prior (f, λz) =

(1150 Hz, ±72 mm)

(e) β = 0 TS subharmonic: (f, λz) = (1100 Hz, ∞) instead of the prior 1150 Hz.

With these adjustments, in summary, ω0 ≡ 2π × 1100 rad/s and β0 ≡ 2π/72 rad/mm such

that the entire system’s extent can be described with small, integer wavenumber multiples of n = 2

and k = 3. In other words, the baseline resolution of harmonics in the Fourier space then can

be described with N = 2 and K = 3, such that the double-sum of the NPSE ansatz produces

(2N + 1)(2K + 1) = 35 Fourier modes. Since there is no spanwise symmetry of the disturbance

in a three-dimensional boundary layer, the number of Fourier modes needed to be calculated in

a simulation is (N + 1)(2K + 1) − K = 18, while the other subset of 17 is computed through

complex-conjugate relations. A chart of these various subsets of Fourier modes is shown in Fig.
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Figure 7.4: Sketch of discretized nk-Fourier space, where ω0 ≡ 2π × 1100 rad/s and β0 ≡
2π/72 rad/mm. The various families of the linearly most amplified content, or signature Fourier
modes, are highlighted as Tollmien-Schlichting (TS), crossflow, both stationary and traveling
(SCF/TCF), and subharmonics of TS. Nonlinearly generated Fourier modes computed in NPSE
are shown with gray circles, while Fourier modes computed through complex-conjugate relations
are shown in black × markers. For this sketch, N = 2 and K = 3.

7.4, highlighting the signature modes that initialize the simulation and delineating the nonlinearly

generated Fourier modes from the complex conjugates.

LST is computed for each of these effective wavenumbers β = kβ0 and ω = nω0 for a resulting

α(n,k) and q̂(n,k). A Krylov subspace dimension of 90 is used for the local eigenvalue problem.

The solutions are then purified/confirmed up to a tolerance of 10−11 satisfying the governing LST

equations.

For these initial calculations, the phases (i.e., complex arguments) of these q̂(n,k) are left arbi-

trary from the resulting eigensolution. The α(n,k) of the nonlinearly generated Fourier modes are

initialized through Eq. (4.46), only taking the real part.

The streamwise wavenumbers of these nonlinearly generated Fourier modes are left constant

and out of the convergence criteria of the system until the 10th streamwise index while the signature

Fourier modes resolve their spatial transient from the LST solution to satisfying the PSE system.

The mean-flow distortion is left out of the convergence criteria until the 12th streamwise index.
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These indices of 10 and 12 which delay convergence are chosen to be slightly larger than usual

values (5 and 7, respectively) due to this case’s particularly high initial amplitude (discussed in the

section §7.3.6.)

7.3.5 PSE numerics

For these simulations, all slowly varying viscous terms are retained in the system, as neglecting

them is an unnecessary simplification and reduction of accuracy. These terms include products

such as 1/Re
∂α(n,k)

∂s
, or mixed derivatives like 1/Re

∂2v̂(n,k)

∂s ∂y
found in viscous dissipation.

These simulations fully incorporate the term ∂p̂(n,k)/∂s for the unsteady Fourier modes, while

the stationary Fourier modes’ streamwise shape-function pressure gradients are eliminated. In

other words,

Ωp =

 1, n 6= 0

0, n = 0
(7.2)

While including the term fully for the unsteady Fourier modes does limit the available s-resolution,

excluding the term, i.e., Ωp ≡ 0 for all (n, k), does have an appreciable effect on the amplitude

distributions. Therefore, to strive for physical accuracy, the term is kept in the following analysis.

The auxiliary condition considered is based on the sum of the components of the nondimen-

sional shape-function q̂(n,k), whose convergence criterion is based on the absolute iterative error of

|∆α(n,k)| < 10−8. The nonlinear iterative loop’s convergence criterion is a relative error of 10−8

across all of the computed Fourier modes.

The mean-flow distortion α(0,0) is kept purely zero throughout the simulation [101]. Trial

runs were performed with purely imaginary α(0,0) for this case, and as the mean-flow distortion

stabilized near the aft of the domain, its α-convergence rate would slow drastically compared to

that of the other Fourier modes in the system, requiring hundreds, if not more, iterations. For other

initial conditions, solution divergence was observed soon after including the mean-flow distortion

in the nonlinear convergence criterion. In the spirit of computational efficiency and robustness,
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α(0,0) is asserted to be zero. Recall that it is consistent by an order-of-magnitude scaling argument

to also zero the s-derivatives of v̂(0,0) if α(0,0) = 0: see Eq. (4.60). That is not performed for these

calculations. It is an unneeded reduction of the problem at hand as NPSE converges well still with

the inclusion of these s-derivatives of v̂(0,0). In spite of that, trial runs again show that the inclusion

of terms with s-derivatives of v̂(0,0) has an appreciably small effect once α(0,0) = 0, as expected.

7.3.6 Baseline NPSE solution at high initial amplitudes

In order to bring about nonlinear effects present in this flowfield, very high amplitudes are first

applied as this problem’s baseline case. Note that these high amplitudes are likely not representa-

tive of those observed in cruise (e.g., ATTAS cruise tests achieving TS amplitudes of 10−6 [115]).

It is used as a test case of the NPSE mixed-mode capability of EPIC on infinite swept wings at low

sweep.

The baseline initial amplitude is A0 (n,k) ≡ maxy |u′(n,k)|/uref = 3.16 × 10−2, where uref ≈

255.8 m/s.2 This initial amplitude is applied to the initialized signature Fourier modes at x/c =

0.03. That is to say, it is applied to the crossflow modes (0, 3), (1,±3); the Tollmien-Schlichting

modes (2, 0), (2,±2); and the TS subharmonics (1, 0), (1,±1). Figure 7.5 shows the maxy |u′(n,k)|

amplitudes of each Fourier mode nondimensionalized by the freestream resultant velocity Q∞ ≈

213.8 m/s. Figure 7.6 shows the components of phase velocity ~cph (n,k) for the unsteady Fourier

modes rotated into a frame aligned with the local inviscid streamline. The definition of the three-

2This source of this value is the u quantity at the last (farthest from the wall) wall-normal node at the first stream-
wise index of the input basic-state from DEKAF. It is only used in EPIC for nondimensionalization purposes, and is
a useful methodology for different geometries across all flow regimes. Note that it is larger than Q∞ because of the
presence of a favorable pressure gradient dp/ds < 0 accelerating the local flowfield.
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Figure 7.5: Amplitude distributions of various Fourier modes against x/c for the baseline S207
α = −1.022◦, Λ = 15◦ case on the top side. The signature Fourier modes are shown in color with
a prescribed marker, while their linear behavior is indicated by dashed lines of the same color. The
nonlinearly generated Fourier modes are shown in gray.

dimensional phase velocity used here is

~cph (n,k) = cph,s (n,k)~es + cph,z (n,k)~ez = cph,us (n,k)~eus + cph,ws (n,k)~ews ,

cph,s (n,k) = Real

(
α(n,k)ω(n,k)

α2
(n,k) + β2

(n,k)

)
,

cph,z (n,k) = Real

(
β(n,k)ω(n,k)

α2
(n,k) + β2

(n,k)

)
,

cph,us (n,k) = cph,s (n,k) cos(−ψs)− cph,z (n,k) sin(−ψs),

cph,ws (n,k) = cph,s (n,k) sin(−ψs) + cph,z (n,k) cos(−ψs),

ψs = arctan
wδ99

uδ99

(7.3)

where β(n,k) = kβ0 and ω(n,k) = nω0, taken from [117, Eq. 2.29]. The quantities us andws indicate

the velocity components that are parallel/orthogonal to the local inviscid streamline, respectively.

The subscript δ99 indicates the value was selected at a spline-interpolated height for δ99. That is,
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Figure 7.6: Phase-velocity components of the unsteady Fourier modes in the a) inviscid-streamline-
parallel and b) inviscid-streamline-orthogonal directions: see Eq. (7.3). Signature modes are pre-
scribed a filled-in marker, while the markers of nonlinearly generated modes are left unfilled.

uδ99/ue = 0.99. This rotation is performed such that the streamwise Fourier modes possess phase

speed values near cph,us (n,k)/Q∞ = 0.3. The unsteady crossflow-like Fourier modes have much

smaller values for cph,us (n,k)/Q∞—near or less than 0.1 for these cases.3

There are many rich physics that can be discussed and parsed from the above case. For one, let

us start with the 3D subharmonics. The 3D TS subharmonics (1,±1) show considerable deviation

from their linear behavior early on. Consider the phase speed components of the left 3D TS sub-

harmonic (1,−1). Between x/c = 0.25 and 0.30, the inviscid-streamline-orthogonal component

cph,ws (1,−1) increases abruptly from a value of −0.3 to nearly −0.2. In this process, it overshoots

the phase speed component of its fundamental cph,ws (2,−2) and by x/c ≈ 0.42, the phase speeds

3Note that the simple methodology initializing α(n,k) for these nonlinearly generated Fourier modes of Eq. (4.46)
can produce an initial guess where cph,us (n,k) < 0. For this case, this is true for the (1,−2) Fourier mode, although it
is quickly corrected to be positive once it is a part of the convergence criteria of the computation.
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between the subharmonic and the fundamental are nearly equal, i.e., cph,ws (1,−1) ≈ cph,ws (2,−2).

The inviscid-streamline-parallel component cph,us (1,−1) has the same behavior. The phase speed

‘locking’ that occurs near x/c ≈ 0.29 is associated with a sudden large increase in the amplitude

of the subharmonic (1,−1). The subharmonic experiences resonance and its amplitude increases

at approximately twice the rate of the fundamental’s until the subharmonic’s amplitude exceeds it

near x/c ≈ 0.35. At this point, the subharmonic approaches the amplitude of the mean-flow distor-

tion (0, 0) and begins to weakly interact until both are stabilized downstream at the low amplitude

of maxy |u′(0,0)|/Q∞ ≈ 10−3.

A similar trend is observed with the (2, 2) right 3D TS and its subharmonic (1, 1), resonating

near x/c ≈ 0.31. However, this resonance is not as strong as the left 3D TS pair. This is indicated

by the subharmonic’s phase speed components oscillating about those of the fundamental. This is

known as ‘detuning’—when conditions alternate between optimally and suboptimally exchanging

energy between the subharmonic and the fundamental; and for optimal energy exchange, phase

speeds must be equal [148].

The phase speed is only one component of this interaction however. Another critical part is

the phase of the Fourier modes themselves, that is, how the wave is oriented in space. This can be

represented by the complex argument of the Fourier mode’s shape function. Here, phase ϕ(n,k) is

defined through the û component as

ϕ(n,k) = arctan2
(
Imag(ûmax (n,k)),Real(ûmax (n,k))

)
(7.4)

where ûmax (n,k) indicates the complex value of û(n,k) evaluated at the y-location of its largest mag-

nitude |û(n,k)|. As the shape-function varies downstream, this global maximum may abruptly shift

in height, as multiple lobes of energy in the y-profile ebb and flow. According to secondary insta-

bility theory, not only do phase speeds must be equal, but phases must align as well [148]. A natural

question is, at what phase difference does resonance occur? Consider the quadratic nonlinear in-

teraction between the subharmonic and the fundamental: (n/2, k/2) + (n/2, k/2) = (n, k). Since
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the disturbance quantities are multiplied in these nonlinear forcing terms, e.g., u′(1,1) ∂u
′
(2,2)/∂s,

the phases add. So from the above quadratic interaction, it is observed that if the subharmonic

(n/2, k/2) differs in phase by ±180◦ with respect to the fundamental (n, k), then the forcing will

constructively align in space, inducing resonance. Similarly, if the phases differ by ±90◦, then the

forcing is deconstructive, inducing anti-resonance [149].

Figure 7.7 shows the phase distributions and differences of the fundamental 3D TS Fourier

modes and their subharmonics. Note that this figure’s oscillatory data against x/c is expected

because the shape function varies downstream such that its global maximum for |û| abruptly shifts

in height. Lobes of energy modulate the disturbance shapes while advecting downstream.

Here, the phase difference is defined as ∆ϕ(n/2,k/2) ≡ ϕ(n/2,k/2) − ϕ(n,k) and shows for the

left subharmonic (1,−1), it is −180◦ out of phase with respect to the fundamental at x/c ≈ 0.29:

the location where its resonance begins. For the right subharmonic (1, 1), the phase difference

does approach +180◦ at x/c ≈ 0.29, however resonance is not observed until x/c ≈ 0.31. To

understand this, again reconsider the phase speed component cph,ws (1,1)—it does not align with

that of the fundamental cph,ws (2,2) until x/c ≈ 0.31. This observation is in line with Herbert’s

summary: that both phase and phase speed must be locked for resonance to occur.

On another note separate from subharmonic resonance, note that the amplitude of the β = 0 TS

subharmonic (1, 0) deviates from its linear dynamics very early upstream, as it appears to be forced

by the primary resonance between the crossflow waves of high amplitude: (0,−3)+(1, 3) = (1, 0).

This results in very high phase speed values of cph,us (1,0)/Q∞ ≈ 0.9 (not pictured) from x/c = 0.06

to 0.41: the latter of which correlates to the linear branch-II location of the 3D TS (2, 2).

All of these interactions are examples of secondary instabilities present in boundary layers,

and a thorough review of experience, experiment, and computation on the subject is given in the

excellent paper by Herbert [148].

Even though these nonlinear resonances observed between the 3D TS and their subharmonics

are appreciable, they are not enough even at these high initial amplitudes (and arbitrary initial

phases) to cause the more amplified 3D TS (2, 2) to significantly deviate from its linear dynamics.
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Figure 7.7: a) Phase distributions of 3D TS and their subharmonics. Phase corresponds to the
complex argument of û(n,k) evaluated at the y-location of its largest magnitude, see Eq. (7.4). b)
Phase difference between the subharmonic and the fundamental: ϕ(n/2,k/2) − ϕ(n,k).

With the (2, 2) amplitude distribution mostly linear and the mean-flow distortion small over the

wing, the flow does not appreciably deviate from its laminarity for these conditions.

The next sections will demonstrate convergence of this baseline solution in y and in s.

7.3.7 Convergence of baseline NPSE solution in wall-normal y

The convergence in y is demonstrated by considering 5 distinct wall-normal resolutions: Ny =

[150, 350], ∆ = 50 with the streamwise resolution Ns held constant at 200. The highest resolution

of Ny = 350 is considered the reference solution since with clustering, that is nearly 175 points

within the boundary layer–appropriate resolutions for compressible DNS computations [98]. The

Fourier-mode amplitude distributions for the signature modes initialized by LST are shown in Fig.

7.8a. All Fourier modes of lower resolutions show good agreement with the reference solution,

barring some oscillations in the (1, 1) TS subharmonic at low amplitudes. At each streamwise

station, the amplitude of each Fourier mode can be compared directly to the that of the reference
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Figure 7.8: a) Amplitude distributions of the signature Fourier modes against x/c for this baseline
S207 α = −1.022◦, Λ = 15◦ case on the top side of the wing. Higher wall-normal resolutions are
shown in darker shades of gray. Colored markers indicate which Fourier mode is which, following
the same legend in Fig. 7.5. b) Error of maxy |u′(0,0)| for each streamwise station compared to the
reference Ny = 350 solution for the mean-flow distortion.

solution. For example, the error of the mean-flow distortion (0, 0) in y, or εy can be defined as

εy(|u′(0,0)|) ≡ max
y
|u′(0,0)|Ny −max

y
|u′(0,0)|ref (7.5)

For this equation, note that εy is a dimensional quantity. The nondimensional error with respect to

the freestream resultant velocityQ∞ is shown in Fig. 7.8b, which is mostly monotonically decreas-

ing as Ny increases. Specifically, for resolutions higher than Ny ≥ 200, all errors εy(|u′(0,0)|)/Q∞

are less than 10−4, which is sufficient reasoning for choosing Ny = 200 as a baseline y-resolution

for the amplitude-uncertainty study. There is a balance of accuracy and computational efficiency.

7.3.8 Convergence of baseline NPSE solution in streamwise s

Convergence of PSE solutions in the streamwise coordinate s are ill-posed, as too fine of a pre-

scribed ∆s reaches the step-size criterion. Despite this, an effort is made to show that the distur-
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bance amplitudes do converge in s before the critical step size is reached. For this baseline case, the

number of wall-normal points is held constant at Ny = 200 while Ns = [175, 250] with ∆ = 25.

The reference streamwise resolution of Ns = 250 is selected.

The Fourier-mode amplitude distributions for the signature modes initialized by LST are shown

in Fig. 7.9a. All Fourier modes show reasonable agreement. There are higher discrepancies among

the subharmonics (1,±1), (1, 0), and the mean-flow distortion (0, 0). Since the computational do-

mains do not have the same streamwise nodes, the y-convergence methodology cannot be repeated

identically. Instead, an integral quantity I(α(n,k)) over the maximum shape-function magnitude is

computed over the entire streamwise domain, and compared to the reference solution in a relative

sense. The wavenumber α(n,k) is selected instead of the disturbance u′(n,k) because the differentia-

tion schemes are directly applied to the wavenumber and is more representative of the convergence

of the solution in s. This error is shown in Fig. 7.9b for each signature Fourier mode, as well

as a reference line of first-order convergence (since a first-order backward scheme is applied to

the shape-function α(n,k)). The error computed matches observation of the amplitudes in Fig.

7.9a—the subharmonics have higher errors than the fundamentals. Given these errors and the

observed convergence rate, Ns = 200 is selected as the baseline resolution.

I(α(n,k)) =

∫ sfinal

sinit

α(n,k) ds,

εs(α(n,k)) ≡
∣∣I(α(n,k))Ns − I(α(n,k))ref

∣∣
|I(α(n,k))ref |

(7.6)

Not pictured is the convergence of the nonlinearly generated Fourier modes. The errors for these

Fourier modes is admittedly worse, but that is a result of the methodology of excluding them from

the convergence criteria until the 10th streamwise node, which varies in its physical coordinate be-

tween the cases. It is argued that changing the starting index of convergence of those nonlinearly

generated Fourier modes needlessly complicates the methodology and interpreting the convergence

results. Along this same line of reasoning, since the mean-flow distortion is left out of the con-

vergence criterion until the 12th streamwise node, its s-convergence results are diluted in the same
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Figure 7.9: a) Amplitude distributions of the signature Fourier modes against x/c for this baseline
S207 α = −1.022◦, Λ = 15◦ case. Higher streamwise resolutions are shown in darker shades of
gray. Colored markers indicate which Fourier mode is which, following the same legend in Fig.
7.5. b) Relative error of I(α(n,k)) over s compared to the reference Ns = 250 solution for each
signature Fourier mode. First-order backward differentiation is used, so a reference first-order
convergence is shown in black.
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manner. Note that this definition of error does not allow application to the mean-flow distortion.

Equation (7.6) will produce zero-division for the (0, 0), as its α(0,0) is purely zero. That is to say,

εs(α(0,0)) is indeterminate.

Given the strict limitation in the available streamwise resolution via Ωp = 1, the NPSE simu-

lation with Ns = 275 is susceptible to the step-size limitation, and diverges soon near x/c = 20%.

See Fig. 7.10 below. The divergence location matches very well with the critical step size from

compressible, linear theory of three-dimensional disturbances by Li & Malik [108], which can be

expressed in terms of the NPSE variables.

∆scrit (n,k) =
1∣∣∣Real(α(n,k)) +

nω0M2
ref−kβ0MrefMz, ref

1−M2
ref

∣∣∣ (7.7)

where Mref and Mz, ref are the local freestream Mach numbers in the streamwise and spanwise

directions, respectively. The signature Fourier mode (1, 1) reaches this critical step size, and is

the first Fourier mode to diverge in Fig. 7.10a. Two other nonlinearly generated Fourier modes

do exceed their critical step size—the (1, 2) and the (2, 3); however, they do not diverge until

downstream of the (1, 1) divergence. It is not immediately clear why these two Fourier modes do

not cause divergence upstream. Note the quadratic nonlinear interactions (1, 1) + (0, 1) = (1, 2)

and (1, 1) + (1, 2) = (2, 3). Perhaps the (0, 1) with its pressure gradient ∂p̂(0,1)/∂s = 0 distorts

the spectrum of the (1, 2), causing the (1, 2) and subsequently the (2, 3) to avoid the dangerous

continuous branch causing divergence [108]—however, this is conjecture.

Even with high amplitudes across all Fourier modes—amplitudes likely unrealistic of usual

environmental disturbances in cruise at 44,000 ft—breakdown of the laminar boundary is not ob-

served. For this angle of attack α = −1.022◦ under the modeling assumptions, the top side of the

S207 will likely remain laminar and will retain the NLF benefits at Λ = 15◦.

7.4 Stability analysis at Λ = 20◦ for α = −1.022◦, top side

Continuing the analysis of the S207, since the Λ = 15◦ case didn’t indicate significant deviation

from laminarity, let us increase the sweep of the wing to Λ = 20◦ while maintaining a constant
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Figure 7.10: a) Amplitude distributions of the Fourier modes against x/c for Ns = 275. The
signature Fourier modes are shown in color with a prescribed marker, while their linear behavior
of Ns = 200 is indicated by dashed lines of the same color. The nonlinearly generated Fourier
modes are shown in gray. b) The step-size criterion of (7.7) evaluated for all unsteady Fourier
modes in the Ns = 275 simulation. The constant streamwise step ∆s is shown as a solid dashed
line near 0.01 m, where Ls is the length of the streamwise domain along the surface of the wing.

velocity component in the leading-edge-orthogonal direction. In other words, the Mach number

based on the leading-edge-orthogonal velocity component Mu∞v∞ = 0.70 and with sweep Λ =

20◦, the Mach based on the resultant velocity is MQ∞ = Mu∞v∞/ cos Λ ≈ 0.745.

The present case of Λ = 20◦ prompts only one minute change to the input settings for the

simulation when comparing with those described in previous Sec. 7.3.1, 7.3.2, 7.3.3, and 7.3.5.

Instead of fitting δ50 with a 6th-order polynomial, a 7th-order polynomial is used instead.4

4For more information, polynomial orders from 1 through 20 are checked for their fit of δ50. The one that minimizes
the sum of the squares of the error across all streamwise nodes is selected.
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Figure 7.11: TS N -factors on the S207 α = −1.022◦, Λ = 20◦ on the top side.

7.4.1 TS subharmonic resonance

7.4.1.1 Initial conditions via linear analysis

For initial conditions of the nonlinear analysis, the most linearly amplified content first must be

tabulated for various instability mechanisms. Figure 7.11 shows the linear amplification of TS

waves in terms of the LPSE Chu-norm N-factors while Without a transition location experimentally

prescribed, x/c = 0.47 can be selected as the queried location due to the global maximum of 3D TS

N -factor for this configuration. The maximally amplified content is (1870 Hz, 33.3 mm) for 3D

TS whereas 2400 Hz is the maximally amplified β = 0 TS. However, the disturbance of 3000 Hz

achieves essentially the same N -factor with higher growth rates, which may induce more sudden

resonance and nonlinear interaction. For that reason, 2400 Hz is discarded and 3000 Hz is the

considered β = 0 TS.

The crossflow content’s linear amplification is similarly shown in Fig. 7.12. The SCF distur-

bance of highestN -factor is λz = 12 mm whereas the traveling crossflow with a maximalN -factor

at the aft of the top side is (625 Hz, 16 mm).

The summary of the linear amplification is itemized below:
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Figure 7.12: Crossflow N -factors on the S207 α = −1.022◦, Λ = 20◦ on the top side.

• 3D TS: (f, λz) = (1870 Hz, +33 mm) with an Nmax = 5.5 near x/c = 0.47.

• β = 0 TS: (f, λz) = (3000 Hz, ∞) with an Nmax = 3.6 near x/c = 0.30.

• TCF: (f, λz) ≈ (625 Hz, 16 mm) with an Nmax = 4.8 near x/c = 0.75.

• SCF: (f, λz) = (0 Hz, 12 mm) with an Nmax = 1 near x/c = 0.10.

Given the importance of TS subharmonics, the content is listed below while omitting their linear

N -factors:

• 3D TS subharmonics: (f, λz) = (935 Hz, ±66 mm)

• β = 0 TS subharmonic: (f, λz) = (1500 Hz, ∞)

Performing a similar methodology from Sec. 7.3.4 to reduce the size of the discretized Fourier

space,

1. Consider TCF with the same λz as SCF, that is, TCF: (f, λz) = (625 Hz, 12 mm).

2. Consider the 3D TS λz such that its β is simply related to crossflow wavelength: (f, λz) =

(1870 Hz, ±36 mm) instead of the linearly most amplified 33 mm. With this adjustment,

β0 ≡ 2π/72 rad/mm, such that the SCF Fourier mode can be described as the (0, 3).
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3. Consider the β = 0 TS frequency equal to that of the 3D TS. Then β = 0 TS: (f, λz) =

(1870 Hz, ∞) instead of the linearly most amplified 3000 Hz.

4. To homogenize the TS and TCF frequencies appropriately while also accounting for the sub-

harmonic content, the TCF frequency here may be assumed to be equal to the subharmonic

TS frequency. Both can be shifted such that their frequencies are 900 Hz. This results in five

changes to the system’s content:

(a) β = 0 TS: (f, λz) = (1800 Hz, ∞) instead of the prior 1870 Hz

(b) 3D TS: (f, λz) = (1800,Hz, ±36 mm) instead of the prior

(f, λz) = (1870 Hz, ±36 mm)

(c) TCF: (f, λz) = (900 Hz, ±12 mm) instead of the prior (f, λz) = (625 Hz, ±12 mm).

This is now an appreciable shift in content and amplification, as the linear maximum

N-factor is only 2.5 achieved near x/c = 0.36 for this disturbance for this oblique pair.

(d) 3D TS subharmonics: (f, λz) = (900 Hz, ±72 mm) instead of the prior (f, λz) =

(935 Hz, ±72 mm)

(e) β = 0 TS subharmonic: (f, λz) = (900 Hz, ∞) instead of the prior 1500 Hz.

With this reduction prioritizing the growth of the 3D TS, the considered TCF now is much

less amplified—only an Nmax = 2.5. Additionally, the location of the TCF’s max N -factor is at

the rear of the domain—x/c ≈ 0.75, while the present analysis is more meaningful considering

possible transition pathways that occur significantly upstream or mid-chord. For the time being, it

is worth considering omitting SCF and TCF and focusing on the Tollmien-Schlichting content for

subharmonic resonance and oblique pairs resonating with 2D waves. A later section in this chapter

will consider the interaction of Tollmien-Schlichting and the stationary crossflow Fourier mode.

Traveling crossflow will be omitted entirely, as it is asserted that the boundary-layer receptivity in

cruise is not conducive to producing traveling crossflow waves.

With the absence of crossflow, the Fourier-space reduction has fewer steps. Since there is

large β = 0 TS growth at 3000 Hz, the frequency of 3600 Hz with an Nmax = 3.3 near x/c =
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Figure 7.13: Sketch of discretized nk-Fourier space, where ω0 ≡ 2π × 900 rad/s and β0 ≡
2π/66 rad/mm. Tollmien-Schlichting (TS) and its subharmonics are identified as the signature
Fourier modes. Nonlinearly generated Fourier modes computed in NPSE are shown with gray
circles, while Fourier modes computed through complex-conjugate relations are shown in black ×
markers. For this sketch, N = 4 and K = 2.

0.24 is feasible and commensurate with 3D TS as (1800 Hz, ±33 mm) and subharmonics then as

(900 Hz, ±66 mm). With this set, ω0 = 2π × 900 Hz and β0 = 2π/66 mm. The inclusion of these

Fourier modes allows both subharmonic resonance to occur between the (1,±1) and the (2,±2)

waves while also allowing the oblique pair of the (2,±2) to resonate and force the β = 0 TS wave

(4, 0). There is additional subharmonic resonance between the (2, 0) and the (4, 0), as well as the

(1, 0) with the (2, 0). Geometrically, these oblique interactions form a diamond in Fourier space,

as shown in Fig. 7.13.

All Fourier modes are aligned in phase with respect to their û(n,k) shape-function component at

the initialization location of x/c = 0.04, i.e., ϕ(n,k) = 0 for all (n, k) at x/c = 0.04. For this case,

the auxiliary condition was adjusted to be more stringent than the prior analysis: |∆α(n,k)| < 10−11

now indicates α-convergence. Additionally, the nonlinearly generated Fourier modes (n, k) 6=

(0, 0) are set to be included in the convergence criteria at the 5th streamwise node while the mean-

flow distortion (0, 0) is included in the criteria at the 7th streamwise node.
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7.4.1.2 Initial amplitude variation

Given that the freestream disturbance levels are unknown, there is inherent uncertainty in predictive

calculations of boundary-layer transition. And even further, there is uncertainty in the dynamics of

how such disturbances (e.g., sound or vorticity) in the freestream then propagate into the bound-

ary layer—if there is a certain range of wavenumbers and frequencies that are more significantly

amplified than others, for example. This latter problem is referred to as boundary-layer receptivity

and as of writing, no present models exist to predict the transition Reynolds number on a flat plate

[7]. With that said, under the assumption that external flows have weak freestream disturbances,

computations then focus on the linear development and subsequent nonlinear breakdown to turbu-

lence maintaining the inherent uncertainty in the initial condition. That is the subject of the present

computations.

To be predictive relies on some correlation with flight data then as to what the initial disturbance

amplitudes could possibly be. Fortunately for transonic swept-wing boundary-layer transition,

there does exist some excellent work pairing both experiment and computation. The German

laminar flow research program in the 1990s designed a laminar flow glove for the ATTAS/VFW

614 aircraft [150]. The airfoil used for the glove was the NACA 642 A015, which maintains

favorable pressure gradients over the surface for nearly the first 50% of the chord [151]. The

leading-edge sweep, or geometric sweep, on the aircraft was Λ = 18◦, while the maximum Mach

number for the tests was MQ∞ ≈ 0.7. For clarity, MQ∞ is the Mach based on the resultant velocity

in the freestream: Q∞/a∞. Their Reynolds numbers based on the wing chord and the resultant

velocity hit a max value of 30 million, however, several cases at lower Reynolds numbers were

run. This Reynolds number here includes the effect of wing sweep doubly, as expressed below:

ReQ∞c sec Λ ≡
Q∞c sec Λ

ν∞
,

Q∞ cos Λ =
√
u2
∞ + v2

∞,

=⇒ ReQ∞c sec Λ =
c
√
u2
∞ + v2

∞
ν∞

sec2 Λ ≡ Reu∞v∞c sec2 Λ

(7.8)
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where the chord perpendicular to the leading edge is denoted with c and the component of velocity

perpendicular to leading edge as well is denoted with
√
u2
∞ + v2

∞. Additionally, the pilot of the

ATTAS/VFW 614 aircraft flew at sideslip, providing an effective sweep to the flowfield that could

vary from the geometric sweep by ±5◦. In the boundary-layer transition analysis of the flight data,

Schrauf et al. report data for a case where a) MQ∞ = 0.60, b) ReQ∞c sec Λ = 15.7 × 106 and c) an

effective sweep of Λ = 21.9◦ [115]. This Reynolds number corresponds to Reu∞v∞c ≈ 13.5× 106

using Eq. (7.8). All three of these parameters are reasonably close to the conditions currently

considered for this S207 airfoil: MQ∞ ≈ 0.745 at Λ = 20◦ (i.e., Mu∞v∞ = 0.70) with Reu∞v∞c =

13.2 × 106. Then by assumption, the initial amplitudes that Schrauf et al. found to correlate with

transition location data may be near those experienced in flight for the current S207 case.

The pressure coefficient as analyzed by Schrauf et al. was not reported; so to compare the

present S207 data against that of the VFW 614 flight, a representative pressure coefficient from

the pre-flight CFD predictions was extracted and digitized from Redeker et al. [150]. The pressure

coefficient was extracted from Fig. 17 in Redeker et al., assuming a mid-span location of η = 0.52

(using their nomenclature) and a Mach number of MQ∞ = 0.7. On the figure, the indicated chord

reference direction is not leading-edge-perpendicular, rather it is inline with the aircraft’s fuselage.

Then it is presumed that the reference velocity of the pressure coefficient is the resultant. That is,

CQ∞
p is provided. A sweep of 18◦ is supposed, as that is the leading-edge sweep of the wing. As

mentioned before, the airfoil used for the glove was the NACA 642 A015, and its coordinates were

found from an online database. Converting the pressure coefficient to Cu∞v∞
p , Fig. 7.14 compares

the present S207 to the representative case for the VFW 614/ATTAS laminar flow glove.

With that in mind, it is not enough to analyze a single initial amplitude, but instead a range, as

the assumption is not truth. The subject of this section then will analyze the transition processes

while varying the initial amplitudes of the distinct Fourier modes in the NPSE formulation.

As shown in Fig. 7.13, there are several Fourier modes in this first problem formulation which

require initialization with LST and a finite amplitude assigned. These include the β = 0 TS

(4, 0), the subharmonic oblique pair (2,±2), their respective subharmonics (1,±1), and the sub-
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Figure 7.14: a) The S207 airfoil cross-section in black with the NACA 642 A015 in blue. b) Pres-
sure coefficients Cu∞v∞

p for the S207 and the VFW 614/ATTAS laminar flow glove as a function of
x/c. This figure is a continuation of Fig. 7.1. The VFW 614/ATTAS laminar flow glove pressure
coefficient is indicated in blue. Small oscillations result from digitization of the laminar-flow-
glove’s data.
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harmonics of the β = 0 TS—the (2, 0) and (1, 0). This amounts to a total number of 7 distinct

amplitudes. Note too that this is not the only parameter. Each Fourier mode can have its own

initial phase, as it is complex-valued. In other words, A0 (n,k) = |A0 (n,k)| exp
(
iϕ(n,k)

)
where ϕ(n,k)

is possibly distinct among (n, k). This amounts to then 14 total initial parameters left to be varied,

which is a large test matrix to consider. To approach this, let us first assume that at a given x/c

location, all Fourier modes have the same magnitude and phase. This cuts down the diagonal of

this 14-dimensional test matrix and provides some insight on what to expect out of this nonlin-

ear system. Since the first neutral point of the (4, 0) disturbance, or its branch-I location, is near

x/c = 0.06, the initialization location of x/c = 0.04 is selected. Initializing upstream of branch-I

allows its location to be accurately identified once the spatial numerical transient from LST to PSE

has vanished. The initial amplitude magnitudes are specified such that all disturbances in their

u′ components achieve a maximum value with respect to the local ue value. Mathematically, this

is maxy |u′(n,k)|/ue = cst, where for the initial amplitude variation, this constant is set to vary as

log10(cst) = −6 to−2.5, ∆ = 0.25. The phases of all 7 initialized Fourier modes are all set to zero

at x/c = 0.04 using the definition provided earlier in Eq. (7.4). Inputting these into the nonlin-

ear parabolized stability equations and marching downstream, a sample distribution of the Fourier

mode amplitudes is shown in Fig. 7.15. This distribution shown corresponds with the initial am-

plitude of maxy |u′(n,k)|/ue = 10−4.5. The fundamental β = 0 TS wave reaches an amplitude of

maxy |u′(n,k)|/Q∞ ≈ 5 × 10−6 near its branch-I location, which is approximately commensurate

with the initial amplitudes reported by Schrauf et al. [115]. In their analysis, transition was corre-

lated with a branch-I TS initial amplitude of 1 to 5 × 10−6. This range of values will serve as the

cornerstone of the present nonlinear analysis.

In Fig. 7.15, the signature Fourier modes are indicated with colors and markers, while the

gray lines in the background indicate the other Fourier modes that are nonlinearly generated (aside

from the mean-flow distortion). Their linear amplitude distributions are indicated with dashed

lines, revealing that at these low amplitude realistic of cruise conditions, the only Fourier mode

to appreciably deviate from its linear behavior is the left 3D TS (2,−2). There is some deviation
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Figure 7.15: Amplitude distributions of various Fourier modes against x/c for the baseline S207
α = −1.022◦, Λ = 20◦ case on the top side of the wing. The signature Fourier modes are shown
in color with a prescribed marker, while their linear behavior is indicated by dashed lines of the
same color. The nonlinearly generated Fourier modes are shown in gray.

shown by the (1,−1), however its amplitude is negligibly small. At low amplitudes, the mean-flow

distortion tends to primarily be forced by the largest amplitude Fourier mode in the system. This is

a consequence of all quadratic interactions for the MFD as (n, k)+(−n,−k) = (0, 0). Note as the

(4, 0) TS wave grows from its branch-I location to its branch-II location (the second neutral point),

the (0, 0) mean-flow distortion nearly follows its shape, lagging slightly in space. As it grows

and approaches the left 3D TS (2,−2), it appears there is an exchange in energy between the two

Fourier modes, despite being an order of magnitude apart in amplitude. This excites sudden growth

out of the (2,−2); however, amplitudes are not high enough to appreciably force the (2,−2) up to

its counterpart (2, 2), the right 3D TS wave. Downstream near x/c ≈ 0.30, the 3D TS wave (2, 2)

becomes the dominant Fourier mode in the system. Observe below that the MFD approximately

follows its growth and decay for the rest of the domain.

Consider now the variation of all initial amplitudes from maxy |u′(n,k)|/ue = 10−6 to 10−2.5.

Figure 7.16 shows three of the Fourier mode amplitude distributions for select cases. The line color
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Figure 7.16: Amplitude distributions of various Fourier modes against x/c for the S207 α =
−1.022◦, Λ = 20◦ case on the top side. Three solutions with different initial amplitudes are
indicated by varying the line color from black to gray, while some selected Fourier modes are
shown with a prescribed marker.

indicates a different initial amplitude considered, expressed as A0, (4,0) TS. This indicates the am-

plitude maxy |u′(4,0)|/Q∞ of the (4, 0) β = 0 TS wave at its branch-I location, such that the values

are commensurate with what Schrauf et al. reported in their 1996 journal article [115]. Different

markers indicate distinct Fourier modes of note. In particular, consider the high amplitude case

of A0, (4,0) TS ≈ 3.12 × 10−4. The interaction between the mean-flow distortion and the left 3D

TS (2,−2) generates enough growth such that the (2,−2) reaches the same amplitude as the right

3D TS (2, 2) near x/c = 0.20. They grow together resonating, ultimately peaking at a maximum

value of maxy |u′(2,±2)|/Q∞ = 7%. The abrupt decay soon after is enough though to stabilize

the growth of the (0, 0) such that its amplitude stays lower than 2%. Downstream highlights the

rise of the (1, 2) Fourier mode from the background in conjunction with the subharmonic (1, 0)

as the (2, 2) decays. The (1, 2) appears to be strongly forced through the quadratic interaction

(2, 2) + (−1, 0) = (1, 2).

To showcase the information of all cases, only the maximum amplitude in s is selected beyond

each Fourier mode’s respective branch-I location. This permits the horizontal axis of the figure
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to be the initial amplitude A0, (4,0) TS, while the vertical axis represents the maximum amplitude

of a Fourier mode over the entire (s, y) two-dimensional domain. See Fig. 7.17 for the results

of particular Fourier modes. Linear extrapolations are indicated for the LST-initialized content,

i.e., the (2, 2) and the (4, 0), whereas the (1, 0) is linearly stable for the entire chord, so its linear

extrapolation is not shown. Additional Fourier modes are indicated: the (1, 2) and the (0, 2), the

latter of which is a nonlinearly generated streamwise vortical mode which is forced largely by

the interaction (2, 2) + (−2, 0) = (0, 2). Its presence becomes appreciable at higher amplitude

in late nonlinear regimes and it may be similar to the rope-like structures observed via oblique

breakdown in Direct Numerical Simulations by Joslin et al. and Mayer et al. [27, 152]. The range

of initial amplitudes of the TS at branch-I associated with the VFW 614/ATTAS laminar flow

glove analyzed by Schrauf et al. is indicated by the cyan-colored, transparent patch from 1 to

5 × 10−6. The onset of the (1, 0) resonance is indicated (∼ 10−5), as well as the oblique pair

(2,±2) onset of resonance together at a higher initial amplitude: ∼ 5.5 × 10−5. At the highest

amplitude considered, the system of equations halts during α-convergence of each Fourier mode

and couldn’t achieve |∆α(n,k)| < 10−11 uniformly in 200 iterations.5 This occurred at x/c = 0.39

with the dominant mean-flow distortion reaching an amplitude of maxy |u′(0,0)|/Q∞ = 24%. At

these amplitudes, breakdown to turbulence is soon expected and a small discretized Fourier space

of only N = 4 and K = 2 is likely insufficient to capture all of the relevant scales to accurately

simulate the breakdown physics. The purpose of these calculations is not to compute deeply into

the breakdown region, but instead to quantify when breakdown occurs as a function of the initial

amplitudes.

There are several important conclusions from this chart. First, appreciable deviation from

linear dynamics doesn’t occur until the branch-I amplitude A0, (4,0) TS ≈ 5 × 10−5 induces res-

onance between the subharmonic oblique pair (2,±2)—an order of magnitude higher than the

5This convergence issue of NPSE in the highly nonlinear stages of breakdown is common to all NPSE codes—not
just EPIC. All of the exact reasons are not presently known. But intuitively, at a certain point in a newly generated
turbulent boundary layer, the unsteady fluctuations lose their slowly varying, wave-like character as modeled by the
PSE ansatz, making PSE inappropriate and physically dubious. This point is nominally soon downstream of where
laminar breakdown is predicted by NPSE.
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Figure 7.17: Maximum amplitudes in both s and y for selected Fourier modes against the branch-I
amplitude of the (4, 0) β = 0 TS wave, A0, (4,0) TS. Linear extrapolation for the (2, 2) and the
(4, 0) are indicated with dashed lines. The × marker indicates when the NPSE fails to converge its
α-convergence criterion less than 10−11 for all Fourier modes. The initial amplitudes that correlate
well with transition for the VFW 614/ATTAS laminar flow glove flight experiments are indicated
with a transparent cyan patch. Resonance of the (1, 0) as well as the (2,±2) are indicated with
dashed lines to the corresponding branch-I TS amplitude.

worst case of the Schrauf correlation [115]. Second, the mean-flow distortion doesn’t achieve

maxy |u′(0,0)|/Q∞ = 1% until A0, (4,0) TS ≈ 2 × 10−4—forty times higher than the worst case of

Schrauf. Under the dubious assumption that the flight in cruise will experience initial amplitudes

on the order of what Schrauf et al. computed for the VFW 614/ATTAS laminar flow glove, these

conclusions indicate that TS subharmonic resonance will not disrupt the laminarity of the flow over

the S207 at cruise for this configuration.

To demonstrate the amplitude distribution for the most catastrophic case, Fig. 7.18 shows the

amplitude distributions over x/c for the highest initial amplitude considered. Amplitudes of the

oblique pair (2,±2) achieve values of 20% of the freestream velocity near x/c = 0.34, which
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Figure 7.18: Amplitude distributions of various Fourier modes against x/c for the S207 α =
−1.022◦, Λ = 20◦ case on the top side of the wing assuming a high initial amplitude. The signature
Fourier modes are shown in color with a prescribed marker, while their linear behavior is indicated
by dashed lines of the same color. The nonlinearly generated Fourier modes are shown in gray.
NPSE halts convergence near x/c = 0.39.

likely indicates laminar breakdown is imminent. The NPSE simulation ceases to converge near

x/c = 0.39 as all of the harmonics present become appreciable in magnitude.

For the next section, let us consider a simpler model of the TS subharmonic transition process

in the pursuit of computational efficiency while maintaining accuracy.

7.4.1.3 Reduced set of Fourier modes for TS subharmonic resonance

When using the Nonlinear Parabolized Stability Equations, it is a natural question to ask: how

many Fourier modes are needed to accurately yet efficiently capture the dynamics of the tran-

sition process? Let us address this for the present TS subharmonic resonance. Recall that for

their baseline analysis, Schrauf et al. considered only the subharmonic 3D TS and the β = 0

TS, even neglecting the mean-flow distortion (0, 0) [115]. Their subsequent analysis then demon-

strated the inclusion of additional Fourier modes did not change the result of transition location

prediction. The relevant discretized Fourier space may be reduced, neglecting many nonlinearly
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Figure 7.19: Sketch of discretized nk-Fourier space, where ω0 ≡ 2π × 1800 rad/s and β0 ≡
2π/33 rad/mm. Tollmien-Schlichting (TS) and its oblique subharmonics are identified as the
signature Fourier modes. Fourier modes computed through complex-conjugate relations are shown
in black × markers. For this sketch, N = 2 and K = 1 with additional Fourier modes truncated
from the NPSE double sum.

generated Fourier modes that aren’t essential to the secondary boundary-layer instability that is

the TS subharmonic resonance, as shown in Fig. 7.19. For the present analysis, consider now the

fundamental angular frequency as ω0 ≡ 2π × 1800 rad/s and fundamental spanwise wavenumber

as β0 ≡ 2π/33 rad/mm. Then the Fourier modes computed in NPSE are reduced to just four: the

(2, 0) TS, the subharmonic oblique pair (1,±1), and the mean-flow distortion (0, 0). This anal-

ysis will include the MFD in contrast to Schrauf’s. This being said, the MFD still must have its

α(0,0) = 0, inserting all of its growth into the shape function q̂(0,0). Assuming a purely imaginary

α(0,0) for some runs caused its α-convergence to be much slower than the other Fourier modes in

the system, often requiring hundreds to reach appreciable levels of |∆α(0,0)| < 10−8. For some

amplitudes, the system would diverge soon downstream, as the real-valued forcing term on the

MFD f(0,0) would diverge to∞. For robustness across the whole suite of runs, α(0,0) ≡ 0.

Recall the required number of Fourier modes for NPSE necessary to be solved via distinct

governing disturbance equations is Nm = (N + 1)(2K + 1)−K. For the prior case, this evaluates

to Nm = 23, while the entire discretized rectangle in Fourier space including complex conjugates
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is Nm,full = (2N + 1)(2K + 1) = 45. For the reduced set in this nomenclature, Nm = 4 and

Nm,full = 7. Let us compare the solution of N = 4 and K = 2 to this reduced set of Fourier modes

in terms of amplitude distributions, as shown in Fig. 7.20 corresponding to A0,TS ≈ 5 × 10−6 at

branch-I. The Nm = 23 solution is shown in black, while the Nm = 4 solution is overlaid in a

dashed red line. Distinct Fourier modes are indicated with different markers. The error between

the two solutions is shown in the bottom subplot, where the absolute error εm is defined similarly

to the y-convergence error from Eq. (7.5):

εm(|u′(n,k)|) ≡
∣∣∣max

y
|u′(n,k)|Nm=4 −max

y
|u′(0,0)|Nm=23

∣∣∣ (7.9)

where maxy |u′(n,k)|Nm=4 corresponds to the maxy |u′(n,k)| amplitude for a Fourier mode belong-

ing to the Nm = 4 solution and maxy |u′(0,0)|Nm=23 similarly corresponds to an amplitude from

the more resolved set of Nm = 23. These errors are appreciably low for all streamwise stations:

O(10−9) and lower. This suggests that for these cases of TS subharmonic resonance on the S207, a

reduced set of Fourier modes can be used without worry, maintaining accuracy and greatly improv-

ing efficiency. Runtime of these cases drop from 30+ minutes to less than 4 on the workstations

in the CST lab.6 The defining characteristic between the Nm,full = 7 and Nm,full = 45 simulations

from a computing point of view is the number of possible tuples for the quadratic and cubic in-

teractions. For the Nm,full = 7 case, there are a total of only 19 total quadratic tuples forcing the

right hand side, while there are 109 total cubic interactions. On the other hand, for the Nm,full = 45

case, there are a total of 602 quadratic and 21, 362 cubic interactions.

Now consider the initial amplitude variation study again with this reduced set of Fourier modes.

The results are shown in Fig. 7.21. The conclusion is essentially identical to that of Fig. 7.17

from the previous section. Resonance is not observed from the subharmonic oblique pair (1,±1)

until a TS branch-I amplitude maxy |u′(2,0)|/Q∞ ≡ A0, (2,0) TS ≈ 5.5 × 10−5. The mean-flow

distortion does not reach maxy |u′(0,0)|/Q∞ = 2% until high branch-I TS amplitudes of 3 × 10−4.

6These tests were run on dual-processor workstations with Intel Xeon E5-2640 V4 10-core processors and 64
GB of DDR4-2133 memory with relevant gfortran 7.5.0 flags -O3 -march=native -funroll-all-loops. Neither MPI nor
OpenMP was used for these tests.
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Figure 7.20: a) Amplitude distributions of the signature Fourier modes against x/c for this baseline
S207 α = −1.022◦, Λ = 20◦ case. Solid black lines indicate the solution with N = 4, K = 2, or
Nm = 23 computed, while dashed red lines indicate the diamond arrangement of Nm = 4 Fourier
modes. Colored markers indicate which Fourier mode is which, following the same legend in Fig.
7.15. b) Error of maxy |u′(n,k)| for each streamwise station compared to the reference Nm = 23
solution for each Fourier mode.

Breakdown of the laminar flow via TS subharmonic resonance is not expected for realistic cruise

initial amplitudes, even from the reduced set of Nm = 4 Fourier modes. Or expressed another

way: when the TS subharmonic resonance is the dominant secondary mechanism, only the set

of Nm = 4 Fourier modes is needed to predict onset of subharmonic resonance and subsequent

breakdown of laminarity.

7.4.1.4 Varying initial amplitudes of the subharmonics

Another parameter worth investigating is the assumption all Fourier modes possess the same am-

plitude at x/c = 0.04. Instead, the initial values could be varied such that their amplitudes at

respective branch-I locations are the same. This is a reasonable assumption, and Schrauf et al.

performed this in their 1996 analysis for the VFW 614/ATTAS laminar flow glove: see their Fig.

19 [115].
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Figure 7.21: Maximum amplitudes in both s and y for selected Fourier modes against the branch-I
amplitude of the (2, 0) β = 0 TS wave, A0, (2,0) TS. Linear extrapolation for the (1, 1) and the
(2, 0) are indicated with dashed lines. The × marker indicates when the NPSE fails to converge its
α-convergence criterion less than 10−11 for all Fourier modes. The initial amplitudes that correlate
well with transition for the VFW 614/ATTAS laminar flow glove flight experiments are indicated
with a transparent cyan patch. Resonance of the (1,±1) is indicated with a dashed line to the
corresponding branch-I TS amplitude. Compare with Fig. 7.17 for the Nm = 23 solutions.

From Fig. 7.22, it is observed that with these branch-I initial amplitudes now equal, the over-

all dynamics of the system remain linear, barring a brief modulation in the (1,−1). The gradual

decrease in amplitude of the (1,−1) is associated with a slight decrease in the inviscid-streamline-

parallel component the phase speed cph,us (1,−1) and increase in the inviscid-streamline-orthogonal

component the phase speed |cph,ws (1,−1)| (not pictured). Shortly downstream of this locally min-

imum amplitude of the (1,−1), the mean-flow distortion (0, 0) amplitude grows strongly as the

most dominant Fourier mode is now three-dimensional, i.e., the (1, 1). In light of this minor non-

linearity, the flowfield does not indicate a significant deviation from linearity and the flow is ex-

pected to remain laminar provided these initial conditions. This completes the study and variation
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Figure 7.22: Amplitude distributions against x/c for the S207 α = −1.022◦, Λ = 20◦, top side for
NPSE TS subharmonic resonance, assigning the branch-I amplitudes to be equal for the unsteady
Fourier modes.

in initial amplitudes for TS subharmonic resonance for this angle of attack and sweep.

7.4.2 TS/SCF interaction

In addition to the secondary mechanism of TS subharmonic resonance, another possible mecha-

nism is the interaction of a Tollmien-Schlichting wave with a crossflow vortex. This secondary

mechanism is an example as primary resonance, in the language of Herbert, where a spanwise

infinite wave and an oblique pair interact with a streamwise stationary vortex [148]. This is in

contrast to the subharmonic resonance, or principal parametric resonance, of the previous section.

On a swept wing, the large growth associated with the β = 0 TS wave in conjunction with a finite

amplitude SCF vortex—even if the SCF is stable—nonlinearly generates a highly unstable set of

unsteady, oblique waves. Since the flow is three-dimensional, one of the oblique waves will be

more unstable than the other. In the words of Thorwald Herbert,

Modes of secondary instability and oblique TS waves are qualitatively different; they

are “two different kinds of animals.” [148]
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At a sufficient amplitude, the less unstable oblique wave adjusts its phase and phase speed to match

that of the other oblique wave. If the amplitude is high enough, they both begin to resonate together

downstream at similar amplitudes. If the resonance has enough inertia (i.e., amplitudes are high

enough), then the oblique pair’s amplitude will intersect that of the stationary crossflow wave,

after which all three will resonate together. Depending again on the amplitude, the resonance may

propel all three waves into that of the TS, potentially leading to a catastrophic breakdown of the

laminar boundary layer if the TS linear dynamics are not sufficiently stabilizing. See Fig. 10 in

Schrauf et al. for a demonstration of this multi-stage process in the literature [115].

The interaction of crossflow and Tollmien-Schlichting has been studied in other contexts be-

sides the work by Schrauf et al. Earlier, Reed applied Floquet theory neglecting the nonlinear

distortion of the crossflow vortices [153, 154]. The crossflow in the first analysis was unsteady,

while in the second, crossflow was steady; and in both, they were assumed to grow exponentially.

For the steady crossflow cases of low-speed experimental conditions and Mach 0.75 LFC configu-

rations, there was no observed crossflow/TS interaction in the leading-edge region. Bassom & Hall

[155] considered the interaction of stationary crossflow/TS over a rotating disk using an asymptotic

analysis. They found that the effect of the vortex on both linear and weakly nonlinear TS waves

could have either a stabilizing or destabilizing effect on the TS wave, depending on the TS wave’s

obliqueness. However, as those authors note, the trends are only applicable at asymptotically large

Reynolds number and lower Reynolds numbers must be addressed through numerical calculations.

The present analysis will assess the interaction of Tollmien-Schlichting and stationary cross-

flow by means of the Nonlinear Parabolized Stability Equations.

7.4.2.1 Initial conditions

Recall from Fig. 7.20 that when a given secondary boundary-layer instability dominates the transi-

tion process, the inclusion of higher harmonics and cross-modes has a small effect. From this and

following the methodology of Schrauf et al., we may consider the same simplification for com-

putational efficiency in the context of the TS/SCF interaction. For this case, a discretized Fourier

space of N = 1 and K = 1 is used [115]. Here, the unstable content is slightly different than that
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Figure 7.23: Sketch of discretized nk-Fourier space, where ω0 ≡ 2π × 3000 rad/s and β0 ≡
2π/12 rad/mm. Tollmien-Schlichting (TS), stationary crossflow (SCF), the oblique pair, and the
mean-flow distortion (MFD) are identified as the signature Fourier modes. The oblique pair is
nonlinearly generated. Fourier modes computed through complex-conjugate relations are shown
in black × markers. For this sketch, N = 1 and K = 1.

of the TS subharmonic resonance of the prior case. The linearly most amplified β = 0 TS on this

geometry is 3000 Hz, reaching an N ≈ 3.5, while the most linearly amplified SCF is λz = 12 mm,

reaching an N ≈ 1 near x/c = 0.09. Even though this SCF disturbance is not significantly am-

plified, TS may interact with it to nonlinearly generate a highly unstable oblique pair of waves

with the same frequency as the β = 0 TS and the same spanwise wavelength as SCF. That is, the

oblique pair is described by (3000 Hz,±12 mm). The sketch of the discretized Fourier space is

shown in Fig. 7.23.

7.4.2.2 Initial amplitude variation

Let us address the initial amplitude uncertainty problem again for this TS/SCF secondary mech-

anism. Initial amplitudes are varied in the same way as done for the TS subharmonic resonance

breakdown analysis previously. That is, the two LST-initialized Fourier modes (0, 1) and the (1, 0)

are assigned the same magnitude for maxy |u′(n,k)|/ue at x/c = 0.05 upstream of the TS branch-I

location. Both phases ϕ(1,0) and ϕ(0,1) are assigned to zero. A sample amplitude distribution is

shown in Fig. 7.24 at high initial amplitude to demonstrate the various stages of the TS/SCF break-
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Figure 7.24: Amplitude distributions against x/c for the S207 α = −1.022◦, Λ = 20◦ top side
case for a TS/SCF interaction of high initial amplitude. The amplitudes of the (1, 0) and the (0, 1)
at x/c = 0.05 are assigned to maxy |u′(n,k)|/ue = 10−2.75.

down process with the mean-flow distortion. The first stage is indicated by a stable SCF vortex as

the dominant Fourier mode and the mean-flow distortion (0, 0) is subsequently stabilized. For the

second stage, the (1, 0) TS becomes unstable and drives the growth of the (0, 0) after its amplitude

overtakes the SCF. Third: the MFD amplitude intersects that of the SCF, exchanging energy and

exciting growth with the three-dimensional Fourier modes: the (0, 1) and the (1,±1) oblique pair.

The fourth stage is marked by the SCF again becoming the dominant Fourier mode, overtaking

the TS wave and soon returning to its linear dynamics. The TS (1, 0) is highly stable in this re-

gion beyond its branch-II location, suppressing further growth of the oblique pair and avoiding a

catastrophic breakdown of the laminar flow.

It is worth investigating why the growth of the left oblique wave (1,−1) is larger than that of

the (1, 1), when comparatively for the TS subharmonic resonance, the right oblique wave was dom-

inant. In this configuration, there is a correlation of the phase speed components in the inviscid-

streamline-orthogonal direction cph,ws (n,k) between the (1, 0) and the (1,−1) matching sign, per-

haps easing the transfer of energy from the dominant (1, 0) TS to the (1,−1). See Fig. 7.25. This
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Figure 7.25: Phase-speed distributions of the 3000 Hz TS (1, 0) and the oblique pair (1,±1). Sub-
plot a) corresponds to the inviscid-streamline-parallel component of phase velocity, whereas b)
corresponds to the inviscid-streamline-orthogonal component, as defined in Eq. (7.3).

is a quantitative demonstrative of Herbert’s quote: that modes of secondary instability and oblique

TS waves are different kinds of animals.

Before varying the initial amplitudes similar to the TS subharmonic resonance analysis in the

previous section of §7.4.1.2, it is worth discussing another swept-wing transition experiment in

flight. In the 1990s, the Fokker 100 (F100) aircraft was equipped with a laminar flow glove on its

swept wings and a hybrid laminar-flow-control (HLFC) system that could apply suction to the near-

surface flowfield near the leading edge [156]. Test cases considered a range of Reynolds numbers

from 17 to 30 million, Mach numbers MQ∞ = 0.50 – 0.80, and sweep angles Λ = 17◦ – 24◦

[157, 158]. The reference velocity and chord direction are not specified, so one may presume

it is commensurate with the previous analysis performed by Schrauf on the VFW 614/ATTAS

flight experiments. That is, the Reynolds number is expressed as ReQ∞c sec Λ, defined in Eq. (7.8).

Converting to Reu∞v∞c , the Reynolds numbers vary from Reu∞v∞c ≈ 16.3 – 27.4 × 106—slightly

higher than the present analysis of the S207 at Reu∞v∞c = 13.2× 106. Schrauf found that in order

to match NPSE calculations of a TS/SCF interaction with one of the flight tests on the Fokker 100

flight experiment, a TS initial amplitude of 4 × 10−4 was required [159]. This is quite a stunning
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result, as the NPSE TS/SCF analysis over the VFW 614/ATTAS flight correlated the transition

location to TS initial amplitudes of nearly 400 times smaller: 1 – 5× 10−6 at the branch-I location.

To qualify this, Schrauf notes in the 2004 journal article that the suction system as part of the

F100’s HLFC system cannot be neglected, and the internal noise may be affecting TS differently

than that over the VFW 614/ATTAS wing without suction [158]. That being said, Schrauf’s NPSE

TS/SCF interaction over the F100 ought to be included in the present discussion to provide an

additional reference data point for TS initial amplitudes in flight.

Now having discussed the Fokker 100 analysis by Schrauf, let us vary the initial amplitudes

for the TS/SCF interaction over the present S207 configuration. Amplitudes of maxy |u′(n,k)|/ue at

x/c = 0.05 for the (0, 1) and the (1, 0) are varied from 10−6 to 10−2.5. The maximum amplitude

across s is then selected and plotted for each Fourier mode against the branch-I TS amplitude

A0, (1,0) TS as the abscissa of Fig. 7.26.

Note that the resonance of the (1,±1) and the SCF (0, 1) doesn’t occur until high branch-

I amplitudes A0, (1,0) TS. Even further, the nonlinear equations do not halt on convergence until

the highest amplitude considered at A0, (1,0) TS ≈ 9 × 10−4. For that case, the NPSE simulation

diverges at an x/c = 0.34. These initial amplitudes are orders of magnitude higher than that

observed in Schrauf’s correlation with transition on the VFW 614/ATTAS laminar flow glove flight

experiments. However, they are on the same order of magnitude of the HLFC flight experiments

of the Fokker 100 aircraft where transition was observed. Since there is no plan to implement a

suction system near the leading edge of the S207, it is unlikely TS initial amplitudes of 4 × 10−4

will be reached, but may be closer to that of the VFW 614/ATTAS flight experiment. With that in

mind, the similar conclusion is reached as before: the interaction of TS and SCF is not expected to

incur breakdown to turbulence for the top side of the S207 at cruise for α = −1.022◦ and Λ = 20◦.

7.5 Stability analysis at Λ = 20◦ for α = −2.252◦, bottom side

Continuing onward with the predictive analysis of the S207, it is judicious to consider another

extreme of the pressure distribution that can potentially destabilize Tollmien-Schlichting waves.

For the reader’s convenience, the pressure coefficient of Fig. 7.1 is shown again below. The bottom
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Figure 7.26: Maximum amplitudes in both s and y for selected Fourier modes against the branch-I
amplitude of the (1, 0) β = 0 3000 Hz TS wave, A0, (1,0) TS. Linear extrapolation for the (1, 0)
and the λz = 12 mm (0, 1) SCF are indicated with dashed lines. The vertical, teal, dashed line
indicates when SCF begins to deviate from its linear behavior. The × marker indicates when the
NPSE fails to converge its α-convergence criterion less than 10−11 for all Fourier modes. The
initial amplitudes that correlate well with transition for the VFW 614/ATTAS laminar flow glove
flight experiments are indicated with a transparent cyan patch [115]. The initial TS amplitude of a
Fokker 100 flight experiment is indicated with the orange patch [159].

side of the S207 at the lowest angle of attack −2.252◦ experiences a pressure gradient that is not

significantly favorable. This may imply that Tollmien-Schlichting amplification is large. On the

other hand, this suggests less crossflow amplification, as the inflectional crossflow velocity profile

vanishes at zero pressure gradient. With these in mind, it is worth considering again two possible

pathways to transition: a) TS subharmonic resonance and b) TS/SCF interaction.

To preface the stability analysis in this section, the computational domain on the bottom side of

a wing at negative angle is nuanced. Since the attachment line for this angle of attack α = −2.252◦

has a positive airfoil vertical coordinate Yc, “away” from the attachment line in terms of the bottom
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Figure 7.27: a) The S207 airfoil cross-section b) Pressure coefficient Cu∞v∞
p as a function of

x/c at sweep Λ = 0◦ for the fore element. The sonic limit indicates when the boundary-layer-
edge velocity is equal to the speed of sound. Angles of attack α = {–1.022◦, –1.520◦, –2.252◦}
are delineated with markers. This figure is identical to Fig. 7.1, depicted again for the reader’s
convenience.
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side of the airfoil is non-monotonic in x. That is to say, for the first several points rounding

the airfoil leading edge from the attachment line, the x coordinate decreases, achieves a global

minimum, then increases for the rest of the wing. Because of this non-monotonicity in x, the

stability computational domain is no longer expressed directly in x, but instead solely in s. In

order for results to be shown in x/c though, a spline-interpolation is performed onto the original x

grid from the dense, Nξ = 2000 DEKAF base-flow grid.

7.5.1 Linear analysis

In the absence of a transition location, as these calculations are predictive, one can select content

based on the maximum N -factors at a given x/c location. Since the value of the 3D-TS N -factor

envelope is monotonically increasing in x, a streamwise location x/c must be chosen upstream

of the back in order to analyze premature transition. Let us consider x/c = 0.40 for the bottom

side, as this is proportional to the x/c considered for the top side of α = −1.022◦ over their

respective domains. That is, 0.47/0.80 ≈ 0.40/0.70. The maximally amplified 3D TS at x/c =

0.40 corresponds to (1870 Hz, −30 mm)7 reaching an N ≈ 4.3. For all of the instabilities with

β = 0, the one reaching the maximum N -factor is 1870 Hz and is also the highest N -factor of

the β = 0 TS family at x/c = 0.40. Note that these TS N -factors are lower than the previous

configuration considered by ∆N ≈ 1 (for the top side at α = −1.022◦,Λ = 20◦.)

We expect this configuration to be more TS-oriented, as the pressure is by and large less fa-

vorable than the α = −1.022◦ top side’s distribution. To demonstrate this, consider the stationary

crossflow N -factors across the chord in Fig. 7.29. Traveling crossflow is omitted for brevity. As

observed, N -factors are quite small: 0.6 at the most for short wavelength content of λz = 5 mm

SCF and 0.25 for the long wavelength content of λz = 25 mm SCF. Again note that these SCF

N -factors are lower than the previous configuration considered by ∆N ≈ 0.4 (for the top side at

7The sign on the maximally amplified 3D TS’s spanwise wavenumber changes between stability analysis on the
top side and bottom side because of the chosen coordinate-system convention in DEKAF. For top sides of airfoils,
wall-normal y points mostly upward, so a right-handed z is out of the page. The converse is true for the bottom side:
wall-normal y is mostly downward, so z points into the page. This causes the sign of w additionally to alternate
between the base flows of each side, which is pleasant for computing derivatives directly at the attachment line, as
cusps are avoided.
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Figure 7.28: TS N -factors on the S207 α = −2.252◦, Λ = 20◦ for the bottom side. The most
amplified 3D TS at a selected x/c = 0.40 is (1870 Hz, −30 mm) achieving an N -factor of 4.3.
The most amplified β = 0 TS is 1870 Hz, with a max N -factor of 2.2. Other linear content queried
is shown in gray.

α = −1.022◦,Λ = 20◦.) Given the primary instability content of this flowfield to be associated

with Tollmien-Schlichting, let us first consider the TS subharmonic resonance secondary mecha-

nism as opposed to the TS/SCF interaction.

7.5.2 TS subharmonic resonance

There is an important takeaway from the analysis in the previous section on the S207 at Λ = 20◦

for α = −1.022◦ on the top side. Using a small discretized Fourier space can be used when

using NPSE to accurately and efficiently calculate the deviation from laminar flow for the TS

subharmonic resonance mechanism on the S207. This lesson learned will be applied for this con-

figuration immediately, as the larger Fourier space of Nm = 23 will be discarded for the reduced

Fourier space of Nm = 4 instead. The reduced Fourier space models only the MFD (0, 0), the

β = 0 TS wave (2, 0), and the subharmonic oblique pair (1,±1), as shown previously in Fig. 7.19.

For this configuration, the smallest angular frequency is chosen such that ω0 = 2π × 1870 Hz and

the smallest spanwise wavenumber multiple is β0 = 2π/30 mm such that the most amplified 3D

TS at x/c = 0.40 is the (1,−1) Fourier mode. This indicates then the (2, 0) is a high frequency TS
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Figure 7.29: SCF N -factors on the S207 α = −2.252◦, Λ = 20◦ for the bottom side. The most
amplified short wavelength SCF is λz = 5 mm, achieving an N -factor of 0.6. The most amplified
large wavelength SCF is λz = 25 mm, achieving an N -factor of 0.25. Other linear content queried
is shown in gray.

wave of 3740 Hz.

With smaller TS N -factors than the Λ = 20◦ for α = −1.022◦, one might expect that this con-

figuration experiences less nonlinear interaction for the TS subharmonic resonance. A calculation

of the (2, 0), (1,±1), and the (0, 0) provides the amplitudes shown in Fig. 7.30. Here, the initial

amplitude methodology is used by assigning the branch-I values of the (1,−1) and the (2, 0) to be

approximately the same. Since the (1, 1) Fourier mode is highly stabilized in this configuration,

its initial amplitude is supposed to equal that of the (1,−1). This specific case demonstrates the

dynamics at a realistic cruise level of amplitude, as informed by the flight-informed correlation

from Schrauf et al. [115]. The Fourier modes (1,−1) and (2, 0) stay linear while there is a slight

exchange of energy between the (1, 1) and the (0, 0) as they approach one another in amplitude at

x/c ≈ 0.20. This weak interaction is not enough to trigger resonance between the oblique pair at

these low amplitudes and the flow remains laminar.

The initial amplitudes of this system are varied again to quantify the uncertainty in the transition

location prediction. The results are shown in Fig. 7.31, varying the initial amplitudes of the (2, 0)
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Figure 7.30: Amplitude distributions against x/c for the S207 α = −2.252◦, Λ = 20◦ case,
assigning the branch-I amplitudes to be equal for (2, 0) and the (1,−1) at a realistic cruise level.

TS wave and the oblique subharmonic pair (1,±1) such that the (2, 0) and the (1,−1) achieve

approximately the same value at their linear branch-I locations. Initial amplitudes are increased

until the branch-I location is modulated due to nonlinear effects. Nonlinearities that far upstream

on the chord could instead imply different pathways to transition, such as transient growth [7].

With good judgment, this indicates the upper limit on the initial amplitude applicable for the NPSE

disturbance assumption.

Even at high initial amplitudes, there is not enough linear amplification to excite even the

(1,±1) resonance. Comparing this chart with Fig. 7.21, this suggests that if the linear ampli-

fication is less between distinct configurations, the same physical nonlinear processes (e.g., TS

subharmonic resonance) will experience less amplification as well. Intuition is now quantitatively

confirmed for these nonlinear calculations. This reasoning will be applied for additional configu-

rations when comparing linear amplification levels.

Directly applying this reasoning, with less TS and SCF amplification, the nonlinear interaction

of TS/SCF is expected to be less for this configuration than that of the Λ = 20◦, α = −1.022◦
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Figure 7.31: Maximum amplitudes in both s and y for selected Fourier modes against the branch-I
amplitude of the (2, 0) β = 0 TS wave, A0, (2,0) TS. Linear extrapolation for the (1, 1) and the
(2, 0) are indicated with dashed lines. The initial amplitudes that correlate well with transition for
the VFW 614/ATTAS laminar flow glove flight experiments are indicated with a transparent cyan
patch. Resonance of the (1,±1) is indicated with a dashed line to the corresponding branch-I TS
amplitude. Compare with Fig. 7.21 for the top side at α = −1.022◦.

case. And recall from Fig. 7.26, resonance from the oblique pair (1,±1) didn’t initiate breakdown

of laminar flow until initial amplitudes unrealistic for cruise levels. With these two observations

in mind, it is assumed that the TS/SCF interaction on this configuration will also exhibit a similar

trend and is omitted from further study.

To conclude the results of the previous sections to this point, the fore element of the S207 is

not expected to experience boundary-layer transition at cruise with sweep Λ = 20◦ on the top side

at α = −1.022◦ and on the bottom side at α = −2.252◦ due to either TS subharmonic resonance

or TS/SCF interaction.

7.6 Stability analysis at Λ = 20◦ for α = −2.252◦, top side

Let us now pivot the analysis from TS-oriented transition to SCF-oriented transition processes.

The pressure coefficient is shown again for the reader’s convenience in Fig. 7.32. Note that there
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is a strongly favorable pressure gradient over the wing for the angle of attack α = −2.252◦ on the

top side. Since favorable gradients are known to highly destabilize the crossflow (CF) mechanism

while stabilizing TS, it is expected the transition process will be dominated by the crossflow pri-

mary mechanism for this configuration. Analysis by Heston showed that the S207 at the mid-span

angle of attack α = −1.520◦ experienced appreciable SCF growth to reach an N -factor of 5 [160]

for Λ = 20◦. Increasing the favorable gradient is expected to further increase this amplification

level.

7.6.1 Linear analysis

For computational efficiency and accuracy with these stationary crossflow calculations, streamwise

clustering is employed, as described earlier in §4.2.2. A total number of streamwise nodes Ns =

350 is used. The mapping parameters of γmap = 0.50 and βmap = 15 are input to achieve very high

resolution at the neutral point while subsequently deresolving as the solution is marched down the

chord. The branch-I neutral point of the 8 mm SCF is at x/c ≈ 0.005. Again, x/c = 0.47 is

selected again as the x/c query location on the top side of the S207.

7.6.2 Nonlinear analysis of SCF saturation

Before discussing the nonlinear results of the present S207 analysis, let us first outline relevant

observations from stationary crossflow experimental validation in the past.

Reibert et al. analyzed the development of stationary crossflow vortices over a wing known as

the NLF(2)-0415 [26]. Discrete roughness elements were adhered to the wing along the span at

x/c = 0.023 with a height of k = 6µm, a diameter of 3.7 mm, and a center-to-center spacing of

12 mm to match the linearly most amplified SCF content. For the case of Rec = 2.4×106, Haynes

& Reed performed computations to match the measurements of Reibert et al. on the stationary

crossflow development, saturation, and further distortion of the flowfield approaching the transition

location. Examining Figure 5.29 from Haynes’ dissertation, the branch-I point of the SCF Fourier

mode (0, 1) appears to be near the initialization location of x/c = 0.05, where a root-mean-square

amplitude is given as 2.5 × 10−3 [116]. This amplitude is presumed to be nondimensional with
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Figure 7.32: a) The S207 airfoil cross-section b) Pressure coefficient Cu∞v∞
p as a function of

x/c at sweep Λ = 0◦ for the fore element. The sonic limit indicates when the boundary-layer-
edge velocity is equal to the speed of sound. Angles of attack α = {–1.022◦, –1.520◦, –2.252◦}
are delineated with markers. This figure is identical to Fig. 7.1, depicted again for the reader’s
convenience.
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Figure 7.33: Stationary crossflow N -factors on the S207 α = −2.252◦, Λ = 20◦ on the top side.

respect to the resultant freestream velocity Q∞. To convert to the convention primarily used in

this dissertation, a division by
√

2 must be done, undoing the root-mean-square to specify the

magnitude of the perturbation directly. Then for the validation of Haynes & Reed on the Rec =

2.4 × 106 case, the SCF initial amplitude is written as maxy |u′(0,1)|/Q∞ = 2.5/
√

2 × 10−3 ≈

1.767× 10−3.

Note however that the S207 in cruise will surely not have discrete roughness elements placed

along the span. Additionally, freestream disturbances in flight may presumably have lower vor-

ticity than that of a quiet wind tunnel. If one assumes that the boundary-layer receptivity is com-

mensurate between the S207 and the NLF(2)-0415 despite the variation in Mach number, angle

of attack, Reynolds number, sweep, and pressure distribution, then the 2.5/
√

2 × 10−3 initial am-

plitude value of Haynes & Reed serves as an upper bound for the initial amplitude on the S207.

Discrete roughness elements provide higher initial amplitudes to SCF than natural roughness, pro-

vided that the natural roughness is extremely small and the wing has been polished ad nauseum.

For instance, Reibert et al. note that submicron irregularities ultimately produce crossflow vortices

on the NLF(2)-0415 wing at Rec = 3.0 × 106, α = −4◦, and Λ = 45◦ [26]. During opera-

tional maintenance of the S207 on an aircraft, roughness near the leading edge should be kept to
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Figure 7.34: SCF amplitude distributions against x/c for the top side of the S207 α = −2.252◦,
Λ = 20◦ case. The initial amplitude assigned for the (0, 1) is maxy |u′(0,1)|/Q∞ ≈ 2.2× 10−3 at its
branch-I location.

an absolute minimum. If the surface roughness conditions have any appreciable peaks and val-

leys, crossflow will be excited, and with significant amplification as seen in this case for N > 5,

transition is likely expected.

Let us now consider an example of stationary crossflow saturation over the S207 at cruise

conditions. Suppose an initial amplitude of maxy |u′(0,1)|/Q∞ ≈ 2.2 × 10−3 for the fundamental

stationary crossflow harmonic at its branch-I location of x/c ≈ 0.006. Figure 7.34 demonstrates

the amplitude distribution for the fundamental, the mean-flow distortion, and the higher super-

harmonics over the S207 in this configuration. The highest superharmonic included is the (0, 8)

for this present simulation to mimic the methodology of Haynes & Reed. The fundamental (0, 1)

appears to saturate near 8% in amplitude, reaching a global maximum of 10% soon after.

Varying the initial amplitude now, Fig. 7.35 shows the maximum amplitude obtained by each

disturbance over the streamwise domain charted against the branch-I amplitude of the (0, 1), de-

noted as A0, (0,1) SCF. For reference, the initial amplitude found by Haynes & Reed for their exper-

imental validation case with Reibert et al. is shown as a vertical dashed line. The linear dynamics
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of the fundamental (0, 1) are indicated in the dashed blue line, which indicates that saturation be-

gins to occur near amplitudes of maxs,y |u′(0,1)|/Q∞ = 5%, corresponding to a branch-I, initial

amplitude of maxy |u′(0,1)|/Q∞ = 7× 10−4.

Figure 7.35: Maximum amplitudes in both s and y for a stationary crossflow simulation against the
branch-I amplitude of the (0, 1) fundamental SCF, A0, (0,1) SCF. Linear extrapolation for the (0, 1)
is indicated with the blue dashed line. The SCF initial amplitude of Haynes & Reed is indicated
by a vertical, dashed line. Superharmonics are included up to (0, 8) inclusive.

If the initial amplitude of Haynes & Reed, i.e., maxy |u′(0,1)|/Q∞ = 2.5/
√

2 × 10−3, is pre-

sumed for the current S207 case, then from interpolating on Fig. 7.35, SCF achieves a maximum

amplitude of maxs,y |u′(0,1)|/Q∞ = 0.10, whereas the mean-flow distortion reaches a maximum of

maxs,y |u′(0,0)|/Q∞ = 0.02. This may be enough to induce the growth of secondary instabilities,

as Reibert et al. observed appreciably sized vortices at an amplitude of |u′(0,1)|/Q∞ = 0.12/
√

2 ≈

0.085 at x/c ≈ 0.40 with transition soon thereafter at x/c ≈ 0.47 [14, 26].

The assumptions relating initial amplitudes is dubious, as they are entirely dependent on the

unknown surface roughness conditions on the S207 in cruise. Flying with a SCFN -factor of higher

than 5 is dangerous for this reason, considering additionally that this is only the on-design angle
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of attack along the twisted span. Off-design angles of attack with pilot tolerance may exacerbate

and push these growth rates even higher than reported here.8 Engineering judgment then suggests

decrementing the selected sweep angle. For simplicity, the case Λ = 15◦ can be considered in

brevity. This will be considered after a brief section concerning a reduced set of Fourier modes.

7.6.2.1 Reduced set of Fourier modes for SCF saturation

In the spirit of computational efficiency, that is, to assess what fidelity is required to achieve the

same quantitative conclusions, the number of Fourier modes for these simulations is reduced. In-

stead of a simulation with superharmonics up to the (0, 8) inclusive, now suppose only the funda-

mental and mean-flow distortion are present. Following the nomenclature as before, Nm = 2 for

this case, while Nm,full = 3 when accounting for the complex conjugate (0,−1).

The initial amplitude of the fundamental is varied identically as before and the resulting max-

imum streamwise amplitudes are charted against the branch-I (0, 1) amplitude in Fig. 7.36. The

distribution is qualitatively identical as before for the more finely resolved case of Fig. 7.35. Satura-

tion is predicted at essentially the same initial amplitude. Only at very high initial amplitudes where

the superharmonics have appreciable size do the two figures show slight discrepancy. For instance,

the fundamental’s maximum amplitude maxs,y |u′(0,1)|/Q∞ at the right axis of A0,(0,1) SCF = 10−2

reaches slightly above 20%. For the more finely resolved case shown previously, the (0, 1) reaches

a maximum amplitude just slightly under 20%, stabilized by the presence of additional superhar-

monics.

By comparing these two figures, it is clear that with the goal of the nonlinear analysis to identify

when saturation occurs and quantify the corresponding amplitudes of the fundamental and mean-

flow distortion, then only a reduced set of Fourier modes is required.

For the same angle of attack and side, the sweep of Λ = 15◦ is now considered.

8An example of pilot tolerance on the angle of attack for a boundary-layer transition flight experiment is ±0.1◦

while near α = −7◦ [161].
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Figure 7.36: Maximum amplitudes in both s and y for a stationary crossflow simulation against
the branch-I amplitude of the (0, 1) fundamental SCF, A0, (0,1) SCF. A reduced set of Fourier modes
is used, only simulating the fundamental and the mean-flow distortion. Linear extrapolation for
the (0, 1) is indicated with the blue dashed line. The SCF initial amplitude of Haynes & Reed is
indicated by a vertical, dashed line. Compare to the more finely resolved case of Nm = 9 shown
in Fig. 7.35.

7.7 Stability analysis at Λ = 15◦ for α = −2.252◦, top side

Following the same methodology as the previous sections, the linear N -factors (based on the Chu

norm) are presented for the stationary crossflow disturbances in Fig. 7.37. The amplification levels

only reach a maximum of N = 0.6 for the λz = 7 mm wavelength. Comparing these results with

the higher sweep of Λ = 20◦ in Fig. 7.33, there is a drastic stabilization of the mechanism. With no

appreciable linear amplification, a further SCF nonlinear study is omitted for this angle of attack

and side of the wing.

The last configuration needed to assess SCF-dominated transition is α = −1.022◦ on the bot-

tom side of the wing.
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Figure 7.37: Stationary crossflow N -factors on the S207 α = −2.252◦, Λ = 15◦ on the top side.

7.8 Stability analysis at Λ = 15◦ for α = −1.022◦, bottom side

For the final considered configuration of α = −1.022◦ on the bottom side at Λ = 15◦, the linearN -

factors (based on the Chu norm) are presented in Fig. 7.38. The maximum N -factor here remains

low: 1.2 for a wavelength of λz = 10 mm. Again, with no appreciable linear amplification, further

nonlinear analyses are omitted.

7.9 Conclusions

A thorough assessment of boundary-layer stability has been presented for the S207 wing. The

objective of the analysis was to answer the overarching question: how much sweep can be ap-

plied to this wing while maintaining the benefits of the SNLF design? Various transition path-

ways were considered over the vulnerable configurations of angle of attack along the span and

sweep—considered in a Pareto-frontier fashion. Specifically, weakly favorable pressure gradients

exist on a) the top side of the wing at α = −1.022◦ and b) the bottom side at α = −2.252◦. These

two configurations prompted an analysis of TS-dominated transition pathways at sweep angles

Λ = 15◦ and 20◦. On the other hand, stronger favorable pressure gradients exist for the S207 on

a) the top side at α = −2.252◦ and b) the bottom side at α = −1.022◦. At an appreciable sweep,
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Figure 7.38: Stationary crossflow N -factors on the S207 α = −1.022◦, Λ = 15◦ on the bottom
side.

these configurations prompted analyses of SCF-dominated transition pathways. The individual

conclusion of each analysis is enumerated below.

1. For 15◦ sweep at the angle of attack of −1.022◦ on the top side, a nonlinear simulation

including the interaction possibilities of many different primary and secondary instability

mechanisms did not demonstrate any breakdown of laminarity—even at very high initial

amplitudes for the system.

2. The sweep was then increased to 20◦ for the same angle of attack and side of the wing.

The secondary instability mechanism of TS subharmonic resonance only indicated a break-

down of laminarity at very high initial amplitudes for the system: TS branch-I initial ampli-

tudes of 9 × 10−4. For reference, the initial amplitudes of TS found by Schrauf et al. when

computing TS subharmonic resonance over a similar laminar-flow glove were 1 × 10−6 to

5 × 10−6 [115]. These values are nearly 200 times smaller than the aforementioned initial

amplitude that would trigger breakdown over the S207 via TS subharmonic resonance. The

Fokker 100 flight experiments as analyzed by Schrauf indicated a TS initial amplitude of

4 × 10−4 at branch-I, which is on the same order of magnitude of the present S207 values
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that would predict laminar breakdown [159]. However, since the flight experiment featured

a hybrid laminar-flow-control (HLFC) system applying suction, it must not be neglected that

the HLFC’s internal sound production affects TS receptivity and growth. Since the S207 is

not planned to be equipped with suction near the leading edge, one could assume these high

initial amplitudes will not be experienced in cruise.

3. An alternate transition pathway of TS/SCF interaction was considered for the same configu-

ration. The conclusion was identical: only at high TS branch-I initial amplitudes of 9×10−4

did the nonlinear interaction lead to laminar breakdown.

4. Holding sweep constant at 20◦, the second configuration sensitive to TS growth was consid-

ered next: the bottom side of the wing at α = −2.252◦. Linear amplification levels of both

TS and SCF were found to be lower than those of the top side of the wing at α = −1.022◦.

Subsequent nonlinear analysis of the TS subharmonic resonance demonstrated that there was

no significant interaction leading to laminar breakdown for all physically appropriate initial

amplitudes. TS/SCF was presumed to follow the same trend, and as such, its nonlinear anal-

ysis was omitted. This concluded the analysis of TS-dominated transition pathways for the

S207.

5. Pivoting to the SCF-dominated transition pathway, the configuration of α = −2.252◦ on the

top side of the wing was considered next at Λ = 20◦. Saturation of stationary crossflow was

computed to occur when the fundamental’s branch-I initial amplitude was 7 × 10−4. This

value is more than two times smaller than a reference initial amplitude corresponding to the

SCF validation study by Haynes & Reed [25].

6. With appreciable SCF growth present at 20◦ sweep, the next lower sweep angle was subse-

quently analyzed: Λ = 15◦. For the configuration of α = −2.252◦ on the top side of the

wing, linear amplification levels of stationary crossflow did not exceed N = 1. As such,

nonlinear analysis was omitted as laminar flow was presumed.
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7. Considering then the second configuration with favorable pressure gradients, the angle of

attack α = −1.022◦ on the bottom side of the wing at Λ = 15◦ was analyzed. Linear

amplification levels were similarly low: barely exceeding an N = 1 over the extent of the

chord. Further nonlinear analysis was not performed as laminar flow was presumed.

With these in mind, let us return to the question of how much sweep can be applied while

retaining SNLF benefits. It is critical to first frame these analyses that they concern only the

on-design cruise conditions for the wing across its span. Then, even with very mild linear and

nonlinear amplification observed at a sweep of Λ = 15◦ along both sides of the wing, it would be

unwise to recommend that angle directly. Further off-design nonlinear analysis of the S207 should

be performed which considers appreciable variation in angle of attack, as well as variation in the

Reynolds number and Mach number. Before then, a definitive answer cannot be provided.

There are several other important take-aways concerning the nonlinear simulations over the

S207.

1. When using NPSE to estimate the location of breakdown through TS subharmonic resonance

or TS/SCF interaction through an initial-amplitude uncertainty study, only a reduced set of

Fourier modes is required.

2. The nonlinear amplification of a TS subharmonic resonance was lesser when the correspond-

ing linear N -factors of the oblique pair was lesser.

3. In the same manner that Schrauf et al. could not conclude whether or not an TS/SCF in-

teraction or TS subharmonic resonance led to transition over the VFW 614/ATTAS laminar

flow glove, the present analysis provides the same conclusion for the flow over the S207 in

one of its configurations [115]. That is, on the top side of the wing at α = −1.022◦ and

Λ = 20◦, breakdown of laminarity for both pathways occurred when the TS initial ampli-

tude at branch-I was 9 × 10−4. The x/c location of high amplitude and subsequent laminar

breakdown was nearly the same between them: 34%.
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8. CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

Analysis of laminar-to-turbulent transition in aerodynamics was presented, specifically focusing on

various methodologies used to computationally simulate the physical phenomena relevant to tran-

sition. A procedure was outlined for the conversion of a wing’s pressure coefficient into boundary-

layer parameters suitable for the open-source code DEKAF (co-developed by the author.) Contri-

butions by the author to DEKAF were outlined, not only related to swept-wing analysis, but also

to modeling a wide array of high-enthalpy effects. The stability theory and computational method-

ology as implemented in the in-house stability code, EPIC, was delineated for Linear Stability

Theory (LST), and both the Linear and Nonlinear Parabolized Stability Equations (LPSE/NPSE).

Contributions of the author were detailed, ranging from the development of DERIVE, to improving

various aspects of PSE, to increasing EPIC’s longevity and reliability.

8.1.1 S207

Boundary-layer stability analysis was performed over the swept, slotted, natural-laminar-flow

(SNLF) S207 at transonic speeds in cruise, on-design conditions. The overarching question was

how much sweep can be applied to this wing while maintaining the benefits of the SNLF design?

Various transition pathways were considered over the vulnerable configurations of angle of attack

along the span and sweep. Tollmien-Schlichting (TS) subharmonic resonance and TS/stationary-

crossflow (SCF) interaction were assessed for configurations susceptible to TS-dominated transi-

tion. At a sweep Λ = 20◦ on the top side of the wing at the angle of attack α = −1.022◦, very high

initial amplitudes of TS were necessary in order for the Nonlinear Parabolized Stability Equations

(NPSE) to predict breakdown of laminarity—9× 10−4. This initial amplitude is nearly 200 times

that observed in the successful flight validation analysis by Schrauf et al. at a similar Reynolds

number on the VFW 614/ATTAS laminar flow glove [115]. The Fokker 100 flight experiments as

analyzed by Schrauf indicated a TS initial amplitude of 4× 10−4 at branch-I, which is on the same
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order of magnitude of the present S207 values that would predict laminar breakdown [159]. How-

ever, since the flight experiment featured a hybrid laminar-flow-control (HLFC) system applying

suction, it must not be neglected that the HLFC’s internal sound production affects TS receptivity

and growth. Since the S207 is not planned to be equipped with suction near the leading edge, one

could assume these high initial amplitudes will not be experienced in cruise. The other configu-

ration sensitive to TS growth—α = −2.252◦ on the bottom side of the wing—did not experience

laminar breakdown for the same range of initial TS amplitudes. Stationary-crossflow saturation

was computed over a configuration sensitive to the crossflow instability mechanism—Λ = 20◦ for

α = −2.252◦ on the top side of the wing. Saturation occurred for an SCF initial amplitude twice as

small as that observed by Haynes & Reed for a swept wing over which strong experimental valida-

tion was achieved [25]. The sweep was reduced to Λ = 15◦, and linear amplification factors were

negligibly small—N < 1.5. The other configuration sensitive to SCF growth was then considered:

α = −1.022◦ on the bottom side of the wing. Similarly, linear amplifications levels were low for

stationary crossflow: N < 1.5.

Overall, very mild linear and nonlinear amplification was observed at Λ = 15◦. At Λ =

20◦, significant crossflow amplification and saturation was quantified while TS-dominant transition

pathways did not indicate laminar breakdown unless high initial amplitudes were applied.

Additionally, when using NPSE to estimate the location of laminar breakdown through TS

subharmonic resonance or TS/SCF interaction through an initial-amplitude uncertainty study, only

a reduced set of Fourier modes is required. A curious trend relating TS/SCF and TS subharmonic

resonance was observed for flow over the S207. In the same manner that Schrauf et al. could not

conclude whether or not an TS/SCF interaction or TS subharmonic resonance led to transition over

the VFW 614/ATTAS laminar flow glove, the present analysis provides the same conclusion for

the flow over the S207 in one of its configurations [115]. That is, on the top side of the wing at

α = −1.022◦ and Λ = 20◦, breakdown of laminarity for both pathways occurred when the TS

initial amplitude at branch-I was 9 × 10−4. The x/c location of high amplitude and subsequent

laminar breakdown was nearly the same between them: 34%.
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8.1.2 X207.LS

As part of a risk-reduction experiment for a NASA University Leadership Initiative, boundary-

layer disturbances on the X207.LS swept wing were quantified across a wide range of geometric

configurations. This formed a preliminary study, communicating to the experimentalists the rele-

vant ranges of amplified content. Linear Parabolized Stability Equations (LPSE) indicated appre-

ciable stationary crossflow growth at the angle of attack α = −5.5◦ and sweep Λ = 35◦, reaching

an N = 4. Significant Tollmien-Schlichting (TS) amplification was quantified over the wing at

angle of attack α = 2.25◦. Experimental stability measurements of the X207.LS in the Klebanoff-

Saric Wind Tunnel (KSWT) have been analyzed. Results are compared against simulations using

the Nonlinear Parabolized Stability Equations (NPSE). Coordinate systems have been depicted,

showing the necessary transformations to align the computational frame with the experimental

frame to directly compare with the hot-wire anemometry data. Naphthalene flow visualization and

hot-wire anemometry data of flow over the wing have been presented. A heuristic approach has

been used to assign initial amplitudes of the fundamental stationary crossflow disturbance (0, 1)

and its superharmonic (0, 2), which qualitatively recovers the measured flowfield using PSE. There

is a good agreement between the simulations and the measured hot-wire velocity contours, match-

ing the streamwise vortices formed in both magnitude and phase at several chordwise stations of

the wing. Discrepancies between simulation and experiment exist from several sources: a) the

laminar boundary layer was generated with the inviscid pressure coefficient from MSES as op-

posed to the experimentally measured pressure coefficient along the wing; b) the values of the

initial amplitudes for the (0, 1) and (0, 2) differ slightly from those observed in experiment; and c)

the error incurred by asserting the mean-flow-distortion’s α(0,0) = 0 is currently unknown for this

simulation. Nonlinearities present in this flowfield are quite weak, as the linear superposition of

the fundamental and the superharmonic qualitatively resembles that of the full NPSE simulation.
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8.1.3 Mean-flow distortion

Various researchers over the past few decades have observed some numerical difficulty in NPSE

when incorporating the mean-flow distortion (MFD) Fourier mode originating from its freestream

behavior. A mathematical analysis on the parallel, freestream Orr-Sommerfeld equation for a dis-

turbance with (ω, β) = (0, 0) was provided, demonstrating the curious phenomenon of strong

divergence of the v̂ solution profile. The determinant of the governing matrix K crossed zero

whenever v̂ became large in the freestream. A comparison between the homogeneous and inho-

mogeneous boundary condition showed no change to the qualitative behavior, as expected: bound-

ary conditions do not change the determinant of the matrix. The numerical behavior of a near-

incompressible, mean-flow distortion Fourier mode from a full NPSE simulation was compared

against the solution of the freestream Orr-Sommerfeld equation. Good agreement was observed,

justifying then that the dynamics observed in the Orr-Sommerfeld formulation will be present in

the NPSE simulations at low MFD amplitudes. Airiau’s suggestion to reduce the domain height

to about two boundary-layer thicknesses, i.e., L = 2δ [24], was assessed analytically using the

the freestream Orr-Sommerfeld solution. The conclusion was qualitatively the same as Airiau’s:

the numerical divergence of v̂ ceased for small values of the disturbance’s wavenumber α. A

brief analysis of the incompressible continuity equation identified strong growth out of the MFD’s

∂û/∂s if the product C1αi is large. Two proposals were suggested to limit the value of αi in an

NPSE simulation. By directly computing the integration constant C1 and finding the first positive

zero of det(K), reasonable upper and lower bounds can be placed on the mean-flow distortion’s

αi such that streamwise change of û is limited and remains small by the PSE approximation.

8.2 Future Considerations

8.2.1 S207

There are additional considerations for the nonlinear boundary-layer stability analyses over the

S207 wing.

1. Assess off-design conditions at sweep Λ = 15◦. Variation in the angle of attack beyond
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the limits of wing’s twist, as well as variations in freestream Mach and Reynolds can be

considered. A Pareto-frontier approach is suggested, considering only the most vulnerable

configurations to transition.

2. Reassess some point nonlinear simulations with nonzero α(0,0).

8.2.2 X207.LS

Work comparing simulations to experimental measurements by Feliciano may continue with flows

over the X207.LS wing [127].

1. Compute boundary-layer stability analysis directly using the measured pressure coefficient

as boundary conditions to the boundary-layer solver. This mimics the methodology as per-

formed by Haynes & Reed [25].

2. Compare spectral mode shapes directly between computation and experiment by performing

Fourier transforms on the hot-wire measured velocities.

3. Use the spectral data to directly inform the initial amplitudes of NPSE as an alternative to

the heuristic approach.

4. Reassess nonlinear computations with nonzero α(0,0) made possible by proposed limiters on

the mean-flow distortion in §8.2.3.

8.2.3 Mean-flow distortion

There are multiple next steps to consider concerning the mathematics of the mean-flow distortion

as presented in Chapter 5.

1. Implement the suggested proposals of limiting the values for α(0,0) of the mean-flow dis-

tortion in EPIC. Assess the effect on various nonlinear simulations of different instability

mechanisms in various speed regimes. Compare results against solutions that successfully

applied Airiau’s “cut-off” procedure, as well as solutions where α(0,0) = 0 per Hein’s sug-

gestion [101].

211



2. Develop a compressible form for the integration constant C1 from Eq. (5.20) such that the

bounds on αi may be more physically relevant at higher speeds. This work may follow the

analytical assumptions of Li & Malik [108].

3. Find a series solution to the freestream Orr-Sommerfeld (ω, β) = (0, 0) problem when wall-

normal velocity v is linear in y.

8.2.4 General

There are several potential developments to improve the nonlinear PSE methodology.

1. For high-speed compressible flows, develop and implement a better way to compute the

perturbations of thermal/transport properties (e.g., µ′ and κ′). An Nth-order Taylor series is

can become computationally inefficient, as the governing disturbance equations grow in size

inordinately. Securing this functionality will increase both efficiency and accuracy of the

method, which will be needed as more physically demanding simulations are performed at

higher speeds.

2. Many PSE computationalists report that by ‘adding the mean-flow distortion to the left-

hand side’, NPSE may now march farther into nonlinear regimes without premature diverge

[162, 163]. As far as the author is aware, this has only been implemented in codes where the

right-hand side f(n,k) is evaluated in physical space, as opposed to EPIC where its f(n,k) is

evaluated in Fourier space. It is then suggested to implement in EPIC a modification of the

harmonic balancing routines to accomplish this feature.

3. For large-scale nonlinear problems, NPSE may need to be run on a supercomputer with

OpenMP and MPI implemented. An example of such a problem is computing the transi-

tional heating of a crossflow vortex in a quiet wind tunnel, where stationary crossflow and

traveling crossflow are present simultaneously: see the work of Moyes [50]. For compu-

tational performance, the right-hand-side evaluation of f(n,k) may need to be performed in

physical space as opposed to Fourier space, as performed by Hein seamlessly [101].
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Lastly, the CFD 2030 vision roadmap is an excellent overview demonstrating directions of

progress for aerosciences over the next decade [164]. In particular, uncertainty analysis as dis-

cussed by Roache could be applied to all present stability methodologies in EPIC to bolster its

usefulness to the designer [165].
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APPENDIX A

LPSE EQUATIONS

The Linear Parabolized Stability Equations are presented for a calorically perfect gas in an orthog-

onal, curvilinear coordinate system. These are derived from the governing, instantaneous equations

of Eqs. (2.14). There are several important facets to note:

1. The metric h2 is assumed to be unity and therefore is dropped from the equations.

2. For readability, Stokes’ hypothesis is not substituted in these equations, i.e., the second

coefficient of viscosity of the base flow λv appears in the momentum and energy equations.

3. Since all quantities are nondimensional, cp = 1, so its appearance is subsequently dropped

from the energy equation.

4. The imaginary unit whose square is −1 is denoted as i.

5. The presence of slowly varying viscous terms are multiplied by the coefficient ΩRe. These

terms are identified in DERIVE as those possessing the coefficient εs/Re. Many researchers

neglect these terms, i.e., ΩRe = 0; however, some retain them by assigning ΩRe = 1. The

switch is left general in the equations to easily transform between the two assertions.

6. The stability equations are presented such that the right-hand side has been subtracted over

onto the left-hand side following the original orientation as written in Eqs. (2.14).

7. To save printing space, spatial derivatives are expressed through subscripts. That is, qs ≡

∂q/∂s, q̂s ≡ ∂q̂/∂s, and αs ≡ dα/ds. This holds analogously for subscripts y, sy, and

yy. There are also derivatives with respect to the base-flow temperature T on the transport

variables. For example, µT ≡ dµ/dT or µTT ≡ d2µ/dT
2
. If a variable already has a

subscript, the spatial differentiation is separated by a comma with respect to the original

variable. For example, h1,y = ∂h1/∂y.
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8. These equations can be extended to NPSE use as well. To merge the two nomenclatures:

(a) Subscripts would be applied to the shape-function components q̂(n,k) and the stream-

wise wavenumbers α(n,k).

(b) Wavenumbers ω and β are effective wavenumbers. That is, ω = nω0 and β = kβ0 for

a given (n, k)-disturbance.

(c) The coefficient on the pressure shape-function streamwise gradient Ωp depends on n of

the disturbance: see Eq. (7.2). Recall stationary Fourier modes must have its gradient

∂p̂(n,k)/∂s vanish entirely.

The order of the equations are s-, y-, and z-momentum, energy (the enthalpy formulation), and

mass continuity. These equations have been generated with DERIVE which have then been as-

sembled by both Jay Patel and the author into this document and Patel’s thesis [82].

Note the LST equations with the parallel-flow assumption have been omitted from these appen-

dices for brevity. They can be recovered from these equations, however. Assign all s-derivatives

to zero, and set v = 0. To recover the LST equations without the parallel-flow assumption as some

PSE codes have modeled, only eliminate the s-derivatives of the shape-function components—or

following the nomenclature from before, the eigenfunction components.
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A.1 Momentum conservation in the s-direction
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h1

−4 i ΩRe αµ ûs
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Reh2

1

+
ρ us û
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Reh3
1

− 2 i ΩRe αs µ û
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A.2 Momentum conservation in the y-direction
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Reh1

− ΩRe µ ûs y
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A.3 Momentum conservation in the z-direction
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Reh2
3

+
h1,y h3,y µ ŵ
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A.4 Conservation of energy (enthalpy formulation)
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A.5 Mass continuity
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APPENDIX B

NPSE FORCING VECTOR

The forcing vector for the Nonlinear Parabolized Stability Equations (NPSE) are presented for a

calorically perfect gas in an orthogonal, curvilinear coordinate system. These are derived from the

governing, instantaneous equations of Eqs. (2.14), building off of the same notation and detail in

the previous appendix A. There are additional notes to be made for NPSE for this forcing vector.

Presently in EPIC, the forcing vector f(n,k) is expressed directly in the spectral domain. For a com-

pressible, calorically perfect gas with the state vector q = [u, v, w, T, ρ], there are both quadratic

fquad
(n,k) and cubic f cubic

(n,k) nonlinear terms present. f(n,k) may be written then as

f(n,k) = fquad
(n,k) + f cubic

(n,k) ,

=
∑
m1

∑
m2︸ ︷︷ ︸

n=n1+n2
k=k1+k2

F quad
(m1,m2) +

∑
m1

∑
m2

∑
m3︸ ︷︷ ︸

n=n1+n2+n3
k=k1+k2+k3

F cubic
(m1,m2,m3) (B.1)

where the integers m1, m2, and m3 are indices over the disturbances in the NPSE simulation.

The m1-indexed disturbance corresponds to the integer tuple (n1, k1), and likewise for higher mi,

i ∈ [2, 3]. The expressions for the summands F quad
(m1,m2) and F cubic

(m1,m2,m3) are to follow. To clarify

this above equation, recall from §4.3.1.3 that only tuples of disturbances force another disturbance

provided the wavenumbers and frequencies add up through these second- and third-order rules.

Let us expand on the example demonstrated previously in that section. If N = 1 and K = 1 in the
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NPSE ansatz, then the second-order tuples that force the (1, 1) are enumerated as

(1, 1) = (0, 1) + (1, 0),

= (1, 0) + (0, 1),

= (0, 0) + (1, 1),

= (1, 1)︸ ︷︷ ︸
m1

+ (0, 0)︸ ︷︷ ︸
m2

(B.2)

There is an important property here, that the tuples always appear a second time with their order

permuted. A similar relationship holds for the cubic terms: all permutations of the list of third-

order tuples satisfy harmonic balancing, because addition over integers is commutative.

Lastly, the summand F quad
(m1,m2) contains the product of integrated amplitudes W(n1,k1)W(n2,k2)

on each constitutive term. This may be factored out for readability as well as a reduction of FLOPS

computationally. The same pattern holds for the cubic summand F cubic
(m1,m2,m3). These products can

be abbreviated asW(m1)W(m2) andW(m1)W(m2)W(m3), respectively.

Below, components in the terms will be further abbreviated such that indices of (mi) will be

reduced to (i), i ∈ [1, 3] to save horizontal space. All shape-function components and streamwise

wavenumbers will be denoted to a specific disturbance index via a superscript of (i). Examples are

û(1) (corresponding to m1) and α(2) (corresponding to m2). Integer multiples such as k(1) or n(2)

are synonymous with k1 and n2, respectively.
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B.1 Momentum conservation in the s-direction: quadratic
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(2)
s

Reh1 h3

−h3,s ρ ŵ
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(2)

Reh1 h3

−2 i ΩRe T̂
(1) α(2) h3,s µT û
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B.2 Momentum conservation in the y-direction: quadratic
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B.3 Momentum conservation in the z-direction: quadratic
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(2)
y

Reh3

− T̂
(1) h1,y µT ŵ
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(2)

Reh2
1

+
2 T̂ (1)

(
β0 k

(2)
)2
µT ŵ
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B.4 Conservation of energy (enthalpy formulation): quadratic
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(1) ŵ(2)

Reh2
3

+
2 Ec T̂ (1) h3,y µT wy ŵ
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(1)
s v̂(2)

Reh2
1

− 2 Ec ΩRe h3,y λv û
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(1) û
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(2)

Reh1

− 4 i Ec ΩRe T̂
(1) α(2) µT us û
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B.5 Mass continuity: quadratic
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h1

+
iα(1) ρ̂(1) û(2)
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B.6 Momentum conservation in the s-direction: cubic

Only convective terms on the left-hand side produce cubic terms. The pressure gradient and the

viscous stress tensor do not possess third-order products in the conservation of momentum.
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B.7 Momentum conservation in the y-direction: cubic
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B.8 Momentum conservation in the z-direction: cubic

−F cubic
(m1,m2,m3)

W(1)W(2)W(3)
=

ρ̂(1) v̂(2) ŵ(3)
y +

ρ̂(1) û(2) ŵ
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B.9 Conservation of energy (enthalpy formulation): cubic
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(3)
y

Reh3

− 2 i Ec T̂ (1) β0 k
(2) µT v̂

(2) ŵ
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(2) û(3)

Reh2
1

−2 i Ec ΩRe T̂
(1) α(3) h3,s λvT û
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B.10 Mass continuity: cubic

There are no terms to generate any third-order products in mass continuity.

F cubic
(m1,m2,m3)

W(1)W(2)W(3)
= 0
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