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ABSTRACT 

 

In unconventional shale formations where the horizontal bedding planes and 

laminations prevalently exist, the height propagation of a vertical hydraulic fracture is not 

only affected by the conventional factors such as the treating pressure, in-situ stress, 

fracture toughness, Young’s modulus, Poisson ratio, fracturing fluid density and viscosity, 

but can also be strongly affected by the horizontal bedding interfaces. Quantifying the 

hydraulic fracture propagation path and fracture geometries becomes much challenging 

with the existence of close-spacing bedding interfaces in the laminated formations. 

In this work, a comprehensive and non-intrusive hydraulic fracture height growth 

model is developed considering the combined effect of the formation rock properties and 

the horizontal weak interfaces. The impact of the rock properties on the fracture height 

containment is computed by the theory of the linear elastic fracture mechanics, where an 

equilibrium height status is obtained simultaneously at both upper and lower fracture tips. 

Meanwhile, the shear slippage of the weak bedding layers is modeled by an efficient 2D 

higher order displacement discontinuity method based on the joint element (JE-HDDM), 

and the effectiveness on the hydraulic fracture height is quantified by correcting the stress 

intensity factors at the hydraulic fracture tips.  

Numerical studies based on the Permian Basin Wolfcamp formation using our 

model demonstrates that the shear slippage of the beddings can significantly slow down 

the hydraulic fracture height growth and that the shear fracture toughness of the bedding 
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layers and the spacing between the laminations have considerable impact on the 

effectiveness of the shear slippage on the fracture height growth. 

The non-intrusive hydraulic fracture height model is incorporated into an in-house 

cell based P3D hydraulic fracture simulator, which uses plane strain deformation in each 

vertical cross-section coupled with a 2D fluid flow. The numerical results show that the 

weak interfaces have considerable impact on the fracture height, lateral length, and width 

distribution. With the existence of the weak interfaces, the hydraulic fracture height is 

reduced, which results in a longer fracture lateral length, together with a reduction of the 

overall width values. Sensitivity analysis shows that the spacing between the weak 

interfaces and interfacial shear toughness have significant impact on the fracture geometry 

and width values. In multi-fracture propagation case, the impact of the weak interfaces on 

the outer fractures results in a reduction in average height and overall width distribution 

and an increase of the lateral length. For inner fractures, the impact of weak interfaces 

varies by the cluster spacing. 

The proposed workflow effectively captures the mechanism of the horizontal weak 

interfaces on the hydraulic fracture height growth and the lateral propagation. The 

numerical studies provide more understanding on the fracture propagation in the laminated 

shale reservoirs. The new P3D hydraulic fracture simulator can be used as an effective 

tool for fracturing job design in shale formations. 
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NOMENCLATURE 

 

A  Plane-strain elastic influencing coefficients between the fracture 

segments i and j , dimensionless 

ia  Half-lengths of the DDM elements, m 

c  Hydraulic fracture half height in Liu and Valko’s model, m 

ijC  Coefficients for quadratic displacement discontinuity interpolation, 

dimensionless 

iD  Displacement discontinuities of the fracture segments, m 

nD  Normal displacement discontinuities of the fracture segments, m 

1

nD  Change in width of the fracture tip element, m 

sD  Shear displacement discontinuities of the fracture segments, m 

dl  Length of the tip element, m 

sd  Distance from the horizontal interfacial shear slippage tip to the hydraulic 

fracture, m 

E  Young’s modulus of the rock, Pa 

'E  Plane-strain elastic modulus of the rock, Pa 

( , )ijkE    
Influences of a concentrated force at point   on displacements at point , 

dimensionless 

( , )f x y  Solution functions to the Kelvin’s problem, dimensionless 

F  Body force, Pa 
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( , )g x y  Solution functions to the Kelvin’s problem, dimensionless 

( , )G x y  Solution function for constant DDM, dimensionless 

ijG  3D correction factor for S3D DDM, dimensionless 

G  Shear modulus, Pa 

ih  Distance from the i th layer, m 

fh  Hydraulic fracture half height, m 

str

fh  Effective straightened hydraulic fracture half height, m 

perfh  Perforation depth measured from the fracture lower tip, m 

0Int  Constant integral kernel for HDDM, dimensionless 

1Int  Linear integral kernel for HDDM, dimensionless 

2Int  Quadratic integral kernel for HDDM, dimensionless 

cInt  Integral kernel for tip treatment of HDDM, dimensionless 

JRC  Joint roughness coefficient, dimensionless 

ICK  First mode fracture toughness, Pa ∙ √m 

( )Id IK K −  First model stress intensity factor at the bottom tip, Pa ∙ √m 

( )Iu IK K +  First model stress intensity factor at the upper tip, Pa ∙ √m 

nK  Normal rigidity of the joint element, Pa 

sK  Shear rigidity of the joint element, Pa 

effK  Effective stress intensity factor, Pa ∙ √m 

L  Fracture half height in Simonson’s model, m 
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fL  Fluid front location, m 

sL  Shear slip front location, m 

strL  Effective half length for straightened fracture, m 

( )jN   Quadratic shape functions for higher order interpolation, dimensionless 

netp  Net pressure within the fracture segment, Pa 

perfp  Fluid pressure at the perforation depth, m 

q  Volume rates of the fluid flow per unit length, m2 

r  Half length of the tip element length, m 

a  Stress at upper tip in Simonson’s model, Pa 

b  Stress at bottom tip in Simonson’s model, Pa 

i  Minimum in-situ stress for ith  layer, Pa 

( )jk   
Stress components at a point , Pa 

n  Normal stresses on the fracture segments, Pa 

( )
ind

n  Induced normal stresses on the fracture segments, Pa 

s  Shear stresses on the fracture segments, Pa 

( )
ind

s  Induced shear stresses on the fracture segments, Pa 

,s yield  Yield shear stresses of the horizontal weak interface, Pa 

v  Vertical in-situ stress, Pa 

( , )T x y  Normal traction on the fracture surface, Pa 
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( )iu   Displacement components at a point , m 

nu  Normal displacement, m 

su  Shear displacement, m 

v  Poisson’s ratio, dimensionless  

w  Fracture width, m 

0w  Initial fracture aperture without shear slippage, m 

fw  Effective hydraulic aperture, m 

nw  Fracture aperture without shear slippage, m 

sw  Shear slip induced dilation, m 

resw  The residual aperture, m  

strw  Effective width for straightened fracture, m  

  Fracture surface, m2 

  Fluid density, kg/m3 

  Fluid viscosity, Pa⋅s 

m  Critical shear stress, Pa 

  Friction coefficient, dimensionless 
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1. INTRODUCTION  

1.1. Background and Motivation 

The hydraulic fracturing technology is firstly introduced by Clark in 1949 when 

he provided detailed explanation of the procedure and the requirements of hydraulic 

fracturing. Oil and gas production in the United States has significantly increased since 

the advancement in the technique of hydraulic fracturing in unconventional shale 

reservoirs. Multi-stage hydraulic fracturing in a horizontal well (Figure 1.1) has made 

possible the flourishing hydrocarbon production from unconventional shale reservoirs. In 

the hydraulic fracturing design and operation, the height growth of a hydraulic fracture is 

of great importance. Since the fracture-height growth can be either positive in allowing 

the fracture to vertically connect the isolated sweet layers to produce through the fracture 

into the well, or be negative in wasting the energy and effort in non-pay layers, even 

penetrating into water or gas zones, which severely reduces the oil production rate.  

 

Figure 1.1  Multi-stage hydraulic fracturing in a horizontal well and complex 

fracture networks (from Schlumberger). 
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Many techniques have been developed and applied to characterize and monitor the 

hydraulic fracture height such as the microseismic imaging (Fisher and Warpinski, 2012; 

Warpinski, 2013; Maxwell, 2014), laboratory experiments (Jeffrey and Bunder, 2009; 

Xing et al., 2016; Hu and Ghassemi, 2021), low-frequency distributed acoustic sensing 

(Jin and Roy, 2017; Liu et al., 2021), high-frequency distributed acoustic sensing, 

distributed temperature sensing (Sierra et al., 2008), and numerical modeling (Simonson 

et al., 1978; Zhang and Ghassemi, 2011; Weng et al., 2018; Li et al., 2020; Mehrabi et al., 

2021). Numerical modeling and simulation are based on the fracture mechanics theory and 

provide the engineers with an efficient way to monitor the hydraulic fracture propagation 

and with the guidance of hydraulic fracturing job designs. 

Over the last a few decades, based on field observations, laboratory experiments, 

and numerical studies, several factors have been identified to have significant impact on 

the hydraulic fracture height growth, such as the minimum in-situ stress contrast between 

different formation layers, fracture toughness, weak bedding planes/interfaces, 

mechanical properties, proppant distribution, and fluid leak-off (Daneshy 1978;  

Warpinski 1991; Gu and Siebrits 2008; Jeffrey and Bunger 2009; Liu and Valko, 2017; 

Zhao and Gray, 2021). For conventional formations, over the decades of research and 

development of hydraulic fracturing technology, it has been well-established that the 

difference of minimum in-situ stress between different formations plays the major role in 

containing the fracture height (Warpinski et al. 1982; Mendelsohn 1984; Valko  ́ and 

Economides 1993; Fisher and Warpinski 2012; Hurt and Germanovich 2012;).  
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In unconventional shale reservoirs, the formation layers are always accompanied 

by the weak bedding interfaces such as the bedding layers, laminations, and ash beds. For 

example, as shown in Figure 1.2, the Montney shale, Eagle Ford shale, Vaca Muerta shale, 

and Marcellus shale have been observed with the consequences of rock layering and the 

interfaces between the rock layers. In recent years, it has been evidenced by field 

microseismicity observations and laboratory experiments that the hydraulic fracture height 

growth can be significantly affected by the bedding planes and the weak interfaces in the 

unconventional shale formations (Anderson 1981; Burghardt et al. 2015; Kear et al. 2017; 

Zeroug et al. 2018; Gamero Diaz et al. 2018). The way the hydraulic fracture height 

growth being influenced by the bedding layers can be summarized as crossing, slowing 

down, deflecting, and terminating. According to the experimental results (Teufel and 

Clark 1984; Bunger et al. 2016), the hydraulic fracture is more likely to cross the bedding 

interfaces in the higher effective normal stress case while more likely to terminate upon 

the interfaces in the lower effective normal stress case. In laminated formations with low 

in-situ stress contrast, the bedding-layer slippage induced by hydraulic fractures could be 

a dominant factor influencing the hydraulic fracture height. 
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Figure 1.2 Examples of thin rock layering on outcrops from the Montney, Vaca 

Muerta, Eagle Ford, and Marcellus shales (Suarez-Rivera et al. 2016). 

 

Figure 1.3 shows the stacked package of limestone and the weak interfaces or weak 

beds in Wolfcamp formation in Permian Basin. The distance between these weak 

interfaces can be as small as a few feet, and the thickness of these weak beds ranges from 

a few millimeters to a few feet. Those geo-technical interfaces and beds have considerable 

impact on the geometries of hydraulic fractures and have significantly increased the 

complexity of the hydraulic fracture networks as shown in Figure 1.1. 
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Figure 1.3 Geo-mechanical data and rock composite data of Wolfcamp formations 

in Permian Basin (Robert et al. 2018). 

 

In such formations where closely-spaced bedding layers and laminations exist, the height 

propagation of a vertical hydraulic fracture is not only affected by the conventional factors 

such as the treating pressure, in-situ stress, fracture toughness, Young’s modulus, Poisson 

ratio, fracturing fluid density and viscosity, etc., but can be strongly affected by the 

horizontal bedding interfaces (Weng et al. 2011; Kresse and Weng 2013; Chuprakov and 

Prioul 2015; Kress and Weng, 2017; Diaz et al. 2018).  An example (Figure 1.4) given by 

Srinivasan et al (2018) in the Niobrara formation has shown that due to the existence of 
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thin bed laminations rich in bentonites, the hydraulic fracture vertical growth has been 

limited before it reaches the boundaries. 

 

Figure 1.4 Illustration of impact of thin-bed laminations on fracture height growth 

characteristics in the Niobrara formation (Srinivasan et al. 2018) 

 

To accurately capture the influence of the weak interfaces and the laminations on 

the hydraulic fracture height containment, plenty of experimental and numerical studies 

have been conducted since the last two decades. (Kresse and Weng 2013; Diaz et al. 2018; 

Gao and Ghassemi, 2020; Zhao and Gray, 2021). The experimental studies demonstrated 

that the bedding layers are affecting the hydraulic fracture propagation by arresting, 

diverting, or slowing down the vertical growth of fracture height. Quantitative numerical 

studies show that closely-spaced weak interfaces and beds play a dominant role where the 
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in-situ stress variation between layers are less obvious. These works provided a much 

better understanding and more accurate prediction of the hydraulic fracture height. 

However, the existing numerical models are either too sophisticated with a full three-

dimensional consideration, or too simplified, which is only limited to a certain case 

(arresting or diverting) to be incorporated into a general hydraulic fracture design 

simulator.  

The primary objective of this research work in the dissertation is to develop a 

comprehensive and non-intrusive hydraulic fracture height growth model  and incorporate 

it into a hydraulic fracture propagation simulator to investigate the impact of the horizontal 

weak interfaces on the hydraulic fracture propagation and the final geometries,  and width 

distributions.  

 

1.2. Literature review 

The hydraulic fracturing technology has been studied and developed for more than 

half century in the oil and gas industry. Prediction of the hydraulic fracture height growth 

is one of the critical tasks in the design and operations of hydraulic fracturing treatments. 

Over the last a few decades, it has been widely-recognized that a hydraulic fracture height 

can be influenced by many factors including the landing depth, perforation pressure, layer 

interface and its shearing strength, existence of natural fractures, in situ stress, fracture 

toughness, Young’s modulus, Poisson’s ratio, tensile strength, fluid leaking off and 

hydraulic fracturing fluid density (Simonson et al. 1978; Warpinski et al. 1982a; Valko  ́

and Economides 1993; Abbas et al. 2014; Liu and Valko, 2017).  
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1.2.1. Hydraulic fracture height models without the effect of weak interfaces  

Among all of these influencing factors for hydraulic fracture height growth, the in-

situ stress has been acknowledged as the most important factor of containing the hydraulic 

fracture height in conventional formations. According to previously laboratory and 

numerical studies, higher in-situ horizontal stress variation between different layers results 

in smaller hydraulic fracture height, and vice versa (Van Eekelen 1982; Warpinski et al. 

1982). Similarly, the fracture toughness is another one of the primary influencing factors 

controlling the hydraulic fracture height. The fracture toughness is more influencing when 

the hydraulic fracture is in small scale where the stress variation is less comparable 

(Thiercelin et al. 1989; Garagash and Detournay 2005; Garagash 2006; Zhang et al. 2010). 

When the bedding layer exists and are shearing during the hydraulic fracturing, the 

fracture toughness of the bedding layers may increase in a considerable manner (Morita 

et al. 1988). The Young’s modulus and the Poisson’s ratio are the indirect factor for 

hydraulic fracture height since they affect the height growth by affecting the hydraulic 

fracture width and the net pressure, as well as the induced horizontal stress profile in target 

layers. Higher Young’s modulus usually leads to narrower fracture widths and larger 

pressure drop, which results in a shorter overall fracture height. As for the fracturing fluid 

leaking off into the bedding layers or the weak interfaces, it reduces the pressure in the 

fracture and slows down the hydraulic fracture height growth (Ahmed 1984; Kresse and 

Weng 2013; Diaz et al. 2018).  
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To predict the hydraulic fracture height considering the above-analyzed 

influencing factors, the so called “equilibrium height belonging to a certain treating 

pressure” was proposed and developed which can provide an upper limit of the hydraulic 

fracture height (Simonson et al. 1978; Economides and Nolte 2000; Mack and Warpinski 

2000; Weng et al. 2011; Liu and Valko 2017). The “equilibrium status” means when given 

a treating pressure, the integration of the net pressure inside the fracture along the height 

(i.e. SIF, IK ) is equal to the fracture toughness IcK at both upper and lower tips at the same 

time. If the computed SIFs at either tip is higher than the IcK  at the layer in consideration, 

the specific tip will grow and propagate, until the computed SIF becomes equal or slightly 

less than the IcK  of the layer.  

The solution for the equilibrium height has been investigated and developed since 

1970s. The earliest is given by Simonson et al. in 1978 for a symmetric three-layer 

formation problem with exactly the same upper and lower minimum horizontal stress and 

the constant treating pressure along the fracture height, which is given in Equation (1.1).  
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where netp  is the net pressure inside the fracture segment, ICK  is the first mode fracture 

toughness, a  and b  are stress at fracture tips. 

The symmetric-three-layer solution was then extended by Mack and Warpinski to 

asymmetric multilayer formation problems and is given by Equation (1.2). 
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where IuK  is the upper tip stress intensity factor, 
fh is the fracture half height, and ih  is 

the distance from the ith layer.  

In 2011, Weng et al. provided more details of the asymmetric multi-layer 

formation studies and demonstrated the liability of the equilibrium height model. Liu and 

Valko (2018) have summarized the previous development of the equilibrium height mode 

and provided more case studies to investigate the effect of rock formation properties on 

the hydraulic fracture height. The equations they used (Equation (1.3)) are more 

straightforward and can be easily implemented using numerical algorithms into problems 

shown by Figure 1.5.  
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where c  is the fracture half height, IK + and IK −  are the stress intensity factors at the 

fracture upper and lower tips, respectively. 
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Figure 1.5 Equilibrium hydraulic fracture height in a multilayer formation with 

hydrostatic fluid pressure inside (Liu and Valko 2018). 

 

The equilibrium height model provides reasonable and reliable height growth map 

for conventional multi-layer formations. Yet it does not consider the effect of the bedding 

layers and laminations.  

Except from the equilibrium height model, there are other models such as the 

cohesive zone model and the plane strain model based on the 2D displacement 

discontinuity method. These models provide more details on the fracture height and the 

width profile; however, the computational efforts are too expensive to be efficiently 

applied in fracture simulators for field-scale engineering design.  

However, the above-mentioned models generally overestimate the hydraulic 

fracture height, and the computed hydraulic fracture height is actually an upper limit, 
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especially in shale formations (Liu and Valko 2018; Weng et al. 2018; Kress and Weng 

2019). This is because the shale formations are often accompanied by thin laminations and 

multi-closely-spaced interfaces (Suarez-Rivera et al. 2016; Gamero Diaz et al. 2018) and 

these weak interfaces may slow down, deflect, or terminate a vertical hydraulic fracture 

(Zhang and Jeffrey 2008; Daneshy 2009). In conventional formations, this mechanism has 

hardly drawn attention in characterizing the fracture height growth since few bedding 

layers are activated during the hydraulic fracturing process and the in-situ stress contrast 

plays the primary role. On the contrast, in the unconventional shale reservoirs, this 

mechanism has regained its attention as numerous observations of downhole ultrasonic 

logs (Zeroug et al. 2018), borehole images (Gamero Diaz et al. 2018), and microseismic 

events (Rutledge et al. 2016) have evidenced the slippage of the bedding layers. In 

addition, intensive experimental efforts have demonstrated the significant impact of the 

bedding-plane slippage on the hydraulic fracture height containment (Burghardt et al. 

2015).  

 

1.2.2. Hydraulic fracture height models with the effect of weak interfaces    

In unconventional shale formations, weak interfaces and weak beds are always 

observed. The distance between these weak interfaces can be as small as a few feet, and 

the thickness of these weak beds ranges from a few millimeters to a few feet. Those geo-

technical interfaces and beds have considerable impact on the geometry of hydraulic 

fractures and have significantly increased the complexity of the hydraulic fracture 

networks. 
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Accurate modeling of the hydraulic fracture height in shale laminations has long 

been a challenge for the oil and gas industry due to various impacting factors as well as 

the complex subsurface conditions. The hydraulic fracture height growth and lateral 

propagation in a laminated reservoir is generally a fully-3D problem which involves rock 

deformation of the fracture coupled with fluid flow inside the fracture. Solving the 

problem of coupled rock deformation and fluid flow for fracture propagation requires 

intensive fine grids and huge amount of computational effort, and therefore the problem 

is often simplified and reduced to the so-called “Pseudo three dimensional” (P3D) problem 

which contains the hydraulic fracture height growth module and the lateral propagation 

part. The P3D models maintain the accuracy of approximation but reduce the 

computational requirement to a large extent, which have been widely adopted in hydraulic 

fracture modeling in the oil and gas industry (Mack and Warpinski 2000; Adachi et al. 

2007; Weng et al. 2018). 

Multiple numerical models have been proposed and developed to account for the 

effect of bedding layers . Zhang and Jeffrey (2008) adopted the two-dimensional 

displacement discontinuity method (DDM) to investigate the penetration, alteration or 

arresting of the hydraulic fracture height when encountering the bedding layers. Apart 

from the DDM, the cohesive-zone model was also applied to study the height growth 

considering the bedding planes and weak beds (Park et al. 2009). In 2015, Chuprakov et 

al. provided another way of considering the effect of weak interfaces on hydraulic fracture 

height by assuming the “H-shape” or “T-shape” of the fracture and introducing a semi-

analytical solution for the fracture height and width. In 2019, Xu et al. for the first time 
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considered the fluid leaking off and energy loss of the hydraulic fracture when 

encountering the bedding layers using an energy equilibrium model. Besides, many other 

numerical models have been developed to quantitatively analyze the impact of the bedding 

layers on the hydraulic fracture height growth (Cooke and Underwood 2001; Thiercelin 

and Makkhyu 2007; Rho et al. 2017; Weng et al. 2018; Tang and Wu 2018; Xu et al. 2019; 

Kress and Weng 2019). The modeling work enhances understanding of the fracture-

interface interaction mechanism and helps bridge the field-monitoring observations and 

the characterization of fracture geometries. 

However, most of the models are computationally-expensive, which prevent 

incorporating them into hydraulic fracture simulators. Chuprakov and Prioul (2015) 

proposed an efficient analytical model, which is so call the “FracT” model (as shown in 

Figure 1.6), that characterizes the hydraulic fracture and weak interface intersection, as 

well as the shear slippage of the bedding interfaces. The FracT model was then adopted 

by Weng et al (2018) and Kresse and Weng (2019) to quantify the effectiveness of the 

bedding interfaces on the hydraulic fracture height and incorporated into a Pseudo-3D-

based hydraulic fracture simulator, which is referred to Unconventional Fracturing Model 

(UFM). This workflow accurately and efficiently captures the mechanism of the bedding 

layers influencing the hydraulic fracture height propagation. However, as mentioned in 

the paper, the analytical solution of the FracT model was developed based on the T-shaped 

and H-shaped hydraulic fractures with a piece-wise constant stress profile. In shale 

formations with thin laminations and numerous closely-spaced bedding layers, the actual 

interaction scheme of the fracture-interface may not strictly follow the T-shape or H-



 

15 

 

shape. In such cases, an efficient numerical model regarding the fracture-interface 

interaction might be an alternative. 

 

Figure 1.6 Illustration of the T-shaped and H-shaped hydraulic fracture 

intersection with existing horizontal interface using the fracture straightening 

method (Adapted from Chuprakov and Prioul 2015). 

 

1.2.3. Hydraulic fracture propagation in laminations 

Hydraulic fracturing in shale laminations where natural fractures and horizontal 

weak interfaces are widely distributed has often resulted in complex fracture networks. 

Although the hydraulic fracturing technique has been studied and developed for decades, 

it is still challenging to understand the fracture propagation behavior and to predict the 

final fracture geometry in shale formations. The difficulties lie in the uncertainly in the 

subsurface geology and the complexity of the involved physical processes such as the rock 

deformation of the formation, fluid flow in the fractures, fluid driven fracture propagation, 
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proppant distribution, and fluid driven horizontal interfacial shear slippage etc., which are 

tightly coupled with each other (Gu 1987; Adachi et al. 2007; Wu et al. 2012; Weng 2015; 

Hu et al. 2018). The coupling of the solid deformation, fluid flow, and the fracture 

propagation has been intensively studied by numerous work (Jeffrey et al. 2010; Weng et 

al. 2011; Sesetty and Ghassemi 2013; Wu and Olson 2015; Detournay 2016; Lecampion 

et al. 2018; Zheng et al. 2019). However, the understanding of the impact of the horizontal 

weak interfaces on the fracture propagation behavior and the final geometries remains 

large space of improvement.  

Horizontal weak interfaces have been evidenced by both field observations and 

laboratory experiments to have impact on the hydraulic fracture vertical propagation 

(Teuful and Clark 1984; Cooke and Underwood 2001; Rutledge et al. 2014; Suarez-Rivera 

et al. 2016; Rutledge et al. 2016). Normally, the interaction with a pre-existing horizontal 

weak interface may result in either a reduction in the hydraulic fracture height growth rate, 

or a complete arrest of the hydraulic fracture (including diversion), or an offset from the 

existing path (including branching), depending on the strength and the frictional 

properties, the in-situ horizontal stress variation between layers, the effective vertical 

stress at the interface, and the net pressure (Zhang and Jeffery, 2006; Thiercelin et al. 

1987; Tang et al. 2018b). The fracture arresting and the fracture offset has been 

numerically investigated by Jeffery et al. (1987) and experimentally investigated by Teufel 

and Clark (1984). A similar conclusion was obtained that the fracture termination upon 

meeting a horizontal interface is more likely to occur with lower normal stress acting on 

the interface; while crossing the interface usually happens with high normal stress and 
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high interfacial friction. The reduction of the hydraulic fracture height growth rate caused 

by the horizontal interfaces or bedding planes has been qualitatively assessed by the field 

studies (Warpinski and Teufel 1987; Rutledge et al. 2016;), laboratory experiments 

(Bunger et al. 2015; Llanos et al. 2017), and quantitatively studied by numerical analysis 

(Zhang and Jeffrey 2008; Gu and Weng 2010; Abbas et al. 2014; Chuprakov and Prioul 

2015; Zou et al. 2016; Weng et al. 2018). A consensus is obtained that the impact of the 

horizontal interfaces on the fracture height growth is more significant in formations with 

low in-situ stress variation between layers than that with high in-situ stress variation 

between layers.  

Compared to the study on the hydraulic fracture vertical growth and height profile 

influenced by the weak interfaces, the study of the impact on the fracture width and the 

fracture lateral length is less intensive. Gu et al. (2008) incorporated an interfacial slip 

model to a pseudo-three-dimensional (P3D) hydraulic fracture simulator and indicated that 

interfacial slippage along the bedding planes plays a significant role in determining the 

fracture height growth, fracture width deformation, and entire fracture geometry. Zhang 

and Jeffery (2006) developed a coupled fluid and elasticity model to analyze the capacity 

of  the pre-existing interfaces to blunt or to change the direction of a fluid-driven hydraulic 

fracture, and found that the interaction between the pre-existing interface and the hydraulic 

fracture causes a reduction in vertical fracture width as well as a retardation of the vertical 

growth rate. Tang et al. (2018a) developed a 3-d hydraulic fracture propagation model 

applied for multiple-layered considering the effect of horizontal bedding planes. A 

different width distribution is observed through his study due to the interaction between 
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the vertical fracture and the horizontal plane. Kress and Weng (2019) applied the 

displacement discontinuity method to investigate the impact of the weak interfaces on the 

hydraulic fracture height and overall shape, revealing the consideration of the interfacial 

slip could lead to more contained fractures with shorter height and greater lateral length.  

 

1.3. Objectives 

In this work, the objective is to develop a comprehensive and non-intrusive 

hydraulic fracture height growth model, which not only considers the effect of formation 

rock mechanical properties, but also quantitatively consider the effect of weak interfaces 

and bedding layers on the hydraulic fracture height containment, and incorporate the non-

intrusive height model into a general hydraulic fracture propagation simulator.  

The unifying theme is to study the fundamental physical mechanism of the bedding 

planes interaction with the hydraulic fracture and the consequent impact on the hydraulic 

fracture propagation. The process can be divided in four phases: 

Phase I: develop an efficient numerical model that is able to accurately capture the 

impact of formation rock properties, including the in-situ stress variation, fracture 

toughness, etc. on the hydraulic fracture height containment.  

Phase II: develop a coupled fluid flow and rock deformation model for to study the 

shear dilation of the bedding layers induced by the hydraulic fracture and its impact on the 

hydraulic fracture height containment. In this phase, the Joint-Element Displacement 

Discontinuity Method (JE-HDDM) is proposed and developed to overcome the limitations 
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of constant Displacement Discontinuity Method (DDM) which is commonly used in 

hydraulic-fracture related geo-mechanical problems.  

Phase III: incorporate the efficient hydraulic fracture height model with the 

bedding layer shear dilation model to be a comprehensive height model.  

Phase IV: incorporate the comprehensive and non-intrusive hydraulic fracture 

height model into a general hydraulic fracture propagation simulator.  

 

1.4. Outline of the Dissertation  

This dissertation consists of six chapters. In this chapter (Chapter 1), the 

background and motivation of this research work is introduced, followed by the literature 

review of the related topics. Then the research objectives are discussed. 

Following this chapter, Chapter 2 introduce the Joint-Element based Higher Order 

Displacement Discontinuity Method (JE-HDDM) developed from the Constant 

Displacement Discontinuity Method (CDDM). The joint elements are introduced to 

simultaneously determine the opening, shearing, and closing of each fracture element 

based on the stress boundary condition, which can avoid the “negative width” of the inner 

fractures given by CDDM which are mechanically closed under the strong stress 

shadowing effect. The newly developed JE-HDDM is validated against the CDDM with 

a typical case. Then a series of numerical case studies based on a close-spacing planar-

fracture scenario is provided to demonstrate the effectiveness and efficiency of the JE-

HDDM.  
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In Chapter 3, the JE-HDDM is used to solve the rock deformation problem coupled 

with the fluid flow in the problem of the intersection between he horizontal weak interface 

and the vertical hydraulic fracture. Through the numerical modeling, the initiation and the 

propagation of the shear slippage along the horizontal interface induced by a vertical 

hydraulic fracture is simulated. Meanwhile, a static model to effectively quantify the 

impact of the horizontal interfacial shearing on the hydraulic fracture height growth is 

introduced. 

In Chapter 4, the static interfacial shear slippage model is incorporated into an 

equilibrium height growth model to consider the effect of the horizontal weak interfaces 

on the fracture height. The effectiveness on the hydraulic fracture height is quantified by 

correcting the stress intensity factors at the hydraulic fracture tips. The model is applied 

in the Permian Basin Wolfcamp formation to quantitatively investigate the effect of 

bedding layers on the hydraulic fracture height growth. 

In Chapter 5, the comprehensive hydraulic fracture height growth model is 

incorporated into an in-house cell-based P3D hydraulic fracture simulator, which uses 

plane strain deformation in each vertical cross-section coupled with a 2D fluid flow. 

Numerical examples are performed based on a Midland Basin Wolfcamp shale formation 

to study the impact of the weak interfaces on the fracture propagation and the final 

geometry. The proposed workflow effectively captures the mechanism of the horizontal 

weak interfaces on the hydraulic fracture height growth and the lateral propagation. 

Finally, Chapter 6 summarizes the conclusions obtained from this dissertation and 

provides some pertinent recommendations for future research on this topic. 
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2. JOINT-ELEMENT HIGHER ORDER DISPLACEMENT DISCONTINUITY 

METHOD 

2.1. Introduction 

Multi-stage hydraulic fracturing in a horizontal well has made possible the 

flourishing hydrocarbon production from unconventional shale reservoirs. To sustain the 

economical production of unconventional resources, more intensive completions with 

closer cluster spacing are used in unconventional shale reservoirs (Evans, et al., 2018; 

Smye, et al., 2020). In unconventional shale reservoirs where the matrix permeability is 

ultra-low, wells do not drain much farther beyond the hydraulic fractures, and therefore 

the optimal completion designs of the cluster spacing is much smaller than the previously 

used, which can be as small as 10 feet (Xiong, et al. 2018; Xiong, et al. 2019; Zheng, et 

al. 2019; Weijermars, 2020). In close-spacing-fractured reservoirs, the fracture behavior 

is significantly affected by the stress shadowing effect and becomes challenging to be 

predicted.  

To better understand the hydraulic fracture propagation behavior and the 

consequent improvement on oil and gas production, numerical analysis and modeling of 

the hydraulic fracture propagation have been intensively conducted by researchers and 

engineers. The Constant Displacement Discontinuity Method (CDDM) has been widely 

used to model rock deformation and characterize the hydraulic fracture geometry due to 

 

 Part of this chapter is reprinted with permission from “A New Higher Order Displacement 

Discontinuity Method Based on the Joint Element for Analysis of Close-Spacing Planar Fractures” by Li, 

J., Liu, Y. and Wu, K., 2022. SPE Journal, 27(02), pp.1123-1139. Copyright [2022] by Society of Petroleum 

Engineers.  
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its computational efficiency and flexibility to address non-planar fracture geometry 

(Detournay and Cheng, 1991; Ghassemi, 1997; Ghassemi and Zhang, 2006; Olson, 2008; 

McClure, 2012; Rafiee, et al. 2012; Wu, 2018). Many dynamic fracture propagation 

simulators employ the CDDM to calculate fracture opening and shearing as well as 

induced stresses during fracturing (Wu and Olson, 2013; Weng, 2015; Zeng and Yao, 

2016; Kress and Weng, 2018; Shrivastava and Sharma, 2018). Another promising 

application is to use the CDDM to develop a forward model for data interpretation of low-

frequency distributed acoustic sensing (LF-DAS) and detection of fracture hits (Liu, et al., 

2020, 2021; Zhang, et al., 2020). Besides, CDDM is also a significant tool in analysis of 

interactions between the hydraulic fractures and weak interfaces (Zhang, et al., 2012; 

Tang, et al., 2018; Tang, et al., 2019). 

Although the CDDM shows the accuracy and efficiency in solving geo-mechanical 

problems in hydraulic fracturing, the assumption of constant displacement discontinuity 

distribution on each element limits its accuracy in predicting the stresses and 

displacements for field points closer than approximately one element length from a 

boundary (Crawford and Curran, 1982; Shou and Crouch, 1995). This mathematical 

deficiency is negligible when the fracture spacing in multi-stage fracture pattern is 

relatively large or the fracture half-length is relatively small (Ghassemi, 1997). However, 

as smaller cluster spacing with large injection volume, correspondingly smaller fracture 

spacing with large fracture half-length, is used by multi-stage hydraulic fracturing 

treatments, the results of the CDDM deviate from the accurate ones and become inaccurate 

and unreliable. Moreover, another significant problem observed in close fracture-spacing 
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case is that the inner fractures have “negative width” due to strong stress shadowing effect 

given by the results from the CDDM. The “negative width” solutions mathematically 

satisfy the boundary conditions but are physically unrealistic. In addition, the 

displacement discontinuities are key parameters in calculating the stress intensity factors 

(SIFs) which govern the propagation of the fractures and the stresses around the fracture 

tips and are vital in analysis of fracture interactions (Zhang, et al., 2012; Weng, 2015; Li, 

et al., 2020). 

To mitigate the mathematical deficiency of the CDDM, higher order 

approximations of displacement discontinuity were proposed and implemented (Crawford 

and Curran, 1982; Shou and Crouch, 1995), which significantly improved the accuracy of 

DDM. Crawford and Curran’s method implemented the higher order approximations by 

introducing additional collocation points within each element, indicating that the 

improvement of accuracy comes at the expense of huge amount of computational time. In 

Shou and Crouch’s method, the higher order distribution of displacement discontinuity 

was interpolated along the patched elements which does not introduce additional 

computational points, indicating that this higher order displacement discontinuity method 

(HDDM) does not increase the computational time but improves the accuracy to a large 

extent.  

To avoid the negative opening of inner fractures due to strong stress shadowing 

effect of close-spacing fractures, the joint elements with three contact modes: stick, shear, 

and open, are introduced to original DDM. Each contact mode has its own specific 

governing equations relating the displacement discontinuities and the boundary stresses 



 

24 

 

(Crouch and Starfield, 1983; Pine and Batchelor, 1984). Given boundary stress conditions, 

the contact mode of each element of the fractures and the corresponding displacement 

discontinuities are solved simultaneously and iteratively until all the contact modes and 

displacement discontinuities converge.  

In this section, we developed the Joint Element based Higher order Displacement 

Discontinuity Method (JE-HDDM) to study the closely spaced fracture behavior. This JE-

HDDM gives the same results with the CDDM when fracture spacing is large. However, 

for closely spaced fracture problems where the CDDM fails to accurately predict the 

fracture behavior, the combination of stick and open mode of the joint elements in the JE-

HDDM eliminates the negative width of the inner fractures calculated by the CDDM, and 

presents the results in a pattern of opening part and closing part of the fracture segments. 

Our study helps us understand the limitations of the CDDM in close-spacing fracture 

problems and introduced a new technique, the JE-HDDM, for analysis of geo-mechanical 

problems where multi-close-spacing fractures exist. 

 

2.2. Efficient higher order displacement discontinuity method formulation 

The new method, JE-HDDM, is developed originally from the displacement 

discontinuity method (DDM), a boundary element method that expresses the stresses and 

displacements at a point due to a constant displacement discontinuity over a line segment 

in an elastic body. The higher order collocation of the displacement discontinuities is 

applied on the elements with different joint contact types and the corresponding equations.  
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2.2.1. Three-element patch for a fracture element 

The efficient HDDM employs the quadratic approximation of displacement 

discontinuity along a three-element patch, as shown in Figure 2.1. Figure 2.1 depicts the 

collocation patch for a straight fracture where all elements are in the same inclination. As 

shown in the figure, 1a , 2a  and 3a are the half-lengths of the three elements, 1( )iD , 2( )iD  

, and 3( )iD are the corresponding nodal displacement discontinuities, respectively. 

 
Figure 2.1 The patched-element pattern for quadratic collocation of displacement 

discontinuities of the efficient HDDM (modified from Shou and Crouch, 1995). 

 

In each patch of the three elements, three collocation points are used for shape 

functions, one at the center of the source element and others at the centers of the adjacent 

elements. The three collocation points from three adjacent elements make it possible to 

conduct quadratic interpolation of the displacement discontinuities over the elements 

without increasing the degrees of freedom, i.e., the computational time. The quadratic 

distribution of the displacement discontinuities is expressed in Equation (2.1) (Shou and 

Crouch, 1995): 
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where ( )jN   are the quadratic shape functions given as: 
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Substituting Equation (2.2) to Equation (2.1) gives: 
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2.2.2. Higher order formulation  

The higher order formulation is derived from the original two-dimensional DDM 

which is based on the analytical solution of plane-strain problem for the stresses due to 

the displacement discontinuities xD and 
yD along the fracture segment , 0x a y =

(Crouch 1976).  
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where , ,xx yy xy    are the stress components, v  is the Poisson’s ratio, G  is the shear 

modulus, ( , )f x y  and ( , )g x y  are solution functions to the Kelvin’s problem and are 

defined as following: 
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 (2.6) 

whose quadratic format can be derived by substituting Equation (2.6) into Equation (2.3) 

and are given here by Equations (2.7) and (2.8):  
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The 0Int , 1Int , 2Int are constant, linear and quadratic form kernels which are 

given as: 
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in which,  
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The derivatives of ( , )f x y  and ( , )g x y  that are used in Equation (2.5) are 

obtained by taking derivatives of 0Int , 1Int , 2Int . For example: 
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and, 
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2

, yyyInt , which are 

given in Appendix A 

Equations (2.7) are then substituted into Equation (2.5) for each segment of the 

discretized fractures to obtain the matrix format of HDDM by summing up from all the 

segments, which can be solved numerically for the displacement discontinuities.  

 

2.2.3. Treatment on fracture tips 

As previously mentioned, the displacement discontinuities are key factors in 

calculating the stress intensity factors (SIF) which govern the propagation of the fractures 

and the stresses around the crack tips. Another significant goal for HDDM is to predict 

accurate results around the fracture tips. For crack tip elements, there are not enough 

adjacent elements to form a three-element patch. Therefore, special treatments for the tip 

elements are required. Analytical solutions to crack problems show that the relative 
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displacement between the crack surfaces is proportional to square root distribution (Rice, 

1968). To maintain the accuracy of this HDDM, we adopt square root variation of the 

displacement discontinuity on the tip elements, which is defined as: 

 ( )
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( )i ciD a D =  (2.14) 

where ciD are the displacement discontinuity values at the center of the crack-tip elements.  

Substituting Equation (2.14) into Equation (2.7) gives  
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Rewriting the Equation (2.15): 
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where cInt is computed and given as: 
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The derivatives are given in the Appendix A.  

 

2.2.4. Influencing coefficients and matrix assembly 

The matrix assembly is based on the three-elements patch pattern to avoid 

introducing additional unknows and thus increasing the dimensions of the matrix. The 
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three-element patch is shown in Figure 2.1. As shown in the figure, 1a , 2a  and 3a are the 

half-lengths of the three elements, 1( )iD , 2( )iD  , and 3( )iD  are the corresponding nodal 

displacement discontinuities, respectively. In each patch of the three elements, three 

collocation points are used for shape functions, one at the center of the source element and 

others at the centers of the adjacent elements. For example, the 1( )xD , 2( )xD  , and 3( )xD  

of the ith  element patch are
1( )x jD −
, ( )x jD  , and

1( )x jD +
, respectively.  

The shear and normal stresses at the midpoint of the ith  element due to the 

displacement discontinuity components at the jth  element patch is written as: 
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 (2.18) 

for 1 ~i N= , where 
ij

ssA , etc., are the boundary influence coefficients for the stress. 

Considering the patched elemental displacement discontinuity at each of the N segments 

for 1 ~j N=  along the crack (Non-tip elements), we obtain the influence of all segments 

on ith  element: 

For tip elements, the equations are introduced in the previous section. The simpler 

treatment, for example, for one fracture, the tip elements are 1,j N= (for multiple 
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fractures, there are more tips between 1 and N). When 1j = , 01j j− =  is the additional 

introduced collocation point one-quarter of an element length away from the end of the 

crack, where 0 10.25a a=  and 0( ) 0iD = , similar treatment is conducted for j N= . 

For each , 1 ~
j

sD j N= , the coefficients for 
i

s  are composed of three parts: 

,
ik

ssA k j= , 
( 1)

, 1
i k

ssA k j
−

= + , and 
( 1)

, 1
i k

ssA k j
+

= − .  

The influencing coefficients in Equations (2.18) are developed from the analytical 

solution to the problem of a quadratic displacement discontinuity distribution over a three-

element patch. Since the Equations are for local coordinates of the jth  element patch, we 

need to transform the global coordinate ,x y  to local coordinates ,x y , as shown in Figure 

2.2. The equation is given by  

 
( )cos ( )sin

( )sin ( )cos

j j j ji i

j j j ji i

x x x y y

y x x y y

 

 

= − + −

= − − + −

 (2.19) 
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Figure 2.2 Demonstration of co-ordinates transformation for calculation of the 

DDM influencing coefficients. 

 

The stresses of ith  element due to displacement discontinuity components 
x

D  and 

y
D  over the jth  element can be written as 
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 (2.20) 

Through Equation (2.5) we can transform the stresses in local coordinate of the 

jth  element to the local coordinate of ith  element, which are expressed as: 
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 (2.21) 

where 
ji

  = − gives the inclination of the ith  element with reference to the jth  element. 

Note that ,
j j j j

x s y nD D D D= = and ' ' ' ',
i i i i

x y s y y n   = = , we have the final equations for 

calculating the influencing coefficients in the numerical procedure: 
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Substituting Equations (2.12) and (2.13) into Equation (2.22) we can obtain: 
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Now the influencing coefficients for jth  element can be expressed as: 
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For ( 1)j th−  element 
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For ( 1)j th+  element 
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The total influencing coefficient of the shear displacement discontinuity of jth  

element on the shear stress of ith  element is then expressed as 
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 (2.27) 

Similarly, we can obtain the expressions for snA , nsA  and nnA  

 

2.3. Joint-element higher order displacement discontinuity method  

For computational purposes, a segment of joint can be introduced and modeled as 

an elemental displacement discontinuity whose opposite surfaces are connected by a 

spring, with the normal and shear stiffness of the spring chosen to be representative of the 

properties of the joint-filling material (as shown in Figure 2.3, Crouch and Starfield, 1983). 

The values of the displacement discontinuity components are related to the normal and 

shear stresses acting on the joint element. A joint element can have three different types 

of contact mode: stick, shear, and open modes, as shown in Figure 2.4. A joint with 

different modes has its unique control equations between the displacement discontinuities 

and the stresses.  
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Figure 2.3 Demonstration of the spring-like joint elements (Crouch and Starfield 

1983). 

 

 

Figure 2.4 Demonstration of the three types of the contact mode of a joint element: 

opening model, shearing mode and the stick mode, with the corresponding criteria. 

 

In the close-spacing multi-fracture problem where the CDDM gives negative 

values of the opening width for the inner fractures due to the strong stress shadowing 

effect, which are physically impossible, joint elements successfully help DDM avoid the 

negative openings by assigning the stick contact type. The joint stick mode has the 

assumption that the element of interest has reached the equilibrium with in-situ stress and 

is closed. The element does not deform elastically under the combined influence of net 

pressure from hydraulic fracturing and the stress shadowing effect from outer fractures, 
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whose control equation between the stresses and displacement discontinuities are shown 

in Equation (2.28).  
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where N is the total number of elements, , , ,
ij ij ij ij

ss sn ns nnA A A A are the influencing coefficients, 

'

nD and '

sD are the induced normal and shear displacement discontinuities, nK and sK  

are the normal and shear rigidity.  

The joint shear mode occurs when the total shear stress across the joint element 

exceeds the total yield stress, as indicated by Equation (2.29): 
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The governing equation is given by: 
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 (2.30) 

where ( )
0n and ( )

0s are the remote normal and shear stresses, 
i

yield is the yield 

stress on i  element. 

The joint open mode, or separation mode, means the two surfaces of the joint 

element are separated from each other, which is identical to the phenomenon of fracture 
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opening. This mode occurs when the tensile stress across an element is larger than the 

tensile strength. In hydraulic fracturing problems, the equation for joint open mode is 

identical to the original DDM form, whose discrete matrix form is expressed in Equation 

(2.31). The equations and the corresponding criteria for those three contact types are 

elaborated in Crouch and Starfield (1983) and will not be repeatedly here. 
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 (2.31) 

where ( )
ind

n and ( )
ind

s are the induced normal and shear stresses. 

For fracture problems involving joint elements, the contact type (stick, shear or 

open) and the corresponding displacement discontinuities/stresses of each element along 

the joint are unknown, but they can be solved simultaneously and iteratively until the 

convergence of the contact modes. We developed a workflow incorporating the joint 

element into the HDDM which can be summarized as following (Figure 2.5): the initial 

contact modes of the discretized fracture elements are assumed, where a very good 

assumption is based on the HDDM results, i.e., elements with positive opening width are 

assumed open mode while elements with negative opening width are assumed stick mode; 

therefore the opening, shearing, and sticking equations (anyone or combination) can be 

solved simultaneously to obtain the normal and shear displacement discontinuities. Then 

the total normal and shear stress states can be obtained from the induced displacement 

discontinuities by Equation (2.32) and used to check the contact types. If the contact type 

for all the fracture segments agree with the given ones, the converged results are obtained. 
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Otherwise, the new contact type of the elements computed from the stress states will be 

the used as assumption for next iteration, until the contact type of all the elements converge.  
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 (2.32) 

 

Figure 2.5 Iteration workflow for determining the contact type of the fracture 

elements and the displacement discontinuities in JE-HDDM. 
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2.4. Verification 

The newly developed JE-HDDM was designated for the two-dimensional close-

spacing multi-fracture problem where the CDDM loses accuracy or stability. However, 

for relatively large spacing fracture cases, the JE-HDDM should have the same results 

with the CDDM. Therefore, an example case with four uniform bi-wing fractures whose 

half lengths are 100 meters and spacing is 30 meters was investigated for verification. The 

fluid pressure is assumed constant inside the fracture and the net normal and shear stresses 

in the internal boundary are 2 MPa and 0, respectively. The normal and shear rigidity for 

the joint element is set to be 50 GPa/m and 25 GPa/m. Experiments results (Ye et al. 2016) 

show that under the confining pressure of thousands of psi, the stiffness values of fractures 

in shale formations display highly linear properties and the yield stress of the fracture 

element is much larger than the in-situ stress of the formation. The typical stiffness values 

(normal and shear) vary from tens to hundreds of GPa/m. The Young’s modulus is 45 GPa, 

and the Poisson’s ratio is 0.25. 

Since the fracture is uniform and the spacing is identical, the four fractures can be 

grouped into two inner fractures and two outer fractures, whose results should be the same 

in each group. Figure 2.6 and Figure 2.7 presented the comparison of normal and shear 

displacement discontinuities of the outer fracture (F1) and the inner fracture (F2) between 

the JE-HDDM and CDDM. Both methods use the same length of element, which is 10 

meters and the same number of fracture elements, which is 80 in total. From Figure 2.6 

and Figure 2.7, it is observed that the JE-HDDM has a good agreement with CDDM in 
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both DN and DS results except around the tips of the fractures. This difference is caused 

by the deficiency of CDDM due to the assumption of constant values at the tips and the 

improvement of HDDM by special tip treatment as introduced in the section 2. Detailed 

discussion with regard to the accuracy will be explained in next sections. In large-spacing 

cases such that fractures do not have negative width, the numerical workflow of the joint 

element converges at the first iteration, which is the same results as the CDDM.  

 

Figure 2.6 Validation of JE-HDDM against CDDM in terms of normal 

displacement discontinuities for the outer fracture (F1) and the inner fracture (F2) 

using 4 fracture case (half-length = 300 m, spacing = 30 m). (Reprinted from Li et al 

2022) 
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Figure 2.7 Validation of JE-HDDM against CDDM in terms of shear displacement 

discontinuities for the outer fracture (F1) and the inner fracture (F2) using 4 

fracture case (half-length = 300 m, spacing = 30 m). (Reprinted from Li et al 2022) 

 

2.5. Application to close-spacing planar fracture analysis    

To test the outperformance of the JE-HDDM over the CDDM in accuracy as well 

as efficiency in dealing with close-spacing fractures, a two-dimensional base case (Figure 

2.8) with eight bi-wing close-spacing fractures is studied. The fracture half-length is 300 

meters along the y axis and the fracture spacing is 10 meters. The fluid pressure is assumed 

constant inside the fracture and the net normal and shear stresses in the internal boundary 

are 2 MPa and 0, respectively. The normal and shear rigidity for the joint element is set to 

be 50 GPa/m and 25 GPa/m for all elements. As shown in Figure 2.8, eight black lines 

represent the eight fractures and the red lines are locations where we are investigating the 

induced stresses in the following sections. 
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Figure 2.8 Illustration of eight bi-wing fracture problem with 10 m spacing and 300 

m half length. (Reprinted from Li et al 2022) 

 

2.5.1. Displacement discontinuities  

One of the most concerning parameters in the fracture problems is the fracture 

width, which is the value of normal displacement discontinuity. In this section we 

demonstrated the outperformance of the JE-HDDM over the CDDM in accuracy as well 

as efficiency in calculating displacement discontinuities.  

Due to the symmetry of the eight bi-wing fracture problem, only four fractures’ 

results are presented and the rest four have the same values. Figure 2.9-Figure 2.12 

compare the normal displacement discontinuity results of the four fractures indicated in 

Figure 2.8 between the CDDM, HDDM and JE-HDDM using different element lengths 

(EL). As observed from black-asterisk lines of these four figures, CDDM with element 

length 10 m (i.e. 480 elements in total) predicts inaccurate and physically unreasonable 
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results for all four fractures. This is attributed to the strong stress shadowing effect by 

close-spacing and large half-length fractures. The wavy behavior of the displacement 

discontinuity distributions along the fractures are due to the incompetence of the CDDM 

to give physically accurate results to such problem. Although the wavy results 

mathematically satisfy the given boundary conditions,  they are physically unreliable since 

the width of a fracture cannot be negative and cannot show the wavy behavior under the 

constant boundary conditions. When using element length of 1 m (i.e. total 4800 

computational elements) as shown by the black lines, CDDM is able to predict physically 

reliable results. However, from the black curves in Figure 2.9-Figure 2.12, it is noticed 

that negative opening width of the fractures were given by the CDDM for inner fractures, 

which is physically impossible. The HDDM results with different element lengths are 

presented in the red curves. It is observed that the HDDM gives stable results with both 

coarse element (EL = 10 m) and fine element (EL = 1 m) and the results are the same with 

the CDDM using the fine element. However, the HDDM is not able to avoid the negative 

width of the inner fractures, as shown in Figure 2.9, 2.10, 2.11, and 2.12. In contrast, as 

shown by the two blue curves, the JE-HDDM demonstrated the accuracy and stability for 

both element lengths of 10 m and 1 m, which indicates the outperformance of higher order 

approximation of displacement discontinuities over constant assumption. In fracture 

segments where the CDDM and HDDM predict negative widths, these segments may be 

mechanically closed due to the strong stress shadowing effect induced by the outer 

fractures. In such condition, the JE-HDDM assigned stick-mode to the joint elements and 

re-calculate the displacement discontinuity distributions of all elements until the 
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convergence of contact type of all elements, which eliminates the negative opening widths 

for the mechanically closed fracture segments.  

 

Figure 2.9 Comparison of normal displacement discontinuities (DN) of fracture 1 

between CDDM, HDDM and JE-HDDM using different element lengths (EL = 10 

m, 1 m). (Reprinted from Li et al 2022) 
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Figure 2.10 Comparison of normal displacement discontinuities (DN) of fracture 2 

between CDDM, HDDM and JE-HDDM using different element lengths (EL = 10 

m, 1 m). (Reprinted from Li et al 2022) 

 

 
Figure 2.11 Comparison of normal displacement discontinuities (DN) of fracture 3 

between CDDM, HDDM and JE-HDDM using different element lengths (EL = 10 

m, 1 m). (Reprinted from Li et al 2022) 
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Figure 2.12 Comparison of normal displacement discontinuities (DN) of fracture 4 

between CDDM, HDDM and JE-HDDM using different element lengths (EL = 10 

m, 1 m). (Reprinted from Li et al 2022) 

 

Figure 2.13-2.16 show the comparison of the shear displacement discontinuity of 

the four fractures indicated in Figure 2.8 using the CDDM, HDDM and JE-HDDM with 

different element lengths (EL). It is found that JE-HDDM and HDDM always demonstrate 

stability and high accuracy for all four fractures. Results with element length 10 m or 1 m 

have minor difference between each other. For CDDM, simulation results of the 10 m 

element length are again inaccurate (as indicated by the black- asterisk lines), as same as 

the normal displacement discontinuity results, while simulation results of the 1 m element 

length have a good agreement with the JE-HDDM results (as indicated by the black lines). 

It is to be noted that in Figure 2.15 and Figure 2.16, the results given by the CDDM with 

10 m element length are multiplied by 0.01 because the inaccurate values are much larger 

than the accurate results.   
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Figure 2.13 Comparison of shear displacement discontinuities (DS) of fracture 1 

between CDDM, HDDM and JE-HDDM using different element lengths (EL = 10 

m, 1 m). (Reprinted from Li et al 2022) 

 

 
Figure 2.14 Comparison of shear displacement discontinuities (DS) of fracture 2 

between CDDM, HDDM and JE-HDDM using different element lengths (EL = 10 

m, 1 m). (Reprinted from Li et al 2022) 
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Figure 2.15 Comparison of shear displacement discontinuities (DS) of fracture 3 

between CDDM, HDDM and JE-HDDM using different element lengths (EL = 10 

m, 1 m). (Reprinted from Li et al 2022) 

 

 

Figure 2.16 Comparison of shear displacement discontinuities (DS) of fracture 4 

between CDDM, HDDM and JE-HDDM using different element lengths (EL = 10 

m, 1 m). (Reprinted from Li et al 2022) 

 

It is also indicated from Figure 2.9-2.16 that the JE-HDDM has a high 

computational efficiency since the results of 10 m element length coincided with the 

results of 1 m element length, which means that compared with CDDM, JE-HDDM can 

use a larger element length to achieve accurate results by reducing a large amount of 

computational time.  

To demonstrate the higher efficiency and high accuracy of the JE-HDDM, we 

conducted a series of simulations using the JE-HDDM and JE-CDDM for eight fractures 

with different spacing and obtained the allowed-maximum element length and the 

corresponding simulation time for the two methods to give an engineering acceptable 
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results whose average relative error is less than 10%. The allowed-maximum element 

length and the corresponding total simulation time are listed in Table 2.1 and Table 2.2 

and are depicted in Figure 2.17. The average relative error is compared against the results 

given by JE-HDDM using element length 1 m, which are 600 elements for each fracture 

and 4800 elements in total.  

 

Figure 2.17 Comparison between JE-HDDM and JE-CDDM in terms of the 

allowed-maximum element length (EL, m) and the corresponding simulation time 

(second) for results with less than 10% DN and DS relative error for eight-fracture 

cases with different fracture spacings (meter). (Reprinted from Li et al 2022) 

 

Table 2.1 Allowed-maximum element length and simulation time to obtain 

engineering acceptable results (relative error < 10%) by JE-CDDM and JE-HDDM 

for eight fractures with different fracture spacings. (Reprinted from Li et al 2022) 
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Fracture spacing (m) 30 20 15 10 5 3 

Allowed-

maximum 

element 

length (m) 

JE-

CDDM 
10 5 3 2 1 0.6 

JE-

HDDM 
30 30 20 15 12 11 

Simulation 

time (s) 

JE-

CDDM 
4.98 14.24 67.42 260.39 911.67 7153 

JE-

HDDM 
3.68 3.68 3.78 5.14 9.11 14.82 

 

Table 2.2 Average relative error of normal displacement discontinuity computed by 

CDDM using different element sizes under different fracture spacing cases 

compared with fine grid HDDM results. (Reprinted from Li et al 2022) 

Fracture 

spacing 

(m) 

 

Element 

size (m) 

30 20 10 

CDDM HDDM CDDM HDDM CDDM HDDM 

30 unstable 1.01% Unstable 1.81% unstable 4.88% 

20 14.29% 0.08% >100% 0.12% unstable 0.98% 

10 3.66% <0.01% 52.13% 0.02% unstable 0.05% 

5 0.79% accurate 9.04% 0.01% 24.28% <0.01% 

1 <0.01% accurate 0.79% accurate 5.49% accurate 

 

As shown from Figure 2.17, the JE-HDDM provides engineering acceptable 

results using relatively large element lengths (above 10 meters), while in contrast, the JE-

CDDM requires much finer elements (element length less than 1 meter) to obtain accurate 

results due to the limitation of the constant-element assumption, especially for the cases 

with close fracture spacing. Meanwhile, large computational effort must be made to 
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achieve the accurate results through fine grids simulation. Figure 2.17 demonstrates the 

outperformance in accuracy and efficiency of the JE-HDDM. In field scale geo-

mechanical problems, such as hydraulic fracturing modeling, the JE-HDDM far 

outperforms the CDDM since much fewer numbers of elements are required to obtain 

accurate results.  

 

2.5.2. Induced stresses  

The induced stresses by hydraulic fractures is another important factor for 

hydraulic fracturing problems. In this section we investigated and demonstrated the 

outperformance of the JE-HDDM in terms of the induced stress profiles. The induced 

stress profiles were calculated using the HDDM and CDDM, based on results of the 

normal and shear displacement discontinuities given by the JE-HDDM and JE-CDDM, 

respectively.  

Figure 2.18-2.21 depict the induced Sxx and Sxy stress profiles given by JE-

HDDM and JE-CDDM using different element lengths along the fractures in different 

locations A and B as indicated in Figure 2.8. Three element lengths are used for both 

methods to calculate the results. For JE-HDDM, only simulation results of 10 m element 

length are presented since results of the other two element lengths are coincided due to 

high accuracy of JE-HDDM. It is observed from the figures that JE-HDDM always 

maintains high accuracy with large element length (10 m) near the fractures, while JE-

CDDM is only accurate with small element length (1 m) in calculating stress far away 

from the fractures. For example, Figure 2.20 and Figure 2.21 show that along location B, 
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JE-CDDM gives accurate results with small element lengths (1 m and 5 m) and has 

observable errors with the large element length (10 m) while JE-HDDM is always accurate 

with different element lengths. In Figure 2.18 and Figure 2.20 showing results in near 

fracture area (location A), JE-CDDM is only accurate with 1 m element length while JE-

HDDM can give accurate results with 10 m element length.    

 

 

Figure 2.18 Comparison of JE-HDDM and JE-CDDM in terms of induced Sxx 

profiles along the fractures using different element lengths at location A. 

(Reprinted from Li et al 2022) 
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Figure 2.19 Comparison of JE-HDDM and JE-CDDM in terms of induced Sxx 

profiles along the fractures using different element lengths at location B. 

(Reprinted from Li et al 2022) 

 

 

Figure 2.20 Comparison of JE-HDDM and JE-CDDM in terms of induced Sxy 

profiles along the fractures using different element lengths at location A. 

(Reprinted from Li et al 2022) 
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Figure 2.21 Comparison of JE-HDDM and JE-CDDM in terms of induced Sxy 

profiles along the fractures using different element lengths at location B. 

(Reprinted from Li et al 2022) 

 

Figure 2.22-2.25 illustrate the induced stress profiles Sxx and Sxy along y axis and 

perpendicular to the hydraulic fracture in different distances, as indicated in Figure 2.8 

locations C and D. Overall, we observed the similar trend with Figure 2.18-2.21. JE-

HDDM maintains high accuracy and stability no matter at what locations using different 

lengths of element, while JE-CDDM loses stability and accuracy when getting closer to 

the fractures. In near-fracture area, the deficiency and inaccuracy of the JE-CDDM results 

are more obvious than the results along the fractures. This deficiency of JE-CDDM may 

result in inaccurate prediction of hydraulic fracture propagation direction. The 

development and application of JE-HDDM and the joint element is of vital importance.   
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Figure 2.22 Comparison of JE-HDDM and JE-CDDM in terms of induced Sxx 

profiles perpendicular to the fractures using different element lengths at location C. 

(Reprinted from Li et al 2022) 

 

 

Figure 2.23 Comparison of JE-HDDM and JE-CDDM in terms of induced Sxx 

profiles perpendicular to the fractures using different element lengths at location D. 

(Reprinted from Li et al 2022) 
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Figure 2.24 Comparison of JE-HDDM and JE-CDDM in terms of induced Sxy 

profiles perpendicular to the fractures using different element lengths at location C. 

(Reprinted from Li et al 2022) 

 

 

Figure 2.25 Comparison of JE-HDDM and JE-CDDM in terms of induced Sxy 

profiles perpendicular to the fractures using different element lengths at location D. 

(Reprinted from Li et al 2022) 
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2.5.3. Stress intensity factors  

Stress intensity factors are important in the analysis of geo-mechanical problems 

because they are directly related to the fracture propagation and rock failure criteria. As 

mentioned before, the assumption of constant displacement discontinuities limits the 

accuracy of CDDM. In this section, we investigated the accuracy of the JE-HDDM in 

calculating the stress intensity factors over JE-CDDM. The relationship between the stress 

intensity factors (first and second mode) and the corresponding displacements of the tip 

element are given by Kachanov et al. (2003), which is expressed as following: 
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where nu  and su  are the normal and shear displacements, v  is the Poisson’s ratio, E  is 

the Young’s modulus, r is the half length of the element length, IK  and IIK  are Mode I 

and Mode II stress intensity factors. Rearranging the Equation (2.33) and noticing that 

( ) ( ) ( )n s n s n sD u u− += −  we obtain the equations for computing the stress intensity factors using 

the displacement discontinuities of the tip element as well as the element length, as 

expressed as follows  
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In section 2.5.1 we have already demonstrated the difference of the two methods, 

JE-HDDM and JE-CDDM, for predicting the displacement discontinuities. We have 

noticed that larger relative errors occur around the fracture tips. In this section we 

investigate the stress intensity factors of the four fractures indicated in Figure 2.8 using 

the displacement discontinuities calculated from these two methods. The results are shown 

in Figure 2.26 and Figure 2.27. The results given by JE-HDDM using 1 m element length 

are set to be accurate and the relative errors are compared against the accurate results. 

Figure 2.26 and  Figure 2.27 indicate that the JE-CDDM overall generates results with 

large errors and the errors keep increasing when using larger computational elements, 

while JE-HDDM can provide accurate results, even using coarse elements. The largest 

relative error given by JE-HDDM using 10 m element is less than 6%, while the largest 

relative error given by the JE-CDDM is over 100%, as shown in  Figure 2.26-2.27. Table 

2.3 and 2.4 record the Relative error of first mode stress intensity factor computed by the 

displacement discontinuities given by HDDM and CDDM for fractures 1, 2, 3, and 4.  
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Figure 2.26 Relative error of the Mode I stress intensity factor computed by the 

displacement discontinuities given by JE-HDDM and JE-CDDM for fractures 1, 2, 

3, and 4. (Reprinted from Li et al 2022) 

 

 

Figure 2.27 Relative error of the Mode II stress intensity factor computed by the 

displacement discontinuities given by JE-HDDM and JE-CDDM for fractures 1, 2, 

3, and 4. (Reprinted from Li et al 2022) 
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Table 2.3 Relative error of first mode stress intensity factor computed by the 

displacement discontinuities given by HDDM and CDDM for fractures 1, 2, 3, and 

4. (Reprinted from Li et al 2022) 

Fracture 1 2 3 4 

EL(m) CDDM HDDM CDDM HDDM CDDM HDDM CDDM HDDM 

10 81% 1.97% 53% 1.01% 39% 0.47% 39% 0.47% 

5 34% 0.36% 25% 0.29% 16% 0.14% 16% 0.14% 

1 5.24% accurate 3.98% Accurate 2.09% accurate 2.09% accurate 

 

Table 2.4 Relative error of second mode stress intensity factor computed by the 

displacement discontinuities given by HDDM and CDDM for fractures 1, 2, 3, and 

4. (Reprinted from Li et al 2022) 

Fracture 1 2 3 4 

EL(m) CDDM HDDM CDDM HDDM CDDM HDDM CDDM HDDM 

10 78% 1.96% 53% 1.01% 39% 0.47% 39% 0.47% 

5 32% 0.31% 25% 0.29% 16% 0.14% 16% 0.14% 

1 5.19% accurate 3.98% Accurate 2.09% accurate 2.09% accurate 

 

Another interesting trend observed by comparing Figures 23 and 24 is that JE-

CDDM loses accuracy in predicting IIK much faster than IK  when increasing the element 

length, while JE-HDDM does not. As shown in Figures 23 and 24, the relative error of 

IIK  using 10 m element length by JE-CDDM is over 100% while the relative error of IK

is 81%, but the results of IIK  provided by JE-HDDM using 10 m element length is more 

accurate than that of IK . This suggests that when dealing with the shear slippage or shear 
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dilation of the fractures or bedding planes where the second mode stress intensity factor 

is of great importance, JE-HDDM is highly recommended otherwise intensive fine grids 

of JE-CDDM must be used.  

 

2.6. Conclusions 

The joint element higher order displacement discontinuity method (JE-HDDM) is 

developed in this chapter. A new efficient higher order displacement discontinuity method 

(HDDM) is developed from 2D CDDM but has quadratic approximation of displacement 

discontinuity instead of constant variation. It can also be extended to 3D in a similar way. 

The quadratic approximation is performed on a three-element patch to avoid introducing 

the additional degrees of freedom on each element. Comparisons between the CDDM and 

HDDM of the same problems with the same sizes of elements show that HDDM has much 

higher accuracy than that of CDDM while maintains the same magnitude of computational 

time. The HDDM gives almost the same result with the CDDM when the fracture spacing 

is large (fracture spacing to fracture half-length ratio larger than around 1/10) and the fine 

grids are used. For close-spacing multi-fracture problems, the inner fractures are strongly 

affected by the stress shadowing effect and are mechanically closed. In such cases, the 

CDDM gives negative normal displacement discontinuities which are physically 

unrealistic. The joint-element higher order displacement discontinuity method (JE-

HDDM) should be used to quantitatively and accurately capture the closure, opening, and 

shearing of the fractures. When decreasing the fracture spacing between multiple 

fractures, the CDDM requires more and more finer grids to give accurate results, and may 
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become unstable and fail to capture the fracture behavior even using extremely fine grids 

when the spacing is too small. However, the HDDM does not require finer grid sizes to 

obtain accurate results and precisely predict the fracture opening, which saves a huge 

amount of computational time. 
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3. HYDRAULICALLY INDUCED SHEAR SLIPPAGE OF WEAK BEDDING 

INTERFACES IN SHALE LAMINATIONS 

3.1. Introduction 

Bedding planes are widely distributed in the unconventional shale formations and 

are affecting the hydraulic fracturing in a way we haven’t clearly understood. Usually 

these bedding layers are not mechanically open due to large overburden stress, yet 

hydraulic fracturing has been inferred to trigger the injection-induced seismic events as 

related to the nucleation and propagation of the pre-existing weak bedding interfaces. 

Although the basic principles of the injection-induced bedding interface shear slippage 

have been extensively studied and researched, critical details remain incomplete as regard 

to the activation and the subsequent propagation of the shear slippage.  

The way the hydraulic fracture height growth being influenced by the bedding 

layers can be summarized as crossing, slowing down, deflecting, and terminating 

depending on different types of the rock fabric elements, as shown in Figure 3.1. As 

depicted in the figure, the type of horizontal interfaces can be divided into four categories, 

i.e., weak interfaces, stiff interfaces, stringers, and the weak beds. Shear sliding and the 

slippage propagation are more likely to happen in the horizontal weak interfaces. During 

hydraulic fracturing process, the fluid injection pressure exceeds the minimum in-situ 

stress, consequently creating and propagating one or more tensile fractures.  
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Figure 3.1 Different types of the rock fabric elements and the impacts on the 

hydraulic fracture vertical propagation. 

 

In case of a laminated shale formation, a hydraulic fracture will intersect horizontal 

weak interfaces between the laminations. If the weak interface is permeable, the fracture 

fluid will leak off from the vertical hydraulic fracture into the horizontal weak interface. 

The fluid leaking into the interface will elevate the pore pressure inside the interface which 

will reduce the effective normal stress acting on the natural fracture. Depending on the in-

situ stresses, this reduction in effective stress may lead to shear failure or slippage along 

the horizontal weak interface. Shear slippage causes dilation due to mismatching of the 

fracture surfaces due to surface roughness. This can potentially increase the bedding 

interfacial conductivity and enhance fluid flow deeper into the interface (shown in Figure 

3.2). Under the right stress conditions and natural fracture orientation, this shear-induced 

slippage can continue to propagate to a significant distance, driven by the fluid pressure 

from the main hydraulic fracture. 
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Figure 3.2 Physical procedure of the shear activation and slippage propagation in 

the horizontal weak bedding interface. 

 

In this chapter, a coupled fluid flow and rock mechanical model is developed to 

better understand the physical process of bedding layer shear dilation and how it’s 

influencing hydraulic fracture propagation and height growth. To accurately capture the 

shear slippage and propagation of the bedding layers induced by the hydraulic fracture, 

we applied a joint element based higher order displacement discontinuity method (JE-

HDDM) which outperforms the constant displacement discontinuity method in accuracy 

but maintains same amount of computational time. 

Then a static shear slippage model based on the “FracT” model (Chuprakov and 

Prioul 2015) is proposed and developed to effectively capture the sliding zone of the 

bedding interfaces as well as the shear displacement  discontinuities. The static shear 

slippage model is a combination of the analytical “FracT” model and the JE-HDDM, 

which calculates the impact of the shear slippage of the horizontal weak bedding interfaces 

on the fracture height growth in a much more efficient way.  
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3.2. Dynamic shear slippage  

The dynamic process of the interaction between a vertical hydraulic fracture with 

multiple horizontal bedding interfaces depicted in Figure 3.3 can be considerably 

complex, as this process is coupled by several physical mechanisms including but not 

limited to the rock deformation, hydraulic fracture propagation, bedding layer activation 

and propagation, interaction between hydraulic fracture and bedding layers, interaction 

among the bedding layers, and fluid flow in both hydraulic fracture and bedding layers 

against time. Rigorous modeling of this process is not only mathematically sophisticated 

but also computationally expensive. When the hydraulic fracture height reaches the 

equilibrium state at the given perforation pressure, the horizontal bedding layers are also 

assumed to reach the equilibrium state. Therefore, the initial activation of the shear 

slippage of the bedding layers and the dynamic fluid flow inside the fractures are less 

essential compared to other mechanisms and will not be considered in this model. A 

geometric depiction of a hydraulic fracture interaction with a horizontal bedding interface 

is demonstrated in Figure 3.3, where the blue color indicates the vertical hydraulic 

fracture, the black indicates the horizontal interface, the black arrow indicates the shear 

slippage propagation, and the red arrows indicate the fluid diffusion. v is the in-situ 

vertical stress and 0 is the shear stress.  
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Figure 3.3 Geometric depiction of a vertical hydraulic fracture interaction with a 

horizontal weak interface. 

 

3.2.1. Rock deformation  

For a 2D crack propagation in an elastic medium, the equation governing the 

surface stress conditions and the fracture opening displacement is given by: 

 
1 1
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where 
2 2( ') ( ')r x x y y= − + −  , ( , )T x y  is the normal traction on the fracture surface, 

w  is the fracture width, G is the shear modulus, v  is the Poisson’s ratio, and   is the 

fracture surface. For a straight horizontal weak bedding interfacial crack, the Equation 

(3.1) can be reduced to: 
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where G  is Green’s function given as: 
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'E  is plane strain elastic modulus, 
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−
, E and v  are Young’s modulus and 

Poisson’s ratio, respectively.  

 

3.2.2. Fluid mechanics 

In a horizontal weak interface, the fluid pressure variation along the vertical 

direction can be negligible. An incompressible Newtonian fluid is considered in this 

model. Although the properties of the fracture fluid are often described by a non-

Newtonian power law, the assumption of a Newtonian fluid simplifies the problem and 

provides a better physical understanding of the flow phenomenon. For an incompressible 

Newtonian fluid, the Navier-Stokes equation can be written in the following form (Currie, 

1974): 

 2v
p F v

t
  


= − + + 


 (3.5) 

where ( , , )x y zv v v v= is the velocity vector, p is the pressure,  is the viscosity of the fluid, 

 is the density of the fluid, and F is the body force per unit mass.  
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Considering that the volume rate of the fluid flow per unit length in the x and y 

directions are defined as: 
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Combining Equations (3.5) and (3.6) we can obtain the continuity equation which 

is written as: 

 0L
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where w  is the effective mechanical aperture of the horizontal interface, and Lq is the 

fluid loss rate through the fracture walls into the neighboring rock matrix. The mechanical 

aperture is referred to an effective opening of the two surfaces in contact that gives the 

same storage volume provided by the void space at the interface due to the roughness of 

the surfaces.  

The evolution of the effective permeability due to the pressure change and the 

shear dilation can be modeled by the following equation (Willis-Richards et al. 1966): 
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where 0w  is the initial fracture aperture without shear slippage,  nw  is the fracture aperture 

without shear slippage, sw  is the shear slip induced dilation, resw  is the residual aperture 

which is generally negligible, 'n  is the effective normal stress, and 
nref  is the reference 
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stress in accordance with the stress that causes reduction of the aperture from 0w , su is the 

relative shear displacement, and eff

dil is the effective shear dilation angle. According to 

Willis-Richards et al. (1966), eff

dil  is the dependent on the confining stress and has a similar 

form as nw . Barton et al. (1985) developed an empirical formula for the hydraulic aperture 

fw to the mean mechanical aperture w  and the surface roughness: 
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where apertures are measured in microns, and JRC refers to the “joint roughness 

coefficient” and is dimensionless parameter that describes the surface roughness profile 

defined by Barton and Choubey (1977).   

Apart from the continuity equation, the pressure gradient equation is needed to 

describe the fluid flow, which is described by the following equation: 
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Here the cubic law is adopted, where the fracture permeability is related to the 

hydraulic fracture aperture:  
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Combining Equation (3.10) and (3.11) we can obtain the governing equation for 

the fluid flow inside the horizontal weak interface: 
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where c  is the leakoff coefficient from the horizontal weak interface into the matrix, and 

( )x  is the time of the fluid arrival at location x . 

 

3.2.3. Boundary Conditions 

For a typical case where the hydraulic fracture is interacting with a horizontal weak 

interface, the following boundary conditions are satisfied: 

 ( )0, ip t p=  (3.13) 

 ( , ) 0s su L t =  (3.14) 

where ip is the fluid pressure at the intersection point between the hydraulic fracture and 

the interface. These two boundary conditions indicate that the fluid pressure is constant at 

the intersection point, and that the shear and opening displacement discontinuities at the 

shearing front are both zero. To simplify the problem without loss of capturing the 

essential behavior of the shear slippage, another assumption is made that the interfacial 

pressure is initially equal to the reservoir pressure, i.e.: 

 
0( , )fp L t p=  (3.15) 

At the meantime, the remote shear stress at the initial status satisfies the following 

condition:  

 
0 0 0 0( ) ( )s intf sp p    −   −  (3.16) 
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where s  is the static Coulomb friction coefficient. This boundary condition indicates that 

the horizontal weak interface would not be activated under the initial in-situ stress 

conditions. However, after the fluid is injected from the hydraulic fracture into the 

horizontal interface and the pressure 0p  is elevated to 
intfp , the shearing condition would 

be satisfied based on the Coulomb frictional law.  

 

3.2.4. Numerical workflow 

As mentioned in section 3.1 introduction, the procedure of the nucleation and the 

propagation of the shear slip is a coupled rock deformation and fluid flow problem. The 

rock deformation described in section 3.2.1 is discretized using the displacement 

discontinuity method based on the joint element. The JE-DDM formula for the closed part 

of the interface is given by: 
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and the formula for the shearing part of the interface is given by: 
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 (3.18) 

where the coefficients A  are explained and computed in details in section 2.2.4.  

The fluid flow equation (3.12) is discretized using the finite difference method 

(FDM) and is solved for fluid pressure for a given distribution of mechanical hydraulic 

fracture aperture and the effective fracture opening. A numerical workflow is developed 

to iteratively solve this coupled problem, as shown in Figure 3.4. For each time step, an 

initial guess for fluid front, width distribution is assumed. Then the fluid flow equation 

and the rock deformation are solved iteratively based on Picard iteration method. While 

checking the status of the joint element, i.e., the separation mode, shearing mode, and 

close mode. The iteration process shown in Figure 2.5 is also involved. The convergence 

criterion is that the assumed width distribution agrees with the computed width 

distribution.  
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Figure 3.4 Numerical workflow for the mathematical model of the shear activation 

and slippage in the bedding interface. 

 

3.3. Synthetic case study  

A synthetic numerical case example is presented in this section to demonstrate the 

interaction between the hydraulic fracture and the interface, and the nucleation as well as 

the propagation of the shear slippage along the horizontal interface. The total half length 

of the bedding interface is 25 m and the initial effective opening of the interface is 5e-4 
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mm. The rest of the geomechanics properties and the fluid flow properties are recorded in 

Table 3.1.  

Table 3.1 Parameters for the synthetic study of the hydraulic fracture and 

horizontal weak interface interaction.  

Reservoir pressure 27 𝑀𝑃𝑎 

Injection pressure 62 𝑀𝑃𝑎 

Fluid viscosity 0.001 𝑃𝑎 ⋅ 𝑠 

JRC 10 

Leakoff coefficient 2.36e-7 𝑚/𝑠 

Normal stress 62 𝑀𝑃𝑎 

Shear stress 3.6 𝑀𝑃𝑎 

Young’s Modulus 34.5 𝐺𝑃𝑎 

Poisson’s ratio 0.25 

Joint element 𝐾𝑁 13.57 𝐺𝑃𝑎 

Joint element 𝐾𝑆 13.57 𝐺𝑃𝑎 

Frictional coefficient 0.364 

Shear dilation angle 10 

 

Figure 3.5 presents the hydraulic fracture induced shear slippage activation and 

propagation of the horizontal weak interface. The whole procedure is much slower than 

that of the hydraulic fracture propagation. It takes around 2 hours for the shear slippage to 

propagate about 25 m, while a hydraulic fracture might propagate up to 250 m at the same 

time. At the initial state, the effective interfacial hydraulic aperture is only 5e-4 mm. 
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According to the cubic law, the effective permeability of the horizontal interface is much 

slower than the permeability in the main hydraulic fracture. The hydraulic fracturing fluid 

leaks from the vertical hydraulic fracture into the horizontal weak interface at a low pace 

due to the low permeability. Once the fluid enters the horizontal interface, the pressure 

inside the horizontal interface is elevated from the reservoir pressure to the fracture 

pressure at the contact point. The elevated interfacial pressure decreases the effective 

normal stress acting on the interface. Consequently, the shear strength is reduced 

according to Equation (3.16). Under the influence of the in-situ shear stress and the 

vertical fracture induced shear stress, the shear failure might happen in the horizontal 

interface. As a result, the effective opening is increased and the fluid leaking into the 

interface is further enhanced, as described in Figure 3.2.  

 

 

(a) 
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(b) 

 

(c) 

Figure 3.5 Hydraulically induced shear slippage activation and propagation in the 

horizontal weak interface at different time. 

 

The fluid leaking off front and the induced shear slippage sliding front versus the 

injection time is described in Figure 3.6. As clearly seen in the figure, at the early state, 

the fracturing fluid is firstly leaking into the weak interface, inducing the shear slippage. 

The shear slip front together with the fluid front moves slowly at early stage due to the 

low permeability. As shown in Figure 3.6, at around 6000 seconds the enhanced 

conductivity of the horizontal interface speeds up the shear slippage and the shear slippage 

front take over the fluid front. The transitions of these two stages can be visualized in 

Figure 3.7.  
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Figure 3.6  Fluid leaking off front and the induced shear slippage sliding front 

versus the injection time. 

 

   

Figure 3.7 Fluid flow front and the shear slippage front at different stages. 

 

The fluid leaking off volume and the evolution of the average conductivity of the 

horizontal interface against time are shown in Figure 3.8 and Figure 3.9. From these two 

figures we observe find out that the parameters increase slowly at the early stage and then 
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rapidly at the later stage, which demonstrates similar trend as the shear slippage activation 

and the propagation. Ultimately, the fluid leaking off volume is around 0.25 2 /m m , 

which is about few percent of the fracturing fluid. The ultimate average conductivity of 

the weak interface is around several md-ft, which is much less competitive than the 

propped fracture conductivity, while similar magnitude of a unpropped fracture 

conductivity.  

 

Figure 3.8 Fluid volume leaking into the horizontal weak interface against the 

injection time. 
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Figure 3.9 Evolution of the average conductivity of the horizontal weak interface 

against the injection time. 

 

Understanding the process of the hydraulically induced shear slippage activation 

and the propagation is essential for quantifying the impact of the bedding interfaces on the 

hydraulic fracture height evolution. The dynamic coupled fluid flow and rock deformation 

model provides a tool for numerical simulation of the physical process and the analysis of 

the impact factors. In the following sections, we investigate the effects of the fluid 

viscosity and the initial interface width on the shear slippage and dilation.  

 

3.3.1. Effect of fluid viscosity on the shear dilation  

In this section, the effect of the fracturing fluid viscosity is investigated. The fluid 

viscosity not only has a considerable impact on the hydraulic fracture propagation, but 

also a significant influence on the horizontal weak interfacial shear slippage and dilation. 
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Three cases with different fluid viscosities are compared in this section, i.e., 0.1 cp, 1.0 

cp, and 10 cp, with 1.0 cp our base case. The shear sliding length and the pressure 

distribution along the horizontal interface in these three cases are shown in Figure 3.10. 

As indicated in the figure, the shear sliding propagates faster with low fluid viscosity and 

slower with large fluid viscosity. In 2 hours, the shear sliding length for the fluid viscosity 

0.1 cp, 1.0cp, and 10 cp are 25 m, 19.8 m, and 13.4 m, respectively. Correspondingly, the 

fluid volume that is leaking from the hydraulic fracture into the horizontal interface is 

decreasing from 0.26 2m when viscosity is 0.1 cp, to 0.23 2m and 0.19 2m , when fluid 

viscosity is 1.0 cp and 10 cp, respectively.  

 

 

 

(a) 

 

 

 

 

 

(b) 

 

 

 

 

(c) 

Figure 3.10 Shear slippage and pressure distribution along the horizontal interface 

at different fluid viscosities. (a) fluid viscosity = 0.1 cp, (b) fluid viscosity = 1.0 cp, 

(c) fluid viscosity  = 10 cp. 
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3.3.2. Effect of Initial Bedding Layer Width 

The initial horizontal weak interface effective aperture is another parameter that 

has considerable impact on the shear sliding process. Three different initial effective 

hydraulic apertures of the interface, i.e., (a) 0.001 mm, (b) 0.0005 mm, and (c) 0.0001 mm 

are assigned and simulated to investigate the impact on the shear sliding process. The 

results are presented in Figure 3.11. The figure indicates that smaller initial horizontal 

interfacial aperture has much slower shear slippage process and much shorter sliding zone. 

This is because that smaller initial hydraulic aperture generates low fracture permeability 

and conductivity. Lower permeability indicates lower process of the fluid leaking off from 

the hydraulic fracture into the horizontal interface, which results in a lower process of the 

shear activation and the consequent propagation. After 2 hours injection from the 

hydraulic fracture, the total fluid leaking volume from the hydraulic fracture into the 

horizontal interface for the three cases (a), (b), (c) are 0.28 2m , 0.23 2m , and 0.07 2m , 

respectively. The fluid volume in case (c) is almost negligible compared to the fracturing 

fluid volume. Additionally, the sliding length in case (c) is only a few meters, indicating 

that the shear slippage mechanism in small-initial-aperture interfaces can be negligible.  
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(a) 

 

 

 

 

 

(b) 

 

 

 

 

(c) 

Figure 3.11 Shear slippage and pressure distribution along the horizontal interface 

at initial effective hydraulic aperture. (a) initial aperture  = 0.001 mm, (b) initial 

aperture  = 0.0005 mm, (c) initial aperture  = 0.0001 mm.  

 

3.4. Static shear slippage   

The dynamic coupled fluid flow and rock deformation model of the shear 

activation and propagation has improved our understanding of the bedding interfacial 

shear slippage. Yet it is too computationally intensive to be incorporated into an efficient 

height model for field-scale engineering design. In this section, a static shear slippage 

model based on the “FracT” model (Chuprakov and Prioul 2015) is proposed and 

developed to effectively capture the sliding zone of the bedding interfaces as well as the 

shear displacement  discontinuities. The static shear slippage model is a combination of 

the analytical model and the JE-HDDM, which calculates the impact of the shear slippage 

of the horizontal weak bedding interfaces on the fracture height growth in a much more 
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efficient way. To maintain the computational efficiency, the dynamic fluid flow process 

is not explicitly calculated in this static model. Details regarding to the impact of the fluid 

flow on the shearing process are referred to the section 3.2.  

The fracture straightening method (FSM) is proposed by Chuprakov (2015) to 

approximate the width profile and the lateral sliding length of a T-shaped hydraulic 

fracture. The FSM is based on the analytical solution (equation 7) of a straight plane-strain 

fracture in an infinite homogeneous elastic medium (Kachanov et al., 2013).  

 

2 2 2 2 24
( ) ( ) ln

'

l ax l a l a
w x P a da

E l x a

− + − +
=

−  (3.19) 

where l  is the fracture half length, a  ranges from l−  to l . P  is the net pressure, 'E  is 

the Young’s modulus for plane strain problem, x  is the location for width computation.  

In FSM, a T-shaped hydraulic fracture is virtually straightened into a straight 

hydraulic fracture, as shown in figure 7. L  stands for the original fracture half height. strL  

stands for the straightened fracture half height. For symmetric-arrest hydraulic fracture, 

str sL L b= + ; for asymmetric-arrest hydraulic fracture, / 2str sL L b= + . The straightened 

hydraulic fracture follows two assumptions and two boundary conditions.  

• Assumption 1. The actual opening of the T-shaped hydraulic fracture in the zone 

y L  is assumed to be equal to the opening of the straightened fracture, which 

is  

 ( ) ( ),0strw y w y y L    (3.20) 

• Assumption 2. The sliding at the interface segments is assumed to be equal to half 

of the opening of the straightened fracture past the interface 
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 ( ) ( ) / 2,str strw y L w y L y L−     (3.21) 

• Boundary condition 1. The net pressure within the segment y L is set equal to 

the one of the straightened fracture  

 '( ) ' ( ),0strp y p y y L    (3.22) 

• Boundary condition 2. The critical shear stress m  at the frictional interface 

multiplied by a calibration factor is equal to the negative of the net pressure past 

the interface  

 ' ( ), ,m mstr str mp y L y L  = −   =  (3.23) 

 

Figure 3.12 Fracture straightening method, Symmetric arrest: H-shaped fracture, 

Asymmetric arrest: T-shaped hydraulic fracture (Modified from Chuprakov and 

Prioul 2015). 

 

Based on the above assumptions, the following equations can be obtained for the 

horizontal interfaces under the equilibrium status: 

 intf intf

II IIcK K=  (3.24) 
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 str intf

I IIK K=  (3.25) 

According to the linear elastic fracture mechanics, the stress intensity factor of the 

straightened vertical fracture can be calculated by: 

 

1 1
( ( ) ( )) ( )

eff eff
Lf f

eff eff
Lf f

eff eff
h S hf fstr

I str veff eff eff effh h S
f f f f

h y h y
K p y y dy p dy

h h y h h y
 

 

−

− −

+ +
= − + −

− −   (3.26) 

where 
eff

fh is the effective straightened hydraulic fracture half height, LS is the distance 

from the bedding layer shear slippage tip to the hydraulic fracture, i.e., half of total 

shearing length, v  is the vertical in-situ stress acting on the bedding layers. By solving 

Equations (3.24) - (3.26) we can obtain the bedding layer shear slippage length at the 

equilibrium state. 

Once the length of the shear sliding zone is obtained from the static model, the 

shear displacement discontinuities of the horizontal interfaces can be calculated using the 

proposed JE-HDDM method introduced in Chapter 2.  

 

3.5. Conclusions 

In this chapter, the hydraulic fracture induced shear slippage activation and the 

fluid-driven propagation in the horizontal weak interface in shale laminations is 

investigated. Two models are developed to study the physical process and the geometries 

of the shear slippage including the dynamic shear slippage model coupling the fluid and 
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the rock deformation, and the static model under the equilibrium status assuming the linear 

elastic fracture mechanics.  

The dynamic model captures the activation of the shear slippage based on the 

boundary conditions and the Mohr-Coulomb criterion. The propagation of the shear 

slippage is initially driven by the fluid leaking off from the vertical fracture into the 

interface, and then driven by the shear induced dilation of the fracture interfaces.  

The static model provides us an efficient way to predict and calculate the final 

geometry of the horizontal shear slippage, which can be used in the fracture height model 

to quantify the effectiveness on the fracture height growth and simultaneous lateral 

propagation.  
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4. HYDRAULIC FRACTURE HEIGHT GROWTH CONSIDERING EFFECT OF 

WEAK BEDDING PLANES 

4.1. Introduction 

Understanding and quantifying the effect of the weak bedding layers on the 

hydraulic fracture height growth in shale formations have always been challenging during 

the hydraulic fracturing design and operations. This chapter introduces a comprehensive 

and non-intrusive hydraulic fracture height growth model that accounts for both formation 

rock properties and the weak interfaces, and can be incorporated into pseudo-3D hydraulic 

fracture simulators. The formation rock properties are handled by the equilibrium fracture 

height model. The shear slippage of the weak bedding layers is simulated by an efficient 

2D higher order displacement discontinuity method and the effectiveness on the hydraulic 

fracture height is quantified by correcting the stress intensity factors at the hydraulic 

fracture tips. The model is applied in the Permian Basin Wolfcamp formation to 

quantitatively investigate the effect of bedding layers on the hydraulic fracture height 

growth. Numerical studies show that the shear slippage of the beddings can significantly 

slow down the hydraulic fracture height growth and that the shear fracture toughness of 

the bedding layers and the spacing between the laminations have considerable impact on 

the effectiveness of the shear slippage on the fracture height growth. Larger shear fracture 

toughness and smaller spacing of the bedding layers add more mechanical resistance on 

 

 Part of this chapter is reprinted with permission from “An Efficient Model for Hydraulic Fracture 

Height Growth Considering the Effect of Bedding Layers in Unconventional Shale Formations” by Li, J. 

and Wu, K. 2022. SPE Journal, pp.1-17., Copyright [2022] by Society of Petroleum Engineers. 



 

93 

 

the fracture height propagation and requires larger pressure to breakthrough. Additional 

results show that the effect of bedding layers is more significant in formations with low-

stress-contrast but less obvious in formations with high-stress-contrast. The impact of the 

landing depth on the hydraulic fracture height growth is also investigated to provide 

crucial insights on the optimization of the landing depth in laminated formations.  

 

4.2. The equilibrium fracture height theory  

The so called “equilibrium height belonging to a certain treating pressure” is 

adopted here which can provide an upper limit of the hydraulic fracture height in 

homogeneous rock (Simonson et al. 1978; Economides and Nolte 2000; Mack and 

Warpinski 2000; Weng et al. 2011; Liu and Valko 2017). The equilibrium means when 

given a treating pressure, the integration of the net pressure inside the fracture along the 

height (i.e. SIF, IK ) is equal to the fracture toughness IcK at both upper and lower tips at 

the same time. If the computed SIFs at either tip is higher than the IcK  at the layer in 

consideration, the specific tip will grow and propagate, until the computed SIF becomes 

equal or slightly less than the IcK  of the layer.  

The solution for the equilibrium height has been investigated and developed since 

1970s. The earliest solution was given by Simonson et al. in 1978 for a symmetric three-

layer formation problem with exactly the same upper and lower minimum horizontal stress 

and the constant treating pressure along the fracture height, then it was extended by Mack 

and Warpinski to asymmetric multilayer formation problems. Liu and Valko have 

summarized the previous development of the equilibrium height mode and provided more 
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case studies to investigate the effect of rock formation properties on the hydraulic fracture 

height. In this work, we adopt Liu and Valko’s equation (Equation (4.1)) and their 

algorithm to develop the equilibrium height model, and improve the model to avoid the 

unrealistic solution pair and consider effect of bedding layers fracture toughness.  

 

Figure 4.1 Mathematical depiction of hydraulic fracture height containment in thin 

laminations. (Reprinted from Li and Wu 2022b) 
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To obtain the equilibrium location of both upper tip and lower tip of the hydraulic 

fracture, we first need to discretize the whole layer in question into multiple thin layers. 

For example, as shown in Figure 4.1, the fracture vertical growth in three layers are 

computed by discretizing the three layers into multiple layers. For each step, the stress 

intensity factors (SIF) at both upper and lower fracture tips are computed using Equation 

(4.2). Then the SIFs are compared to the critical SIFs, or the fracture toughness of the 

layers. The equilibrium means the SIF is equal to the fracture toughness at both upper and 

lower tips at the same time. If the computed SIFs at either tip is higher than the IcK  at the 

layer in consideration, the specific tip will grow and propagate, until the computed SIF 

becomes equal or slightly less than IcK the of the layer, where the “equilibrium status” is 

reached. 

 

Figure 4.2 Discretization of the target layers for hydraulic fracture height growth.  
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where 
perfh  is the perforation depth measured from the fracture lower tip, 

perfp  is the fluid 

pressure at the perforation depth, i and ih  are the minimum in-situ stress and the 

distance from the i th layer (counted from upper tip) to the fracture lower tip.  

Given a series of injection pressure, a full hydraulic fracture height map can be 

obtained with the equilibrium model. With the results, we are able to investigate the effect 

of the geo-mechanical properties of the rock formation, the fluid properties, the landing 

depth, and the bedding layers resistance caused by the enhanced fracture toughness.  

The procedure is to compare the SIFs against the associated fracture toughness at 

the tips, if the SIF at either tip is higher than the associated fracture toughness, the tip will 

grow, otherwise the tip will be contained at the equilibrium state. The above workflow 

properly handled the formation rock parameters in the hydraulic fracture height growth. 

The effectiveness of the bedding layers is quantified by correcting the effective stress 

intensity factors at the fracture tips due to the interaction between bedding layers and 

hydraulic fracture. 
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4.3. Effect of bedding plane shear slippage on the hydraulic fracture height   

At the equilibrium state, similar to the concept of the equilibrium fracture height 

theory, the equilibrium tip status of the bedding layers in a homogeneous rock can be 

expressed by  

 intf intf

II IIcK K=  (4.3) 

where intf

IIK is the mode II SIF of the bedding layers and intf

IIcK  is the critical mode II SIF 

of the bedding layers. At such state with the given perforation pressure, the bedding layer 

shearing has propagated to the maximum distance and reached the equilibrium.  

The intf

IIcK  is to be measured and the intf

IIK can be computed from the integration of 

the net pressure inside the bedding layers. In shale formations, the bedding layers in the 

thin laminations are mostly mineralized with almost-zero permeability (Gale and Holder 

2008; Weng et al. 2018) and may not be mechanically open throughout the whole stage of 

the hydraulic fracturing jobs. Yet the fluid leaking off into the bedding layers will induce 

the shear slippage as well as the propagation of the bedding layers, and consequently 

influences the pressure distribution. In real cases, the contact type of the bedding layer 

interfaces may include stick mode, shearing mode, or separation mode, or combinations 

of any two or three modes, and the fluid flow inside the interfaces may include more than 

one regime. Therefore, accurate simulation of the pressure distribution within the 

interfaces considering all of the physical mechanisms may be too technically difficult. 

Chuprakov and Prioul (2015) proposed an extensive semi-analytical way of estimating the 

mode II SIFs of the bedding layer interfaces without using the pressure distribution inside 
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the interfaces. The idea is that under equilibrium state, the shear displacements at the 

interfacial segment can be effectively straightened to the open displacements at the 

corresponding segment of the vertical hydraulic fracture. And the pressure along the 

interfacial segment is assumed the same as that of the straightened parts. Therefore, the 

mode II SIF of the interface is equivalent to the mode I SIF of the straightened vertical 

fracture, which is expressed in Equation (4.4) (Since the left side is symmetric to the right 

side, a uniform equation is presented). 

 str intf

I IIK K=  (4.4) 

The SIF of the straightened vertical fracture is given by:  
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where 
eff

fh is the effective straightened hydraulic fracture half height, LS is the distance 

from the bedding layer shear slippage tip to the hydraulic fracture, i.e., half of total 

shearing length, v  is the vertical in-situ stress acting on the bedding layers. By solving 

Equations (4.4)-(4.5) we can obtain the bedding layer shear slippage length at the 

equilibrium state. Chuprakov and Prioul (2015) provided analytical solutions to the 

equation under conditions where either symmetric or asymmetric arrest of the hydraulic 

fracture by the interfaces is occurred. In our model the Equations (4.4)-(4.5) are solved 

numerically to maintain the accuracy in more complex field situations.  

With the shear slippage length calculated, the interaction between the hydraulic 

fracture and the bedding layers, and the interaction among the bedding layers can be 
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modeled by a 2D elasticity solution for the stress and displacements relationship 

(Equations (4.6)) using a boundary-element method. The derivation of the solution and 

the discretization of the formulation are elaborated in Crouch and Starfield (1983).  
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where s and n  are the shear and normal stresses on the fracture segments, sD and nD

are the shear and normal displacement discontinuities of the fracture segments, ij

ssA , ij

snA ,

ij

nsA , and ij

nnA  are the 2D, plane-strain elastic influencing coefficients between the fracture 

segments i and j .  

To achieve faster computation, the above set of linear equations system is solved 

using an efficient higher order displacement discontinuity method (HDDM) which is 

proposed and developed by Shou and Crouch (1995) and demonstrated robustness and 

efficiency by Li et al. (2021a, 2021b). The efficient HDDM adopts quadratic 

approximation (Equation (4.7)) of the displacement discontinuities on each fracture-

segment patch which is composed of three fracture segments. Substituting Equation (4.7) 

into Equation (4.6) gives Equation (4.8). This way the method provides higher order 

approximation without introducing additional computational degrees of freedom.   
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The details of computing the influencing coefficients and assembling the matrix 

ijA is given by Li et al. (2021a, 2021b) 

The effectiveness of bedding layers influencing the hydraulic fracture height 

growth can be quantified through the change of the SIFs of the hydraulic fracture induced 

by the bedding layers (Kresse and Weng 2019). At the intersection between the hydraulic 

fracture and the horizontal bedding interfaces, the vertical hydraulic fracture width is 

influenced by the shear slippage of the beddings and the amount of change in the width is 

given by:  
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where 
j

sD are the shear displacement discontinuities of the bedding layers and the 
j

nD is 

the change in the vertical hydraulic fracture width. Based on the linear elastic fracture 

mechanics, the change of SIFs of the hydraulic fracture induced by the bedding layers is 

quantified as: 
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K D

dl


= −  (4.10) 

where 'E  is the plane-strain modulus and is given by ' 2(1 )E E = − , E and   are the 

Young’s Modulus and the Poisson’s Ratio, 
1

nD is the change in width of the fracture tip 

element and dl is the length of the tip element. Therefore, the correction to the effective 

SIF of the hydraulic fracture is given by: 

 eff change

I I IK K K= −  (4.11) 

The effective SIF is then substituted to obtain the equilibrium height with a given 

pressure.  

 

4.4. A novel hydraulic fracture height model considering the impact of weak 

bedding planes  

The whole simulation workflow is summarized in Figure 4.3. First of all, the target 

zones above and below the perforation depth are discretized respectively, each upper 

discretized layer depth represents the upper tip of the vertical hydraulic fracture and lower 

discretized layer depth represents the lower tip of the fracture, and together they form a 

hydraulic fracture height tip location pair. For each pair, the SIFs at both upper tip and 

lower tip are calculated using Equation 3. If any bedding layers are distributed between 

the upper tip and the lower tip, the “Effect of bedding layer interfaces” subroutine is called 

and the Equations 4-12 are solved, where the effective SIFs are updated. Then the SIFs 

are compared with the critical SIFs at both upper and lower tips simultaneously and a 
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perforation pressure is to be found by equating SIFs to critical SIFs. By looping all the tip 

location pairs, we should have obtained two pressure matrix that governs the height of the 

vertical hydraulic fracture with any given perforation pressure. With a specific pressure or 

a series of pressures, we can find the corresponding hydraulic fracture tip locations by 

calling the “Find height tip locations” subroutine: starting from the closest lower tip 

location, find the closest upper tip location that makes the given pressure p larger than the 

computed 
stablep+ , then check whether this pair also stabilizes the lower tip, if yes, the pair 

is the solution pair and the tip locations are the hydraulic fracture height locations (or 

interpolation is needed if the solution is between the discretized depths), if not, go to next 

closest lower tip location and repeat the above process until the stable solution pair is 

found. If no solution is found, the given pressure is overlarge and either upper bound or 

lower bound or both bounds are penetrated.  

 

Figure 4.3 Numerical simulation workflow of the new hydraulic fracture height 

growth model considering the effect of bedding layers. (Reprinted from Li and Wu 

2022b) 
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4.5. Model verification  

Our model is validated against Liu and Valko’s (2018) result with a six-layer 

asymmetric problem. The thickness and the true vertical depth are given by Liu and Valko 

(2018), the minimum horizontal in-situ stress distribution is depicted here in Figure 4.4. 

In Figure 4.4a, the black line indicates the stress profile, the red-dash line indicates the 

perforation depth, and the red dot indicates the perforation point, which is located in the 

third layer. The mode I fracture toughness IcK of the rock layers are 2000 psi inch  and 

are uniform for all layers. The other parameters are recorded in Table 2.1 . No bedding 

layers are considered. Our results of the hydraulic fracture tip locations against the 

injection pressure are presented in Figure 4.4b together with Liu and Valko’s results, 

illustrating that our results are in good agreement with their results. The results are 

validated against the commercial software MShale and FracPro as mentioned in their 

paper, and are also cross-validated by Mehrabi et al. (2021). 

Table 4.1 Formation data for the verification study. (Reprinted from Li and Wu 

2022b) 

No. of 

Layer 

Top Depth 

(ft) 

Thickness 

(ft) 

In-Situ 

Stress (psi) 

Fracture 

Toughness 

(psi*√inch) 

Perforation 

1 8990 90 7150 2000 No 

2 9080 90 7150 2000 No 

3 9170 170 5700 2000 Yes 

4 9340 40 7350 2000 No 
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5 9380 75 5800 2000 No 

6 9455 195 8200 2000 No 

 

            

(a)                                                                   (b) 

Figure 4.4 Benchmark of our model against Liu and Valko’s model. (a) the 

minimum horizontal in-situ stress profile as part of the input, (b) the hydraulic 

fracture tip locations against the injection pressure. (Reprinted from Li and Wu 

2022b)      
 

4.6. Field example: case studies in Permian Basin   

In this section, the proposed hydraulic fracture height growth model is applied to 

a field example in Permian basin Wolfcamp formation. As one of the most prolific 

unconventional plays in the United States, the Permian Basin consists of three main basins, 

the Midland, Delaware, and Marfa basins. The Wolfcamp formation investigated in this 

study is located at the Midland Basin. The target interval is several hundred feet below the 

lower Spraberry and above the Strawn, and the stratigraphic layering is depicted 

proportionally to the thickness in Figure 4.6a (Ross et al. 2018). The pay zone ranges from 
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the Wolfcamp A1 to the Wolfcamp C1 (totally 7 geological layers) and the well is landed 

in the Wolfcamp B2. The true vertical depth of each layer top and bottom locations and 

the thickness are recorded in Table 4.2. The minimum horizontal in-situ stress along the 

depth is presented in Figure 4.6b, and the mode I fracture toughness IcK  of the rock layers 

are 2000 psi inch  and are uniform for all layers, as shown in Figure 4.6c. The resolution 

of the stress profile along the depth is 1 ft and the total length of the interval is 916 ft, i.e., 

the total number of computational layers are 916. The Young’s modulus and Poisson’s 

Ratio are 3.0 MMpsi and 0.27, respectively and are both uniform for all layers. The 

laminations and bedding layers are observed at the Wolfcamp formation with the lithology 

ranging from silicon to limestones (Lascelles et al. 2017). The spacing between the 

bedding layers in thin laminations typically ranges from several feet. The mode II fracture 

toughness IIcK of the bedding layers for the base case are set to be equal to the mode I 

fracture toughness of the rock and sensitivity analyses  are then performed.  
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Figure 4.5 Geological description of the Permian basin Wolfcamp Formation. 

(Reprinted from Li and Wu 2022b) 

 

 

(a)                                             (b)                                       (c)  

Figure 4.6  (a) Schematic representation of the Permian Basin stratigraphy 

(Adopted from Ross et al. 2018), (b) the minimum horizontal stress profile in the 
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pay zone, the red-dash line indicating the well landing depth, (c) the mode I 

fracture toughness profile in the pay zone. (Reprinted from Li and Wu 2022b) 

 

Table 4.2 The true vertical depth, thickness, and the mode I fracture toughness of 

the formation layers. (Reprinted from Li and Wu 2022b) 

Layer Rock Formation 
TVD Top 

(ft) 
TVD Bottom (ft) 

Thickness 

(ft) 

Toughness 

(Psi*inch^0.5) 

1 Wolfcamp A1 7984 8037 53 2000 

2 Wolfcamp A2 8037 8188 151 2000 

3 Wolfcamp A3 8188 8280 92 2000 

4 Wolfcamp B1 8280 8332 52 2000 

5 Wolfcamp B2 8332 8593 261 2000 

6 Wolfcamp B3 8593 8780 187 2000 

7 Wolfcamp C1 8780 8900 120 2000 

 

Based on the above input information, the hydraulic fracture height growth without 

considering the effect of the bedding layers against the net injection pressure predicted by 

our model is presented in Figure 4.7. The well is located in Wolfcamp B2 and the TVD is 

8398 ft. The hydraulic fracture tip locations are presented correspondingly, the curve 

above the perforation point represents the upper tip locations and the curve below the 

perforation point represents the lower tip locations against the net injection pressure. It is 

observed from the figure that the fracture height starts to grow when the net pressure gets 

larger than 800 psi and jumps both upward and downward after the net pressure reaches 

around 1100 psi. This can be attributed to the fact that the perforation layer is lightly 
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bounded by the stress barriers as depicted in the Figure 4.6b. The hydraulic fracture upper 

tip penetrates the upper bound firstly when the net pressure reaches 1220 psi, and the lower 

tip reaches the lower bound when the net pressure reaches 1505 psi.  

 

Figure 4.7 Hydraulic fracture height growth without considering the effect of the 

bedding layers against the net injection pressure. (Reprinted from Li and Wu 

2022b) 

 

The hydraulic fracture height growth considering the effect of the bedding layers 

is presented in Figure 4.8 together with the comparison with the height without the effect 

of the bedding layers. The spacing of the bedding layers in consideration is 9 ft, i.e., the 

total number of bedding layers within the whole interval is 100. The mode II fracture 

toughness IIcK of the bedding layers is 2000 psi inch . As indicated in Figure 4.8, the 

effectiveness of bedding layers on the hydraulic fracture height growth is obvious: given 

the same net injection pressure, the fracture height considering the effect of bedding layers 

is always smaller than that without the bedding layers; and similarly, to reach a same 
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height, the case considering the effect of bedding layers requires larger net injection 

pressure. For most cases of the given net pressure, the difference between these two 

heights is generally less than 20%. However, in cases where the net pressure is equal to 

1100 psi, the difference between these two heights is significant since the height without 

bedding layers already breakthrough the local barriers to the next layers while the height 

with effect of the bedding layers is still bounded by local barriers.  

 

Figure 4.8 Comparison between the hydraulic fracture height with and without the 

effect of the bedding layers. (Reprinted from Li and Wu 2022b) 

 

More details of the hydraulic fracture height growth and the corresponding 

bedding layers shear slippage are given in Figure 4.9 and Figure 4.10. Figure 4.9a shows 

the hydraulic fracture height without effect of bedding layers and Figure 4.9b shows the 

hydraulic fracture height and the corresponding bedding layers shear slippage length 

during the height propagation when the net pressure is 1160 psi. Instead of visualizing all 
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100 bedding layers which is a mass of dash lines, only parts of the bedding layers with 

spacing around 30 ft are visualized to keep the clarity of the figures. The hydraulic fracture 

height in Figure 4.9a is 474 ft while the height in Figure 4.9b is decreased to 382 ft, 

indicating that the height is reduced by 20% by considering the effect of the bedding 

layers. This is due to the fluid leaking off from the hydraulic fracture into the bedding 

layers and the energy loss during the shear slippage of the bedding layers. Similar results 

are also observed when the net pressure is 1300 psi, as shown in Figure 4.10a and Figure 

4.10b. The fracture height without the effect of the bedding layers in Figure 4.10a is 840 

ft while the height considering bedding layers in Figure 4.10b is 722 ft, indicating a 14% 

decrease. It is worthwhile to mention that the hydraulic fracture in Figure 4.10a has already 

reached the upper bound, as indicated in Figure 4.11c. 

  

(a) (b) 

Figure 4.9 Hydraulic fracture height and the bedding layer shear slippage length 

when net pressure is 1160 psi. (a) Hydraulic fracture height without the effect of 
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bedding layers, (b) Hydraulic fracture height and the bedding layer sliding length. 

(Reprinted from Li and Wu 2022b) 

 

  

(a) (b) 

Figure 4.10 Hydraulic fracture height and the bedding layer shear slippage length 

when net pressure is 1300 psi. (a) Hydraulic fracture height without the effect of 

bedding layers, (b) Hydraulic fracture height and the bedding layer sliding length. 

(Reprinted from Li and Wu 2022b) 

 

Figure 4.11 displays the full hydraulic fracture profile including the hydraulic 

fracture height without effect of bedding layers (Figure 4.11a), and the hydraulic fracture 

height together with the bedding layers sliding length (Figure 4.11b), and the comparison 

of the hydraulic fracture tip locations between the case with and without the effect of 

bedding layers (Figure 4.11c). As indicated in Figure 4.11c, the hydraulic fracture upper 

tip reaching to the upper bound requires much smaller net injection pressure if no bedding 

layers are considered. As can be seen in Figure 4.11b, lateral sliding of the bedding layers 
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occurs and has increased the fluid loss in the vertical hydraulic fracture as well as the 

energy loss. However, the net pressure needed to penetrate the lower bound is almost the 

same with and without considering the effect of bedding layers, this might be because the 

in-situ stress increases in the lower layers mitigate the effect of the bedding layers.  

    

(a)                                              (b) 
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                                             (c) 

Figure 4.11 Full hydraulic fracture profile. (a) hydraulic fracture height without 

effect of bedding layers, (b) hydraulic fracture height and the bedding layers sliding 

length, (c) the comparison of the hydraulic fracture tip locations between the case 

with and without the effect of bedding layers. (Reprinted from Li and Wu 2022b) 
 

 

4.6.1. Effect of density of bedding planes 

The average spacing between the bedding layers in the thin laminations typically 

ranges from several inches to several feet. In this section, the effect of the average spacing 

between the bedding layers, which is referred to the “bedding layer density”,  is 

investigated. Two more numerical cases with the bedding layers spacing 4.5 ft and 3 ft are 

simulated. The rest of the parameters are maintained the same as the previous 9-ft case. 

The results are presented in comparison with the no-bedding-layer case. Figure 4.12 shows 

the full hydraulic fracture height evolution map against the net injection pressure of the 

four cases: without the effect of bedding layers, with the bedding layer spacing 9 ft, with 
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the bedding layer spacing 4.5 ft, and with the bedding layer spacing 3 ft. Figure 4.13 shows 

the corresponding hydraulic fracture tip locations. These two figures lead to the following 

findings: when the density of the bedding layer increases, the effect of the bedding layers 

on the hydraulic fracture height gets more significant and the hydraulic fracture height 

under the same net injection pressure is decreased; the net pressure required to penetrate 

both upper bound and lower bound is increased as the increase of the bedding layer 

density. This is because denser bedding layers have larger impact on the effective fracture 

toughness of the hydraulic fracture and more energy is required to break through the rocks, 

therefore slowing down the propagation of the hydraulic fracture height.  

   

Figure 4.12 Full hydraulic fracture height evolution map against the net injection 

pressure. (Reprinted from Li and Wu 2022b) 
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Figure 4.13 Hydraulic fracture height tip evolution against the net injection 

pressure. (Reprinted from Li and Wu 2022b) 

 

Figure 4.14 presents the hydraulic fracture height along with shear sliding distance 

of the horizontal bedding layers at the net injection pressure 1300 psi of the four cases. 

The comparison between the slippage of the visualized bedding layers shows the 

effectiveness of the bedding layers and further demonstrate the reason behind the 

hydraulic fracture height drop caused by the bedding layers. The hydraulic fracture height 

without effect of bedding layers (Figure 4.14a) is 840 ft, and the hydraulic fracture height 

with effect of bedding layers at the spacing of 9 ft, 4.5 ft, and 3 ft are 722 ft, 692 ft, and 

326 ft, respectively. With the effect of bedding layers, the hydraulic fracture height has 

dropped by 14%, 18%, 61% with regard to different densities. As indicated in Figure 

4.14b, Figure 4.14c, and Figure 4.14d, in closer spacing case, more shear slippage is 

observed, and the hydraulic fracture height is contained in a shorter zone with the same 
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net pressure since larger part of the energy is consumed in the bedding layers during the 

hydraulic fracture propagation.   

  

(a)                                                        (b) 

  

(c)                                                       (d) 
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Figure 4.14 Hydraulic fracture height and the bedding layer shear slippage length 

when the net pressure is 1300 psi. (a) case without bedding layer, (b) bedding layer 

spacing 9 ft, (c) bedding layer spacing 4.5 ft, (d) bedding layer spacing 3 ft. 

(Reprinted from Li and Wu 2022b) 

 

 

4.6.2. Effect of fracture toughness of bedding planes  

The mode II fracture toughness of the bedding layers is another critical factor that 

affect the shear slippage of the bedding layers and the consequent effectiveness on the 

hydraulic fracture height growth. Accurate measurement of the mode II fracture toughness 

can be challenging due to complex downhole conditions and heterogeneity. This section 

investigates the effect of the mode II fracture toughness of the bedding layers on the 

hydraulic fracture height. Three cases with the mode II fracture toughness (2000, 5000, 

and 10000 psi inch ) are presented in comparison with the case without the bedding 

layers. Figure 4.15 and Figure 4.16 present the hydraulic fracture full height and the tip 

location evolution against the net injection pressure. From the two figures it is observed 

that larger magnitude of the mode II fracture toughness of the bedding layers puts more 

resistance on the hydraulic fracture height propagation. Both upper and lower tips 

propagation of the hydraulic fracture are slowed down as the increase of the fracture 

toughness of the bedding layers. Additionally, the net pressure required to penetrate the 

pay zone is increased with larger fracture toughness.  
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Figure 4.15 Full hydraulic fracture height evolution map against the net injection 

pressure. (Reprinted from Li and Wu 2022b) 

 

 

Figure 4.16 Hydraulic fracture height tip evolution against the net injection 

pressure. (Reprinted from Li and Wu 2022b) 
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The change of the shear slippage distance of the bedding layers by different 

magnitude of the mode II fracture toughness intf

IIcK is visualized when net pressure is 1300 

psi and presented in Figure 4.17. In this case, the model I fracture toughness of the rock 

properties is still 2000 psi inch . For a large mode II fracture toughness, the horizontal 

bedding planes are still able to have shear failure due to stress conditions. As shown in the 

figure, the hydraulic fracture height without effect of bedding layers (Figure 4.17) is 840 

ft, and the hydraulic fracture height with effect of bedding layers (2000, 5000, 10000 

psi inch ) are 722 ft, 504 ft, and 324 ft, respectively. With the effect of bedding layers, 

the hydraulic fracture height has dropped by 14%, 40%, 61% with regard to different 

fracture toughness. As indicated in Figure 4.17b, Figure 4.17c, and Figure 4.17d, larger 

shear fracture toughness results in larger maximum shear slippage length of the bedding 

layers, and therefore larger energy loss in the bedding layer slippage, which reduces the 

fracture height significantly. 
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(a)                                                        (b) 

  

(c)                                                       (d) 

Figure 4.17 Hydraulic fracture height and the bedding layer shear slippage length 

when the net pressure is 1300 psi. (a) case without bedding layer, (b) bedding layer 

with intf

IIcK = 2000 psi inch , (c) bedding layer with intf

IIcK = 2000 psi inch , (d) bedding 

layer with intf

IIcK = 2000 psi inch .(Reprinted from Li and Wu 2022b) 

 

4.6.3. Effect of landing depth 

This section investigates the effect of the landing depth on the injection pressure 

and the hydraulic fracture height growth. Four landing depths located in Wolfcamp A3, 

B1, B2, and B3 are simulated, with B2 the base case. The hydraulic fracture height 

evolution against the net injection pressure is presented in Figure 4.18b. All four cases 

show completely different growth profiles but follow the similar trend, and they have the 

similar turning point when the hydraulic fracture height is around 400 ft and around 800 

ft. This is because that local stress barriers at the top of A3 and at the middle of B3 can be 
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observed from the stress profile (Figure 4.18a). The net pressure required to penetrate the 

whole pay zone for B3 is much smaller than that of A3 since the B3 is the high-stress layer 

and the A3 is the relatively low-stress layer. In low-stress layer, larger net pressure is 

required to penetrate the high-stress layer and vice versa.  

  

(a)                                                                     (b) 

Figure 4.18 Hydraulic fracture height growth against the net pressure by different 

landing depth. (a) the stress profile with arrows indicating the landing depth, (b) 

hydraulic fracture height map. (Reprinted from Li and Wu 2022b) 

 

Figure 4.19 records the fracture height growth along with the bedding layer shear 

slippage of these four different perforation depths at the net pressure of 1250 psi. The 

hydraulic fracture heights of the four cases are 379 ft, 460 ft, 719 ft, and 870 ft, 

respectively. The in-situ stress in the deeper layer, for example B3, is larger than A3 and 

given the same net pressure, the hydraulic fracture height will be larger. Except from the 

full height, the tip locations can also be different from each other with different perforation 

depths. The fracture height growing upward and downward is most likely asymmetric (as 
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indicated in Figs. 20a, 20b, and 20d). Through the simulation we are able to perform the 

well landing depth optimization, including locating the best perforation depth that keeps 

the hydraulic fracture penetrate the pay zone simultaneously at upper and lower bounds. 

In general, the well landed in a high-stress layer requires smaller net pressure for fracture 

height growth and larger net pressure if landed in a low-stress layer.  

  

                                 (a)                                                       (b) 
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(c)                                                       (d) 

Figure 4.19 Hydraulic fracture height and the bedding layer shear slippage length 

when the net pressure is 1250 psi. (a) perforation at A3, (b) perforation at B1, (c) 

perforation at B2, (d) perforation at B3. (Reprinted from Li and Wu 2022b) 

 

4.6.4. Effect of stress variation  

It has been recognized and evidenced by numerous field observations, 

experimental efforts, and numerical studies that the minimum horizontal in-situ stress 

difference between layers plays a dominant role in the hydraulic fracture height 

containment in most situations. The bedding layers are more likely to show significance 

in low-stress-variation formations. This section investigates the influence of the in-situ 

stress variation and the bedding layers. Figure 4.20 show three different stress profiles: 

Figure 4.20b is the stress profile used in the base case and is originally from the field, the 

red dash curve is the interpolated trend line of the stress along the depth. Figure 4.20a is 

the low-stress-variation case where we maintain the trend line (the red dash line) the same 
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as the base case but decrease the distance from the data points to the trend line by half. 

Figure 4.20c is the high-stress-variation case where we maintain the trend line (the red 

dash line) the same as the base case but double the distance from the data points to the 

trend line. The hydraulic fracture height growth with and without the effect of the bedding 

layers are compared and presented in Figure 4.21. The bedding layer density is 9 ft and 

the mode II fracture toughness is 2000 psi inch . 

   

Figure 4.20 Minimum horizontal in-situ stress profile in the pay zone. (a) low-

stress-variation case, (b) base case, (c) high-stress-variation case. (Reprinted from 

Li and Wu 2022b) 

 

As shown in the Figure 4.21, the hydraulic fracture height maps are obviously 

distinguished into three groups by the stress-variation magnitude, indicating that the stress 

difference is playing a dominant role in governing the hydraulic fracture height growth. 

The black lines (solid and dash) represent the low-stress-variation case, the red lines 

represent the base case, and the blue lines represent the high-stress-variation case. It is 

also observed that all the three comparison of the height growth with and without the 
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bedding layers have observable difference, with the largest difference observed in the low-

stress-variation case and smallest difference observed in the high-stress-variation case. To 

reach the same hydraulic fracture height, as the comparison between the black-solid and 

black-dash lines indicates, the net pressure required has increased by more than 40% if 

considering the effect of bedding layers in low-stress-variation case; while in the base case 

as indicated by the red-solid and red-dash lines, the net pressure is generally increased by 

around 10%; while in the high-stress-variation case as indicated by the blue-solid and 

blue-dash lines, the net pressure is generally increased by less than 5%. This can be 

concluded that the effect of bedding layers on the hydraulic fracture height containment is 

significantly more important in the low-stress-variation formation than that in the high-

stress-variation formation, which has a good agreement with both the experimental results 

(Anderson 1981; Teufel and Clark 1984) and the field observations (Warpinski et al. 1981; 

Daneshy et al. 2004; Daneshy 2009).  
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Figure 4.21 Comparison of the full hydraulic fracture growth map between cases 

with and without the effect of bedding layers under different stress-variation cases. 

(Reprinted from Li and Wu 2022b) 

 

4.7. Conclusions  

In this chapter, a non-intrusive hydraulic fracture height growth model was 

developed considering the combined effect of geo-mechanical properties and bedding 

interfaces. The hydraulic fracture height containment by the geo-mechanical properties 

are controlled by the linear elastic fracture mechanics simultaneously at both upper and 

lower fracture tips, meanwhile, the impacts of the bedding interfaces are rigorously 

quantified through coupled fluid flow and rock mechanical modeling. The energy loss 

during the shear slippage propagation in the close-spacing bedding interfaces induced by 

the hydraulic fracture  obviously slows down the height propagation of the vertical 

fracture. The simulation shows that the minimum in-situ stress difference between 

different formation layers plays a dominant part in containing the hydraulic fracture height 

with few bedding interfaces. However, the fracture height propagation is considerably 

hindered with existence of multiple close-spacing bedding interfaces. In formations with 

low in-situ stress variation between layers, the weak horizontal bedding interfaces could 

play a significant role in the hydraulic fracture height growth and containment. The  non-

intrusive model would be then incorporated in any pseudo-3D hydraulic fracture 

propagation simulator in the following chapter and makes it possible for pseudo-3D 

hydraulic fracture simulator to quantitatively consider the combined effect of geo-

mechanical properties and weak bedding interfaces on the hydraulic fracture height 

growth and containment. 
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5. HYDRAULIC FRACTURE PROPAGATION CONSIDERING THE EFFECT OF 

WEAK BEDDING PLANES 

5.1. Introduction 

Weak interfaces are widely distributed in the unconventional reservoirs. Both field 

observations and the laboratory experiments have demonstrated that hydraulic fracture 

propagation can be affected by the weak interfaces. Numerical studies have been 

performed to investigate the interaction between the weak interfaces and the hydraulic 

fracture, but few hydraulic fracture simulators have incorporated the mechanism of the 

weak interfaces in the hydraulic fracture propagation. This chapter presents an efficient 

comprehensive hydraulic fracture height growth model incorporating in a hydraulic 

fracture simulator based on a simplified 3D displacement discontinuity method  and 

investigates the impact of the weak interfaces on the hydraulic fracture geometry and the 

width distribution.  

The comprehensive hydraulic fracture height growth model considers not only the 

conventional impact factors that controls the fracture height, but also the influence of the 

horizontal weak interfaces. The interaction between the weak interfaces and the hydraulic 

fracture is modeled by an efficient 2D higher order displacement discontinuity method 

and the effectiveness on the hydraulic fracture height is quantified by correcting the stress 

intensity factors at the hydraulic fracture tips. This model is non-intrusive and is 

 

 Part of this chapter is reprinted with permission from “Impact of Horizontal Weak Interfaces on 

the Hydraulic Fracturing: from Height Growth to Lateral Propagation” by Li, J. and Wu, K., 2022, 

SPE/AAPG/SEG Unconventional Resources Technology Conference. Copyright [2022] by Society of 

Petroleum Engineers. 
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incorporated into an in-house cell-based P3D hydraulic fracture simulator, which uses 

plane strain deformation in each vertical cross-section coupled with a 2D fluid flow.  

Numerical examples are performed based on a Permian Basin Wolfcamp shale 

formation to study the impact of the weak interfaces on the fracture propagation and the 

final geometry. Results show that the weak interfaces have considerable impact on the 

fracture height, lateral length, and width distribution. With the existence of the weak 

interfaces, the hydraulic fracture height is shortened vertically, which results in a longer 

fracture lateral length, together with a reduction of the overall width values. Sensitivity 

analysis shows that the spacing between the weak interfaces and interfacial shear 

toughness have considerable impact on the fracture geometry and width values. In multi-

fracture propagation case, the impact of the weak interfaces on the outer fractures results 

in a reduction in average height and overall width distribution, and an increase of the 

lateral length. For inner fractures, the impact of weak interfaces varies by the cluster 

spacing.  

The proposed workflow effectively captures the mechanism of the horizontal weak 

interfaces on the hydraulic fracture height growth and the lateral propagation. The 

numerical studies provide more understanding on the fracture propagation in the laminated 

shale reservoirs. The new P3D hydraulic fracture simulator can be used as an effective 

tool for fracturing job design in shale formations.  
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5.2. Fracture height growth module 

The key physical problems underlying the fluid-driven hydraulic fracture 

propagation includes rock deformation, fluid flow in the fractures, and fluid/proppant 

distribution among clusters, which are tightly coupled with each other. For a shale 

formation that consists of horizontal weak interfaces and potentially shear slippage, the 

rock deformation problem becomes fully 3D and generally requires a fully 3D fracture 

propagation model, which is over computationally intensive. An alternative way is to 

develop a comprehensive hydraulic fracture height module that captures the mechanism 

of the horizontal interface shear slippage and incorporate the height module in the P3D 

model.  

The P3D model assumes that the vertical section of the hydraulic fracture is 

decoupled in the sense that the mechanical deformation of each vertical section is 

independent of its neighbors and satisfies the plane strain conditions (Mack and 

Warpinsky, 2000; Adachi et al., 2007). Another assumption is that the pressure gradient 

in the vertical direction due to the fluid flow is negligible and hence the fluid pressure in 

the vertical direction is hydrostatic. Based on these assumptions, a stable hydraulic 

fracture vertical tip positions and the corresponding width profile can be determined by 

matching the stress intensity factors at the fracture upper and lower tips to the fracture 

toughness in the layers that contain the fracture upper and lower tips simultaneously. In a 

multi-layered formation where the horizontal in-situ stress is piece-wise constant, the 

relations between the stress intensity factors and the fracture tips as well as fracture width 

are given by Mack and Warpinskin (2000): 
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where 'E is the plane-strain elastic modulus of the rock, 
perfh is the perforation 

depth measured from the fracture lower tip, 
perfp is the fluid pressure at the perforation 

depth, i and ih  are the minimum in-situ stress and the distance from the i th layer 

(counted from upper tip) to the fracture lower tip.  

At the equilibrium state, the equilibrium tip status of the interface shear slippage 

can be obtained by assuming that the stress intensity factors are equal to the critical shear 
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fracture toughness (Chuprakov and Prioul, 2005). Applying the fracture straightening 

concept (Weng et al. 2018), the stress intensity factor can be expressed by:  
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where 
str

fh is the effective straightened hydraulic fracture half height, sd is the distance 

from the horizontal interfacial shear slippage tip to the hydraulic fracture, i.e., half of total 

shearing length, v is the vertical in-situ stress acting on the weak interfaces.  

The opening and the shear displacement discontinuities of the horizontal interfaces 

can be calculated through an elasticity solution for the stress and displacements 

relationship which is expressed by (Shou, 1993):  
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where ( )jk   and ( )iu   represent the stress components and the displacement 

components at a point , respectively, ( , )ijkE   is the tensor field that represents the 

influences of a concentrated force at point   on displacements at point . Given stress 

conditions, the displacement components can be calculated using the displacement 

discontinuity methods. 

Although the DDM has the advantages of being both efficient and accurate in 

handling the rock deformation problems, it has some shortcomings in dealing with closely-

spaced horizontal interfaces in laminated shale formations (Li et al. 2021). Dozens of the 
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horizontal interfaces are closely distributed along the vertical hydraulic fracture and the 

stress shadow effect requires that fine computation gridding must be used to obtain 

accurate solution, which costs intensive computational time. An efficient 2D higher order 

displacement discontinuity method (HDDM) with joint elements proposed by Li et al. 

(2021) provides a reliable solution to the closely-spaced fractured problems. The efficient 

HDDM adopts quadratic interpolation of the displacement discontinuities on each 

fracture-segment patch which is composed of three fracture segments. In this way, the 

discretized form of the Equation (5.5) is given by Equation (5.6). The derivation details of 

the method are referred to Shou (1993), the verifications of the method are referred to 

Behnia et al. (2015) and Li et al. (2021).  
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(5.6) 

The quantitative impact of horizontal interfaces on the hydraulic fracture height 

growth can be modeled through the change of the stress intensity factors of the hydraulic 

fracture tip locations (Kresse and Weng 2019). Upon interaction, the fracturing-induced 

shear slippage in the horizontal interfaces results in a reduction of the vertical hydraulic 

fracture width at the intersection point, which consequently changes the stress intensity 
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factors of the hydraulic fracture. Based on the linear elastic fracture mechanics, the change 

of the stress intensity factors is given by Equation (5.7): 
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where 1

nD  is the change in width of the fracture tip element calculated from Equation (5.8)

, dl is the length of the tip element  
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The effective stress intensity factors are therefore obtained by subtracting the 

changes induced by the horizontal shear slippage.  

The new effective stress intensity factors are used to compare with Equation (5.1) 

and Equation (5.2) to determine the equilibrium hydraulic fracture tip locations. In the 

target zone, the intervals above and below the perforation depth are discretized 

respectively, each upper discretized layer depth represents the potential upper tip of the 

vertical hydraulic fracture and lower discretized layer depth represents the potential lower 

tip of the fracture, and together they form a hydraulic fracture height tip location pair. For 

a given pressure, starting from the nearest lower/upper tip location, stress intensity factor 

or the effective stress intensity factor (when the vertical hydraulic fracture crosses a 

horizontal weak interface) is computed based on the linear elastic fracture mechanics. By 

comparing the stress intensity factors at both upper and lower tips with the fracture 

toughness of the layers where the fracture tips are located, the equilibrium hydraulic 
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fracture tip locations can be found when these two pairs of two parameters are equal 

simultaneously.  

 

 

5.3. Incorporation of the new hydraulic fracture height module into P3D fracture 

propagation simulator  

The above hydraulic fracture height growth module is incorporated into a 

hydraulic fracture propagation model developed by Wu (2014). The model is based on a 

Simplified Three-Dimensional Displacement Discontinuity Method (S3D DDM) and is 

able to simulate complex hydraulic fracture propagation in unconventional reservoirs. The 

model couples linear-elastic rock deformation with non-linear fluid flow in fractures and 

the horizontal wellbore (Wu and Olson 2015), which captures the key physical processes 

during multiple-fracture propagation including the fracture opening, propagation and 

stress-shadow effects.  

The elastic rock deformation equations are solved by the S3D DDM. A 3D 

correction factor derived by Olson (2004) is used to account for the 3D fracture geometry. 

Consider a typical discretized fracture element with normal and shear stress boundary 

conditions specified, we can determine the normal and shear displacement discontinuities, 

respectively, at each of the total fracture elements by solving a linear system of equations 

given by:  
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where s and n  are the shear and normal stresses on the fracture segments, sD and nD

are the shear and normal displacement discontinuities of the fracture segments, ij

ssA , ij

snA ,

ij

nsA , and ij

nnA  are the plane-strain elastic influencing coefficients between the fracture 

segments i and j . A detailed derivation of A is referred to Crouch and Starfield (1983). 

ijG is the 3D correction factor which is referred to Olson (2014). 

Fluid flow in the fracture propagation model consists of two parts which are fluid 

flow in the fracture segments and the fluid flow in the horizontal wellbore between 

perforation locations. Fluid flow in the fracture segments is described by the Navier-

Stokes equations of fluid mechanics (Schlichting 1968). The 3D equations can be 

simplified by assuming that the pressure gradient along the fracture width is uniform. To 

improve the convergence stability without losing too much accuracy, the flow-rate 

gradient along the fracture is ignored. Fluid flow in the wellbore is analogous to the 

electric current flow through an electrical circuit network. Kirchhoff’s first and second 

laws are applied to determine the dynamic flow rate distribution of multiple fractures 

(Siriwardane and Layne 1991). According to Kirchhoff’s second law, the pressure in the 

wellbore heel is the summation of the pressure drop due to the wellbore friction, pressure 

drop due to the perforation friction, and the pressure in the first element of the fracture 

segment (Elbel et al. 1992). For the whole computational fluid-flow system, the material 
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balance is satisfied when the total volume of the fluid pumped during the injection time is 

equal to the summation of the fluid volume in the fracture segments and the fluid volume 

leaking into the neighboring rock medium. The fluid leaking off is calculated by the Carter 

leakoff model (Carter 1957). 

The fluid flow and the rock deformation parts are tightly coupled with each other 

since both the pressure distribution and the fracture displacement discontinuities are 

unknowns to be solved in both parts of equations. The Picard coupling (Li 1991; Adachi 

et al. 2007) is adopted to numerically couple the rock deformation and fluid flow at each 

updated timestep. The rock deformation is solved by the S3D DDM solution and the fluid 

flow equations are solved by the finite-difference method on a fixed grid of boundary 

elements. More details are referred to Wu (2014). 

 

5.4. Model validation  

The validation of the hydraulic fracture height growth module is provided in 

section 4.5 of Chapter 4. The model is validated against Liu and Valko’s (2018) result 

with a six-layer asymmetric problem. The thickness and the true vertical depth are given 

by Liu and Valko (2018), the minimum horizontal in-situ stress distribution is depicted 

here in Figure 4.6a. Our results of the hydraulic fracture tip locations against the injection 

pressure are presented in Figure 4.6b together with Liu and Valko’s results, illustrating 

that our results are in good agreement with their results. The results are validated against 

the commercial software MShale and FracPro as mentioned in their paper, and are also 

cross-validated by Mehrabi et al. (2021). 
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The verifications of the hydraulic fracture propagation model were provided 

against the analytical PKN and KGD solutions and the numerical Unconventional Fracture 

Model (UFM). A good match of fracture width, fracture half length, and fracture pressure 

was observed between our model and the published models (Wu 2014; Wu and Olson 

2015).  

 

5.5. Impact of weak bedding planes on single fracture propagation geometry 

The proposed hydraulic fracturing propagation model considering the horizontal 

weak interfaces is applied in a laminated shale formation in Permian Basin to investigate 

the impact of the weak interfaces on the hydraulic fracture geometries. Permian Basin 

consists of three main basins, the Midland, Delaware, and Marfa basins. The Wolfcamp 

formation investigated in this study is located at the Midland Basin. Figure 5.1a depicts 

the geological stratigraphy of the Midland basin and the location of the Wolfcamp 

formations. The target interval is Wolfcamp B upper, which is most prolific formation. 

The total height along the vertical direction of the target zone is 67 m. The minimum 

horizontal in-situ stress along the depth in the target interval is presented in Figure 5.1b. 

The resolution is 1m/layer and the total number of layers is 67. The perforation depth is 

2558m. The other geomechanics and fluid flow input parameters are summarized in Table 

5.1.  
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               (a)                                                                             (b) 

Figure 5.1 (a) Schematic representation of the Midland Basin stratigraphy, (b) the 

minimum horizontal stress profile in the pay zone, the red-dash line indicating the 

well landing depth. (Reprinted from Li and Wu 2022a) 
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Table 5.1 Summary of input parameters for base case. (Reprinted from Li and Wu 

2022a) 

Young’s Modulus 40 𝐺𝑃𝑎 

Poisson’s Ratio 0.29 

Injection rate 10 𝑚3/𝑚𝑖𝑛 

Injection time 90 𝑚𝑖𝑛 

Fluid viscosity 0.004 𝑃𝑎 ⋅ 𝑠 

Fluid density 1020 𝐾𝑔/𝑚3 

Fluid leakoff coefficient 0.0004 𝑚/𝑠𝑒𝑐0.5 

Perforation diameter 0.0126 𝑚 

Mode I fracture toughness 2.198 𝑀𝑃𝑎 ⋅ √𝑚 

Mode II fracture toughness 2.198 𝑀𝑃𝑎 ⋅ √𝑚 

Interface fracture toughness 2.198 𝑀𝑃𝑎 ⋅ √𝑚 

Spacing between interfaces 1 𝑚 

Overburden stress 47 𝑀𝑃𝑎 

 

In the base case,  a single hydraulic fracture propagation in the Wolfcamp B 

formation is simulated using the proposed model. The spacing between the active 

horizontal weak interfaces is 1 m, indicating that totally 67 horizontal interfaces are evenly 

distributed in the target zone. After 90 mins injection, the final hydraulic fracture 

geometries and the width distributions without and with the impact of horizontal weak 

interfaces are presented in Figure 5.2 and Figure 5.3, respectively. The x-axis indicates 

the hydraulic fracture lateral length, the y-axis indicates the hydraulic fracture height, and 
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the color of the fracture indicate the width values, which is marked by the color bar. As 

shown in Figure 5.2, without the impact of the weak interfaces the hydraulic fracture 

height reaches both the upper and lower limits of the target interval at the perforation 

location, resulting the maximum hydraulic fracture height 67 m. The fracture height along 

the lateral direction of the fracture trajectory is decreasing due to a decrease of pressure 

distribution. The average hydraulic fracture height is 41 m and the half length of the 

fracture is 96 m. A typical elliptical shape of the hydraulic fracture can be clearly observed, 

with maximum fracture width distributed in the center of the fracture and the minimum 

fracture width on the edges of the shape.  

Considering the impact of the horizontal weak interfaces as shown in Figure 5.3, 

the hydraulic fracture shape is affected to be more likely the rectangular shape. It is 

observed that the hydraulic fracture does not reach the upper tip of the interval and the 

maximum hydraulic fracture height is reduced to 57 m. It is also indicated that the 

hydraulic fracture tends to grow downwards instead of upwards since longer fracture 

length reaches the bottom tip of the target zone. The average hydraulic fracture height is 

reduced from 41 m to 35 m, which is 14% reduction. The containment of the fracture in 

the vertical direction is because of the reduction of the stress intensity factors at the 

fracture tips caused by the shear slippage of the horizontal weak interfaces. In contrast, as 

a result of the containment in the vertical direction, the hydraulic fracture tends to 

propagate more likely in the lateral direction. The fracture half length has increased by 

17%, from 96 m to 112 m. By comparing the width distribution from Figure 5.2 and Figure 

5.3, it is found that overall hydraulic fracture width is decreased due to the existence of 
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the weak interfaces, this observation matches the findings from Zhang and Jeffery (2006) 

and Kress and Weng (2019).  

 

Figure 5.2 Hydraulic fracture geometry and width distribution after 90 mins 

injection without the impact of horizontal weak interfaces. (Reprinted from Li and 

Wu 2022a) 

 

 



 

142 

 

Figure 5.3 Hydraulic fracture geometry and width distribution after 90 mins 

injection with the impact of horizontal weak interfaces. (Reprinted from Li and Wu 

2022a) 

 

5.5.1. Sensitivity analysis: density of weak interfaces 

In laminated shale formations, numerous horizontal interfaces can be observed 

within a single thin layer and the spacing between the interfaces can range from inches to 

a few meters. In this section we perform the sensitivity analysis on the density of the 

horizontal weak interfaces. Except from the base case where the spacing between the 

interfaces is 1 m, another two cases are simulated with the same other parameters but 

spacing set as 0.5 m and 1 m, respectively. The hydraulic fracture geometries and the 

width distributions of the base cases and the two additional cases are presented in Figure 

5.4.  

Several observations and implications can be obtained by comparing the group of 

fractures in Figure 5.4 and Figure 5.2 and 5.3. First of all, the maximum hydraulic fracture 

height (at the center of the fracture) and the overall average fracture height is decreasing 

as the decrease of the spacing between the horizontal interfaces. In Figure 5.2 and Figure 

5.4b, fractures are still able to reach the bottom tip of the target zone, but fail to reach the 

upper tip due to the containment by the horizontal interfaces. Compared to the base case 

without considering the impact of weak interface in Figure 5.2, the overall average 

hydraulic fracture heights of cases Figure 5.4a, 5.3, and 5.4b, whose weak interface 

spacing is 2 m, 1 m, and 0.5 m, respectively, have decreased from 42 m to 38 m, 35 m, 

and 31 m, respectively. On the contrary, the hydraulic fracture half lengths of the three 

cases in Figure 5.4a, 5.3, and 5.4b have increased from 96 m to 105 m, 112 m, and 124 m, 
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respectively, due to the decreasing spacing between the horizontal weak interfaces. The 

detailed changes of the maximum hydraulic fracture height, average fracture height, and 

the hydraulic fracture half length are recorded in Table 5.2. The general shape of the 

hydraulic fracture is transiting from an “elliptical shape” to the “rectangular shape”. It is 

predictable that in highly-laminated formations where the spacing between the interfaces 

is as small as inches, the hydraulic fracture height might be terminated and contained 

within a limited zone. These findings demonstrated the significant impact of the horizontal 

weak interfaces on the hydraulic fracture geometry and show agreement with some field 

observations as well as numerical studies that hydraulic fracture height is more contained 

in specific layers in laminated layers (Gu et al. 2008; Fisher and Warpinski 2012; Weng 

et al. 2018).  

Table 5.2 Impact of the bedding planes on the hydraulic fracture maximum height, 

average height, and the hydraulic fracture half length under different density. 

(Reprinted from Li and Wu 2022a) 

Bedding plane density 
Max height 

(m)  

Average height 

(m) 

Half length 

(m) 

No bedding plane (base case) 67.06 41.91 96 

0.5 bedding planes/meter 66.54 38.26 (-8.7%) 105.6 (+10.0%) 

1 bedding plane /meter 57.64 35.15 (-16%) 112.8 (+17.5%) 

2 bedding planes/meter 46.11 31.00 (-26%) 124.8 (+30%) 
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(a) 

 

(b) 

Figure 5.4 Hydraulic fracture shape and width distribution under the impact of 

different densities of weak interfaces: (a) weak interfaces spacing: 2 m (totally 33 

interfaces in the whole interval), (b) weak interfaces spacing: 0.5 m (totally 132 

interfaces in the whole interval). (Reprinted from Li and Wu 2022a) 
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5.5.2. Sensitivity analysis: fracture toughness of weak interfaces 

The shear fracture toughness of the weak interfaces is another one of the important 

influencing factors that are difficult to accurately measure. In this section, a wide range of 

the shear fracture toughness of the horizontal interfaces is tested using our model to 

investigate its sensitivity on the hydraulic fracture propagation. Three cases with 

interfacial spacing at 1 m and with the shear fracture toughness 1.099, 2.198, and 4.395 

𝑀𝑃𝑎 ⋅ √𝑚 , respectively are simulated to compare the case without considering the 

horizontal interfaces.  

Figure 5.5 demonstrates the comparison of the fracture shape and the fracture 

width under the impact of different weak interfaces’ shear fracture toughness. Compared 

to the base case Figure 5.2 without the impact of the horizontal weak interface, Figure 

5.5a, 5.3, and 5.5b, which represent the fracture geometries with the shear fracture 

toughness 1.099, 2.198, and 4.395 𝑀𝑃𝑎 ⋅ √𝑚, respective, all show the similar changes in 

the fracture geometries, i.e., a decrease in the overall average height, an increase in the 

hydraulic fracture half length, and a more rectangular hydraulic fracture shape. 

Specifically, the average hydraulic fracture height of Figure 5.5a, 5.3, and 5.5b has 

reduced from 41 m to 37 m, 35 m, and 33 m, respectively, and the hydraulic fracture half 

length of the three cases has increased from 96 m to 110 m, 112 m, and 117 m, 

respectively. The detailed changes of the maximum hydraulic fracture height, average 

fracture height, and hydraulic fracture half length are recorded in Table 5.3. It is concluded 

that larger shear fracture toughness results in a more contained hydraulic fracture height 
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but a larger hydraulic fracture half length. The reason is that under equilibrium status, 

larger shear fracture toughness results in a larger shear slippage length in the horizontal 

interface, hence adding more impact on the reduction of the effective stress intensity factor 

of the vertical hydraulic fracture. Compared to the changes of the fracture geometries due 

to the increasing of the interface density, we find that the changes due to the increasing of 

the interface fracture toughness is less intensive.  

 

Table 5.3 Impact of the bedding planes on the hydraulic fracture maximum height, 

average height, and the hydraulic fracture half length under different shear 

toughness. (Reprinted from Li and Wu 2022a) 

Bedding plane toughness 
Max height 

(m)  

Average height 

(m) 

Half length 

(m) 

No bedding plane (base case) 67.06 41.91 96 

KIIc = 0.5 KIc 64.37 37.34 (-10.9%) 110.4 (+14.6%) 

KIIc = KIc 57.64 35.15 (-16%) 112.8 (+17.5%) 

KIIc = 2 KIc 50.69 33.24 (-20%) 117.6 (+22.5%) 
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(a) 

 

(b) 

Figure 5.5 Hydraulic fracture shape and width distribution under the impact of 

different fracture toughness of weak interfaces: (a) interfaces with spacing 1 m and 

with IIcK = 1.099 MPa m , (b) interfaces with spacing 1 m and with IIcK = 4.395

MPa m .(Reprinted from Li and Wu 2022a) 
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5.6. Impact of weak bedding planes on multi-fracture propagation geometry 

In this section, five clusters simultaneous propagation is simulated using our 

proposed model. The geomechanics and fluid flow parameters are the same as the single 

fracture scenario which is summarized in Table 5.4. The cluster spacing is 10 meters. After 

90 mins injection, the final hydraulic fracture geometries and the width distributions 

without and with the impact of horizontal weak interfaces are presented in Figure 5.6 and 

Figure 5.7, respectively.  

Table 5.4 Summary of input parameters for multi-fracture case. (Reprinted from 

Li and Wu 2022a) 

Injection rate 15 𝑚3/𝑚𝑖𝑛 

Injection time 90 𝑚𝑖𝑛 

Fluid viscosity 0.004 𝑃𝑎 ⋅ 𝑠 

Fluid density 1020 𝐾𝑔/𝑚3 

Fluid leakoff coefficient 0.0003 𝑚/𝑠𝑒𝑐0.5 

Perforation diameter 0.0096 𝑚 

Mode I fracture toughness 2.198 𝑀𝑃𝑎 ⋅ √𝑚 

Mode II fracture toughness 2.198 𝑀𝑃𝑎 ⋅ √𝑚 

Interface fracture toughness 2.198 𝑀𝑃𝑎 ⋅ √𝑚 

Spacing between interfaces 1 𝑚 

Overburden stress 47 𝑀𝑃𝑎 

Cluster spacing 10 𝑚 
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Figure 5.6 represents the fracture geometry and the width distribution without 

considering the interfaces. As shown in the figure, outer fractures (fracture 1 and fracture 

5) have the largest half length, while middle fractures (fracture 2 and fracture 4) and 

innermost fracture (fracture 3) are contained because of the stress shadow effect. 

Moreover, the width values in the inner and middle fractures are much smaller compared 

to the outer fractures. This can restrict the region for proppant transport where the fracture 

width is too small to allow proppant particles to pass through, resulting in some unpropped 

portions of a fracture. The width values in the outer fractures are larger because they turn 

their propagation direction outward and experience less stress shadow effects. Figure 5.7 

shows the fracture geometry and the width distribution with the impact of the interfaces. 

Similar phenomena are observed that outer fractures have much larger half length and 

width values. However, the geometry and the width distribution of each individual fracture 

have changed due to the impact of the weak interfaces. Generally, all fractures experience 

an increase of the half length and a decrease of the maximum height. All fractures fail to 

reach the upper limit of the target zone. In terms of the average fracture height and the 

width values, outer fractures and inner (middle and innermost) fractures display different 

patterns.  
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Figure 5.6 Hydraulic fracture shape and width distribution without the impact of 

horizontal interface. (Reprinted from Li and Wu 2022a) 

 

 

Figure 5.7 Hydraulic fracture shape and width distribution with the impact of 

horizontal interfaces with 1 m spacing. (Reprinted from Li and Wu 2022a) 
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To clearly illustrate the impact of the weak interfaces on the fracture height and 

the width distribution of the fractures, we show the final fracture geometry and the width 

distribution of each fracture separately in Figure 5.8, 5.9, and 5.10. Figure 5.8 illustrates 

the comparison of outer fractures (fracture 1 and 5) shape and the width distribution 

between the cases without and with the impact of weak interfaces. It is observed that the 

existence of the weak interfaces results in a reduction of the average height from 33 m to 

29 m, by 12%. Meanwhile, a decrease of  overall width values is observed. However, 

completely different rhythms are observed in Figure 5.9, the comparison of the middle 

fractures (fracture 2 and 4). Figure 5.9 indicates that both the average hydraulic fracture 

height and the width values are increased. The average height has increased from 37 m to 

41 m, and the maximum width at the fracture center has increased more than ten times. 

This is because of the reduced outer fracture height resulting in less stress shadow effects 

on the middle ones. The comparison for the innermost fracture (fracture 3) geometries is 

shown in Figure 5.10, where the average hydraulic fracture height is almost unchanged (a 

slight increase from 38.5 m to 39 m), but the overall fracture width values are considerably 

increased.  
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 (a)                                                                         

 

(b) 

Figure 5.8 Outer fractures (fracture 1 or 5) shape and width distribution under (a) 

no weak interfaces, (b) the impact of weak interfaces with 1 m spacing. (Reprinted 

from Li and Wu 2022a) 
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(a)                                                                         

 

(b)                                                                         

Figure 5.9 Middle fractures (fracture 2 or 4) shape and width distribution under (a) 

no weak interfaces, (b) the impact of weak interfaces with 1 m spacing. (Reprinted 

from Li and Wu 2022a) 



 

154 

 

 

(a)                                                                         

 

(b)                                                                         

Figure 5.10 Innermost fracture (fracture 3) shape and width distribution under (a) 

no weak interfaces, (b) the impact of weak interfaces with 1 m spacing. (Reprinted 

from Li and Wu 2022a) 
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The impact of the horizontal weak interfaces on the multi-fracture simultaneous 

propagation can be summarized as follows: the height of the outer fractures (fracture 1 

and 5) is reduced because of the change of the stress intensity factors caused by the shear 

slippage of the weak interfaces, consequently, the outer fractures tend to propagate 

laterally which results in a larger half length. Meanwhile, the inner fractures (fracture 2, 

3, and 4) benefit from the reduced height of the outer fractures which weakens the stress 

shadow effects. Although the fracture maximum heights for inner fractures are decreased 

at the center and cannot reach the upper limit of the target zone, the overall average heights 

are increased. Moreover, all inner fractures experience the increase of not only the fracture 

half length, but the overall width values.   

A detailed comparison of the hydraulic fracture half length growth versus the 

injection time between no-interface case and with-interface case for each individual 

fracture is demonstrated in Figure 5.11. The outer fractures 1 and 5 are symmetrical to 

each other and so as the middle fractures 2 and 4. Therefore only fracture 1, 2, and 3 are 

presented. All fractures experience an increase of the fracture half length due to the impact 

of the weak interfaces. However, the increase rate varies from outer fracture to the 

innermost fracture, this is because the competition between the reduced “stress shadowing 

effect” caused by the outer fractures, and the “effect of the horizontal bedding planes”. 

The outer fracture half length has increased by 12%, from 61 m to 69 m. The middle 

fracture half length increases by 20%, from 10 m to 12 m. The innermost fracture half 

length increases by 80%, from 16 m to 29 m. The innermost fracture is the most benefited 

segment due to the existence of the weak interfaces.   
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Figure 5.11 Hydraulic fracture half length growth versus injection time for outer 

fracture (fracture 1, blue), middle fracture (fracture 2, black), and innermost 

fracture (fracture 3, red) with (dash lines) and without (solid lines) the impact of 

weak interfaces. (Reprinted from Li and Wu 2022a) 

 

5.6.1. Sensitivity analysis: density of weak interfaces 

In this section we perform the sensitivity analysis on the density of the horizontal 

weak interfaces for multiple-fracture case. Similar to the single fracture case, except from 

the base case where the spacing between the interfaces is 1 m, another two cases are 

simulated with the same other parameters but spacing set as 0.5 m and 1 m, respectively. 

The hydraulic fracture geometries and the width distributions of the base cases and the 

two additional cases are presented in Figure 5.12.  
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(a)                                                                         

                  

 

(b)                                   

Figure 5.12 Multi-fracture case hydraulic fracture shape and width distribution 

under the impact of different densities of weak interfaces: (a) weak interfaces 
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spacing: 2 m (totally 33 interfaces in the whole interval), (b) weak interfaces 

spacing: 0.5 m (totally 132 interfaces in the whole interval). (Reprinted from Li and 

Wu 2022a)                              

 

By comparing Figure 5.12a and 5.12b with Figure 5.4a and 5.4b,  similar 

observations of the trends and conclusions can be obtained as that obtained from the single 

fracture case. The general shape of the hydraulic fracture is transiting from an “elliptical 

shape” to the “rectangular shape”. Denser horizontal bedding interfaces act more impact 

on the reduction of the hydraulic fracture height and consequent increase of the hydraulic 

fracture half length.  

 

5.6.2. Sensitivity analysis: cluster spacing 

A similar five-fracture simultaneous propagation scheme with 15 m cluster spacing 

is simulated in this section to investigate the impact of the horizontal weak interfaces at 

different fracture spacing. The hydraulic fracture shape and the width distribution of the 

cases without and with the impact of weak interfaces are presented in Figure 5.13 and 

Figure 5.14, respectively. It is illustrated in Figure 5.13 that a considerable decrease of the 

overall width values is observed in outer fractures (fracture 1 and 5) while a significant 

increase is observed in the middle fractures (fracture 2 and 4). Meanwhile, the half length 

of all the fractures have increased, which is the same trend as observed in the 10 m spacing 

cases. However, the average hydraulic fracture heights for all fractures suffer from a 

reduction due to the existence of the horizontal weak interfaces, which demonstrates 

different rhythms from the 10 m spacing cases.  
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Figure 5.13 Hydraulic fracture shape and width distribution without the impact of 

horizontal interface. (fracture spacing = 15 m) (Reprinted from Li and Wu 2022a) 

 

 

Figure 5.14 Hydraulic fracture shape and width distribution with the impact of 

horizontal interface. (fracture spacing = 15 m) (Reprinted from Li and Wu 2022a) 
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The comparison of the final geometries and the width distributions of the inner 

fractures (middle fractures 2 and 4, and innermost fracture 3) without and with the weak 

interfaces are presented in Figure 5.14 and Figure 5.15. It is indicated in Figure 5.14 that 

the average hydraulic fracture height under the impact of the weak interfaces is reduced 

by 11%, from 35 m to 31 m, which is opposite from the trend demonstrated in the 10 m 

spacing case. Figure 5.15 shows that the average fracture height of the innermost fracture 

under the impact of the weak interfaces is reduced by 24%, from 33 m to 25 m, which is 

also different what is observed in the 10 m spacing case.  

Another difference from the 10 m spacing case is observed that the fracture width 

values in Figure 5.15 are decreased due to the impact of the weak interfaces. These two 

sets of numbers from different-spacing cases indicate that although the inner fractures 

benefit from the reduction of the outer fracture’s average height, the change of the 

geometries under different fracture spacings are quite different. With the existence of the 

weak interfaces, the half lengths of the inner fractures have increased, while the average 

height and the width values of the inner fractures vary from the innermost one to the 

middle ones. From Figure 5.13, we can observe that the differences between each fracture 

are smaller than the differences between the fractures shown in Figure 5.12. A detailed 

comparison is presented in Figure 5.17. This is an indication that the impact of the 

horizontal weak interfaces tends to make the fractures more contained in the height 

direction and more uniform in the lateral length, which is a good agreement with previous 

findings (Cooke and Underwood 2001; Rutledge et al. 2016; Diaz et al. 2018).  
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(a) 

 

(b) 

Figure 5.15 Middle fractures (fracture 2 or 4) shape and width distribution under 

(a) no weak interfaces, (b) the impact of weak interfaces with 1 m spacing. (fracture 

spacing = 15m) (Reprinted from Li and Wu 2022a) 
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(a) 

 

(b) 

Figure 5.16 Innermost fracture (fracture 3) shape and width distribution under (a) 

no weak interfaces, (b) the impact of weak interfaces with 1 m spacing. (fracture 

spacing = 15m) 
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Figure 5.17 Hydraulic fracture half length growth versus injection time for outer 

fracture (fracture 1, blue), middle fracture (fracture 2, black), and innermost 

fracture (fracture 3, red) with (dash lines) and without (solid lines) the impact of 

weak interfaces. (Reprinted from Li and Wu 2022a) 

 

Figure 5.16 presents the comparison of the hydraulic fracture half length growth 

versus the injection time between closer spacing (10 m) case and larger spacing (15 m) 

case for each individual fracture. By comparing the same fractures with different cluster 

spacings, we found that the half length of the outer fractures is decreased, while the half 

lengths of the inner fractures are increased when increasing the cluster spacing. Since the 

five fractures are propagating simultaneously and competing with each other, the inner 

fractures are hindered due to the stress shadow effects by the outer fracturs in closer-

spacing case. An increase of the cluster spacing reduces the impact of the stress shadow, 

which results an increase of the inner fracture half length. When the fracture spacing is 

further increased, the stress shadow will be less influential, and the inner fractures will be 
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more likely identical to the outer fractures. In such case, the rhythm of each individual 

fracture under the impact of the weak interfaces follows the same as previously discussed 

in the single fracture scenario.  

 

Figure 5.18 Hydraulic fracture half length growth versus injection time for outer 

fracture (fracture 1, blue), middle fracture (fracture 2, black), and innermost 

fracture (fracture 3, red) with (dash lines) and without (solid lines) the impact of 

weak interfaces. (fracture spacing = 15m) (Reprinted from Li and Wu 2022a) 

 

5.7. Conclusions 

To summarize, this work presents an efficient and comprehensive hydraulic 

fracture height growth model, which is incorporated in a pseudo-3D (P3D) hydraulic 

fracture simulator to investigate the impact of the weak interfaces on both the fracture 

height and the lateral propagation. The comprehensive hydraulic fracture height growth 

model considers not only the conventional impact factors that governs the fracture height, 

but also the influence of the horizontal weak interfaces. The interaction between the weak 
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interfaces and the hydraulic fracture is modeled by an efficient 2D higher order 

displacement discontinuity method and the effectiveness on the hydraulic fracture height 

is quantified by correcting the stress intensity factors at the hydraulic fracture tips. This 

model is non-intrusive and is incorporated into an in-house cell-based P3D hydraulic 

fracture simulator, which uses plane strain deformation in each vertical cross-section 

coupled with a 2D fluid flow. Numerical examples are performed based on a Permian 

Basin field case to study the impact of the weak interfaces on the fracture propagation. 

Results show that the weak interfaces have considerable impact on the fracture height and 

overall fracture contact area. With the existence of the weak interfaces, the hydraulic 

fracture height is shortened vertically. Moreover, the hydraulic fracture height considering 

the effect of weak interfaces is decreasing slower along the lateral direction, generating a 

longer fracture lateral length. Sensitivity analysis shows that denser interfaces and larger 

interfacial shear toughness require more energy and higher net pressure to break through 

the vertical resistance, and result in shorter hydraulic fracture height but longer hydraulic 

fracture lateral length. 
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6. CONCLUSIONS 

This chapter first summarizes the main contributions and conclusions that are 

obtained from this research dissertation. After that, some recommendations for the 

extending work are proposed for future research.  

  

6.1. Outcomes of the research work  

6.1.1. Joint-Element Higher Order Displacement Discontinuity Method   

The joint element higher order displacement discontinuity method (JE-HDDM) is 

developed in this research. The JE-HDDM demonstrates high stability and accuracy, as 

well as efficiency in close-spacing fracture problems, while traditional CDDM fails to 

give physically reliable results in an efficient way. The major contribution of this new 

method compared to the conventional DDM is that it avoids the negative width in closely-

spaced planar hydraulic fractures. Additionally, by using the quadratic interpolation on 

the three-element patch, the new method significantly improves the computational 

efficiency, which means that it requires a much smaller number of elements to achieve the 

same level of accuracy given by the conventional DDM.  

General conclusions obtained from case studies are summarized as follows:  

• In close-spacing fracture problems, CDDM loses accuracy and even stability when 

predicting the fracture behavior and stress responses due to the strong stress 

shadowing effect. To maintain the stability of close-spacing fracture problems, 

extremely fine grids must be used in the simulation to accurately capture the stress 

shadowing effect acting on the inner fractures. However, even with fine grids, the 
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accuracy of CDDM is dropping fast when the fracture spacing becomes smaller. 

On the contrary, the developed JE-HDDM can always provide highly accurate and 

physically reliable results for close-spacing problems, even using coarse elements, 

by means of quadratic approximation of the displacement discontinuities on the 

computational elements. The efficiency of JE-HDDM is maintained through a 

patched-element pattern which allows quadratic interpolation without increasing 

computational points.  

• Negative opening widths of inner fractures in close-spacing fracture cases are 

observed using CDDM, which are physically impossible. JE-HDDM successfully 

deals with this problem by introducing joint elements where different contact types 

of the elements are solved simultaneously. The mechanically closed and open parts 

of the fractures due to the combined influence of boundary conditions and stress 

shadowing effect are accurately modeled through stick and separation modes of 

the joint elements. 

• JE-HDDM demonstrates high accuracy not only when predicting the displacement 

discontinuities, but also in the induced stress profiles in near fracture areas. Due to 

the assumption of constant distribution of displacement discontinuities, CDDM 

fails to accurately capture the stresses and displacements for field points closer 

than approximately one element length from the fracture. The quadratic 

interpolation as well as the square-root treatment on the tip elements allow HDDM 

to give accurate results in near fracture locations. 
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• Stress intensity factors calculated from the displacement discontinuities given by 

JE-HDDM is way more accurate than that of JE-CDDM. To obtain reliable results 

(relative error less than 10%), JE-CDDM must use extremely fine grids (ten times 

smaller than JE-HDDM), which dramatically increases computational time. The 

outperformance in accuracy of JE-HDDM over JE-CDDM is more obvious 

regarding the stress intensity factor of mode II. For shear slippage or shear dilation 

problems in weak interfaces, JE-HDDM is highly recommended to avoid intensive 

fine grids used in JE-CDDM 

 

6.1.2. Hydraulically Induced Shear Slippage of Weak Bedding Interfaces 

Two numerical models are developed to study the hydraulic fracture induced shear 

slippage and dilation of the weak bedding interfaces in the shale laminations.  

The dynamic model couples the fluid flow and rock deformation during the shear 

slippage process and provides a better understanding the shear dilation mechanism. 

Several findings from the synthetic case studies are obtained: 

• Although horizontal bedding planes may not mechanically open during hydraulic 

fracturing due to the large vertical stress boundary conditions, the bedding plane 

shear slippage affects the hydraulic fracturing by fluid leaking off and conductivity 

growth.  

• Different from hydraulic fracturing, in the bedding plane shear sliding, shear 

slippage is initially behind the fluid front but will take over the fluid front 

afterwards. This is because that under in-situ stress conditions, the shear slippage 
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won’t happen naturally without any disturbance. However, the hydraulic fracturing 

induces the fluid leaking from the vertical fracture into the horizontal beddings, 

resulting in the elevation of the pore pressure, and the subsequent shear slippage.  

• Fluid viscosity and the initial bedding layer width have great impact on the shear 

dilation process. Large fluid viscosity and/or small initial bedding interface 

hydraulic aperture put more resistance on the fluid leaking off and flow within the 

horizontal bedding plane.  

The static model is based on the linear elastic fracture mechanics and applies the 

idea from the “FracT” model. The static model is much more efficient than the dynamic 

model, which provides a possible approach for incorporating the bedding plane 

mechanism into the fracture height model. The incorporation of the static model into the 

fracture model is introduced and applied in Chapter 3 and 4.  

 

6.1.3. Hydraulic Fracture Height Growth Considering Effect of Weak Bedding 

Planes 

A comprehensive and non-intrusive hydraulic fracture height growth model has 

developed considering the effect of the weak bedding layers. The interaction between the 

hydraulic fracture and the bedding layers and its impact on the hydraulic fracture height 

growth are modelled by an efficient higher order displacement discontinuity method. The 

effectiveness of the bedding layers on the fracture height is investigated and quantitively 

analyzed. Parametric studies are performed on the bedding layers properties, in-situ stress 
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difference, and landing depth. Following conclusions are summarized from our numerical 

studies.  

• The weak bedding layers in shale formations may slow down the vertical growth 

of the hydraulic fracture. Lateral shear slippage of the bedding layers affects the 

width of the hydraulic fractures around the intersection with the interfaces and 

reduces the effective stress intensity factors around the hydraulic fracture tips. 

More energy and larger net pressure are required to break the rock in the presence 

of weak bedding layers. 

• The density and the shear fracture toughness of the bedding plane are two major 

factors that affect the fracture height growth. Denser bedding layers and larger 

shear fracture toughness result in shorter hydraulic fracture height with the same 

given net pressure and require higher net pressure to reach the same hydraulic 

fracture height. Larger shear fracture toughness results in larger maximum distance 

of shear slippage of the bedding layers and therefore causes larger energy loss. 

• The effectiveness of the bedding layers is more obvious and significant in 

formations with low in-situ stress contrast than that of high in-situ stress contrast. 

This finding is consistent with the previous experimental results and the field 

observations. In formations with high in-situ stress contrast, the primary resistance 

on the vertical growth of the hydraulic fracture is the stress difference between 

layers, while in formations with low in-situ stress contrast, the primary resistance 

may come from the bedding layers shear slippage.  
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• The well landing depth has a significant impact on the hydraulic fracture height 

and the fracture tips growing profile. The net pressure required to penetrate the 

whole zone is smaller if the well is landed in a large-stress layer and vice versa. 

The fracture height growing upward and downward is most likely asymmetric, and 

the simulation helps us locate the appropriate landing depth that the given net 

pressure penetrates the target interval simultaneously at upper and lower bounds.  

 

6.1.4. Hydraulic Fracture Propagation Considering the Effect of Weak Bedding 

Planes 

In this part, we incorporate Chapter 2, Chapter 3, and Chapter 4 together and the 

impact of the horizontal weak interfaces in the laminated shale formations on the hydraulic 

fracture propagation and the final geometries is investigated. To capture the mechanism 

of the weak interfaces, a comprehensive and non-intrusive hydraulic fracture height 

growth model is developed and incorporated into a S3D DDM based hydraulic fracture 

propagation model. Several numerical cases based on the Permian Basin Wolfcamp Shale 

Formation are simulated including both single fracture scenario and multiple fractures 

scenario. Several conclusions are found through numerical studies: 

• For a single hydraulic fracture in the laminated shale formations (or multiple 

fractures with large enough spacing that each individual fracture is identical), the 

impact of the horizontal weak interfaces tends to result in a reduction of the 

average hydraulic fracture height (the maximum height can also be reduced), an 
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increase of the hydraulic fracture half length, and an overall decrease of the width 

values. 

• The spacing (or the density) between the horizontal weak interfaces is one of the 

major factors that influences the effectiveness of the weak interfaces. The decrease 

of the spacing (increase of the density) between the weak interfaces tends to 

increase the impact on the hydraulic fracture geometries.  

• The shear fracture toughness of the horizontal weak interfaces is another one of 

the major factors that matters. Under the equilibrium status, larger shear fracture 

toughness results in a larger shear slippage length in the horizontal interface, 

consequently a greater reduction of the effective stress intensity factor of the 

vertical hydraulic fracture. As a result, the average fracture height is reduced and 

the half length is increased. 

• For multiple fracture propagation, the impact of the horizontal weak interfaces on 

the outer hydraulic fractures is similar regardless of the cluster spacing. The 

existence of the weak interface results in a reduction of the average fracture height 

while an increase of the fracture half length. Additionally, the fracture width values 

are reduced. The trends are similar as the single fracture scenario.  

• For multiple fracture propagation, the impact of the horizontal weak interfaces on 

the inner fractures varies by cluster spacing. In closer spacing case, due to the 

reduction of the average heights of the outer hydraulic fractures, the stress shadow 

effects acting on the inner fractures is decreased. Therefore, the inner fractures 

experience increases not only in the average fracture height and half length, but 
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also in the overall width values. In larger spacing case, although the stress shadow 

effects are reduced from the decreased outer fracture heights, the average heights 

of the inner fractures are decreased. Meanwhile, the overall fracture width of the 

innermost fracture is decreased.  

 

6.2. Recommendations for Future work 

Fracture height containment/growth continues to be a central issue in modeling 

and evaluation of hydraulic fracturing treatments. Based on the results of this dissertation 

and the conclusions from the studies, several topics in this work could be extended. These 

topics include (1) development of three-dimensional joint element based higher order 

displacement discontinuity method for arbitrary fracture geometries, (2) extending the 

static shear slippage model by considering the offset, (3) considering natural fractures or 

the horizontal interfaces with an inclination.   

• The joint element based higher order displacement discontinuity method 

developed in this work is only for 2D planar fractures. For non-planar fractures, 

the three-element patch can be curved, and the interpolation method would be 

slightly different. Accurate interpolation on the curved three-element patch might 

be sophisticated, yet by subdividing the elements and doing some extrapolations 

on the straight part might be able to solve this type of problem. Another 

improvement to be made is to expand the 2D equations to the three-dimensional 

ones. The rock deformation equations for the higher order 3D DDM are same as 

the ones for 2D. The higher order formulation based on patched elements follows 
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similar rule as we have discussed in Chapter 2. The joint element types are the 

same and the criterion for the different contact types of the joint are also based on 

the linear elastic fracture mechanics.  

• One limitation of our height model is that the offset of the hydraulic fracture upon 

approaching the horizontal weak interface cannot be solved in our process. 

Although the offset can be treated as similar as a reduction of the fracture height, 

it has a considerable impact on the hydraulic fracture geometry. A mechanical 

model is required to describe the re-initiation of an arrested hydraulic fracture by 

the horizontal interface to better understand the offset phenomenon.  

• The natural fractures can be another group of factors that influence the hydraulic 

fracture geometries. For horizontal natural fracture, it can be modeled the same as 

the horizontal weak interfaces. For natural fractures that have dip angles or weak 

interfaces that have inclinations, our model should be modified based on the 

boundary conditions. The inclined fractures or interfaces also follow the linear 

elastic fracture mechanics. But the in-situ normal stress and shear stress acting on 

the interfaces are different, which might be a significant factor governing the shear 

slippage procedure and the ultimate shear sliding length.  

• The model can also be extended to non-homogeneous rock formations since the 

boundary element model can be used for heterogeneous rock if each region has 

constant elastic moduli. Another modification required for non-homogeneous rock 

is the equilibrium height equation, which is originally developed based on the 

homogeneous rock.  
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APPENDIX A 

DERIVATIVES OF INTEGRAL KERNELS 

 

The derivatives of the integral kernels 0Int , 1Int , 2Int  are given by: 
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where 1 and 2 ,  1r and 2r  are given in Equation (2.11). 

The derivatives of the integral kernels cInt  are given by: 
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where 
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