
DECOUPLED DATA-BASED CONTROL (D2C) FOR COMPLEX ROBOTIC SYSTEMS

A Dissertation

by

RAN WANG

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Suman Chakravorty
Co-Chair of Committee, Dileep Kalathil
Committee Members, John Valasek

Raktim Bhattahcharya
Head of Department, Ivett Leyva

August 2022

Major Subject: Aerospace Engineering

Copyright 2022 Ran Wang



ABSTRACT

The problem of Reinforcement Learning (RL) is equivalent to the search for an optimal feedback

control policy from data without system dynamics information. Most RL techniques search over

a complex global nonlinear parametrization, such as deep neural nets, with drawbacks in training

efficiency and solution variance. In this dissertation, we propose a decoupled data-based framework

for RL/ data-based control that is highly efficient, robust and optimal when compared to state-of-

the-art RL approaches. The efforts are primarily in three directions: learning to control 1) efficiently

and reliably, 2) for high-dimensional nonlinear complex systems with partial state observations, and

3) under process and sensing uncertainties.

First, we propose a decoupling principle that leads to the decoupled data-based control (D2C)

framework which designs the open-loop optimal trajectory and the closed-loop feedback law

separately to achieve high training efficiency. Its convergence to the global optimum is proved.

Simulation results on benchmark examples show its significant advantages in training efficiency,

training reliability and robustness to noise over state-of-the-art RL methods.

Second, the D2C is extended to partially observed problems using a suitably defined “information

state" which is implemented using autoregressive–moving-average (ARMA) system identification.

We show that the resulting solution is the global optimum and satisfies a generalized minimum

principle for the partially observed problem. The extended D2C technique allows us to solve the

optimal control problem for partially observed, high-dimensional and nonlinear robotic systems.

Finally, we show that when learning to control in the fully observed case with process noise

only, the extended D2C method converges to the global optimum. However, it is also shown that

the method gives a biased result in the partially observed case with both process and measurement

noise, where multiple rollouts need to be averaged to recover optimality.
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1. INTRODUCTION

This dissertation is targeted at establishing a systematic optimal control methodology for

complex robotic systems in a stochastic environment. Complex robotic systems are those with

high dimensionality and high nonlinearity. These features make it difficult to express the system

dynamics analytically. Two examples of such systems are the multi-link swimmer robots and the

tensegrity structures. In the swimmer robots, the fluid-structure interactions are intractable to model

analytically and greatly increase the nonlinearity of the system. For the tensegrity structures, the

number of dimensions can be more than a hundred in applications such as a robotic arm and airfoils

[1]. On the other hand, these complex systems possess great advantages that traditional systems

do not have in many real-world applications. For example, the agility of bionic swimmer robots,

the tensegrity design can yield efficient minimal mass structure and the adaptive stiffness allows

easy response adjustment. These properties can be useful in areas such as unmanned underwater

vehicles, space structures, and earthquake-safe structure design [2, 3].

Figure. 1.1 shows the optimal control task for a robotic fish example. The fish is modeled as a

multi-body system interacting with a static fluid. It has 27 states and 6 control inputs which are the

torques on the fin and tail joints. The target is to solve for the optimal control policy for the fish to

swim from its initial position to the red ball shown in the plot. With fluid interaction, the dynamics

are hard to derive analytically, and thus, a data-based control method is necessary for this problem

in the sense that the control algorithm only has access to a blackbox simulation model of the system.

1.1 Data-Based Optimal Control of Nonlinear Systems

To control the systems discussed above, classical control methods which mainly address linear

problems are not suitable due to the system complexity and nonlinearity as well as model intractabil-

ity. The study of the optimal control problem, which can be considered as a subset of optimization,

has a rich literature [4, 5]. In the optimal control problem, a cost function needs to be selected

according to the task. The system dynamics are the constraints that the optimization is subjected
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(a) Initial State (b) Final State

Figure 1.1: Task configuration for the fish example.

to. Other constraints include the state and control bounds. Furthermore, the problem falls into the

category of nonlinear optimization because of the nonlinear systems considered here.

In general, approaches to this problem can be divided into two broad classes, local and global.

Global methods search for a solution that is optimal over the whole state and control space utilizing

dynamic programming (DP) [6]. It searches backward from the terminal condition for the optimal

solution that minimizes the cost-to-go at all time steps. When the number of states and controls is

small, dynamic programming is effective. However, in complex systems, the state and control space

is continuous. Thus discretization is necessary which results in the “curse of dimensionality" and

makes the problem computationally intractable. The data-based version of dynamic programming

is popularly known as reinforcement learning (RL) [7], which seeks to find a control policy by

repeated interactions with the environment while observing the system’s responses. Standard

RL includes value function-based methods like Q-learning and policy-based methods like policy

gradient algorithms. The data collected in the interactions can be used to estimate the system

dynamics for model-based methods [8], or estimate the control policy directly in a model-free

fashion [7, 9, 10]. As great progress has been achieved in function approximation using deep

neural networks during the last few years, reinforcement learning methods based on deep neural
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networks have shown significantly improved performance in controlling dynamical systems. Among

these methods, deep deterministic policy gradient (DDPG) [9] has many successful applications

in nonlinear examples such as swimmer robots. In the DDPG algorithm, deep neural networks

are used to approximate both the value function and the control policy. A solution is generated by

improving the neural network fitting in each iteration for the DP equation. Despite the success, the

training time required and the training variance of RL methods are still prohibitive, especially for

the complex systems considered here.

In contrast, local “trajectory-based" methods can be more efficient. For example, the differential

dynamic programming (DDP) approach [11] quadratizes the cost and system dynamics while the

iterative linear quadratic regulator (iLQR) approach [12, 13, 14] quadratizes the cost and linearizes

the system dynamics. Then starting from an initial guess, the optimal trajectory can be found

iteratively. These methods have shown promising performance. However, it is unclear how efficient

and reliable they are compared to global approaches in training as well as their performance in

terms of robustness to noise. Furthermore, fast and reliable local planners have the potential to

recover global optimality by coupling with methods such as model predictive control (MPC) [15]

and trajectory-optimized perturbation feedback control (T-PFC) [16] that replan when necessary.

By solving the optimization problem at each step, MPC enables the development of a globally

optimum feedback law. The replanning is a bottleneck in that the optimization horizon may have to

be limited so that the optimization takes a reasonable amount of time. For T-PFC, an optimal local

(linear) feedback controller is wrapped around the nominal trajectory and replanning only happens

when the state deviates sufficiently far from the nominal, which lessens the computational burden.

The model-based methods discussed above can not be applied directly due to the lack of

analytical system equations, which leads us to the use of data-based methods. To extend model-

based methods to data-based, system identification techniques can be used. For example, with

state perturbation, the discrete-time Linear Time-Varying (LTV) system can be estimated using

linear least square (LLS). Given input-output data collected from interactions with the environment,

Q-Markov methods [17] solve for the LTV system matrices from the correlation of inputs and

3



outputs. Another option is the statistical models that are commonly used in time series analysis

such as auto-regressive moving average (ARMA). Also, machine learning techniques and neural

networks can be used for system identification [18]. These techniques make it possible to solve

for the optimal control solution when data from either simulation or hardware experiments are

available.

1.2 Partially Observed Control Problems

In many real-world applications, the sensors can only be placed on limited spots and the

measurement is a function of the actual state information. Consider the hardware version of the fish

example, a set of cameras can capture the position of the head and some encoders can return the

angle of the actuators on the fins and tails. In this case, full-state measurement is no longer available,

which leads us to partially observed problems. In state-of-the-art reinforcement learning methods

such as DDPG, partially-observed cases are not considered. In the literature, such problems are

typically extensively studied as belief space planning problems, where the belief state is defined

as the filtered probability distribution over the states and provides a basis for acting under sensing

uncertainty [19, 20]. One parametrization of the belief state is to assume a Gaussian belief that can

be represented by the mean and covariance of the distribution [21]. However, the generic belief

state is an infinite-dimensional object, and even the Gaussian parametrization requires O(nx + n2
x)

number of states, which makes it computationally intractable for higher-dimensional systems. Thus,

our next goal is to propose a data-based method that can search for the optimal control policy with

only partial observations.

1.3 Learning to Control under Uncertainty

In situations where even a simulation model is not available, or is too computationally intensive

such as complex fluid dynamics software, hardware experiments have to be conducted to collect

the data that are required by the data-based methods. Unlike in simulation software, the states and

measurements are always subject to process and measurement noise in real-world experiments. For

example, the slip in a wheeled robot, the complex fluid dynamics that simulation models do not
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consider, and noisy sensors. Thus, techniques that minimize the effect of both process and sensor

noise need to be implemented in the training step, for instance, the linear quadratic regulator (LQR)

[22] and the Kalman filter (KF) [23]. RL methods like DDPG discussed above are expected to

return the optimal policy in the stochastic environment, although most applications only have an

exploration noise added during training. Thus, its performance under a persistent process noise, and

its training stability, remain unclear.

1.4 Major Contributions

Given the above research lacunae, this dissertation presents a systematic approach to solve

discrete-time, finite-horizon stochastic optimal control problems in a data-based fashion for complex,

nonlinear high-dimensional robotic systems. The major contributions are listed below:

1. A near-optimal decoupling principle is developed, which demonstrates the closeness of the

stochastic and deterministic optimal policies applied to the stochastic system. Further, it is

revealed that the open-loop nominal part and the first order feedback part of the deterministic

optimal policy can be solved separately. This result is the theoretical foundation of the

proposed decoupled data-based control (D2C) algorithm.

2. The D2C algorithm is established based on the decoupling principle. It takes the data from

interactions between the system and the environment to solve for the linear deterministic

optimal control policy. The implementation of D2C on the control of tensegrity structures is

demonstrated. Advantages are shown over the model-based shape control method.

3. The global optimality of the D2C algorithm is proved, which guarantees that under mild

conditions, the optimization result of D2C always converges to the global optimum. Sim-

ulation experiments are conducted to demonstrate the performance of D2C on 1) training

efficiency, 2) closed-loop performance, 3) reliability of training, in which advantages over

state-of-the-art RL methods are also shown.

4. An extension for partially observed systems (POD2C) is developed which converts the

partially observed problem to a “fully observed" problem in the information state form and
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designs a local feedback control law. The conditions to exactly match the ARMA model

with the LTV model are provided. We show that the solution found by POD2C is the

global optimum of the partially observed optimal control problem and satisfies a generalized

minimum principle. This algorithm requires only the input-output data where the output

can be a small subset of the states. The performance of this algorithm is tested on complex,

nonlinear high-dimensional robotic systems under process and sensing uncertainties.

5. The problem of learning under noise is studied by applying POD2C to fully observed and

partially observed systems under noise. It is proved that the open-loop optimal trajectory

design method partially observed data-based iLQR (POD-iLQR) converges to the global

minimum in the fully observed case with process noise only. In the partially observed case

with process and measurement noise, it is shown that POD-iLQR can not converge to the

global optimum due to the bias in the ARMA model fitting. To recover optimality, multiple

rollouts need to be averaged to eliminate the bias.

1.5 Dissertation Outline

The Outline of this dissertation is shown in Fig. 1.2.

6



Figure 1.2: Dissertation outline.
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2. DECOUPLED DATA-BASED CONTROL 1.0: A FIRST ORDER APPROACH*

2.1 Introduction

The control of an unknown dynamical system adaptively has a rich history in control literature

[4]. This classical literature provides a rigorous analysis of the asymptotic performance and

stability of the linear closed-loop system. The optimal control of a stochastic nonlinear system with

continuous state space and action space is a significantly more challenging problem due to the “curse

of dimensionality", the exponential computational complexity growth associated with dynamic

programming. Learning to control problems where the model of the system is unknown also suffer

from these computational complexity issues, in addition to the usual identifiability problems in

adaptive control.

The last several years have seen significant progress in deep neural networks-based reinforcement

learning approaches for controlling unknown dynamical systems, with applications in many areas

like playing games [24], locomotion [25] and robotic hand manipulation [26]. Many new algorithms

that show promising performance are proposed [27] [10] and various improvements and innovations

have been continuously developed. However, despite excellent performance on some tasks, RL is

still considered very data and time-intensive. The training time for such algorithms is typically

really large. Moreover, high variance and reproducibility issues on the performance are reported

[28].

In general, the solution approaches to the problem of controlling unknown dynamical systems

can be divided into two broad classes, local and global.

The most computationally efficient among these techniques are “local" trajectory-based methods

such as DDP, [11, 29], which quadratize the dynamics and the cost-to-go function around a nominal

trajectory, and the iLQR, [12, 13], which only linearizes the dynamics, and thus, is more efficient.

*Part of this chapter is reprinted with permission from "Decoupled data-based approach for learning to control
nonlinear dynamical systems" by R. Wang, K. S. Parunandi, D. Yu, D. Kalathil and S. Chakravorty, 2021. IEEE
Transactions on Automatic Control, Copyright 2021 by IEEE and "Model and data based approaches to the control of
tensegrity robots" by R. Wang, R. Goyal, S. Chakravorty and R. E. Skelton, 2020. IEEE Robotics and Automation
Letters, vol. 5, no. 3, pp. 3846-3853, Copyright 2020 by IEEE.
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The local approaches to control unknown systems have been explored before [14, 30], however,

they have always been characterized as “trajectory optimization" techniques and have been thought

of as distinct from RL. Also, the advantages in training efficiency and robustness to noise of the

local approaches when compared to the global approaches have not been recognized.

Global methods, more popularly known as approximate dynamic programming [31, 6] or RL

methods [7], seek to improve the control policy by repeated interactions with the environment

while observing the system’s responses. The repeated interactions, or learning trials, allow these

algorithms to compute the solution of the dynamic programming problem (optimal value/Q-value

function or optimal policy) either by constructing a model of the dynamics (model-based) [32, 8, 33],

or directly estimating the control policy (model-free) [7, 10]. Standard RL algorithms are broadly

divided into value-based methods, like Q-learning, and policy-based methods, like policy gradient

algorithms. Recently, function approximation using deep neural networks has significantly improved

the performance of reinforcement learning algorithms, leading to a growing class of literature on

“deep reinforcement learning" [27, 10, 34, 9]. Despite the success, the amount of samples and

training time required still seem prohibitive. On the other hand, works such as [35] demonstrated

that simple policies such as the ones with linear parameterization showed a promising performance

comparable to benchmark results obtained by policies represented using deep neural networks.

In this chapter, we propose a novel decoupled data-based control algorithm (D2C 1.0) for

learning to control an unknown nonlinear dynamical system. Our approach introduces a rigorous

decoupling of the open-loop (planning) problem from the closed-loop (feedback control) problem.

This decoupling allows us to come up with a highly efficient approach to solve the problem in

a completely data-based fashion. Our approach proceeds in two steps: (i) first, we optimize the

nominal open-loop trajectory of the system using the first order gradient descent method with data

from a blackbox simulation model, (ii) then we identify the LTV system governing perturbations

from the nominal trajectory using random input-output perturbation data, and design an LQR

controller for this linearized system. We show that the performance of the D2C 1.0 algorithm is

approximately optimal, in the sense that the decoupled design is near-optimal to the second order in
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a suitably defined noise parameter. Moreover, simulation performance on various robotic examples

suggests a significant reduction in training time compared to other state-of-the-art RL algorithms. To

further demonstrate the performance of D2C 1.0, we test it using tensegrity structures in simulation

and compare it with a model-based shape control method.

The rest of the chapter is organized as follows. In Section 2.2, the basic problem formulation

is outlined. In Section 2.3, a decoupling result which solves the MDP in a “decoupled open loop-

closed loop " fashion is introduced. In Section 2.4, we propose the D2C 1.0 algorithm based on

the decoupling principle, with discussions of implementation problems. In Section 2.5, we test the

proposed approach using four typical benchmarking examples with comparisons to a state-of-the-art

RL technique. In Section 2.6, we demonstrate the efficacy of D2C 1.0 on the tensegrity structures in

comparison with a model-based shape control (MBC) method.

2.2 Problem Formulation

First, let’s define the stochastic optimal control problem:

min
ut

J̃(x0) = E[
T−1∑
t=0

c(xt, ut) + cT (xT )] (2.1)

s.t. xt+1 = f(xt, ut) + εwt,

where xt ∈ Rnx and ut = πt(xt) ∈ Rnu are the state and control vector at time t, c(·) and

cT (·) are the incremental and terminal cost functions, ε < 1 is a small parameter and wt is

the Gaussian white noise. The optimization is subject to the system dynamics which are affine

in control for mechanical systems. The stochastic optimal control problem is to find the the

control policy πo = {πo0, πo2, · · · , πoT−1} such that the expected cumulative cost is minimized, i.e.,

πo = arg minπ J̃π(x0). In the following, we assume that the initial state x0 is fixed, and denote

J̃π(x0) simply as J̃π.
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2.3 A Near-Optimal Decoupling Principle

To construct a data-based solution to this problem, we first outline a near-optimal decoupling

principle in stochastic optimal control that paves the way for the D2C 1.0 algorithm described in

Section 2.4.

2.3.1 Linearization w.r.t. Nominal Trajectory

Consider a noiseless version of the system dynamics given in Eq. (2.1), wt = 0 for all t. We

denote the ‘nominal’ state trajectory as x̄t and the ‘nominal’ control as ūt, with the initial condition,

x̄0 = x0, known exactly. The resulting dynamics without noise is given by x̄t+1 = f(x̄t, ūt). Let

π = (πt)
T−1
t=0 be a given control policy, i.e., ut = πt(xt), and thus, ūt = πt(x̄t).

Assuming that f(·) and πt(·) are sufficiently smooth, we can linearize the dynamics about the

nominal trajectory. Denoting δxt = xt − x̄t, δut = ut − ūt, we can express,

δxt+1 = Atδxt +Btδut + St(δxt, δut) + εwt, (2.2)

δut = Ktδxt + S̃t(δxt), (2.3)

where At = ∂f
∂x
|x̄t,ūt , Bt = ∂f

∂u
|x̄t,ūt , Kt = ∂πt

∂x
|x̄t , and St(·, ·), S̃t(·) are second and higher-order

terms in the respective expansions. Similarly, we can linearize the instantaneous cost c(xt, ut) about

the nominal values (x̄t, ūt) as,

c(xt, ut) = c(x̄t, ūt) + Cx
t δxt + Cu

t δut +Ht(δxt, δut), (2.4)

cT (xT ) = cT (x̄T ) + Cx
T δxT +HT (δxT ), (2.5)

where Cx
t = ∂c

∂x
|x̄t,ūt , Cu

t = ∂c
∂u
|x̄t,ūt , Cx

T = ∂cT
∂x
|x̄t , and Ht(·, ·) and HT (·) are second and higher-

order terms in the respective expansions.
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Using Eq. (2.2) and (2.3), we can write the closed-loop dynamics of the trajectory (δxt)
T
t=1 as,

δxt+1 = (At +BtKt)︸ ︷︷ ︸
Āt

δxt + {BtS̃t(δxt) + St(δxt, Ktδxt + S̃t(δxt)))}︸ ︷︷ ︸
S̄t(δxt)

+εwt, (2.6)

where Āt represents the linear part of the closed-loop systems and the term S̄t(.) represents the

second and higher-order terms in the closed-loop system. Similarly, the closed-loop incremental

cost given in Eq. (2.4) can be expressed as

c(xt, ut) = c(x̄t, ūt)︸ ︷︷ ︸
c̄t

+ [Cx
t + Cu

t Kt]︸ ︷︷ ︸
C̄t

δxt +Ht(δxt, Ktδxt + S̃t(δxt))︸ ︷︷ ︸
H̄t(δxt)

. (2.7)

Therefore, the cumulative cost of any given closed-loop trajectory (xt, ut)
T
t=0 can be expressed

as,

Jπ =
T−1∑
t=0

c(xt, ut = πt(xt)) + cT (xT )

=
T∑
t=0

c̄t +
T∑
t=0

C̄tδxt +
T∑
t=0

H̄t(δxt), (2.8)

where c̄T = cT (x̄T ), C̄T = Cx
T , H̄T (.) = HT (.).

We first show the following results.

Lemma 1. The state perturbation equation

δxt+1 = Ātδxt + S̄t(δxt) + εwt

given in Eq. (2.6) can be equivalently characterized as

δxt = δxlt + ¯̄St, δx
l
t+1 = Ātδx

l
t + εwt (2.9)

where ¯̄St is an O(ε2) function that depends on the entire noise history {w0, w1, · · ·wt} and δxlt
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evolves according to the linear closed-loop system as above.

Proof. We proceed by induction. The first general instance of the recursion occurs at t = 3. It can

be shown that:

δx3 = (Ā2Ā1(εw0) + Ā2(εw1) + εw2)︸ ︷︷ ︸
δxl3

+ {Ā2S̄1(εw0) + S̄2(Ā1(εw0) + εw1 + S̄1(εw0))}︸ ︷︷ ︸
¯̄S3

. (2.10)

Noting that S̄1(.) and S̄2(.) are second and higher order terms, it follows that ¯̄S3 is O(ε2). Suppose

now that δxt = δxlt + ¯̄St where ¯̄St is O(ε2). Then: δxt+1 = Āt+1(δxlt + ¯̄St) + εwt + S̄t+1(δxt) =

(Āt+1δx
l
t + εwt)︸ ︷︷ ︸

δxlt+1

+ {Āt+1
¯̄St + S̄t+1(δxt)}︸ ︷︷ ︸

¯̄St+1

.Noting that S̄t+1 is O(ε2) and ¯̄St+1 is O(ε2) by assump-

tion, the result follows.

Lemma 2. Let δJπ1 , δJπ2 be as defined in Eq. (2.11). Then, E[δJπ1 δJ
π
2 ] is an O(ε4) function.

Proof. In the following, we suppress the explicit dependence on π for δJπ1 and δJπ2 for convenience.

Recall that δJ1 =
∑T

t=0 C
x
t δx

l
t, and δJ2 =

∑T
t=0 H̄t(δxt) + Cx

t
¯̄St. As before, let us consider

¯̄S3. We have that ¯̄S3 = Ā2S̄1(εw0) + S̄2(Ā1(εw0) + εw1 + S̄1(εw0)). Note that εw0 = δxl1

and Ā1(εw0) + εw1 = δxl2. Then, it follows that: ¯̄S3 = Ā2


δxlᵀ1 S̄

(2)
1,1δx

l
1

...

δxlᵀ1 S̄
(2)
1,nδx

l
1,

 +


δxlᵀ2 S̄

(2)
2,1δx

l
2

...

δxl
ᵀ

2 S̄
(2)
2,nδx

l
2,

 +

O(ε3),where the Hessian matrices {S̄(2)
t,j , j = 1, 2 · · ·n} correspond to the second order term in

the Taylor expansion of the n dimensional vector valued function S̄t(.). A similar observation

holds for H̄3(δx3) in that: H̄3(δx3) = δxlᵀ3 H̄
(2)
3 δxl3 + O(ε3),where H̄(2)

t represents the Hessian

matrix corresponding to the second order term in the Taylor expansion of the scalar-valued function

H̄t(.). Therefore, from the above equations, it follows that we may write: H̄t(δxt) + Cx
t

¯̄St =∑t
τ=0 δx

lᵀ
τ Qt,τδx

l
τ + O(ε3), for suitably defined matrix coefficients Qt,τ . Therefore, it follows

that δJ2 =
∑T

t=0 H̄t(δxt) + Cx
t

¯̄St =
∑T

τ=0 δx
lᵀ
τ Q̄T,τδx

l
τ + O(ε3), for suitably defined matrices

Q̄T,τ . Hence, δJ1δJ2 =
∑T

t,τ=0C
x
t (δxlt)δx

lᵀ
τ Q̄T,τδx

l
τ + O(ε4).Taking expectations on both sides:

E[δJ1δJ2] =
∑T

t,τ=0 E[Cx
t δx

l
tδx

lᵀ
τ Q̄T,τδx

l
τ ]+O(ε4).Break δxlt = (δxlt−δxlτ )+δxlτ , assuming τ < t.
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Then, it follows that: E[Cx
t δx

l
tδx

lᵀ
τ Q̄T,τδx

l
τ ] = E[Cx

t δx
l
τδx

lᵀ
τ Q̄T,τδx

l
τ ], due to the independence

of δxlt − δxlτ from δxlτ , and the fact that E[δxlt − δxlτ ] = 0. Note that we may write δxlτ =

ε[βτ−1ωτ−1 + · · · + β0ω0], for suitably defined co-efficients β0, β1 · · · . Therefore, it follows that:

δxl
′
τ Q̄T,τδx

l
τ = ε2

∑τ
k,l=0 ω

′
kQ̃

T,τ
kl ωl, for suitably defined matrices Q̃T,τ

kl . Therefore, it follows

that Cx
t δx

l
τδx

lᵀ
τ Q̄T,τδx

l
τ = ε3

∑τ−1
t1,t2,t3=0

∑p
i,j,k=1 ω

i
t1
ωjt2ω

k
t3
αi,j,kt1,t2,t3 , for suitably defined constants

αi,j,kt1,t2,t3 , where ωit represents the ith input noise term at time t and p is the total number of inputs

to the system. Hence, E[Cx
t δx

l
τδx

lᵀ
τ Q̄T,τδx

l
τ ] = ε3

∑τ−1
t1,t2,t3=0

∑p
i,j,k=1 E[ωit1ω

j
t2ω

k
t3

]αi,j,kt1,t2,t3 . Note

now that E[ωit1ω
j
t2ω

k
t3

] = 0 unless t1 = t2 = t3, regardless of i, j, k, since the noise is assumed to

be white in time. If the input channels are uncorrelated, and the input noise standard Gaussian,

it follows that E[ωisω
j
sω

k
s ] = 0 regardless of i, j, k since odd moments of a zero mean Gaussian

variable are zero.

Next, let us consider the case that the input channels are correlated. Then ωs =
√
Wν, where W is

the covariance of ωs and ν is a Gaussian input vector that has identity covariance. Then, it follows

that: E[ωisω
j
sω

k
s ] =

∑p
i1,i2,i3=1 E[νi1νi2νi3 ]di1,i2,i3 , for suitably defined coefficients di1,i2,i3 . However,

due to our previous argument, E[νi1νi2νi3 ] = 0 due to the noise input ν being spatially uncorrelated

and Gaussian. Therefore, from the above above argument it follows that: E[Cx
t δx

l
τδx

lᵀ
τ Q̄T,τδx

l
τ ] =

0. Therefore, using the above fact, it follows that E[δJ1δJ2] = O(ε4), thereby proving the result

when t > τ .

An analogous argument as above can be repeated for the case when τ > t.

Now, we show the following important result:

Proposition 1. The mean and variance of the closed-loop cost Jπ obey the following relationships,

where J̄π =
∑T

t=0 c̄t, and δJπ1 =
∑T

t=0 C̄tδx
l
t (see Eq. (2.8)-(2.9)):

J̃π = E[Jπ] = J̄π +O(ε2),

Var(Jπ) = Var(δJπ1 )︸ ︷︷ ︸
O(ε2)

+O(ε4).

Proof. Using Eq. (2.9) in Eq. (2.8), we can obtain the cumulative cost of any sample closed-loop
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trajectory as,

Jπ =
T∑
t=0

c̄t︸ ︷︷ ︸
J̄π

+
T∑
t=0

C̄tδx
l
t︸ ︷︷ ︸

δJπ1

+
T∑
t=0

H̄t(δxt) + C̄t
¯̄St︸ ︷︷ ︸

δJπ2

. (2.11)

From Eq. (2.11), we get,

J̃π = E[Jπ] = E[J̄π + δJπ1 + δJπ2 ],

= J̄π + E[δJπ2 ] = J̄π +O(ε2), (2.12)

The first equality in the last line of the equations before follows from the fact that E[δxlt] = 0, since

its the linear part of the state perturbation driven by Gaussian white noise and by definition δxl1 = 0.

The second equality follows from the fact that δJπ2 is an O(ε2) function since H̄t(δxt) and ¯̄St are

both O(ε2) functions. Let δJ̃π2 ≡ E[δJπ2 ]. Noting that δJ̃π1 ≡ E[δJπ1 ] = 0, we obtain:

Var(Jπ) = E[Jπ − J̃π]2

= E[J̄π + δJπ1 + δJπ2 − J̄π − δJ̃π2 ]2

= E[δJπ1 + δJπ2 − δJ̃π2 ]2

= Var(δJπ1 ) + Var(δJπ2 ) + 2E[δJπ1 (δJπ2 − δJ̃π2 )],

= Var(δJπ1 ) + Var(δJπ2 ) + 2E[δJπ1 δJ
π
2 ], (2.13)

where the last equality follows from the fact that E[δJπ1 ] = 0 and the fact that δJ̃π2 is non-random.

Since δJπ2 is O(ε2), Var(δJπ2 ) is an O(ε4) function. As is shown in Lemma 2, E[δJπ1 δJ
π
2 ] is O(ε4)

as well. Finally Var(δJπ1 ) is an O(ε2) function because δxlt is an O(ε) function. Combining these,

we get the desired result.

The following observations can now be made from Proposition 1.

Remark 1 (Expected cost-to-go). Recall that ut = πt(xt) = ūt +Ktδxt + S̃t(δxt). However, note
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that due to Proposition 1, the expected cost-to-go, J̃π, is determined to within O(ε2) by the nominal

control action sequence ūt.

Remark 2 (Variance of cost-to-go). Given nominal control action ūt, variance of the cost-to-go,

which is O(ε2), is determined to within O(ε4) by the linear feedback term Ktδxt.

2.3.2 Decoupled Approach for Feedback Control

Proposition 1 and the remarks above allow us to propose the following decoupled approach to

stochastic nonlinear feedback control in the sense that the open-loop design is decoupled from the

closed-loop design.

Open-Loop Design. First, we design an optimal (open-loop) control sequence ū∗t for the noiseless

system. More precisely,

(ū∗t )
T−1
t=0 = arg min

(ūt)
T−1
t=0

T−1∑
t=0

c(x̄t, ūt) + cT (x̄T ), (2.14)

x̄t+1 = f(x̄t, ūt), x̄0 = x0.

Details of this open-loop design are discussed in Section 2.4.

closed-loop Design. We find the optimal feedback gain K∗t such that the variance of the linear

closed-loop system around the optimal nominal path, (x̄t, ū
∗
t ), is minimized.

(K∗t )T−1
t=0 = arg min

(Kt)
T−1
t=0

Var(δJπ1 ),

δJπ1 =
T∑
t=0

C̄tδx
l
t,

δxlt+1 = (At +BtKt)δx
l
t + εwt. (2.15)

We characterize the approximate closed-loop policy below.
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Proposition 2. Construct a closed-loop policy

π∗t (xt) = ū∗t +K∗t δxt, (2.16)

where ū∗t is the solution of the open-loop problem Eq. (2.14), and K∗t is the solution of the closed-

loop problem Eq. (2.15). Let πo be the optimal closed-loop policy. Then, |J̃π∗ − J̃πo| = O(ε2).

Furthermore, among all policies with nominal control action ū∗t , the variance of the cost-to-go

under policy π∗t , is within O(ε4) of the variance of the policy with the minimum variance.

Proof. Let J̄πo denote the nominal cost of the optimal policy πo, where recall from before that

the nominal cost is the closed-loop cost when all the noise inputs are identically zero. Then, we

have J̃π∗ − J̃πo = J̃π
∗ − J̄π∗ + J̄π

∗ − J̃πo ≤ J̃π
∗ − J̄π∗ + J̄π

o − J̃πo . The inequality in the last

line above is due the fact that J̄π∗ ≤ J̄π
o , since the nominal control corresponding to π∗, ū∗t , is the

minimizer for the nominal optimal control (open-loop) problem. Now, using Proposition 1 for the

policies π∗ and πo, we have that |J̃π∗− J̄π∗| = O(ε2), and |J̃πo− J̄πo | = O(ε2). Also, by definition,

we have J̃πo ≤ J̃π
∗ , i.e., the expected cost of πo is lower than that of π∗ since πo minimizes the

expected cost over all feedback policies. Note that this is different from u∗t minimizing the nominal

(open-loop) cost of the system. Then, since J̃π∗ − J̃πo ≥ 0, using the inequality above, we obtain:

|J̃π∗ − J̃πo| ≤ |J̃π∗ − J̄π∗ + J̄π
o − J̃πo| ≤ |J̃π∗ − J̄π∗|+ |J̄πo − J̃πo| = O(ε2). A similar argument

holds for the variance as well.

The closed-loop cost function in Eq. (2.15) can be written as (after noting δut = Ktδxt):

Var(δJπ1 ) = E[
T∑

t,τ=0

[δxlt δut]Qt,τ

δxlt
δut

],

Qt,τ =

Cxᵀ

t C
x
τ Cxᵀ

t C
u
τ

Cuᵀ

t C
x
τ Cuᵀ

t C
u
τ

 , (2.17)

and Cu
T = 0. This problem is non-standard: a standard LQR problem only has a single sum instead
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of the double sum over time above. Albeit convex, there is no standard solution to the problem

above. Therefore, we solve a standard LQR problem as a surrogate and the effect is one of reducing

the variance of the cost-to-go.

Approximate Closed-Loop Problem. We solve the following LQR problem for suitably defined

cost function weighting factors Qt, Rt:

min
(δut)Tt=0

E[
T−1∑
t=0

δx′tQtδxt + δu′tRtδut + δx′TQT δxt],

s.t. δxt+1 = Atδxt +Btδut + εwt. (2.18)

The solution to the above problem furnishes us a feedback gain K̂∗t which we can use in the place

of the true variance minimizing gain K∗t .

Remark 3. Proposition 1 states that the expected cost-to-go of the problem is dominated by the

nominal cost-to-go. Therefore, even an open-loop policy consisting of simply the nominal control

action is within O(ε2) of the optimal expected cost-to-go. However, the plan with the optimal

feedback gain K∗t is strictly better than the open-loop plan in that it has a lower variance in terms

of the cost to go. Furthermore, by solving the approximate closed-loop problem using the surrogate

LQR problem, we expect a lower variance of the cost-to-go function due to feedback, which is borne

out empirically (see Fig. 2.3).

2.4 Decoupled Data-Based Control Algorithm 1.0

In this section, we propose a novel decoupled data-based control algorithm (D2C 1.0). The

two-step framework to solve the stochastic feedback control problem may be summarized as follows:

1) solve the open-loop optimization problem using the gradient descent method with a blackbox

simulation model of the dynamics, 2) identify the LTV from input-output experiment data, and

design an LQR controller for the identified LTV system.
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2.4.1 Open-Loop Trajectory Optimization

A first order gradient descent-based algorithm is proposed here for solving the open-loop

optimization problem given in Eq. (2.14), where the underlying dynamic model is used as a

blackbox, and the necessary gradient estimates are found from a sequence of input perturbation

experiment data using standard least squares.

Denote the initial guess of the control sequence as U (0) = {ū(0)
t }Tt=1, and the corresponding

states X (0) = {x̄(0)
t }Tt=1. The control policy is updated iteratively via

U (n+1) = U (n) − γn∇U J̄ |X (n),U(n) , (2.19)

where U (n) = {ū(n)
t }Tt=1 denotes the control sequence in the nth iteration, X (n) = {x̄(n)

t }Tt=1 denotes

the corresponding states, and γn is the time-varying line search parameter. As J̄ |X (n),U(n) is the

expected cumulative cost under control sequence U (n) and corresponding states X (n), the gradient

vector is defined as:

∇U J̄ |X (n),U(n) =

(
∂J̄
∂u1

∂J̄
∂u2

· · · ∂J̄
∂uT

)
|X (n),U(n) , (2.20)

which is the gradient of the average cumulative cost w.r.t the control sequence after n iterations.

The following paragraph elaborates on how to estimate the above gradient.

Let us define a rollout to be an episode in the simulation that starts from the initial settings to

the end of the horizon with a control sequence. For each iteration, multiple rollouts are conducted

sequentially with both the expected cumulative cost and the gradient vector updated iteratively

after each rollout. During one iteration of the control sequence, the expected cumulative cost is

calculated as

J̄ |j+1

X (n),U(n) = (1− 1

j
)J̄ |jX (n),U(n) +

1

j
(J |X j,(n),Uj,(n)), (2.21)

where j denotes the jth rollout within the current iteration process of control sequence. J̄ |jX (n),U(n)
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is the expected cumulative cost after j rollouts while J |X j,(n),Uj,(n) denotes the cost of the jth rollout

under control sequence U j,(n) and corresponding states X j,(n). Note that U j,(n) = {ū(n)
t +δu

j,(n)
t }Tt=1

where {δuj,(n)
t }Tt=1 is the zero-mean, i.i.d Gaussian noise added as perturbation to the control

sequence U (n). Then the gradient vector is calculated in a similar sequential manner as

∇U J̄ |j+1

X (n),U(n) = (1− 1

j
)∇U J̄ |jX (n),U(n) +

1

jσδu
(J |X j,(n),Uj,(n) − J̄ |

j+1

X (n),U(n))(U
j,(n) − U (n)),

(2.22)

where σδu is the variance of the control perturbation and ∇U J̄ |j+1

X (n),U(n) denotes the gradient vec-

tor after j rollouts. After m rollouts, the control sequence is updated by Eq. (2.19) in which

∇U J̄ |X (n),U(n) is estimated by∇U J̄ |mX (n),U(n) , and the procedure repeated till convergence.

2.4.2 Linear Time-Varying System Identification

The closed-loop control design specified in Eq. (2.15) requires the knowledge of the parameters

At, Bt, 1 ≤ t ≤ T, of the perturbed linear system. We propose a linear time-varying (LTV) system

identification procedure to estimate these parameters.

First start from perturbed linear system given by Eq. (2.18). Using only first order information,

we estimate the system parameters At, Bt in the LTV form: δxt+1 = Âtδxt + B̂tδut.

Now write out their components for each iteration in vector form as,

Y = [δx0
t+1δx

1
t+1 · · · δxN−1

t+1 ], X =

δx0
t · · · δxN−1

t

δu0
t · · · δuN−1

t

 ,
Y = [Ât | B̂t]X, (2.23)

where N is the total iteration number. δxnt+1 denotes the output state deviation, δxnt denotes the input

state perturbations and δunt denotes the input control perturbations at time t of the nth iteration.

All the perturbations are zero-mean, i.i.d, Gaussian random vectors whose covariance matrix is σI

where I is the identity matrix and σ is a scalar. Note that here one iteration only has one rollout.
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Using the least squares method Ât and B̂t can be calculated as follows:

[Ât | B̂t] = Y X ′(XX ′)−1, (2.24)

The calculation procedure can also be done sequentially using recursive least squares. It is

highly amenable to parallelization and is memory efficient.

2.4.3 Closed-Loop Control Design

Given the estimated perturbed linear system, we design a finite horizon, discrete time LQR

[22] along the trajectory for each timestep to minimize the cost function J = δxTTQδxT +∑T−1
t=0 (δxTt Qδxt + uTt Rut + 2δxTt Nut), subjects to δxt+1 = Âtδxt + B̂tδut, where ut = −Ktδxt.

The feedback gains are calculated as Kt = (R + BTPt+1B)−1(BTPt+1A + NT ), where Pt is

solved in a back propagation fashion from the Riccati equation: Pt−1 = ATPtA − (ATPtB +

N)(R + BTPtB)−1(BTPtA + NT ) + Q,PT = Q,N = 0. The closed-loop control policy is

ut(xt) = ū∗t −Ktδxt, where δxt is the state deviation vector from the nominal state at timestep t.

Algorithm 1: D2C 1.0 Algorithm
1) Solve the deterministic open-loop optimization problem for optimal open-loop nominal
control sequence and trajectory ({ū∗t}Tt=1, {x̄∗t}Tt=1) using gradient descent method (Section
2.4.1).
2) Identify the LTV system (Ât, B̂t) via least square estimation (Section 2.4.2).
3) Solve the Riccati equations using estimated LTV system equation for feedback gain
{K∗t }Tt=1 (Section 2.4.3).
4) Set t = 1, given initial state x1 = x̄∗1 and state deviation δx1 = 0.
while t ≤ T do

ut = ū∗t +K∗t δxt,

xt+1 = f(xt, ut) + εwt,

δxt+1 = xt+1 − x̄∗t+1, (2.25)

t = t+ 1.
end while
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2.4.4 Convergence of the D2C Algorithm 1.0

The D2C 1.0 algorithm is summarized in Algorithm 1. In the following, we provide a conver-

gence analysis of the open-loop design and LTV identification parts of the D2C 1.0 algorithm.

Proposition 3. Gradient Descent. Let the gradient ∇J̄ be Lipshitz continuous, i.e., ||∇J̄(U1) −

∇J̄(U2)||| ≤ L||U1 − U2||, for some L < ∞, and the step size parameters in Eq. (2.19) satisfy∑
t γt =∞, and

∑
t γ

2
t <∞. Given E||U (n)||2 <∞, the iterates in Eq. (2.19), U (n) almost surely

converge to a set S, where∇J̄ = 0 on the set S.

Proof. The sample paths of the stochastic gradient descent algorithm Eq. (2.19) almost surely can

be approximated asymptotically by the ODE U̇ = −∇J̄(U), due to the above assumptions and

the fact that Eq. (2.22) is an unbiased estimator of the true gradient, and the convergence of the

algorithm is almost surely determined by the limit points of the ODE (this follows from the so-called

‘ODE method’ approach to Stochastic Approximation algorithms [36]). To characterize the limit

points, choose the Lyapunov function J̄ for the above ODE, then ˙̄J = −∇J̄ · ∇J̄ ≤ 0. Hence, J̄

converges to a set S where∇J̄ = 0, proving the result.

Complexity of Stochastic Gradient Descent. The complexity of the gradient descent algorithm,

per gradient descent step, is O(pT ), where p is the number of inputs, and T is the control horizon.

However, due to the nonlinear cost function J , the convergence guarantees are only asymptotic, and

the complexity of the whole algorithm is O(K∞pT ) where K∞ is the steps to convergence which

can vary with the initial guess and the learning parameter schedule.

Proposition 4. Convergence of LTV identification. The least squares estimates in Eq. (2.24),

[Ât, B̂t]→ [At, Bt], as N →∞ in the mean square sense.

Proof. Without loss of generality, let the cov(δx
(i)
t ) = In, and cov(δu

(i)
t ) = Ip, where Iq de-

notes a q × q identity matrix. The least squares solution in (2.24) can be written as [Ât, B̂t] =

Y (N)X(N)ᵀ(X(N)X(N)ᵀ)−1, where Y (N) = [δx
(1)
t+1...δx

(N)
t+1], X(N) = [δx̄

(1)
t , · · · δx̄(N)

t ], and δx̄(i)
t =

[δx
(i)
t , δu

(i)
t ]ᵀ.
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Using the Law of Large numbers, it is relatively straightforward to see that 1
N
X(N)X(N)ᵀ → In+p as

N →∞ almost surely. Let the noise afterN steps be V (N) (which is zero mean with covariance IN ),

i.e., Y (N) = [At, Bt]X
(N) + V (N). Then, the error in the LS estimate is V (N)X(N)ᵀ(X(N)X(N)ᵀ)−1,

which is zero mean and has covariance (X(N)X(N)ᵀ)−1 → 1
N
In+p → 0 as N →∞. Therefore, the

LS estimate converges in mean square sense to the true parameter values.

Complexity of LTV identification. The key to the complexity of the above identification is how

quickly does the sample covariance 1
N
X(N)X(N)ᵀ → In+p. It can be shown that N = O(n + p)

samples are good enough to get close to the limit with a very high probability if n + p is large

enough (Theorem 4.7.1 in [37]). We do not go into more details here due to space constraints

but this is borne out by our empirical evidence. Thus, the complexity of the LTV identification is

O(n+ p)T since we have T such identification steps.

Complexity of the D2C 1.0 algorithm. The complexity of the open-loop design is O(K∞pT )

while that of the LTV identification, and hence the closed-loop design, is O(n + p)T . However,

in general, the steps to convergence, K∞ >> n, p, and thus, the training time of the D2C 1.0

algorithm is overwhelmingly dominated by the open-loop part, an observation that is borne out by

our empirical results that follow (see Table 2.1).

2.5 Empirical Results on Benchmarking Examples

In this section, we compare the D2C approach with the well-known deep reinforcement learning

algorithm - Deep Deterministic Policy Gradient (DDPG) [9]. For comparison, we evaluate both

methods in the following three aspects: 1) Efficiency in training - the amount of time and storage

required to achieve a desired task, 2) Robustness to noise - the deviation from the predefined task

due to random noise in the process in the testing stage, and 3) Ease of training - the challenges

involved in training with either of the data-based approaches.

We tested our method with four benchmark tasks, all implemented in MuJoCo simulator [38]:

Inverted pendulum, Cart-pole, 3-link swimmer, and 6-link swimmer (please see [39] for details). The
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state space ranges from 2 to 26 dimensions while the control space ranges from 1 to 6 dimensions

in these examples. An off-the-shelf implementation of DDPG provided by Keras-RL [40] library

has been customized for our simulations. For a fair comparison, “episodic reward/cost fraction" is

considered with both methods. It is defined as the fraction of reward obtained in an episode during

training w.r.t the nominal episodic reward (converged reward).

Training Efficiency: One way of measuring efficiency is to collate the times taken for the

episodic cost (or reward) to converge during training. Plots in Fig. 2.1 show the training process

with both methods on the systems considered. Each plot shows the training curve of one experiment.

The curve marked as original is the actual training curve reflecting the original reward data. The one

marked as filtered is the curve after smoothing out the spikes to show a better view of the reward

trend as the training goes. Table 2.1 delineates the times taken for training respectively. As the

system identification and feedback gain calculation in the case of D2C take only a small portion of

time, the total time comparison in (Table 2.1) shows that D2C learns the optimal policy substantially

faster than DDPG, and hence, has a better training efficiency.

(a) Inverted Pendulum - D2C 1.0 (b) Cart-Pole - D2C 1.0 (c) Inverted Pendulum - DDPG (d) Cart-Pole - DDPG

(e) 6-link Swimmer - D2C 1.0 (f) Fish - D2C 1.0 (g) 6-link Swimmer - DDPG (h) Fish - DDPG

Figure 2.1: Episodic reward fraction vs time taken during training.
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Robustness to noise: However, from plots in Fig. 2.2, it is evident that the performance of D2C

1.0 is on par with or better than DDPG up to a certain level of noise. It may also be noted that the

error variance in the D2C method increases abruptly when the noise level is higher than a threshold

and drives the system too far away from the nominal trajectory that the LQR controller cannot fix it.

This could be considered a drawback for D2C. However, it must be noted that the range of noise

levels (up until 100 % of the maximum control signal) that we are considering here is far beyond

what is typically encountered in practical scenarios. Moreover, it must also be noted that at the point

where the DDPG performance overtakes that of D2C, the performance of both methods is poor from

the viewpoint of attaining the given task. In Fig. 2.3, we compare the episodic cost during testing

between the open-loop policy applied along and the closed-loop policy of D2C 1.0. As expected,

the closed-loop performance is much better than the open-loop performance albeit the closed-loop

design is only a very small fraction of the training cost (see Table 2.1).

(a) Inverted Pendulum (b) Cart-Pole (c) 6-link Swimmer (d) Fish

Figure 2.2: Terminal MSE comparison of D2C 1.0 and DDPG during testing.

Ease of training: To elucidate the ease of training from an empirical perspective, the exploration

noise that is required for training in DDPG mandates the system to operate with a shorter timestep

than a threshold, beyond which the simulation fails due to an unbearable magnitude of control

actions in the system. For this, we train both the swimmers in one such case (with ∆t = 0.01 sec)

till it fails and execute the intermediate policy. Figure 2.4 shows the plot in the testing stage with

both methods. It is evident from the terminal state mean-squared error at zero noise level that the
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(a) Inverted Pendulum (b) Cart-Pole (c) 6-link Swimmer (d) Fish

Figure 2.3: Averaged episodic reward fraction vs noise level during testing for D2C 1.0.

nominal trajectory of DDPG is incomplete and its policy failed to reach the goal. The effect is more

pronounced in the higher-dimensional 6-link swimmer system (Fig. 2.4b), where the DDPG’s policy

can be deemed to be downright broken. Note, from Table 2.1, that the systems have been trained

with DDPG for a time that is more than thrice with the 3-link swimmer and 4 times with the 6-link

swimmer. Moreover, the starred entries in Table I indicate that DDPG failed to converge. On the

other hand, under the same conditions, the seamless training of D2C results in a working policy

with even greater data efficiency.

Table 2.1: Simulation parameters and training outcomes.

System Steps per Time- Training time (in sec.)
episode step D2C 1.0

(in sec.) Open- Closed- DDPG
loop loop

Inverted 30 0.1 12.9 < 0.1 2261.15
Pendulum
Cart pole 30 0.1 15.0 1.33 6306.7

3-link 1600 0.005 7861.0 13.1 38833.64
Swimmer 800 0.01 4001.0 4.6 13280.7

6-link 1500 0.006 9489.3 26.5 88160
Swimmer 900 0.01 3585.4 16.4 15797.2

Fish 1200 0.005 6011.2 75.6 124367.6
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(a) 3-link swimmer (b) 6-link swimmer

Figure 2.4: D2C 1.0 vs DDPG at ∆t = 0.01s.

2.6 Empirical Results on Tensegrity Structures

As discussed in Chapter 1, the tensegrity structures have great potential in soft robotics. A

systematic solution for controlling tensegrity robots can be of great value for soft robot development.

Thus, in this section, we apply D2C 1.0 to the tensegrity structures and compare the performance

with the MBC method. We first give the background of tensegrity structure design and control. Then

we compared these methods in simulation and delineate their relative advantages and disadvantages.

The details of the modeling and model-based control of high DOF tensegrity robotic systems are

presented in the Appendix Section A.1 and A.2.

2.6.1 Background on Tensegrity Structures

The design of high DOF soft robotic systems has attracted increasing interest in recent years

[41, 42]. In this regard, tensegrity structures offer a tantalizing prospect for the principled design

of such soft robotic systems. As described in the introduction, the tensegrity structures also

possess great advantages that traditional systems do not have in many real-world applications, such

as minimal mass and adaptive stiffness. On the other hand, the complexity and the number of
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dimensions of tensegrity structures greatly increase the difficulty to control such systems. Thus the

tensegrity structures are good application examples to test the D2C 1.0 approach.

Tensegrity structures are designed by placing bars and strings in a methodical arrangement to

yield certain desired properties [1]. The dynamics of a tensegrity system can be very accurately

modeled as all the members in the system are 1-dimensional elements that only take uni-directional

loading [43]. The absence of bending moments on any individual element not only allows for

the accurate modeling of the system but also provides the minimum mass solution to various

kinds of loading conditions in engineering mechanics [1, 44]. For the same shape, the stiffness

of the structure can also be changed by changing the pre-tension in the strings. The minimal

mass architecture along with the variable stiffness characteristic makes it suitable for soft robotic

applications like planetary landers [45], flexible robots [46, 47], and deployable space structures [48].

Some of the researchers used model-based approaches [46, 47] and some used learning/evolutionary

algorithm-based approaches [45, 49, 50] to control the tensegrity structures but no discussion has

been given in the past to compare the two methods.

The control of tensegrity systems amounts to the design of a nonlinear stochastic controller for a

very high DOF complex nonlinear system. The classical literature provides rigorous analysis of the

asymptotic performance and stability of the closed-loop system, mostly for linear systems or finite

state and control space systems. The optimal control of a possibly unknown nonlinear dynamical

system with continuous state and action space is a significantly more challenging problem and

suffers from computational complexity issues, in addition to the usual identifiability problems of

adaptive control. For the model-based methods, the computational time is often negligible if the

analytical model is known.

2.6.2 Empirical Results

In this subsection, we present the simulation results of both the model-based shape control and

the data-based D2C 1.0 approach applied to three tensegrity robotic systems. The states are the

angles and angular velocities of the connecting hinge joints between bars. The control inputs are

the tension applied to the strings.
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2.6.2.1 Structures and Tasks

We simulated all three robotic models in the MuJoCo simulator [38]: Reacher, Arm and 6-link

swimmer. Each of the systems and their tasks are defined as follows:

(a) Reacher (b) Arm (c) 6-link Swimmer

Figure 2.5: Models simulated in MuJoCo in their initial states.

Reacher: The minimal mass solution to compressive loading is provided by T-bar structure [1].

Tensegrity D-bar structure has also been shown to require less mass than a simple continuum bar

to take the same load with the added advantage of deployability which makes it suitable for large

motion space robotic applications. A T2D1 tensegrity structure is made by combining T-bar and

D-bar structures as shown in Fig. 2.5(a). The two-dimensional structure has 22 bars and 22 strings.

The bars in the system are connected by hinge joints reducing the degrees of freedom to 14 and the

system is controlled by controlling the tension in the 22 control channels (strings). The control task

is to move the top tip (end effector) to the target position (red dot).

Arm: The arm model is composed of 10 T-bar elements, made by rigidly attaching a vertical

bar with a horizontal bar. The horizontal bars are aligned in the direction of the arm length. The

first vertical bar is fixed as the base of the model. The model has 18 dimensions of states and 38

control channels. The control task is to move the tip to the target position (red dot).

6-link Swimmer: The 6-link swimmer is composed of 6 T-bar elements. The T-bar element
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here has the same structure as the arm model. Compared with the arm model, the first bar for the

swimmer is not fixed so it could swim in the environment. The fluid density for the environment

is 3000 kg/m3, three times the density of water. The model swims by swaying its body so the

horizontal bars would interact with the fluid to generate a forward force. Note that the diameter of

the vertical bars is very small (difficult to see in the figure) so that they won’t generate too much

resistance while swimming. The model has 16 state variables and 22 control channels. The control

task is to swim to the target position (red dot).

The initial positions of the models are shown in Fig. 2.5. The orange objects are the bars, and

the grey ones are the strings.

2.6.2.2 Training and Testing

D2C implementation is done in three stages corresponding to those mentioned in the previous

section and ‘MuJoCo Pro 200 C++ version’ is used as the environment for simulating the blackbox

model. The MBC approach does not require any training time since it is a closed-form solution.

(a) Reacher (b) Arm (c) 6-link Swimmer

Figure 2.6: Models simulated in MuJoCo in their terminal states.

Training (D2C only): The open-loop training plots in Fig. 2.7 show the cost curves during

training. After the cost curves converge, we get the optimal control sequence that could drive the

systems to accomplish their tasks. The respective model positions at the end of the horizon are
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shown in Fig. 2.6. The training parameters and outcomes are summarized in (Table 2.2).

(a) Reacher (b) Arm (c) 6-link Swimmer

Figure 2.7: Episodic cost vs time taken during D2C 1.0 open-loop training.

Testing Criterion: For the closed-loop design, we proceed with the system identification and

feedback gain design step of the D2C 1.0 algorithm mentioned in the previous section to get the

closed-loop control policy. For testing, we compare the performance between the open-loop D2C

1.0 control policy and the closed-loop D2C 1.0 control policy under different noise levels. We also

compare the D2C 1.0 closed-loop performance to the MBC design for the Reacher example. The

MBC design cannot be applied to the arm or the swimmer because of the moment of the elements

and solid-fluid interaction. The open-loop control policy is to apply the optimal control sequence

solved in the open-loop training step without any feedback. So the perturbation drives the model

off the nominal trajectory and increases the episodic cost as the noise level increases. Zero-mean

Gaussian independent identically distributed (i.i.d.) noise is added to every control channel at each

step. The standard deviation of the noise is proportional to the maximum control signal in the

designed optimal control sequence for D2C 1.0. As for MBC, we use the maximum control value in

the noiseless nominal control sequence. It must be noted that the range of noise levels (at least up

until about 60% of the maximum nominal control signal) that we are considering here is far beyond

what is typically encountered in practical scenarios. As for the criterion for performance, we use

episodic cost at each noise level. 500 rollouts are simulated at every noise level tested.
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(a) Reacher (b) Arm (c) 6-link Swimmer

Figure 2.8: Performance comparison between D2C 1.0 open-loop and closed-loop control policy.

Figure 2.9: Control energy comparison between MBC and D2C 1.0.

Robustness to Noise: From Fig. 2.8(a), we can see that both the mean episodic cost and the

cost variance of the closed-loop D2C 1.0 policy are much smaller than that of the open-loop policy

for the reacher example throughout the noise level range shown in the plots which prove the success

of using D2C 1.0 on tensegrity models. Although the MBC design can only take up to 30% noise

before the simulation fails, it has similar performance to the D2C 1.0 closed-loop policy when

applicable. For the D2C approach, the swimmer example fails after 60% noise, while the reacher

and the arm example worked up to 100% noise level. When there is no noise, the analytical solution
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has the lowest cost of all three. From Fig. 2.9, it is clear that the control energy used by the MBC

solution is way larger than that of D2C 1.0, where the episodic energy is calculated as the L2-norm

of the control sequence. This is the result of the optimization-based formulation of D2C 1.0. Also,

MBC takes up to 30% noise and has a higher variance than D2C 1.0, which aligns with what is

shown in Fig. 2.8(a). With less control effort, the D2C 1.0 policy gets a feedback policy close to the

accuracy of the analytical solution and endures a wider range of noise. The closed-loop cost for

all three models increases as the noise level increases. If we keep increasing the noise level, there

exists a threshold that the noise will drive the system too far away from the nominal trajectory that

the LQR controller cannot fix it. However, till that point, the closed-loop policy always performs

better than the open-loop policy (Fig. 2.8).

Discussion: The advantage of the MBC approach is that, whenever applicable, it has negligible

training time when compared to a data-based approach like D2C 1.0. However, the D2C 1.0

approach can achieve the same performance as the model-based approach with far less control effort.

One of the reasons for this might be that the reference system needed by the MBC design has not

been designed optimally, and thus, a more careful design might result in control efforts that are on

par with D2C 1.0. In a sense, the philosophies followed by D2C 1.0 and MBC are quite similar in

that a reference nominal system to be tracked is designed in both, which is then tracked using the

closed-loop control. However, D2C 1.0 obtains this via optimizing a suitable finite horizon cost of

the nonlinear system whereas the MBC approach provides a somewhat arbitrary prescribed behavior,

which, in turn, needs much more control effort in order to be tracked. As mentioned above, the arm

and swimmer models are difficult to model due to increased complexity and solid-fluid interaction,

but the data-based D2C approach can still be applied to these models, indicating a wider application

potential for such data-based control design approaches.

2.7 Conclusions

To solve the stochastic optimal control problem described in Eq. (2.1), we proposed a near-

optimal control algorithm D2C 1.0 under fully observed conditions and showed that our method

is able to scale up to a higher dimensional state-space with unknown system dynamics. Due to
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Table 2.2: D2C 1.0 training parameters and outcomes.

System Steps per Timestep Rollout Iteration Training time (in sec.)
episode (in sec.) number number Open-loop Closed-loop

Reacher 400 0.01 300 1300 4462.1 4.25
Arm 400 0.01 20 600 149.5 4.14

Swimmer 1500 0.006 50 7000 9204.0 5.83
1 The open-loop training is run on a laptop with I7-7700HQ CPU and 8G RAM. No

multi-threading.

the sequential calculation used in the open-loop optimization and the system identification, D2C

1.0 is highly memory efficient and also convenient for parallelization. We tested its performance

and compared it with a state-of-the-art deep RL technique - DDPG. From the results, D2C 1.0

has significant advantages over DDPG in terms of training efficiency and ease of training. This

primarily stems from the far smaller parameter space, essentially open-loop sequences, that D2C 1.0

searches over, as opposed to a complex parameterization like deep neural networks for DDPG. The

feedback of D2C 1.0 is designed such that the closed-loop trajectory is kept close to the nominal

trajectory. The robustness of this design is shown to be better/ comparable with DDPG in most

cases but has scope for further improvement by employing a more sophisticated feedback design

and ensuring that the data efficiency is not compromised. Also, further reduction in the training

time can be achieved by parallelization and a more efficient solution to the open-loop problem. We

also tested D2C 1.0 on three tensegrity structures and compared it with the MBC method. The MBC

method takes negligible time to generate the control law since the system dynamics are known.

D2C 1.0 is more energy efficient as the control energy is considered in the optimization. Also, the

D2C 1.0 control policy is more robust to noise. The following chapters will focus on improving

these aspects and demonstrating the performance of the D2C technique on more complex, nonlinear

high-dimensional examples.
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3. DECOUPLED DATA-BASED CONTROL 2.0: A SECOND ORDER APPROACH*

3.1 Introduction

Given the promising result of D2C 1.0, there remains space to improve especially in the open-

loop optimal trajectory design step. The gradient descent method used in D2C 1.0 can converge to a

local minimum with proper line search, but the convergence is slow because it only utilizes the first

order information of the cost function. As the open-loop optimization step takes the majority of the

total training time, it is crucial to improve the training efficiency and convergence. In this chapter,

with a data-base extension of iLQR and further analysis of the decoupling principle, we propose

the D2C 2.0 algorithm which features higher training efficiency and global optimality compared to

D2C 1.0. We prove that the decoupled design is near-optimal to the fourth order and D2C 2.0 is

guaranteed to converge to the unique global optimum.

Recently, there has been a growing class of literature on “deep reinforcement learning" owing

to the progress made in the function approximation using deep neural networks [9, 51, 52]. These

algorithms improved the performance of RL in terms of efficiency and ease of training. However, a

systematic approach is still lacking. The issues with RL can be attributed to the typically complex

parametrization of the global feedback policy, and the related fundamental question of what this

feedback parametrization ought to be?

We advocate that for RL to be a) efficient in training, b) reliable in its result, and c) robust to noise,

one needs to use a local feedback parametrization as opposed to a global parametrization. Further,

this local feedback parametrization consists of an open-loop control sequence combined with a

linear feedback law around the nominal open-loop sequence. Searching over this parametrization is

highly efficient when compared to the global RL search, and can be shown to reliably converge to the

global optimum while having performance that is superior to the global RL solution. In particular,

this search is sufficiently fast and reliable that one can recover the optimal global feedback law by

*Part of this chapter is reprinted with permission from "On the search for feedback in reinforcement learning" by
R. Wang, K. S. Parunandi, A. Sharma, R. Goyal and S. Chakravorty, 2021. 60th IEEE Conference on Decision and
Control (CDC), pp. 1560-1567, Copyright 2021 by IEEE.
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replanning whenever necessary. The sole caveat is that these claims are true for a deterministic,

albeit unknown, system. However, we show that: 1) theoretically, the deterministic optimal feedback

law is near-optimal to fourth order in a small noise parameter to the optimal stochastic law, and 2)

empirically, RL methods have difficulty in learning on stochastic systems, so much so that most RL

algorithms typically find a feedback law for the deterministic system in which the only noise is an

asymptotically vanishing exploration noise.

In general, the methods to solve optimal control problems for unknown dynamical systems

can be divided into two broad classes, local and global as discussed in Section 2.1. The most

computationally efficient among these techniques are “local" trajectory-based methods such as

DDP [11, 29] and iLQR [12, 13]. In fact, it was never established that these local approaches to

RL are highly efficient, globally optimum, and extremely reliable (insignificant variance), when

compared to the global approaches. Further, the local approaches are superior in performance

in terms of robustness to noise, i.e., they have better “global" performance compared to global

approaches. The reliability of iLQR comes from its guaranteed convergence to the global optimum:

we show that iLQR is a Sequential Quadratic Programming (SQP) approach to the optimal control

scenario, using which we show that under relatively mild assumptions, iLQR converges to the

global minimum from any initial guess. Thus, we can expect that iLQR always yields the same

optimal result from different runs. Further, we establish that such local approaches can recover

the optimal global feedback law when coupled with replanning, whenever necessary as in MPC

[53, 15], which becomes feasible because of the highly efficient and reliable local search that is

guaranteed to converge to a globally optimum open-loop solution, and the associated optimal linear

feedback law.

Our primary contribution in this chapter is to show that performing RL via a local feedback

parametrization, is highly efficient and reliable, in terms of low variance, when compared to the

global approaches. They are also superior in terms of robustness to noise, i.e., their performance is

better “globally" than the global methods (see Fig. 3.2). Also, the optimal global feedback law can

be recovered by replanning, which is made feasible via the fast and reliable local planner.
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(a) 6-link Swimmer (b) Fish

(c) Initial state (d) Final state

Figure 3.1: Models controlled in this section using D2C 2.0 including multi-body systems with
fluid-structure interactions, and a material microstructure model governed by the Allen-Cahn phase
field partial differential equation.

To achieve this goal, we propose the D2C 2.0 algorithm which uses a data-based extension

of iLQR to replace the first order gradient descent method. ILQR is a Newton-like second order

optimization method similar to DDP. They both have faster convergence than first order methods.

Further, iLQR only uses linearized system dynamics, and thus is more efficient. For the data-based
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extension, we use an efficient randomized least square procedure to estimate the linearized time-

varying system parameters from simulated rollouts of the system. As for the convergence and

optimality, we first show the equivalence between SQP and the iLQR algorithm used in D2C. Then

we notice that under mild conditions, iLQR is guaranteed to globally converge to a stationary point

starting from any initial point. Combined with results in paper [54], where due to the Method of

Characteristics (MOC) development, if the dynamics are control affine and the cost is quadratic in

control, the global minimum is assured as iLQR satisfies the necessary conditions of optimality.

Thus, the open-loop optimization with iLQR is guaranteed to globally converge to the global

minimum. Note that the linear feedback law of D2C is found locally around a nominal open-loop

sequence, which can be combined with T-PFC to conduct fast and reliable replanning when the linear

feedback law fails to keep the state close to the nominal trajectory. Simulation results demonstrate

the improved robustness compared to D2C without replanning and RL methods.

This chapter is organized as follows. Section 3.2 outlines the problem formulation. Section 3.3

derives the O(ε4) near-optimal decoupling principle. In Section 3.4, we establish the iLQR-based

decoupled data-based control algorithm (D2C 2.0) and prove its convergence to the global optimum.

Its performance is demonstrated in terms of training efficiency, training reliability and robustness to

noise in simulation experiments on typical benchmarking examples with comparisons to D2C 2.0

with replanning and state-of-the-art RL methods in Section 3.5.

3.2 Problem Formulation

Consider the following discrete time nonlinear stochastic dynamical system: xt+1 = F (xt, ut, wt),

where xt ∈ Rnx , ut ∈ Rnu are the state measurement and control vector at time t, respectively. The

process noise wt is assumed as zero-mean, uncorrelated Gaussian white noise, with covariance W .

The stochastic optimal control problem is to find the the control policy πo = {πo0, πo2, · · · , πoT−1}

such that the expected cumulative cost is minimized, i.e., πo = arg minπ J̃
π(x), where, J̃π(x) =

Eπ
[∑T−1

t=0 ct(xt, ut) + cT (xT )|x0 = x
]
, ut = πt(xt), ct(·, ·) is the instantaneous cost function, and

cT (·) is the terminal cost function. In the following, we assume that the initial state x0 is fixed, and

denote J̃π(x0) simply as J̃π.

38



3.3 An O(ε4) Near-Optimal Decoupling Principle

For the problem described in 2.1, directly solving for the stochastic optimal policy can be difficult

and computationally intractable. Instead, it is noticed that the optimal open-loop policy obtained in

the deterministic system wrapped with the optimal linear feedback law is a good approximation to

the true stochastic optimal policy, i.e., the deterministic optimal policy and the stochastic optimal

policy agree locally up to O(ε4). Further, the open-loop nominal design is found to be independent

of the linear feedback design, which suggests the following decoupled procedure to find the local

optimal feedback policy: 1) solving for the open-loop optimal policy where ε = 0 and 2) solving

for the optimal linear feedback policy along the open-loop nominal trajectory that minimizes the

cost variance. In the following, we outline an O(ε4) near-optimal decoupling principle in stochastic

Figure 3.2: Local RL approach (D2C 2.0) vs global RL approaches.
The statistics shown above, found by averaging over all the models simulated, show that although
TD3 and SAC have improvements over DDPG, the local approach is still highly efficient (training
time), reliable (training variance), while also having superior closed-loop performance (closed-loop
variance), when compared to the global RL approaches.
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optimal control that paves the way for the D2C 2.0 algorithm described in Section 3.4.

Let the dynamics be given by:

xt = xt−1 + f̄(xt−1)∆t+ ḡ(xt−1)ut∆t+ εωt
√

∆t, (3.1)

where ωt is a white noise sequence, and the sampling time ∆t is small enough that the O(∆tα)

terms are negligible for α > 1. f̄(·) and ḡ(·) are nonlinear functions of the state. The noise

term above stems from Brownian motion, and hence the
√

∆t factor. Further, the incremental

cost function c(x, u) is given as: ct(x, u) = l̄t(x)∆t + 1
2
u′R̄u∆t. Then, we have the following

results. Given sufficient regularity, any feedback policy can then be represented as: πt(xt) =

ūt + K1
t δxt + δx′tK

2
t δxt + · · · , where ūt is the nominal action with associated nominal state x̄t,

i.e., action under zero noise, and K1
t , K

2
t , · · · represent the linear and higher order feedback gains

acting on the state deviation from the nominal: δxt = xt − x̄t, due to the noise.

Proposition 5. The cost function of the optimal stochastic policy, Jt, and the cost function of the

‘deterministic policy applied to the stochastic system’, ϕt, satisfy: Jt(x) = J0
t (x) + ε2J1

t (x) +

ε4J2
t (x) + · · · , and ϕt(x) = ϕ0

t (x) + ε2ϕ1
t (x) + ε4ϕ2

t (x) + · · · . Furthermore, J0
t (x) = ϕ0

t (x), and

J1
t = ϕ1

t (x), for all t, x.

Proof. We show the result for the scalar case for simplicity (and completeness). The DP equation

for the given system is given by:

Jt(x) = min
ut
{ct(x, ut) + E[Jt+1(x′)]}, (3.2)

where x′ = x+ f̄(x)∆t+ ḡ(x)ut∆t+ εωt
√

∆t and Jt(x) denotes the cost-to-go of the system given

that it is at state x at time t. The above equation is marched back in time with terminal condition

JT (x) = cT (x), and cT (·) is the terminal cost function. Let ut(·) denote the corresponding optimal

policy. Then, it follows that the optimal control ut satisfies (since the argument to be minimized is
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quadratic in ut)

ut = −R−1ḡ′Jxt+1, (3.3)

where Jxt+1 = ∂Jt+1

∂x
.

We know that any cost function, and hence, the optimal cost-to-go function can be expanded in

terms of ε as:

Jt(x) = J0
t + ε2J1

t + ε4J2
t + · · · . (3.4)

Thus, substituting the minimizing control in Eq. (3.3) into the dynamic programming Eq. (3.2)

implies:

Jt(x) = l̄t(x)∆t+
1

2
r(
−ḡ
r

)2(Jxt+1)2∆t+ Jxt+1f̄(x)∆t

+ ḡ(
−ḡ
r

)(Jxt+1)2∆t+
ε2

2
Jxxt+1∆t+ Jt+1(x), (3.5)

where Jxt , and Jxxt denote the first and second derivatives of the cost-to go function. Substituting

Eq. (3.4) into Eq. (3.5) we obtain that:

(J0
t + ε2J1

t + ε4J2
t + · · · ) = l̄t(x)∆t+

1

2

ḡ2

r
(J0,x
t+1 + ε2J1,x

t+1 + · · · )2∆t

+ (J0,x
t+1 + ε2J1,x

t+1 + · · · )f̄(x)∆t

− ḡ2

r
(J0,x
t+1 + ε2J1,x

t+1 + · · · )2∆t

+
ε2

2
(J0,x
t+1 + ε2J1,x

t+1 + · · · )∆t+ Jt+1(x). (3.6)

Now, we equate the ε0, ε2 terms on both sides to obtain perturbation equations for the cost functions

J0
t , J

1
t , J

2
t , · · · .

First, let us consider the ε0 term. Utilizing Eq. (3.6) above, we obtain:

J0
t = l̄t∆t+

1

2

ḡ2

r
(J0,x
t+1)2∆t+ (f̄ + ḡ

−ḡ
r
J0,x
t )︸ ︷︷ ︸

f̄0

J0,x
t ∆t+ J0

t+1, (3.7)
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with the terminal condition J0
T = cT , and where we have dropped the explicit reference to the

argument of the functions x for convenience.

Similarly, one obtains by equating the O(ε2) terms in Eq. (3.6) that:

J1
t =

1

2

ḡ2

r
(2J0,x

t+1J
1,x
t+1)∆t+ J1,x

t+1f̄∆t− ḡ2

r
(2J0,x

t+1J
1,x
t+1)∆t+

1

2
J0,xx
t+1 ∆t+ J1

t+1, (3.8)

which after regrouping the terms yields:

J1
t = (f̄ + ḡ

−ḡ
r
J0,x
t+1)︸ ︷︷ ︸

=f̄0

J1,x
t+1∆t+

1

2
J0,xx
t+1 ∆t+ J1

t+1, (3.9)

with terminal boundary condition J1
T = 0. Note the perturbation structure of Eqs. (3.7) and (3.9),

J0
t can be solved without knowledge of J1

t , J
2
t etc, while J1

t requires knowledge only of J0
t , and so

on. In other words, the equations can be solved sequentially rather than simultaneously.

Now, let us consider the deterministic policy udt (·) that is a result of solving the deterministic DP

equation:

φt(x) = min
udt

[ct(x, u
d
t ) + φt+1(x′)], (3.10)

where x′ = x+ f̄∆t+ ḡudt∆t, i.e., the deterministic system obtained by setting ε = 0 in Eq. (3.1),

and φt represents the optimal cost-to-go of the deterministic system. Analogous to the stochastic

case, udt = −ḡ
r
φxt+1. Next, let ϕt denote the cost-to-go of the deterministic policy udt (·) when applied

to the stochastic system, i.e., Eq. (3.1) with ε > 0. Then, the cost-to-go of the deterministic policy,

when applied to the stochastic system, satisfies:

ϕt = ct(x, u
d
t (x)) + E[ϕt+1(x′)], (3.11)

where x′ = x + f̄∆t + ḡudt∆t + ε
√

∆tωt. Substituting udt (·) = −ḡ
r
φxt into the equation above
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implies that:

ϕt = ϕ0
t + ε2ϕ1

t + ε4ϕ2
t + · · ·

= l̄t∆t+
1

2

ḡ2

r
(φxt+1)2∆t+ (ϕ0,x

t+1 + ε2ϕ1,x
t+1 + · · · )f̄∆t

+ ḡ
−ḡ
r
φxt+1(ϕ0,x

t+1 + ε2ϕ1,x
t+1 + · · · )∆t

+
ε2

2
(ϕ0,xx

t+1 + ε2ϕ1,xx
t+1 + · · · )∆t+ (ϕ0

t+1 + ε2ϕ1
t+1 + · · · ). (3.12)

As before, if we gather the terms for ε0, ε2 etc. on both sides of the above equation, we shall get the

equations governing ϕ0
t , ϕ

1
t etc. First, looking at the ε0 term in Eq. (3.12), we obtain:

ϕ0
t = l̄t∆t+

1

2

ḡ2

r
(φxt+1)2∆t+ (f̄ + ḡ

−ḡ
r
φxt+1)ϕ0,x

t+1∆t+ ϕ0
t+1, (3.13)

with the terminal boundary condition ϕ0
T = cT . However, the deterministic cost-to-go function also

satisfies:

φt = l̄t∆t+
1

2

ḡ2

r
(φxt+1)2∆t+ (f̄ + ḡ

−ḡ
r
φxt+1)φxt+1∆t+ φt+1, (3.14)

with terminal boundary condition φT = cT . Comparing Eqs. (3.13) and (3.14), it follows that

φt = ϕ0
t for all t. Further, comparing them to Eq. (3.7), it follows that ϕ0

t = J0
t , for all t. Also, note

that the closed-loop system above, f̄ + ḡ−ḡ
r
φxt+1 = f̄ 0 (see Eq. (3.7) and (3.9)).

Next let us consider the ε2 terms in Eq. (3.12). We obtain:

ϕ1
t = f̄ϕ1,x

t+1∆t+ ḡ
−ḡ
r
φxt+1ϕ

1,x
t+1∆t+

1

2
ϕ0,xx
t+1 + ϕ1

t+1.

Noting that φt = ϕ0
t , implies that (after collecting terms):

ϕ1
t = f̄ 0ϕ1,x

t+1∆t+
1

2
ϕ0,xx
t+1 ∆t+ ϕ1

t+1, (3.15)
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with terminal boundary condition ϕ1
T = 0. Again, comparing Eq. (3.15) to (3.9), and noting that

ϕ0
t = J0

t , it follows that ϕ1
t = J1

t , for all t. This completes the proof of the result.

Remark 4. The result above shows that the first two terms in the perturbation expansion are

identical for the optimal deterministic and optimal stochastic policies, when acting on the stochastic

system, given they both start at state x at time t. This essentially means that the optimal deterministic

policy and the optimal stochastic policy agree locally up to order O(ε4).

Remark 5. It may also be shown that for the optimal deterministic policy, the ε0 term, ϕ0
t , in the

cost, stems from the nominal action (ūt) of the control policy, the ε2 term, ϕ1
t , stems from the linear

feedback action of the closed-loop (K1
t ), while the higher-order terms stem from the higher-order

terms in the feedback law.

An important practical consequence of Proposition 5 is that we can get O(ε4) near-optimal

performance, by wrapping the optimal linear feedback law around the nominal control sequence

(u∗t = ūt +Ktδxt), where δxt is the state deviation from the nominal x̄t state, and replanning the

nominal sequence when the deviation is sufficiently large (for convenience, we have dropped the

superscript 1 in denoting the linear feedback gain above). This is similar to the event-driven MPC

philosophy of [55, 56]. In the deterministic optimal control problem, the open-loop (ūt) design is

independent of the closed-loop design (Kt) which suggests the following ‘decoupled’ procedure to

find the optimal feedback law (locally), i.e., we may first design the optimal open-loop sequence

and then find the optimal linear feedback corresponding to said open-loop sequence.

Open-Loop Design: First, we design an optimal (open-loop) control sequence ū∗t for the

noiseless system by solving

(ū∗t )
T−1
t=0 = arg min

(ūt)
T−1
t=0

T−1∑
t=0

ct(x̄t, ūt) + cT (x̄T ), (3.16)

with x̄t+1 = x̄t + f̄(x̄t)∆t + ḡ(x̄t)ūt∆t. Denote F(x) = x + f̄(x)∆t and G(x) = ḡ(x)∆t with

reference to Eq. (3.1). The global optimum for this open-loop problem can be found by satisfying
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the necessary conditions of optimality, as was shown in the first part of [54] using the Method of

Characteristics.

Closed-Loop Design: The optimal linear feedback gain Kt corresponding to the nominal

trajectory above is calculated as shown in Proposition 6. In the following, At = ∂F
∂x
|x̄t + ∂Gūt

∂x
|x̄t ,

Bt = G(x̄t), Lxt = ∂lt
∂x
|′x̄t and Lxxt = ∇2

xxlt|x̄t . Let φt(xt) denote the optimal cost-to-go of the

detrministic problem, i.e., Eq. (3.1) with ε = 0.

Proposition 6. Given an optimal nominal trajectory (x̄t, ūt), the backward evolutions of the first

and second derivatives, Gt = ∂φt
∂x
|′x̄t and Pt = ∇2

xxφt|x̄t , of the optimal cost-to-go function φt(xt),

initiated with the terminal boundary conditions GT = ∂cT
∂x
|′x̄T and PT = ∇2

xxcT |x̄T respectively, are

as follows:

Gt = Lxt +Gt+1At, (3.17)

Pt = Lxxt + A′tPt+1At −K ′tRtKt +Gt+1 ⊗ R̃t,xx (3.18)

for t = {0, 1, ..., T − 1}, where,

Kt = −R−1
t (B′tPt+1At + (Gt+1 ⊗ R̃t,xu)

′), (3.19)

R̃t,xx = ∇2
xxF(xt)|x̄t +∇2

xxG(xt)|x̄tūt, R̃t,xu = ∇2
xu(F(xt) +G(xt)ut)|x̄t,ūt , where∇2

xx represents

the Hessian of a vector-valued function w.r.t x, similar for ∇2
xu, and ⊗ denotes the kronecker

product.

Proof. Consider the Dynamic Programming equation for the deterministic cost-to-go function:

φt(xt) = min
ut

Qt(xt, ut) = min
ut
{ct(xt, ut) + φt+1(xt+1)}

By Taylor’s expansion about the nominal state at time t+ 1,

φt+1(xt+1) = φt+1(x̄t+1) +Gt+1δxt+1 +
1

2
δxt+1

′Pt+1δxt+1 + qt+1(δxt+1),
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where qt+1(·) denotes the higher order terms. Substituting the perturbation expansion of the

dynamics, δxt+1 = Atδxt +Btδut + rt(δxt, δut) in the above expansion, where rt(·) denotes the

linearization residual,

φt+1(xt+1) = φt+1(x̄t+1) +Gt+1(Atδxt +Btδut + rt(δxt, δut))

+
1

2
(Atδxt +Btδut + rt(δxt, δut))

′Pt+1(Atδxt +Btδut + rt(δxt, δut)) + qt+1(δxt+1).

(3.20)

Similarly, expand the incremental cost at time t about the nominal state, where st(·) denotes the

higher order terms,

ct(xt, ut) = l̄t + Lxt δxt +
1

2
δxt
′Lxxt δxt +

1

2
δut
′Rtūt

+
1

2
ū′tRtδut +

1

2
δut
′Rtδut +

1

2
ū′tRtūt + st(δxt). (3.21)

Qt(xt, ut) =

φ̄t(x̄t,ūt)︷ ︸︸ ︷
[l̄t +

1

2
ū′tRtūt + φt+1(x̄t+1)] +Lxt δxt +

1

2
δxt
′Lxxt δxt + δut

′(B′t
Pt+1

2
Bt +

1

2
Rt)δut

+ δut
′(B′t

Pt+1

2
Atδxt +

1

2
Rtūt +B′t

Pt+1

2
rt)

+ (δxt
′A′t

Pt+1

2
Bt +

1

2
ūtRt + r′t

Pt+1

2
Bt +Gt+1Bt)δut

+ δxt
′A′t

Pt+1

2
Atδxt + δxt

′A′t
Pt+1

2
rt + (r′t

Pt+1

2
At +Gt+1At)δxt

+ r′t
Pt+1

2
rt +Gt+1rt + qt+1 + st ≡ φ̄t(x̄t, ūt) +Ht(δxt, δut). (3.22)

Now,

min
ut

Qt(xt, ut) = min
ūt

φ̄t(x̄t, ūt) + min
δut

Ht(δxt, δut). (3.23)

First order optimality: Along the optimal nominal control sequence ūt, it follows from the
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minimum principle that

∂ct(xt, ut)

∂ut
+
∂g(xt)

∂ut

′∂φt+1(xt+1)

∂xt+1

= 0

⇒ Rtūt +B′tG
′
t+1 = 0. (3.24)

By setting ∂Ht(δxt,δut)
∂δut

= 0, we get:

δu∗t = −(B′tPt+1Bt +Rt +B′tPt+1(R̃t,xu ⊗ δxt))−1(Rtūt

+B′tG
′
t+1 + (B′tPt+1At + (Gt+1 ⊗ R̃t,xu)

′)δxt

+B′tPt+1rt + (r′tPt+1 + δxt
′A′tPt+1)(R̃t,xu ⊗ δxt)).

By neglecting the ∆t2 terms,

δu∗t = −R−1
t (B′tPt+1At + (Gt+1 ⊗ R̃t,xu)

′)︸ ︷︷ ︸
Kt

δxt

−R−1
t (B′tPt+1rt + (r′tPt+1 + δxt

′A′tPt+1)(R̃t,xu ⊗ δxt))︸ ︷︷ ︸
pt

⇒ δu∗t = Ktδxt + pt,

where pt is the second and higher order terms w.r.t. δxt. Substituting it in the expansion of φt and

regrouping the terms based on the order of δxt (till 2nd order), we obtain:

φt(xt) = φ̄t(x̄t) + (Lxt + (Rtūt +B′tG
′
t+1)Kt +Gt+1At)δxt

+
1

2
δxt
′(Lxxt + A′tPt+1At −K ′tRtKt +Gt+1 ⊗ R̃t,xx)δxt.

Expanding the LHS about the nominal state results in the recursive equations in Proposition 6.
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3.4 Decoupled Data-Based Control Algorithm 2.0

Based on the decoupling principle, we establish the decoupled data-based control (D2C) 2.0

algorithm. We detail the open-loop trajectory design using iLQR and prove its convergence to the

global optimum. Also, the data-based extension to iLQR and the closed-loop design of D2C 2.0 are

presented below.

3.4.1 Open-Loop Trajectory Design via ILQR

We present an iLQR [13] based method to solve the open-loop optimization problem. The

iLQR iteration which is identical to the SQP iteration is shown in Lemma 3 and the algorithm is

outlined in Algorithms 2, 3 and 4. As for the optimality and convergence of iLQR, We prove that

iLQR is guaranteed to converge to the global minimum of the optimal control problem under mild

assumptions as shown in Theorem 1 and 2.

Lemma 3. Assuming the cost function to minimize is quadratic in control, i.e.:

min
u
J(x,u) =

T−1∑
t=0

(lt(xt) +
1

2
u′tRut) + cT (xT ), (3.25)

s.t. xt+1 = f(xt, ut), t = 0, 1, . . . , T − 1,

where lt(·) and cT (·) are the incremental and terminal state cost functions, x and u are the state

and control trajectories. The iLQR iteration for the above problem is identical to the SQP iteration.

Proof. First, we derive the SQP solution. The Lagrangian function of the nonlinear programming

(NLP) problem in Eq. (3.25) can be written as:

L(x,u, λ) = J(x,u) +
T−1∑
t=0

λ′t+1(xt+1 − f(xt, ut)). (3.26)
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Expanding the cost to second order and the constraint to first order yields the QP problem:

min
δu

δJ(δx, δu) =
T−1∑
t=0

[l′t,xδxt +
1

2
δx′tlt,xxδxt + ū′tRδut +

1

2
δu′tRδut]

+ c′T,xδxT +
1

2
δx′T cT,xxδxT , (3.27)

s.t. δxt+1 = fxtδxt + futδut, t = 0, 1, . . . , T − 1,

where x̄t and ūt are the resulting state and control of the previous SQP iteration. lt,x = ∂lt
∂x
|x̄t ,

lt,xx = ∇2
xxlt|x̄t , cT,x = ∂cT

∂x
|x̄T and cT,xx = ∇2

xxcT |x̄T . The equality constraints are the linearized

dynamics where fxt = ∂f
∂x
|x̄t and fut = ∂f

∂u
|ūt . Then the Lagrangian function can be estimated with:

L(δx, δu, λ) = δJ(δx, δu) +
T−1∑
t=0

λ′t+1(δxt+1 − fxtδxt − futδut). (3.28)

By satisfying the first order necessary conditions w.r.t. xt, ut and λt, we have,

λt = −lt,x − lt,xxδxt + f ′xtλt+1 (3.29a)

δut = R−1f ′utλt+1 − ūt (3.29b)

δxt = fxt−1δxt−1 − fut−1δut−1, (3.29c)

with boundary condition, λT = −cT,x − cT,xxδxT . Let us now show that the Lagrange multipliers

have the form λt = −vt − Vtδxt for all t. This is trivially true at the terminal timestep where

vT = cT,x and VT = cT,xx. Suppose that λt+1 = −vt+1 − Vt+1δxt for timestep t+ 1, we start with

Eq. (3.29b) and (3.29c) at time t+ 1 and substitute for λt+1:

δxt+1 = fxtδxt + fut(R
−1f ′utλt+1 − ūt)

= fxtδxt + fut(R
−1f ′ut(−vt+1 − Vt+1δxt+1)− ūt). (3.30)
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By collecting terms and solving for δxt+1 yield:

δxt+1 = (I + futR
−1f ′utVt+1)−1(fxtδxt − futR−1f ′utvt+1 − futūt). (3.31)

Substituting λt+1 in Eq. (3.29a) with the propagation form and δxt+1 with Eq. (3.31):

λt = −lt,x − lt,xxδxt + f ′xt(−vt+1 − Vt+1((I + futR
−1f ′utVt+1)−1

· (fxtδxt − futR−1f ′utvt+1 − futūt))). (3.32)

After separating zero and first order terms w.r.t. δxt, we can show that at timestep t, λt = −vt−Vtδxt,

where vt and Vt can be solved as:

vt = lt,x + f ′xtvt+1 − f ′xtVt+1fut(R + f ′utVt+1fut)
−1 · (f ′utvt+1 +Rūt) (3.33a)

Vt = lt,xx + f ′xt(V
−1
t+1 + futR

−1f ′ut)
−1fxt

= lt,xx + f ′xtVt+1fxt − f ′xtVt+1fut(R + f ′utVt+1fut)
−1 · f ′utVt+1fxt . (3.33b)

Therefore the Lagrangian multiplyer has the form λt = −vt − Vtδxt for all t. Then, by substituting

Eq. (3.32) in Eq. (3.29b), we can solve for δut:

δut = R−1f ′ut(−vt+1 − Vt+1(fxtδxt + futδut))− ūt

= −(R + f ′utVt+1fut)
−1(Rūt + f ′utvt+1 + f ′utVt+1fxtδxt). (3.34)

which can be written in the linear feedback form δut = −kt − Ktδxt, where kt = (R +

f ′utVt+1fut)
−1(Rūt + f ′utvt+1) and Kt = (R + f ′utVt+1fut)

−1f ′utVt+1fxt .

Comparing the above results with iLQR [14], it is clear that the control update δut in SQP and

iLQR are the same. In SQP, the update at time t is (δxt, δut), in which δxt can be recursively solved

from Eq. (3.29c), with δx0 = 0 and δut = −kt −Ktδxt. In the forward pass of iLQR, the state is

updated as δxt+1 = f(x̄t + δxt, ūt + δut) − x̄t+1. Thus the iLQR iterations are always feasible.
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Suppose the updates are small such that the linearization of the dynamics is valid,

x̄t+1 + δxt+1 = f(x̄t, ūt) + fxtδxt + futδut

δxt+1 = fxtδxt + futδut, (3.35)

which is the same as the SQP iteration in Eq. (3.29c). Therefore, it follows that the iLQR iterations

are identical to the SQP iterations for the above optimal control problem.

To show the convergence of the iLQR algorithm, we list the key assumptions that are needed in

the following proof. A1: The control cost R is chosen to be positive definite for all timesteps, i.e.,

there exists a constant β1 > 0 such that d′Rd ≥ β1‖d‖2 for any d.

A2: The cost functions lt(·) and cT (·) are chosen such that {lt,xx} and {cT,xx} are uniformly

bounded and positive semi-definite for all t, i.e., there exists a constant β2 > 0 such that for each k,

‖lt,xx‖ ≤ β2, ‖cT,xx‖ ≤ β2, d′lt,xxd ≥ 0 and d′cT,xxd ≥ 0 for all t and any d.

A3: The starting point and all succeeding iterates lie in some compact set C.

Lemma 4. Under assumptions A1, A2 and A3, if (x,u) is not a stationary point of the NLP problem

in Eq. (3.25), the iLQR iteration update ds = [δx′ δu′]′ is a descent direction for the cost function

J(x,u).

Proof. Denote the constraint from the system dynamics and its gradient as,

h(x̄t+1, x̄t, ūt) = x̄t+1 − f(x̄t, ūt)

∇h(x̄t+1, x̄t, ūt) = [I − fxt − fut ]. (3.36)

By satisfying the first order necessary condition,

d′s,t∇J ′t = −d′s,t∇h′(x̄t+1, x̄t, ūt)λt+1 − d′s,tBtds,t, (3.37)
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where Bt is the Hessian of the cost function and ds,t = [δx′t+1 δx′t δu
′
t]
′. The first term on the RHS

is zero from Eq. (3.35). Using A2,

d′s,tBtds,t = [δx′t+1 δx′t δu
′
t]


lt+1,xx 0 0

0 lt,xx 0

0 0 R



δxt+1

δxt

δut


= δx′t+1lt+1,xxδxt+1 + δx′tlt,xxδxt + δu′tRδut

> 0, (3.38)

as δut can not be zero before reaching a stationary point and R is chosen to be positive definite.

Then, it follows that d′s,t∇J ′t < 0 for all t, thus the iterations of iLQR always give a descent direction

for the cost function.

Theorem 1. Under assumptions A1, A2 and A3, with the line search method in Algorithm 2 and 3,

the iLQR algorithm started at any initial point is guaranteed to converge to a stationary point of the

optimization problem in Eq. (3.25).

Proof. According to the line search method given in Algorithm 2 and 3, as well as the fact that all

the iterations are feasible, i.e., h(xt+1, xt, ut) = 0 for all t, the chosen stepsize α satisfies,

J(xk+1,uk+1)− J(xk,uk)

∆J(α)
≥ σ1 > 0, (3.39)

where [xk+1′ ,uk+1′ ]′ = [xk
′
,uk

′
]′ + αdk

s and ∆J(α) is defined as α∇J(xk,uk)′dk
s . In the algo-

rithms below, we write ∆J(α) as ∆cost(α). Note that due to our backtracking line search method,

α is lower bounded away from zero for all iterations [57]. Substituting for ∆J(α), Eq. (3.39) can

be rewritten as,

J(xk+1,uk+1) ≤ J(xk,uk) + σ1α∇J(xk,uk)′dk
s

≤ J(xk,uk)− β3|cosθ|‖∇J(xk,uk)‖‖dk
s ‖, (3.40)
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where β3 is a positive constant, θ is the angle between ∇J(xk,uk) and dk
s . Since Lemma 4 shows

that dk
s is always a descent direction, |cosθ| and ‖dk

s ‖ are bounded away from zero. As the cost

function at each iteration is finite, we have,

∞∑
k=1

β4‖∇J(xk,uk)‖ <∞. (3.41)

It follows that,

lim
k→∞
∇J(xk,uk) = 0. (3.42)

Thus (xk,uk) from the iLQR algorithm converges to the stationary point of the optimization problem

in Eq. (3.25), which completes the proof.

Theorem 1 and the MOC result in paper [54] which is another work from our group lead to the

following:

Theorem 2. Under assumptions A1, A2 and A3, with a cost function that is quadratic in control

and a system whose dynamics are affine in control, the iLQR algorithm is guaranteed to converge to

the global minimum of the optimization problem in Eq. (3.25) from any initial point.

3.4.2 Data-Based Extension to ILQR

ILQR typically requires the availability of analytical system Jacobians, and thus, cannot be

directly applied when such analytical gradient information is unavailable (much like Nonlinear

Programming software whose efficiency depends on the availability of analytical gradients and

Hessians). To make it an (analytical) model-free algorithm, it is sufficient to obtain estimates of

the system Jacobians from simulation data, and a sample-efficient randomized way of doing so is

described in the following.

Using Taylor expansion of the non-linear dynamics model in Section 2.2 in the deterministic

setting about the nominal trajectory (x̄t, ūt) on both the positive and the negative sides, we obtain

the following central difference equation: f(x̄t + δxt, ūt + δut)− f(x̄t − δxt, ūt − δut)
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Algorithm 2: Decoupled Data-based Control (D2C) 2.0 Algorithm
⇒ Open-loop trajectory optimization
Initialization: Set initial state x0, initial guess u0

0:T−1, line search parameter α = 1,
regularization µ = 10−6, iteration counter k = 0, convergence coefficient ε = 0.001, line
search threshold σ1 = 0.3.
while costk/costk−1 < 1− ε do

/* backward pass */
{k0:T−1, K0:T−1} = backward_pass(uk0:T−1, x

k
0:T−1).

/* forward pass */
z = 0.
while z < σ1 do

Reduce α,
uk+1

0:T−1, x
k+1
0:T−1, costk,∆cost(α) =

forward_pass(uk0:T−1, x
k
0:T−1, {k0:T−1, K0:T−1}, α),

z = (costk − costk−1)/∆cost(α).
end while
k = k + 1.

end while
ū0:T−1 = uk+1

0:T−1.

x̄0:T−1 = xk+1
0:T−1.

⇒ Closed-loop feedback design
1. At, Bt = LLSCD(ū0:T−1, x̄0:T−1).
2. Calculate feedback gain K0:T−1 from Eq. (3.19).
3. Final closed-loop control policy: u∗t = ūt +Ktδxt,
where δxt is the state deviation from the nominal trajectory.

Algorithm 3: Forward Pass

Input: Previous iteration nominal trajectory uk0:T−1, x
k
0:T−1, iLQR gains {k0:T−1, K0:T−1},

line search parameter α.
Start from t = 0, cost = 0, ∆cost(α) = 0, x̄0 = x0.
while t < T do

uk+1
t = ukt + αkt +Kt(x

k+1
t − xkt ),

xk+1
t+1 = simulate_forward_step(xk+1

t , uk+1
t ),

cost = cost+ incremental_cost(xk+1
t , uk+1

t ),

t = t+ 1.
end while
cost = cost+ terminal_cost(xk+1

T ),

∆cost(α) = −α
∑T−1

t=0 k
′
tQut − α2

2

∑T−1
t=0 k

′
tQututkt.

return uk+1
0:T−1, x

k+1
0:T−1, cost,∆cost(α).
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Algorithm 4: Backward Pass
Compute JxT

and JxTxT
using boundary conditions.

t = T − 1. /* start from the terminal step */
while t >= 0 do

/* estimate the Jacobians using Linear Least Squares by
Central Difference (LLS-CD) as shown in Section 3.4.2)

*/
fxt , fut = LLSCD(xt, ut).
/* obtain the partials of the Q function */

Qxt = cxt + f ′xtJxt+1 ,

Qut = cut + f ′utJxt+1 ,

Qxtxt = cxtxt + f ′xtJxt+1xt+1fxt ,

Qutxt = cutxt + f ′ut(Jxt+1xt+1 + µInx×nx)fxt ,

Qutut = cutut + f ′ut(Jxt+1xt+1 + µInx×nx)fut .

if Qutut is positive-definite then

kt = −Q−1
ututQut ,

Kt = −Q−1
ututQutxt .

Decrease µ.
else

Increase µ.
Redo backward pass for current timestep.

end if
/* obtain the partials of the value function Jt */

Jxt = Qxt +K ′tQututkt +K ′tQut +Q′utxtkt,

Jxtxt = Qxtxt +K ′tQututKt +K ′tQutxt +Q′utxtKt.

t = t− 1.
end while
return {k0:T−1, K0:T−1}.
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= 2

[
fxt fut

]δxt
δut

 + O(‖δxt‖3 + ‖δut‖3). Multiplying by
[
δxt
′ δut

′

]
on both sides to the

above equation and apply standard least square:

[
fxt fut

]
= MδY ′t (δYtδY

′
t )
−1

M =



f(x̄t + δx
(1)
t , ūt + δu

(1)
t )− f(x̄t − δx(1)

t , ūt − δu(1)
t )

f(x̄t + δx
(2)
t , ūt + δu

(2)
t )− f(x̄t − δx(2)

t , ūt − δu(2)
t )

...

f(x̄t + δx
(ns)
t , ūt + δu

(ns)
t )− f(x̄t − δx(ns)

t , ūt − δu(ns)
t )


where ‘ns’ be the number of samples for each of the random variables, δxt and δut. Denote the

random samples as δXt =

[
δx

(1)
t δx

(2)
t . . . δx

(ns)
t

]
, δUt =

[
δu

(1)
t δu

(2)
t . . . δu

(ns)
t

]
and

δYt =

[
δXt δUt

]
. We are free to choose the distribution of δxt and δut. We assume both are i.i.d.

Gaussian distributed random variables with zero mean and a standard deviation of σ. This ensures

that δYtδY ′t is invertible.

Let us consider the terms in the matrix δYtδY ′t =

δXtδXt
′ δXtδUt

′

δUtδXt
′ δUtδUt

′

, δXtδXt
′ =
∑ns

i=1 δxt
(i)δxt

(i)′.

Similarly, δUtδUt′ =
∑ns

i=1 δut
(i)δut

(i)′, δUtδXt
′ =
∑ns

i=1 δut
(i)δxt

(i)′ and δXtδUt
′ =
∑ns

i=1 δxt
(i)δut

(i)′.

From the definition of sample variance, for a large enough ns, we can write the above matrix as:

δYtδY
′
t =

∑ns
i=1 δxt

(i)δxt
(i)′ ∑ns

i=1 δxt
(i)δut

(i)′∑ns
i=1 δut

(i)δxt
(i)′ ∑ns

i=1 δut
(i)δut

(i)′


≈

σ2(ns − 1)Inx 0nx×nu

0nu×nx σ2(ns − 1)Inu


= σ2(ns − 1)I(nx+nu)×(nx+nu)

(3.43)

Typically for ns ∼ O(nx + nu), the above approximation holds good. The reason is as

follows. Note that the above least square procedure converges when the matrix δYtδY ′t converges
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to the identity matrix. This is equivalent to estimation of the covariance of the random vector

δYt = [δXt δUt] where δXt, and δUt are Gaussian i.i.d. samples. Thus, it follows that the number

of samples is O(nx + nu), given nx + nu is large enough (see [37]).

This has important ramifications since the overwhelming bulk of the computations in the

D2C iLQR implementation consists of the estimation of these system dynamics. Moreover, these

calculations are highly parallelizable.

Henceforth, we will refer to this method as “Linear Least Squares by Central Difference

(LLS-CD)".

3.4.3 Data-Based Closed-Loop Design

The iLQR design in the open-loop part also furnishes a linear feedback law, however, this is

not the linear feedback corresponding to the optimal feedback law. To accomplish this, we need to

use the feedback gain equations (3.18). This can be done in a data-based fashion analogous to the

LLS-CD procedure above as shown in the Appendix Section A.3, but in practice, the converged

iLQR feedback gain offers very comparable performance to the optimal feedback gain. The entire

algorithm is summarized together in Algorithm 2. The “forward pass" and “backward pass"

algorithms are summarized in Algorithms 3 and 4 respectively.

3.5 Empirical Results

In the following, we report the results of training and performance of D2C 2.0 on typical

benchmarking examples and its comparison to DDPG [9], twin-delayed DDPG (TD3)[52] and

soft actor-critic (SAC)[51]. DDPG was regarded as an efficient global deep RL method. TD3 and

SAC introduced further improvements and outperformed DDPG on many benchmark examples.

These three are the current state-of-the-art RL methods and thus are chosen to compare with D2C

2.0. The physical models of the system are deployed in the simulation platform ‘MuJoCo-2.0’

[38] as a surrogate to their analytical models. The models are imported from the OpenAI gym

[58] and Deepmind’s control suite [39]. In addition, to further illustrate scalability, we test the

D2C 2.0 algorithm on a material microstructure control problem (state dimension of 400) which is
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governed by a PDE called the Allen-Cahn equation. All simulations are done on a machine with the

following specifications: AMD Ryzen 3700X 8-Core CPU@3.59 GHz, with 16 GB RAM, with

no multi-threading. The D2C is implemented in Matlab and the RL methods are implemented in

Python. The DDPG code is adapted from the Keras-rl [40] implementation. SAC and TD3 are

adapted based on the Stable Baselines3 implementation [59].

We test the algorithms on four fronts that allow us to test the speed and reliability of the learning,

as well as the performance of the learned controllers:

1. Training efficiency, where we study the time required for training,

2. Reliability of the training, studied using the variance of the resulting answers,

3. Robustness of the learned controllers to differing levels of noise, and hence, a test of the

“global nature" of the synthesized feedback law, and

4. Learning in stochastic systems, where we show the effects of a persistent process noise

process on learning and performance of the techniques.

3.5.1 Model Description

1) MuJoCo Models

Here we provide details of the MuJoCo models used in our simulations.

Inverted pendulum: A swing-up task of this 2D system from its downright initial position is

considered.

Cart-pole: The state of a 4D under-actuated cart-pole comprises the angle of the pole, the cart’s

horizontal position and their rates. Within a given horizon, the task is to swing up the pole and

balance it in the middle of the rail by applying a horizontal force on the cart.

3-link Swimmer: The 3-link swimmer model has 5 degrees of freedom and together with their rates,

the system is described by 10 state variables. The task is to solve the planning and control problem

from a given initial state to the goal position located at the center of the ball. Controls can only be

applied in the form of torques to two joints. Hence, it is under-actuated by 3 DOF.
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6-link Swimmer: The task with a 6-link swimmer model is similar to that defined in the 3-link case.

However, with 6 links, it has 8 degrees of freedom and hence, 16 state variables, controlled by 5

joint motors.

Fish: The fish model moves in 3D space, the torso is a rigid body with 6 DOF. The system is

described by 26 dimensions of states and 6 control channels. Controls are applied in the form

of torques to the joints that connect the fins and tails with the torso. The rotation of the torso is

described using quaternions.

2) Material Model

The material microstructure is modeled as a 2D grid with periodic boundary, which satisfies the

Allen-Cahn equation [60] at all times. The Allen-Cahn equation is a classical governing partial

differential equation (PDE) for phase field models. It has a general form of

∂φ

∂t
= −M(

∂F

∂φ
− γ∇2φ) (3.44)

where φ = φ(x, t) is called the ‘order parameter’, which is a spatially varying, non-conserved

quantity, and∇2φ = ∂2φ
∂x2

+ ∂2φ
∂y2

, denotes the Laplacian of a function, and causes a ‘diffusion’ of the

phase between neighbouring points. In control parlance, φ is the state of the system, and is infinite

dimensional, i.e., a spatio-temporally varying function. It reflects the component proportion of each

phase of the material system.

In this study, we adopt the following general form for the energy density function F:

F (φ;T, h) = φ4 + Tφ2 + hφ (3.45)

Herein, we take both T, the temperature, and h, an external force field such as an electric field, to be

available to control the behavior of the material. In other words, the material dynamics process is

controlled from a given initial state to the desired final state by providing the values of T and h. The

control variables T and h are, in general, spatially (over the material domain) as well as temporally

varying.
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The material model simulated consists of a 2-dimensional grid of dimension 20x20, i.e., 400

states. The order parameter at each of the grid points can be varied in the range [−1, 1]. The model

is solved numerically using an explicit, second order, central-difference-based finite difference (FD)

scheme. The number of control variables is a fourth of the observation space, i.e., 100 each for both

control inputs T and h. Physically, it means that we can vary the T and h values over 2× 2 patches

of the domain. Thus, the model has 400 state variables and 200 control channels. The control

task is to influence the material dynamics to converge to a banded phase distribution as shown in

Fig. 3.1(d).

The initial and the desired final state of the model are shown in Fig. 3.1(c, d). The model starts at

an initial configuration of all states at φ = −1, i.e., the entire material is in one phase. The final state

should converge to alternating bands of φ = 0 (red) and φ = 1 (blue), with each band containing 2

columns of grid points. Thus, this is a very high-dimensional example with a 400-dimensional state

and 200 control variables.

Remark 6. We note that the methods have access to the same simulation models and no hidden

advantage or extra information is provided to either algorithm. Note also that the models, other than

the cart-pole and the pendulum examples, lack an analytical description (analytically intractable)

and are computational models. Thus, data-based methods such as DDPG, SAC, TD3 and D2C can

be construed as control synthesis techniques for such analytically intractable models.

3.5.2 Training Efficiency

We measure training efficiency by comparing the times taken for the episodic cost (or reward)

to converge during training. Figure. 3.3 shows the training process with DDPG and D2C 2.0 on

the systems considered. Table 3.1 delineates the times taken for training for all four methods

respectively. The total time comparison in Table 3.1 shows that D2C 2.0 learns the optimal policy

orders of magnitude faster than the RL methods. The primary reason for this disparity is the

feedback parametrization of the two methods: the RL deep neural nets are complex parametrizations

that are difficult to search over, when compared to the highly compact open-loop + linear feedback
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(a) Cart-pole (b) 6-link swimmer (c) Fish Robot

(d) Cart-pole (e) 6-link swimmer (f) Fish Robot

(g) Cart-pole (h) 6-link swimmer (i) Fish Robot

Figure 3.3: Comparison of training and testing results between D2C 2.0 and RL methods.
Top row: Convergence of episodic cost in DDPG. Middle row: Convergence of episodic cost in
D2C 2.0. Bottom row: L2-norm of terminal state error during testing in D2C 2.0 vs RL methods.
The solid line in the plots indicates the mean and the shade indicates the standard deviation of the
corresponding metric.

parametrization of D2C 2.0, i.e. the number of parameters optimized during D2C 2.0 training is the

number of actuators times the number of timesteps while the RL parameter size equals the size of

the neural networks, which is much larger. Due to the much larger network size, the computation

done per rollout is much higher for the RL methods. From Fig. 3.4(a), on the material microstructure

problem (a 400-dimensional state and 100-dimensional control), we observe that D2C 2.0 converges

very quickly, even for a very high dimensional system (d = 400), whereas DDPG fails to converge
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(a) Material Microstructure (b) Closed-loop Performance

(c) Initial (d) t=0.50s (e) t=1.00s (f) t=1.25s

(g) Initial (h) t=0.50s (i) t=1.00s (j) t=1.25s

Figure 3.4: D2C 2.0 results in the material microstructure.
Fig. (a): Episodic cost vs. training iteration number in D2C 2.0 for the material microstructure.
Fig. (b): Closed-loop performance comparison between D2C 2.0 with LQR feedback and D2C 2.0
with replanning. Figs. (c)-(f): Closed-loop trajectories showing the temporal evolution of the spatial
microstructure from the initial configuration on the left to the desired configuration on the extreme
right with no input noise. Figs. (g)-(j): Closed-loop trajectories with Gaussian input noise at 50%
Umax standard deviation.

62



(a) Inverted Pendulum - varied process noise
in control

(b) Inverted Pendulum - varied process noise
in state and control

(c) Cart-Pole - varied process noise in control (d) Cart-Pole - varied process noise in state and
control

Figure 3.5: Comparison between D2C 2.0, D2C 2.0 with replanning and DDPG on the L2-norm of
terminal state error tested under varying process noise.

to the correct goal state. We also note the benefit of ILQR here: due to its quadratic convergence

properties, the convergence is very fast, when allied with the randomized LLS-CD procedure for

Jacobian estimation.

3.5.3 Closed-loop Performance

It might be expected that since the RL methods search over a nonlinear neural network

parametrization, it provides a global feedback law while D2C, by design, only provides a lo-

cal feedback, and thus, the performance of the RL methods might be better globally. To test this
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Figure 3.6: Training variance comparison D2C 2.0 vs. RL methods.

hypothesis, we apply noise to the system via the ε parameter, and find the average performance of

all the methods at each noise level. This has the effect of perturbing the state from its nominal path,

and thus, can be used to test the efficacy of the controllers far from a nominal path, i.e., their global

behavior. However, it can be seen from Fig. 3.3 bottom row that the performance of D2C 2.0 is

better than the RL methods at all noise levels, in the sense that the terminal error of the D2C 2.0

controller is lower than that of the RL controller. This, in turn implies that albeit the RL methods are

theoretically global in nature, in practice, it is reliable only locally, and moreover, their performance

is inferior to the local D2C approach. We also report the effect of replanning on the D2C scheme,

and it can be seen from these plots that the performance of the replanned controller is far better

than both D2C 2.0 and the RL methods, thereby regaining globally optimal behavior. We also note

that the performance of D2C 2.0 is similar to the high-dimensional material microstructure control

problem while DDPG fails to converge in this problem (Fig. 3.4).

Replanning with D2C 2.0: Under large noise levels, the local feedback policy found by D2C 2.0

may not give a good closed-loop performance, and thus we introduce a replanning procedure that

re-solves the open-loop design from the current state of the system and wrap another local feedback

policy along the new optimal trajectory. During the replanning, we take the current nominal policy

as the initial guess. With this warm start, the time and iterations taken in each replanning step

are less than solving the open-loop optimization with a ‘zero’ initial guess in D2C 2.0. Under
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100% Umax noise, the fish needs 25 seconds and 13 iterations, and the 6-link swimmer needs 90

seconds and 51 iterations, on average, for each replanning. As the cart-pole fails under high noise

levels, it is tested with 40% Umax noise and needs 12 iterations, and 0.5 seconds, on average. Thus,

by replanning, the closed-loop performance can be improved with an affordable training time

increase. Finally, we note that the estimation of the feedback gain takes a very small fraction of the

training time when compared to the open-loop, even though it is a much bigger parameter: this is a

by-product of the decoupling result.

3.5.4 Reliability of Training

For any algorithm that has a training step, it is important that the training result be stable and

reproducible, and thus reliable. However, reproducibility is a major challenge that the field of RL

is yet to overcome, a manifestation of the extremely high variance of RL training results. Thus,

we test the training variance of D2C 2.0 by conducting multiple training sessions with the same

hyperparameters but different random seeds. The middle row of Fig. 3.3 shows the mean and the

standard deviation of the episodic cost data during 16 repeated D2C 2.0 training runs each. For

the cart-pole model, the results of all the training experiments are almost the same. Even for more

complex models like the 6-link swimmer and the fish, the training is stable and the variance is small.

Further investigation into the training results shows that given the set of hyperparameters, D2C 2.0

always results in the same policy (with a very small variance) unlike the results of the RL methods

which have high variance even after convergence, which was reported in [61]. We show this in

Fig. 3.6, where the final distance to target of the nominal trajectories (i.e., nominal control sequence

of D2C 2.0 and the RL methods) generated from 4 different instances of converged training of all

the four methods with identical training hyper-parameters. It can be noted that the D2C 2.0 results

overlap with each other with a very small variance while the RL methods’ results have a much

wider spread. Although TD3 and SAC outperformed DDPG, their training variance is still much

higher than that of D2C 2.0. The high variance of the training results makes it questionable whether

the RL methods converge to an optimal solution or whether the seeming convergence is simply

the result of the shrinking exploration noise as training progresses. On the other hand, D2C 2.0
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can guarantee the same solution from converged training. Thus, the advantage of a local approach

like D2C in training stability and reproducibility makes it far more reliable for solving data-based

optimal control problems when compared to global approaches like DDPG, TD3 and SAC.

Table 3.1: Comparison of the training outcomes of D2C 2.0 with DDPG, TD3 and SAC.

System Training time (in sec.) Training variance
D2C DDPG TD3 SAC D2C DDPG TD3 SAC

Inverted Pendulum 0.33 2261.2 937.6 1462.6 6.7× 10−5 0.08 0.02 0.09
Cart pole 0.55 6306.7 4304.5 7407.4 0.0004 0.16 0.09 0.06

3-link Swimmer 186.2 38833.6 48038.0 64035.0 0.0007 0.05 0.02 0.03
6-link Swimmer 127.2 88160.0 47508.4 57372.7 0.0023 * * *

Fish 54.8 124367.6 46238.7 95769.1 0.0016 * * *

* No data because the training time taken is too long.

3.5.5 Learning on Stochastic Systems

A noteworthy facet of the D2C 2.0 design is that it is agnostic to the uncertainty, encapsulated

by ε, and the near-optimality stems from the local optimality (identical nominal control and linear

feedback gain) of the deterministic feedback law when applied to the stochastic system. One may

then question the fact that the design is not for the true stochastic system, and thus, one may expect

RL techniques to perform better since they are applicable to the stochastic system. However, in

practice, most RL algorithms only consider the deterministic system, in the sense that the only noise

in the training simulations is the exploration noise in the control, and not from a persistent process

noise. We now show the effect of adding a persistent process noise with a small to moderate value

of ε to the training of DDPG, in the control as well as the state.

We trained the DDPG policy on the pendulum and cart-pole examples. To simulate the stochastic

environment, Gaussian i.i.d. random noise is added to all the input channels as process noise. The

noise level ε is the noise standard deviation divided by the maximum control value of the open-loop

optimal control sequence. Figure. 3.5 shows the closed-loop performance of DDPG policies trained
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and tested under different levels of process noise. The closed-loop performance is measured by the

mean and variance of the L2-norm of terminal state error. In the first column, process noise is only

added to input channels during training and testing while it is added to both state and input in the

second column. The performance threshold is the L2-norm of terminal state error, chosen such that

the system at that terminal state is close enough to the target state and can be stabilized with an

LQR controller designed around the target state. For the pendulum, it is chosen such that the angle

and angular velocity are smaller than 40° and 40°/s respectively. For the cart-pole, the angle and

angular velocity of the bar need to be smaller than 40° and 40°/s respectively, the cart position and

velocity need to be smaller than 0.8m and 1.5m/s. The thresholds of testing process noise for the

policies to keep a decent performance are marked in the plots. When the testing process noise is

larger than the threshold, the tested policy can not get close enough to the target state. The problem

is greatly exacerbated in the presence of state noise as seen from Fig. 3.5(b)(d) that results in bad

performance in the different examples for even small levels of noise. Hence, although theoretically,

RL algorithms such as DDPG can train on the stochastic system, in practice, the process noise level

ε must be limited to a small value for training convergence and/or good policies. Further, the DDPG

policy trained at a specific noise level does not perform better than a DDPG policy trained at a

different noise level, when tested at that specific noise level. Also, in all the cases shown in these

plots, the D2C 2.0 policy outperforms all the DDPG policies within the performance threshold.

Further, the D2C 2.0 policy with replanning outperforms all the DDPG policies over all tested noise

levels. Thus, this begs the question as to whether we should train on the stochastic system rather

than appeal to the decoupling result that the deterministic policy is locally identical to the optimal

stochastic policy, and thus train on the deterministic system. A theoretical exploration of this topic,

in particular, the variance inherent in RL, is the subject of another paper from our group [62].

3.6 Conclusions

In this section, we have presented an improved data-based control method, D2C 2.0, for

synthesizing the feedback control law for analytically intractable nonlinear optimal control problems.

The D2C 2.0 policy is not global, i.e., it does not claim to be valid over the entire state space,
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however, seemingly global deep RL methods do not offer better performance as can be seen from

our experiments. Further, owing to the fast and reliable open-loop solver, D2C 2.0 could offer a real-

time solution even for high-dimensional problems when allied with high-performance computing.

In such cases, one could replan whenever necessary, and this replanning procedure will make the

D2C 2.0 approach global in scope, as we have shown in this section, albeit not in real-time.

There might be a sentiment that the comparison with the RL methods is unfair due to the

wide chasm in the training times, however, the primary point is to show theoretically, as well as

empirically, that the local parametrization and search procedure advocated via D2C 2.0, is a highly

efficient and reliable (almost zero variance) alternative that is still superior in terms of closed-loop

performance when compared to typical global RL algorithms like DDPG, TD3 and SAC. Thus, for

data-based optimal control problems that need efficient training, reliable near-optimal solutions,

and robust closed-loop performance, such local RL techniques, coupled with replanning, should be

the preferred method over typical global RL methods.

Finally, we would like to note that methods such as DDP/ iLQR are termed “trajectory optimiza-

tion" techniques and are thought to be distinct from RL algorithms. We have shown in this section

that these methods are indeed (local) RL, or data-based control methods, when suitably modified as

presented in this section, and thus, should not be thought of as distinct from RL.
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4. EXTENSION TO PARTIALLY OBSERVED CASES*

4.1 Introduction

The optimal control of a nonlinear dynamical system is computationally intractable for complex

high order systems due to the “curse of dimensionality" associated with solving dynamic program-

ming [4]. The problem becomes more challenging when the model of the system is unknown and

even more formidable when only some of the states are available for measurement, i.e., under partial

state observation. In fact, most problems tend to be partially observed.

In this chapter, we propose a data-based approach for learning to optimally control complex

partially observed nonlinear dynamical systems. The primary idea is to convert the partially observed

optimal control problem to a “fully-observed" problem described using the information state which

is comprised of the past several measurements and controls. The proposed approach then generalizes

the iLQR algorithm [13] to partially observed problems by iteratively generating LTV state-space

models, represented in the information state, to obtain the optimized nominal information space

trajectory. These LTV models are constructed with Autoregressive–Moving-Average (ARMA)

models [63] along a nominal trajectory using input-output perturbation data (rollouts of the system).

We term this generalized iLQR as partially observed data-based iLQR (POD-iLQR) and use it as

the new open-loop optimal trajectory design method. The ARMA modeling also allows for the

development of a specific linear quadratic Gaussian (LQG) controller [64] as the new closed-loop

feedback design.

In comparison with other research in the classic iLQR literature, previous work such as [14]

employed finite differencing in computing the Jacobians using complete state information as

opposed to this work which utilizes information state-based LTV systems that only uses output

information, and thus, this work suitably generalizes the iLQR method to partially observed systems

in a systematic fashion. Researchers have recently developed an RL-based iLQR which develops a

*Part of this chapter is reprinted with permission from "Data-based control of partially-observed robotic systems"
by R. Wang, R. Goyal, S. Chakravorty and R. E. Skelton, 2021. IEEE International Conference on Robotics and
Automation (ICRA), pp. 8104-8110, Copyright 2021 by IEEE.
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neural network model from the measurement data and searches for the optimal policy by iteratively

refining the neural network [65]. Another research couples input-driven sequential variational

autoencoder with iLQR-based learning to extend deep learning approaches [66]. A hybrid control

and learning approach, called Reinforced iLQR, was also developed recently for learning robotic

locomotion [67]. These approaches usually require a very large set of well-constructed data to train

neural networks and thus can be hard to solve if the data is not well sampled or if it does not capture

the complete nonlinear dynamics.

A belief space variant of iterative LQG (iLQG) has also been proposed which finds a locally

optimal solution under motion and sensing uncertainty [68]. The belief state comprises sufficient

statistics from the history and the initial belief state that no additional information on past observa-

tions and past actions is required [69]. Therefore, the belief state allows converting the modeling

of the system from partially observed Markov decision processes (POMDPs) to Markov decision

processes (MDPs) [70]. Our work is related to this belief space literature, in the sense, that we

generate the optimal trajectory using a generalized information state version of the iLQR method,

where “information state" is defined using q past most likely (zero noise) observations (of dimension

nz), with q × nz ≤ nx, which allows us to solve a large class of complex and high dimensional

partially observed control problems in a highly efficient fashion since the complexity isO(nx) rather

than O(nx + n2
x) for typical Gaussian belief space planning problems. However, unlike the belief

space literature, our theoretical development does not consider process and sensing uncertainties,

albeit we do consider both types of uncertainties in our experiments by augmenting our generated

information state feedback controller with a Kalman filter used to estimate the information state

under noisy observations.

The ARMA models are written as the combination of the autoregressive (AR) model and

moving-average (MA) model and are mostly used in the statistical analysis of time series [63].

The autoregressive part contains the sum of past values of the variable itself (zt =
∑p

i=1 αt−izt−i)

and the moving-average part contains the accumulation of past few noise error terms. In the

context of this section, the moving-average part constitutes the input excitation added as i.i.d noise
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(zt =
∑q

i=1 βt−iut−i). The ARMA models have been extensively used for modeling and forecasting

in the field of statistics, economics, and finance [71]. Researchers have also used the nonlinear

version of these input-output parametric models, known as, nonlinear ARMA (NARMA) models

for control of nonlinear systems for both deterministic and stochastic cases [72, 73]. Time-varying

linear models were also proposed for input-output modeling of nonlinear functions by replacing

it with a family of piece-wise linear functions [74]. Chemical industries have also been using

this modeling idea for nonlinear model predictive control [75]. In this work, we use the ARMA

modeling technique to fit the LTV model. The ARMA model parameters can be calculated from the

input-output data, thus state perturbations are no longer needed.

Figure 4.1: Complex robotic model in their final states.
Note the high dimensional, complex, and partially observed nature of the problems (L) Tensegrity
Robotic Arm (150 states, 24 outputs), (R) Fish (27 states, 11 outputs).

The approach proposed here, POD2C, is a generalization of D2C 2.0 to partially observed

systems using the information state-based ARMA model. In this chapter, we provide the theoret-

ical justification of the information state approach to partially observed problems and detail the

framework to solve the problem using POD-iLQR and information state-based LQG along with the
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complete algorithm. The extended algorithm is tested on highly nonlinear and high-dimensional

dynamical systems, including challenging cases of hard-to-model soft contact constraints and dy-

namic fluid interactions, with imperfect measurements of only a few of the states. Most importantly,

it is observed that the number of measurements required for solving the optimization problem is

greatly reduced especially for high-dimensional systems. This LTV-ARMA system identification

approach based on the information state is critical since existing LTV identification techniques tend

to be very brittle and do not scale to the complex nonlinear problems considered in this paper [76].

This chapter is organized as follows. Section 4.2 provides the optimal control problem for-

mulation for partially observed nonlinear systems. Section 4.3 presents the results to transform a

nonlinear partially observed problem into a fully observed problem in the information state form

and provides the conditions for the deterministic global optimal solution. Section 4.5 develops

the framework to solve the open-loop design problem using POD-iLQR where the LTV-ARMA

model is developed in a data-based fashion. Section 4.5 gives the details of the POD2C closed-loop

feedback control design along with the complete algorithm. Section 4.6 shows the empirical results

on partially observed complex robotic systems tested in the presence of process and sensor noise.

4.2 Problem Formulation

Let us start by writing the non-linear dynamics in discrete time state space form as follows:

xt+1 = f(xt, ut), (4.1)

where xt is the state, ut is the control input of the system. Let us assume the observation model to

be of form: zt = h(xt). Let us now define a finite horizon objective function as:

J(x0) =
T−1∑
t=0

c(zt, ut) + cT (zT ), (4.2)

where c(zt, ut) denotes a running incremental cost and cT (zT ) denotes a terminal cost function. The

goal of this work is to find an observation-based feedback policy, i.e., a policy that only has access
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to the observations zt, such that the cost above is minimized. The above formulation shall be termed

the partially observed optimal control problem in the rest of this section.

4.3 Transformation to an Information State Problem

Let fn(xt−q;ut−q, ut−q+1, · · · , ut−q+n−1) denote the map from the state at time t− q, xt−q, to

the state xt−q+n at time t− q + n. Given the initial state and inputs from time t− q to time t− 1,

i.e, {xt−q;ut−q, ut−q+1, · · · , ut−1}, we can write the following expressions for the observations

{zt−q, zt−q+1, · · · , zt} as:

zt−q = h(xt−q),

zt−q+1 = h(f 1(xt−q;ut−q)),

...

zt = h(f q(xt−q;ut−q, ut−q+1, · · · , ut−1)). (4.3)

In the partially observed problem, we start by finding the underlying state xt−q, which is the solution

to the above set of nonlinear equations.

Assumption 1. Observability: We assume that there exists a finite q̄, such that for all q ≥ q̄,

Eq. (4.4) has a unique solution for xt−q, regardless of (Zq
t , U

q
t ).

Due to the implicit function theorem and the observability assumption, we can write xt−q as

some unique function f̄(., .) of past measurements and inputs as:

xt−q = f̄(Zq
t , U

q
t ). (4.4)

Next, let us write the state at current time xt as: xt = f q(xt−q;ut−q, ut−q+1, · · · , ut−1), which

can be written again by substituting for xt−q from Eq. (4.4) in some unique functional form, based

on observability assumption and implicit function theorem, as:

xt = Ψ(Zq
t , U

q
t ). (4.5)
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Let us now finally define the “information state" Zqt at time t as:

Zqt =

[
zTt , z

T
t−1, · · · , zTt−q, uTt−1, · · · , uTt−q

]T
, (4.6)

which allows us to write:

xt = Ψ(Zqt ). (4.7)

Further, due to the implicit function theorem, if the dynamics and the observation functions f

and h are Ck, so is the map Ψ.

The above development can be summarized as follows:

Lemma 5. Given Assumption 1, there exists a unique function Ψ(·), such that the state at time t,

xt = Ψ(Zqt ). In particular, if f(·) and h(·) are Ck, so is the function Ψ.

The above result shows that the state at time t is some nonlinear map of the observation and the

control inputs at the previous “q” time steps.

4.3.1 The Global Optimal Solution for the Partially Observed Problem

Next, we extend our result on the globally optimal solution for the fully observed case to the

partially observed case via the information state construct developed above. Let us consider the

special case of a system that is affine in control dynamics: ẋ = f(x) + g(x)u. We write the system

dynamics with a forward Euler approximation for a small discretization time:

xt+1 = xt + f(xt)∆t+ g(xt)ut∆t, (4.8)

and the observation model as:

zt = h(xt) = h(xt−1 + dxt), (4.9)
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where dxt = f(xt−1)∆t+ g(xt−1)ut−1∆t. Given that the time discretization is sufficiently small,

the observation model can be written using a first order Taylor expansion as:

zt = h(xt−1 + dxt) = h(xt−1) +
∂h

∂x

∣∣∣
xt−1︸ ︷︷ ︸

H(xt−1)

dxt, (4.10)

zt = h(xt−1) +H(xt−1)f(xt−1)∆t︸ ︷︷ ︸
F (xt−1)

+H(xt−1)g(xt−1)∆t︸ ︷︷ ︸
G(xt−1)

ut−1. (4.11)

Thus, we can write the observation zt as some function of xt−1 and ut−1 as:

zt = F (xt−1) +G(xt−1)ut−1. (4.12)

Further substituting for xt−1 from Eq. (4.7) as xt−1 = Ψ(Zqt−1), we can write the zt in terms of the

information state as:

zt = F (Ψ(Zqt−1)) +G(Ψ(Zqt−1))ut−1, (4.13)

and finally, the entire equation can trivially be written in terms of the information state as:

Zqt = F̃ (Zqt−1) + G̃(Zqt−1)ut−1. (4.14)

This shows that the system dynamics in information state is affine in controls similar to the

underlying system (Eq. (4.8)), and thus, the original partially observed control problem:

ūt = arg min
ut

T−1∑
t=0

c(zt, ut) + cT (zT ), (4.15)

s.t. xt+1 = xt + f(xt)∆t+ g(xt)ut∆t,

zt = h(xt),

where the instantaneous cost function is quadratic in control: c(zt, ut) = (l(zt) + 1
2
uTt Rut)∆t,
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can equivalently be posed as the following “fully observed" optimal control problem in terms of

information state:

ūt = arg min
ut

T−1∑
t=0

c(zt, ut) + cT (zT ), (4.16)

s.t. Zqt+1 = Zqt + F(Zqt )∆t+ G(Zqt )ut∆t. (4.17)

Theorem 3. Let the cost functions l(·), cT (·), the drift f(·) and the input influence function g(·) be

C2, i.e., twice continuously differentiable. The unique global minimum of the open-loop problem

(Eq. (4.16)) starting at some initial information state Z0 satisfies:

ūt = −R−1ḠTt Gt, Gt = L̄Zt + AT
t Gt+1, (4.18)

Kt = −(Rt + BTt Pt+1Bt)−1[
n∑
i=1

ḠZ,Tt,i Gi
t+1 + BTt Pt+1At], (4.19)

Pt = AT
t Pt+1At + L̄ZZt +

n∑
i=1

[F̄ZZt,i +

p∑
j=1

Γ̄j,ZZt,i ūjt ]G
i
t+1 −KT

t (Rt + BTt Pt+1Bt)Kt, (4.20)

where At = I +
(
F̄Zt +

∑p
j=1 Γ̄j,Zt ūjt

)
∆t, Bt = Ḡ∆t, Ḡt = G(Z̄t), and {Z̄t} represents the

optimal nominal trajectory, L̄Zt = ∇Z l|Z̄t , GT = ∇ZcT |Z̄T , ūt = [ū1
t · · · ū

p
t ]
T , the control influence

matrix: G =

[
Γ1(Z) · · ·Γp(Z)

]
, and Γj and ūjt represents the control influence vector and

optimal control vector corresponding to the jth input. Finally, F̄Zt = ∇ZF|Z̄t and Γ̄j,Zt =

∇ZΓj|Z̄t gives the Jacobians of the system dynamics and F̄ZZt,i and Γ̄j,ZZt,i gives the Hessians

of the system dynamics along the nominal trajectory, the initial information state is defined as

Z0 = [z′0, z
′
0, · · · , z′0, 0, 0, · · · , 0]′.

Proof. We make use of the result that under the regularity conditions above, for a fully observed

system, satisfying the Minimum Principle is sufficient to obtain the global optimal trajectory for

the problem formulated in Eq. (4.16), the proof for which is given in Section 3.4. Given that the

information state construct turns the partially observed problem into a fully observed one (Lemma

5), and that Eq. (4.18) is simply the minimum principle for the information state with Eq. (4.19)

76



giving the optimal linear feedback gain Kt, the result follows directly.

Remark 7. The above result shows that we do not need global knowledge of the dynamics F(·)

and G(·), rather it is sufficient if we iteratively find the locally linearized model (the estimates of

Jacobians) around nominal Information State trajectories in order to converge to the optimum.

4.4 Open-Loop Trajectory Design using POD-ILQR

This subsection details the algorithm for open-loop trajectory design using POD-iLQR. The

advantage of iLQR is that the equations involved are given explicitly in terms of the LTV dynamics.

These LTV dynamics can be calculated for the information state in a data-based fashion, using our

proposed LTV-ARMA identification algorithm.

4.4.1 Information State for the LTV System

Let the nominal state be denoted by x̄t and the deviations from the nominal state as δxt, which

can be modeled as the following LTV system linearized around the nominal trajectory as:

δxt = At−1δxt−1 +Bt−1δut−1, δzt = Ctδxt. (4.21)

Let us also form a notion of nominal information state evolution and deviations as Z̄t and δZt =

(δzt, δzt−1, · · · , δzt−q+1, δut−1, · · · , δut−q+1), where δzt = zt − z̄t and δut = ut − ūt are the

deviation from the nominal observation at time t. We now provide the information state formulation

for the linearized version of the nonlinear system.

Lemma 6. The state and observation at current time δxt and δzt has a unique map to past q

observations δZq
t , and control inputs δU q

t for the linear time-varying model (Eq. (4.21)), given the

observability matrix Oq =

[
ATt−q...A

T
t−2C

T
t−1, · · · , ATt−qC

T
t−q+1, CT

t−q

]T
has full column rank.

Proof. Let us start by writing the output equation for past q time-steps as Eq. (4.26), which in

simplified form can be written as:

Oqδxt−q = δZq
t −GqδU q

t . (4.22)
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A unique solution for δxt−q exist if the matrix Oq is full column rank matrix and then the solution

can be written as:

δxt−q = Oq+(δZq
t −GqδU q

t ). (4.23)

Now, the system output at time t can be written as:

δzt = CtAt−1...At−qδxt−q +

[
CtBt−1 CtAt−1Bt−2 · · · CtAt−1...Bt−q

]
δU q

t , (4.24)

where the unique solution for δxt−q is substituted to get:

δzt = CtAt−1...At−qO
q+(δZq

t −GqδU q
t ) +

[
CtBt−1 CtAt−1Bt−2 · · · CtAt−1...Bt−q

]
δU q

t ,

(4.25)

which shows a unique map to the information state δZqt .

The above result allows us to write the unique mapping of the past measurements and control

inputs to the present state, which can be captured using the ARMA models. The following result

gives the exact solution for the ARMA parameters.


δzt−1

δzt−2

...
δzt−q+1

δzt−q


︸ ︷︷ ︸

δZ
q
t

=


Ct−1At−2...At−q
Ct−2At−3...At−q

...
Ct−q+1At−q

Ct−q


︸ ︷︷ ︸

Oq

δxt−q +


0 Ct−1Bt−2 · · · Ct−1At−2...Bt−q+1 Ct−1At−2...Bt−q
0 0 Ct−2Bt−3 · · · Ct−2At−3...Bt−q
...

...
. . .

...
...

0 0 0 0 Ct−q+1Bt−q
0 0 0 0 0


︸ ︷︷ ︸

Gq


δut−1

δut−2

...
δut−q+1

δut−q


︸ ︷︷ ︸

δU
q
t

,

(4.26)

Proposition 7. An ARMA model of the order q given by: δzt = αt−1δzt−1 + · · · + αt−qδzt−q +

βt−1δut−1 + · · · + βt−qδut−q, exactly fits the LTV system given in Eq. (4.21) if matrix Oq =
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[
ATt−q...A

T
t−2C

T
t−1, · · · , ATt−qC

T
t−q+1, CT

t−q

]T
is full column rank. The exact parameters that

matches the LTV system can then be written as:

[αt−1 | αt−2 | · · · | αt−q] = CtAt−1...At−qO
q+ ,

[βt−1 | βt−2 | · · · | βt−q] = −CtAt−1...At−qO
q+Gq +

[
CtBt−1 CtAt−1Bt−2 · · · CtAt−1...Bt−q

]
.

Notice that if there exists a number q̄ for which the matrix Oq̄ is full column rank, then there

always exists an exact fit for the ARMA model with sufficiently large enough q > q̄. This allows us

to write linearized models at each step along the nominal trajectory in terms of ARMA parameters.

Corollary 1. For the case of mechanical systems with all the position/DOFs as the output feedback,

the minimum value for q would be q = 2, which would allow for the exact fit for the ARMA model to

be with only 2 past observations and inputs.

4.4.2 Linear Time-Varying System Identification using ARMA Model

Here we use the standard least square method to estimate the linear ARMA parameters from

input-output experiment data.

First we start from the perturbed linear system about the nominal trajectory and estimate the

system parameters αt−i and βt−i for i = 1, · · · , q from δz
(j)
t = αt−1δz

(j)
t−1 + · · · + αt−qδz

(j)
t−q +

βt−1δu
(j)
t−1 + · · ·+βt−qδu

(j)
t−q, where δz(j)

t is the observed output and δu(j)
t ∼ N (0, σI) is the control

input perturbation we feed to the system at step t for the j th rollout. All the perturbations are

zero-mean, i.i.d, Gaussian noise. The covariance σ is a o(u) small value selected by the user. After

N rollouts, we can write the linear mapping between input-output perturbation as:

Z = [αt−1 | αt−2 | · · · | αt−q | βt−1 | βt−2 | · · · | βt−q]X, (4.27)
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and write out the components:

Z =

[
δz

(1)
t δz

(2)
t · · · δz

(N)
t

]
,X =



δz
(1)
t−1 δz

(2)
t−1 · · · δz

(N)
t−1

δz
(1)
t−2 δz

(2)
t−2 · · · δz

(N)
t−2

...
... . . . ...

δz
(1)
t−q δz

(2)
t−q · · · δz

(N)
t−q

δu
(1)
t−1 δu

(2)
t−1 · · · δu

(N)
t−1

δu
(1)
t−2 δu

(2)
t−2 · · · δu

(N)
t−2

...
... . . . ...

δu
(1)
t−q δu

(2)
t−q · · · δu

(N)
t−q



. (4.28)

Finally, using the standard least square method, the ARMA parameters of the linearized system

are estimated as:

[αt−1 | · · · | αt−q | βt−1 | · · · | βt−q] = ZXT(XXT)−1. (4.29)

4.4.3 LTV System Dynamics in Information State

After identifying the system parameters αt−1, · · · , αt−q and βt−1, · · · , βt−q for t = {0 · · ·T},

now, we write the perturbation LTV system in the information state as given in Eq. (4.31), which is

written again with observation model as:

δZt = At−1δZt−1 + Bt−1δut−1, δzt = CtδZt, (4.30)

with Ct = [Inz 0], where nz is the number of measured outputs. Now, we can use the identifiedAt−1,

Bt−1 to find the optimal nominal trajectory using iLQR, and design the optimal linear feedback gain,

i.e., δut = KtδZt (Eq. (4.19) in Theorem 3) for the information state, where note that the current

control input depends on the past observations as well as the control inputs. The feedback design

procedure is described in Section 4.5.1
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δzt
δzt−1

δzt−2

...
δzt−q+1

δut−1

δut−2

δut−3

...
δut−q+1


︸ ︷︷ ︸

δZt

=



αt−1 αt−2 · · · αt−q+1 αt−q βt−2 βt−3 · · · βt−q+1 βt−q
1 0 · · · 0 0 0 0 · · · 0 0
0 1 · · · 0 0 0 0 · · · 0 0
...

. . .
...

...
. . .

... 0
0 0 · · · 1 0 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 1 0 · · · 0 0
0 0 · · · 0 0 0 1 · · · 0 0
...

. . .
...

...
. . .

...
0 0 · · · 0 0 0 0 · · · 1 0


︸ ︷︷ ︸

At−1



δzt−1

δzt−2

...
δzt−q+1

δzt−q
δut−2

δut−3

...
δut−q+1

δut−q


︸ ︷︷ ︸

δZt−1

+



βt−1

0
...
0
0
1
0
...
0
0


︸ ︷︷ ︸
Bt−1

δut−1

(4.31)

4.4.4 Matching Markov Parameters for the Identified LTV System in Information State

Most system identification approaches make use of the generalized Markov parameters to match

the impulse response characteristics of the plant i.e. they represent the input-output relation of

the true plant in the time domain. This subsection shows that the identified LTV system in the

information state matches the impulse response of the underlying nonlinear system linearized

around some nominal trajectory.

Theorem 4. The generalized Markov parameters of the LTV system (Eq. (4.30)) represented in

Information State,Ht,τ exactly matches the generalized Markov parameters of the underlying LTV

system (Eq. (4.21)), Ht,τ , i.e.,

Ht,τ = Ht,τ , ∀ t, τ. (4.32)

whereHt,τ is defined as:

Ht,τ =


CtAt−1At−2 · · · Aτ+1Bτ ; ∀ τ < t− 1

CtBτ ; τ = t− 1

0; ∀ τ > t

, (4.33)
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where Ht,τ is defined as:

Ht,τ =


CtAt−1At−2 · · ·Aτ+1Bτ ; ∀ τ < t− 1

CtBτ ; τ = t− 1

0; ∀ τ > t

. (4.34)

Proof. We here provide a brief proof for the linear time-invariant (LTI) system due to space

constraints, which can be similarly extended to the LTV system. Let us write the Markov parameter

Ht,t−1 from Information State system as:

CB = [Inz 0]Bt−1 = βt−1 = CB, (4.35)

where the βt−1 (ARMA parameter) in the last equation was calculated from Proposition 7.

Similarly, we writeHt,t−2 as:

CAB =

[
αt−1 · · · αt−q βt−2 · · · βt−q

]
B

= αt−1βt−1 + βt−2

= CAB − CAqOq+



CB

0

...

0


+ CAqOq+



CB

0

...

0


= CAB, (4.36)
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where X(:, j) represents the jth column of matrix X . Next, we writeHt,t−3 as:

CA2B =

[
αt−1 · · · αt−q βt−2 · · · βt−q

]
AB (4.37)

= αt−1CAB + αt−2CB + βt−3 (4.38)

= CAqOq+



CAB

CB

0

...

0


+ CA2B − CAqOq+



CAB

CB

0

...

0


, (4.39)

= CA2B. (4.40)

The rest of the Markov parameters can be similarly expanded to prove the result.

4.5 Partially Observed Decoupled Data-based Control (POD2C) Algorithm

In the following, we detail the linear feedback design using the information state-LQG and

present the complete POD2C algorithm that allows for the generation of the full closed-loop output

feedback policy, i.e., the feedback as a function of the information state. The main observation is

that the partially observed case might be treated similarly to the fully observed case by noting that

the information state comprises past q observations and control inputs as detailed earlier.

4.5.1 Closed-Loop Control Design with Specific LQG Method

Given the estimated LTV perturbation model in the information state and the measurement

model described as:

δZt = At−1δZt−1 + Bt−1δut−1 +Dt−1wt−1, (4.41)

δYt = δZt + vt, (4.42)
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Algorithm 5: Complete POD2C Algorithm
⇒ Open-loop trajectory design via POD-iLQR
Initialization: Set initial state x0, initial guess u0

0:T−1, line search parameter α = 1,
regularization µ = 10−6, iteration counter k = 0, convergence coefficient ε = 0.001, line
search threshold σ1 = 0.3.
while (costk/costk−1) < 1− ε do

/* backward pass */
{k0:N−1, K0:N−1} = backward_pass(uk0:T−1, z

k
0:T−1).

/* forward pass */
ζ = 0.
while ζ < σ1 do

Reduce α,
uk+1

0:T−1, z
k+1
0:T−1, costk,∆cost(α) =

forward_pass(uk0:T−1, z
k
0:T−1, {k0:T−1, K0:T−1}).

ζ = (costk − costk−1)/∆cost(α).
end while
k = k + 1.

end while
ū0:T−1 = uk+1

0:T−1.

z̄0:T−1 = zk+1
0:T−1.

⇒ Closed-loop feedback design
1. At,Bt = ARMA_fitting(ū0:T−1, z̄0:T−1).
2. Calculate observer and feedback gains L0:N−1 and K0:N−1 using the specified LQG from

Eq. (3.19).
3. Final POD2C control policy:
ut = ū∗t −KtδẐt,
where δẐt = At−1δẐt−1 + Bt−1δut−1 + Lt(δYt −At−1δẐt−1 − Bt−1δut−1).
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where wt and vt represent the process and measurement noise, we design a finite horizon, discrete

time LQG along the trajectory for each timestep to minimize the cost function:

J = E

[
δZTTQT δZT +

T−1∑
t=0

(δZTt QtδZt + δuTt Rtδut)

]
, (4.43)

s.t. δZt = At−1δZt−1 +Bt−1δut−1 +Dt−1wt−1,

δYt = δZt + vt,

where δY is the noisy measurement. Notice that this is a specific version of LQG where state is

estimated in the presence of process and measurement noise only as opposed to estimating the states

from smaller number of noisy measurements, i.e. (C = I) and Lt = Pt(Pt + Vt)
−1, where Pt is

solved in a forward propagation fashion from the Riccati equation:

Pt+1 = At[Pt − Pt(Pt + Vt)
−1Pt]A

T
t +DtWtD

T
t , (4.44)

with the initial condition P0 = E[x̃x̃T ].

The feedback gain for the above problem is calculated as:

Kt−1 = (R +BT
t−1StBt−1)−1(BT

t−1StAt−1), (4.45)

where St is solved in a back propagation fashion from the Riccati equation:

St = ATt St+1[I −Bt(Rt +BT
t St+1Bt)

−1BT
t St+1]At +Qt, (4.46)

with final condition as ST = QT .

Then, the closed-loop linear feedback term is ut = −KtδẐt, where δẐt = At−1δẐt−1 +

Bt−1δut−1 + Lt(δYt − At−1δẐt−1 −Bt−1δut−1).

Simplified LQR design: For the case of noiseless measurements, a simplified LQR design can

be used for the closed-loop linear feedback term with ut = −KtδZ t where Kt is calculated using
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Eq. (4.45) and (4.46) only.

4.5.2 Complete POD2C Algorithm

Notice that assuming sufficient smoothness, any feedback law for the information state problem

can be represented as πt(Zt) = ūt +KtδZt + St(δZt), where ūt is the nominal control sequence

arising from πt(·), Kt is the optimal linear feedback term (Eq. (4.19)) and St(·) are the higher order

terms in the feedback law. The POD2C algorithm then proposes a 2 step procedure to approximate

the solution for the original optimization problem. First, a noiseless open-loop optimization

problem is solved to find an optimal control sequence, ū∗t via the POD-iLQR scheme. Then, an

LQG controller is synthesized as described above. Finally, the control applied to the system is given

by ut = ū∗t −KtδẐt, where Kt is the time-varying feedback gain.

Algorithm 6: Forward Pass

Input: Previous iteration nominal trajectory - uk0:T−1, z
k
0:T−1, iLQR gains -

{k0:T−1, K0:T−1}, line search parameter α.
Start from t = 0, cost = 0, x̄0 = x0, ∆cost(α) = 0.
while t < T do

zk+1
t = Ctx

k+1
t ,

uk+1
t = ukt + αkt +Kt(Zk+1

t −Zkt ),

xk+1
t+1 = simulate_forward_step(xk+1

t , uk+1
t ),

cost = cost+ incremental_cost(Zk+1
t , uk+1

t )

t = t+ 1.
end while
cost = cost+ terminal_cost(Zk+1

T ),

∆cost(α) = −α
∑T−1

t=0 k
′
tQut − α2

2

∑T−1
t=0 k

′
tQututkt.

return uk+1
0:T−1, z

k+1
0:T−1, cost,∆cost(α).

The complete POD2C algorithm to determine the optimal nominal trajectory in a data-based

fashion along with closed-loop feedback law is summarized together in Algorithm 5, 6 and 7. As

shown in [14], we use line search parameter α to find a good step size for a policy update.
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Algorithm 7: Backward Pass
Compute JZk

T
and JZk

TZ
k
T

using boundary conditions.
t = T − 1.
while t >= 0 do

/* obtain the augmented Jacobians using ARMA model from
Eq. (4.31) */
At,Bt = ARMA_fitting(uk0:T−1, z

k
0:T−1),

/* obtain the partials of the Q function as follows */

QZt = cZt +ATt J ′Zt+1
,

Qut = cut + BTt J ′Zt+1
,

QZtZt = cZtZt +ATt J ′Zt+1Zt+1
At,

QutZt = cutZt + BTt (J ′Zt+1Zt+1
+ µInx×nx)At,

Qutut = cutut + BTt (J ′Zt+1Zt+1
+ µInx×nx)Bt.

if Qutut is positive-definite then

kt = −Q−1
utut

Qut , Kt = −Q−1
utut

QutZt .

Decrease µ.
else

Increase µ.
Redo backward pass for current timestep.

end if
/* obtain the partials of the value function Jt */

JZt = QZt +KT
t Qututkt +KT

t Qut +QT
utZt

kt,

JZtZt = QZtZt +KT
t QututKt +KT

t QutZt +QT
utZt

Kt.

t = t− 1.
end while
return {k0:N−1, K0:N−1}.
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4.6 Empirical Results

For the following results, we use MuJoCo as a blackbox to provide the data to design the

nominal trajectory and closed-loop feedback gain. First, we list the details of the MuJoCo models

with their initial configuration shown in Figure 4.2.

Cart-Pole: The state of a four-dimension under-actuated cart-pole comprises the angle of the pole,

the cart’s horizontal position, and their rates. Within a given horizon, the task is to swing up the

pole and balance it in the middle of the rail by applying a horizontal force on the cart.

15-link Swimmer: The 15-link swimmer model has 17 degrees of freedom and together with their

rates, the system is described by 34 state variables. The task is to solve the planning and control

problem from a given initial state to the goal position located at the center of the ball. Controls can

only be applied in the form of torques to the 14 joints. Hence, it is under-actuated by 3 DOF.

Fish: The fish model moves in 3D space, the torso is a rigid body with 6 DOF. The system is

described by 27 dimensions of states (including a set of quaternions) and 6 control channels. The

task is to swim into the target ball. Controls are applied in the form of torques to the joints that

connect the fins and tails with the torso. The rotation of the torso is described using quaternions.

T2D1 Robotic Arm: The T2D1 tensegrity model is a 3D robotic tensegrity arm. It consists of 33

bars and 46 strings. The bars are connected by ball joints. The task is to reach the top node into the

target ball from the given initial configuration. Controls are applied in the form of tension in the

strings, while the feedback is based on the coordinates of some of the nodes. The bars are shown as

orange objects and the strings are shown as grey objects.

The final configuration of all the four models is given in Figs. 4.1 and 4.3 which are obtained at

the end of the horizon with the POD2C algorithm.

The output number in Table 4.1 represents the minimum number of measurements needed

to fit a good qth order ARMA model. Note that a relatively smaller number of measurements

are needed as the dimension of the system increases. The cart’s horizontal position and angle of

the pole are used as feedback for the classic cart-pole. The 15-link swimmer and fish are both
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Figure 4.2: Models simulated in MuJoCo in their initial states.

Figure 4.3: Models simulated in MuJoCo in their terminal states.

high-dimensional multi-body robots in a fluid environment. The 15-link swimmer requires only

angular positions of every other joint and the fish needs only the angles of the fin and tail joints.

The T2D1 arm is a high-dimensional soft-robotic arm where the positions of 8 evenly chosen nodes

are needed out of the total 25 nodes. The rule of thumb for measurement selection is that we only

measure the positions that contain the most information and avoid redundant information. Note that

velocity feedback is not needed in the control design as the rates can be calculated from the past 2

observations of positions.

Open-loop training with POD-iLQR: As described in Section 4.5, we obtain the nominal

trajectory from POD-iLQR training. As shown in Fig. 4.4, the cart-pole training converged quickly

in 1.2 seconds consisting of 40 iterations. The 15-link swimmer and the fish take ≈ 2100 seconds
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with 100 iterations and ≈ 2400 seconds with 200 iterations respectively. The 15-link swimmer and

the fish take more iterations to converge as they have higher non-linearity due to the fluid-structure

interaction in the swimming motion. However, the training is much more time-efficient compared

with the first order gradient descent method, as well as the DDPG RL method as discussed in

previous sections. The T2D1 arm system also takes smaller time and iterations ≈ 500 seconds with

25 iterations to converge despite the high dimensionality of the model and limited outputs. The

convergence of all the tested cases is efficient even for systems with high non-linearity and high

dimensionality. The time taken and iteration numbers during POD2C algorithm execution for the

above cases are given in Table 4.1. The results are obtained using MatLab and MuJoCo on a Ryzen

3700 PC. The most time-consuming procedure is running simulations to collect data for fitting the

ARMA model, which is in serial for now but can be in parallel as the rollouts are independent of

each other and further improve the time efficiency and have the potential for real-time operation.

The obtained nominal control trajectory is then used as the open-loop nominal control policy in the

following steps.

(a) Cart-Pole (b) 15-link Swimmer (c) Fish (d) T2D1 Robotic Arm

Figure 4.4: Convergence of episodic cost during training.

Robustness to measurement noise: Figure 4.5 shows the plots for the episodic cost with the

variation in the measurement noise. The figure compares the open-loop and the closed-loop control

policies under different measurement noise levels, while the process noise standard deviation is

set to 10% of the maximal nominal control. The measurement noise level on the x-axis is the
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(a) Cart-Pole (b) 15-link Swimmer (c) Fish (d) T2D1 Robotic Arm

Figure 4.5: Averaged episodic reward vs measurement noise level for fixed 10% process noise with
LQG as closed-loop feedback.

(a) Cart-Pole (b) 15-link Swimmer (c) Fish (d) T2D1 Robotic Arm

Figure 4.6: Averaged episodic reward vs process noise level for fixed 10% measurement noise with
LQG as closed-loop feedback.

percentage of the measurement noise standard deviation w.r.t. the maximal nominal measurement.

Note that both the measurement and process noise is added as zero-mean Gaussian i.i.d. noise to all

measurement and control channels at each step.

As the measurement noise does not influence the open-loop, the open-loop cost curves are almost

flat with invariant variance. The closed-loop cost has a significantly smaller mean and variance

than the open-loop cost, which proves the robustness to measurement noise of the closed-loop

policy. Note that even for a large measurement noise, the closed-loop policy can successfully finish

the task with smaller noise levels than what is indicated by the black threshold lines in the figure.

Also, the variance of the open-loop policy, as well as the variance of the closed-loop policy at zero

measurement noise, come from the fixed 10% process noise. The spikes in the open-loop curves are

due to numerical error from the Monte-Carlo simulations.
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Table 4.1: Simulation results of POD2C.

System Steps per Total Time Iteration q State Output
episode (sec.) Number Number Number

Cart-pole 30 1.2 40 2 4 2
Swimmer 2400 2110.0 100 5 34 10

Fish 1200 2420.5 200 2 27 11
Robotic Arm 300 1155.8 40 3 150 24

Robustness to process noise: Figure 4.6 shows similar plots as shown in Fig. 4.5 except we

vary the process noise level along the x-axis with fixed 10% measurement noise. Under the open-

loop policy, the process noise drives the model off the nominal trajectory and results in high episodic

cost, while the closed-loop feedback can help the system stay close to the nominal trajectory. This

can be seen from the figure as the episodic cost mean and variance of the closed-loop policy is

much smaller than the open-loop policy on the entire tested noise range, although both policies

fail the task when the process noise becomes larger than what the black threshold line indicates.

The threshold values of process and measurement noise in all the examples are found by constantly

increasing the noise and finding the threshold noise level that will drive the system too far away from

the nominal trajectory such that the final goal can not be achieved. The above analysis regarding

the performance of control policy under noise proves that the LQG closed-loop feedback wrapped

around the nominal trajectory makes the full closed-loop policy robust to measurement and process

noise.

4.7 Conclusions

This section proposes an optimal motion planning/trajectory design algorithm for partially

observed systems by transforming them into fully observed problems using the information state.

The algorithm uses qth-order ARMA models that are generated using the input-output data and are

used to model LTV systems in the information state which allows designing the optimal nominal

trajectory using iLQR with partial state observations. The constructed LTV system in the information

state is shown to exactly match the Markov parameters of the underlying linear state-space model.
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Finally, we presented the extended D2C 2.0 algorithm (POD2C) to control complex robotic systems

by designing the closed-loop feedback law with partial state observations. Empirical results are

shown for complex robotic systems, including challenging cases of hard-to-model soft contact

constraints and dynamic fluid-structure interactions, under motion as well as sensing uncertainty.

In our opinion, the POD2C approach is a highly efficient method for RL in partially observed

problems, however, questions regarding optimality remain and shall be explored in future work.

Also, there are still obstacles that keep D2C from real-world applications, such as how to learn the

control policy under uncertainty. In the next chapter, we will look into the problem of learning to

control under process and sensing noise.
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5. LEARNING TO CONTROL UNDER UNCERTAINTY

5.1 Introduction

The optimal control of a nonlinear dynamical system is computationally intractable for complex

high-dimensional systems due to the “curse of dimensionality" associated with dynamic program-

ming [4]. The problem becomes more challenging when the analytical model of the system is

unknown and even more formidable when only some of the states are available for measurement,

i.e., under partial state observation. In fact, most real-world problems tend to be partially observed

with the existence of uncertainty in the dynamics and the measurements. This has been recognized

as one of the major gaps that keep controllers designed in simulation from applying successfully to

real-world applications [77].

There has been a significant body of work in the field of learning to control unknown dynamical

systems through RL, with great progress in overcoming the inability to create accurate dynamical

models for complex robots [78, 24]. However, despite excellent performance on several tasks

[25, 26], most of the work is in simulation, and applying RL to real robots remains a challenging

problem [77]. The performance of policies trained in simulation directly applied to real robots can

be poor due to the sim-to-real gap. This gap is caused by numerous reasons. First, the process

and sensing uncertainties are not considered in the simulation. It is impossible to capture all the

physics details in a simulation model and the simulated sensor data can look very different from

its real-world counterpart. Second, MDP is assumed in simulated dynamics, while the control

and measurement can be asynchronous due to computation and communication delays on real

robots. This latency violates the fundamental assumption of MDP, thus can cause failure to some RL

algorithms [79]. Third, safety constraints are necessary for real robots but may not be considered in

simulation, which leads to differences between the feasible state and action spaces. Also, since the

ground-true state may not be available in real-world robots, the policy has to be trained with partial

observation, which poses challenges to the RL algorithms. Although the sim-to-real gap remains to
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be filled, it is still a promising direction to prototype the policy in simulation and generalize it to

real-world applications with a small amount of training.

Another direction is to train directly on real robots, where some of the sim-to-real challenges

disappear. Here the policy is trained with real sensor data under uncertainty. Once the policy is

successfully trained, its performance is guaranteed. The ability to train on the robot also enables

continuous improvement after deployment. With the initial policy trained in simulation, it is

important for the robots to learn continuously in the real world to adapt to new environments [77].

Also, learning on real robots is probably the most similar way to human learning [80]. However, it

is still a difficult task as resetting may not be feasible, human intervention may be required heavily

and the reward can be evaluated only from onboard perception. Compared to learning in simulation,

the speed of data collection can be much slower in the real world and the ability to train in parallel

is limited due to the budget and human intervention required.

RL researchers have been making great progress to solve the challenges of applying RL to the

real world in both sim-to-real and learning on real robot directions. Previous work such as [81]

adopted domain randomization (DR) to address uncertainty and latency. Selected system parameters

are randomly sampled and noise is added during training, which improves the robustness, but the

optimality is lost. In addition, [82, 83] parallelized the simulations on multiple agents to decrease

total training time as well as improve the robustness on different terrains. For partially observed

systems, a belief space variant of iLQR has been proposed which finds a locally optimal solution

under motion and sensing uncertainty [84]. However, computational complexity is increased due

to the typically high belief state dimension. To reduce the difference between simulation and the

real world, simulated sensor data are used instead of the true states [83]. Adapter networks can be

used to convert simulated images to look like their real-world counterparts [85] or the other way

around [86]. With these improvements, the trained policy can be directly applied to the real robots

with comparable performance [82]. In the optimal control community, previous work [87] conducts

a deterministic optimization in simulation and uses an adaptive fuzzy estimator to estimate and

compensate for the uncertainty.
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In the direction of on-robot training, multiple learning processes can be run with different

hyper-parameters on the same robot [88]. Algorithms can be developed to automatically tune the

hyper-parameters [51]. These techniques can greatly shorten the tuning process. To tackle the

resetting issue, one can design a controller that automatically resets the robot to a random position,

to ensure enough exploration of the environment and reduce human intervention [80, 89]. This

method requires expert knowledge to design the resetting controller and can be challenging for

complex robots. In fact, on-robot training still requires the resetting ability heavily due to the

RL algorithm itself. And in many cases, the robots have to be designed in a way that resetting

can be easily done [90, 80]. For the delay between measurements and control actions, a recurrent

neural network could be trained to extrapolate the observation to when the action is applied from

past observations [77], or the observation space can be augmented with previous observations and

actions [90]. This idea is similar to the information state method we proposed in POD2C. With the

ability to learn online, it may be a good strategy to prototype the policy in simulation, and improve

it with a relatively small amount of online training [91] to take the advantages of both simulation

and on-robot training.

As the initial work of applying the data-based learning to control approach POD2C we proposed

in Section 4.5 to real-world applications, in this chapter, we focus on the problem of learning to

control under uncertainty. As shown in Chapter 4, the POD2C algorithm is a generalization from

iLQR that converts partially observed problems to “fully observed" problems using the information

state. It achieves high training efficiency by decoupling the open-loop and feedback design as

shown in Section 4.4. The information state-based LTV-ARMA system identification method is

used to estimate the “fully observed" linearized model, which allows us to solve the optimal control

problem while the system model is unknown. We have shown that POD2C considers some of the

challenges mentioned above such as training efficiency and partial observation in Chapter 4. Here,

its performance under process and sensing uncertainties will be studied. The main contributions

include: we study the learning under noise problem with our proposed POD2C method. We analyze

the efficacy of the POD2C algorithm when the training is carried out under noise. We prove the
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convergence of POD2C to the global minimum in the full state observation case. We show that

POD2C constructs biased LTV systems and can not converge to the true optimum in the partially

observed case, where multiple rollouts need to be averaged to recover the global convergence and

optimality.

The rest of the chapter is organized as follows: Section 5.2 provides the optimal control problem

formulation. Section 5.3 emphasizes the main focus of this chapter and defines the fully observed

and partially observed cases under noise. Section 5.4 analyzes the performance of POD2C directly

applied in fully observed and partially observed problems under uncertainty. Empirical results are

shown to support the results in Section 5.5.

5.2 Problem Formulation

Let us start by writing the stochastic nonlinear dynamics in discrete time state space form as

follows:

xt+1 = f(xt, ut) + ωt, (5.1)

where xt is the state, ut is the control input of the system and ωt is the process noise. Let us assume

the observation model to be of form:

zt = h(xt) + vt, (5.2)

where zt is the measurement and vt is the sensor noise. Let us now define a finite horizon objective

function as:

J(z0) = E

[
T−1∑
t=0

c(zt, ut) + cT (zT )

]
, (5.3)

where c(zt, ut) denotes a running incremental cost and cT (zT ) denotes a terminal cost function.

POD2C is proposed to find an observation based feedback policy to minimize the cost function

above with deterministic system dynamics and measurements, i.e., ωt and zt are zero. The goal of

this work is to apply POD2C while the uncertainty exists and analyze its efficacy.
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5.3 Learning to Control under Uncertainty with POD2C

In Chapter 4, POD2C is implemented in simulation and we use a noiseless blackbox simulation

model to collect data for training. In the real-world environment, there is always noise. Thus

the main focus of this work is to solve the partially observed optimal control problem with noise

and unknown system dynamics using POD2C. There are two main steps in the POD2C algorithm:

open-loop nominal trajectory design using POD-iLQR and closed-loop linear feedback design.

Data collection is needed in the forward pass and backward pass of POD-iLQR to evaluate the cost

function and estimate the ARMA parameters. In the closed-loop feedback design step, we use the

AMRA model fitted in the last backward pass of POD-iLQR, thus no extra data are collected. As

data collection is only needed in the open-loop trajectory design, in the following, we study how

the noise-corrupted data affect the POD-iLQR algorithm in two cases. In the fully observed case,

we assume that there is process noise in the system dynamics but the full state measurements are

perfect, i.e.,

xt+1 = f(xt, ut) + ωt, zt = xt. (5.4)

In the partially observed case, we assume that both the system dynamics and the sensors are

corrupted with noise. In addition, only a subset of the states is measured, i.e.,

xt+1 = f(xt, ut) + ωt, zt = Ctxt + vt, (5.5)

where Ct ∈ Rnz×nx , nz < nx and nz is the number of outputs.

5.4 Optimality Analysis of POD-iLQR under Uncertainty

According to the results in Section 4.3.1, the POD-iLQR algorithm in the deterministic environ-

ment is guaranteed to find the unique global minimum of the open-loop problem in Eq. (4.17). In

this section, we analyze the convergence and optimality of POD-iLQR in the two cases described

above.
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5.4.1 Global Convergence of POD-iLQR in the Fully Observed Case

To identify the LTV model for a nonlinear system under noise, it is important to keep the

trajectory close to the nominal trajectory. Thus we implement a feedback term in control using

the feedback gain Kt solved from the last backward pass, i.e., ut = ūt + δut + Kt(δZt), where

δZt = Zt − Z̄t and δut is the input perturbation sampled from a zero-mean i.i.d. process. Then we

have the following result:

Lemma 7. The ARMA model identified in the fully observed case using the method described in

Section 4.4.2 is unbiased from the true LTV model.

Proof. Due to full state observation, the matrixOq =

[
ATt−q...A

T
t−2C

T
t−1, · · · , ATt−qC

T
t−q+1, CT

t−q

]T
is full column rank. Thus an ARMA model with q = 1 can exactly fit the LTV system in Eq. (4.21)

according to Proposition 7. Then from Eq. (4.21) and (5.4), we have the following LTV system:

z̄t+1 + δzt+1 = At(z̄t + δzt) +Bt(ūt + δut +Ktδzt) + ωt, (5.6)

which leads to:

δzt+1 = (At +BtKt)δzt +Btδut + ωt. (5.7)

After ns number of rollouts, we have:

Z =

[
δz

(1)
t+1 δz

(2)
t+1 . . . δz

(ns)
t+1

]
,

X =

δz(1)
t δz

(2)
t . . . δz

(ns)
t

δu
(1)
t δu

(2)
t . . . δu

(ns)
t

 ,
Z =

[
At +BtKt

... Bt

]
X +

[
ω

(1)
t ω

(2)
t . . . ω

(ns)
t

]
. (5.8)

Notice that ωt is uncorrelated with δzt and δut. Thus in the least square calculation, the second term

on the RHS goes to zero as the number of rollouts ns increases. Then the least square result of the
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above equation can be written as:

[
Ât

... B̂t

]
= ZXT(XXT)−1 =

[
At +BtKt

... Bt

]
. (5.9)

As Kt is known from the last backward pass, it is trivial to recover At, Bt. Thus the fitted ARMA

model equals the true LTV model in Eq. (4.21).

Next, we can show the following result:

Theorem 5. Let the instantaneous cost function be quadratic in control and let the cost functions l(·),

cT (·), the drift f(·) and the input influence function g(·) be C2, i.e., twice continuously differentiable.

The POD-iLQR algorithm started at a feasible initial information state Z0 converges to the unique

global minimum of the open-loop problem in Eq. (4.17) when applied to the fully observed system

in Eq. (5.4) with small zero-mean noise ωt.

Proof. From Lemma 7, we know that the identified LTV model in the fully observed case is the

same as in the noiseless case for small enough noise. Thus the results from the backward pass are

also identical. We can write the identified LTV-ARMA model as in Eq. (4.41). Let us denote the

update direction calculated in the forward pass under process noise as ds,t = [δZ ′t+1 δZ ′t δu′t]′,

gradient of the system dynamics constraint function as ∇h(Z̄t+1, Z̄t, ūt) = [I −At − Bt]. Let

F t denote the history of the algorithm till time t. Then, due to the zero mean noise ωt, it is easy to

see that the expected descent direction conditioned on the history F t, E[ds,t/F t] = d̄s,t, where d̄s,t

denotes the true update direction (without noise). We know from Lemma 4, that d̄s,t is a descent

direction of the cost function, i.e., d̄′s,t∇J ′t is always negative. Thus the expected update direction is

a descent direction. Then using the line search condition of ILQR, similar to Theorem 1, it can be

shown that:

E[Jt+1/F t] ≤ Jt − βt||∇Jt||||d̄s,t||, (5.10)

for some βt > 0. Then , using the Supermartingale Convergence Theorem [92], it follows that,
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almost surely:

∑
t

βt||∇Jt|| <∞, (5.11)

which implies that ∇Jt → 0 almost surely, i.e., the algorithm converges to a stationary point of the

cost function. Next, using Theorem 2 in Chapter 2 and Theorem 3 in Section 4.3.1, POD-iLQR is

guarenteed to converge to the global minimum of the open-loop problem in Eq. (4.17).

5.4.2 Biased Update Direction of POD-iLQR in the Partially Observed Case

For the partially observed case, we need to choose a large enough q such that matrix Oq is full

column rank. Also, we use the feedback gain Kt from the last backward pass to keep the trajectory

close to the nominal trajectory. Then we have the following negative result:

Lemma 8. If directly applied to the partially observed system in Eq. (5.5), the backward pass

shown in Algorithm 4 generates a biased update direction.

Proof. Starting from Eq. (5.5), we have the following LTV system:

zt+1 = CtAtxt + CtBtut + Ctωt + vt+1. (5.12)

Then we can write the output equation for past q time-steps as Eq. (4.26). Assuming that the q we

choose satisfies Assumption 1, we can solve for the unique solution of δxt−q as:

δxt−q = Oq+(δZq
t −GqδU q

t −Gq
ωΩq

t − V
q
t ). (5.13)

Now, the system output at time t can be written as:

δzt = CtAt−1...At−qδxt−q +

[
CtBt−1 CtAt−1Bt−2 · · · CtAt−1...Bt−q

]
δU q

t

+

[
Ct CtAt−1 · · · CtAt−1...At−q+1

]
Ωq
t + vt. (5.14)
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Let us denote

αt = CtAt−1...At−qO
q+ ,

βt =

[
CtBt−1 CtAt−1Bt−2 · · · CtAt−1...Bt−q

]
− αtGq,

βDt =

[
Ct CtAt−1 · · · CtAt−1...At−q+1

]
− αtGq

ω, (5.15)

and the unique solution for δxt−q is substituted to get:

δzt = αtδZ
q
t + βtδU

q
t + βDt Ωq

t − αtV
q
t + vt. (5.16)

After taking ns number of rollouts and apply the linear least square as described in Section 4.4.2,

the estimated ARMA model parameters can be written as:

[
α̂t β̂t

]
=

[
αt βt

]
+ (βDt

[
Ω
q,(1)
t Ω

q,(2)
t · · · Ω

q,(ns)
t

]
− αt

[
V
q,(1)
t V

q,(2)
t · · · V

q,(ns)
t

]
+

[
v

(1)
t v

(2)
t · · · v

(ns)
t

]
)XT(XXT)−1, (5.17)

where in this case,

X =

δZq,(1)
t δZ

q,(2)
t . . . δZ

q,(ns)
t

δU
q,(1)
t δU

q,(2)
t . . . δU

q,(ns)
t

 . (5.18)

As δZq
t is correlated with Ωq

t and V q
t , the second term on the RHS of Eq. (5.17) is nonzero. Thus

the estimated ARMA parameters are biased from the true values in
[
αt βt

]
. Further, the update

direction generated from Algorithm 4 is biased.

With the biased update direction, one can expect that the POD-iLQR algorithm can no longer

converge to the true minimum. In this case, multiple rollouts have to be averaged to recover the

convergence to the true minimum. In the next section, we show empirical evidence for Theorem 5

and Lemma 8.
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5.5 Empirical Results

We use MuJoCo, a physics engine [38], as a blackbox to collect the data needed for the open-

loop nominal trajectory design and the closed-loop feedback gain. We verify our results on two

nonlinear systems with their initial configuration shown in Fig. 5.1. All simulations are done on a

machine with the following specifications: AMD Ryzen 3700X 8-Core CPU@3.59 GHz, with 16

GB RAM, with no multi-threading. The algorithms are implemented in MatLab.

Figure 5.1: Models simulated in MuJoCo in their initial states.

5.5.1 Model Description

Here we provide details of the MuJoCo models used in our simulations [93].

Pendulum: The single pendulum model is a pole hinged to a fixed point. There are two state

variables: angle and angular rate of the pole. The task is to swing up and balance the pole in the

upright position.

Cart-Pole: The four-dimensional under-actuated cart-pole model includes a cart moving on the

x-axis and a pole linked to it with a hinge joint. The only actuation is the force on the cart. The

state comprises the angle of the pole, the cart’s horizontal position, and their rates. The task is to
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swing up and balance the pole in the middle of the rail within a given horizon.

Figure 5.2: Convergence comparison in fully and partially observed cases.

5.5.2 POD-iLQR in the Fully Observed Case

As we assume perfect measurements in the fully observed case, the process noise is the only

uncertainty we add to the dynamics. In addition to that, we sample the initial state deviation δx0

from a zero-mean random process. The standard deviation of the process noise ωt is 10% w.r.t. the

standard deviation of the initial state deviation δx0. For each system tested, we run POD-iLQR as it

is in the noiseless system as well as in the fully observed system with process noise. The number
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of steps in the horizon is fixed so in the data collection step, each rollout takes the same number

of steps. In the cost function, the running cost l(xt) = x′tQxt, where xt is the error between the

current state and the target state at time t. The cost parameter Q remains the same throughout the

horizon except for the terminal step. The termination criterion is that the convergence rate is lower

than a threshold or it reaches the max iteration number. We compare the cost convergence curves in

the first row of Fig. 5.2. The “nominal" curve shows the cost convergence of applying POD-iLQR

on the full state noiseless case. The curve labeled “POD-iLQR" shows the cost convergence in

the full state case under process noise. From the plot, both curves almost overlap each other and

converge to the same result. The “POD-iLQR" curves in the zoomed-in view have some ups and

downs due to the process noise in the forward pass. This verifies the proof in Theorem 5 which

shows that the expected update direction, not the actual update direction is a descending direction.

Thus in the fully observed case, POD-iLQR can be directly applied without modification and it

is guaranteed to converge to the global minimum. One thing to notice is that the total number of

rollouts needed under noise is larger than in the noiseless case to make sure that the correlation goes

to zero as shown in Lemma 7.

5.5.3 POD-iLQR in the Partially Observed Case

In the partially observed case, we only measure the positions, not their rates. For the pendulum

example, the observed state is just the angle of the pole. In the cart-pole, we only measure the

position of the cart and the angle of the pole. To simulate the measurements in simulation, we add

sensor noise vt to the measurements. Thus there are both process and measurement noise in the

environment to simulate model and sensor uncertainties. The standard deviations of the process

noise ωt and the measurement noise vt are both 10% w.r.t. the standard deviation of the initial state

deviation δx0. We found that in this observation setting, q = 2 satisfies the observability assumption.

So in the LTV-ARMA system identification step, we fit an ARMA model with q = 2 for both the

pendulum and cart-pole. To evaluate the cost function, we only use the measurements instead of the

states. Similar to the full state observation case, the cost function is quadratic in the information

state and the control input. Three cost curves are shown in the second row of Fig. 5.2. The curve
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labeled “nominal" shows the cost convergence of POD-iLQR in the partially observed but noiseless

environment. Then in the case labeled “POD-iLQR", we directly apply the algorithm to the partially

observed case with both process and measurement noise. In the case labeled “POD-iLQR-Avg",

we run multiple rollouts for each set of control perturbation δut and used the mean trajectory in

the ARMA model fitting step to average out the noise. From the plots, it is shown that in both

the pendulum and the cart-pole, the cost curve of the averaging method matches the nominal cost

curve and they converge to the same result. The outlier curve is from the experiment where we

directly applied POD-iLQR without averaging. Due to the noise corrupted system dynamics and

measurements, the cost curve has more oscillation and failed to converge to the true minimum. Thus

if directly implemented on real robots without averaging, POD-iLQR will generate a biased result

without the optimality guarantee anymore. To make sure the noise is averaged out in the averaging

method, the total number of rollouts needed in the ARMA model fitting is increased from ns to

ns × navg, where ns is the number of rollouts in one ARMA model fitting without averaging and

navg is the number of rollouts needed for each control perturbation set. And the total time taken

during training will be much higher than the case without averaging.

5.6 Conclusions

This chapter introduces an optimal motion planning/trajectory design algorithm for partially

observed systems by transforming them into fully observed problems using the information state.

The main focus is to analyze its performance under uncertainty and pave the way for future

implementation on real-world robots. The algorithm is proved to converge to the global minimum

in the fully observed case with process noise only. It is shown that the algorithm is biased and does

not converge to the global minimum for partially observed systems with process and measurement

noise. In this case, multiple rollouts can be averaged to recover optimality and convergence in

the ARMA model identification step at the cost of a longer training time. The empirical results

are shown to verify the analysis. In our opinion, this algorithm has advantages in optimality and

training efficiency when applied to real-world robots. The actual performance on real robots will be

explored in future work.
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6. CONCLUSIONS

In this dissertation, we study the problem of designing an optimal feedback law in a data-based

fashion. We first derive a decoupling principle which reveals the near-optimality of the deterministic

optimal control policy applied to the stochastic system. A highly efficient decoupled data-based

framework (D2C) is developed based on the decoupling principle. We show that the closed-loop

control policy generated by D2C is within O(ε4) to the true stochastic optimal policy, where ε

is the noise coefficient. The advantages of D2C on training efficiency, energy efficiency and

closed-loop robustness to noise are demonstrated by comparing to DDPG and a model-based shape

control method on several nonlinear, high-dimensional robotic systems and tensegrity structures.

By implementing a data-based generalized iLQR in the open-loop optimal trajectory design step,

we further improve the training efficiency of the D2C approach and prove its convergence to the

global optimum of the optimal control problem. Simulation experiments on high-dimensional

nonlinear complex systems show the advantages of the improved D2C on 1) training efficiency,

2) closed-loop performance and 3) reliability of training over state-of-the-art RL methods. The

D2C approach is extended to partially observed problems where only a subset of the states can be

observed. The extended method (POD2C) includes a partially observed generalization of iLQR

using the LTV-ARMA system identification method for the open-loop optimal trajectory design and

a specific LQG on the information state-based ARMA model for the closed-loop feedback design.

We prove that the POD2C solution satisfies the generalized minimum principle, thus it is the global

optimality of the partially observed problem. The efficacy of POD2C is tested on partially observed,

high-dimensional, highly nonlinear complex robotic systems. We also study the learning under

uncertainty problem. We show that in the fully observed case where process noise exists in the

system dynamics, the POD2C algorithm still converges to the global optimum. However, in the

partially observed case where both the system dynamics and the measurements are corrupted by

noise, we have a negative result that POD2C will generate a biased solution and multiple rollouts

need to be averaged to recover the optimality.
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We propose four directions that can be considered for future development.

1. We have shown that POD2C generates a biased result when directly applied to the partially

observed system with the process and sensing noise. What other information is needed and

how to modify POD2C to eliminate this bias are left unknown. Also, there are other sources

of uncertainty such as biased model parameters and disturbance. These uncertainties may not

be modeled as zero-mean noise. It is interesting to explore how to learn and compensate for

these uncertainties as well.

2. The systems we have considered so far have no hard constraints such as the contact with

the ground. The system dynamics with hard contact may not be smooth and the dynamics

before contract, at the contact point and after contact may be different. Thus, the system

linearization and identification can be problematic. For the fixed timestep discretization we

use, the contact point may be hard to capture accurately when the contact happens within

a timestep. A generalized D2C framework for solving the optimal control problems with

unsmooth and changing dynamics may be proposed to cover this class of applications.

3. Although D2C is shown to be highly efficient, the current time taken during training is

still too long to run in real-time. If training in real-time is made possible, the D2C with

replanning can be a practical global control policy. There are several potential directions such

as parallelization of rollouts and more efficient parametrization.

4. The hyperparameters needed to be tuned in D2C are the cost parameters. It usually takes

a few training to find a set of good parameters. If a systematic auto-tuning method can be

proposed to learn the best hyperparameters during training, the expertise needed to use D2C

can be further reduced.
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APPENDIX

A.1 Dynamics of General Tensegrity Structures

This section provides a brief overview of the non-linear dynamic model of a general tensegrity

structure. The final form of class-1 tensegrity dynamics is formulated as a second order matrix

differential equation [43].

N̈Ms +NKs = W, (A.1)

Ms =

[
CT
nb(C

T
b ĴCb + CT

r m̂bCr) CT
nsm̂s

]
,

Ks =

[
CT
s γ̂Csb − CT

nbC
T
b λ̂Cb CT

s γ̂Css

]
,

where λ represents the force density (compressive force per unit length) in the bar, given by:

λ̂ = −Ĵ l̂−2bḂTḂc − 1

2
l̂−2bBT(W − Sγ̂Cs)CT

nbC
T
b c, (A.2)

and N =

[
n1 n2 · · · n2β+σ

]
∈ R3×(2β+σ) represents the matrix containing the node position

vectors ni ∈ R3×1, β represents the number of bars, and σ represents the number of string-to-string

nodes. The acceleration vector corresponding to the ith node is represented by n̈i, which forms

the matrix N̈ =

[
n̈1 n̈2 · · · n̈2β+σ

]
. The bar matrix B =

[
~b1

~b2 · · · ~bβ

]
∈ R3×β and string

matrix S =

[
~s1 ~s2 · · · ~sα

]
∈ R3×α contain bar vectors ~bi and string vectors ~si, respectively.

The diagonal matrices m̂b and m̂s are formed by arranging bar masses and string point masses

along the diagonal elements, respectively, and Ĵ is a diagonal matrix with Ji =
mbi
12

+
mbir

2
bi

l2i

as the diagonal element that allows to accommodate the inertia in the bars. The connectivity

matrices Cnb, Cb, Cr, Cns, Cs, Csb, and Css define the connections between different nodes to form

bar vector, string vectors and string-to-string node positions. The external force matrix W =
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[
w1 w2 · · · w2β+σ

]
represents the matrix containing external force vector ~wi corresponding

to each node position vector ~ni. The term “force density in strings" is denoted by γi to describe

tensile force per unit length in the ith string member and γ̂ represents the diagonal matrix formed

from γi as its diagonal elements. Equation (A.2) provides the analytical formula to calculate the

diagonal matrix λ̂ where b◦c operator sets every off-diagonal element of the square matrix to zero.

The diagonal matrix l̂ is formed by the length of the bar members where li denotes the length of the

ith bar. Please refer to [43] for the detailed derivation of this dynamics model.

Dynamics Model for Class-k Tensegrity Structures

The model presented above is formulated for class-1 tensegrity structures. Any class-k structure

can be described as a special case of class-1 structures by adding constraints on k nodes to have the

same node positions. These constraints are written in the linear form as:

NP = D, (A.3)

where matrix P ∈ R(2β+σ)×c and matrix D ∈ R3×c can be written from the observation to

provide constraints and c is the number of added constraints [43]. The added constraints can be

accommodated in the class-1 tensegrity dynamics by introducing Lagrange multiplier Ω ∈ R3×c

that constraints the motion to a certain space by adding Lagrange constraint forces of the form ΩPT.

The full-order dynamics model for class-k tensegrity structure is written as:

N̈Ms +NKs = W + ΩPT, (A.4)

with a modification for force density in the bars as:

λ̂ = −Ĵ l̂−2bḂTḂc − 1

2
l̂−2bBT(W + ΩPT − Sγ̂Cs)CT

nbC
T
b c. (A.5)

The degree of freedom for the entire structure is reduced because of the above-mentioned
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constraints. This reduction in the number of allowed displacement dimensions can be captured in a

reduced dimensional space by reducing the order of the model. The following second order matrix

differential equation provides the reduced order dynamic model as:

η̈2M2 + η2K2 = W̃ , (A.6)

where M2 = UT
2 MsU2, K2 = UT

2 KsU2, W̃ = WU2 − η1U
T
1 KsU2, and the remaining variables are

generated from the singular value decomposition (SVD) of the full-column rank matrix P as:

NP = NUΣV T = N [U1 U2]

Σ1

0

[V T

]
= D, (A.7)

where we use [η1 η2] , NU to get:

η1 = DV Σ−1
1 , η̇1 = 0, η̈1 = 0. (A.8)

Notice that η1 represents the constraint space in the transformed coordinates and η2 represents

the reduced order space where the motion is present. The Lagrange multiplier is calculated at each

step to introduce constraint forces by solving the following algebraic equation:

η1U
T
1 KsM

−1
s U1 + η2U

T
2 KsM

−1
s U1 = WM−1

s U1 + ΩV ΣT
1U

T
1 M

−1
s U1. (A.9)

Please refer to Dr. Raman Goyal’s work [43] for the analytic solution to this linear algebra

problem.

A.2 Model-Based Shape Control for Class-k Tensegrity Systems

An important step in writing the control of this non-linear dynamic system into a linear program-

ming problem is to be able to write the force densities in the bar λ = [λ1 λ2 · · · λβ]T in terms of

the linear function of force densities in the strings γ = [γ1 γ2 · · · γα]T. Let us write the ith diagonal
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element of the matrix λ̂ from Eq. (A.5) as:

λi = −Jil−2
i eTi bḂTḂcei −

1

2
l−2
i eTi bBT(W + ΩPT − Sγ̂Cs)CT

nbC
T
b cei, (A.10)

which is written using the identity x̂y = ŷx, for x and y being the column vectors, and stacking all

the scalars into a column vector as:

λ = Λγ + τ, (A.11)

where

Λ =

[
ΛT

1 ΛT
2 · · · ΛT

β

]T
, τ =

[
τT1 τT2 · · · τTβ

]T
, (A.12)

τi = −Jil−2
i ||ḃi||2 −

1

2
l−2
i bTi (W + ΩPT)CT

nbC
T
b ei, (A.13)

Λi =
1

2
l−2
i bTi S(CsC

T
nbC

T
b ei)̂, for i = 1, 2 · · · β. (A.14)

A.2.1 Controller for Reduced Order Dynamics Model

In this section, we write down the control algorithm to control the position of certain nodes in

the structure. Let us define the position of those nodes by Y = LNR, where L is a matrix that

defines the x, y or z coordinates of the node and R matrix defines which nodes to be controlled. Ȳ

defines the final desired location of the nodes that we want to move from Y to Ȳ . Therefore, the

error in the positions at any time is written as:

E = LNR− Ȳ = L(η1U
T
1 + η2U

T
2 )R− Ȳ , (A.15)

and the first and second derivatives of the error with respect to time is written as:

Ė = Lη̇2U
T
2 R, Ë = Lη̈2U

T
2 R, (A.16)
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where η̇1 = η̈1 = 0 was used from the dynamics model formulation. Now, a second order differential

equation in the error dynamics is used to move the nodes from the current position to the desired

position by aptly choosing the control gain parameters matrices Ψ and Θ:

Ë + ĖΨ + EΘ = 0, (A.17)

Lη̈2U
T
2 R + Lη̇2U

T
2 RΨ + [L(η1U

T
1 + η2U

T
2 )R− Ȳ ]Θ = 0. (A.18)

Further substituting for η̈2 from Eq. (A.6), the following equation is obtained:

L(WU2 − η1U
T
1 KsU2 − η2U

T
2 KsU2)M−1

2 UT
2 R + Lη̇2U

T
2 RΨ

+ [L(η1U
T
1 + η2U

T
2 )R− Ȳ ]Θ = 0. (A.19)

Rearranging the above equation to collect all the known and unknown terms together, we get:

LWU2M
−1
2 UT

2 R + Lη̇2U
T
2 RΨ + [L(η1U

T
1 + η2U

T
2 )R− Ȳ ]Θ

= L(η1U
T
1 KsU2 + η2U

T
2 KsU2)M−1

2 UT
2 R. (A.20)

Let us define the known left side of the equation as:

C , LWU2M
−1
2 UT

2 R + Lη̇2U
T
2 RΨ + [L(η1U

T
1 + η2U

T
2 )R− Ȳ ]Θ, (A.21)

and write the right hand side of Eq. (A.20) as:

L(η1U
T
1 KsU2 + η2U

T
2 KsU2)M−1

2 UT
2 R = LNKs U2M

−1
2 UT

2︸ ︷︷ ︸
Msn

R. (A.22)
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We now take the ith column of the above matrix and substitute for Ks = CT
s γ̂Cs − CT

nbC
T
b λ̂CbCnb

to obtain:

LNKsMsnRei = LNCT
s γ̂CsMsnRei − LNCT

nbC
T
b λ̂CbCnbMsnRei, (A.23)

and using the identity x̂y = ŷx for the right-hand side terms gives:

LNKsMsnRei = LNCT
s (CsMsnRei)̂γ − LNCT

nbC
T
b (CbCnbMsnRei)̂λ. (A.24)

Substituting for λ in terms of γ from Eq. (A.11) gives:

LNKsMsnRei = −LNCT
nbC

T
b (CbCnbMsnRei)̂τ

+
(
LNCT

s (CsMsnRei)̂− LNCT
nbC

T
b (CbCnbMsnRei)̂Λ

)
γ. (A.25)

Now, substituting it back to the vector equation of Eq. (A.20), and stacking up all these matrices on

left and vectors on right, we get:

[
ΓT

1 ΓT
2 · · · ΓT

nr

]T
γ =

[
µT

1 µT
2 · · · µT

nr

]T
, (A.26)

where

Γi = LNCT
s (CsMsnRei)̂− LNCT

nbC
T
b (CbCnbMsnRei)̂Λ, (A.27)

µi = Cei + LNCT
nbC

T
b (CbCnbMsnRei)̂τ, (A.28)

C = LWMsnR + Lη̇2U
T
2 RΨ + [L(η1U

T
1 + η2U

T
2 )R− Ȳ ]Θ, (A.29)

Msn = U2M
−1
2 UT

2 , for i = 1, 2 · · · nr. (A.30)

124



A.2.2 Controlling the Velocity and Acceleration

For controlling the node positions, we write the error in position as Ep = LpNRp − Ȳp where

subscript p is used for the position and write the final linear equation for the force densities in the

string in a compact form as (refer Eq. (A.26)):

Γpγ = µp, γ ≥ 0. (A.31)

For controlling the velocity, we define the error in velocity of certain nodes as:

Ev = Lvη̇2U
T
2 Rv − ¯̇Yv, Ėv + EvΨv = 0, (A.32)

and use a first order differential equation to derive the error in velocity to zero. Only first derivative

of error Ev is required as the control variable, force density γ in the strings come out at the same

level of time derivative. Following the same derivation as used in the previous subsections, we write

the linear equation to control the nodal velocities as:

Γvγ = µv, γ ≥ 0. (A.33)

To control the acceleration of the nodes, the error is defined as:

Ea = Laη̈2U
T
2 Ra − ¯̈Ya, (A.34)

which can be directly converted to a linear equation in control variable by equating it to zero as

Ea = 0. Following the same procedure, we get the linear algebra equation to solve for control

variable as:

Γaγ = µa, γ ≥ 0. (A.35)
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Finally, combining the Eqs. (A.31), (A.33), and (A.35) allows to simultaneously control the

position, velocity and acceleration of different nodes in the structure.

[
ΓT
p ΓT

v ΓT
a

]T
γ =

[
µT
p µT

v µT
a

]T
, γ ≥ 0. (A.36)

A.3 Estimation of Hessians: Linear Least Squares by Central Difference (LLS-CD)

Using the same Taylor expansion as described in Section 3.4.2, we obtain the following central

difference equation:

F (x̄t + δxt, ūt + δut) + F (x̄t − δxt, ūt − δut) = 2F (x̄t, ūt) +

[
δxt
′ δut

′

]Fxtxt Fxtut

Futxt Futut


δxt
δut


+O(‖δxt‖4 + ‖δut‖4), (A.37)

where Fxtxt =
∂2F

∂x2

∣∣∣∣
xt

, similar for Futxt and Futut . Denote zt = F (x̄t + δxt, ūt + δut) + F (x̄t −

δxt, ūt − δut)− 2F (x̄t, ūt). The Hessian is a (ns + nu) by ns by (ns + nu) tensor, where ns is the

number of states and nu is the number of actuators. Let’s seperate the tensor into 2D matrices w.r.t.

the second dimension and neglect time t for simplicity of notations:
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zi =

[
δx′ δu′

]F (i)
xx F

(i)
xu

F
(i)
ux F

(i)
uu


δx
δu


=

ns∑
j=1

ns∑
k=1

∂2Fi
∂xj∂xk

δxjδxk + 2
nu∑
j=1

ns∑
k=1

∂2Fi
∂uj∂xk

δujδxk +
nu∑
j=1

nu∑
k=1

∂2Fi
∂uj∂uk

δujδuk

=

[
δx1

2 δx1δx2 · · · δx1δunu δx2
2 δx2δx3 · · · δu2

nu

]
︸ ︷︷ ︸

δM



∂2Fi
∂x2

1

2
∂2Fi
∂x1∂x2

...

2
∂2Fi

∂x1∂unu

∂2Fi
∂x2

2

2
∂2Fi
∂x2∂x3

...
∂2Fi
∂u2

nu


︸ ︷︷ ︸

Hi

,

(A.38)

where F (i)
xx =

∂2Fi
∂x2

∣∣∣∣
xt

, zi is the ith element of vector zt and Fi is the ith element of the dynamics

vector F (xt, ut). Multiplying on both sides by δM ′ and apply standard Least Square method:

Hi = (δMT δM)−1δMT zi. Then repeat for i = 1, 2, ..., ns to get the estimation for the Hessian

tensor.
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