

51st Turbomachinery & 38th Pump Symposia September 13-15, 2022 | Houston, TX | George R. Brown convention center

Effects of Seal Configuration on Seal Performance in Contaminated Applications

Joe Parker, Mohammed Tagzait Flowserve

Introduction

- Gas liquefaction plant in Algeria produces up to 4.7 million tones of LNG/year
- Liquefaction process requires heating and cooling of natural gas
- Heat Transfer Fluid is utilized in a temp. range of 200 250°C (392 482°F)
- Hot oils used as heat transfer fluids can be either synthetic or hydrocarbonbased
 - Fluid properties are designed for long life, low degrees of fouling and pumpability
- In this case, the customer uses "MT" 605, a highly refined hydrocarbon from base stocks with improved oxidation and thermal cracking properties

Operating Conditions

- Pump Style
- Pumped Product
- Temperature
- Viscosity
- Speed
- Suction Pressure

- : BB2 (2 seals, DE & NDE) per API 610
- : Heat Transfer Mineral Oil (Mobiltherm 605)
- : 165°C norm / 235°C max (329/455°F)
- : 1.5 cSt
- 1480 rpm
- : 7 bar norm / 10 bar max (101/145 psi)
- Discharge Pressure : 20 bar norm (290 psi)
- # of Pumps in Loop : 3 (2 continuously running, 1 spare)

Mechanical Seal & System Design

- Metal bellows mechanical seal selected, Type C, back-to-back, Arrangement 3, per API 682 requirements
- Both inboard and outboard seals with soft vs hard faces (carbon/silicon carbide), graphite gaskets, Alloy 718 bellows
- Plan 53B pressurized system configured with a 10 liter accumulator and bundle type cooler
- Plan 61 atmospheric control in seal, unused at plant
- Two seals per pump, two 53Bs per pump

Mechanical Seal & System Design

- Seal Type
- : HT bellows/HT bellows 5.500/5.500
- Seal Configuration : Type C, 3CW-BB
- : 125 mm (4.921") • Shaft Size
- Auxiliary System
- Barrier pressure : 12 to 19 barg
- : Plan 53B (10L Accumulator)

Failure Evaluation

- Several failures after plant commissioning, MTBF <8 weeks
- Failure = rapid barrier pressure loss
- Failure especially evident when pump is put on standby
- External evidence:
 - No atmospheric leakage observed
- Internal evidence:
 - Seal barrier and atmospheric side very clean
 - All seal faces in good condition
 - Inner seal bellows clogged with sludge / solidified coke particles

Failure Evaluation

• Typical findings

Analysis

- Hot oil process meant to be clean and filtered has fine coke particulate
- Pump location promotes settling of particles in the pump and seal chamber - lowest point in the system
- From all inspections, inboard metal bellows found effectively solid
- B2B arrangement seals succumb to particle collection, clogged bellows convolutions and prevention of "spring" function
 - Centrifugal effects actively promote particle accumulation inside the bellows
 - No possibility for cleaning or flushing

Failure Mode

• Shaft rotation centrifuges solids

Other Challenges

- Required average 25 days between refilling as per API 682 3rd edition
- No possibility to use flushing piping plans (Plan 11, 31, 32 ... etc.)
 - No piping modification (cost and complexity) and/or external source allowed
- No possibility to modify 53B support system
 - No accumulator size or cooling capacity changes
- No possibility to change process loop filter design

Proposed Solution

- Keep process on the outside diameter to promote "self-cleaning" effect
- Mitigate solids with Face-to-Back arrangement
- Pusher seals are capable of 19 barg differential pressure
- Although max temperature is above the usual recommendations for a pusher seal, O-rings are available
- Flexible element should be outside the process with dynamic gasket at stationary face

Proposed Solution

- Metal bellows seal, Type C, B2B
- OD pressurized IB seal
- Flexible elements in contact with process
- Pusher seal, Type A, F2B
- ID pressurized IB seal
- Flexible elements away from process

Proposed Solution Validation

- Before site implementation, factory validation required
- Dynamic testing performed under simulated site conditions
- Different face material tested on inner seal
 - Carbon vs RBSC
 - RBSC vs RBSC
- More than 500 hrs. testing

Proposed Solution Validation

- During testing, face wear and leakage was examined in all combinations
- Plain faces in RBSC/RBSC showed least wear and low leakage
- Wear attributed to initial venting and dry running caused by face orientation / shape
- Long runs didn't produce further/propagated wear

Field Implementation

- Seals were validated through testing and installed in August 2016
- No seal failure reported since installation
- Low mechanical seal leakage achieves > 23 days between refills
- All pumps were upgraded with the F2B pusher seal

Field Results

Lessons Learned

- Verify actual cleanliness of "clean processes"
- Seal arrangement plays a role in contamination tolerance
- Pusher seals can be used on high temperature applications
- Plan 53B refill cycle goals can be achieved
- Identify addressable problems and execute a plan
- Customer/supplier cooperation is essential

