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Abstract

This article focuses on a multi-modal imaging data application where struc-
tural/anatomical information from grey matter (GM) and brain connectivity infor-
mation in the form of a brain connectome network from functional magnetic reso-
nance imaging (fMRI) are available for a number of subjects with different degrees
of primary progressive aphasia (PPA), a neurodegenerative disorder (ND) measured
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through a speech rate measure on motor speech loss. The clinical/scientific goal in
this study becomes the identification of brain regions of interest significantly related
to the speech rate measure to gain insight into ND pathways. Viewing the brain
connectome network and GM images as objects, we develop a flexible joint object
response regression framework of network and GM images on the speech rate mea-
sure. A novel joint prior formulation is proposed on network and structural image
coefficients in order to exploit network information of the brain connectome, while
leveraging the topological linkages among connectome network and anatomical infor-
mation from GM to draw inference on brain regions significantly related to the speech
rate measure. The principled Bayesian framework allows precise characterization of
the uncertainty in ascertaining a region being actively related to the speech rate mea-
sure. Our framework yields new insights into the relationship of brain regions with
PPA, offering deeper understanding of neuro-degeneration pathways for PPA. Sup-
plementary file adds details about posterior computation and additional empirical
results.

Keywords: Bayesian inference; brain connectome; functional magnetic resonance imaging;
grey matter; multi-modal imaging; primary progressive aphasia.
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1 Introduction

This article is motivated by a clinical application on patients suffering from brain loss due

to Primary Progressive Aphasia (PPA), an ND characterized by loss of language ability

which shares pathological signatures with Alzheimer’s disease and frontotemporal dementia.

Specifically, we consider the nonfluent/aggramatic variant of PPA (nfvPPA) characterized

by motor speech and grammar loss and left inferior frontal atrophy (Gorno-Tempini et al.,

2008). Multi-modal imaging data are available for each of these PPA patients which in-

clude: (a) brain network information and (b) brain structural information. Brain network

envisions each region of interest (ROI) as a network node and quantifies connectivity be-

tween the pairs of network nodes using functional magnetic resonance imaging (fMRI).

Brain structural information is obtained using structural MRI (sMRI), e.g., grey matter

(GM) images over brain volumetric pixels (voxels). Both images are collected on a common

brain atlas which segments a human brain into different regions of interest (ROI), with each

ROI containing a number of voxels. A scalar-valued speech rate score is available for these

patients to measure the degree of their motor speech loss due to PPA.

The major scientific goals of the study is two fold, (a) to estimate regression relationships

between the speech rate and the two imaging modalities; and (b) to identify ROIs and voxels

significantly related to the speech rate, and thus infer on the ND pathway for PPA. To this

end, the identification of influential ROIs via principled modeling framework is necessary

to yield results that are scientifically interpretable in the lingua franca of well characterized

brain anatomy and function. While many ROI based inferential techniques are constrained

by considering the ROI as the most basic unit of analysis, the PPA data application allows

for additional granular inference at the level of the voxel which will provide neuroscientists

with the dual ability to frame results at the macro level of the ROI and probe the micro
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voxel-level signals that drive these results. To our knowledge, this article proposes the first

statistical framework that allows for flexibility of macro and micro inference on multi-object

imaging data which is urgently needed in the neuroscience community (Calhoun and Sui,

2016). Uncertainty quantification regarding the inference on influential regions becomes

crucial since the analysis only involves a limited number of PPA patients.

When inference on influential brain regions is of interest, one may fit a regression model

with the speech rate as the response and brain network and structural images as predictors,

extending the popular literature of scalar-on-object regressions (Guhaniyogi et al., 2017;

Fan et al., 2019; Guha and Rodriguez, 2021; Feng et al., 2019) to scalar-on-multi-object

regressions. However, limited sample size in our application precludes drawing satisfac-

tory inference from these models. As an alternative, we address the inferential objective

by formulating a multi-modal regression framework with the brain network (defined over

brain ROIs) and structural images (defined over brain voxels) as two sets of responses and

the speech rate as the predictor. A hierarchical Bayesian approach is adopted wherein a

joint prior structure on coefficients of the speech rate corresponding to the structural and

network objects (hereon referred to as the structural and network coefficients, respectively)

is developed to account for topology in multi-object data and to allow the information

in separate image objects to complement and reinforce each other in their relation to the

scalar predictor. To elaborate on it, we begin with a common brain atlas for both image

objects to ensure that it provides an organizing principle that links together structural and

network information via a shared set of ROIs and a group of voxels within each ROI. The

joint prior on network and structural coefficients are constructed respecting the hierarchical

constraint in multi-object topology which ensures all voxels within an ROI is uninfluential

if the ROI is un-influential (see Section 3.2). While this article does not explicitly make
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use of the structural information in the GM images by careful spatial modeling of GM

image coefficient, it partially exploits the structural information by imposing the hierarchi-

cal constraint in the prior construction step. The problem of identifying influential ROIs

is cast under a nonlinear variable selection framework, wherein latent activation indicator

corresponding to all ROIs are shared among both sets of coefficients to enforce that all

voxels from a particular ROI and all network edges connected to that particular ROI have

no relationship with the predictor when the activation indicator corresponding to the ROI

is zero. As a byproduct of our construction, symmetry and transitivity property (Hoff,

2005) of the un-directed network object is preserved, as discussed in Section 3.2. The prior

construction achieves efficient computation, identifies influential ROIs and voxels within

an influential ROI which are key to study neuronal atrophy, and produces well-calibrated

interval estimates for the multi-modal regression coefficients. Moreover, our framework at-

taches uncertainty in identifying these ROIs and offers improved inference over regression

methods with a single imaging modality.

There is a dearth of principled Bayesian literature addressing the inferential objectives

of the motivating application, and our proposal is arguably the first Bayesian multi-object

regression approach to answer the inferential questions stated before. We now provide

a brief overview of the available literature to contrast them with our proposal. In the

course to determine the association between network or structural objects and the speech

rate score, the most popular approach estimates the association between each network

edge or GM voxel and the speech rate independently, providing a p-value “map” (Friston,

2003; Lazar, 2016), after adjusting for multiple comparisons to identify “significant” ROIs

and voxels. However, these methods do not take into account the joint impact of all

network edges and voxels of the GM images simultaneously. A more principled approach
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is to vectorize both objects and regress them jointly on the speech rate, leading to a high

dimensional vector response regression problem. This approach can take advantage of

the recent developments in high dimensional multivariate reduced rank sparse regression

literature, consisting of both penalized optimization (Yuan et al., 2007; Chen and Huang,

2012) and Bayesian shrinkage (Goh et al., 2017). However, vectorization of both sets

of object responses during analysis ignores their individual topology (e.g., the symmetry

and transitivity in the network) and linkage between the topology through the hierarchical

constraint, and apparently does not allow identification of influential ROIs with uncertainty.

There are some recent efforts to build regression models with a single-object response,

mainly for the functional and structural neuro-imaging data (Guhaniyogi and Spencer,

2021; Guha and Guhaniyogi, 2021), though there is a dearth of literature on exploiting

principled linkages among image objects (e.g., through the hierarchical constraint). Failure

to consider the structure and cross information from multiple images (as in a uni-modal

analysis) have generally a negative impact on ND research in terms of lower detection power

(Li et al., 2018), bias in estimated effects (Dai and Li, 2021), and sensitivity of results to

noise (Calhoun and Sui, 2016). Additionally, the existing approaches involving network

objects consider low-dimensional structure for the network coefficient, while our approach

does not rely on such restrictive assumptions.

Our proposed approach is considerably different from the existing statistical literature

on multi-modal data integration. In particular, there have been a class of unsupervised

multi-modal analysis built on matrix or tensor factorization (Lock et al., 2013), or methods

exploiting structural connectivity information in the prior construction for the functional

connectivity analysis from fMRI data (Xue et al., 2015). Xue et al. (2018) proposes regres-

sion on disease status on low-frequency fluctuation (fALFF) from resting-state fMRI scans,
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voxel based morphometry (VBM) from T1-weighted MRI scans, and fractional anisotropy

(FA) from DTI scans. In the same vein Li and Li (2021); Dai and Li (2021) develop frame-

works to account for non-linear association between a scalar response and multi-modal

predictors. While these approaches do form linkages among image modalities, they do not

properly model within image correlations and thus are not able to address our inferential

goals of jointly modeling information across images. Moreover, all these approaches do not

naturally offer identification of influential ROIs with uncertainty.

The specific application of the proposed framework to our motivating PPA imaging data

will substantially improve characterization of dementia related language loss in contrast to

previous analyses. Up to this point, the foundational work in the cognitive neuroscience of

PPA (Mandelli et al., 2016; Gorno-Tempini et al., 2008) has not directly combined struc-

tural information relating to neuronal atrophy with network information on brain connec-

tivity. At best, brain networks that underlie language have been identified via an informal

fusion of information from multi-object image data via seed based methods (Battistella

et al., 2020). Specifically, several ROIs are identified which display the highest degree of

atrophy in structural images (e.g. GM degradation) of PPA patients. These ROIs are then

used to define “seed regions” which are used to construct speech networks that quantify

the nodes highly connected to the seed regions. While the speech networks identified via

this approach are likely important to study PPA, the ad-hoc way of selecting seed regions

and the lack of a joint model that simultaneously consider the influence of structural and

network images on language dysfunction means that the influence of atrophy in other ROIs

in conjunction with speech networks have been overlooked. Thus, the application of our

proposed approach to the PPA data will provide a new range of opportunities anchored in

multi-modal image integration to study cognitive language models.
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The rest of the manuscript proceeds as follows. Section 2 provides a description of

the structure of multi-modal data we analyze in this article. Section 3 describes the model

development and prior framework to draw inference from multi-modal images and Section 4

discusses posterior computation of the proposed model. Empirical investigations with data

generated under various simulation settings are reported in Section 5. Section 6 analyzes

the multi-modal dataset, offering scientific findings on influential ROIs. Finally, Section 7

summarizes the idea and highlights some of the extensions to be explored in the near future.

2 Clinical Case Study on Nonfluent Primary Progres-

sive Aphasia (nfvPPA) Neurodegenerative Disorder

We focus on a clinical application derived from multi-modal image studies conducted on

patients with nonfluent/aggramatic variant of PPA (nfvPPA), a form of ND characterized

by motor speech and grammar loss and left inferior frontal atrophy (Gorno-Tempini et al.,

2008). To investigate the neural underpinnings of disruption to motor speech/fluency in

nfvPPA patients, clinical images from multiple modalities was collected as detailed below.

Clinical images and language evaluation: Imaging data is acquired on 24 nfvPPA pa-

tients during the course of clinical research activity. Data is collected from the following

imaging modalities: sMRI derived gray matter (GM) (Figure 1a) which measures the

likelihood a voxel containing neuronal cell bodies; and task-free resting state functional

magnetic resonance imaging (fMRI) to measure brain activation via neuronal oxygen con-

sumption in subjects at rest. All images are registered to the Montreal Neurological Insti-

tute (MNI) template space with voxels parcellated into 245 ROIs using the Brainnetome

atlas such that images across modalities and subjects can be directly compared and each
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(a) Structural image (b) Atlas (c) Network image

Figure 1: Schematic of the multi-object brain imaging data structure for a PPA patient. (a) Structural

image encoding voxel-level gray matter (GM) probability, (b) Brainnetome atlas parcellation of the brain

into anatomical ROIs, (c) Network image obtained by calculating the pairwise Pearson correlation Z-score

for the average fMRI signal in each ROI. Red circles and lines connect (a) structural and (c) network

information from images via the (b) parcellated atlas.

voxel is nested in an anatomically defined ROI (Figure 1b) (Fan et al., 2016). For each

subject, a ‘brain network’ represented by a symmetric adjacency matrix is obtained from

the fMRI image by considering rows and columns of this matrix corresponding to differ-

ent ROIs and entries corresponding to the Z-scores obtained by transforming the Pearson

correlation between average fMRI data of two ROIs (Figure 1c). We focus our analysis

of language loss on speech rate, the number of words spoken per minute, a measure of

motor speech via a subject’s articulation rate. This speech rate measure is automatically

extracted from recorded speech from the Grandfather passage, a 129-word block of text

meant to elicit a comprehensive set of phonemes in English (Ogar et al., 2007), via SALT

software (https://www.saltsoftware.com/), a software platform used to automatically ex-

tract language features from recorded speech.

Scientific question of interest: Language loss in nfvPPA patients is driven by neu-

rodegeneration in the left inferior frontal region but the dual role of structural damage
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and brain connectivity in language loss is not well characterized (Mandelli et al., 2016).

Prior clinical studies have identified 38 regions of interest (ROIs) which are related to mo-

tor speech/fluency, known as the motor speech/fluency speech production network (SPN)

(Mandelli et al., 2016). One of our primary goals is to extend the multi-modal study of

motor speech/fluency beyond this established SPN to the whole brain. To do so, we apply

our proposed multi-modal framework to regress GM maps (which capture focal neurode-

generation), and, fMRI brain connectivity networks (which capture disruptions of brain

connectivity), on the speech rate score. The next section describes the novel regression

framework to achieve these scientific goals.

3 Bayesian Regression with Multiple Imaging Responses

and Speech Rate as a Predictor

3.1 Model Framework

For the ith subject, let yi ∈ R denote the speech rate measure, xi = (xi,1, ..., xi,H)
′ represent

the biological and demographic variables (e.g., age, gender) and Ai represent the weighted

brain network object. We assume that the network of all subjects are defined on a common

set of nodes, with elements of Ai encoding the strength of network connections between

different nodes for the i-th subject. In particular, the network object Ai is expressed in

the form of a P × P matrix with the (p, p′)-th entry of the matrix ai,(p,p′) signifying the

strength of association between the pth and p′th node, where p, p′ = 1, ..., P and P is the

number of network nodes. This paper specifically focuses on networks that contain no self

relationship, i.e., ai,(p,p) ≡ 0, and are un-directed (ai,(p,p′) = ai,(p′,p)). Such assumptions hold

for the data application pertaining to Section 2, where Ai represents the brain connectome
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network matrix obtained from the fMRI scan, with each node representing a specific brain

region of interest (ROI) and edges signify correlations between fMRI signals in two regions.

Let gi,1,...,gi,P denote the V1, ..., VP dimensional structural objects in regions R1,...,RP ,

respectively. In the context of our data application, they represent volumetric elements

(voxels) of the GM image from the P ROIs. The nested structure of voxels within ROIs

provides biologically plausible organization and is instrumental for variable selection and

computation as detailed in the upcoming methodological development.

For i = 1, . . . , n, we assume that the relationship between the speech rate measure yi

varies with every network edge and every GM voxel after accounting for the edge and voxel

specific effect of the biological covariates, and propose a set of conditionally independent

generalized linear models for every network edge and GM voxel, given by

E[ai,(p,p′)] = H−1
1

( H∑
h=1

ψa
p,p′,hxi,h + θp,p′ yi

)
, E[gi,v,p] = H−1

2

( H∑
h=1

ψg
p,hxi,h + βv,p yi

)
, (1)

for v = 1, . . . , Vp; p = 1, . . . , P , where H1(·) and H2(·) are the link functions, θp,p′ is the

(p, p′)th element of the P×P matrix Θ, βv,p is the vth element of the Vp dimensional vector

of coefficients βp, ψ
a
p,p′,h denotes the effect of xi,h on the edge connecting pth and p′th nodes

of the network matrix and ψg
p,h determines the effect of xi,h on the GM image at a voxel

within Rp. Considering the symmetry and zero diagonal constraint in the network object

Ai, we set θp,p′ = θp′,p and θp,p = 0, for all 1 ≤ p < p′ ≤ P . Additionally, we assume a

bilinear effect of ψa
p,p′,h = ψa

p,hψ
a
p′,h to achieve parsimony following the popular literature on

bilinear regression analysis (Gabriel, 1998; Von Rosen, 2018). When both sets of responses

follow a normal linear model with an identity link function, (1) becomes

ai,(p,p′) =
H∑

h=1

ψa
p,hψ

a
p′,hxi,h + θp,p′ yi + e

(p,p′)
i , gi,v,p =

H∑
h=1

ψg
p,hxi,h + βv,p yi + w

(v,p)
i , (2)

for v = 1, . . . , Vp; p = 1, . . . , P, where e
(p,p′)
i and w

(v,p)
i represent the errors in the two

regression models. While carefully constructed spatial covariance structure can be imposed
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on e
(p,p′)
i and w

(j,p)
i , limited sample size in our application is not conducive to adding

sufficiently expressive structures for covariance matrices of the errors. We relegate it as a

future work and offer discussion in Section 7. Instead, this article focuses on joint learning

of the mean structure for two sets of models and assumes e
(p,p′)
i , w

(v,p)
i

ind.∼ N(0, τ 2) (for

1 ≤ p < p′ ≤ P and v = 1, . . . , Vp) for simplicity, following multivariate linear response

regression literature (Goh et al., 2017). Consistent with the symmetry and zero diagonal

entry in Ai, we assume e
(p,p′)
i = e

(p′,p)
i and e

(p,p)
i = 0. Therefore, stacking over elements of

the network matrix and elements of the GM voxels over each region, (2) can be written as

Ai =
H∑

h=1

ψa
h(ψ

a
h)

′xi,h +Θ yi +Ei, gi,p =
H∑

h=1

1Vpψ
g
p,hxi,h + βp yi +w

(p)
i , (3)

p = 1, . . . , P, where ψa
h = (ψa

1,h, ..., ψ
a
P,h)

′ and 1Vp represents a Vp-dimensional vector of ones.

The error Ei ∈ RP×P is the symmetric matrix with zero diagonal entries corresponding

to the network object and w
(p)
i is the Vp-dimensional error vector corresponding to the

GM image at the pth ROI. The key to joint learning of the multi-modal data lies in the

development of a joint prior structure on Θ and βp’s, as described in the next section.

3.2 Prior Distribution on Multi-Modal Coefficients

Our joint prior construction on coefficients βp’s and {θp,p′ : p < p′} for multi-modal pre-

dictors is fundamental to exploiting topology of the image objects and cross-information

among them by forming principled linkages among images. The prior construction is aimed

at: (a) identification of influential ROIs with uncertainty; (b) shrinkage of unimportant

voxel coefficients to zero within an influential ROI; and (c) guaranteeing efficient computa-

tion of the posterior for the proposed prior. We cast the problem of identifying influential

ROIs from the multi-modal images as a high-dimensional variable selection problem and

formulate prior distributions on multi-modal object coefficients building upon the existing
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literature on prior constructions for high-dimensional regression coefficients (George and

McCulloch, 1993; Scott and Berger, 2010; Carvalho et al., 2010).

The direct application of existing variable selection prior on multi-modal coefficients is

unappealing for multiple reasons. First, an ordinary variable selection prior on coefficients

Θ and βp’s identifies cells inAi and gi,p (which in our application refer to the network edges

and GM voxels) significantly related to the predictor, rather than identifying influential

ROIs. Second, we seek to impose two additional restrictions on the prior construction of Θ

and βp motivated by the neuro-scientific application. First, if at least one of the pth and p′th

ROIs is not related to the speech rate, the edge coefficient θp,p′ corresponding to the edge

between pth and p′th nodes is unimportant. Second, if the pth ROI is deemed uninfluential

then all voxels within the pth ROI are unrelated to the speech rate, i.e., βp = 0. These

restrictions are relevant due to the hierarchical arrangement of voxels and ROIs and are

jointly referred to as the hierarchical constraint. Finally, we expect the matrix of coefficients

Θ (which itself can be regarded as a weighted network) to exhibit transitivity effects, i.e.,

we expect that if the interactions between regions p and p′ and between regions p′ and p′′

are both related to the speech rate, the interaction between regions p and p′′ will likely

associated with the speech rate (see, e.g., Li et al. (2013)). An ordinary variable selection

prior on multi-modal coefficients does not necessarily conform to all these requirements.

Let ξ1, ..., ξP denote the binary inclusion indicators corresponding to the P ROIs taking

values in {0, 1}, with ξp = 0 determining no effect of the pth ROI on the covariate of

interest. In our construction, the network edge coefficient θp,p′ is endowed with a variable

selection prior given by

θp,p′ |λp,p′ , τ 2, σθ, ξp, ξp′
ind.∼ ξpξp′N(0, τ 2σ2

θλ
2
p,p′) + (1− ξpξp′)δ0, p < p′, (4)

where δ0 corresponds to the Dirac-delta function, λp,p′ is a local shrinking parameter cor-
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responding to the (p, p′)th edge and σθ is the global shrinking parameter for the network

coefficient. The prior closely mimics the spike-and-slab variable selection structure (George

and McCulloch, 1993) with an important difference. While an ordinary spike-and-slab

prior introduces a binary inclusion indicator corresponding to each variable, (4) enforces

θp,p′ = 0 when either ξp = 0 or ξp′ = 0. Such a formulation is sensible from a network

perspective as it implies that the edge connecting two network nodes is unrelated to the

predictor when at least one of the network nodes is not influential, i.e., it satisfies hierar-

chical constraint. Additionally, the formulation naturally incorporates transitivity effects

in the network coefficient Θ. We further assign σθ ∼ C+(0, 1) and λp,p′
ind.∼ C+(0, 1) to

complete prior specification on network coefficient. Integrating out σθ and λp,p′ in (4),

θp,p′ |τ 2, ξp = 1, ξp′ = 1 follows the popular horseshoe prior (Carvalho et al., 2010) which

offers a flexible prior structure for precise estimation of nonzero network edge coefficients.

The GM coefficient βv,p in the pth ROI is modeled using βv,p = ξpγv,p, to ensure all voxel

coefficients in the pth ROI become unrelated to the predictor if the pth ROI is uninfluential

(i.e., ξp = 0), thus satisfying the hierarchical constraint. To estimate voxel level effects in

the pth ROI on the predictor, each γv,p is assigned a horseshoe shrinkage prior which takes

the following scale-mixture representation,

γv,p|ϕv,p, η
2
p, τ

2 ∼ N(0, τ 2η2pϕ
2
v,p), ϕv,p

i.i.d.∼ C+(0, 1), ηp
i.i.d.∼ C+(0, 1), (5)

for v = 1, ..., Vp; p = 1, ..., P . The prior structure (5) induces approximate sparsity in voxel-

level GM coefficients γv,p by shrinking the components which are less influential toward

zero while retaining the true signals. Finally, the binary inclusion indicators are assigned

Bernoulli prior distribution ξp
i.i.d.∼ Ber(ν) with ν ∼ Beta(aν , bν) to account for multiplicity

correction (Scott and Berger, 2010). Notably, an estimate of the posterior probability of

the event {ξp = 1} shows the uncertainty in identifying the pth ROI to be influential. Thus,
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P (ξp = 1|Data) close to 1 or 0 signifies strong evidence in favor of identifying the pth ROI

to be active or inactive, repectively. The prior specification on multi-modal coefficients is

completed by assigning an inverse Gamma IG(aτ , bτ ) prior on the error variance τ 2 and an

IG(aθ, bθ) prior on the error variance σθ. We assign N(0, 1) prior distribution on ψa
p,h, ψ

g
p,h

for all p = 1, ..., P and h = 1, ..., H.

4 Posterior Computation

Full conditional distributions for all the parameters are available and mostly correspond

to standard families (available in Section 1 of the supplementary file). Thus, posterior

computation can proceed through a Markov chain Monte Carlo algorithm. The MCMC

sampler is run for 5000 iterations, with the first 1000 discarded as burn-in. All posterior

inference is based on post-convergence samples suitably thinned. The effective sample size

averaged over all Θ and βp’s for the post-convergence iterations is 3143.

We have implemented our code in R (without using any C++, Fortran, or Python

interface) on a cluster computing environment with three interactive analysis servers, 56

cores each with the Dell PE R820: 4x Intel Xeon Sandy Bridge E5-4640 processor, 16GB

RAM and 1TB SATA hard drive. Different replications of the model are implemented

under a parallel architecture by making use of the packages doparallel and foreach

within R. The computation times of running 5000 MCMC iterations with P = 100 and

V1 = ... = VP = 50 is given by 142 min on average across all simulations.

L (suitably thinned) post-convergence MCMC samples ξ
(1)
p , ..., ξ

(L)
P of the indicator ξp

are used to empirically assess if the pth ROI is significantly associated with the predictor.

In particular, the pth ROI Rp is related to yi if
∑L

l=1 ξ
(l)
p /L > t, for 0 < t < 1. The ensuing

sections set t = 0.5 to decide which ROIs influentially related to yi.
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5 Simulation Studies

5.1 Data Generation

In all our simulations, we assume no biological and demographic covariates, i.e. ψa
p,h =

ψg
p,h = 0 and simulate y1, . . . , yn from N(0,1). We then generate responses Ai and gi,p from

model (3) with the true network coefficient Θt and true structural coefficient βp,t for the

pth ROI. The subscript t indicates the true data generating parameters. In all simulations

we set a limited sample size of n = 16 to resemble our simulation settings with the PPA

data application and assume equal number of voxels per ROI, i.e., V1 = · · · = VP = V .

Simulating true coefficients Θt and βp,t. To simulate the true coefficients Θt and βp,t,

we first generate binary variables ξ1,t, ..., ξP,t
i.i.d.∼ Ber(νt) with ξp,t = 1 sets the p-th region

influentially related to the scalar predictor. Since (1 − νt) is the probability of a region

not being “influential,” it is referred to as the node sparsity parameter. For our simulation

studies we consider two sparsity levels, (1−νt) = 0.85 and (1−νt) = 0.70. For each sparsity

level, the coefficient corresponding to the edge connecting the p-th and p′-th region is drawn

from the following mixture distribution,

θ(p,p′),t|ξp,t, ξp′,t ∼ ξp,tξp′,tN(µθ,(p,p′), σ
2
θ) + (1− ξp,tξp′,t)δ0, θ(p,p′),t = θ(p′,p),t; p < p′. (6)

(6) ensures that any edge connecting to the p-th region in the network response is unrelated

to the predictor if the p-th region is un-influential, i.e., ξp,t = 0 ⇒ θ(p,p′),t = 0 for all p′ ∈

{1, .., P}. Similarly, corresponding to each un-influential region Rp, the V × 1 dimensional

GM coefficient βp,t is set at 0. When ξp,t = 1, i.e., the p-th region is influential, we randomly

choose υt = 0.4 proportion of cell coefficients in the p-th region to be nonzero and rest

are set at zero. These nonzero coefficients within βp,t are simulated from N(µβ,(p,p′), σ
2
β),

where the values of µθ,(p,p′) and µβ,(p,p′) are drawn from Unif(0.25, 1). All simulations fix
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σ2
θ = 1, σ2

β = 1 and the error variance τ 2t = 1. For each of the two node sparsity levels,

different number of ROIs and voxels within an ROI are considered. Specifically, we consider

two cases, (a) “small dimensional example:” P = 20 and V = 10, and (b) “high

dimensional example:” P = 100 and V = 50. In both these cases we have approximately

similar number of parameters to estimate from the network and the structural coefficients.

5.2 Competitors and Metrics of Comparison

The simulated data will be used to assess the performance of: (A) identifying influential re-

gions; (B) estimating the true network coefficientΘt and structural coefficients β1,t, ...,βP,t;

and (C) quantifying uncertainty in the point estimation of network and structural coeffi-

cients. We construct a series of competitors of BMRR to assess (A)-(C) as described below.

5.2.1 Frequentist competitors

As competitors, we implement popularly used approaches wherein each network edge and

each cell of the structural image is independently regressed on the predictor to obtain

p-values corresponding to the point estimates of θp,p′ and βv,p, denoted by p-value(θ̂p,p′)

and p-value(β̂v,p), respectively, for v = 1, ..., Vp and p = 1, ..., P . These p-values will be

compared to a threshold to declare if a region is influential, after correcting for the multiple

comparison issue. Given the structured nature of our problem, we will consider several

implementations of this correction as described below. We set α0 = 0.05 throughout.

Global and Regional Bonferroni’s correction on structural images. The first com-

petitor, referred to as the Global Bonferroni on Grey Matter, focuses on {β̂1, ..., β̂P}

together and declares a region p to be influential if p-value(β̂v,p) ≤ α0∑P
p=1 Vp

for at least

one v ∈ {1, ..., Vp}. As discussed in Genovese et al. (2002), applying Bonferroni’s correc-
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tion at a regional level may improve performance. Thus we consider a second competitor

called Regional Bonferroni on Grey Matter, which selects a region p as influential if

p-value(β̂v,p) ≤ α0

Vp
for at least one v ∈ {1, ..., Vp}.

Global and Regional Bonferroni’s correction on the network object. Similar to the

structural images, the Global Bonferroni on the network object identifies region p as in-

fluential if at least one edge connecting to this region is influential, i.e., if p-value(θ̂p,p′) ≤

α0

P (P−1)/2
for at least one p′ ̸= p. In contrast, the Regional Bonferroni identifies region p

to be influential if p-value(θ̂p,p′) ≤ α0

P−1
for at least one p′ ̸= p.

Global and Regional Bonferroni’s correction on all objects jointly. Global Bon-

ferroni on structural and network objects jointly determines region p to be influential if

at least one edge connecting to the region or at least one voxel coefficient in region p is

significant, i.e., p-value(θ̂p,p′) ≤ α0

P (P−1)/2+
∑P

p=1 Vp
for at least one p′ ̸= p or p-value(β̂p,v) ≤

α0

P (P−1)/2+
∑P

p=1 Vp
for at least one v ∈ {1, .., Vp}. The Regional Bonferroni for objects

jointly identifies pth region as influential if p-value(θ̂p,p′) ≤ α0

(P−1)+Vp
for at least one

p′ ∈ {1, ..., P} or p-value(β̂p,v) ≤ α0

(P−1)+Vp
for at least one v ∈ {1, .., Vp}.

The second group of frequentist competitors are based on the mass univariate analysis

(MUA) approach that controls the False Discovery Rate (FDR) (Genovese et al., 2002).

Global and Regional MUA on the network and structural objects separately. The

global implementation of MUA on the Network Matrix proceeds by ordering p-values corre-

sponding to the P (P − 1)/2 edge coefficients, denoted by p-value(1), ..., p-value(P (P−1)
2 ). We

consider p-value(i∗) to be the threshold where i∗ ∈ {1, .., P (P−1)
2

} is the largest index such

that p-value(i) ≤ i
P (P−1)

2

α0. A region p is considered influential if p-value(θ̂p,p′) ≤ p-value(i∗)

for at least one p′ ̸= p. This approach is referred to as the Global MUA approach for

the network object only. The Regional MUA for only the network object focuses on p-
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values for coefficients of edges attached to a node/region. Let p-valuep,(1), ..., p-valuep,(P−1)

be the ordering of such p-values for region p and i∗p be the largest index in region p such

that p-valuep,(i∗p) ≤ i∗p
P−1

α0. Regional MUA of the network object selects a region p if

p-value(θ̂p,p′) ≤ max(p-value(i∗p), p-value(i∗p′ )
) for at least one p′ ̸= p. Global MUA and

Regional MUA for structural objects are similarly defined.

Global and Regional MUA on the network and structural objects jointly. TheGlobal

MUA on structural and network objects jointly proceeds by ordering p-value(β̂v,p) and p-

value(θ̂p,p′) for all v = 1, ..., Vp, 1 ≤ p < p′ ≤ P in ascending order. Let p-value(1), ...,

p-value(P (P−1)
2

+
∑P

p=1 Vp) be the ordered p-values and let i∗ be the largest index such that

p-value(i∗) ≤ i∗α0
P (P−1)

2
+
∑P

p=1 Vp
. A region p is identified as influential if p-value(θ̂p,p′) ≤

p-value(i∗) for at least one p′ ̸= p, or p-value(β̂v,p) ≤ p-value(i∗) for at least one v ∈

{1, ..., Vp}. To implement Regional MUA jointly for both objects, the p-values corre-

sponding to all cell coefficients for the pth region and edge coefficients connecting to the

pth node/region are ordered in an ascending manner, p-valuep,(1) ≤ . . . ≤ p-valuep,(P−1+Vp).

Let i∗p be the largest index such that p-valuep,(i∗p) ≤ i∗pα0

P−1+Vp
. The region p is consid-

ered influential if p-value(θ̂p,p′) ≤ max(p-value(i∗p), p-value(i∗p′ )
) for at least one p′ ̸= p, or

p-value(β̂v,p) ≤ p-value(i∗p) for at least one cell v ∈ {1, ..., Vp} in the pth region.

5.2.2 Bayesian competitors

We implement two Bayesian competitors, both capturing joint effects of all network edges

and cells of the structural images on the predictor, but do not acknowledge the connection

between the two sets of objects. The first Bayesian competitor, referred to as the Spike &

Slab, applies an ordinary spike & slab prior (George and McCulloch, 1993) on each θp,p′

and βv,p. A voxel or an edge will be identified as influential if the posterior probability of

corresponding coefficient equals to zero exceeds 0.5 (Barbieri and Berger, 2004). To assess
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joint modeling of objects vs. modeling them individually, we fit only the network on scalar

regression (i.e., the first equation in (3)), or the structural images on scalar regression (i.e.,

the second equation in (3), or both of them jointly. For the network on scalar regression

Spike & Slab competitor identifies a region to be influential if at least an edge connecting to

that region is influential. Spike & Slab competitor for structural images on scalar regression

identifies a region as influential if it has at least one influential voxel in that region. When

both objects are used jointly, Spike & Slab identifies an influential region by observing if

any voxel in that region or any edge connected to that region is influential.

Our second Bayesian competitor applies a Horseshoe shrinkage prior (Carvalho et al.,

2010) on each θp,p′ and βv,p. Since the Horseshoe prior does not result in exact zeros for the

iterates of coefficients, we perform a post-processing approach (Guha and Rodriguez, 2021)

to determine which voxel coefficients and network edges are related to the predictor. We

identify influential regions using these estimates either on both sets of objects separately,

or jointly, following the similar strategy outlined in the Spike & Slab competitor.

5.2.3 Metrics of comparison

We will present True Positive Rate (TPR) and True Negative Rate (TNR) for correctly

identifying important regions, corresponding to all simulation cases. Since there is a natural

trade-off between TPR and TNR, we will present a single measure F1 score to balance the

performance between true positives and true negatives for all competitors.

The point estimation of every competitor is assessed using mean squared errors (MSE)

of estimating the network coefficient Θt and the structural coefficients β1,t, ...,βP,t. The

MSE for network and structural coefficients are given by 2
∑

p<p′(θp,p′,t − θ̂p,p′)
2/P (P − 1)

and
∑P

p=1 ||βp,t − β̂p||2/V P , respectively, where θ̂p,p′ is the point estimate of θp,p′ , and β̂p

represents the point estimate of βp. MSE for both sets of coefficients jointly is given by
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[
∑

p<p′(θp,p′,t − θ̂p,p′)
2 +

∑P
p=1 ||βp,t − β̂p||2]/(P (P − 1)/2 + V P ). The point estimates are

taken to be the posterior median for the Bayesian competitors. For Bayesian competitors,

we evaluate the length and coverage of 95% credible intervals averaged across coefficients

in Θ and present them for all cases. Similar quantities for βp’s are also presented.

5.3 Results

The Table 1 shows the results for different competitors in terms of influential region identi-

fication. All frequentist competitors identify influential nodes using a two-stage approach.

Hence, their performances are evaluated applying the second stage on the structural and

network objects jointly or separately, as described in Section 5.2. Bayesian competitors

Horseshoe and Spike & Slab are fitted on structural and network objects separately as well

as jointly. Hence TPR and TNR for these methods are recorded when they are applied

on individual objects or they are applied jointly. In contrast, identification of influential

regions is obtained as part of the inference from BMRR. Hence, we just show the TPR

and TNR results for BMRR under the “joint object” column in Table 1. A few interesting

patterns emerge from the table. First, both Regional MUA and Regional Bonferroni per-

form considerably better than Global MUA and Global bonferroni, respectively, in terms of

TPR. In contrast, the global implementations of these methods perform marginally better

than regional implementation in terms of TNR. This is due to the fact that the global

implementations are more conservative than the corresponding regional implementations.

Second, all frequentist and Bayesian competitors show significantly better TPR when they

consider both objects jointly as opposed to inferring on them separately. No significant

differences are found for TNR in this aspect. Third, the simulation cases under the smaller

dimensional example show significantly better performance for all competitors than the
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higher dimensional examples. Fourth, Horseshoe prior applied on joint modeling of objects

yield significantly better results in small dimensional example than applying Horseshoe

prior in the scenario where the two sets of objects are fitted separately. This also serves

as a highlighting point of modeling objects jointly to draw better inference. Finally, our

proposed approach BMRR demonstrates better TPR and TNR than Horseshoe. Spike &

Slab approach performs similar to BMRR in terms of TPR, but massively underperforms

in terms of TNR. In contrast, BMRR significantly outperforms frequentist competitors

in terms of TPR and shows marginally inferior performance to them in terms of TNR.

Since there is a trade-off between TPR and TNR performance, we show results for a com-

bining measure, F1-score, for all competitors in the supplementary file. Figure 1 in the

supplementary file demonstrates superior performance of BMRR w.r.t. its competitors.

One notable advantage of BMRR over its competitors is that it is able to provide char-

acterization of uncertainty for each region being influential by offering posterior probability

of {ξp = 1}. Figure 2 shows the posterior probability of the pth region being influential for

small dimensional simulation example under two different node sparsities, with dark cells

corresponding to the regions which are truly influential. We present the plot for the large

dimensional example in Figure 2 of the supplementary file due to space constraint. The

results suggest that the posterior probability of a region being influential is close to 1 or 0

if the region is truly influential and un-influential, respectively.

In terms of estimating the regression coefficients, Figure 3 shows significantly better

performance by BMRR over its competitors. The significant improvement of point es-

timation by BMRR demonstrates the importance of exploiting multi-object topology to

offer better point estimation when sample size is limited. We also observe 95% confi-

dence/credible intervals from BMRR attend close to the nominal level in all simulations,
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Table 1: True Positive Rate (TPR) and True Negative Rate (TNR) for competing methods

under smaller dimensional and high dimensional examples. Both smaller and higher di-

mensional examples include two different node sparsity levels. We compute TPR and TNR

separately for grey matter and network matrix, as well as for them together, as explained

in Section 5.2. The best performing method in each simulation case is boldfaced.

Sparsity 85% Sparsity 70%

TPR TNR TPR TNR

Method Grey Network Joint Grey Network Joint Grey Network Joint Grey Network Joint

Matter Matrix Objects Matter Matrix Objects Matter Matrix Objects Matter Matrix Objects

High dimensional example

Global Bonferroni 0.0947 0.1580 0.1633 0.9985 0.9920 0.9951 0.2443 0.3757 0.3920 0.9950 0.9940 0.9960

Regional Bonferroni 0.3667 0.4167 0.5180 0.9359 0.9528 0.9411 0.6743 0.7523 0.8430 0.9389 0.9610 0.9533

Global MUA 0.1313 0.1973 0.2213 0.9693 0.9547 0.9564 0.4030 0.5420 0.6777 0.9557 0.9493 0.9419

Regional MUA 0.3700 0.4447 0.5413 0.9355 0.9355 0.9274 0.6913 0.7810 0.8737 0.9373 0.9440 0.9400

Horseshoe 0.5320 0.7400 0.6960 0.7701 0.6956 0.7981 0.7170 0.8613 0.8593 0.8177 0.7249 0.9153

BMRR – – 0.6967 – – 0.8666 – – 0.9703 – – 0.9460

Spike and Slab 0.3040 0.4007 0.5120 0.8866 0.8576 0.8524 0.7267 0.8323 0.9527 0.7727 0.7041 0.6161

Small dimensional example

Global Bonferroni 0.1339 0.1853 0.1965 0.9990 0.9988 0.9991 0.2517 0.3484 0.3468 0.9991 0.9989 0.9994

Regional Bonferroni 0.8637 0.8393 0.9352 0.9244 0.9452 0.9345 0.9788 0.9759 0.9949 0.9258 0.9362 0.9261

Global MUA 0.4496 0.4285 0.6400 0.9667 0.9814 0.9648 0.9847 0.9787 0.9997 0.8875 0.9082 0.8186

Regional MUA 0.8997 0.8781 0.9663 0.9216 0.9276 0.9244 0.9935 0.9917 0.9995 0.9238 0.9241 0.9184

Horseshoe 0.9947 0.9875 0.9852 0.3739 0.5598 0.9187 1.0000 1.0000 1.0000 0.2855 0.3577 0.7693

BMRR – – 0.9997 – – 0.9454 – – 1.0000 – – 0.9996

Spike and Slab 0.9996 0.9960 0.9997 0.0769 0.3616 0.0020 1.0000 1.0000 1.0000 0.0285 0.0960 0.0020
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Figure 2: The figure presents posterior probability of each region being influential under the

two simulation cases in smaller dimensional example. Each row corresponds to a simulation

case. Dark cells corresponds to the truly influential regions in each row.
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see Figure 4. Regional MUA also enjoys close to nominal coverage. While Horseshoe fitted

with both objects jointly yields coverage similar to its competitors, severe under-coverage

is observed when Horseshoe is applied on structural and network objects separately. Im-

portantly, BMRR shows similar coverage with much narrower credible intervals than its

competitors, as demonstrated in Figure 5. The 95% CIs estimated from Regional MUA

are much wider than both its competitors, which is explained by the fact that it estimates

every cell of the structural and network coefficient independently of each other.

6 Application to the multi-modal PPA data

6.1 Data structure and methods

In our motivating study, sMRI GM, resting state fMRI connectivity images, and speech

rates (described in Section 2) were collected at the University of California, San Francisco

Memory and Aging Center on 24 subjects with nfvPPA (10 males and 14 females) aged

between 57 and 81 years (68.9 years old on average). sMRI GM maps were preprocessed as

in Canu et al. (2020). For the fMRI network images, the first five volumes of the acquisi-

tion were discarded to allow T1 equilibrium to be established. The remaining volumes were
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Figure 3: MSE for the Horseshoe, the selected MUA approach and BMRR for different

simulation scenarios. Here “Big” and “Small” refer to high-dimensional and smaller di-

mensional examples. The top and bottom row correspond to the true sparsity level of 85%

and 70%, respectively.
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slice-time corrected, realigned to the mean functional image, and assessed for rotational

and translational head motion. The functional volumes were then linearly registered to

an Echo Planar Imaging (EPI) template created from the mean functional images of the

participants enrolled in this study. The EPI template was normalized to the MNI space

using a combination of linear and non-linear warping, and the transformations were subse-

quently applied to the task-free fMRI data. These volumes were spatially smoothed with

a 5 mm full width at half maximum (FWHM) Gaussian kernel. CSF and white matter

(WM) tissue probability maps were then used to compute the mean time-series used as

regressors. Functional data were then bandpass filtered (0.008 Hz < f < 0.15 Hz), and the

nuisance variables were regressed out from the data.We adjust our analysis for biological

sex, age, and cognitive function measured via the mini-mental state examination (MMSE)

scale as a measure of dementia severity as in Garćıa et al. (2022).
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Figure 4: Coverage of 95% confidence/credible intervals for the selected MUA approach and

BMRR for different simulation scenarios. Here “Big” and “Small” refer to high-dimensional

and smaller dimensional examples. The top and bottom row correspond to the true sparsity

level of 85% and 70%, respectively.
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The fMRI network connectivity images and sMRI Grey Matter images were centered in

such a way that the average across subjects for each transformed Z-score and grey matter

probability is 0. The biological sex indicator is encoded as 1 for male and 0 for female. The

MMSE is centered. Finally the speech rate variable has been normalized. Since simulation

experiments demonstrate Regional MUA and Horseshoe as the two best performing com-

petitors, we compare the results from the application of the proposed BMRR to the MUA

with regional correction (Regional MUA) and Horseshoe.

6.2 Data analysis results

We present the results from our application of the proposed BMRR to the multi-modal

PPA imaging data. In total, 35 ROIs out of 245 ROIs have a posterior probability P (ξp =

1|Data) > 0.5 of being associated with speech rate in the multi-modal data. The set of
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Figure 5: Length of 95% confidence/credible intervals for the selected MUA approach and

BMRR for different simulation scenarios. Here “Big” and “Small” refer to high-dimensional

and smaller dimensional examples. The top and bottom row correspond to the true sparsity

level of 85% and 70%, respectively.
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influential ROIs and their posterior probability of being influential (which is a measure of

uncertainty) are recorded in Table 2. In general, the ROIs lie in areas of the brain previously

associated with language, motor speech, and neurodegeneration in PPA, specifically the

frontal lobe including the superior frontal gyrus (SFG) (Landin-Romero et al., 2021), the

middle frontal gyrus (MFG) (Landin-Romero et al., 2021), the inferior frontal gyrus (IFG)

(Garćıa et al., 2022), and the superior parietal lobe (SPL) (Alahmadi, 2021). The 35 ROIs

display a bilateral distribution which is consistent with previous findings that indicate that

articulation can be impacted by disruptions in the motor speech network in either the left

or right hemisphere of the motor speech network (Landin-Romero et al., 2021).

Figure 6 displays horizontal slices (higher z coordinate refers to top of the brain) of

the GM coefficient map organized by ROI where the colored shading indicates the mag-

nitude and direction of association of the speech rate with probability of GM. Due to the
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Table 2: Influential ROIs identified by BMRR in the PPA data analysis along with their

posterior probabilities of being influential.

ROI Prob. ROI Prob. ROI Prob. ROI Prob.

MFG L 7 1 1.000 MFG R 7 7 0.944 SFG L 7 1 0.972 IPL R 6 5 1.000

MFG R 7 1 1.000 IFG R 6 1 0.676 SFG L 7 3 0.636 PCun L 4 1 0.78

MFG L 7 3 1.000 IFG L 6 2 0.840 SFG R 7 3 0.992 PCun R 4 1 1.000

MFG R 7 3 0.972 IFG R 6 2 1.000 OrG R 6 6 1.000 PCun R 4 2 0.620

MFG L 7 4 1.000 IFG L 6 3 1.000 PrG L 6 2 0.976 PCun R 4 4 0.620

MFG L 7 5 0.836 IFG R 6 3 1.000 ITG R 7 2 0.914 CG L 7 2 0.862

MFG R 7 5 1.000 IFG L 6 4 0.850 SPL R 5 2 1.000 CG R 7 3 1.000

MFG L 7 6 1.000 IFG R 6 5 0.798 SPL R 5 3 0.870 CG R 7 5 1.000

MFG R 7 6 0.640 IFG L 6 6 0.624 SPL L 5 5 1.000

hierarchical nature of the BMRR model, the distribution of influential GM voxels (as cap-

tured by their associated coefficients) is determined by the ROI selection and thus reflects

the distribution of the selected 35 ROIs discussed above, with concentrations in the SFG,

MFG, IFG, and SPL in a bilateral distribution. Overall, speech rate is positively associ-

ated with increases in voxel level GM which affirms that a decrease in GM in regions in

the frontal gyrus (Landin-Romero et al., 2021; Garćıa et al., 2022) is correlated with lower

articulation rates. But, there is heterogeneity in the voxel level signal both within and

across ROIs with a substantial number of voxels displaying a negative association of GM

with speech rate. The effect sizes range from -0.241 to 0.200 across voxels which indicates

that a standard deviation shift in speech rate (25 words/minute) can produce a change in

GM probability from between -0.24 to 0.24. These results reveal a dynamic portrait of how

GM and neurodegeneration are associated with motor speech and highlights heterogeneity
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in the direction of the association as well as varying levels of sparsity in influential voxels.

Figure 6: Point estimates (median) of the regression coefficients for grey matter probability

for selected voxels across horizontal slices using BMRR with speech rate as outcome.
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Figure 7 displays the ROI level network coefficient maps organized by anatomical brain

region (e.g. superior frontal gyrus = SFG, see Fan et al. (2016) for full details) where the

top and bottom half of each anatomical region indicated by a horizontal dash corresponds

to the left hemisphere and right hemispheres, respectively. The colored shading indicates

the magnitude and direction of association of the speech rate with resting state functional

connectivity. It appears that the network edges associated with the speech rate are sparse

and there is almost always a positive association between functional connectivity and speech

rate. There is a high degree of bilateral functional connectivity associated with speech

rate both among and between the SFG, MFG, and IFG brain regions in the frontal lobe.

Connections extend outside the frontal lobe and higher speech rates are also associated with

higher functional connectivity between the frontal lobe and the parietal lobe which has been

indicated in higher order language processing (Coslett and Schwartz, 2018), including the
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SPL, inferior parietal lobe (IPL), and the precuneus (PCun). The effect sizes range from

-0.047 to 0.251 across network edges which indicates that a standard deviation shift in

speech rate can produce a change in Fisher Z-transformed correlation between -0.25 to

0.25. Supplementary Figures 3-5 show the GM coefficient maps for the covariates gender,

age, and cognitive decline, and Figures 6-8 show the same for network coefficient maps.

Interpretation of these maps is also available in Section 2.2 of the supplementary file.

Figure 7: Point estimates (median) of the regression coefficients for Network Matrix using

BMRR. Each cell displays the ROI level network coefficient maps organized by anatomical

brain region where the top and bottom half of each anatomical region indicated by a

horizontal dash corresponds to the left hemisphere and right hemispheres, respectively.
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While comparing BMRR with regional MUA, Figures 9 and 10 in the supplementary

file show that very few GM voxels and Network edges are selected by regional MUA. This
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Table 3: Posterior Predictive Loss Criterion (PPLC) for BMRR and Horseshoe.

Method G P PPLC

BMRR 1557.506 35104.18 36661.686

Horseshoe 1796.926 35102.32 36899.246

is expected as we observed in simulations that regional MUA tends to have a lower TPR in

contrast to BMMR. We also contrast BMRR with the horseshoe implementation in terms

of the Posterior Predictive Loss Criterion (PPLC) (Gelfand and Ghosh, 1998) that shows

better fit by BMRR (see Table 3). Overall, BMRR develops novel insight on the neuro-

degeneration pathway for PPA and outperforms competitors due to accounting for science

driven constraints in the prior structure for coefficients.

7 Conclusion and Future Work

This article develops a regression approach with structural and network-valued objects on a

scalar predictor. A novel prior structure is developed jointly on coefficients corresponding

to different object responses which can exploit linked topology of these objects to draw

inference on network nodes significantly related to the scalar predictor with uncertainty.

The proposed approach is arguably the first statistical multi-modal response regression

approach that allows for flexibility of drawing inference at the ROI-level and at the voxel-

level simultaneously, and equipped with identifying brain regions significantly related to

speech rate measuring neuro-degeneration due to PPA with uncertainty. The analysis of

PPA data leads to important understanding of neuro-degeneration pathway for PPA.

As an immediate future work, we will extend our approach to incorporate the spatial

correlation in the GM image. We also plan to capture more complex non-linear dependence
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between nodes in the network object and cells in the structural objects while identifying

their join relationship with the speech rate in our upcoming articles.

8 Acknowledgement
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