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 ABSTRACT 

 

Site-specific treatment of weeds in agricultural landscapes has been gaining importance in recent 

years due to economic savings and minimal impact on the environment. Weed detection and 

recognition is a major component of any site-specific treatment method. Different crop-weed 

complexities and weed control objectives may require the strategic implementation of various 

weed recognition approaches. This research aims at evaluating various weed detection and 

mapping approaches in different crops including cotton, corn, soybean, and wheat using 

remotely sensed digital RGB imageries. The first experiment was conducted in mid-season 

cotton infested with early-mid growth stage weeds to evaluate crop row detection methods for 

weed mapping and density estimation. The second experiment was conducted in wheat to 

evaluate the pixel-based detection approach for detecting Italian ryegrass and developing grid 

maps for competitive interactions. The third experiment was conducted to test the cross-crop 

species applicability of a convolutional neural networks (CNN)-based weed detection model 

trained for cotton over other row crops such as corn and soybean. The fourth experiment was 

conducted to explore various image synthesis techniques for training deep learning models to 

detect weeds in cotton. The first experiment revealed that the crop row detection approach can 

provide high accuracy levels for weed mapping and weed-density estimation. The second 

experiment showed that grass weeds such as Italian ryegrass can be effectively classified from 

wheat and competitive effects of ryegrass on wheat can be predicted early with reasonably high 

accuracy using the pixel-based machine learning approach. The third experiment indicated that a 

deep learning-based weed detection model trained for cotton can be used for soybean with more 

confidence compared to corn. The final experiment revealed that synthetic images can provide 
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comparable accuracy to real images for training weed detection models. In addition, the 

experiment showed that above-ground biomass of broadleaved weeds may be better predicted 

than grass using canopy mask results. Overall, these findings improve sensor-based weed 

detection, which is expected to advance precision weed management. 
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1. INTRODUCTION  

1.1. Background 

Weeds impact crop productivity and pose a serious threat to sustainable crop production 

(Hall et al., 1992; Oerke, 2005). Weed management is, therefore, a crucial but challenging 

agronomic intervention. Under current standard weed management interventions, broadcast 

herbicide applications are made periodically to control the weed emergence in the fields. Often, 

farms managed with standard herbicide plans may not bear heavy weed infestation following 

pre-emergence applications. Such managed farms may have a sporadic and more likely sparse 

distribution of weeds in the field. The broadcast application of herbicides under such situations 

may not be wise owing to two main reasons, a) unnecessary application can lead to increased 

herbicide costs b) excessive application can lead to environmental impacts (Christensen et al., 

2009). 

A site-specific weed management (SSWM) concept, which considers the spatio-temporal 

variabilities in weed species establishment and growth, can facilitate effective and economical 

weed management in such situations (Aracena, 2013; van Evert et al., 2017). The cost savings 

using the SSWM concept has been reported to be anywhere ranging from US$96.24 ha-1  to 

$104.76 ha-1 in soybean fields (Medlin and Shaw, 2000).  However, this concept premises on 

precise detection and/or mapping of different weed species infesting crop fields. The progress 

made over the SSWM concept has remained optimistic so far. In general, SSWM is practiced 

under two approaches, a) real-time and b) post-mapping. In the real-time approach, robo-

machines (e.g. Lottes et al., 2018; van Evert et al., 2011)  are designed and programmed to scout 

for weeds in the field and apply control methods simultaneously. This approach is quicker 

because detection and control of weeds occur at the same time. However, this approach may not 



 

2 

be suitable when weeds are present at high density and/or at higher growth stages. The post-

mapping approach (e.g. Castaldi et al., 2016; Lopez-Granados et al., 2015)  on contrary is 

completed in two major steps, a) image acquisition and analysis to produce weed grid maps and 

b) weed control applications using weed grid maps. This approach is more suitable for weed 

control when high weed densities are found and management of such weed populations is 

possible with treatment zones.  

 Remote sensing is an integral part of post-mapping operations. Remote sensing is the 

process of characterizing a physical area by measuring the reflected and emitted radiation at a 

distance, generally from satellites or aircraft (Jensen, 2005). Remote sensing has been 

successfully used for weed infestation assessments across large areas (Lamb and Brown, 2001; 

Everitt et al., 2007; Lopez-Granados et al., 2015). Various satellites with unique sensor 

capabilities have been deployed to date to acquire a wide array of remote sensing images. 

However, at times, the spatial resolution of satellite images may be deemed inadequate for 

various agricultural applications including weed detection and mapping. As crops are typically 

small in size, very high spatial resolution images are required for canopy-level assessments. 

Recent advancements in Unmanned Aerial Systems (UAS) technologies have opened up new 

opportunities for acquiring high spatial resolution images at desired temporal resolutions (Shi et 

al., 2016). UAS technology has been successfully used for various agricultural applications, 

including soil and land mapping (Akar, 2017), drought stress monitoring (Ludovisi et al., 2017), 

crop disease detection (Mirik et al., 2011; Sugiura et al., 2016), and in-season yield estimation 

(Swain et al., 2010).  

Weed detection and/or mapping using image processing and analysis techniques is a 

major component of these two approaches. Because their mode of operations in the field is 
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different, the image analysis techniques, however, must be tailored differently to obtain a 

domain-suitable end product. For example, in real-time operations, the digital images are 

analyzed to detect individual weeds, localize the positions, and acquire local coordinates for 

treating weeds with control systems while in post-mapping operations, images are analyzed to 

detect weeds at the individual level or map weeds across the regions to create prescription or 

treatment maps. In post-mapping, images can be analyzed to produce pixel-level or individual-

plant-level information regarding the location and distribution of weeds throughout the field 

(Lopez-Granados et al., 2015). Such information can guide farmers in assessing weed-infested 

areas and developing management grids for site-specific treatments. For example, Castaldi et al. 

(2016) analyzed digital images to produce weed coverage maps in maize (Zea mays L.), which 

was further transformed into 2 m × 2 m grids. These grids were then classified into weed-free 

and weed-infested zones based on weed threshold and subsequently utilized for site-specific 

weed management. In addition, knowledge of weed distributions and densities across the field is 

beneficial for tailoring herbicide applications to weed spatial distribution in the field (Goudy et 

al., 2001).  

The image analysis for weed detection in these approaches is performed using a series of 

computer vision and machine learning operations. Computer vision is the process of acquiring, 

processing, analyzing, and understanding digital images using computers (Klette, 2014). This 

technique enables a powerful extraction of useful information from digital images for further 

intelligence analysis. Machine learning is a computational method that involves recognizing the 

pattern in the data/information to make accurate predictions about the pattern in unseen data 

(Mohri et al., 2018). This method draws classification rules by iteratively minimizing the errors 

based on the user-fed training data. The rigorous iterative learning process thus leads to reliable 
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and repeatable decisions and results. In general, image analysis starts with the computer vision 

operations that generate a set of features for objects of interest followed by machine learning 

operations that utilize these features to learn the patterns.  

Various computer vision and machine learning methods have been employed for SSWM 

purposes. Combining the object-based image analysis (OBIA) with random forest-based 

prediction, De Castro et al. (2018) analyzed UAV images and their derivatives to map weeds in 

cotton and sunflower fields. Chessboard segmentation was applied to the canopy height model to 

derive object height information, which was later fused with spectral features for classifying the 

segmented objects into weeds and non-weeds. Gao et al. (2018) fused row-detection algorithm 

results with OBIA-derived features to map weeds in maize fields using a random forest 

classifier. The Hough transformation algorithm was applied to detect cotton rows, which was 

then utilized for object segmentation and classification using machine learning algorithms. 

Gašparović et al. (2020) utilized a fusion of random forest-based supervised and K-means 

algorithm-based unsupervised classification methods to map oat (Avena sativa L.) using a low-

cost UAV-borne RGB image.  

In recent years, deep neural networks (DNNs) are increasingly used for several image 

localization and classification tasks. Among the different variants of DNNs, convolution neural 

networks (CNNs) have gained popularity for weed detection and classification due to their 

higher precision and accuracy. CNNs are the advanced form of neural networks that extract 

different hierarchies of information from the images and predict the location and extent of the 

target objects based on the extracted information (Chen et al., 2018). Although recently several 

studies have implemented CNNs for the detection and classification of weeds (Gao et al., 2020; 

Lottes et al., 2018; Sa et al., 2018), there is a great need for investigation into harnessing the 
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potential of CNNs for various crop-weed conditions. One of the areas that require great research 

is the applicability of the crop-specific weed detection model over other crops. This is 

particularly important as it’s often expensive to train CNN models for weed detection due to 

large data requirements. Despite their promise, CNN models are data-hungry and prone to over-

fitting if enough training data is not fed. In many cases, training data preparation and training 

process for these models is time-consuming and labor-intensive. Due to these reasons, it would 

be helpful to assess if synthetic images can be used in training these data-hungry models. This 

approach has already been embraced for various object detection and segmentation tasks, 

including weed detection (Gao et al., 2020; Hu et al., 202). 

Studies have shown that the SSWM concept has great promise and prospects in 

agriculture (Medlin and Shaw, 2000; Pérez-Ruíz, 2005). Moreover, this technique is expected to 

ameliorate the herbicide resistance problem by cutting off the excessive usage of herbicide. 

However, the rate of adoption of this technique by farmers is not satisfactory (Lati et al., 2021). 

There are two major reasons why these technologies still lack widespread adoption. First, the 

technological and establishment cost exceeds the marginal benefits of the farmer. Initial 

purchasing and maintenance costs of robo-machines are extremely high. For example, Dino, a 

robot developed by a French AgTech startup costs a farmer about $220,000. The Post-mapping 

approach can also be very expensive because it involves multiple equipment and skillsets in the 

process. The second major reason is the inconsistency in the performance of these machines that 

causes insecurity in farmers for the investment. Part of the reason for performance inconsistency 

could be poor weed recognition techniques as weed recognition in complex agricultural 

background scenes can be difficult. Although considerable efforts have been placed since the 

early ’90s, recognition systems still lack precision and accuracy. More research is needed to 
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improve the existing recognition systems and increase the diversity of techniques to combat 

unique weed detection problems. This dissertation customizes and evaluates various weed 

detection and mapping strategies pertaining to different crop-weed situations.  

 

1.2. Objectives 

1. Evaluate crop row detection approach for weed mapping across various density gradients in 

cotton using UAV-borne RGB images 

2. Evaluate pixel-based machine learning approach and UAV-borne RGB images for detecting 

Italian ryegrass in wheat and predicting competitive interactions  

3. Evaluate cross-crop species applicability of a crop-specific weed detection model over other 

row crops 

4. Explore various synthetic image generation procedures for training a deep learning model for 

weed detection in row crops  

 

 

 



*Sapkota B, Singh V, Cope D, Valasek J, Bagavathiannan M. Mapping and Estimating Weeds in Cotton Using Unmanned Aerial 

Systems-Borne Imagery. AgriEngineering. 2020; 2(2):350-366. https://doi.org/10.3390/agriengineering2020024 
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2. MAPPING AND ESTIMATING WEEDS IN COTTON USING UNMANNED AERIAL 

SYSTEMS-BORNE IMAGERY* 

2.1. Abstract 

In recent years, Unmanned Aerial Systems (UAS) have emerged as an innovative technology to 

provide spatio-temporal information about weed species in crop fields. Such information is a 

critical input for any site-specific weed management program. A multi-rotor UAS (Phantom 4) 

equipped with an RGB sensor was used to collect imagery in three bands (Red, Green, and Blue; 

0.8 cm/pixel resolution) with the objectives of (a) mapping weeds in cotton and (b) determining 

the relationship between image-based weed coverage and ground-based weed densities. For 

weed mapping, three different weed density levels (high, medium, and low) were established for 

a mix of different weed species, with three replications. To determine weed densities through 

ground truthing, five quadrats (1 m × 1 m) were laid out in each plot. The aerial imageries were 

preprocessed and subjected to Hough transformation to delineate cotton rows. Following the 

separation of inter-row vegetation from crop rows, a multi-level classification coupled with 

machine learning algorithms were used to distinguish intra-row weeds from cotton. Overall, 

accuracy levels of 89.16%, 85.83%, and 83.33% and kappa values of 0.84, 0.79, and 0.75 were 

achieved for detecting weed occurrence in high, medium, and low density plots, respectively. 

Further, ground-truthing based overall weed density values were fairly correlated (r2 = 0.80) with 

image-based weed coverage assessments. Among the specific weed species evaluated, Palmer 

amaranth (Amaranthus palmeri S. Watson) showed the highest correlation (r2 = 0.91) followed 

by red sprangletop (Leptochloa mucronata Michx) (r2 = 0.88). The results highlight the utility of 

UAS-borne RGB imagery for weed mapping and density estimation in cotton for precision weed 

management. 

https://doi.org/10.3390/agriengineering2020024
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2.2. Introduction 

 Weeds are the major pests of agricultural crops and a serious challenge to sustainable crop 

production (Hall et al., 1992; Oerke et al., 2005). A site-specific approach, which takes into 

account the spatio-temporal variabilities in weed species establishment and growth, can facilitate 

effective and economical weed management (Aracena et al., 2013; Van Evert et al., 2017). 

However, such an approach requires precise determination of different weed species infesting crop 

fields and their densities. Currently, weed infestation assessments are carried out by managers 

typically through manual weed scouting, which is often inefficient and inaccurate particularly in 

large production fields. Remote sensing has long been investigated as an alternative approach for 

weed infestation assessments across large areas (Everitt et al., 2006; Lamb et al., 2005; Lopez-

Granados et al., 2015). Images acquired with remote sensing platforms can be analyzed to produce 

pixel-level or individual-plant-level information regarding the location and distribution of weeds 

throughout the field (Lopez-Granados et al., 2015). Such information can guide farmers in 

assessing weed infested areas and developing management grids for site-specific treatment. For 

example, Castaldi et al. (2016) analyzed digital imageries to produce coverage maps for weeds in 

maize (Zea mays L.), which were further transformed into 2 m × 2 m grids. These grids were 

classified into weed-free and weed-infested zones based on weed threshold and subsequently 

utilized for site-specific weed management. Moreover, knowledge of weed distributions and 

densities across the field is beneficial for tailoring herbicide applications to weed spatial dynamics 

in the field (Goudy et al., 2001). 
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 Mapping weeds at early phenological growth stages requires higher spatial resolution 

imagery (Borra-Serrano et al., 2015; Lopez-Granados et al., 2015), although Borra-Serrano et al. 

(2015) found that as coarse as 5 cm of spatial resolution may provide satisfactory results. 

Traditional remote sensing platforms such as satellite imageries generally do not meet the spatial 

resolution standards required for weed detection, and also have limited capability to provide real-

time data. Nonetheless, they have been used to map patches of weed species at field scale (Castro 

et al, 2013; De Castillejo-González et al., 2014). Recent advancements in Unmanned Aerial 

Systems (UAS) technologies have opened up new opportunities for acquiring high spatial 

resolution imagery at desired temporal resolutions (Shi et al., 2016; Singh et al., 2020) and have 

been successfully used in various agricultural research areas, including soil and land mapping 

(Akar, 2017), drought stress monitoring (Hoffman et al., 2016; Ludovisi et al., 2017) crop 

disease detection (Mirik et al., 2011; Suguira et al., 2016) and in-season yield estimation (Swain 

et al., 2010). The opportunities have expanded with the ability to extract 3D point-clouds from 

the UAS-based high resolution imagery, which have been extensively used in various 

agricultural and forestry studies (Comba et al., 2019; Mesas-carrascosa et al., 2020; Torres-

Sanchez et al., 2018; Zermas et al., 2020). 3D point clouds can be analyzed to generate canopy 

height models and other 3D canopy metrics, which can be used as a supplement to spectral 

information. However, extraction of 3D information and processing of these metrics may be 

computationally complex and expensive. Over the years, with the increased ability to acquire 

imageries at sub-cm resolutions using UAS, several studies have experimented on the use of 

high-resolution imageries for weed mapping and classification (Castillejo-González et al., 2014; 

De Castro et al., 2018; Lopez-Granados et al., 2015; Louargant et al., 2018; Mink et al., 2018; 

Peña-Barragan et al., 2013; Rasmussen et al., 2013; Shi et al., 2016;). However, there is still a 
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lack of classification models to serve the unique needs of the farmer; thus, there is a strong need 

for developing case-specific classification models by further experimenting on different image 

analysis approaches. 

With the rapid improvement in sensors, it has become possible to generate multi-band 

information, including thermal signatures, using UAS technology. These improvements have 

been adapted successfully in various agricultural applications, including weed detection and 

mapping. Due to the high ability of non-visible bands in discriminating plant species, several 

studies have used multispectral imagery (Lopez-Granados et al., 2015; Sa et al., 2018) and 

hyperspectral imagery (Atkinson et al., 2013; Gao et al., 2018; Mirik et al., 2013) for identifying 

and classifying weeds in crop fields and forest areas. The utility of thermal bands in plant stress 

detection (Calderon et al., 2015; Sankaran et al., 2013) has paved the way for using thermal 

imagery in weed detection and mapping. However, these improved sensors are costly, and 

computation and processing of the data acquired from such sensors can be resource intensive. In 

many circumstances, these sensors may not prove to be a better option than the relatively cheap 

and computationally simple visible bands such as red, green, and blue bands (i.e., RGB bands) 

(Lopez-Granados et al., 2015). Visible bands have long been utilized for various agricultural 

applications and have a great potential for use in weed species detection and differentiation 

(Borra-Serrano et al., 2015; Gao et al., 2018; Huang et al., 2018). For example, more recently, 

Lottes et al. (2017) classified weed species and sugarbeet using UAS-based RBG imagery, with 

an accuracy of 85% and 90%, respectively. Gao et al. (2018) detected weed species in maize 

using UAS-derived RGB imagery and developed highly accurate predictive models for weed 

density estimation. The accuracy of the weed detection process largely depends upon the model 

and training features used for the user-defined classes, in addition to spectral and spatial 
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resolution of the imageries. One of the most popular approaches utilized for image analysis is 

pixel-based approach. The traditional pixel-based approach involves the computational analysis 

at a pixel level and relies heavily upon spectral features, disregarding the potential for textural 

and spatial features to improve model accuracies (Blaschke et al., 2010). However, the recent 

evolution of convolutional neural networks (CNNs), that take into account the spectral, textural 

and spatial features of images, allow for improved classification accuracies. 

 CNN-based studies for distinguishing between weeds and crops have been increasing in 

recent times. Bah et al. (2018) used CNNs for detecting both intra- and inter-row weeds in 

spinach (Spinacia oleracea L.), beans (Phaseolus vulgaris L.), and beet (Beta vulgaris L.) in 

UAS-derived RGB images and achieved overall accuracies of 81%, 69%, and 93%, respectively. 

Using multispectral images, Sa et al. (2018) developed a CNN-based model to segment crops 

and weeds from the soil background and achieved an overall accuracy of 82%. Several other 

studies have validated the effectiveness of CNN-based models; however, these models are data 

intensive and highly suffer from data inadequacy. For some cases, especially when dealing with 

binary problems such as the presence or absence of a weed, CNNs may not be necessary. 

Instead, adequate image analysis can be carried out using much simpler methods such as the 

object-based image analysis (OBIA) (Blaschke et al., 2010). 

 The OBIA allows for the generation of large number of image objects, which can be 

further classified into user-defined classes (Sapkota and Liang, 2017; Sapkota & Liang, 2020). 

This approach was shown to be effective in mapping weeds in maize (Pena-Barragan et al., 

2013) and sunflower (Helianthus annuus L.) (De Castro et al., 2018) when information such as 

crop row boundaries were fused with other set of features generated using OBIA. Such combined 

information would help segment inter-row weeds easily and minimize the misclassification 
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instances during the classification process. However, the effectiveness of the fusion approach 

could differ with variable weed densities, which may lead to fuzzy boundaries between crop 

rows and proximal weeds. Furthermore, the false crop boundary delineation could result in 

classification errors as any vegetation pixels outside of the crop row is considered a weed, which 

may not be the case when crop leaves extend outside of the row. 

 It is important to investigate the effectiveness of the above-mentioned approach by 

testing it on areas with varying weed densities. Moreover, it is equally important to develop a 

post-classification model to refine the classification and minimize errors due to false crop row 

detection. In this study, an improved methodology that addresses these issues has been tested and 

demonstrated in cotton (Gossypium hirsutum L.), which is an important crop in Texas and parts 

of the Southern United States (US). The specific objectives of this study are to (1) test the 

effectiveness of the improved fusion method (OBIA and crop row detection) to map various 

densities of weed infestation in a cotton field using high resolution UAS-based RGB imagery, 

and (2) determine the relationship between weed pixel coverage and ground-based weed 

densities. 

 

 

2.3. Materials and Methods 

2.3.1. Study Site and Establishment 

The study was conducted at the Texas A&M AgriLife Research farm near College 

Station, TX, US (30°32′15.75″ N, 96°25′19.50″ W; elevation: 68 m) (Figure 2.1). The cotton 

crop was drill seeded in 1-m wide rows on 1 June 2017. Palmer amaranth (Amaranthus palmeri 

S. Watson) and red sprangletop (Leptochloa mucronata Michx) seed were broadcast planted with 

three different densities (low, medium, and high) (see Table 2.1) in 10 × 10 m plots within a 0.6 
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ha of field. Palmer amaranth is an annual plant native to the arid southwestern U.S. and 

northwestern Mexico and is one of the most problematic weeds in row crop production in the 

U.S. due to evolution of multiple herbicide resistance in this species [43]. Red sprangletop is an 

annual grass weed, widespread in the southern U.S. cultivated lands. Other weed species present 

in the experimental area, though in low frequencies, include morningglories (Ipomoea spp.), 

Texas millet (Urochloa texana Buckl.), and devil’s claw (Proboscidea louisianica (Mill.) Thell.). 

Morningglory is a broadleaved, annual plant species with fast growth rates. Texas millet is an 

annual grass weed native to the southern U.S. and is a troublesome weed in row crops. Devil’s 

claw is an annual broadleaved weed that is commonly found across the sandy, arid areas of west 

and south Texas. The study had three replications and were arranged in a randomized complete 

block design. The steps followed in image acquisition and weed mapping are summarized in the 

flowchart (Figure 2.2). 

2.3.2. Data Collection 

Multiple flights were conducted over the experimental area from May to July 2017; 

however, only the image acquired on 28 June 2017 was used for analysis in the current study due 

to high image quality in an early to mid-crop growth stage. The multi-rotor UAS Phantom 4 

(DJI, China) equipped with a 12 MP on-board camera was used for capturing images in three 

bands (Red, Green, and Blue). Six ground control points (GCPs) were laid out throughout the 

study area for georeferencing the imagery, and global positioning system (GPS) coordinates 

were recorded for the GCPs using EMLID-GNSS receiver (EMLID Inc., Hong Kong, China). 

Three different radiometric calibration panels (white, gray, and black) were placed on the ground 

to enable radiometric calibration of the imagery during ortho-mosaicking process. Image data 

were collected at 15 m above ground level (AGL), with the auto-exposure mode, 70% side and 



 

14 

front overlapping rates, and forward UAV speed of 3 m/s. The flight was performed in a sunny 

day with wind speed of approximately 11 km h−1. A total of 464 images (.JPG format) were 

captured during the flight mission. The .JPG format was chosen over raw image format during 

image acquisition as the flight planner used in this study only supported the earlier format. 

Moreover, Pix4D Mapper, the software used for stitching the images, could not support the raw 

image format. 

Ground truthing data on weed species density were documented at the time of flight 

operations. For each plot, five quadrats (1 m × 1 m) were laid out throughout the experimental 

area. For each quadrat, the number of individual plants per each species were counted and 

density m−2 were determined for comparing with image-based coverage area. Reflectance values 

for cotton and the weed species were recorded from the imagery to observe the spectral overlap 

(Figure 2.3) and choose the appropriate techniques for further image processing. 

2.3.3. Image Mosaicking and Radiometric Calibration 

The images were mosaicked using the Pix4D Mapper software (Pix4D Inc., Lausanne, 

Switzerland) (Figure 2.4a). The GPS coordinates for the GCPs were post corrected and used in 

the mosaicking process. Among the several templates available in Pix4D, the ‘Ag RGB’ 

template was chosen to process the imagery since this template is recommended for mosaicking 

RGB imagery (Pix4D manual). The key point image scale was set to ‘Full’ mode and minimum 

number of key point matching was set to ‘3’ for the point cloud densification in the template. 

The resulting ortho-mosaic imagery (Figure 2.4b) had a spatial and radiometric resolutions of 8 

mm/pixel and 8 bits per pixel, respectively. 

 The digital number (DN) values were calibrated to reflectance values using the 

reflectance values of the spectral panel and their corresponding DN values in the imagery. Three 
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different datasets, each with 300 DN values of a band as the X-variable and the reflectance 

values as the Y-variable belonging to the pixels in the spectral panel were prepared. Further, 

simple linear regression analyses were conducted to derive three separate regression models 

(Equations (1)–(3)) for predicting reflectance values using prepared datasets. The model was 

then applied to predict the values for all the pixels in red, blue, and green bands. 

(σj)r = µ1*(λj)r+c1 (1) 

(σj)g = µ2*(λj)g+c2 (2) 

(σj)b = µ3*(λj)b +c3 (3) 

where 

(σj)r = predicted reflectance value of a jth pixel for the red band 

(σj)g = predicted reflectance value of a jth pixel for the green band 

(σj)b = predicted reflectance value of a jth pixel for the blue band 

(λj)r = DN value of a jth pixel for the red band 

(λj)g = DN value of a jth pixel for the green band 

(λj)b = DN value of a jth pixel for the blue band 

µ1, µ2  and  µ3 are slope values for red, green, and blue band, respectively, whereas c1, c2, 

and c3 are constants for models for red, green, and blue band, respectively. 

2.3.4. Image Preprocessing 

 Image preprocessing is an important step in image analysis and is required to prepare the 

image for further analysis. The experimental plots in the imagery were clipped into individual 

subsets and were subjected to further image processing. This process was completed in the 

following four steps: 
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2.3.4.1. Masking Non-Vegetative Area 

 In order to avoid potential misclassification of target objects with unnecessary objects, it 

is a good approach to mask the non-vegetative area upfront. For this purpose, excess green 

vegetation index (ExG) (Woebbecke et al., 1995) was calculated using Equation (4). 

ExG=2G-R-BG+R+B (4) 

where G, R, and B indicate green, red, and blue channel pixel values, respectively. 

 The Otsu thresholding method (Otsu, 1979) was applied to identify an optimal threshold 

for developing a binary classification: vegetation vs. non-vegetation (Figure 2.4c). 

2.3.4.2. Canny Edge Filtering 

 The canny edge algorithm (Canny, 1986) was applied over the Otsu’s binary imagery to 

obtain the edges of the crop rows. The algorithm requires the user to input values for two 

different hyper parameters called “minVal” and “maxVal”. MinVal and maxVal represent the 

lower and upper limits of the intensity gradient range such that for any potential edge candidates 

to be regarded as true edge, the curve to which it belongs should lie either completely or partially 

above the upper limit within the user-defined range. Several sets of lower and upper values were 

tested in a trial and error mode until the best visual results were obtained. A median filter was 

applied over the edge imagery to remove edge noises and highlight crop rows (Figure 2.4d). 

2.3.4.3. Hough Line Transformation 

 To minimize potential misclassification, the classification algorithm was applied only 

after separating inter-row weeds from cotton by detecting crop rows using one of the popular 

crop row detection method called Hough transformation (Slaughter et al., 2008). This method 

determines positions of crop rows based on the parameters ρ and θ, where ρ is the perpendicular 

distance from the origin to the line and θ is the angle of perpendicular projection from the origin 
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to the line, clockwise from the positive X-axis of the image space (Slaughter et al., 2008). This 

method was implemented over the de-noised imagery using the “houghlineL” function in 

“OpenCV” package built in Python programming language to generate crop row lines (Figure 

2.4e). The two hyper parameters for the function, ρ and θ, were chosen as 1000 and 0° to 180° 

respectively. 

2.3.4.4. Generation of Crop-Row Strips 

 The row strip width (α) around each Hough line in each plot was determined using 

Equation (5), based on the width of cotton measured for 20 random plants within a plot. 

α=i=120wi20 (5) 

where α denotes mean width, w represents the width of the cotton plant measured from a tip of a 

leaf on one side to a tip of a leaf on another side in the direction perpendicular to row axis for the 

ith plant (1 to 20). 

A particular width value was then used to generate crop-row strips for each of the rows in a 

plot. 

2.3.5. Weed Detection and Regression 

 Following the establishment of row strips, the OBIA framework was implemented for 

both intra- and inter-row weed detection using eCognition Developer software (Trimble Inc., 

Munich, Germany). The chessboard segmentation analysis was then carried out over each plot 

imagery to produce grids of 5 × 5 pixels, which represented 4 cm × 4 cm area on the ground. 

Any grids pertaining to vegetation outside of the Hough transformation-derived strips (Figure 

2.4f) were classified as inter-row weeds. After assigning the inter-row weeds, the next step was 

to classify the grids within a strip into cotton and intra-row weeds, as grids pertaining to 

soil/shadows had already been masked during image preprocessing steps. For this purpose, the 
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Random Forest (RF) method (Breiman, 1996), a non-parametric ensemble learning method, was 

used. This classifier creates a set of decision trees from a randomly selected subset of training 

dataset, which then aggregates the votes from different decision trees to decide the final class of 

the test object. The outcome in each decision tree is determined based on information gain, gain 

ratio, and Gini index (Breiman, 1996) for each attribute or feature. This classifier requires two 

hyper parameters ‘ntree’ (the number of decision trees to be formed during the decision process) 

and ‘mtry’ (the number of features to be used in the node for a decision tree) to be set by the 

user; in this study, ‘ntree’ and ‘mtry’ were set to ‘500’ and ‘the square root of total number of 

image features used in the classification’, respectively. 

 A total of 18 grey level co-occurrence matrix (GLCM)-based textural features (Haralick 

et al., 1973) and five spectral features were constructed for clipped imageries (Table 2.2). A 

balanced sample size of 600 for each class (cotton and weed species) were selected randomly 

from the grid objects resulting from the chessboard segmentation to train the RF classifier. In 

addition, 200 samples for each class (cotton, weeds, and soil/shadows) were used for validation 

of mapping in each density treatments. Prior to the training process, it was necessary to discard 

the non-important features to optimize the computation cost and time. The 

“varImp.randomForest” function in “Caret” package in R programming language (R Foundation 

for Statistical Computing, Vienna, Austria) was used to compute the importance index for the 

features constructed in the study. The function uses the RF classifier-based wrapper selection 

method to calculate accuracy of each decision tree using out-of-bag samples for a given feature. 

The decrease in accuracy of decision tree when a feature is substituted with another feature is 

averaged across all the decision trees to calculate mean decrease in accuracy, which is further 

rescaled to 1–100 and termed as important index. In general, higher the mean decrease in 
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accuracy for a feature, higher the important index and better the feature. In this study, the 

features with index value greater than 50 in the scale of 1–100 were chosen, which includes two 

spectral features (red band and ExG) and four textural features (GLCM_Homogeneity for green 

band, GLCM_Contrast for green and red band, and GLCM_Entropy for red band). 

 In certain cases, leaves of inter-row weeds overlapped with that of cotton within the strip 

and could not be classified using the standard approach. In such cases, an iterative feature ratio 

rule was used to re-label the mis-labeled vegetation as weeds using Equation (6). 

x=1,    0.9<ExGij<1.1 0,                  Otherwise  (6) 

where x is the rule to assign the specific grid (j) as weed (1) or non-weed (0), ExGij represents 

the ratio of ExG value of the grid for weeds immediately outside the row strip (i) to that of the 

grid immediately inside the row strip (j). 

 Two model accuracy measures, namely overall accuracy (OA) and kappa values (K), 

were calculated. The OA is calculated using Equation (7) as the number of correctly classified 

grid objects over the total number of validation samples. 

OA %=A+E+IA+B+C+D+E+F+G+H+I  ×100   (7) 

where A, E, and I are the number of validation samples accurately classified as crop, weed, and 

soil/shadows, respectively; D and G are the number of crop samples that were inaccurately 

classified as weed and soil/shadow, respectively; B and H are the number of weed samples that 

were inaccurately classified as crop and soil/shadow; C and E are the number of soil/shadow 

samples that were inaccurately classified as crop and weed, respectively. 

The Kappa value is a measure of deviation from the outcome by chance. The value ranges 

from 0 to 1, with 0 indicating no agreement and 1 indicating full agreement between the 
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observed and predicted values. The mathematical formula for computing kappa values was 

derived from Cohen (1960). 

 Following the generation of classification maps, the shapefiles for weed classes were 

extracted from the maps and loaded to the ArcMap software (ESRI Inc., Redlands, CA, USA). 

The area of all the shapefiles belonging to a particular quadrat (1 m × 1 m) was calculated, 

divided by the area of the quadrat, and recorded as image-derived weed coverage (%). A simple 

linear regression analysis was subsequently conducted in the R statistical software (R core team 

2013) using the ground-based weed density (m−2) dataset as the Y-variable and the image-derived 

weed coverage (%) dataset as the X-variable. In addition to the model for combined weed species 

in the quadrats, two separate individual models for two most dominant species in the 

experimental area, Palmer amaranth and red sprangletop were developed. For this purpose, 

quadrats (9 for Palmer amaranth and 11 for red sprangletop) that had >80% infestation of either 

species in the field were selected across the experimental area. 

 The whole data processing tasks were performed using a computer with a relatively high 

processing power comprising of Intel® core™ i7-5960X 3.00 gigahertz (GHz) central processing 

unit, 64 gigabytes of random-access memory (RAM), and 64-bit operating system. The data 

processing tasks, including image mosaicking, calibration, preprocessing, and weed detection 

and regression for all the density treatment plots takes approximately 2 h and 30 min. This 

includes only the time required for running the python scripts/software for corresponding data 

processing tasks and does not include the time associated with the preparation of necessary data 

for tasks such as image calibration, and training and validation of the classifier. The image 

mosaicking process consumed the majority of the time (approx. 70%), whereas the image 
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preprocessing step required the least time (5%). 

 

2.4. Results and Discussion 

2.4.1. Weed Mapping 

The classification techniques used in the current study was effective in mapping the 

distribution of weeds in cotton with reasonably high accuracy levels. An overall accuracy (OA) 

of 89.16%, 85.83%, and 83.33% and kappa (K) value of 0.84, 0.79, or 0.75 were observed for 

low, medium, or high-density plots, respectively (Figure 2.5). The generally high accuracy levels 

obtained in the current study could be attributed to the implementation of the multi-step 

classification model wherein potential misclassification was minimized by first detecting and 

separating inter-row weeds, thereby subjecting only the intra-row weeds for machine learning-

based classification. The classified maps and pixel density heat maps are shown in Figure 2.6. 

 Several studies have undertaken a similar multi-step classification approach and achieved 

high classification accuracies. For example, De Castro et al. (2018) mapped both broadleaved 

and grass weed species in sunflower and cotton fields and achieved an average weed detection 

accuracy index of 73% and 75% for cotton and sunflower field, respectively. López-Granados et 

al. (2015) mapped johnsongrass (Sorghum halepense (L.) Pers.) in maize (Zea mays L.) using a 

multistep approach, wherein the maize rows were first delineated using an iterative strip 

formation process, the inter-row johnsongrass was detected, and then normalized difference 

vegetation index (NDVI) and Excess Greenness Index (ExG) were used to classify intra-row 

johnsongrass from maize with an accuracy of 89% and 82% for multispectral and visual 

imagery, respectively. In another study, Gao et al. (2018) combined the pixel-based method with 

OBIA to map weeds in a maize crop; Hough transformation was followed by Random Forest 
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(RF) classifier using spectral, GLCM-based textural, and geometrical features to classify intra-

row weeds with OA and K values of 94.5% and 0.91, respectively. 

 A unique aspect of the current study is that it implemented the multi-step approach under 

three different weed density levels and provided an outlook on how the accuracies are affected. 

Moreover, the majority of existing studies have focused on classifying weeds at an early crop 

stage when the weeds are sparsely distributed or there is a clear delineation of crop rows due to 

an absence of overlapping intra-row weeds. Such scenarios would minimize the complexity of 

generating crop row lines and further image processing tasks, leading to high classification 

accuracies. However, the current study successfully classified intra- and inter-row weeds even 

under high density levels. 

 The robustness of classification of inter-row weeds was dependent on how accurately the 

crop rows were delineated (Lopez-Granados et al., 2015; Gao et al., 2018) using the crop row 

detection method. In the current study, this method was very effective, given the straight cotton 

rows in the field. However, additional processing may be required to remove redundant crop row 

lines in cases of non-linearity or under very high weed density levels wherein the green pixels of 

inter-row weeds may overlap with crop pixels, making it difficult for the algorithm to identify 

edges of rows. Apart from the field structure, crop row detection can also be influenced by the 

noises during binarization, edge detection, and other related preprocessing steps (Gee et al., 

2008). One of the several reasons for the inaccurate binarization could be the higher spectral 

similarity between shadow and underexposed vegetation pixels. The lower leaves are affected by 

shadow from upper leaves, which could lead to spectral confusion between underexposed leaves 

and gaps in crop canopy. The inaccurate masking of crop pixels, especially at the edge of the 
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crop rows, might significantly affect crop row detection results and thus may lead to inaccurate 

crop row lines. 

Low weed density plots had low instances of inter-row weeds and extremely low intra-row 

weeds. However, intra-row weeds were relatively frequent in the medium and high-density plots. 

Lower OA in high-density plots, as compared to low-density plots, could be attributed to 

frequent occurrence of intra-row weeds in high density plots and difficulty associated with 

classifying intra-row weeds from cotton using the OBIA method. High instances of intra-row 

weeds increased the risk of spectral similarity and obscure the textural uniqueness of plants due 

to canopy interlockings. This situation was found in every replication of the high-density plots. 

The standard deviations of OA and kappa for different density plots were low and quite similar, 

probably due to high similarity in spatial configuration and amount of inter-row and intra-row 

weeds in cotton. In addition, segmented objects (group of pixels) were used as the validation 

samples, in contrast to pixels, which may have lowered the chances of variability in accuracy 

measures. 

 Morningglories showed high spectral (all three bands) and textural confusion with cotton, 

compared to Palmer amaranth and red sprangletop. The morningglories were often seen creeping 

into the cotton rows in the ground, adding more complexity in spectral distinction. Red 

sprangletop in particular had very low spectral overlap with cotton, compared to other weed 

species. These weeds were only the major grass species found in the area and were visually 

distinct in the ground. Though Palmer amaranth had high spectral similarity with cotton, the 

GLCM-based textural attributes based on 5 × 5 pixel kernels were different for these species, as 

implied by differences in leaf sizes and canopy structure. Thus, a combination of spectral and 

textural features yields high classification accuracies (Lin et al., 2017; Wu et al., 2009). 
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However, it should also be noted that spectral similarity observed here between cotton and weeds 

may not be the case in other situations. The spectral confusion is primarily dependent on the 

spectral, spatial, and radiometric resolution of the imagery; growth stage of the crop and weed; 

and the crop production system. For example, inclusion of non-visible bands in the analysis may 

help increase the spectral separability between crops and weeds. Further, increase in radiometric 

resolution adds more gradients of pixel values and thus provides more details/information at the 

pixel level. 

2.4.2. Relationship between Weed Density and Pixel Coverage 

 The relationship between the image-based weed coverage data (i.e., area covered by 

weed pixels) and ground-based weed density assessments (plants m−2) for total weed species, and 

individually for Palmer amaranth and red sprangletop was determined using a simple linear 

regression analysis. A fairly high coefficient of determination (r2 = 0.80) was achieved for total 

weed species present in a quadrat, indicating that the density of weeds in the crop field could be 

estimated based on weed pixel coverage (Figure 2.7). The ability for assessing weed densities 

using aerial images has been demonstrated previously. For example, Gao et al. [36] obtained, 

using a very high-resolution imagery (1.78 mm/pixel), high coefficient of determination (r2 = 

0.89) between image-based weed density and manually assessed weed density in a maize field. 

Although the coefficient of determination in the current study (r2 = 0.80) was slightly lower 

compared to that of Gao et al. [36], current study provided considerably high accuracy even with 

a coarser spatial resolution (8 mm/pixel). 

 The degree of relationship between ground-based manual assessments and aerial image-

based assessments can be affected by several factors including weed and crop species being 

studied, growth stages of weeds, and environmental factors. First, the accuracy of weed pixel 
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coverage determination in aerial imagery depends on how well the weeds are classified and 

distinguished from the crop. Second, inter-locked growth of weed species can lead to inaccurate 

estimation of pixel coverage since the coverage area of two interlocking weed plants may be 

lesser than the actual value. It is also possible that the dominant weeds can partially or 

completely mask other species growing underneath them, affecting the total pixel values (Lin et 

al., 2017; Connolly et al., 2017). Among the individual weed species assessed in the present 

study, high coefficient of determination was achieved for red sprangletop (r2 = 0.88) (Figure 

2.8a) and Palmer amaranth (r2 = 0.91) (Figure 2.8b). Higher accuracies with Palmer amaranth 

compared to that of red sprangletop could be largely attributed to the differences in growth 

pattern between the two species; red sprangletop plants had higher overlapping with each other, 

with more variable growth sizes compared to Palmer amaranth. 

 In this study, we aimed at demonstrating if and how UAS can be used to map different 

densities of early- to mid-season weeds in cotton and estimate their densities. We do not 

anticipate our regression models to be as accurate under alternative experimental settings (e.g., 

different flight heights, growth stage of weeds, forward speed, lighting conditions, etc.). Rather, 

we anticipate that the study informs that true color UAV images can indeed be used to map 

early- to mid-season weeds. Nonetheless, we are confident that our methodology can be adopted 

and expanded by other studies with a similar focus. The prime reason for this adaptability is that 

the supervised classification method implemented in this study is based on the local training 

data. The regression model for weed estimation depends upon the classification-based weed 

canopy coverage area, which in turn depends upon the training samples collected by the 

researcher. This whole process is similar for any weed size in cotton. Following points highlight 

the significance of the experimental plan and the outputs of this study: 
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a. The study has demonstrated if and how early- to mid-season weeds can be mapped in 

cotton using true color UAS-borne imagery. 

b. The study has shown that vegetation indices such as excess greenness index and textural 

features can be used in mapping early- to mid-season weeds, at least for high spatial resolution 

true color imagery. This information can guide future researchers with shared ideas. 

c. The study has illustrated that high spatial resolution true color imagery-based weed 

coverage area could be an effective determinant of weed density in cotton at early- to mid-

growth stage of weeds. 

d. The study has also demonstrated how high spatial resolution imagery can be utilized to 

detect early- to mid-season cotton rows and use the information to easily segment out inter-row 

weeds. 

 

 

2.5. Conclusions 

 This study demonstrated a methodology for mapping weed infestations in cotton utilizing 

RGB imagery and non-conventional image analysis techniques. Advanced computer vision 

techniques were tested to map weeds under different density levels and determine the 

relationship between image-based weed coverage estimates and ground-based weed density 

assessments. The current study has successfully demonstrated that they can be applied across 

different levels of weed densities. The spatial maps and density prediction models can be great 

resources for farmers/consultants for robust assessment of weed infestations and making 

informed management decisions. Furthermore, with a successful application of RGB imagery for 

this purpose, the study also emphasizes the usefulness of RGB imagery for weed assessment. 
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 This study, however, has few limitations: (a) the results presented here were based on the 

experiment carried out on a specific weed growth stage (Table 2.1) and thus the predictive model 

for weed densities may not be applicable to other weed growth stages. However, our study 

proved the effectiveness of the computer vision techniques in weed density assessments, and this 

approach can be expanded to other scenarios as well. (b) the quadrats used for regression 

analysis for individual weed species were selected such that the specific weed densities were 

>80% within each quadrat. This was necessary due to difficulties with distinguishing different 

weed species using RGB imagery at this level of image resolution (8 mm/pixel). Such high 

densities of a single weed species may not be typical in all field scenarios and occurrence of a 

mix of multiple weed species can complicate prediction accuracies. However, ongoing 

technological improvements may improve weed classification and provide a solution to this 

challenge. Future research should focus on utilizing multispectral and hyperspectral imageries 

and develop improved classification algorithms for weed infestation assessments. 
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2.7. Table and Figures 

Table 2.1. Weed infestation levels in the low, medium, and high density plots in the experimental 

area. 

Species Average Weed Density (m−2)  

 Low Medium High Size * 

Palmer amaranth 

(Amaranthus palmeri S. 

Watson) 

2 5 10 4 to 6 leaf stage (10–15 cm tall) 

Red sprangletop 

(Leptochloa mucronata 

Michx.) 

2 8 15 4 to 10 tiller stage (8–15 cm tall) 

Mornigglories 

(Ipomoea spp.) 
1 2 3 1 to 4 leaf stage 

Texas millet (Urochloa 

texana Buckl.) 
0 1 3 2 to 7 tiller stage (7–10 cm tall) 

Devil’s claw 

(Proboscidea 

louisianica (Mill.) 

Thell.) 

1 2 2 1 to 4 leaf stage 

Total 6 18 33  

* Size at the time of capturing the aerial image used in this research. 
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Table 2.2. Full set of image features tested in the study. 

Feature Type Feature Name a Description 

Spectral (N = 4) B, G, R, ExG 

Mean values of all three channels 

and derived features for each grid 

object 

Textural (N = 

18) 

GLCM Homogeneity at 45° for R, G, 

and B 

Second-order textural statistics 

based on Haralick et al. [49] 

GLCM Homogeneity at 270° for R, G, 

and B 

GLCM Contrast at 45° for R, G, and B 

GLCM Contrast at 270° for R, G, and 

B 

GLCM Entropy at 45° for R, G, and B 

GLCM Entropy at 270° for R, G, and B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

38 

 

 

 

 

 

 

Figure 2.1. The experimental field (0.6 ha) with spatial distribution of treatment plots 

representing low (green polygons), medium (blue), and high (red) weed densities. Yellow star 

within the density plots represent the location for experimental unit, which is a quadrat (1 m 

× 1 m) in our case. Each treatment plot has five experimental units. 
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Figure 2.2. Flowchart for the overall methodology followed in this research for mapping weeds 

in a cotton field. The specific steps included (shown in dashed boxes) are: (a) data collection, (b) 

image mosaicking, (c) image preprocessing, and (d) weed detection and regression. 
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Figure 2.3. Reflectance values for the three most dominant weed species in the experimental 

area, compared with cotton for red, green, and blue bands in the visual imagery. 
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Figure 2.4. Various stages of image pre-processing: (a) Loading raw images in Pix4D software 

for mosaicking, (b) Clipping RGB imagery pertaining to each 10 m × 10 m treatment plot, (c) 

Otsu-thresholding, (d) Applying canny-edge algorithm and median filtering, (e) Generating 

Hough lines over the RGB imagery, and (f) Creating strips around Hough lines (green lines); 

here red pixels represent inter-row weeds and black pixels represent soil/shadows. 
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Figure 2.5. Accuracy measures for various levels (low, medium, and high) of weed densities 

established in the experiment. 
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Figure 2.6. Results showing weed coverage in each replication (Rep 1, Rep 2, and Rep 3 on 

the upper-left, upper-right, and bottom-left panels, respectively) for three different density 

treatment plots (low, medium, and high). The pixels pertaining to weeds and crop in the 

classified maps were analysed using a multi-step approach involving separation of inter-row 

weeds first using Hough transformation and then detection of intra-row weeds using random 

forest classifier. The weed pixel density heat maps were derived by first converting the 

classified pixels to point shape files and performing point kernel density analysis on the 

shapefiles. 
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Figure 2.7. Linear regression showing the strength of association between weed pixel coverage 

(%) quantified using aerial imagery and overall weed density (no. of weeds m−2) in the quadrats 

determined by ground truthing. 
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Figure 2.8. Regression analysis of weed pixel coverage (%) obtained using aerial imagery and 

ground-based weed density (m−2) for (a) red sprangletop and (b) Palmer amaranth. 
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3. DETECTION OF ITALIAN RYEGRASS IN WHEAT AND PREDICTION OF 

COMPETITIVE INTERACTIONS USING REMOTE SENSING AND MACHINE 

LEARNING TECHNIQUES* 

3.1. Abstract 

 Italian ryegrass (Lolium perenne ssp. multiflorum (Lam) Husnot) is a troublesome weed 

species in wheat (Triticum aestivum) production in the United States, severely affecting grain 

yields. Spatial mapping of ryegrass infestation in wheat fields and early prediction of its impact 

on yield can assist management decision making. In this study, unmanned aerial systems (UAS)-

based red, green and blue (RGB) imageries acquired at an early wheat growth stage in two 

different experimental sites were used for developing predictive models. Deep neural networks 

(DNNs) coupled with an extensive feature selection method were used to detect ryegrass in 

wheat and estimate ryegrass canopy coverage. Predictive models were developed by regressing 

early-season ryegrass canopy coverage (%) with end-of-season (at wheat maturity) biomass and 

seed yield of ryegrass, as well as biomass and grain yield reduction (%) of wheat. Italian ryegrass 

was detected with high accuracy (precision = 95.44 ± 4.27%, recall = 95.48 ± 5.05%, F-score = 

95.56 ± 4.11%) using the best model which included four features: hue, saturation, excess green 

index, and visible atmospheric resistant index. End-of-season ryegrass biomass was predicted 

with high accuracy (R2  = 0.87), whereas the other variables had moderate to high accuracy levels 

(R2 values of 0.74 for ryegrass seed yield, 0.73 for wheat biomass reduction, and 0.69 for wheat 

grain yield reduction). The methodology demonstrated in the current study shows great potential 
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for mapping and quantifying ryegrass infestation and predicting its competitive response in 

wheat, allowing for timely management decisions. 

Keywords: computer vision; deep neural networks; precision agriculture; site-specific 

management; unmanned aerial systems; UAVs; weed-crop interactions 

 

3.2. Introduction 

Italian ryegrass (Lolium perenne ssp. multiflorum (Lam) Husnot) is one of the most 

problematic weeds in wheat (Triticum aestivum L.) production in the United States (U.S.) 

(Tucker et al., 2006). Italian ryegrass is a cool-season winter annual weed that thrives best under 

a temperature range of 20 to 25 °C. It has faster leaf expansion rate than wheat and its 

competition can negatively impact tiller production, uptake of soil nutrients, photosynthesis and 

overall growth of wheat, resulting in significant crop yield loss (Carson et al., 1999; Stone et al., 

1998). Italian ryegrass densities as low as 1 plant m-2 can reduce wheat grain yield by 0.4% 

(Leibl, 1987). Early management of this species is vital to prevent yield loss, given its high 

competitive ability with wheat (Leibl, 1987). 

Advancements in precision agriculture can facilitate site-specific weed management 

(SSWM) (Singh et al., 2020), which involves variable application rates for effective weed 

management based on weed distribution, location, and density in crops (Thompson et al., 1991). 

This approach can assist with effective management of herbicide resistance in weeds such as 

Italian ryegrass (Caio and Bradley, 2018; Mingyang et al., 2016). Given the vital need for early-

season weed control to prevent crop yield loss, information on weed distribution through 

effective detection and mapping in crop fields is of paramount importance (Shaner and Beckie, 

2014). Furthermore, an ability to predict the outcomes of weed-crop competitive interactions, 
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particularly crop yield reduction and weed seed production, using early-season weed infestation 

levels can facilitate informed management decisions for timely action (Ali et al., 2013).  

Precise detection and mapping of Italian ryegrass in wheat fields, especially during early 

growth stages, is a challenge, generally due to high morphological similarities and indistinct 

canopy boundaries. Although Italian ryegrass has a characteristic pale green color and could 

stand out visually from wheat plants, such differences may not be obvious or too intricate to 

recognize in spectral data. These challenges in the classification of grass weed species, such as 

wild oat (Avena sterilis L.) and rigid ryegrass (Lolium rigidum L.), in a grass crop such as wheat 

based on spectral signatures have already been reported (Gómez-Casero et al., 2010; López-

Granados et al., 2008). Few other attempts have been made to classify ryegrass from wheat using 

digital imagery (Golzarian and Frick, 2011; Kodagoda et al., 2008) but primarily using 

traditional classification approaches that may be less robust.  

Addressing the challenge of grass weed detection in a cereal crop would require solutions 

on two major fronts: acquiring high spatial resolution imageries of production fields and 

developing effective image analysis models for precise species detection. Although varying 

spatial resolution of imageries and maps could have a differential impact on model uncertainties 

(Cottter et al., 2003; Singh, 2017), high-resolution imageries have proven effective for detection 

of weeds at the individual plant level even at early growth stages (Gao et al., 2018). Mapping 

ryegrass at individual plant canopy level allows for better estimation of weed infestations across 

the crop field and thus effective implementation of SSWM. Unmanned aerial systems (UAS), 

one of the popular remote-sensing platforms, have been successfully utilized in obtaining high-

resolution aerial imageries for weed detection and mapping (De Castro et al., 2018; López-

Granados et al., 2016; Pena et al., 2013; Sapkota et al., 2020; Tamouridou et al., 2017). 
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However, the benefits of high-resolution imagery can be fully exploited only if the image 

analysis/classification approach used for the problem is robust. 

Several machine-learning classification approaches have been employed for various 

classification problems in the agricultural sector, including mapping of crops and weeds using 

aerial imageries. Yang et al. (2017) applied the single feature probability technique to generate 

features, which were later trained with decision trees and maximum likelihood classifier to map 

rice fields and assess lodging. Gašparović et al. (2020) utilized a fusion of random forest-based 

supervised and K-means algorithm-based unsupervised classification methods to map oat (Avena 

sativa L.) in fields using a low-cost unmanned aerial vehicle (UAV)-borne red, green and blue 

(RGB) imagery. Combining the object-based image analysis (OBIA) with random forest-based 

prediction, De Castro et al. (2018) analyzed UAV imagery and its derivatives to map weeds in 

cotton and sunflower fields. Gao et al. (2018) fused row-detection algorithm results with OBIA-

derived features to map weeds in maize fields using a random forest classifier.   

Every classification problem poses a unique level of intricacy and therefore demands a 

suitable classification mechanism. For discriminating among different grass species, a powerful 

classification approach accompanied by a machine-learning classifier may be desirable. One of 

the effective ways in this regard is to generate multiple features, select the best and most 

informative features, and make inferences using a powerful machine-learning algorithm. The 

feature selection process ensures the elimination of irrelevant features, which would otherwise 

compromise the ability of the machine-learning models (Kanellopoulos et al., 1997). Artificial 

neural networks (ANNs), one of the most powerful and advanced machine-learning classifiers, 

have been frequently used for weed detection and mapping (Gutiérrez et al., 2008; Li et al., 

2008; Yang et al., 2003). ANNs, in general, are the computing systems that mimic the biological 
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neural networks, comprising of three main systems namely the input layer to receive the data, 

hidden layer(s) to learn the pattern in the data, and output layer to provide the best parameters for 

classification (Rumelhart et al., 1986).  

The current study utilizes deep neural networks (DNNs) for detection and mapping of 

Italian ryegrass in wheat fields. DNNs are ANNs with more than one hidden layer, designed to 

improve the ability to learn complex patterns. With the increase in the number of hidden layers, 

the neural networks become denser with an enhanced ability for pattern recognition (Goodfellow 

et al., 2016). Here, we apply a rigorous hyperparameter tuning process and exhaustive feature 

selection to improve the DNN-based classification accuracy. The specific objectives of this study 

were to: 1) detect and map Italian ryegrass in wheat fields using UAS-derived imageries and 

DNNs; and 2) develop and test models to predict the impact of early-season Italian ryegrass 

infestations determined using UAS-derived imagery on end-of-season productivity of wheat and 

ryegrass. 

 

3.3. Materials and Methods 

3.3.1. Location and Experimental Setup 

The study was conducted in 2018 at two distinct sites (0.2 ha each) at the Texas A&M 

AgriLife Research (Site A, 30° 32' 15" N, 96° 25' 35" W, elevation: 70 m) and Extension farms 

(Site B, 30° 30' 37" N, 96° 25' 13" W, elevation: 68 m) located in Burleson County, TX (Figure 

3.1). The locations are characterized by a sub-tropical climate, with average monthly maximum 

and minimum temperatures during the study period/winter wheat growing season (November–

May) of 20° C and 8.5° C, respectively. The total rainfall during the growing season in 2018 for 
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this area was 889 mm. The sites mainly varied in soil composition; the soil type of Site A was 

Weswood silty clay loam, whereas that of Site B was Belk clay (Soil Survey Staff, 2020).  

The winter wheat crop (TAM 304) was drill-seeded at a seeding rate of 120 kg ha-1 and 

19 cm row spacing on 15 November 2018 at Site A and 20 November 2018 at Site B. An Italian 

ryegrass biotype sourced locally was broadcast planted in the plots immediately after planting 

wheat. The experimental area was divided into model training (red polygons in Figure 3.1) and 

validation sections (blue polygons in Figure 3.1). The training area consisted of three Italian 

ryegrass density (low, moderate, and high) treatments and a weed-free check, replicated four 

times (16 total plots; plot size: 2 m x 3 m, with 2 m buffer in all sides) in a randomized complete 

block design. Within each training plot, a 1 m2 quadrat was established at the center which 

served as the sampling unit for image analysis and ground-truth data collection. In the quadrats, 

the ryegrass seedlings were thinned to simulate a gradient of different densities across sites, with 

achieved final densities of 20, 50, and 80 plants m-2 for Site A, and 50, 100, and 150 plants per 

m-2 for Site B. The validation area (25 m x 9 m) had a random gradient of densities of Italian 

ryegrass inter-mixed in wheat, and a total of 5 quadrats were established within the validation 

area for each site as the sampling units for model validation. Wheat was raised as a rain-fed crop, 

and nitrogen fertilizer (150 kg ha-1) was split-applied at 45 days after planting (DAP) (50 kg ha-1) 

and at 90 DAP (100 kg ha-1). No pest control treatments were required.  

3.3.2. General Workflow 

The experiment began with image collection during the early growth stage of weed, 

followed by an end-of-season collection of ground-truth data for both weed and crop. The next 

step was to process the imagery, which was conducted in three sub-steps, including image 

mosaicking and calibration, feature extraction and selection, and image classification and 
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validation. Regression modelling was performed to develop predictive models using image- and 

ground-based information. Finally, the models were implemented on the validation plots to build 

a heatmap for different measured variables (Italian ryegrass biomass and seed production, and 

wheat biomass and grain yield reduction) and validate the accuracy of the models. Figure 3.2 

shows the schematics of the general workflow followed in this research. 

3.3.3. Data Collection 

3.3.3.1. Image Collection 

In order to collect early-season information required for the study, aerial flights were 

carried out on 6 March 2019 and 13 March 2019 at Site A and Site B, respectively. The timing 

coincided with the peak tillering stage of wheat and ryegrass, at about 90 DAP on both sites. A 

quadcopter UAV “DJI Phantom 4 Pro” (DJI, China) attached with an RGB sensor (12 

megapixels) was flown at an altitude of 10 m to acquire aerial images at three different bands 

(Red, Green, and Blue) during ±2 hours of solar noon (10 AM to 2 PM) in both sites. The 

average wind speed was 9.6 kmph for Site A and 8 kmph for Site B throughout the flight 

duration. Images were acquired at an overlapping mode (75% for both side and end overlap), the 

exposure was set to automatic mode, and the flight plan was executed in a grid structure at an 

operating speed of 5 m/s. The flight mission was executed using the mobile application 

“Pix4Dcapture” (Pix4D, Lausanne, Switzerland) and was completed in 20 minutes at each site. 

Reflectance panels/tarps were placed in the field at the time of flights to perform spectral 

calibration in the imagery at a later stage. 

3.3.3.2. Ground-Truth Data Collection 

Upon wheat maturity, ground-truth data pertaining to ryegrass biomass, ryegrass seed 

yield, wheat biomass, and wheat grain yield were obtained from each quadrat on 23 May 2019, 
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to develop regression models between early-season ryegrass densities and end-of-season 

biophysical parameters of ryegrass and wheat. In order to account for potential ryegrass seed loss 

due to shattering prior to harvest, a visual estimate of seed shattering was documented at the time 

of harvest. The ryegrass and wheat plants were manually harvested from each quadrat at the 

ground level, separated by species, placed in individual paper bags, and dried in an oven at 63 °C 

for 36 hours prior to the estimation of dry biomass. Wheat plants from each experimental unit 

were threshed to obtain grain yield. Ryegrass spikes were hand threshed and seed yield was 

determined after adjusting for shattering loss.  

3.3.4. Image Processing 

3.3.4.1. Image Mosaicking and Calibration 

Images acquired for each site were stitched together using the Pix4D mapper software 

(Pix4D, Lausanne, Switzerland) to generate qualitative, high-resolution (3 mm/pixel) 

orthomosaic imageries. Generating qualitative orthomosaic imageries can sometimes be 

challenging as the process depends heavily upon several factors, including camera internal and 

external orientation parameters, flight parameters, and the robustness of the image-matching 

algorithm (Conte et al., 2018; Pérez et al., 2013). Failure to optimize the camera parameters can 

result in distortion of the imageries. The Pix4D mapper mitigates this issue by optimizing the 

camera parameters during the initial run and allowing users to re-run the process with the 

optimized parameters. In this study, camera model parameters were initially loaded from the 

exchangeable image file format metadata, generated automatically by the UAV during the image 

acquisition process, into the Pix4D mapper. To further improve the quality, the initial calibration 

phase was re-run using the optimized parameters. A detailed description of how Pix4D mapper 

generates an orthomosaic imagery from sets of UAV-borne imageries can be found in this link 
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(https://support.pix4d.com/hc/en-us/articles/204272989-Offline-Getting-Started-and-Manual-

pdf).  Following the orthomosaic generation, the digital number (DN) values of the imageries 

were calibrated to reflectance values using the three different custom spectral panels (black, 

grey, and white). Three different datasets, each with 300 DN or pixel values of a band as the X-

variable and the reflectance values of corresponding pixels in the spectral panels derived using 

Analytical Spectral Devices FieldSpec Pro HandHeld spectroradiometer (Analytical Spectral 

Devices, Boulder, CO, USA) as the Y-variable were prepared. Furthermore, simple linear 

regression analyses were conducted for the X- and Y-variables to derive three separate 

regression models (Equations 1–3) for predicting reflectance values using prepared datasets. The 

model was then applied to predict the values for all the pixels in red, blue, and green bands.  

(σj)r  =   µ1*(λ
j
)r + c1 

(

1) 

(σj)g = µ2*(λ
j
)g + c2  

(

2) 

(σj)b =  µ3*(λ
j
)b + c3 

(

3) 

where, σj= predicted reflectance value of a jth pixel for the red (r), green (g), and blue (b) 

band; λj = DN value of a jth pixel for the red (r), green (g), and blue (b) band; µ1, µ2, and µ3 are 

slope values derived from the linear equations for red, green, and blue band, respectively; and c1, 

c2, and c3 are intercepts for models for red, green, and blue band, respectively. 

3.3.4.2. Feature Extraction and Selection 

Following the spectral calibration, 12 feature layers were extracted and/or computed for 

further image-processing purposes (Table 3.1). Optimizing the feature subset is required before 

https://support.pix4d.com/hc/en-us/articles/204272989-Offline-Getting-Started-and-Manual-pdf
https://support.pix4d.com/hc/en-us/articles/204272989-Offline-Getting-Started-and-Manual-pdf
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feeding into machine-learning algorithms for improving the classification process and making it 

cost- and time-efficient [34]. For this purpose, first, 1000 training samples for each of the user-

defined classes (in this case, 5-classes: Ryegrass-A, Ryegrass-B, Non-ryegrass vegetation, 

Bareground, and Shadow) were collected from the imageries of both sites. Ryegrass-A and B 

represent different categories of ryegrass pixels in the imagery, indicating normal green pixels 

(A) and illuminated pixels (B). A considerable number of illuminated ryegrass pixels were 

observed in the experiment area, and the two categories were treated separately since combining 

them might compromise the prediction ability of the classifier. Second, the distribution of 

features within/across the user-defined classes were explored to select the best feature 

combination qualitatively. However, such a selection approach was too complex since there was 

much variation in the distribution of these features (Figure 3.3). Therefore, a wrapper-based 

feature selection approach called “exhaustive selection” was employed to select the 10 best 

feature combinations (hereafter referred to as feature models) using one-fourth of the training 

samples for each class (i.e. 250).  

3.3.4.3. Image Classification and Validation 

After the selection of best feature models, each feature model was tested for classifying 

images sampled in each quadrat (1 m x 1 m) (hereafter referred to as quadrat images) into user-

defined classes using the supervised machine-learning system. The back-propagation multilayer 

perceptron (MLP), a commonly used and widely available ANN structure (Atkinson and Tatnall, 

1997), was used as the machine-learning system in this study. Keras, a high-level neural 

networks application programming interface (API) written in python computer language was 

used to build the MLP-based custom DNN system. Various hyperparameters were tested for 

several values prior to final training process to derive the best set of values (Table 3.2), using the 
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same subset of training samples used for exhaustive feature selection. Categorical crossentropy 

was fixed for the loss function and “adam”, a very popular stochastic gradient descent-based 

weight optimization technique, was fixed for the optimizer in the tuning and training process.  

This best set of parameters was then used in the custom DNN system to train each feature 

model. One-half of the training samples for each class (i.e. 500) were used for training purposes. 

Each trained DNN model was finally implemented over each quadrat image and in total 10 

different classification outputs were generated for 10 different feature models for each image. 

Once the quadrat image was classified into user-defined classes, post-classification operations 

such as filtering, smoothing, and generalization were carried out to remove any speckled 

appearance and improve the quality of the classified output. For accuracy purposes, different 

indicators such as precision, recall, and F-score were calculated for each feature model using an 

independent set of validation samples [i.e., remaining one-fourth of training samples (250) for 

each class] and the best feature model was determined. Precision was measured as the number of 

correctly classified samples of a class divided by the number of samples labeled as that class by 

the system (Equation 4). Recall was calculated as the number of correctly classified positive 

samples of a class divided by the number of validation samples allocated for that class (Equation 

5). F-score is a combination of both precision and recall (Equation 6).   

Precision = 
TP

TP + FP
 

(

4) 

Recall =  
TP

TP + FN
 

(

5) 
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F-score =  2 × 
Precision × Recall 

Precision + Recall
 

(

6) 

where, TP, FP, and FN represent true positive, false positive, and false negative 

instances, respectively. 

3.3.5. Regression Modeling 

With the classification of imageries and evaluation of the models, the best classified 

output, i.e. classified imagery for each quadrat (altogether 32, including both sites) were used in 

the regression modelling procedure. Each classified imagery comprised of pixels classified into 

either of the user-defined classes. First, both ryegrass classes (i.e., Ryegrass-A and B) were 

merged into a single class. Then, the ryegrass pixels pertaining to this class within each classified 

imagery were enumerated and the number of enumerated pixels was divided by total number of 

pixels in the imagery to calculate ryegrass canopy coverage area (%). In the next step, four 

separate models were developed by regressing the canopy coverage area of ryegrass (%) as the 

predictor variable, while considering ryegrass biomass (g), ryegrass seed yield (g), wheat 

biomass reduction (%), and wheat grain yield reduction (%) as predicted variables. Wheat 

biomass and grain yield reduction (%) were calculated as a relative measure with weed-free 

check plots. Altogether, 32 pairs of predicted and predictor variables (16 pairs corresponding to 

the quadrats for each site) were used in the regression analysis for ryegrass biomass and seed 

yield, whereas only 24 pairs were used for wheat biomass reduction (%) and grain yield 

reduction (%). Finally, the coefficient of determination (R2) and root mean square error (RMSE) 

were calculated as statistical measures of how well the regression predictions approximated the 

datapoints.  
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3.3.6. Predictive Model Implementation and Validation 

The validation areas (Figure 3.1) were demarcated within the experimental field and the 

orthomosaic imageries were clipped to their extent for spatial implementation of the predictive 

models and independent model validation. The best feature model was also applied to the clipped 

imageries to obtain the classified outputs (i.e., early-season ryegrass canopy coverage maps), 

followed by all the post-classification operations described earlier to improve the results. The 

classified map was partitioned into several (1 m × 1 m) grids and the ryegrass canopy coverage 

area (%) was calculated for each of the grid. The predictive models developed earlier were then 

applied to the grids to obtain the values for all the predicted variables. Ground truth values for 

the 5 quadrats in each validation area pertaining to ryegrass biomass (g), ryegrass seed yield (g), 

wheat biomass reduction (%), and wheat grain yield reduction (%) were assessed against 

predicted heatmap values for those corresponding grids to determine the reliability of the whole 

classification and predictive model framework. RMSE and coefficient of determination (R2) 

were calculated as the measure of agreement between predicted and observed variables. 

 

3.4. Results  

3.4.1. Ryegrass Detection Using Feature Combinations 

Among the approximately 4000 model runs of various features and their combinations 

tested in the study, the top 10 best performing models had a combination of four or more 

features, illustrating the robustness of multivariate analysis for species detection. Based on 

independent validation samples, the average F-score values ranged between 89% and 96% for 

different feature models (i.e., feature combinations) tested (Table 3.3). The highest average F-

score (95.5%) was achieved with the model that combined color transformed features (hue and 
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saturation) with vegetation indices (Excess Green Index (ExG) and Visible Atmospheric 

Resistant Index (VARI)) for machine learning (Model #10 in Table 3.3), which was closely 

followed by the model that used Red, Blue, Sat, VARI, ExG and Wavelet_Mean (Model #9; F-

score: 95.3%). However, the model #10 was chosen for mapping Italian ryegrass (Figure 3.4) 

since it was more parsimonious compared to #9.  

For model #10, the user-defined classes Bareground and Shadow were classified with the 

highest precision, recall and F-score (>98%), compared to the other classes namely Ryegrass-A, 

Ryegrass-B and Non-Ryegrass (Figure 3.5). As explained by boxplots for different features 

(Figure 3.3), Bareground and Shadow had very distinct boundaries from other classes for several 

features. The lightly shaded portion of Italian ryegrass and wheat leaves were expected to be 

classified as Shadow (i.e., formed underneath the canopy) due to spectral similarities; however, a 

meticulous training of these regions greatly reduced potential misclassification, which is 

indicated by the high precision (>98%) and recall (>98%) values for Shadow. The classification 

for Non-Ryegrass vegetation had the lowest accuracy (Figure 3.5; F-score: 91%), which is likely 

since this class encompassed a mixture of primarily wheat and few other weed species, resulting 

in fuzzy, instead of distinct, boundaries for different features. As a result, there could have been 

several instances of misclassification with either Shadow and/or Ryegrass-A. Ryegrass-B had a 

higher F-score (94%) compared to Ryegrass-A (92.5%) and Non-Ryegrass vegetation (91%), 

which could be attributed to brighter pixels of Ryegrass-B compared to the rest of the vegetation 

pixels, leading to distinct separation for several features. However, Ryegrass-B and Bareground 

overlapped for several features, as a result of reflectance from debris present on the soil surface 

which often produced bright reflectance. 
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3.4.2. Prediction of Competitive Outcomes between Italian Ryegrass and Wheat 

The canopy coverage area (%) for Italian ryegrass (predictor variable) was computed 

from each classified map of quadrat image (Figure 3.6) and regressed against the ground truth 

data (predicted variables). In general, Italian ryegrass biomass and seed production increased 

with an increase in their canopy coverage area (as determined through image analysis) for the 

densities simulated here, with a concurrent decline in wheat biomass production and grain yield. 

The highest coefficient of determination (R2 = 0.87; RMSE = 66.03) was achieved for prediction 

of ryegrass biomass, followed by ryegrass seed yield (R2 = 0.74; RMSE = 32.44), wheat biomass 

reduction (%) (R2 = 0.73; RMSE = 9.27), and wheat grain yield reduction (%) (R2 = 0.69; RMSE 

= 10.94) (Figure 3.7). Results showed that Italian ryegrass coverage had a linear relationship 

with its biomass, and a curvilinear relationship with its seed production as well as biomass and 

grain yield reduction of wheat.  

3.4.3. Model Validation 

The early-season ryegrass canopy coverage maps developed with the DNN model for 

validation area in each site (Figure 3.8, top panel) and the competition models described above 

were utilized together to produce heat maps (1 m x 1 m grid size). These heat maps provide a 

visual representation of weed/crop competitive outcomes at the end of the season in terms of 

biomass and seed yield (Figure 3.8, bottom panel). Validation results showed that the coefficient 

of determination based on predicted (heat map-based) and observed values (ground-based) was 

the highest (R2 = 0.83; RMSE: 69.8) for Italian ryegrass biomass, followed by ryegrass seed 

yield (R2 = 0.72; RMSE = 17.9), wheat biomass reduction (%) (R2 = 0.63; RMSE: 10.57), and 

grain yield reduction (%) (R2 = 0.60; RMSE = 16.23) (Figure 3.9). Thus, the validation analysis 
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showed that the models developed in this study were generally robust in predicting end-of-

season productivity for Italian ryegrass as well as wheat. 

3.5. Discussion 

The results provide strong evidence that a combination of multiple classification features 

is more effective in species detection compared to employing individual features, but the choice 

of features is important. In this study, color-transformed features (hue and saturation) and 

vegetation indices (VARI and ExG) were found to be the most effective combination in detecting 

Italian ryegrass in wheat. Hue and saturation are invariant to brightness variation (Chaves-

González et al., 2010) and, therefore, are least affected by illumination differences by ryegrass 

leaves. Given the pale green color of ryegrass leaves compared to that of wheat, the difference in 

the greenness level was obvious with hue and saturation values. Several studies have credited 

hue and saturation for their ability to differentiate plants based on the greenness level (Burks et 

al., 2002; Hemming et al., 2001). Additionally, ExG was shown to be useful in separating plant 

tissues from other backgrounds (soil and weathered plant residue) (Yang et al., 2015). VARI was 

designed to be minimally sensitive to atmospheric effects, allowing precise estimation of the 

vegetative fraction of different plant species. Recently, VARI was found to be very useful in 

classifying real shadows from non-sunlit plant leaves in the canopy (Milas et al., 2017). This 

property of the index may have helped in reducing misclassification between shadow and non-

sunlit wheat/ryegrass plant canopies in our study, as there were several non-sunlit plant pixels 

with shadow-like appearance in both experimental sites. 

A very limited number of studies have detected/classified grass weeds in wheat using 

digital images (either handheld camera or UAS-derived) to date. Golzarian and Frick (2011) used 

very high-resolution true-color images (0.26 mm/pixel) for differentiating annual ryegrass and 
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wheat, with an accuracy of 88%. It should be noted that the current study utilized relatively 

lower spatial resolution (3 mm/pixel; Figure 3.4) and still achieved a higher accuracy (F-score: 

95%). This is particularly advantageous for optimizing computational costs and complexity when 

scaling up this approach for vast production fields. The reasons for the improvement in 

classification accuracy compared to that of Golzarian and Frick (2011) could be the use of 

DNNs, which have been proven to solve increasingly complicated applications with increasing 

accuracy over time (Goodfellow et al., 2016). However, the current study classified ryegrass at a 

relatively larger seedling stage compared to what was studied by Golzarian and Frick (2011), 

which may also have affected the learning capability of the classification model.  

Kodagoda et al. (2008) used an overhead imaging system fitted with color and near-

infrared cameras to capture high-resolution digital images in order to differentiate between wheat 

and two weed species, cobbler’s peg (Bidens pilosa L.) and rigid ryegrass (Lolium rigidium L.). 

Hue, saturation, and texture information of plant leaves were extracted from the digital images 

and fed into traditional machine learning algorithms such as k-means clustering and Mahalanobis 

distance. Although their model worked fairly well for differentiating cobbler’s peg from wheat 

(accuracy: 85%), it failed to detect and classify ryegrass from wheat (accuracy: 26%). 

Similarities of these two species in the distributions of hue, saturation, and texture cues were 

concluded to be the prime reason for the very low performance of the model. The current study 

also observed an overlap in the distribution of hue and saturation between ryegrass and non-

ryegrass vegetation (Figure 3.3); however, supplementing with vegetation indices such as ExG 

and VARI was beneficial for classification.  

Recently, convolutional neural networks (CNNs) have been widely appreciated for their 

high potential for detecting and mapping weeds (Gao et al., 2020; Huang et al., 2018; Sa et al., 
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2018). However, training a CNN model for segmentation generally requires a relatively large 

number of annotated labels for weeds and crop canopy boundaries, making the procedure labor-

intensive and time-consuming (Gao et al., 2020). The complexity in training data preparation 

manifolds due to the intricate labeling procedure for grasses caused by the extreme interlocking 

of leaves. Moreover, this annotation process is almost impossible if the resolution of the imagery 

is not high enough to clearly delineate leaf boundaries. Instead of a time-consuming and intricate 

weed annotation procedure, this study adopted the relatively easier training sample selection 

approach. The most representative pixels for each user-defined class were selected as the training 

samples and deep neural network system was trained over the samples to achieve higher 

accuracy. With the intensive feature optimization technique, this study generated various feature 

models and tested independently to obtain the most accurate model. Feature optimization 

processes, such as that described in the current research, are often reported to boost machine 

learning performance (Xue et al., 2013).  

To the best of our knowledge, very few studies have utilized DNN-based predictive 

models for understanding weed–crop interaction and explored the feasibility of predicting 

biomass and seed yield using plant canopy coverage information. Most of the existing yield 

prediction studies have heavily relied upon vegetation indices, especially Normalized Difference 

Vegetation Index (NDVI) (Fassnacht et al., 1997; Shanahan et al., 2001; Xue et al., 2007). 

However, several studies have reported that NDVI becomes saturated at high leaf-area index 

levels, which in turn may lead to inaccurate prediction of biomass and yield (Fassnacht et al., 

1997; Turner et al., 1999). This study, in contrast, utilizes vegetation indices and other promising 

features to classify the pixels pertaining to the class of interest and then uses the number of 
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pixels as the predictor variable for biomass and seed yield. Thus, this method avoids the risk of 

saturation and seasonal variability of vegetation indices, and leads to a better prediction.  

Relatively lower correlation for wheat biomass and grain yield reduction (%) compared 

to ryegrass biomass and seed yield in this study could be attributed to the use of ryegrass canopy 

coverage area (%) as the predictor variable. In particular, wheat grain yield reduction (%) had 

lower coefficient of determination compared to wheat biomass because grain yield is a complex 

trait and is affected by several factors including environmental and genetic factors (Slafer et al., 

1996; Yagbasanlar et al., 1995). Although biomass has been reported to be one of the primary 

determinants of grain yield, other factors such as grains per spike and spikelets per plant may 

also have an influence (Slafer et al., 1996). Thus, the competitive effect of ryegrass on wheat 

grain yield may not be proportional to the effect on wheat biomass, as explained by different 

coefficient of determination for wheat biomass and grain yield in this study.  

The ryegrass infestation map developed during the early season may help facilitate 

management interventions, including site-specific weed management (Thompson et al., 1991). 

The infestation maps can also be useful for monitoring ryegrass distribution and dynamics 

spatially and temporally. The predictive models and the spatial heatmap representation of weed-

crop competitive interactions as presented in this study can be highly useful for management 

decision making (Heather et al., 2001). Predicting weed-crop interference early-on can inform 

weed control thresholds required to minimize yield loss (Swanton et al., 1999). These spatial 

heatmaps together with weed control thresholds can be utilized to create management grids. It 

should also be noted that heat map representation of competitive interactions at the 1 m × 1 m 

grid level in this study can be scaled-up to various grid sizes to fit different management needs. 



 

65 

 

Furthermore, recommendations for the features and hyperparameters made in the study could be 

utilized in similar studies to improve the efficiency.  

This study, however, has some limitations: 1) only ANNs were tested for weed detection 

where several machine-learning classifiers such as random forest and support vector machine 

were available and already used for weed detection and mapping in the past. Future research 

should test these classifiers independently or maybe fused with more advanced deep-learning 

methods such as the CNNs; 2) broader applicability of the classification model presented here in 

wheat fields with varying geographies and environmental conditions is unknown. Wheat 

varieties may widely differ in leaf color and composition and thus may exhibit different spectral 

signatures. The model can be generalized and empowered with diverse training samples; 3) the 

competition models developed here were based solely on ryegrass canopy coverage area 

estimated from the aerial imageries. As such, this study did not attempt to utilize/evaluate 

already established weed-crop competitive models that were based on variables such as weed 

density (Cousens, 1985), biomass (Christensen, 1994; Colbach et al., 2014), and leaf-area index 

(Kropff et al., 1991). The effectiveness of the canopy/ground cover-based prediction compared 

to the previously established approaches is unknown. Future research should test and ensemble 

these approaches to improve the accuracy and feasibility of weed–crop interaction assessments; 

and 4) scaling this approach to large production fields may be challenging due to high 

computational demands.  

 

3.6. Conclusions 

This study successfully identified and demonstrated a UAS-based remote-sensing 

approach that combined both color transformed features and vegetation indices for improved 
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detection and mapping of Italian ryegrass in wheat (Highest F-score: 95.56 ± 4.11%). In 

addition, this study provided evidence that deep learning-based estimation of early-season plant 

canopy coverage can be a better predictor for competitive interactions, with relatively higher R2 

values for developed models [0.87 for ryegrass biomass (g), 0.74 for ryegrass seed yield (g), 0.73 

for wheat biomass reduction (%), and 0.69 for wheat seed yield reduction (%)]. This study also 

highlighted the value of affordable, computationally less complex, and less storage demanding 

RGB imageries in assisting farmers with weed assessment and precision weed management. The 

machine learning-based classification model and the weed–crop competition models developed 

and employed in the study will be helpful in devising suitable agronomic interventions. 
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3.8. Table and Figures 

Table 3.1. Details of various features extracted and/or computed for image classification, through several computational procedures on 

the pixel value of imageries. The value in parenthesis indicates number of features belonging to the feature category. 

Category Features Description/Formula ** Reference 

Original bands (3) Blue  - 

-  Green   

 Red  

Vegetation 

indices (3) 
Excess Green Index (ExG) 2× 

G-R-B

R+G+B
 

Woebeccke et 

al. (1995) 

 Triangular Greenness Index (TGI) - 
190 (R-G)-120(R-B)

2
 

Hunt et al. 

(2011) 

 
Visible Atmospheric Resistant 

Index (VARI) 

G-R

G+R-B
 

Gitelson et al. 

(2002) 

Color space 

transformed 

features (3) 

Hue  A gradation or variety of a color  

Shapiro (2001) Saturation Depth, purity, or shades of the color  

Value Brightness intensity of the color tone 

Wavelet 

transformed 

coefficients (2) 

Wavelet coefficient mean 
Mean value calculated for a pixel using discrete 

wavelet transformation 
Stanković and 

Falkowski 

(2003) 
 

Wavelet coefficient standard 

deviation 

Standard deviation calculated for a pixel using 

discrete wavelet transformation 

Principal 

components (1) 
Principal component 1 

Principal component analysis-derived component 

accounting maximum amount of variance  
Pearson (1901) 

**Abbreviations: R, G, and B represent Red, Green, and Blue bands, respectively 
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Table 3.2. Various hyperparameters and several potential values for corresponding 

hyperparameters tested for the best performance of the custom deep neural network system using 

the grid search cross validation method. A total of 150 trials were conducted to obtain the best 

set of values. 

Hyperparameter Values Selected Value(s) 

Number of hidden layers 1,2,3,4,5 5 

Nodes in hidden layers* 

(20) 

(40, 20) 

(60, 40, 20) 

(80, 60, 40, 20) 

(100, 80, 60, 40, 20) 

(100, 80, 60, 40, 20) 

Activation function 
“Rectified linear unit” 

“Sigmoid function” 

“Rectified linear unit” 

 

Batch size 10, 20, 30, 40, 50 20 

Number of epochs 100, 300, 500 100 

* The values for hyperparameter “nodes in hidden layers” were assigned with respect to 

“number of hidden layers”. 
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Table 3.3. Validation samples-based accuracy statistics for 10 best feature models used for 

detecting Italian ryegrass in wheat. The 10 best feature models were determined through the 

exhaustive feature selection process. The accuracy statistics for each feature model were based 

on 250 samples for each user-defined class. 

Feature Model # Features Used** Precision (%)* Recall (%)* F-score (%)* 

1 
Green, Blue, Hue, Sat, 

Value, TGI, ExG, PC-1 
94.28 ± 4.86 94.28 ± 5.24 94.27 ± 4.96 

2 Hue, Value, VARI, ExG 94.28 ± 4.50 94.28 ± 7.94 94.27 ± 5.26 

3 
Red, Hue, Sat, VARI, ExG, 

Wavelet_Mean 
94.95 ± 4.58 94.91 ± 4.98 94.91 ± 4.43 

4 Hue, VARI, TGI, ExG 91.53 ± 6.75 90.63 + 8.93 90.54 + 2.29 

5 

Green, Blue, Hue, Sat, 

Value, ExG, Wavelet_Mean, 

PC-1 

95.33 ± 4.23 95.38 ± 5.07 95.36 ± 4.14 

6 
Red, Green, Hue, Sat, ExG, 

Wavelet_Std 
94.45 ± 4.67 94.44 ± 5.83 94.41 ± 4.98 

7 
Red, Green, Hue, Sat, TGI, 

Wavelet_Std 
95.01 ± 4.31 94.94 ± 5.5 94.91 ± 4.25 

8 Sat, Value, VARI, ExG 91.74 ± 8.14 91.59 ± 9.48 91.54 ± 8.21 

9 
Red, Blue, Sat, VARI, ExG, 

Wavelet_Mean 
95.01 ± 4.71 94.97 ± 5.36 94.96 ± 4.67 

10 Hue, Sat, VARI, ExG 95.34 ± 4.27 95.68 ± 5.05 95.56 ± 4.11 

*A single mean value calculated by averaging the values of all the user-defined classes, and 

standard deviation value calculated among the accuracies for each user-defined class for each 

feature model. 

** Abbreviations: ExG-Excess Greenness Index, PC-Principal component, Sat-Saturation, TGI-

Triangular Greenness Index, VARI-Visible Atmospheric Resistant Index, Wavelet_mean-

Wavelet transformed coefficient mean value, Wavelet_std-Standard deviation of Wavelet 

transformed coefficients mean value. 
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Figure 3.1. Study locations (Burleson county, Texas, U.S.) and experimental setup for 

detecting Italian ryegrass and evaluating the competitive response with wheat using unmanned 

aerial vehicle (UAV)-based aerial true color imagery (spatial resolution 3 mm/pixel). The 

study locations are located approximately 4 km apart and are unique in edaphic characteristics. 

Training area includes all the experimental units that would be used for building predictive 

models and validation area includes the area that would be subjected to validate the accuracy 

of the model. 
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Figure 3.2. Flowchart for the overall methodology followed in this research for detecting 

Italian ryegrass in wheat and prediction of competitive interactions. The specific steps 

included (shown in dashed boxes) are: (a) image collection, (b) ground data collection, (c) 

image processing, (d) regression modeling, (e) model implementation and validation. 
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Figure 3.3. Boxplots showing the distribution of features for each of the user-defined classes, 

with X- and Y-axis being the user-defined classes and corresponding normalized values, 

respectively. The colored portion of boxplots shows inter-quartile range of the red band (a), 

green band (b), blue band (c), hue (d), saturation (e), value (f), Visible Atmospheric Resistant 

Index (g), Triangular Greenness Index (h), Excess Greenness Index (i), wavelet transformed 

coefficients mean (j), wavelet transformed coefficients standard deviation (k), and principal 

component 1 (l). 
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Figure 3.4. An example imagery showing Italian ryegrass coverage in wheat in a moderate 

density experimental unit (i.e., 1 m x 1 m quadrat) established in this study (a) and its 

corresponding classified map (b). The imagery for the experimental unit was classified using the 

best feature model determined in the study. The zoomed circles beneath the panels a and b 

represent a specific section of the imagery and its corresponding map. The red, yellow, and black 

colors in the map represent ryegrass coverage area, non-ryegrass vegetation, and baregound and 

shadow areas, respectively. 
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Figure 3.5. Accuracy statistics for the best model used for detecting Italian ryegrass in wheat, 

which combined color transformed features with vegetation indices. Precision, recall, and F-

score values (%) (Y-axis) are shown for each of the five user defined class (X-axis). 
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Figure 3.6. Implementation of the best model, that utilized color transformed features and 

vegetation indices, over training experimental units (1 m x 1 m quadrats) in both study sites 

(A and B) to detect and map Italian ryegrass in wheat. The figure consists of true color imagery 

and corresponding classified maps for the experimental units for weed-free check (Trt 1), low 

(Trt 2), moderate (Trt 3), and high (Trt 4) density treatments (red pixels: Italian ryegrass; 

yellow pixels: vegetation other than Italian ryegrass; and black pixels: bareground and 

shadow). Abbreviations: trt-treatments; rep-replications. Note: since each experimental unit 

was clipped based on the quadrat’s boundary visible in the imagery and because the imagery 

was not perfectly ortho-rectified, the size of the clipped units may range between 1 ± 0.05 m. 

However, this may not affect the analysis as ryegrass canopy coverage (%) was calculated 

based on the total size of the unit. 
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Figure 3.7. Regression analysis between Italian ryegrass canopy coverage area (%) determined 

using image analysis and ground truth Italian ryegrass biomass (a), Italian ryegrass seed yield 

(b), wheat biomass reduction (%) (c), and wheat grain yield reduction (%) (c), and wheat grain 

yield reduction (%) (d). The canopy coverage area (%) was derived from the classified images 

for experimental units (1 m × 1 m), whereas predicted variables (y-variables) were ground/field-

based data. 
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Figure 3.8. Implementation of predictive models over two validation sites (a and b). Predictions 

were done on 1 m × 1 m spatial grids created over the ryegrass canopy coverage map developed 

during early season (layers above the dashed line in the figure). The maps below the dashed line 

show the gradient of model predicted end-of-season estimates for different variables in each 1 m 

× 1 m grid. 
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Figure 3.9. Predicted vs observed values in the validation experiment for different competition 

models pertaining to Italian ryegrass biomass (a), Italian ryegrass seed yield (b), wheat biomass 

reduction (%) (c), and wheat grain yield reduction (%) (d). The red-dashed line represents 1:1 

slope line or reference diagonal line (expected values) and the black solid line represents the 

observed slope line between the predicted and observed datasets. The units of root mean square 

error (RMSE) values correspond to the units of respective predictor/observed values. 
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4. EVALUATING CROSS-APPLICABILITY OF WEED DETECTION MODELS ACROSS 

DIFFERENT CROPS IN SIMILAR PRODUCTION ENVIRONMENTS 

4.1. Abstract 

 Convolutional neural networks (CNNs) have revolutionized the weed detection process 

with tremendous improvements in precision and accuracy. However, training these models is 

time-consuming and computationally demanding; thus, training weed detection models for every 

crop-weed environment may not be feasible. It is imperative to evaluate how a CNN-based weed 

detection model trained for a specific crop may perform in other crops. In this study, a CNN 

model was trained to detect morningglories and grasses in cotton at early-mid growth stage. 

Assessments were made to gauge the potential of the very model in detecting the same weed 

species in soybean and corn under two levels of detection complexity (level 1 and 2). Two 

popular object detection frameworks, YOLOv4 and Faster R-CNN were trained to detect weeds 

under two schemes: Detect_Weed (detecting at weed/crop level) and Detect_Species (detecting 

at weed species level). In addition, the main cotton dataset was supplemented with different 

amounts of non-cotton crop images to see if cross-crop applicability can be improved. Both 

frameworks achieved reasonably high accuracy levels for the cotton test datasets under both 

schemes (Average Precision: 0.83-0.88 and Mean Average Precision: 0.65-0.79). The same 

models performed differently over other crops under both frameworks (Average Precision: 0.33-

0.83 and Mean Average Precision: 0.40-0.85). In particular, relatively higher accuracies were 

observed for soybean than for corn, and also for complexity level 1 than for level 2. Significant 

improvements in cross-crop applicability were further observed when additional corn and 

soybean images were added to the model training. These findings provide valuable insights into 

improving global applicability of weed detection models. 
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Keywords: deep learning, CNNs, digital technologies, precision weed control, site-specific weed 

control 

 

4.2. Introduction 

 Weeds are major pests in agricultural landscapes that can cause serious crop yield losses 

(Buchanan and Burns, 1970; Nave and Wax, 1971). A multi-tactic approach to weed 

management has become vital to thwart herbicide-resistant weed issues in cropping systems 

globally (Bagavathiannan and Davis, 2018). Injudicious use of agrochemicals has been linked to 

negative effects on non-target organisms and the broader environment (Liu and Bruch, 2020). 

Under the conventional broadcast approach, weed control tactics are applied without any regard 

to weed distribution and densities in the field. Weeds that escape the pre-emergent herbicides or 

mechanical tillage typically occur sparsely across the field. In such situations, weed control 

tactics can instead be strictly focused on areas of weed occurrence to save resources (Berge et al., 

2012). Site-specific management is expected to improve control outcomes and conserve 

management inputs (Beckie et al., 2019).  In recent years, great efforts have been placed for 

developing and utilizing ground robots (Aravind et al., 2015; Kargar and Shirzadifar, 2013; 

Lottes et al., 2019; Sujaritha et al., 2017) and unmanned aerial systems (UAS) for site-specific 

weed control (Ahmad et al., 2020; Martin et al., 2020).   

The precision weed control platforms ranging from ground robots to UAS-based selective 

spraying systems depend greatly on weed detection using computer vision techniques (Liu and 

Bruch, 2020; Machleb et al., 2020). The overall approach is to detect weeds in digital images and 

use the global positioning system coordinates of the detected objects for site-specific control 

operations (López-Granados, 2011). In addition to weed control, these techniques offer 
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tremendous opportunities for advancing weed ecology and biology research. Several image-

based weed detection techniques have been proposed and implemented. Based on developments 

made so far, these techniques can be broadly categorized into two main groups: 1) traditional 

segmentation and machine learning-based techniques (Ahmed et al., 2012; García-Santillán and 

Pajares, 2018; Rumpf et al., 2012; Sabzi et al., 2018; Sapkota et al., 2020; Wu et al., 2011) and 

2) advanced computer vision using convolution neural networks (CNNs) (Adhikari et al., 2019; 

Hu et al., 2021; Ma et al., 2019; Sharpe et al., 2020; Xie et al., 2021).  

The CNNs are a specialized type of neural networks that are designed to extract multi-

scale features and merge semantically similar features for better prediction and/or detection 

(LeCun et al., 2015). The use of CNNs in weed detection tasks has gained great attention lately 

due to their ability to learn complex features through dense and rigorous feature representations 

(e.g. Xie et al., 2021). The attention has been fostered by the transfer learning concept in CNN 

that allows sharing of common model weights from pre-trained models across different tasks 

(Abdalla et al., 2019; Fawakherji et al., 2019). The CNN-based object detection models have 

witnessed remarkable breakthroughs recently, and some of the detectors that have been widely 

used today for various detection tasks are Fast R-CNN (Girshick, 2015), Single-Shot Detector 

(Liu et al., 2016), Faster R-CNN (Ren et al., 2017), You Only Look Once (YOLO) (Redmon et 

al., 2016), YOLOv3 (Redmon and Farhadi, 2018), YOLOv4 (Bochkovskiy et al., 2020.), and 

more recently YOLOv5. 

With respect to weed detection, different CNN-based detection frameworks have been 

successfully applied for various tasks. Gao et al. (2020) used YOLOv3 and Tiny YOLO models 

for detection of Convolvulus sepium (hedge bindweed) in Beta vulgaris (sugar beets) using field-

collected and synthetic images. Using the same models, Jiang et al. (2020) also detected both 
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grass and broadleaf weed species in UAS-based Red-Green-Blue (RGB) imageries. Sharpe et al. 

(2020) detected goosegrass (Eleusine indica (L.) Gaertn.) in handheld digital camera-derived 

images obtained from two different horticultural crops, strawberry (Fragaria × ananassa)  and 

tomato (Solanum lycopersicum), using YOLOv3-tiny model. Using YOLOv3, Partel et al. (2019) 

detected Portulaca spp. in pepper (Capsicum annum) for a precision spraying system. Yu et al. 

(2019a) employed DetectNet to detect dandelion (Taraxacum officinale), ground ivy (Glechoma 

hederacea), and spotted spurge (Euphorbia maculata) in perennial ryegrass (Lolium perenne). 

Hu et al. (2021) tested Faster R-CNN, DeepLabv3, and Mask R-CNN for broadleaf and grass 

weed detection in cotton (Gossypium hirsutum) and soybean (Glycine max) using UAS-borne 

high-resolution images. 

Cross-applicability of the deep learning models for weed detection across different crops 

is vital for two important reasons. First, several weed species continuously occur in the rotational 

crops in a given production field (e.g. Amaranthus palmeri [Palmer amaranth] occurring in both 

soybean and corn (Zea mays) grown in rotation), and computer vision models should be able to 

detect these weeds in all crops in the production system. Secondly, it is likely that the dominant 

weed species might be similar across production fields within a locality, and the ability to use 

these models across multiple production fields might be beneficial from efficiency and economic 

standpoint. This is because CNN models usually require a large set of annotated training images 

for better performance (Gao et al., 2020; Oquab et al., 2014), which can be daunting.  

When only the weeds are annotated in the images and trained for detection, the model 

considers crops in the same images as part of the background during the training process. 

Therefore, during inference, different crops may mimic different backgrounds for the same 

trained weeds in the images. It is therefore unclear how changes in the background (crop species 
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in our case) may affect weed detection accuracies for different object detection frameworks 

under various detection scenarios. To the best of our knowledge, no study has looked at the 

cross-applicability of weed detection models across three of the most popular row crops in the 

United States: cotton, corn, and soybean. Such an investigation can further advance our 

understanding of weed detection models and help unleash their full potential.   

The main goal of the study was to build a model for weed detection in cotton and 

investigate the use of the same model for detection of the same weed spectrum in corn and 

soybean. This study has two specific objectives: 1) build and evaluate models for weed detection 

in cotton under two weed detection schemes (detection of weeds at the meta-level, and detection 

at the individual weed species level), and b) evaluate the performance of the cotton-based model 

on corn and soybean at different levels of detection complexity.  

 

4.3. Materials and Methods 

4.3.1. Study area and experimental setup 

 The study was conducted in 2020 and 2021 at the Texas A&M AgriLife Research farm 

(30°32′15″N, 96°25′35″W; elevation: 60 m). The location is characterized by a sub-tropical 

climate, with an average monthly maximum and minimum air temperatures during the study 

period (May – June) of 32.3°C and 21.3°C, respectively. Glyphosate-resistant (Roundup Ready®) 

cotton and glufosinate-resistant (Liberty Link®) soybean were planted in two separate strips 

(Figure 4.1) adjacent to each other on May 1, 2020 (for both crops), and April 20, 2021, at the 

seeding rates of 100,000 and 312,500 per hectare, respectively. Each crop was planted using a 4-

row seed drill (row spacing: 1 m), with strip sizes of 16 m x 30 m (2020) or 8 m x 40 m (2021). 

In 2021, corn (Roundup Ready®) was also planted (8 m x 40 m) adjacent to these crops at a 
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seeding rate of 150,000 ha-1. The fields were irrigated and fertilized as needed. The crops were 

grown following the recommended production practices for the region.  

In this study, weeds that escaped preemergence and early-post emergence herbicide 

applications were targeted for building and testing models. To this effect, postemergence 

applications of appropriate herbicides were made in all three crops following standard 

application procedures, resulting in random escapes at sufficient densities for imaging (Table 

4.1).  The dominant weed species in the study area were a mix of morningglories (Ipomoea spp.) 

that composed of tall morningglory (Ipomoea purpurea) and ivyleaf morningglory (Ipomoea 

hederacea), Texas millet (Urochloa texana), and johnsongrass (Sorghum halepense). Some other 

weed species occurred at low frequencies, including Palmer amaranth (Amaranthus palmeri), 

prostrate spurge (Euphorbia humistrata), and browntop panicum (Panicum fasiculatum). At the 

time of image collection, these weed species occurred at different growth stages, from cotyledon 

to about five true leaves. 

4.3.2. Workflow 

 The methodological workflow for this study involved three major steps: Data collection 

and management, model training, and model performance evaluation on different test datasets. 

See Figure 4.2 for a schematic diagram showing the workflow followed in this research. The 

following sections describe these three steps in more detail. 

4.3.3. High-resolution digital image collection  

 A 100-megapixel FUJIFILM GFX100 medium format mirrorless RGB imaging camera 

was integrated with a multi-copter drone, Hylio AG-110 (Hylio Inc., TX, USA) to capture high-

resolution aerial images of the crop fields (Figure 4.1). The images were captured by the drone 

operating at 4.9 m aboveground level and a speed of 0.61 m/s. The FUJIFILM GF 32-64 mm f/4 
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R LM WR lens was set at a focal length of 64 mm, shutter speed at 1/4000s, ISO at 1250, and f-

stop at 8, which resulted in high-quality images with a spatial resolution of 0.274 mm/pixel at the 

given flying height. Under such configurations, image resolution and quality were sufficient for 

young grass seedlings to be recognized in the images. However, the wind thrust (i.e. downwash) 

from the drone operation impacted some plants, causing them to look unreal in the images. They 

were excluded from the dataset before further analysis. All the images were stored in standard 

PNG format at 16-bit depth. Table 4.1 describes the details of the different image datasets 

collected in the study. 

A total of three flights were made to capture images for all the crops in 2020 and 2021. 

Two image datasets for each crop (Cotton 1 & Cotton 2, Soybean 1 & Soybean 2, and Corn 1 & 

Corn 2) were acquired (Table 4.1). For each crop, the second image dataset (e.g. Cotton 2) 

differed from the first dataset with respect to crop growth stage, weed density, and image 

acquisition conditions. Cotton 1 was the prime dataset for this study as this consisted of cotton-

weed images that were used for building the main model. This dataset was split into training 

(hereafter referred to as “Train100”), validation, and test datasets. Soybean 1 and Corn 1 datasets 

were also partitioned similarly to supplement training and validation images to Train100 during 

cross-applicability improvements later on. All images in Cotton 2, Soybean 2, and Corn 2 were 

used for testing purposes. Hereafter, these test datasets are referred to as “Cot1”,  “Cot2”, 

“Soy1”, “Soy2”, “Corn1”, and “Corn2” for respective crops.    

4.3.4. Weed detection 

4.3.4.1.  Image annotations 

 For this study, the images were annotated and recorded in COCO format as this format is 

inter-changeable to several formats quickly and easily. The VGG VIA image annotator (Datta 
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and Zisserman, 2019) was used to annotate the weeds with bounding boxes in each image. The 

annotations were recorded for three categories: morningglories (MG), grasses (Grass), and other 

weed species (Other). Both Texas millet and johnsongrass seedlings were labeled as “Grass” 

during annotation as classifying them was not the scope of this study.  

4.3.4.2. Weed detection in cotton 

 With respect to the first objective, i.e. develop and evaluate models for weed detection in 

cotton, the detection frameworks were trained with Train100.  Train100 comprised of 8,580 

annotations altogether, out of which MG, Grass, and Other represented 19.3, 79.5, and 1.2%, 

respectively (Table 4.2). Two popular object detection frameworks, YOLOv4 and Faster R-

CNN, were used in this study. YOLOv4 is the 4th subsequent version of the YOLO (Redmon et 

al., 2016), developed recently by Bochkovskiy et al. (2020).  This framework is a one-stage 

object detector that divides images into several grids and calculates the probabilities that the cell 

grids belong to a certain class by computing several feature maps. The bounding boxes are then 

predicted based on grids with the highest probability for the respective classes. The detector sees 

the entire image during training and inferences for encoding contextual information about 

classes. Faster R-CNN is the subsequent version of Fast R-CNN (Girshick, 2015) developed by 

Ren et al. (2017). In contrast to the YOLO frameworks, Faster R-CNN is a two-stage object 

detector composed of two modules working together. The first module is a Region Proposal 

Network (RPN) that proposes several candidate regions in the image. The second module is the 

detector that first extracts features from dense feature maps for the regions selected during RPN 

and then calculates the confidence score for each region that contains the object of interest 

(Girshick, 2015).  
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 On-the-fly augmentation of data was carried out for both the frameworks. The ‘mosaic’ 

augmentation (Bochkovskiy et al., 2020) was enabled for YOLOv4, whereas the ‘flip and resize’ 

augmentation was performed with the default data loader when training Faster R-CNN. Pre-

trained models as provided by the github sources ( 

https://github.com/facebookresearch/detectron2 for Faster R-CNN and 

https://github.com/AlexeyAB/darknet for YOLOV4 for YOLOv4) were used for model 

initialization.  A mini-batch Stochastic Gradient Descent method was used for model loss 

optimization for both frameworks. Faster R-CNN was trained for 50,000 iterations whereas 

YOLOv4 was trained for 6,000 epochs. The definition for iterations and epochs for these 

frameworks implies different meanings and are explained in their respective github 

documentation resource. The model weights were saved after every certain number of iterations 

or epochs so that the weight resulting in the highest validation accuracy can be chosen at the end 

for further analysis. Because of the differences in their detection mechanisms, these two 

frameworks could provide different results for the same detection problem. Hence, evaluation of 

these two frameworks can provide valuable insights into what level of accuracy can be expected 

for the given detection problem.  

  Hereafter, the model trained with Train100 is referred to as the “main cotton model”. 

Two different schemes were designed for weed detection. In the first scheme, hereafter referred 

to as “Detect_Weed”, frameworks were trained to detectweeds at the meta-level irrespective of 

the species. The label names for MG, Grass, and Other were merged and labeled as “Weed” 

while training under this scheme. However, in the second scheme, hereafter referred to as 

“Detect_Species”, frameworks were trained to detect weeds at the species level. For training this 

scheme, the original annotation dataset that had separate labels for MG, Grass, and Other were 

https://github.com/facebookresearch/detectron2
https://github.com/AlexeyAB/darknet%20for%20YOLOV4
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used. These schemes have different significance depending on how they are utilized for 

management. Currently, most of the mechanical platforms for real-time weed control employ 

“Detect_Weed” scheme for precision control actions (Gai et al., 2020). In most of the existing 

commercial platforms, detectors are trained to only detect weeds, but not required to classify 

them at the species level, as the weeds are pulled, zapped, or clipped regardless of species in 

these platforms. However, selective herbicide spray systems would require detection and 

classification of individual weeds for species-specific herbicide input. Hence, it may be 

informative to investigate how these two frameworks behave under these weed detection 

schemes.  

4.3.4.3. Cross-crop applicability analysis 

 With respect to the second objective, i.e. assess the scope and prospects for applying the 

main cotton models to corn and soybean, the performance of the main cotton models was 

evaluated for each test dataset. In addition, the four non-cotton test datasets (i.e. Soy1, Soy2, 

Corn1, and Corn2) were grouped into two complexity levels based on their similarity in weed 

pressure conditions and image acquisition environment. It was assumed that these factors would 

have more influence than the similarity between crops.  Thus, Soy1 and Corn1 were grouped 

under complexity level 1 while Soy2, and Corn2 under level 2. Cot2 was not grouped under any 

complexity level, but was rather considered as a replicate of Cot1. In the complexity level 1, the 

Soy1 and Corn1 differed from the Cotton 1 dataset only for the background crop species, 

whereas the weed density, growth stages of weeds, and image acquisition conditions were 

similar. In the complexity level 2, the datasets differed not only for the background crop species, 

but also for weed density, growth stages of weeds, and light conditions; these differences 

constitute a higher level of complexity to the weed detection process. Evaluations with these two 
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complexity levels advance our understanding of the model performances under various 

environments.  

4.3.4.4. Cross-crop applicability improvement with training size expansion 

 The third objective was to test if supplementing Train100 with additional training images 

from Soybean 1 and Corn 1 image datasets improves prediction for corn and soybean. As the 

frameworks were trained to recognize only the weeds and consider crops as part of the 

background, changes in crop species might confuse the frameworks as to what comprises the 

background. This confusion intensifies when the frameworks infer upon crop species that were 

never seen before. Due to this situation, it was assumed that exposing these unseen crops to the 

frameworks might help boost the confidence score for background. It was more desirable to 

achieve considerable improvement in the performance with a minimal number of Soybean 1 and 

Corn 1 images. For this purpose, ten additional training datasets were prepared by randomly 

selecting an equal proportion of soybean and corn images and adding them to the main train 

dataset (i.e. Train100) such that the new dataset size didn’t exceed 150% of the Train100 size 

(Table 4.2). Both frameworks were trained independently using ten different training datasets 

listed in Table 4.2 under the two detection schemes and were validated against test datasets. The 

same pre-trained models provided by the github source were used for model initialization for 

each training dataset. Moreover, configurations were also kept the same for these two 

frameworks. 

4.3.4.5.  Accuracy metrics for performance evaluation 

 The standard performance metric called Mean Average Precision (mAP) was calculated 

to assess the performance of weed detection under Detect_Species, whereas Average Precision 

(AP) was used as the performance metric for Detect_Weed. In recent years, these metrics have 
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been frequently used to assess the accuracy of object detection tasks. mAP is a mean of AP 

calculated for each class to be detected/predicted by the model. AP for each class is calculated as 

the area under a precision-recall curve. The area is determined in two stages. First, the recall 

values are evenly segmented to 11 parts starting from 0 to 1. Second, the maximum precision 

value is measured at each level of recall and averaged to determine AP (Equation 1).  

AP = 
1

11
∑ 𝑝𝑚𝑎𝑥 (𝑟)𝑟 ∈ {0,0.1,0.2...1}            (Equation 1) 

where 𝑝𝑚𝑎𝑥  represents maximum precision measured at respective recall (𝑟) level. 

 Precision and recall values are in turn calculated using the Equations 2 and 3, respectively.   

   Precision = 
𝑇𝑃

𝑇𝑃 +𝐹𝑃
                                   (Equation 2) 

Recall = 
𝑇𝑃

𝑇𝑃 +𝐹𝑁
                                         (Equation 3) 

where 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 denote true positive, false positive, and false negative samples, 

respectively. 

True positives, false positives, and false negatives are identified with the help of the 

Intersection over Union (IoU) ratio. This ratio is calculated by comparing the ground truth box 

with the model predicted box. If the ratio is above the user-defined threshold, the predicted box 

is labeled as TP. In this study, the threshold for IoU was set to 0.5.  The mAP value ranges 

between 0 to 1, with 0 indicating null accuracy and 1 indicating perfect accuracy. Only the AP 

for MG and Grass were averaged to calculate mAP under Detect_Species. AP for Other were 

found to be very low due to a very small test sample size during the evaluation which led to non-

representative mAP values; thus, the accuracy for Other category was excluded during the 

evaluation process for both frameworks and schemes.  
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4.4. Results & Discussion 

4.4.1. Performance of the main cotton model over cotton test datasets 

 Two popular object detection neural networks, YOLOv4 and Faster R-CNN were trained 

to detect weeds in cotton and non-cotton crops. Train100 was used to build two cotton-weed 

detection models under different detection schemes for each framework. Both YOLOv4 and 

Faster R-CNN provided reasonably fair accuracy levels under both detection schemes for Cot1 

(Table 4.3). Under Detect_Species, AP was higher for MG compared to Grass. Although grasses 

were visible to naked eyes and also discernible in the images, the model failed to detect a few 

grass instances. On the contrary, the model led to over-detection (i.e. more plants were predicted 

than what was present) when these grasses had multiple tillers spread out. Lottes et al. (2018) 

also observed lower AP for grasses compared to broadleaves when they tested their weed 

detection model on UAV imageries. However, the opposite was true when they tested on images 

collected using a ground robot.  

When the same models were tested over the second cotton dataset (i.e. Cot2) collected in 

2021, the AP & mAP values declined by 12.5% & 14.5% and 11.7% & 22.5% for YOLOv4 and 

Faster R-CNN, respectively. Unlike Cot1, AP was higher for Grass than for MG for both 

frameworks under Detect_Species. It should be noted that Cot2 differed from Cot1 in three 

aspects: 1) Cot2 had a relatively higher density of weeds and the median size of MG and Grass 

differed from that of Cot1, 2) some of the cotton plants in Cot2 had slightly different visual 

appearance due to herbicide drift, and 3) the illumination conditions for Cot2 was slightly darker 

than that of Cot1. Hu et al. (2021) suggested that illumination conditions can affect weed 

detection accuracy. With respect to herbicide drift impact, Suarez et al. (2017) found in cotton 

that drift can lead to a significant change in the spectral behavior of the crop. All these reports 
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indicate that morphological, agronomical, and illumination differences can be attributed to the 

lower accuracy levels observed for Cot2.  

Very few studies have looked at weed detection and mapping in cotton. Alchanatis et al. 

(2005) used rank order algorithms and neighborhood operations to detect broadleaves and grass 

weeds in cotton. With their approach, 86% of the true weed area was correctly identified, with 

only 14% misclassified as cotton. Lam et al. (2002) developed an early growth stage weed 

control system for cotton. Using morphological analysis such as binarization and erosion, their 

system was able to correctly identify and spray 88.8% of the weeds. On a different note, both 

frameworks used in this study have been already used in other weed detection studies. For 

example, Gao et al. (2020) employed YOLOv4 and Tiny YOLO to detect field bindweed 

(Convolvulus sepium) in sugar beet (Beta vulgaris) fields. They used synthetic images in addition 

to real images to train the framework and obtained an mAP50 value of 0.829 for field bindweed 

detection. Osorio et al. (2020) used YOLOv3 and other object detection frameworks for weed 

detection in commercial lettuce crops and obtained an overall accuracy of 89% with YOLOv3. 

Using the Faster R-CNN framework with the Inception_ResNet-V2 backbone, Le et al. (2020) 

achieved an mAP0.50 value of 0.55 for detection of wild radish (Raphanus raphanistrum) and 

capeweed (Arctotheca calendula) in barley. The overall accuracy obtained in this study for weed 

detection compares well with reported accuracies by past studies.         

4.4.2. Cross-crop applicability of main cotton models  

 The main cotton models were also applied over non-cotton test datasets (i.e. Soy1, Soy2, 

Corn1, and Corn2) under both detection schemes. The main goal was to see if one crop-based 

weed detection model can be used to detect the same weeds in other crop species under similar 

or different agronomic and image acquisition conditions. The detection results by both 
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frameworks for different test datasets under Detect_Species and Detect_Weed are shown in 

Figures 4.3 and 4.4, respectively for qualitative evaluation. The Detect_Species cotton model 

performed satisfactorily for Soy1 and Soy2 datasets, while not so effectively for Corn1 and Corn 

2 datasets. The Detect_Weed model performed the same way except that AP was higher for 

Corn1 but not for Soy2. The significant difference in performance between Faster R-CNN and 

YOLOv4 for Soy2 under Detect_Weed is notable. In this regard, YOLOv4 predictions on Soy2 

images were further investigated. Several MG were not detected by the model, resulting in many 

false negatives. AP/mAP for non-cotton test datasets was not better than that of Cot1 for both 

frameworks. Among non-cotton test datasets, the highest AP/mAP was obtained for Soy1 for 

both frameworks (Table 4.3). Further, in general, the model performed relatively better on 

complexity level 1 than level 2 (Figure 4.5). The difference in performance was more obvious 

under Detect_Weed for both frameworks. 

It was notable that Soy1 yielded higher AP/mAP values than Cot2 for both frameworks 

under both schemes. The authors could think of two reasons for this outcome: Soy1 had similar 

weed density and sizes to that of Train100; further, Soy1 and Train100 datasets were acquired at 

the same time, and hence illumination conditions were exactly the same. Here, higher accuracy 

for Soy1 suggests that illumination conditions and weed density can impose more influence on 

the detection accuracy. In general, higher accuracies were obtained for soybean datasets 

compared to corn datasets. The main reason could be the confusion between Grass and corn 

plants. A few instances of corn plants were detected as Grass by the model as they looked similar 

during early growth stages. Such misclassification was also observed when corn was 

distinctively larger than grasses. This suggests that the model may have focused more on the 

canopy structure than canopy size. Further, the detection performances between complexity 
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levels were in line with our expectations. The primary reason for higher accuracy with 

complexity level 1 was the similar illumination conditions and weed density to the training 

dataset, i.e.  Train100 as compared to the level 2 test datasets.  

4.4.3. Cross-crop applicability improvement with additional non-cotton image datasets 

 Train100 was supplemented with different amounts of training images from Soy1 and 

Corn1 to generate various training datasets. These datasets were used to train new models under 

two detection schemes and finally, the built models were tested over cotton and non-cotton test 

datasets. Both frameworks showed general increments in accuracy with the addition of non-

cotton crop images under both detection schemes (Figure 4.6). The rate of increment, however, 

varied across test datasets, frameworks, and detection schemes (Table 4.4). The trend was 

relatively smoother for Faster R-CNN compared to YOLOv4 for all test datasets. The increment 

was the highest for Corn2 and the lowest for either of the cotton test datasets for both 

frameworks and detection schemes. AP/mAP for test datasets under each complexity level were 

averaged along with Cot1 values to calculate average AP/mAP (Figure 4.7). The trend was 

smoother for Faster R-CNN compared to YOLOv4 for all complexity levels.  

4.4.4. Scope and limitations of the study 

 Cross-crop applicability assessments conducted in this study provides useful insights into 

how models can be generalized for broad application. Such generalization could save enormous 

efforts and resources and help make rapid progress towards effective site-specific weed 

management. Cross-applicability has become an absolute necessity owing to the huge data 

requirements by the CNN models for a given crop-weed environment. Often, a significant 

amount of data resources is used to train a weed detection model for a single crop environment. 

For example, Yu et al. (2019) used a total of 29,000 images to train a model that could detect 
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multiple weeds in perennial ryegrass. Czymmek et al. (2019) trained a model to detect weeds in 

organic carrot farms using 2500 images. It is increasingly important to focus on how these data 

resources can be exploited strategically for maximizing efficiency and productivity. By testing 

the approach of data supplementation, this study demonstrated that cross-crop applicability can 

be improved with such tactics.  

It should be noted that this study evaluated CNN model cross-applicability for crops that 

had similar weed compositions. The cross-crop applicability findings from this study do not 

apply to crops differing in weed species composition. In other words, the models would fail to 

perform if applied over soybean and corn infested with other weed species. A single crop-based 

model may not be effectively applied at regional scales where weed composition differs. 

Furthermore, not all the hyperparameters for both frameworks used in the study were tuned, but 

rather used as defaults in the settings. The reported accuracies may change if parameters are 

tuned.   

 

4.5. Conclusions  

 The study explored two popular object detection frameworks under two useful detection 

schemes for weed detection in cotton. The study also evaluated the feasibility of cross-crop 

applicability of the cotton model and experimented with several amounts of non-cotton images to 

improve cross-applicability. Based on the results, the following main conclusions could be 

derived: 

a. The cotton model achieved reasonably high weed detection accuracy in cotton test 

datasets. 
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b. The cotton model achieved a fair level of accuracy on non-cotton crops infested with 

similar weed compositions. On average, the performance was better for soybean than for 

corn. 

c. The cross-crop applicability was improved (AP/mAP: + 3.61% to 127.27%) when 

Train100 was supplemented with non-cotton images.  

The outcomes of this study are expected to advance our understanding of cross-crop applicability 

of weed detection models. Such understanding will guide our efforts towards optimal use of data 

resources and accelerate weed detection, mapping, and site-specific management in agricultural 

systems. In the future, CNN model cross-applicability will be assessed for additional crops and 

different levels of complexities. 
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4.7. Tables and Figures 

Table 4.1. Various datasets used in the study. 

Abbreviation: Train- Training; Val-Validation; MG-Morningglores; TM-Texas millet; JG- Johnsongrass 

a- The annotations statistics shown within the brackets are given in %. 

 

 

 

 

Image 

dataset 

name 

Acquisition 

Date 

Crop/growth stage Weed composition/growth 

stage 

Weed density (plants 

m-2) 

Image 

acquisition 

conditions 

Train/Val/Test 

[images, 

annotations] 

Annotation 

compositiona 

[MG, Grass, Other] 

1 Cotton 1 

(Test data  

referred to 

as Cot1) 

May 06, 2020 Cotton: 4-5 leaves MG: cotyledon-4 leaves 

JG: 2-3 leaves 

TM: 2-3 leaves 

 

18 Sunny Train: [460, 8580] 

Val: [100, 721] 

Test: [100, 848] 

[19.3, 79.5, 1.2] 

[22.4, 74.2, 3.4] 

[51.8, 48.1, 1.1] 

2 Cotton 2 

(referred to 

as Cot2) 

June 13, 2021 Cotton: 2-4 leaves MG: cotyledon-6 leaves 

TM: 2-4 leaves 

 

 

21 Partially 

cloudy 

Test: [95, 600] [36, 63.8, 0.2] 

 

3 Soybean 1 

(Test data  

referred to 

as Soy1) 

May 06, 2020 Soybean: 6-7 leaves MG: cotyledon-4 leaves 

JG: 2-3 leaves 

TM: 2-3 leaves 

 

17 Sunny Train: [115, 990] 

Val: [25, 200] 

Test: [100, 848] 

[46.4, 53.48, 0.07] 

[48.4, 50.8, 0.8] 

[54.22, 43.22, 

2.56] 

4 Soybean 2 

(referred to 

as Soy2) 

May 14, 2021 Soybean: 1-3 leaves MG: cotyledon-6 leaves 

TM: 2-4 true leaves 

 

21 Cloudy Test: [97, 547] [63.07, 35.4, 1.53] 

5 Corn 1 

(Test data  

referred to 

as Corn1) 

May 07, 2021 Corn: 2-3 leaves MG: cotyledon-3 leaves 

JG: 2-3 leaves 

TM: 2-3 leaves 

 

18 Sunny Train: [115, 1010] 

Val: [25, 215] 

Test: [100, 890] 

[81.16, 16.75, 2.1] 

[95.2, 4.1, 0.7] 

[94.62, 4.9, 0.48] 

 

 

6 Corn 2 

(referred to 

as Corn2) 

May 14, 2021 Corn: 3-4 leaves MG: cotyledon-6 leaves 

TM: 2-4 true leaves 

 

23 Cloudy Test: [95, 559] [80.5, 17.5, 2] 
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Table 4.2. Various training datasets evaluated in the study for training YOLOv4 and Faster R-CNN and annotations record for each 

training dataset. 

Training dataset Non-cotton Images (%)a Annotations 

  MG (%) Grass (%) Other (%) Total 

Train100b 0  19.3 79.5 1.20 8,580 

Train105 5 20.0 78.8 1.25 8,775 

Train110 10 20.7 78.0 1.23 8,915 

Train115 15 21.7 77.1 1.21 9,072 

Train120 20 22.9 75.9 1.19 9,234 

Train125 25 23.0 75.7 1.33 9,480 

Train130 30 23.9 74.7 1.32 9,689 

Train135 35 24.3 74.4 1.34 9,827 

Train140 40 25.0 73.7 1.32 9,970 

Train145 45 25.5 73.2 1.31 10,113 

Train150 50 25.7 73.0 1.29 10,198 

Abbreviation: MG- Morningglories; Grass- Grass weeds; Other – Weeds other than MG and Grass 

aThe numerical figures in this column indicate the percentage of images added to Train100 (i.e. 460 images). 

bTrain100 had a total of 460 cotton images and 0 non-cotton images. 

“Train100” represents the dataset with cotton images only, i.e. no non-cotton images. The last two digits of training dataset names represent the percentage of 

non-cotton images added to Train100 randomly for building the respective training dataset. The percentage was with respect to Train100.  
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Table 4.3. Accuracy obtained for various test datasets with YOLOv4 and Faster R-CNN under Detect_Weed and Detect_Species 

using the main cotton model. 

 Detect_Weed  Detect_Species 

 YOLOv4 

Faster R-

CNN YOLOv4 Faster R-CNN 

 AP AP AP (MG) AP(Grass) mAP AP (MG) AP(Grass) mAP 

Cot_1 0.88 0.87 0.88 0.83 0.85 0.86 0.79 0.83 

Cot_2 0.79 0.74 0.71 0.79 0.75 0.60 0.70 0.65 

Soy_1 0.83 0.76 0.83 0.75 0.79 0.72 0.70 0.71 

Soy_2 0.35 0.60 0.63 0.64 0.64 0.72 0.49 0.61 

Corn_1 0.72 0.62 0.88 0.15 0.52 0.78 0.15 0.47 

Corn_2 0.33 0.39 0.65 0.15 0.40 0.54 0.03 0.29 

Abbreviations: MG- Morningglories; Grass- Grass weeds; AP – Average Precision; mAP- Mean Average Precision 

AP and mAP values were computed to assess the performance of the main cotton model over the test datasets. mAP was calculated by 

averaging AP for MG and Grass. AP was calculated as a function of precision and recall values obtained when Intersection Over 

Union was set to 0.5. 
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Table 4.4. The maximum rate of increment in accuracy for various test datasets with the addition 

of non-cotton images. 

 

Detect_Weed (AP%) Detect_Species (mAP%) 

 

YOLOv4  Faster R-CNN YOLOv4 Faster R-CNN 

Cot1 2.27 2.29 5.89 2.42 

Cot2 7.60 2.70 2.00 7.70 

Soy1 3.61 5.26 6.32 7.74 

Soy2 122.8 16.00 11.90 8.27 

Corn1 31.9 53.22 12.62 34.40 

Corn2 127.27 69.23 28.75 58.62 

Abbreviations: AP-Average Precision; mAP- Mean Average Precision 

The rate was determined by subtracting the accuracy obtained with Train100 (no non-cotton 

images) from the highest accuracy obtained among all training datasets for the respective test 

dataset. 
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Figure 4.1. a) Study area (Texas A&M AgriLife Research Farm, Burleson County, TX) and field 

setup for the two experimental years; b) a multi-copter drone (Hylio Inc., Houston, TX, USA) 

attached with Fujifilm GFX100 (100 MP) camera; and c) image datasets (top and bottom rows) 

collected under two different environmental conditions for cotton, soybean, and corn. 
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Figure 4.2. Schematic showing the workflow used in the study. The study began with data 

collection using an UAV and the collected data were distributed for training and test datasets. 

Data management was followed by model training under two detection schemes: Detect_Weed 

(detecting at weed/crop level) and Detect_Species (detecting at weed species level). After the 

models were trained, they were evaluated on the test datasets (Other was excluded during the 

calculation of accuracy metrics). Average Precision (AP) and mAP (Mean Average Precision) 

was used as the metrics for performance evaluation. 
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Figure 4.3. Weed detection using bounding boxes by the main cotton models under 

“Detect_Weed” scheme for various test datasets used in the study. YOLOv4 and Faster R-CNN 

were trained with the Train100 dataset (i.e. dataset containing cotton images only) to develop the 

main cotton models. Under this scheme, MG, Grass, and Other were combined into “Weed” 

category while training the model. 
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Figure 4.4. Bounding boxes generated for MG and Grass by the main cotton models under 

“Detect_Species” scheme for various test datasets used in the study. YOLOv4 and Faster R-CNN 

were trained with the Train100 dataset (i.e., dataset containing cotton images only) to develop 

the main cotton models. Under this scheme, MG, Grass, and Other were trained as separate 

categories. 
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Figure 4.5. Average Precision (AP) and Mean Average Precision (mAP) achieved for different 

complexity level datasets with main cotton models. Complexity level 1 datasets include Soy1 

and Corn1 whereas level 2 include Soy2 and Corn2. The main cotton models were derived by 

training the detection frameworks (YOLOv4 and Faster R-CNN) with Train100 (i.e. dataset 

containing cotton images only). The AP/mAP for datasets under each complexity level were 

averaged to derive average AP and mAP. 
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Figure 4.6. Line plots showing Average Precision (AP) and Mean Average Precision (mAP) 

achieved with various training datasets for each test dataset used in the study for both 

frameworks and detection schemes. Various training datasets were created by adding Soy1 and 

Corn1 training images to the original dataset, i.e. Train100. These non-cotton crop images were 

added 5% at a time until they amounted to 50% of Train100. The last two digits in the training 

dataset name denote the % of images added to Train100. 
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Figure 4.7. Line plots showing Average Precision (AP) and Mean Average Precision (mAP) 

achieved for each complexity level with YOLOv4 and Faster R-CNN. Complexity level 1 

datasets include Soy1 and Corn1, whereas level 2 include Soy2 and Corn2. AP and mAP for 

Cot1 dataset were also included in the averaging process of each complexity level to understand 

how well the models perform with both cotton and non-cotton datasets. 
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5. EVALUATING IMAGE SYNTHESIS TECHNIQUES FOR TRAINING A DEEP 

LEARNING MODEL TO DETECT WEEDS AND ESTIMATE BIOMASS IN FIELD CROPS 

 

5.1. Abstract 

 Site-specific treatment of weeds in agricultural landscapes has been gaining importance 

in recent years due to economic savings and minimal impact on the environment. Over the years, 

advanced precision systems have been developed for site-specific weed treatment; weed 

detection is usually the most crucial component of these systems. Different detection methods 

have been developed and tested, but recent developments in neural networks have offered great 

prospects. However, a major limitation with the neural network models is the requirement of 

high volumes of data for training. The current study aims at exploring an alternative approach to 

real images to address this issue. In this study, synthetic images were generated with various 

strategies using plant instances clipped from UAV-borne real images to train a powerful 

convolutional neural network (CNN) known as "Mask R-CNN" for weed detection and 

segmentation. The study was conducted on morningglories (MG) and grass weeds (Grass) 

infested in cotton. The biomass for individual weeds was also collected in the field for biomass 

modeling using detection and segmentation results. Results showed comparable performance 

between the synthetic and real images. Around 40-50 plant instances were sufficient for 

generating synthetic images that resulted in optimal performance. Row-orientation of cotton in 

the synthetic images was beneficial compared to random-orientation. Synthetic images generated 

with automatically-clipped plant instances performed similar  to the ones generated with 

manually-clipped instances. Generative Adversarial Networks-derived fake plant instances-based 

synthetic images did not perform as effective as real plant instance-based images. The canopy 
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mask area predicted weed biomass with R2 values of 0.66 and 0.46 for MG and Grass, 

respectively.  The findings of this study offer valuable insights for guiding future endeavors 

oriented towards using synthetic images for weed detection and segmentation, and biomass 

estimation in row crops. 

Key words: Precision weed management, digital agriculture, computer vision, synthetic images, 

Mask R-CNN 

 

5.2. Introduction 

 Weeds cause severe crop yield loss and therefore timely and effective management is key 

to increased agricultural productivity. The conventional weed control approach may provide 

effective weed control but is often inefficient and expensive.  The precision weed management 

approach can improve resource use efficiency and economics by restricting the inputs to only 

where needed. This approach, however, can be complex as it comprises several components 

including weed detection and actuation systems. The weed detection system is an important 

component since it guides the actuation systems. Several detection models have been designed 

and tested so far (Ahmed et al., 2012; Rumpf et al., 2012; Sapkota et al., 2020) but the 

convolutional neural network (CNN)-based models have revolutionized this domain.  

 CNN is a class of artificial neural networks that create numerous feature maps from input 

images to learn the semantic pattern of the object (LeCunn et al., 2015). Their ability to self-

optimize the parameters to improve the pattern recognition process allows for complex object 

detection. CNNs are increasingly used for weed detection, owing to their great accuracy and less 

human supervision requirements. Liu and Bruch (2020) used the You Only Look Once 

(YOLOv2), a lightweight CNN framework, to detect weeds in romaine lettuce in digital RGB 
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images and achieved the highest mean average precision (mAP) value of 0.91. Yu et al. (2019a) 

detected dandelion (Taraxacum officinale), ground ivy (Glechoma hederacea), and spotted 

spurge (Euphorbia maculata) in perennial ryegrass using DetectNet frameworks with an F-score 

>0.92. Lottes et al. (2018) employed CNN with an encoder-decoder structure to detect weeds in 

sugar beet and achieved an average F-score of 0.92.  

 CNNs usually require a large number of training samples for better training. Manual data 

annotations for large training sample sets can be tedious and laborious (Hu et al., 2021). 

Additionally, it is at times difficult to obtain large image datasets specific to the needs. One way 

to deal with these problems would be to create real-looking artificial images. An increasingly 

common approach of image synthesis is to clip the real plants in the imagery, apply 

modifications to clipped plants, and finally paste over the background images to create synthetic 

images (Dwibedi et al., 2017; Georgakis et al., 2017). Few studies have already embraced this 

concept for weed detection tasks. For example, Gao et al. (2020) created 2271 synthetic images 

using this approach to train the YOLOv3 and tiny YOLO models in combination with 452 real 

field images. They applied three types of modifications (zoom, flip, and rotation) to 

automatically clipped individual instances and pasted them at a random position within the 

image.  Hu et al. (2021) also used the same approach to create a synthetic image dataset to train 

weed detection models. They used manually-clipped, instead of automatically-clipped, plants in 

the image synthesis procedure. Skovsen et al. (2021) also implemented the same concept to 

generate huge amounts of synthetic images for grass-clover mixtures. While automating the plant 

clipping process can speed up image synthesis, it is unknown whether it can yield the same 

levels of accuracy as manually-clipped plants. It is also unknown whether crop positions in the 

synthetic images affect the performance of detection and segmentation. To the best of our 
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knowledge, no study has evaluated the image synthesis concept for training an instance 

segmentation model. 

 It can at times be difficult to obtain real plant images and therefore fake plants can be 

great alternatives to real plant instances for generating synthetic images. One of the promising 

techniques for creating fake images of object of interest available today is Generative 

Adversarial Networks (GANs). GANs have been successfully used for various image processing 

and computer vision tasks ranging from fashion design to video games. Recently, GANs have 

been utilized for various predictive tasks in the agricultural domain, including weed 

detection/classification in digital images (Espejo-Garcia et al., 2021; Fawakherji et al., 2020; 

Kerdegari et al., 2019). Espejo-Garcia et al. (2021) tested several architectures and 

configurations of GANs for creating artificial images of tomatoes and black nightshade. The 

models trained with these images were able to distinguish between these two plant species with 

very high accuracy. For example, Wang et al. (2020) used Wasserstein GANs for enhancing 

RGB images to train semantic segmentation models that could perform pixel-wise segmentation. 

Very few studies have utilized GANs for weed  detection and segmentation. 

 In addition to weed localization, biomass information can also be useful for precision 

weed control systems. With this information, herbicide spray systems can be configured to 

deliver spray output optimized for plant biomass, thus saving resources. Previous studies have 

used various techniques for estimating plant biomass using digital technologies. For example, 

Harket et al. (2020) used LiDAR-derived 3D point clouds to estimate biomass for winter wheat, 

potato, and sugar beet. Using the depth and RGB image-based volume reconstruction method, 

Andújar et al. (2016) calculated 3D mesh volume for weeds to estimate weed biomass. Although 

these 3D techniques are proven to result in more accurate biomass estimation, they are 
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computationally more expensive and often inefficient compared to the 2D-image based 

techniques. A simple 2D approach that utilizes plant coverage information has been studied by 

Skovsen et al. (2020). However, these studies have investigated biomass estimation in a unit 

area, rather than that of individual plants, which is critical for precision management. The current 

study explores the feasibility of a simple 2D approach coupled with instance segmentation for 

estimating biomass at the individual plant level.  

 In this study, the main goal was to investigate various methods of generating synthetic 

images for training a Mask R-CNN model for weed detection and segmentation. The objectives 

of the study were: 

1. Explore the potential of synthetic images in training and building a robust mask R-CNN 

model 

a. Evaluate the effect of crop row arrangement, instance diversity, and clipping method on 

synthetic image quality and performance 

b. Compare the performance of real plant-based vs fake plant-based synthetic images  

c. Evaluate performance gain with the mixed dataset (real + synthetic images) 

2. Assess the potential of a deep learning model-based segmentation results in estimating above-

ground biomass of weeds  

 

5.3. Materials & Methods 

5.3.1. Study area and experimental setup 

 The study was conducted in summers of 2020 & 2021 at the Texas A&M AgriLife 

Research farm (30°32′15″N, 96°25′35″W; elevation: 70 m). The location is characterized by a 
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sub-tropical climate, with an average monthly maximum and minimum temperature during the 

study period (May – June) of 32.3°C and 21.3°C, respectively. Cotton was chosen as the model 

row crop for this study. Glyphosate-resistant (Roundup Ready®) cotton was planted at the 

seeding rate of 100,000 per hectare on May 1, 2020 and April 20, 2021, respectively using a 4-

row seed drill (row spacing: 1 m). Cotton was grown following the recommended production 

practices for the region. The dominant weed species in the study area were a mix of 

morningglories (Ipomoea spp.) that comprised of tall morningglory (Ipomoea purpurea) and 

ivyleaf morningglory (Ipomoea hederacea), Texas millet (Urochloa texana), and johnsongrass 

(Sorghum halepense). Some other weed species occurred at low frequencies, including Palmer 

amaranth (Amaranthus palmeri), prostrate spurge (Euphorbia humistrata), and browntop 

panicum (Panicum fasiculatum). At the time of image collection, weed species occurred at 

different growth stages, from cotyledon to about five true leaves (Table 5.1). 

5.3.2. Data collection 

5.3.2.1. High resolution digital images  

 A 100-megapixel FUJIFILM GFX100 medium format mirrorless RGB imaging camera 

was integrated with a multi-copter drone, Hylio AG-110 (Hylio Inc., TX, USA) to capture high-

resolution aerial images of the cotton in summer of 2020 and 2021, hereafter referred as Cotton 1 

and Cotton 2 dataset, respectively. The images were captured by the drone operating at 4.9 m 

above the ground level and a speed of 0.61 m/s. The FUJIFILM GF 32-64 mm f/4 R LM WR 

lens was set at a focal length of 64 mm, shutter speed at 1/4000s, ISO at 1250, and f-stop at 8, 

which resulted in high-quality images with a spatial resolution of 0.0274 mm/pixel at the flying 

height specified above.  All the images were stored in standard PNG format at 16-bit depth. 

Cotton 1 was the main dataset and comprised 560 images out of which 460 were reserved for 
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training and validation dataset and remaining 100 as hold-out test dataset. Whereas, Cotton 2 had 

100 images for test purposes. 

5.3.2.2. Above-ground weed biomass collection 

 A total of 15 quadrats (1 m2) were randomly placed in a cotton field (0.12 ha) for weed 

biomass collection in 2020 and 2021. Each plant in the quadrat was clipped at the ground level 

and stored in separate paper bags. The location of each weed in the quadrat was physically 

mapped on a paper for later use during image analysis to identify and reference each individual. 

In total, 60 morningglories and 58 grass weed instances were clipped in 2020, and 44 and 41 

respectively in 2021. The clipped plants were dried in an oven at 60°C for 48 hours for dry 

biomass measurement. 

5.3.3. Methodology for objective 1 

 The general workflow for this experiment is shown in Figure 5.1. The workflow shows 

progression of major methodological steps undertaken for both the objectives.  

5.3.3.1. Synthetic image generation pipeline  

 The synthetic image generation pipeline (SIGP) consisted of three main components 

(Figure 5.1). The first component included the instance pool (IP) which consisted of individual 

plants clipped either from real images or individual fake plants generated and stored in a 4-band 

(RBGA) PNG format. The second component included a random modifier (RM) algorithm that 

randomly obtained instances from the IP and applied several  modifications to those instances. 

The modifications were made in three ways: a) rotating instances by a random angle between 0-

180, b) transforming instances with a random size factor ranging between 0.6 and 1.2, and c) 

changing digital values for hue and saturation of instances by 0 - 10%. The third component 

included a paste operator (PO) algorithm that pasted modified instances at user-defined or 
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random locations in the soil background images to create synthetic images. Five representative 

soil background images of 2048 × 2048 pixels were clipped from real images acquired using the 

Fujifilm camera. The PO recorded information on the locations where instances were pasted as 

well as several other metadata such as instance id, instance category, image id, etc. to create 

annotation dictionary for each image. The PO finally merged the annotation directories for all the 

images to create an annotation file in the .json file format. The pipeline was programmed in such 

a way that each image would have 4 instances for each of the three categories: a) cotton, b) MG, 

and c) Grass.  

Algorithm 1: Row-oriented synthetic image generation pipeline  

Input: Instance pool 𝑃, background image templates 𝑇 =  {𝑏1, 𝑏2, . . . , 𝑏𝑚 | 𝑚 = 1 … 5}, plant 

species 𝑘 =  4, plant count per each species 𝑑 =  4 , target image width 𝑤, target image height 

ℎ,  

Output: Synthetic images I 

1 F𝐨𝐫 i =  1 to k do: 

2  𝐅𝐨𝐫 j =  1 to d do: 

3   Randomly select a background template 𝑏𝑚 from T 

4   Randomly select a plant instance from 𝑃 corresponding to 𝑖𝑡ℎ 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 

5   Randomly rotate a plant instance with a rotation angle 𝜃 within   

  (0, 2𝜋) 

6   Randomly change color by magnitude in % ranging between (0, 10%) 

7   Randomly scale the plant instance by factor between (0. 7, 1.3) 

8   if j ==  cotton do: 
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9    Paste at location q where 𝑞 = (
3𝑤

8
, 𝑏) 𝑤ℎ𝑒𝑟𝑒 𝑏 ∈ {0,

ℎ

4
,

ℎ

2
,

3ℎ

4
} 

10   else: 

11    Randomly paste  at (x, y) location where 𝑥 ∈  [0, 𝑤] 𝑎𝑛𝑑 𝑦 ∈

                                                       [0, ℎ]  

 

5.3.3.2. Effect of crop row arrangement 

 The aim was to evaluate if the row arrangement of crops was important for row crops 

such as cotton in the synthetic images for better training results. To test this, two sets of synthetic 

images were generated: a) images with cotton lined-up in a row (row-oriented), and b) images 

with cotton pasted in random locations (randomly-pasted) (Figure 5.2a). First, real plants for 

cotton, MG, and Grass were clipped to canopy boundary from the real images to create an IP. 

Fifty instances were clipped for each class. Second, the SIGP was implemented with a slight 

change in the PO, which was programmed to paste the cotton instances coming from RM in two 

ways: a) following user-defined locations to line up in a row for row-oriented images, and b) 

following machine-generated random locations for random-oriented images. The synthetic image 

sets were then used for training the model separately. In order to evaluate how the results change 

with image resolution, another sets of synthetic images with reduced image resolution (512 × 

512 pixels) for both arrangements. Assessments were made to compare the performance of the 

models.  

5.3.3.3. Effect of instance diversity  

 The aim was to determine how the IP size influences the performance of the Mask R-

CNN model. It was hypothesized that the more the number of plant instances used in SIGP, the 
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more the variance captured by the synthetic images, and thus better the training. Altogether, 

seven IPs with varying sizes were created that contained 1, 5, 10, 20, 30, 40, and 50 instances 

from each class. Seven different synthetic image and annotation datasets were created from 

respective IPs, which were then used to train and build detection models. Individual assessments 

were made to compare the performance of each model.  

5.3.3.4. Effect of instance clipping method 

 The goal was to compare the performance between the models trained with synthetic 

images generated using plant instances clipped manually or automatically. The real images 

captured with the Fujifilm camera were subjected to automated plant clip pipeline (APCP) 

(Figure 5.2b). The algorithm logic used in APCP is shown in Algorithm 2. First, the excess 

greenness index (ExG) was calculated for selected real images using equation 1. Second, Otsu’s 

method was employed to mask the bareground. Finally, an alpha channel was added to the 

resultant image to create a 4-band (RBGA) PNG image. The plant instances clipped 

automatically or manually were fed into SIGP to generate individual sets of synthetic images.  

   𝐸𝑥𝐺 =  
2∗𝑔 − 𝑟 − 𝑏

𝑟+𝑔+𝑏
                                                                                     

(Equation 1)  

where 𝑔, 𝑟, 𝑎𝑛𝑑 𝑏 represent digital values for green, red, and blue channels, respectively.  

Algorithm 2: Automated plant clipping pipeline 

Input: RGB images  

Output: Individual plant instances in RBGA format (PNG) 

1 Generate an ExG layer using Equation 1 
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2 Determine Otsu’s threshold for ExG layer 𝑇 =  𝑚𝑎𝑥 (𝑊𝑏𝑊𝑓 (𝜇𝑏  − 𝜇𝑓)2, where 𝑊𝑏, 

𝑊𝑓 , 𝜇𝑏, 𝜇𝑓 represent weights (W) and mean values (𝜇) for the background and 

foreground, respectively  

3 Generate a binary image f by applying 𝑇 

4 Apply a dilation and erosion function to 𝑓 using 3 ×  3 𝑘𝑒𝑟𝑛𝑒𝑙 𝑘 

 𝐷𝑓  =  { (𝑥,𝑦) = 0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(𝑥,𝑦) = 1     𝑖𝑓 𝑜𝑛𝑒 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛 𝑘 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑠 𝑤𝑖𝑡ℎ 𝑎 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛 𝑓

 }, where 

 𝐷𝑓 denotes dilution function; (𝑥, 𝑦) represents the intersecting pixel between the  center 

of 𝑘 and 𝑓   

 𝐸𝑓  =  { (𝑥,𝑦) = 1     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(𝑥,𝑦) = 0     𝑖𝑓 𝑜𝑛𝑒 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛  𝑘 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑠 𝑤𝑖𝑡ℎ 𝑎 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛 𝑓

 }, where 

 𝐸𝑓 denotes erosion function; (𝑥, 𝑦) represents the intersecting pixel between the  center 

of 𝑘 and 𝑓 

5 Add an alpha channel to RGB for converting to RGBA 

 

5.3.3.5. Performance of real plant instances Vs fake plant instances 

 The aim was to compare the performance of fake plant-based synthetic images with real 

plant-based synthetic images. An improved GAN framework called StyleGAN2 with adaptive 

discriminator augmentation (StyleGAN-ADA) developed by NVIDIA (Karras et al., 2020) was 

used in this study to generate fake plants. GANs are essentially composed of two main networks, 

a generator and a discriminator (Figure 5.3a). The generator deterministically generates samples 

from latent variables whereas the discriminator distinguishes samples from the real dataset and 

the generator. The model was trained with 50 instances of each class using the official 
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TensorFlow implementation code provided in (https://github.com/NVlabs/stylegan2-ada). The 

training samples were subjected to an on-the-fly augmentation process to increase the sample 

size. A pre-trained network model ‘ffhq256’ was used as the base model for transfer learning. 

After model training, approximately 50 fake plant instances in 3-band format were generated for 

each class, which were then passed through the APCP method to create a new IP comprised of 4-

band PNG images (Figure 5.3b). The new IP was subjected to SIGP to create a unique set of 

synthetic images. The sample results obtained at different training phases of GAN is shown in 

Figure 5.3c. The algorithm logic for the GAN process is provided in Algorithm 3.  

Algorithm 3: The GAN process for fake plant instance generation 

Input: Instance pool for Cotton 𝑃𝑐 , MG 𝑃𝑚, Grass 𝑃𝑔  with size 𝑚; pretrained styleGAN-ADA 

model 𝑀; number of plant instances to be generated 𝑁  

Output: Individual plant instance for each species in RBGA format 

1. Train M with 𝑃𝑐 , 𝑃𝑚, 𝑃𝑔 individually to generate custom trained models 

𝐶𝑐, 𝐶𝑚, 𝑎𝑛𝑑 𝐶𝑔, respectively  

𝐿𝐷  =
1

𝑚
∑[𝑙𝑜𝑔 D (𝑥𝑖)  +  𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧𝑖)]

𝑚

𝑖=1

 

𝐿𝐺  =
1

𝑚
∑  𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧𝑖)

𝑚

𝑖=1

 

where  D (𝑥𝑖)  denotes a label predicted by the discriminator for real image 𝑥𝑖, 𝐷(𝐺(𝑧𝑖) denotes 

a label predicted by the discriminator for fake images produced by the generator, and 

𝐿𝐷 𝑎𝑛𝑑 𝐿𝐺  denote loss functions for the discriminator and the generator, respectively. 

2. For 𝑖 =  1 𝑡𝑜 𝑁 𝒅𝒐: 

https://github.com/NVlabs/stylegan2-ada
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 Generate fake plant instances for Cotton 𝐶𝑓 , MG 𝑀𝑓, and Grass 𝐺𝑓 using respective 

 trained models 

3. Apply algorithm 2 with inputs as 𝐶𝑓 , 𝑀𝑓, 𝑎𝑛𝑑 𝐺𝑓 

 

5.3.3.6. Performance gain with mixed dataset 

 The idea was to compare the performance of a mixed dataset (real images + synthetic 

images) with just a synthetic image-derived dataset. For this, a total of 460 real images acquired 

using the Fujifilm camera sensor were manually annotated for Cotton, MG, and Grass 

individuals. The polygon annotations were drawn for each plant in all the images. The synthetic 

image dataset was combined with a real image dataset to create the mixed dataset. The synthetic 

dataset that yielded the highest accuracy in the earlier analysis was chosen for inclusion in the 

mixed dataset. The mixed dataset comprised a total of 1,210 images and 18,000 annotations that 

were separately used to train the Mask R-CNN model.  

5.3.3.7. Model training and accuracy assessment 

 Mask R-CNN, an instance segmentation model (He et al., 2015), was used for weed 

detection and segmentation in this study. Mask R-CNN is similar to its predecessor “Faster R-

CNN” framework except that it has an additional mask branch that results in an object mask in 

addition to the bounding box. Both Faster R-CNN and Mask R-CNN are two-stage object 

detectors composed of two modules. The first module is a Region Proposal Network (RPN) that 

proposes several object candidate regions in the image using anchors. The second module is a 

detector that works in two steps. First, it extracts features from dense feature maps for the 

regions selected during RPN and in the second step, it calculates the confidence score for each 

region that contains the object of interest (Girshick, 2015). Detectron2-a PyTorch-based modular 
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object detection library (https://github.com/facebookresearch/detectron2), was used to implement 

Mask R-CNN in this study. A pre-trained model provided by the repository was used for transfer 

learning. Mask R-CNN was trained, validated, and tested with different sets of images 

generated/acquired in real-world settings to evaluate the effects as discussed earlier in the 

manuscript (Table 5.2). The configurations set for the model are provided in Table 5.3. It should 

be noted that annotation proportion of real image training dataset was imbalanced between the 

species. To minimize the biasness due to imbalanced dataset in training, a data sampler known as 

“RepeatFactorTrainingSampler” was used instead of regular data sampler while training the 

model. This sampler first computes per-image repeat factors based on category frequency for the 

rarest category for the given image and creates a list of image indices that needs to be repeated 

while feeding into the model in each to use for one epoch 

(https://detectron2.readthedocs.io/en/latest/_modules/detectron2/data/samplers/distributed_sampl

er.html).  

 Cotton1 and Cotton2 test datasets were used for the assessment of all the models trained 

in this study. The standard performance metric called Mean Average Precision (mAP) was 

calculated to assess the performance of the Mask R-CNN model. mAP was calculated separately 

for both model results, bounding box (bbox) and mask. mAP for these results is hereafter 

referred as mAPb and mAPm, respectively. In recent years, these metrics have been frequently 

used to assess the accuracy of object detection and segmentation tasks (Gao et al., 2020; Hu et 

al., 2021). mAP is a mean of AP calculated for each class to be detected/predicted by the model. 

AP for each class is calculated as the area under a precision-recall curve. The area is determined 

in two stages. First, the recall values are evenly segmented to 11 parts starting from 0 to 1. 

https://github.com/facebookresearch/detectron2
https://detectron2.readthedocs.io/en/latest/_modules/detectron2/data/samplers/distributed_sampler.html
https://detectron2.readthedocs.io/en/latest/_modules/detectron2/data/samplers/distributed_sampler.html
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Second, the maximum precision value is measured at each level of recall and averaged to 

determine AP (Equation 2).  

AP = 
1

11
∑ 𝑝𝑚𝑎𝑥 (𝑟)𝑟 ∈ {0,0.1,0.2...1}            (Equation 2) 

where 𝑝𝑚𝑎𝑥  represents maximum precision measured at respective recall (𝑟) level. 

 Precision and recall values are in turn calculated using the Equations 3 and 4, respectively.   

   Precision = 
𝑇𝑃

𝑇𝑃 +𝐹𝑃
                                   (Equation 3) 

Recall = 
𝑇𝑃

𝑇𝑃 +𝐹𝑁
                                         (Equation 4) 

where 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 denote true positive, false positive, and false negative samples, 

respectively. 

True positives, false positives, and false negatives are identified using the Intersection over Union 

(IoU) ratio criterion. This ratio is calculated by comparing the ground truth box/mask with the 

model predicted box/mask. If the ratio is above the user-defined threshold, the predicted box/mask 

is labeled as TP. In this study, the threshold for IoU was set to 0.5.  The mAP value ranges between 

0 and 1, with 0 indicating null accuracy and 1 representing perfect accuracy.  

5.3.4. Methodology for objective 2 

 The second objective of the study was aimed at assessing the potential of detection results 

(i.e. weed canopy masks and bounding boxes) in estimating above-ground weed biomass. The 

best model evaluated among all the models developed earlier was chosen for this purpose. The 

model was applied over the test images that contained the weeds sampled for biomass 

measurements. Both the detected bounding box and segmented canopy mask area of respective 

weeds were calculated and regressed separately with above-ground biomass collected for each 
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species. The coefficient of determination was calculated to assess the biomass predictability of 

model outputs. 

 

5.4. Results & Discussion 

5.4.1. Effect of crop row arrangement  

 Two different sets of synthetic images were produced (row-oriented and randomly-

oriented) to test the importance of crop row orientation in the images for model performance. 

The row-oriented dataset resulted in higher mAPb and mAPm for both cotton datasets compared 

to the randomly-oriented dataset. This was true when training the model at both the original size 

(2048 x 2048 pixels) and at a reduced resolution (512 × 512 pixels) (Figure 5.4). The accuracy 

was greater when training was performed on the original size images. The detection and 

segmentation results using both sets of images are shown in Figure 5.5. The discrepancy in 

performance was more obvious for Cotton2 than for Cotton1. The Mask R-CNN framework used 

the ResNet101 backbone for feature extraction. This backbone has 101 layers that is able to learn 

a multitude of patterns and complex features at various scales (He et al., 2015). It is likely that 

the row-arrangement of cotton was well- recognized by the edge detector filters at the shallow 

layers of ResNet, which may have contributed to efficient learning at higher levels. The higher-

level feature map may have highlighted cotton row as a prominent feature as these maps are 

derived from a series of convolution operations from lower-level feature maps.   

5.4.2. Effect of instance diversity  

 Seven different sets of synthetic images were generated with different IP sizes.  The main 

goal was to evaluate the effect of IP size on the synthetic image quality and performance. As 

expected, the performance differed across different IP sizes (Figure 5.5a). In general, the mAPb 
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and mAPm showed an increasing trend with increases in IP from 1 to 50 for both the cotton 

datasets (Figure 5.5b). It is notable that an IP size of 1 resulted in a satisfactory mAP value of 

0.55. The rate of increase flattened towards an IP size of 40, indicating that any further increase 

in IP size may not necessarily improve the performance significantly. Hu et al. (2021) also 

observed no significant improvements beyond an IP size of 68 when training a Faster R-CNN 

model with synthetic images. Overall, results indicate that quality synthetic images can be 

generated even with low IP sizes, given that the samples are truly representative of the objects of 

interest.  

5.4.3. Effect of clipping methods  

 Models were trained using two different sets of synthetic images generated with the IP 

that comprised of manually-clipped and automatically-clipped plants. The overall results for 

Cotton1 and Cotton2 showed that automatically-clipped plants can perform comparably to the 

manual-clipping method (Figure 5.6). In particular, mAPb and mAPm were similar between the 

two clipping methods for both cotton datasets. In total, it took 170 minutes to manually clip 150 

plant instances, whereas the same instances were clipped and sorted automatically just in 5 mins, 

a 34-fold faster rate. Gao et al. (2020) also successfully used automatically clipped plant 

instances to generate synthetic images for training a weed detection model. The present study 

provides a comparative evaluation of these two common methods by testing for a multi-class 

detection and mask generation problem.   

5.4.4. Performance of GAN-derived fake plants Vs real plants 

 The performance of GAN-derived fake plant-based synthetic images and real plant-based 

synthetic images was evaluated to independently train the Mask R-CNN model. The real plant-

based model resulted in a better accuracy compared to the GAN-based model for both cotton 
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datasets (Figure 5.7). In general, MG was misclassified as cotton and vice-versa whereas such 

errors were less common with Grass. Such similarity in appearance could be attributed to 

misclassification between cotton and MG. It is likely that the training sample size employed for 

styleGAN in our case (~50 plants per class) was not sufficient for generating high quality fake 

plants. However, the GAN approach is still promising for training the weed detection and 

segmentation model. Fawakherji et al. (2021) utilized a conditional GAN to generate realistic 

multi-spectral synthetic images and used them in combination with the original images in the 

training process. They observed improvements in the segmentation performance by the model.   

5.4.5. Performance of the mixed dataset Vs real dataset 

 The mixed dataset did not result in a significant performance gain in this study. For both 

cotton datasets, the performance of the mixed dataset was generally comparable to the real 

dataset (Figure 5.8). This finding doesn’t conform previous reports (e.g. Gao et al. 2020) that 

found considerable improvements in accuracy with the addition of synthetic images to real image 

dataset for training. The lack of improvements in accuracy in this study could be attributed to the 

fact that the real images utilized here contained sufficient variance for different objects of 

interest. In future, a subset of the real image dataset could be mixed with the synthetic images to 

gain more insights into the critical minimum number of real images required for training. 

5.4.6. Assessing the biomass predictability of model outputs  

 The area of the bounding boxes and canopy masks resulting from Mask R-CNN were 

regressed independently with biomass of respective weeds to determine the biomass 

predictability of model outputs. The regression was performed separately for MG and Grass. For 

both groups, the canopy mask area was found to be a better estimator compared to the bounding 

box area. Further, biomass was estimated more accurately for MG (R2=66) than for Grass 
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(R2=0.40) with canopy mask area (Figure 5.9). The bounding boxes overestimate the leaf surface 

area, which is not systematic owing to varying canopy structure of plants. This problem is 

pronounced in the case of Grass due to the random orientation of Grass leaves, resulting in 

increased bounding box area. This could be the prime reason why the canopy mask area was 

more effective in estimating biomass than the bounding box area. The reason the authors could 

think of why biomass for MG were better predicted compared to Grass using mask area is that 

Grass had extremely low biomass and such biomass measurements were prone to errors. 

Vanamberg et al. (2007) utilized digital image analysis to estimate aboveground biomass of 

shortgrass prairie and obtained an R2 value of 0.55. Albert et al. (2019) effectively used canopy 

coverage area to estimate weed dry biomass in a grass-clover mixture. Skovsen et al. (2019) also 

found a linear association between model predicted visual weed fraction in pixels and fractional 

weed biomass in kg. Both of these studies investigated weed biomass estimation in a unit area 

that included multiple plants. However, the current study explored the feasibility of biomass 

prediction at an individual plant level, which is crucial for site-specific weed management. The 

results indicate that canopy mask area can be a reliable predictor of biomass, especially for 

broadleaved weeds.  

 

5.5. Conclusions 

 This study explored various strategies for generating synthetic images in training a Mask  

R-CNN model for weed detection and segmentation. The feasibility of biomass estimation with 

the Mask R-CNN model outputs was also assessed. The important take-aways from this study 

are: 
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• Synthetic images can be a great alternative to real images. In this study, real plant 

instance-based synthetic images provided ~80% of the accuracy that was achieved with 

original real images. 

• Row-orientation of cotton in the synthetic images proved to be beneficial compared to 

random orientation. This calls for a careful selection of crop positions in the images while 

generating synthetic images. 

• About 40-50 real plant instances were sufficient for generating synthetic images for 

optimal performance. This implies that the quality (i.e. variability) of plant instances can 

be prioritized over the number of plant instances. 

• Synthetic images generated with automatically-clipped plant instances performed 

comparably to the ones generated with manual clipping. This suggests that enormous 

amounts of time and other resources could be saved by clipping plant instances 

automatically. 

• The GAN-derived fake plant instance-based synthetic images did not provide accuracy 

levels comparable to that of the real plant instance-based synthetic images. However, it 

should be noted that a small training sample size was used in this study for training the 

GAN model, which may have resulted in low-quality synthesis. 

• Weed segmentation output (i.e. canopy mask area) can be a good predictor for biomass, 

especially for broadleaved weeds. 

There are several other benefits of synthetic images. For example, synthetic images as generated 

in this study can be greatly utilized temporal image analysis as classification models can be 

quickly trained. However, the findings presented in this study are not applicable to every single 
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situation, and they do have some practical limitations. For example, automatic clipping may be 

challenging under complex crop-weed background scenes, including occlusions. Further, the 

optimal IP size reported in this study may not be sufficient for other row-crops and weed species 

depending on the level of variability in the population.  Future research should investigate these 

questions. 
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5.7. Tables and Figures 

Table 5.1. Crop-weed conditions during real image dataset acquisition in 2020 and 2021 using a 

Fujifilm camera. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image 

dataset 

name 

Acquisition 

Date 

Cotton growth 

stage 

Weed 

composition/growth 

stage 

Weed density 

(plants m-2) 

Cotton1 May 06, 2020 4-5 leaves MG: cotyledon-4 leaves 

JG: 2-3 leaves 

TM: 2-3 leaves 

 

18 

 

 

 

Cotton2 June 13, 2021 2-4 leaves MG: cotyledon-6 leaves 

TM: 2-4 leaves 

21 
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Table 5.2. Details on training, validation, and test datasets used in this study. 

Image dataset # of images # of 

annotations 

Annotation 

composition 

Real_training_image_dataset 460 9115 Cotton: 7.65% 

MG: 17.8% 

Grass: 75.01% 

 

Synthetic_training_image_dataset 770 9237 Cotton: 33.34% 

MG: 33.32% 

Grass: 33.34% 

 

Real_validation_image dataset 100  Cotton: 7.65% 

MG: 17.8% 

Grass: 75.01% 

 

Real_test_image_dataset (Cotton1) 100 848 Cotton: 12.66% 

MG: 45.31% 

Grass: 42.01% 

 

Real_test_image_dataset (Cotton2) 50 976 Cotton: 10.04% 

MG: 7.4% 

Grass: 82.01% 
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Table 5.3. Major hyperparameters and values used with Mask R-CNN training. 

Major hyperparameters Values 

BACKBONE ResNet101 

EPOCH* 50000 

BASE_LEARNING_RATE 0.001 

LEARNING_RATE_SCHEDULER_NAME WarmupMultiStepLR 

MOMENTUM 0.9 

WEIGHT DECAY 0.0001 

RPN_BATCH_SIZE_PER_IMAGE 256 

RPN_NMS_THRESHOLD 0.7 

ANCHOR_SIZES [32, 64, 128, 256, 512] 

NUMBER OF CLASSES* 3 

CHECKPOINT_PERIOD* 5000 

TEST_EVAL_PERIOD* 1000 

1Hyperparameters with * were used with custom values whereas hyperparameters (without *) 

were used in default values. The description of the hyperparameters can be found at 

https://detectron2.readthedocs.io/en/latest/modules/index.html. 
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Figure 5.1. Workflow diagram for the methodology implemented in this study. The pale green 

and blue sections show the schematic for objectives 1 and 2, respectively. The objective 1 is 

aimed at testing several models with different-source input images, whereas the objective 2 

determines the predictability of model results to estimate above-ground biomass of weeds 

 

 



 

152 

 

 

Figure 5.2. a) A representative sample for row-oriented and randomly-oriented images produced 

with the synthetic image generation pipeline, b) The automated plant clipping pipeline to derive 

PNG images with alpha channel, and c) Comparison of automatically-clipped and manually-

clipped PNG instances for the given real plant images. 
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Figure 5.3. a) Schematic showing the general workflow for a simple generative adversarial 

network (GAN) model, b) Additional post-processing step for generating new fake plant PNGs 

using the custom trained styleGAN model, and c) sample results obtained with the custom 

styleGAN model at various stages of the training process. 
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Figure 5.4. Results obtained from models trained with row-oriented and randomly-oriented 

synthetic images: a) Detection and segmentation results obtained for both test datasets (Cotton1 

and Cotton2) with the original image size (2048 x 2048) and reduced image size (512 × 512), 

and b) mAP values (mask and bbox) obtained for Cotton1 and Cotton2. 
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Figure 5.5. Results obtained from models trained with synthetic images generated using various 

instance pool (IP) sizes: a) Detection and segmentation results obtained for Cotton1 with IP=1, 

IP=20, and IP=50, and b) Mean average precision (mAP) values compared for bounding box 

(bbox) and mask results for Cotton1 and Cotton2, obtained for IP sizes ranging from 1 to 50. 
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Figure 5.6. Results obtained with models trained with synthetic images generated using manual 

clip and automatic clip method: a) Detection and segmentation results obtained for both test 

datasets (Cotton1 and Cotton2), and b) Mean average precision (mAP) values for bounding box 

(bbox) and mask results obtained for Cotton1 and Cotton2 
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Figure 5.7. Results obtained from models trained with synthetic images generated using real 

plant instances and generative adversarial network (GAN)-derived fake plants: a) Detection and 

segmentation results obtained for the test datasets Cotton1 and Cotton2, and b) Mean average 

precision (mAP) values for bounding box (bbox) and mask results obtained for Cotton1 and 

Cotton2. 
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Figure 5.8. Results obtained from models trained with real image dataset and mixed dataset 

(original real images + real plant-based synthetic images): a) Detection and segmentation results 

obtained for the test datasets Cotton1 and Cotton2, and b) Mean average precision (mAP) values 

for bounding box (bbox) and mask results obtained for Cotton1 and Cotton2. 
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Figure 5.9. Regression analysis for estimating biomass for morningglories (a, b) and grasses (c, 

d) with bounding box and canopy mask area, respectively. The red line represents the best fitted 

line estimated by the regression analysis. Altogether, 99 (60 in 2020 & & 40 in 2021) MG and 

Grass individuals were sampled for biomass, respectively. 
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6. CONCLUSIONS 

 

 This dissertation explored and experimented with integrated geospatial and computer 

vision techniques to detect weeds in agricultural systems. Several image analysis techniques 

were evaluated for various crop-weed scenarios. The dissertation concludes that the row-

detection method can be reliably used for mapping weed coverage in cotton at various density 

levels. It also concludes that accuracy might drop with an increase in weed density in the field. 

This research also suggests that image analysis-derived weed coverage can be confidently used 

to estimate the number of weeds in the field. The methodology demonstrated in this study can be 

a quick yet effective method for producing weed maps, which can be used for various purposes, 

including devising weed management plans for current and future cropping cycles. 

 This research also concludes that ryegrass can be detected and mapped in wheat fields 

using a pixel-based machine learning approach. The ryegrass-wheat study also suggests that hue 

and saturation features derived from color transformation can provide higher separability 

between ryegrass and wheat. In addition, it also suggests that image analyzed ryegrass coverage 

at the early growth stage can estimate the competitive effects on wheat in respect to biomass and 

grain yield reduction. In particular competition effects on biomass were better estimated with 

image-based coverage. These findings are expected to provide guidance on the site-specific 

ryegrass management in wheat and help farmers early predict the future ryegrass-wheat 

interactions for devising better management plans.  

 This dissertation concludes that the model trained to detect weed species in cotton can be 

used to detect the same given weed species in soybean and corn. The cross-crop applicability of 
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the detection model was higher for soybean compared to corn. Whether or not weeds are 

detected at meta-level or individual weed species level also determined the cross-applicability. 

The study also shows that the addition of non-cotton images can improve the cross-crop 

applicability differentially across corn and soybean. These findings are expected to help 

minimize the efforts in developing a crop-specific detection model, which in return would save 

huge time and money resources.  

 This research also demonstrates that synthetic images can provide comparable (~80%) 

accuracy to real images. The study suggests that the row orientation of cotton in the synthetic 

images can be beneficial compared to random orientation. This calls for a careful selection of 

crop positions in the images while generating synthetic images. The study shows that 

automatically-clipped plants can be as effective as human-clipped plants for generating synthetic 

images. In addition, the study also shows that the canopy mask area can be a great predictor for 

above-ground weed biomass. The findings of this study offer valuable insights for guiding future 

endeavors oriented towards using synthetic images for weed detection and segmentation and 

biomass estimation in row crops. 
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