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ABSTRACT

The Generation IV reactors (Gen IV) are a set of new designs of nuclear reactors under de-

velopment by a consortium of counties to meet the energy necessities of the future, including sus-

tainability, safety, and economic feasibility. The liquid metal fast reactor design (LMFRs) is one

of the most prominent Gen VI options. Liquid metal is has a large thermal conductivity, allowing

for a significant power density. Moreover, in opposition to the traditional water reactors, LMFRs

operate at near atmospheric pressures as metals have a high boiling temperature. One of the most

common fuel designs for LMFRs is the tightly packed wire-wrapped rod bundle. The wires around

the fuel pins keep the distance between the rods, contribute to the flow mixing, homogenize the

temperature field, and increase the flow friction. Thus, the knowledge of the pressure drop through

the bundle and the flow split across the flow area is fundamental in the design of LMFR reactors.

The first part of this work presents a recalibration of the UCTD correlation for friction factor in

wire-wrapped rod bundles using Multi-Objective Genetic Algorithm in the turbulent regime, im-

proving its prediction of the flow split. When applying this methodology to the laminar regime,

this study identified that the laminar data available in the literature is insufficient to extend this

method to this regime. The second part of this work presents a dataset of 93 CFD simulations of

laminar flows in wire-wrapped rod bundles. The data includes the friction factor and the flow split

between the interior, edge, and corner regions for bundles with 7 to 91 pins. This publication also

presents an ANN-based model to predict these flow parameters based on the CFD dataset. The

accuracy of the predictions is verified with a dataset of experimental data collected from the open

literature composed of 42 bundles.
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1. INTRODUCTION

The Liquid Metal Fast Reactor (LMFR) is one of the leading designs proposed by the Genera-

tion VI International Forum. Of of the fuel designs often considered for LMFR is the wire-wrapped

rod bundle. The rods are tightly packed inside a hexagonal duct. The rods have wires around in a

helical trajectory, providing mechanical support to the bundle and mixing the flow, enhancing heat

transfer and temperature homogenization. However, the presence of the wires also increases the

resistance to the flow, requiring more pumping power.

In order to better understand the thermal-hydraulic characteristics of this design, extensive

experimental and numerical studies have been conducted. Merzari et al. [5] simulated a heated

37-pin rod bundle with wall solved large edge simulation (LES). Brockmeyer et al. [6] coupled

CFD with finite elements to study flow-induced vibrations in a 7-pin wire-wrapped rod bundle.

Recent advancements in flow visualization techniques allowed the measurements of velocity fields

in regions not accessible before. Goth et al. [7] used matched-index-of-refraction (MIR) between

the fluid and bundle to measure turbulent flows inside a 61-pin rod bundle using particle image

velocimetry (PIV), with these results being later compared with CFD using large edge simulation

[8]. Song et al. [9] used another combination of MIR materials to take PIV measurements in the

edge and corner subchannels and compared the velocity fields and pressure drop measurements

with CFD simulations. Childs et al. [10] analyzed the effects of blockages of different sizes in

different locations in the friction factor.

One of the flow parameters of primary interest in rod bundles is the pressure drop. Since the

conception of reactors with wire-wrapped rod bundles, several experiments were performed to

support the development of pressure drop correlations, pioneered by Rehme [11], Baumann [12],

and Reihman [13]. Novendstern [14], Rehme [15] and Engel [16] proposed the first widely used

correlations.

The Cheng and Todreas correlation (CTD) was proposed in 1986 [17] and became the most

used correlation for pressure drop in wire-wrapped rod bundles. The correlation was updated in
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2013 [18] to improve its predictions for the transition region. In 2018 the Upgraded CTD (UCTD)

was published [19], updating the laminar boundary equation, recalibrating the equation for the

transition region, and expanding its validity range to 7-pin bundles by correcting the pin number

effect.

The UCTD correlation is robust to evaluate pressure drop and flow split. It is currently the

reference correlation to analyze the pressure drop in wire-wrapped rod bundles. However, gaps

persist. First, the accuracy of UCTD for the flow split across the bundle regions should be improved

for licensing. The fluid’s heterogeneity of the flow velocity is directly related to the incidence of

hot spots in the bundle, so the flow split is a primary concern.

Moreover, the industry and regulators are increasingly interested in the flow characteristics of

the laminar regime. Many designs rely on natural circulation to provide cooling in emergency

scenarios. Since most studies were concerned with the normal operation of the reactor, there is a

lack of data available in the literature for the laminar flow.

The first objective of this work is to recalibrate the UCTD [19] correlation improving its accu-

racy when predicting the friction factor of the different regions in the rod bundle, thus improving

the predictions of the flow split. The UCTD coefficients were recalculated using Multi-Objective

Genetic Algorithms. It is demonstrated that UCTD is improved for the turbulent regime by de-

creasing the error for the flow split prediction while keeping the accuracy of the bundle average

friction factor similar. However, the results for the laminar regime point to the fact that the limited

number of experiments available in the laminar regime, especially with flow split data, limits the

correlation formulation’s complexity and leads the optimization process to overfit.

The second objective of this work is to create a new dataset of flows in wire-wrapped rod

bundles in the laminar regime using Computational Fluid Dynamics (CFD) and develop a high

order model based on Artificial Neural Networks (ANN). The new dataset has 93 simulated bundles

dispersed through a more extensive range of pitch to diameter ratio (P/D) and height-to-diameter

ratio (H/D) and contains flow split data for all the cases there are only three experimental bundles

known to have flow split data. The ANN model is highly accurate at representing the numerical
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results. Moreover, the ANN predictions of the experimental data are accurate.
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2. OPTIMIZATION OF THE UCTD CORRELATION USING GENETIC ALGORITHMS*

2.1 UCTD Correlation for friction factor

The UCTD correlation predicts the friction factor for all flow regimes, from laminar to fully

turbulent. The friction factor constant is calculated as CfiT = fi × Remi , with m = 0.18 for fully

turbulent flows and m = 1 in the laminar regime. The subscript i refers to the bundle region, being

i = 1, 2, 3 for interior, edge and corner regions respectively. The index i = b is used when the

quantity is respective to the average of the whole bundle. Fig. 2.1 shows the typical geometry of a

wire-wrapped rod bundle.

Figure 2.1: Wire-wrapped rod bundle geometry.

*Part of this chapter is reprinted with permission from Tomaz et al. [20].
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2.1.1 UCTD formulation for the fully turbulent regime

Equations 2.1, 2.2 and 2.3 are used to calculate the friction factor constant for the three types of

subchannel. By considering the balance of mass, the bundle average friction factor for the turbulent

regime (CfbT ) can be calculated from the constants of each region as in Eq. 2.4. The coefficients

C ′
fiT are the bare rod subchannel friction factor constants, Pw and P ′

w are the wetted perimeters for

the wired and the bare bundles, respectively, Ar is the projected area of the wire, A′ is the average

cross-sectional area of the bare bundle, De is the hydraulic diameter and Dw is the diameter of the

wire. The UCTD publication [19] provides the full description of how the geometrical parameters

are computed.

Cf1T = C ′
f1T

(
P ′
w1

Pw1

)
+WdT

(
3Ar1

A′
1

)(
De1
H

)(
De1
Dw

)0.18

(2.1)

Cf2T = C ′
f2T

(
1 +WsT

(
Ar2

A′
2

)
tan2θ

)1.41

(2.2)

Cf3T = C ′
f3T

(
1 +WsT

(
Ar3

A′
3

)
tan2θ

)1.41

(2.3)

CfbT = Deb

(
3∑

i=1

(
NiAi

Ab

)(
Dei
Deb

)0.0989(
Dei
CfiT

)0.54945
)−1.82

(2.4)

Compared to the bare bundle, the wrapped wire on the rods will cause energy loss. The wire

drag constant (Wd) correlates the friction increase for the interior subchannels, and the wire sweep-

ing constant (Ws) does the respective for the edge and corner subchannels. Equations 2.5 and 2.6

show how Wd and Ws are calculated for the fully turbulent regime. The coefficients C1, C2, C3,

C4, a and b are them calibrated with experimental data.

WdT =

(
C1 + C2

(
Dw

D

)
+ C3

(
Dw

D

)2
)(

H

D

)C4

(2.5)
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WsT = a log

(
H

D

)
+ b (2.6)

2.1.2 UCTD formulation for the laminar and transition regime

The friction factor constants in the laminar regime are calculated with Equations 2.7, 2.8, 2.9

and 2.10. For the laminar flow, the drag (WdL) and sweeping (WsL) constants are assumed to be

proportional to WdT and WsT as in Equations 2.11 and 2.12. The coefficients Cd and Cs define

this proportionality. In the original correlation, Cd is derived analytically to be 1.4 [17], then Cs is

found empirically.

Cf1L = C ′
f1L

(
P ′
w1

Pw1

)
+WdL

(
3Ar1

A′
1

)(
De1
H

)(
De1
Dw

)
(2.7)

Cf2L = C ′
f2L

(
1 +WsL

(
Ar2

A′
2

)
tan2θ

)
(2.8)

Cf3L = C ′
f3L

(
1 +WsL

(
Ar3

A′
3

)
tan2θ

)
(2.9)

CfbL = Deb

(
3∑

i=1

(
NiAi

Ab

)(
Dei
Deb

)(
Dei
CfiL

))−1

(2.10)

WdL = Cd ·WdT (2.11)

WsL = Cs ·WsT (2.12)
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fi =



CfiL

Re
, if Reb < RebL

CfiT

Re0.18
, if Reb > RebT

CfiL

Re
(1− ψi)

1/3 (1− ψλ
i

)
+

CfiT

Re0.18
· ψ1/3

i , if RebL ≤ Reb ≤ RebT

(2.13)

RebL = 320
(
10(

P
D
−1)
)

(2.14)

RebT = 10, 000
(
100.7(

P
D
−1)
)

(2.15)

The friction factor in the transition regime is calculated with Eq. 2.16, where λ = 7 and ψ is

the intermittency parameter defined by Eq. 2.17.

fiT r = fiL (1− ψi)
1/3 (1− ψλ

i

)
+ fbT · ψ1/3

i (2.16)

ψi = log

(
Rei
ReiL

)
/log

(
ReiT
ReiL

)
(2.17)

2.1.3 Flow splitting calculation

The flow split parameter can be calculated from the friction factor in each subchannel type, as-

suming the pressure difference equal for all subchannels and the conservation of mass. In this case,

the relative velocity in each region is adjusted. The CTD publication [2] presents the derivation

of the flow split parameters from the assumptions above. The flow split parameters are calculated

using Equations 2.19, 2.18 and 2.20.

X2 = 1/(S2 + (X1/X2)S1 + (X3/X2)S3) (2.18)
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X1

X2

=

(
De1
De2

)(1+m)/(2−m)(
Cf2

Cf1

)1/(2−m)

(2.19)

X3

X2

=

(
De3
De2

)(1+m)/(2−m)(
Cf2

Cf3

)1/(2−m)

(2.20)

2.2 Recalibration Methodology

2.2.1 Experimental Dataset

The recalibration process was performed based on the data available in the scientific literature.

The bundle average friction factor data originated from 159 different experiments. From those,

80 bundles are the same used to recalibrate UCTD, and details of these experiments are presented

by Chen et al. [19]. The data from the other 79 bundles was obtained from other experiments

[21, 4, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 2, 9, 33], summarized in Tab. 2.1. The column

Group indicates what flow regimes the bundle has data in. The terms L, Tr, and T indicates data

in the laminar, transition and turbulent regimes, respectively.

Table 2.1: Bundles not included in the UCTD development but considered in this study.

ID Year Nr D (mm) Dw (mm) P/D W/D H/D Group

Rehme11b 1967 19 12 1.5 1.125 1.125 8.33 TrT

Rehme11c 1967 37 12 1.5 1.125 1.125 8.33 TrT

Rehme11d 1967 61 12 1.5 1.125 1.125 8.33 TrT

Rehme12b 1967 19 12 1.5 1.125 1.125 12.5 TrT

Rehme12c 1967 37 12 1.5 1.125 1.125 12.5 TrT

Rehme12d 1967 61 12 1.5 1.125 1.125 12.5 TrT

Rehme13b 1967 19 12 1.5 1.125 1.125 16.67 TrT

Rehme13c 1967 37 12 1.5 1.125 1.125 16.67 TrT

Rehme13d 1967 61 12 1.5 1.125 1.125 16.67 TrT

Rehme14b 1967 19 12 1.5 1.125 1.125 25 TrT
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Table 2.1 continued from previous page

ID Year Nr D (mm) Dw (mm) P/D W/D H/D Group

Rehme14c 1967 37 12 1.5 1.125 1.125 25 TrT

Rehme14d 1967 61 12 1.5 1.125 1.125 25 TrT

Rehme15b 1967 19 12 1.5 1.125 1.125 50 TrT

Rehme15c 1967 37 12 1.5 1.125 1.125 50 TrT

Rehme15d 1967 61 12 1.5 1.125 1.125 50 TrT

Rehme21a 1967 7 12 2.8 1.233 1.233 8.33 TrT

Rehme21b 1967 19 12 2.8 1.233 1.233 8.33 TrT

Rehme21c 1967 37 12 2.8 1.233 1.233 8.33 TrT

Rehme22a 1967 7 12 2.8 1.233 1.233 12.5 TrT

Rehme22b 1967 19 12 2.8 1.233 1.233 12.5 TrT

Rehme22c 1967 37 12 2.8 1.233 1.233 12.5 TrT

Rehme23a 1967 7 12 2.8 1.233 1.233 16.67 TrT

Rehme23b 1967 19 12 2.8 1.233 1.233 16.67 TrT

Rehme23c 1967 37 12 2.8 1.233 1.233 16.67 TrT

Rehme24a 1967 7 12 2.8 1.233 1.233 25 TrT

Rehme24b 1967 19 12 2.8 1.233 1.233 25 TrT

Rehme24c 1967 37 12 2.8 1.233 1.233 25 TrT

Rehme25a 1967 7 12 2.8 1.233 1.233 50 TrT

Rehme25b 1967 19 12 2.8 1.233 1.233 50 TrT

Rehme25c 1967 37 12 2.8 1.233 1.233 50 TrT

Rehme31a 1967 7 12 3.3 1.275 1.275 8.33 TrT

Rehme31b 1967 19 12 3.3 1.275 1.275 8.33 TrT

Rehme31c 1967 37 12 3.3 1.275 1.275 8.33 TrT

Rehme32a 1967 7 12 3.3 1.275 1.275 12.5 TrT

Rehme32b 1967 19 12 3.3 1.275 1.275 12.5 TrT
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Table 2.1 continued from previous page

ID Year Nr D (mm) Dw (mm) P/D W/D H/D Group

Rehme32c 1967 37 12 3.3 1.275 1.275 12.5 TrT

Rehme33a 1967 7 12 3.3 1.275 1.275 16.67 TrT

Rehme33b 1967 19 12 3.3 1.275 1.275 16.67 TrT

Rehme33c 1967 37 12 3.3 1.275 1.275 16.67 TrT

Rehme34a 1967 7 12 3.3 1.275 1.275 25 TrT

Rehme34b 1967 19 12 3.3 1.275 1.275 25 TrT

Rehme34c 1967 37 12 3.3 1.275 1.275 25 TrT

Rehme35a 1967 7 12 3.3 1.275 1.275 50 TrT

Rehme35b 1967 19 12 3.3 1.275 1.275 50 TrT

Rehme35c 1967 37 12 3.3 1.275 1.275 50 TrT

Rehme41a 1967 7 12 4.1 1.343 1.343 8.33 TrT

Rehme41b 1967 19 12 4.1 1.343 1.343 8.33 TrT

Rehme42a 1967 7 12 4.1 1.343 1.343 12.5 TrT

Rehme42b 1967 19 12 4.1 1.343 1.343 12.5 TrT

Rehme42c 1967 37 12 4.1 1.343 1.343 12.5 TrT

Rehme43a 1967 7 12 4.1 1.343 1.343 16.67 TrT

Rehme43b 1967 19 12 4.1 1.343 1.343 16.67 TrT

Rehme43c 1967 37 12 4.1 1.343 1.343 16.67 TrT

Rehme44a 1967 7 12 4.1 1.343 1.343 25 TrT

Rehme44b 1967 19 12 4.1 1.343 1.343 25 TrT

Rehme44c 1967 37 12 4.1 1.343 1.343 25 TrT

Rehme45a 1967 7 12 4.1 1.343 1.343 50 TrT

Rehme45b 1967 19 12 4.1 1.343 1.343 50 TrT

Rehme45c 1967 37 12 4.1 1.343 1.343 50 TrT

Rehme51a 1967 7 12 5 1.417 1.417 8.33 TrT
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Table 2.1 continued from previous page

ID Year Nr D (mm) Dw (mm) P/D W/D H/D Group

Rehme51b 1967 19 12 5 1.417 1.417 8.33 TrT

Rehme51c 1967 37 12 5 1.417 1.417 8.33 TrT

Rehme52a 1967 7 12 5 1.417 1.417 12.5 TrT

Rehme52b 1967 19 12 5 1.417 1.417 12.5 TrT

Rehme52c 1967 37 12 5 1.417 1.417 12.5 TrT

Rehme53a 1967 7 12 5 1.417 1.417 16.67 TrT

Rehme53b 1967 19 12 5 1.417 1.417 16.67 TrT

Rehme53c 1967 37 12 5 1.417 1.417 16.67 TrT

Rehme54a 1967 7 12 5 1.417 1.417 25 TrT

Rehme54b 1967 19 12 5 1.417 1.417 25 TrT

Rehme54c 1967 37 12 5 1.417 1.417 25 TrT

Rehme55a 1967 7 12 5 1.417 1.417 50 TrT

Rehme55b 1967 19 12 5 1.417 1.417 50 TrT

Rehme55c 1967 37 12 5 1.417 1.417 50 TrT

Baumann1 1968 61 6 1 1.167 1.167 16.7 T

Baumann2 1968 61 6 1 1.167 1.167 25 T

Baumann3 1968 19 6.62 1.5 1.227 1.227 15.1 T

Baumann4 1968 19 6.62 1.5 1.227 1.227 22.7 T

Reihman1 1969 37 6.756 0.406 1.079 1.1 22.56 TrT

Reihman10 1969 217 6.35 0.762 1.135 1.143 48 TrT

Reihman11 1969 37 7.62 0.914 1.15 1.178 40 TrT

Reihman12 1969 19 6.35 0.762 1.156 1.184 48 TrT

Reihman13 1969 37 6.35 0.762 1.148 1.171 96 TrT

Reihman14 1969 37 4.978 0.597 1.145 1.158 61.22 TrT

Reihman2 1969 37 6.756 0.406 1.079 1.1 45.11 TrT
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Table 2.1 continued from previous page

ID Year Nr D (mm) Dw (mm) P/D W/D H/D Group

Reihman3 1969 37 6.35 0.762 1.148 1.171 12 TrT

Reihman4 1969 37 6.35 0.762 1.148 1.171 24 TrT

Reihman5 1969 37 6.35 0.762 1.148 1.171 48 TrT

Reihman6 1969 37 6.096 1.016 1.196 1.22 50 TrT

Reihman7 1969 37 5.994 1.08 1.215 1.24 50.85 TrT

Reihman8 1969 37 6.35 2.012 1.376 1.434 24 TrT

Reihman9 1969 37 6.35 2.012 1.376 1.434 48 TrT

FFTFANL 1970 217 5.84 1.42 1.243 1.35 52.17 TrT

Okamoto1 1970 19 6.3 1.2 1.221 1.117 40.48 TrT

Okamoto2 1970 91 6.3 1.2 1.221 1.117 40.48 TrT

Davidson 1971 217 6.39 1.808 1.283 1.283 48 T

Grazzini 1971 91 6.68 1.2 1.18 1.206 23.952 T

Wakasugi1 1971 91 6.3 1.2 1.221 1.167 14.286 TrT

Wakasugi2 1971 91 6.3 1.2 1.221 1.167 20.635 TrT

Wakasugi3 1971 91 6.3 1.2 1.221 1.167 30.159 TrT

Wakasugi4 1971 91 6.3 1.2 1.221 1.167 41.27 TrT

Hoffmann1 1973 61 6 1.9 1.317 1.317 16.67 T

Hoffmann2 1973 61 6 1.9 1.317 1.317 33.3 T

Hoffmann3 1973 61 6 1.9 1.317 1.317 50 T

Chiu1 1979 61 12.73 0.8 1.067 1.069 8 Tr

Chiu2 1979 61 12.73 0.8 1.067 1.069 4 Tr

Engel 1979 61 12.85 0.94 1.082 1.08 7.7821 LTrT

Burns 1980 37 12.72 1.91 1.156 1.177 21 LT

Spencer 1980 217 5.84 1.42 1.252 1.242 51.74 TrT

Carelli 1981 61 12.7 0.635 1.05 1.05 20 TrT
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Table 2.1 continued from previous page

ID Year Nr D (mm) Dw (mm) P/D W/D H/D Group

Itoh1 1981 91 6.3 1.27 1.216 1.216 15.03 TrT

Itoh2 1981 91 6.3 1.27 1.216 1.216 22.54 TrT

Itoh3 1981 91 6.3 1.27 1.216 1.216 32.22 TrT

Itoh4 1981 91 6.3 1.27 1.216 1.216 45.08 TrT

Itoh5 1981 127 5.5 0.9 1.176 1.178 38 LTrT

Itoh6 1981 127 5.5 0.9 1.176 1.178 53.27 TrT

Itoh7 1981 169 6.5 1.32 1.214 1.241 47.39 LTrT

Marten11 1982 37 15.98 0.66 1.041 1.041 8.38 LTrT

Marten12 1982 37 15.98 0.66 1.041 1.041 12.6 LTrT

Marten13 1982 37 15.98 0.66 1.041 1.041 17.01 LTrT

Marten21 1982 37 15.51 1.12 1.072 1.072 8.34 LTrT

Marten22 1982 37 15.51 1.12 1.072 1.072 12.54 LTrT

Marten23 1982 37 15.51 1.12 1.072 1.072 16.68 LTrT

Marten31 1982 37 15.11 1.53 1.101 1.101 8.31 LTrT

Marten32 1982 37 15.11 1.53 1.101 1.101 12.31 LTrT

Marten33 1982 37 15.11 1.53 1.101 1.101 16.61 LTrT

Cheng 1984 37 15.04 2.26 1.154 1.164 13.4 LTrT

Efthimiadis 1984 19 18.92 4.6 1.248 1.248 35.2 L

Kunsch 1984 127 7.59 1.195 1.157 1.167 21.05 TrT

Marten41 1987 37 16.21 0.35 1.022 1.038 8.3 LTrT

Marten42 1987 37 16.21 0.35 1.022 1.038 12.5 LTrT

Marten43 1987 37 16.21 0.35 1.022 1.038 16.7 LTrT

Marten51 1987 37 15.87 0.65 1.041 1.056 8.3 LTrT

Marten52 1987 37 15.87 0.65 1.041 1.056 12.5 LTrT

Marten53 1987 37 15.87 0.65 1.041 1.056 16.7 LTrT
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Table 2.1 continued from previous page

ID Year Nr D (mm) Dw (mm) P/D W/D H/D Group

Marten61 1987 37 15.35 1.1 1.072 1.087 8.3 LTrT

Marten62 1987 37 15.35 1.1 1.072 1.087 12.5 LTrT

Marten63 1987 37 15.35 1.1 1.072 1.087 16.7 LTrT

Marten71 1987 37 14.87 1.5 1.101 1.12 8.3 LTrT

Marten72 1987 37 14.87 1.5 1.101 1.12 12.5 LTrT

Marten73 1987 37 14.87 1.5 1.101 1.12 16.7 LTrT

Sahu1 1997 19 6.6 1.65 1.255 1.255 22.727 T

Sahu2 1997 19 6.6 1.65 1.255 1.255 30.303 T

Sahu3 1997 19 6.6 1.65 1.255 1.255 37.879 T

Chun1 2001 19 8 2 1.256 1.265 25 LTrT

Chun2 2001 19 8 2 1.255 1.268 37.5 LTrT

Chun3 2001 19 8 1.4 1.18 1.176 25 LTrT

Chun4 2001 19 8 1.4 1.178 1.18 37.5 LTrT

Choi 2003 271 7.4 1.4 1.2 1.2 24.84 TrT

Berthoux 2010 19 16 3.84 1.24 1.24 21.88 TrT

Kennedy 2015 127 6.55 1.8 1.282 1.279 40.458 TrT

Chang1 2016 37 8 1 1.131 1.133 27.69 TrT

Chang2 2017 61 8 1 1.14 1.14 29.86 T

Ohshima1 2017 127 5.5 0.9 1.176 1.178 38 LTrT

Ohshima2 2017 169 6.5 1.32 1.211 1.206 47.231 LTrT

Ohshima3 2017 271 7.5 1.4 1.2 1.2 22 TrT

Padmakumar 2017 217 6.6 1.65 1.255 1.27 30.3 LTrT

Pacio 2018 19 8.2 2.2 1.279 1.29 40 TrT

Vaghetto 2018 61 15.9 3 1.189 1.231 30 LTrT

Fan 2020 19 12.903 1.953 1.151 1.204 11.16 TrT
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Table 2.1 continued from previous page

ID Year Nr D (mm) Dw (mm) P/D W/D H/D Group

Jeong 2020 19 9.58 1.59 1.315 1.315 27.3 Tr

Liang 2020 37 10 0.9 1.09 1.14 9.55 TrT

Song 2020 19 20 3 1.2 1.2 23.1 T

Li 2020 37 7 1.5 1.229 1.237 21.429 LTr

The flow split data is composed of two separate sets of experiments: the 8-bundle dataset of

flow split in the edge subchannel also used in the UCTD development and the experiment from

Xi’an Jiaotong University published by Liang et al. [2]. The latter is the only experimental work

known by the author to have flow split data for the interior, edge, and corner subchannels.

2.2.2 Multi-Objective Genetic Algorithm Optimization

The coefficients of the original UCTD correlation were recalibrated using Multi-Objective Ge-

netic Algorithms (MOGA). The genetic algorithms (GA) are a subset of the evolutionary algo-

rithms (EA), heuristic methods for optimisation based on the concept of natural selection. In GA,

the individuals or phenotypes, are a set of parameters that constitute a solution for a optimization

problem. In the context of this work, an individual is the set of empirical coefficients of the UCTD

formulation.

In GA, the fitness of the individuals of a population is calculated, for example through a error

function. The best individuals are selected and merged to create off-springs, or a new set of solu-

tions based on the selected individuals. The addition of a mutation step promotes diversity in the

new population, expanding the search space of the method. Then the process repeats itself with the

new population until a termination criteria is met. Figure 2.2 shows the basic schematics of GA.

2.2.2.1 Fitness

The fitness function of the bundle average friction factor is defined as the mean squared error

between the mean Cfb of each experiment in the dataset of experiments and the prediction (Ĉfb) as
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Figure 2.2: Steps of a Genetic Algorithm.

presented in 2.21. The fitness function of the flow split is calculated by summing the mean squared

error of the XJU bundle flow split (Xxju,i) predictions and the mean squared error in the 8-bundle

X2 predictions as presented in 2.22.

error(Cfb) =
1

n

n∑
j=1

(
Cfb,j − Ĉfb,j

)2
(2.21)

error(X) =
1

m

m∑
j=1

(
X2,j − X̂2,j

)2
+

1

3

3∑
i=1

(
Xi,xju − X̂i,xju

)2
(2.22)

2.2.2.2 Selection

Since the optimization process has two objectives, there is a trade-off between the accuracies

of the average friction factor and flow split. The Pareto front is the set of individuals where no

better solution for one objective is found without deteriorating the accuracy for the other objective.

It is desirable from the selection method to keep the population well distributed along the Pareto

front, so a solution with the most desirable balance between the objectives can be selected. The
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Non-dominated Sorting Genetic Algorithm III (NSGA-III) [1] was selected as the sorting function.

When selecting the most fit individuals, this method considers, in addition to the fitness function,

the relative position of the new individual in the optimized front, as exemplified in Figure 2.3 from

the NSGA-III publication. In this instance, a population is initialized in a reference plane (left) for

three objectives. When selecting the new individuals (right), the method selects a better solution

that is still close to the reference line from the parent solution. This approach is type of niche

preservation. This study adopted an initial population of 200 solutions.

Figure 2.3: Niche preservation in the NSGA-III method. A population is initiated in a reference
plane (left), then the new individuals are selected keeping the reference lines populated (righ).
Adapted from Deb and Himanshu [1].

Fig. 2.4 shows the obtained solutions for the turbulent regime with the Pareto’s front. The

solution is selected from the Pareto’s front elbow as a good balance between the objectives. The

solutions to the right of the elbow have a steep worsening of the CfbT fitness without a significant

gain for flow split. Conversely, solutions to the left of the elbow do not provide a significant

improvement in the CfbT fitness to justify the loss in the flow split accuracy.
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Figure 2.4: Pareto’s front of the solutions for the fully turbulent flow regime.

Figure 2.5: Interval where an offspring can be drawn from parents x1 and x2.

2.2.2.3 Crossover and mutation

This study used blend crossover for the generation of off-springs. For parents x1 and x2, where

x1 < x2, off-springs are drawn randomly from the interval [x1 − α(x2 − x1), x2 − α(x2 − x1)],

illustrated in Figure 2.5. the parameter α defines the extrapolation limit from the parents, and

it is set to 0.5 in this work. The offsprings undergo mutation by a factor following a Gaussian

distribution defined with a mean of zero and unitary standard deviation.

18



2.2.2.4 Termination and convergence

The optimization process is terminated after 50 generations. Figure 2.6 shows the convergence

of the fitness functions. Both fitness functions converge around the twentieth generation. The

convergence of the best solution obtained with the MOGA method is better represented by the

individuals with the best average between Fitness(CfbT ) and Fitness(X), which ultimately leads

to the selected solution. Under these criteria, convergence is also obtained after 20 generations.

Figure 2.6: Solution convergence over the generations.

2.2.2.5 Constraints

A constraint function was added to penalize solutions that predict Cfb that decreases as the

number of pins increases for geometries with the same pitch to diameter ratio (P/D). The experi-

mental data support that the interior subchannels have higher friction losses. Thus, as the number

of pins increases, the friction factor has to increase for the same P/D. However, if the optimization
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is unconstrained, the solutions with the minimal loss allow for an inversion in this trend, especially

for bundles with a high ratio of wire lead length to rod diameter (H/D). The penalty function is

a summation of the square of the number of inverted points in the Rehme bundles [11], which are

the ones in which this direct comparison is possible.

Figure 2.7 shows the inversion occurring in the predictions of Rehme bundles in an uncon-

strained model. Figures 2.8 to 2.12 show the pin number effect for the MOGA model with the

constraint and compare the results with UCTD and the experimental data. The inversion is com-

pletely avoided. However, the optimization process has the tendency to minimize the differences

in Cfbt between the bundles to the limit in H/D = 50, stressing the tendency of inversion.

Figure 2.7: Pin number effect for H/D = 50 in the Rehme data using an unconstrained MOGA
model.
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Figure 2.8: Pin number effect for H/D = 8 in the MOGA model compared to UCTD.

Figure 2.9: Pin number effect for H/D = 12 in the MOGA model compared to UCTD.

21



Figure 2.10: Pin number effect for H/D = 16 in the MOGA model compared to UCTD.

Figure 2.11: Pin number effect for H/D = 25 in the MOGA model compared to UCTD.
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Figure 2.12: Pin number effect for H/D = 50 in the MOGA model compared to UCTD.

2.3 Results

Considering that WdL and WsL are functions of WdL and WsL respectively, the optimization

process is performed in the turbulent region first. After all the coefficients for WdL and WsL are

calculated, the coefficients for the laminar region,Cd andCs, are optimized with data in the laminar

and transition regimes.

2.3.1 Average bundle friction factor in the fully turbulent regime

Table 2.2 presents the original coefficients of the UCTD correlation and the ones obtained with

the MOGA optimization in the turbulent region.

The correlation with the new values performs almost in the same way as the original UCTD for

CfbT predictions. Fig. 2.13 shows the comparison of the predicted and the experimental friction

factors for the same dataset using UCTD and the new model, respectively.
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Table 2.2: Original coefficients of UCTD the ones obtained with the MOGA optimization for the
turbulent regime.

C1 C2 C3 C4 a b

UCTD 19.56 -98.71 303.47 -0.541 -11 19
MOGA 13.36 -81.38 285.78 -0.555 -19.12 28.40

Figure 2.13: Comparisons between the experimental data for friction factor and the predictions for
UCTD (left) and the MOGA recalibrated model (right).

Table 2.3 presents a summary of how well both models predict the dataset. The mean error

of the bundle average friction factor was virtually unchanged, but the standard deviation of the

error (STD) is higher for the MOGA optimized model. The distribution interval (D.I.) of 90%

is defined as the amplitude of the error distribution between the 5th and 95th percentiles. The

new model improved this parameter. In general, the indices of goodness suggest some marginal

improvement for fb. Since the primary purpose of this work is to improve the predictions of the

flow split, keeping the accuracy in the fb predictions is an acceptable outcome.
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Table 2.3: Indices of goodness of the predictions from the original UCTD and the model with new
coefficients for the turbulent regime.

Mean error (fb) STD (fb) 90% D.I (fb)

UCTD 6.64 % 8.80 % ±12.5 %
MOGA 6.23 % 11.9 % ±10.5 %

2.3.2 Flow split prediction in the turbulent regime

The accuracy of the flow split prediction, however, was substantially improved. Fig. 2.14

shows a comparison between the predictions from the MOGA recalibrated correlation and UCTD

for the flow split experimental data from XJU. The predictions of the flow split parameters for

interior and edge were significantly improved for the fully turbulent regime. The loss of accuracy

for the corner subchannel occurred because both Cf2T and Cf3T are functions of WsT ; thus, it is

not possible to improve one without worsening the other. However, the total flow area of the edge

subchannels is much larger than the one of the corner.

Some overfitting on the XJU data may be expected since it composes a term of the flow split

loss function; thus, the accuracy for this specific experiment does not provide a definitive reference

of the model. Although a cross-validation evaluation is unfeasible due to the limited dataset, the

model’s performance in the 8-bundle X2 dataset provides a good insight into the MOGA model

generalization. Fig. 2.15 shows the improvement obtained with the MOGA model for X2 at the

highest Reynolds number available in each experiment. The updated model reduces the mean

prediction error for X2 from 9.3 % to 6.8 %.

2.3.3 Bundle average friction factor in the laminar and transition regimes

Table 2.4 presents the coefficients obtained with the MOGA method for the laminar flow. While

the recalculated coefficients for the turbulent regime remained in the same range as the original

ones, Cd and Cs obtained with the MOGA optimization are an order of magnitude different. This
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Figure 2.14: Comparison between the experimental data of flow split from XJU [2] and the pre-
dictions by UCTD and the recalibrated model.

discrepancy might raise the possibility that the solutions are not physically feasible.

Table 2.4: Original coefficients of UCTD the ones obtained with the MOGA optimization for the
laminar regime.

Cd Cs

UCTD 1.4 1
MOGA 23.0 0.401

However, the new coefficients did not significantly change the average friction factor predic-

tion. Fig. 2.16 shows a comparison between the experimental and the predicted average friction

factors for the original UCTD correlation and the recalibrated model.
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Figure 2.15: Comparison between the experimental data and the predictions of the flow split pa-
rameter in the edge region (X2) by UCTD and the recalibrated model.

Table 2.5: Indices of goodness of the predictions from the original UCTD and the model with new
coefficients for the laminar regime.

Mean error (fb) STD (fb) 90% D.I (fb)

UCTD 13.4 % 19.5 % ±26.0 %
MOGA 12.8 % 20.0 % ±26.0 %

Table 2.6: Indices of goodness of the predictions from the original UCTD and the model with new
coefficients for the transition regime.

Mean error (fb) STD (fb) 90% D.I (fb)

UCTD 9.08 % 15.6 % ±21.6 %
MOGA 9.88 % 18.8 % ±21.1 %
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Figure 2.16: Comparison between the experimental data for friction factor and the predictions of
the laminar and transition regimes.

Fig. 2.17 shows the loss domain for coefficients in the range of 0 ≤ Cd ≤ 100 and 0 ≤ Cs ≤ 1.

The value of Cd is represented by the point color, increasing from the left to the right side. The tick

color represents the value of Cs, increasing from the bottom to the top. The Pareto front is not well

defined as for the case of the turbulent region (Fig. 2.4). The folded curve means that solutions

with distinct coefficients wielding the same losses are obtained.

Moreover, one can observe that the lowest flow split loss is achieved with Cs equal to 0 or even

negative, with the physical meaning of and friction factor in the edge and corner subchannels equal

or smaller than the one of the bare bundle, which is nonphysical. This deficiency stems from the

small dataset, limiting the degree of complexity the UCTD formulation could have or introducing

overfitting to the optimization process. These results point to an ill-defined problem from the point

of view of optimization.
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Figure 2.17: Loss domain curve for the optimization in the laminar and transition regions.

2.4 Conclusions

This work presented updated coefficients for the UCTD correlation for friction factor in wire-

wrapped rod bundles obtained with Multi-Objective Genetic Algorithm optimization. After cre-

ating a set of non-dominated solutions by the Multi-objective Genetic Algorithm optimization, it

was observed that UCTD already predicts the average friction factor well, but it is dominated for

flow split. The recalibrated correlation reduced the average error of the flow split predictions in

the turbulent region from 9.3% to 6.8% compared to the original UCTD for the 8-bundle dataset

of flow split parameter in the edge region while performing close in the average friction factor.

When observing the predictions for the XJU experiment, the only data that contains information

for the interior, edge, and corner subchannels, a significant improvement was observed, although

some level of overfitting may be present. The new coefficients for the laminar regime are far from
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the original UCTD coefficients, implying that they may not be physical. However, the predictions

are similar to the average friction factor, and the flow split was also improved compared to UCTD.

The discrepancy in the coefficient values may indicate data starvation and the necessity to modify

the equations for the laminar region. This limitation was mitigated with the creation of a comple-

mentary dataset using CFD simulations, presented in Chapter 3, allowing the creation of a high

order model for the laminar regime using Artificial Neural Networks, as presented in Chapter 4.
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3. SIMULATIONS

The Reynolds number adopted in the simulations has to be low enough to ensure that no transi-

tion to turbulent flow would occur in any geometry. Therefore, the database is composed of simu-

lations performed with a Reynolds number that ensures the linear relationship between the friction

factor and the inverse of the Reynolds number. Considering that the typical laminar boundary in lit-

erature occurs between Re = 300 and Re = 1200, a Reynolds number of Re = 250 was selected.

While satisfying the condition of being lower than the observed critical Re in the experiments,

this value is still close to the flow condition of most of the experiments in the validation database

considered in this study.

Since the simulations are respective to flows known to be laminar and steady, no macroscopic

fluctuations are expected. Therefore, there is no need to use CFD models intended to solve any

timescale of the flow or to introduce any turbulent viscosity to model turbulence. The simulations

are isothermal and incompressible, and both viscosity and density are constant.

3.1 Governing Equations

The Navier-Stokes (NS) equations are known for being challenging to solve analytically due

to the nonlinear convective term. Therefore, the NS equations are discretized to be used in CFD

codes.

∂

∂t

∫
V

ρdV +

∮
A

ρ · v · da =

∫
V

SudV (3.1)

∂

∂t

∫
V

ρvdV +

∮
A

ρv ⊗ v · da = −
∮
A

pI · da+

∮
A

T · da+

∫
V

fbdV +

∫
V

sudV (3.2)
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∂

∂t

∫
V

ρEdV +

∮
A

ρHvda = −
∮
A

q · da+

∮
A

T · vda+

∫
V

fb · vdV +

∫
V

SudV (3.3)

The equations 3.1, 3.2 and 3.3 are extensively simplified due to the assumptions of the model.

As the flow is steady, all the time derivatives are removed from the equations. Since the flow is

incompressible, the constitutive equation is reduced to the integral over the control volume of the

velocity vector. Moreover, without any microscopic fluctuation in the flow, these equations can be

directly described in terms of the mean quantities without resorting to constitutive equations for

the Reynolds stress tensor, which is zero for laminar flows. These characteristics deem numerical

simulations of laminar flows considerably more robust than solutions for turbulent flows, particu-

larly by avoiding turbulence modeling uncertainties. This characteristic makes CFD an attractive

solution to the expansion of the available data of laminar flows in wire-wrapped rod bundles.

3.2 Domain Modeling

3.2.1 Boundary Conditions

Figure 3.1 shows the boundaries of the computational domain. The fluid makes contact with

three solid bodies: the rods, the wires, and the hexagonal enclosure. All the walls are defined as

no-slip boundaries, where u = v = w = 0. The computational domain encompasses the height

of a full helical pitch of the wire around the base rod, so that the cross-sections of the inlet and

outlet are equal. As a consequence, the inlet and outlet boundaries are defined as periodic. All

the physical quantities of the outlet boundary, except pressure, are replicated in the inlet boundary.

The solver computes the pressure field so that the mass flow rate will match a fixed given value.

These boundary conditions define the flow in an infinite duct, therefore categorizing the flow in the

computational model as fully developed.
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Figure 3.1: Boundary conditions are set as periodic for the inlet and outlet (left), and no-slip for
all the solid surfaces (right).

3.2.2 Modeling of contact point

The simulated geometries refer to the standard geometry of a wire-wrapped rod bundle de-

scribed in the previous sections. All the bundles simulated refer to tightly packed geometries,

where there is no physical gap between the rods and wires and between the wires and the chan-

nel wall. However, the contact point between geometries with curved surfaces is known to create

discretization problems. This issue arises because the contact tends to parallel planes with an in-

finitesimal gap in between. This geometry leads to strongly skewed mesh elements, which causes

numerical instability. Several studies involving multiple bodies of curved shape faced this issue,

notably packed bed of spheres [34, 35, 36]. In these studies, the strategies to handle the mesh-

ing of contact points often include reducing the body size, increasing the radius to create volume

overlaps, capping the contact region, or bridging the bodies in the contact point.

The problem of meshing in the contact region is already known in the wire-wrapped rod bun-

dle simulation field. Bieder et al. [37] investigate different wire geometries balancing the meshing
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performance and accuracy at predicting hot spot temperatures. This study considered a wire dis-

placed into the rod, smoothing the contact point and using a wire of squared geometry instead,

concluding that the first strategy is the best one. Delchini et al. [38] evaluated the sensitivity of

the pressure drop to the modeling of the contact between wire and rod. The authors proposed two

models: a close-gap approach, in which the contact point between the wire and rod is enlarged,

and an open-gap approach, in which the wire is recessed to create a gap in the contact location.

The authors concluded that the open-gap approach better represents the flow. The works of Jeong

et al. [39] and Bovati et al. [40] also resorted to the open-gap approach to simulate wire-wrapped

rod bundles.

The open-gap strategy was selected based on the results obtained in the literature. The contact

between the wire and its base rod is smoothed with fillets of a diameter of Dw/3. The wire is

recessed into its base rod by 7.5% of the wire diameter. Figure 3.2 shows the actual geometry of a

tightly packed wire-wrapped rod bundle, in which the pitch is equal to the sum of the rod and the

wire diameters, and the geometry modeled for the CFD simulations.

Figure 3.2: Actual geometry of a wire-wrapped rod bundle (left) and modeled geometry for the
CFD simulations (right).

The modeled geometry has an objective to achieve a balance between accuracy compared to
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the actual geometry and numerical performance. It is desirable to yield a mesh with a smooth

transition between the contact point and the rest of the domain; simultaneously, the gap cannot

be big enough to interfere with the flow. Figure 3.3 shows the contact region mesh, where the

skewness of the elements is observed to be well controlled, as well as the growth rate from the

contact to the rest of the domain. From the axial velocity contour, one can notice that the velocity

in the gap between the wire and the next rod is negligible.

Figure 3.3: Mesh and contour of velocity magnitude for a bundle with P/D = 1.32 at an elevation
in which the wire makes contact with the neighboring rod. The velocity magnitude at the contact
is negligible.

3.2.3 Meshing

The literature contains works involving CFD simulations of wire-wrapped rod bundles with

different types of meshes. The adopted meshing strategy reflects the available repository of CFD

codes and the specific objectives of each study, the depth in which the study investigated the mesh-

ing process itself, and the available computational resources. Early works typically used tetrahedral

mesh elements. In 2007, Gajapathy et al. [41] used tetrahedral elements with the code STAR-CD.

Bieder et al. [37] also used tetrahedral meshes with the code Trio_U a work published in 2010.
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Since more capable meshing codes became available, more recent works used hexahedral and

polyhedral meshes. Zhao et al. [42], in 2017, used a hexahedral mesh with OpenFOAM to simulate

turbulent flows at the range of P/D between 1.11 and 1.22. In the same year, Jeong et al. [39]

developed a method to generate hexahedral meshes to be used with the code CFX, dividing the

flow domain into outer fluid and inner fluid using a circular boundary line containing the rod

and the wire. This strategy allowed the authors to obtain elements with a good shape and with a

controlled refinement.

Podila and Rao [43] simulated in 2014 the Canadian SCWR using the code STAR-CCM+ for

both the bare rod bundle and the wire-wrapped rod bundle. The authors used hexahedral meshes

for the bare bundle. However, they opted for the polyhedral mesh to simulate the wire-wrapped

bundles due to the flexibility of this type of mesh to model complex geometries. Delchini et al.

[38] (2017) found the hexahedral mesh more accurate than polyhedral mesh when simulating a

single pin geometry. However, they resorted to polyhedral when simulating a 7-pin bundle to

save computational effort. Recently, Bovati et al. [40] simulated the 61-pin wire-wrapped rod

bundle facility at Texas A&M University using Star-CCM+ and polyhedral meshes, reaching a

good agreement with the experimental data.

The polyhedral meshing of STAR-CCM+ has demonstrated to generate reliable representations

of complex geometries, including wire-wrapped rod bundles. In addition to that, this work involved

the simulation of geometries in a vast range of P/D. The gap between the rods is the most critical

feature to mesh, and the range of P/D is between 1.02 to 1.42. The gap width varies between 12%

to 58% of the hydraulic diameter; thus, there is a dramatic change in the refinement requirements

between the tested geometries. This characteristic makes the polyhedral meshing preferred to this

work.

The same mesh parameters were used for all geometries for consistency between the simula-

tions. The element base size is 10% of the hydraulic diameter. Seven prismatic layers are used to

improve the wall shear stress quantification. The number of elements is roughly proportional to

H/D and Nr due to the increase of the fluid domain size. The P/D, on the other hand, causes a
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sharp increase in the number of elements as the requirement for more refinement the gap increases.

Figure 3.4 show the meshes

Figure 3.4: Meshes of 7-pin bundles at the P/D range of 1.42 to 1.02 with H/D = 8. The
hydraulic diameter is also presented for each bundle.

Figure 3.5 shows how the number of elements in the meshes evolve as a function of P/D

and H/D. The mesh refinement is not strongly affected by H/D since the wire pitch does not

affect the flow cross-section significantly. The impact of H/D on the discretized domain is mainly

limited to the height of the fluid domain. Thus, the relationship between H/D and the number of

elements is almost linear. On the other hand, the computational cost of the simulations increases

sharply as P/D decreases, especially for very low P/D. Besides the relationship mentioned above

between P/D and Dh, the gap between the rods becomes very narrow, requiring substantial mesh

refinement in this region to properly model the cross-flow between subchannels.
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Figure 3.5: Number of elements in the meshes as a function of P/D (left) and as a function of
H/D (right).

3.2.4 Post-processing

The pressure drop is the first quantity of interest obtained from the CFD simulations. The

pressure field is not uniform across the flow area. Since the wires impel the fluid sideways, a lateral

pressure gradient is established in the direction of inclination of the wire, as shown in Figure 3.7.

Therefore, in order to compute the pressure of the bundle, the average pressure in the flow area for

the inlet and outlet are calculated using Equation 3.4. Aj denotes for the area of the node j normal

to y, and A is the flow area. Pressure drop is then calculated as the difference between the average

pressures of the inlet and outlet as in Equation 3.5.

P̄ =
1

A

∫
i

Aj ∗ Pj (3.4)

∆P = P̄inlet − P̄outlet (3.5)

The relationship between the pressure drop (∆P ) and friction factor is calculated from the
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Figure 3.6: Normalized pressure gradients in the lateral direction for different elevations.
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Figure 3.7: Contours of normalized axial velocity for different elevations.
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Darcy-Weisbach equation shown in Equation 3.6, where H is the domain height, Dh is the hy-

draulic diameter, ρ is the density, and V̄ the mean axial velocity of the flow.

∆P = fb
H

Dh

ρV̄ 2

2
(3.6)

As V̄ and ρ are set to be unitary in the simulations, the friction factor of the simulated bundles

is calculated as in Equation 3.7.

fb =
2Dh∆P

H
(3.7)

The second quantity of interest is the flow split between the regions. Figure 3.8 shows how

the flow area is divided between the interior, edge, and corner regions. The flow split for a given

elevation y is calculated as the ratio between the mean axial velocity in the region i (i = 1, 2, and

3 for interior, edge, and corner, respectively) and the bundle mean axial velocity. Since the flow

area in the subchannels depends on the wire position, the flow split fluctuates over y. Therefore,

this study considers as the flow split parameter the mean of the flow split over one wire pitch as in

Equation 3.8.

Xi =
1

H

∫
H

V̄i(y)/V̄ (y)dy (3.8)

3.2.5 Evaluation of Grid Convergence and Spatial Discretization Uncertainty

Numerical simulations of flows involve the discretization of the space domain into a grid. As

the grid is refined, the uncertainty of the spatial discretization tends asymptotically to zero. Thus,

it is suitable for CFD analysis to verify how close to the ideal grid independence condition a

simulation is and quantify the discretization uncertainty. Since this work involves the statistical

representation of the behavior of the pressure drop as a function of different geometries, there is

an acute sensitivity to grid uncertainties over the geometric parameters of interest; otherwise, the

grid dependencies would be indistinguishably represented by the machine learning model.
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Figure 3.8: Axial velocity contours in the interior, edge and corner regions.

The grid convergence was investigated for the two limits of P/D since this is the most sig-

nificant geometrical parameter to meshing. The evaluation of the discretization uncertainty used

the Grid Convergence Index (GCI) method of Celik et al. [44]. This method requires three grids

with successive refinements to quantify the discretization uncertainty of the finer grid. First, the

parameter h is calculated for each mesh using Equation 3.9, where V is the domain volume, and

N is the number of elements in the grid. The refinement ratio is defined by Equation 3.10.

h =

[
1

N

N∑
i=1

(∆Vi)

]1/3
(3.9)

rcoarse,fine =
hcoarse
hfine

(3.10)

Table 3.1 and 3.2 presents the mesh size information for the P/D = 1.02 and the P/D = 1.42

bundles respectively. The refinement ratio was aimed at r = 1.3. Figures 3.9 and 3.10 show

how the pressure drop and the flow split parameters varied as a function of the mesh size for

both bundles. Monotonic convergence occurs in all cases, with all variables presenting asymptotic
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behavior.

Table 3.1: Mesh sizes and refinement ratio for Nr = 7, H/D = 8 and P/D = 1.02.

Mesh Number h = (V/N)1/3 Refinement ratio
identifier of nodes (N) based on h

1 17,788,208 0.000328 r21 = 1.301

2 8,086,959 0.000429 r32 = 1.302

3 3,665,273 0.000562 —

Table 3.2: Mesh sizes and refinement ratio for Nr = 7, H/D = 8 and P/D = 1.42.

Mesh Number h = (V/N)1/3 Refinement ratio
identifier of nodes (N) based on h

1 2,167,868 0.000328 r21 = 1.308

2 968,146 0.000429 r32 = 1.311

3 429,919 0.000562 —

Equation 3.11 computes the GCI value, where the indices 1 to 3 refer to the three meshes used

in the method, from the finer to the coarser.

GCI21 =
Fsϵ21
rp21 − 1

(3.11)
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Figure 3.9: Pressure drop and flow split in a bundle with Nr = 7, H/D = 8 and P/D = 1.02 for
subsequently refined meshes.

Figure 3.10: Pressure drop and flow split in a bundle with Nr = 7, H/D = 8 and P/D = 1.42 for
subsequently refined meshes.

A safety factor of F = 1.25 is used when the method is used with three meshes. The apparent

order of grid convergence p is calculated using the Equations 3.12, 3.13 and 3.14.

p =
1

ln(r21)
ln

∣∣∣∣ϵ32ϵ21
∣∣∣∣+ q(p) (3.12)

q(p) = ln
rp21 − s

rp32 − s
(3.13)
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s = 1 · sgn
(
Φ32

Φ21

)
(3.14)

Table 3.3 summarizes the results obtained from the GCI simulations and their respective un-

certainties.

Table 3.3: Results obtained with the bundles of P/D = 1.02 and P/D = 1.42 with their respective
uncertainties.

P/D ∆P X1 X2 X3 U∆P UX1 UX2 UX3

1.02 3.75± 0.38 0.50± 0.00 1.55± 0.00 0.14± 0.01 10% 0.1% 0.2% 5.5%

1.42 2.65± 0.20 0.77± 0.04 1.09± 0.14 1.06± 0.01 7.6 % 5.0 % 13 % 1.2 %

3.3 Numerical Dataset

The new dataset of numerical simulations has 93 bundles with friction factor and flow split data.

The points follow a regular distribution through the geometrical parameters. Thus, there is data

at P/D = [1.02, 1.12, 1.22, 1.32, 1.42], H/D = [8, 19, 30, 41, 52], and Nr = [7, 19, 37, 61, 91].

The dataset presented in this work does not contain any simulation representative of the exact

geometry of an known experimental bundle. Figure 3.11 shows the distribution of the numerical

and the experimental data, highlighting how the superpose each other. The experimental data is

limited to P/D < 1.256, while the claimed validity of UCTD is for 1.02 ≤ P/D ≤ 1.42. The

numerical dataset closes this data gap. Moreover, the experimental data is clustered around some

geometries, leaving considerable windows in its range without data. The CFD dataset do not have

bundles with more than 91 pins, or 5 rings of rods around the central rod. Although the expansion

of the dataset beyond 5 rings may be an important expansion of this work, the results obtained with

this dataset presented in chapter 4 suggest that this problem is not very sensitive to the number of

45



pins for Nr > 91.

Figure 3.11: Distribution of the numerical and the experimental data in Nr, P/D, and H/D.
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Figure 3.12 shows the histograms of the numerical and experimental dataset in Nr, P/D, and

H/D, highlighting how the numerical dataset expands the data availability in P/D and H/D.

Although there there are bundles with Nr > 91 in the experimental dataset, their number is also

limited. Nevertheless, the model presented in this work was still able to predict them accurately

even with the ANN being trained with the presented numerical dataset.

Figure 3.12: Histograms of the data distribution in Nr (left), P/D (center), and H/D (right).

Table 3.4 presents the geometrical information of the simulated bundles in the dataset. Each

bundle has an identifier in the format nXXpY _Y Y hZZ, whereXX is the number of pins, Y _Y Y

the P/D, and ZZ the H/D. Table 3.4 also presents the results of friction factor (fb) and flow split

(Xi).
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Table 3.4: CFD dataset.

ID Geometry and Results

n7p1_02h8

Nr D Dw P/D H/D

7 10 0.2 1.02 8

fb X1 X2 X3

0.154 0.590 1.297 0.222

n7p1_02h19

Nr D Dw P/D H/D

7 10 0.2 1.02 19

fb X1 X2 X3

0.153 0.585 1.300 0.221

n7p1_02h30

Nr D Dw P/D H/D

7 10 0.2 1.02 30

fb X1 X2 X3

0.152 0.587 1.299 0.220

n7p1_02h41

Nr D Dw P/D H/D

7 10 0.2 1.02 41

fb X1 X2 X3

0.152 0.584 1.300 0.220

n7p1_02h52

Nr D Dw P/D H/D

7 10 0.2 1.02 52

fb X1 X2 X3

0.152 0.594 1.296 0.219
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Table 3.4 continued from previous page

ID Geometry and Results

n19p1_02h8

Nr D Dw P/D H/D

19 10 0.2 1.02 8

fb X1 X2 X3

0.164 0.635 1.372 0.238

n19p1_02h19

Nr D Dw P/D H/D

19 10 0.2 1.02 19

fb X1 X2 X3

0.165 0.633 1.373 0.239

n19p1_02h41

Nr D Dw P/D H/D

19 10 0.2 1.02 41

fb X1 X2 X3

0.156 0.607 1.396 0.229

n19p1_02h52

Nr D Dw P/D H/D

19 10 0.2 1.02 52

fb X1 X2 X3

0.163 0.638 1.369 0.236

n37p1_02h8

Nr D Dw P/D H/D

37 10 0.2 1.02 8

fb X1 X2 X3

0.170 0.671 1.482 0.253
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Table 3.4 continued from previous page

ID Geometry and Results

n37p1_02h19

Nr D Dw P/D H/D

37 10 0.2 1.02 19

fb X1 X2 X3

0.165 0.648 1.513 0.247

n37p1_02h30

Nr D Dw P/D H/D

37 10 0.2 1.02 30

fb X1 X2 X3

0.160 0.646 1.513 0.240

n61p1_02h8

Nr D Dw P/D H/D

61 10 0.2 1.02 8

fb X1 X2 X3

0.173 0.712 1.531 0.272

n61p1_02h19

Nr D Dw P/D H/D

61 10 0.2 1.02 19

fb X1 X2 X3

0.169 0.690 1.570 0.266

n91p1_02h8

Nr D Dw P/D H/D

91 10 0.2 1.02 8

fb X1 X2 X3

0.171 0.720 1.656 0.280
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Table 3.4 continued from previous page

ID Geometry and Results

n7p1_12h8

Nr D Dw P/D H/D

7 10 1.2 1.12 8

fb X1 X2 X3

0.377 0.783 1.209 0.660

n7p1_12h19

Nr D Dw P/D H/D

7 10 1.2 1.12 19

fb X1 X2 X3

0.321 0.779 1.239 0.565

n7p1_12h30

Nr D Dw P/D H/D

7 10 1.2 1.12 30

fb X1 X2 X3

0.306 0.768 1.252 0.538

n7p1_12h41

Nr D Dw P/D H/D

7 10 1.2 1.12 41

fb X1 X2 X3

0.300 0.762 1.257 0.532

n7p1_12h52

Nr D Dw P/D H/D

7 10 1.2 1.12 52

fb X1 X2 X3

0.296 0.761 1.259 0.526
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Table 3.4 continued from previous page

ID Geometry and Results

n19p1_12h8

Nr D Dw P/D H/D

19 10 1.2 1.12 8

fb X1 X2 X3

0.373 0.798 1.258 0.646

n19p1_12h19

Nr D Dw P/D H/D

19 10 1.2 1.12 19

fb X1 X2 X3

0.323 0.791 1.276 0.568

n19p1_12h30

Nr D Dw P/D H/D

19 10 1.2 1.12 30

fb X1 X2 X3

0.311 0.787 1.283 0.550

n19p1_12h41

Nr D Dw P/D H/D

19 10 1.2 1.12 41

fb X1 X2 X3

0.306 0.785 1.286 0.546

n19p1_12h52

Nr D Dw P/D H/D

19 10 1.2 1.12 52

fb X1 X2 X3

0.302 0.782 1.290 0.539
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Table 3.4 continued from previous page

ID Geometry and Results

n37p1_12h8

Nr D Dw P/D H/D

37 10 1.2 1.12 8

fb X1 X2 X3

0.375 0.829 1.291 0.667

n37p1_12h19

Nr D Dw P/D H/D

37 10 1.2 1.12 19

fb X1 X2 X3

0.325 0.818 1.316 0.582

n37p1_12h30

Nr D Dw P/D H/D

37 10 1.2 1.12 30

fb X1 X2 X3

0.313 0.817 1.319 0.567

n37p1_12h41

Nr D Dw P/D H/D

37 10 1.2 1.12 41

fb X1 X2 X3

0.310 0.817 1.319 0.565

n61p1_12h8

Nr D Dw P/D H/D

61 10 1.2 1.12 8

fb X1 X2 X3

0.377 0.849 1.328 0.692
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Table 3.4 continued from previous page

ID Geometry and Results

n61p1_12h30

Nr D Dw P/D H/D

61 10 1.2 1.12 30

fb X1 X2 X3

0.315 0.837 1.358 0.589

n61p1_12h52

Nr D Dw P/D H/D

61 10 1.2 1.12 52

fb X1 X2 X3

0.308 0.837 1.359 0.581

n91p1_12h8

Nr D Dw P/D H/D

91 10 1.2 1.12 8

fb X1 X2 X3

0.379 0.869 1.347 0.700

n91p1_12h19

Nr D Dw P/D H/D

91 10 1.2 1.12 19

fb X1 X2 X3

0.328 0.854 1.391 0.603

n91p1_12h30

Nr D Dw P/D H/D

91 10 1.2 1.12 30

fb X1 X2 X3

0.317 0.856 1.387 0.592
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Table 3.4 continued from previous page

ID Geometry and Results

n91p1_12h41

Nr D Dw P/D H/D

91 10 1.2 1.12 41

fb X1 X2 X3

0.313 0.858 1.382 0.590

n7p1_22h8

Nr D Dw P/D H/D

7 10 2.2 1.22 8

fb X1 X2 X3

0.459 0.810 1.103 0.984

n7p1_22h19

Nr D Dw P/D H/D

7 10 2.2 1.22 19

fb X1 X2 X3

0.374 0.873 1.110 0.868

n7p1_22h30

Nr D Dw P/D H/D

7 10 2.2 1.22 30

fb X1 X2 X3

0.354 0.869 1.129 0.818

n7p1_22h41

Nr D Dw P/D H/D

7 10 2.2 1.22 41

fb X1 X2 X3

0.342 0.865 1.144 0.780
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Table 3.4 continued from previous page

ID Geometry and Results

n19p1_22h8

Nr D Dw P/D H/D

19 10 2.2 1.22 8

fb X1 X2 X3

0.450 0.850 1.153 1.014

n19p1_22h19

Nr D Dw P/D H/D

19 10 2.2 1.22 19

fb X1 X2 X3

0.368 0.878 1.147 0.873

n19p1_22h30

Nr D Dw P/D H/D

19 10 2.2 1.22 30

fb X1 X2 X3

0.350 0.874 1.159 0.826

n19p1_22h41

Nr D Dw P/D H/D

19 10 2.2 1.22 41

fb X1 X2 X3

0.341 0.872 1.166 0.797

n19p1_22h52

Nr D Dw P/D H/D

19 10 2.2 1.22 52

fb X1 X2 X3

0.336 0.868 1.174 0.776
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Table 3.4 continued from previous page

ID Geometry and Results

n37p1_22h19

Nr D Dw P/D H/D

37 10 2.2 1.22 19

fb X1 X2 X3

0.363 0.893 1.180 0.885

n37p1_22h30

Nr D Dw P/D H/D

37 10 2.2 1.22 30

fb X1 X2 X3

0.347 0.888 1.192 0.843

n37p1_22h41

Nr D Dw P/D H/D

37 10 2.2 1.22 41

fb X1 X2 X3

0.339 0.888 1.196 0.815

n37p1_22h52

Nr D Dw P/D H/D

37 10 2.2 1.22 52

fb X1 X2 X3

0.335 0.885 1.202 0.803

n61p1_22h8

Nr D Dw P/D H/D

61 10 2.2 1.22 8

fb X1 X2 X3

0.442 0.895 1.215 1.046
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Table 3.4 continued from previous page

ID Geometry and Results

n61p1_22h19

Nr D Dw P/D H/D

61 10 2.2 1.22 19

fb X1 X2 X3

0.359 0.909 1.198 0.877

n61p1_22h30

Nr D Dw P/D H/D

61 10 2.2 1.22 30

fb X1 X2 X3

0.344 0.904 1.210 0.837

n61p1_22h41

Nr D Dw P/D H/D

61 10 2.2 1.22 41

fb X1 X2 X3

0.337 0.904 1.213 0.818

n61p1_22h52

Nr D Dw P/D H/D

61 10 2.2 1.22 52

fb X1 X2 X3

0.333 0.902 1.217 0.804

n7p1_32h8

Nr D Dw P/D H/D

7 10 3.2 1.32 8

fb X1 X2 X3

0.493 0.792 1.093 1.036
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Table 3.4 continued from previous page

ID Geometry and Results

n7p1_32h19

Nr D Dw P/D H/D

7 10 3.2 1.32 19

fb X1 X2 X3

0.377 0.877 1.078 0.958

n7p1_32h30

Nr D Dw P/D H/D

7 10 3.2 1.32 30

fb X1 X2 X3

0.353 0.886 1.083 0.932

n7p1_32h41

Nr D Dw P/D H/D

7 10 3.2 1.32 41

fb X1 X2 X3

0.343 0.889 1.090 0.910

n7p1_32h52

Nr D Dw P/D H/D

7 10 3.2 1.32 52

fb X1 X2 X3

0.335 0.889 1.097 0.889

n19p1_32h8

Nr D Dw P/D H/D

19 10 3.2 1.32 8

fb X1 X2 X3

0.485 0.851 1.138 1.078
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Table 3.4 continued from previous page

ID Geometry and Results

n19p1_32h19

Nr D Dw P/D H/D

19 10 3.2 1.32 19

fb X1 X2 X3

0.371 0.893 1.112 0.982

n19p1_32h30

Nr D Dw P/D H/D

19 10 3.2 1.32 30

fb X1 X2 X3

0.349 0.895 1.116 0.950

n19p1_32h41

Nr D Dw P/D H/D

19 10 3.2 1.32 41

fb X1 X2 X3

0.338 0.894 1.121 0.930

n19p1_32h52

Nr D Dw P/D H/D

19 10 3.2 1.32 52

fb X1 X2 X3

0.332 0.894 1.123 0.914

n37p1_32h8

Nr D Dw P/D H/D

37 10 3.2 1.32 8

fb X1 X2 X3

0.478 0.881 1.170 1.101
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Table 3.4 continued from previous page

ID Geometry and Results

n37p1_32h19

Nr D Dw P/D H/D

37 10 3.2 1.32 19

fb X1 X2 X3

0.364 0.910 1.139 0.994

n37p1_32h30

Nr D Dw P/D H/D

37 10 3.2 1.32 30

fb X1 X2 X3

0.344 0.906 1.143 0.958

n37p1_32h41

Nr D Dw P/D H/D

37 10 3.2 1.32 41

fb X1 X2 X3

0.334 0.908 1.148 0.943

n37p1_32h52

Nr D Dw P/D H/D

37 10 3.2 1.32 52

fb X1 X2 X3

0.328 0.908 1.149 0.928

n61p1_32h8

Nr D Dw P/D H/D

61 10 3.2 1.32 8

fb X1 X2 X3

0.474 0.905 1.182 1.105

61



Table 3.4 continued from previous page

ID Geometry and Results

n61p1_32h19

Nr D Dw P/D H/D

61 10 3.2 1.32 19

fb X1 X2 X3

0.358 0.927 1.148 0.990

n61p1_32h30

Nr D Dw P/D H/D

61 10 3.2 1.32 30

fb X1 X2 X3

0.339 0.926 1.154 0.958

n61p1_32h41

Nr D Dw P/D H/D

61 10 3.2 1.32 41

fb X1 X2 X3

0.330 0.924 1.159 0.940

n61p1_32h52

Nr D Dw P/D H/D

61 10 3.2 1.32 52

fb X1 X2 X3

0.325 0.924 1.161 0.927

n7p1_42h8

Nr D Dw P/D H/D

7 10 4.2 1.42 8

fb X1 X2 X3

0.526 0.771 1.091 1.062
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Table 3.4 continued from previous page

ID Geometry and Results

n7p1_42h19

Nr D Dw P/D H/D

7 10 4.2 1.42 19

fb X1 X2 X3

0.377 0.866 1.072 0.988

n7p1_42h30

Nr D Dw P/D H/D

7 10 4.2 1.42 30

fb X1 X2 X3

0.348 0.875 1.073 0.973

n7p1_42h41

Nr D Dw P/D H/D

7 10 4.2 1.42 41

fb X1 X2 X3

0.335 0.881 1.074 0.961

n7p1_42h52

Nr D Dw P/D H/D

7 10 4.2 1.42 52

fb X1 X2 X3

0.327 0.886 1.077 0.949

n19p1_42h8

Nr D Dw P/D H/D

19 10 4.2 1.42 8

fb X1 X2 X3

0.519 0.848 1.132 1.097
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Table 3.4 continued from previous page

ID Geometry and Results

n19p1_42h30

Nr D Dw P/D H/D

19 10 4.2 1.42 30

fb X1 X2 X3

0.343 0.900 1.101 0.990

n19p1_42h41

Nr D Dw P/D H/D

19 10 4.2 1.42 41

fb X1 X2 X3

0.331 0.900 1.103 0.978

n19p1_42h52

Nr D Dw P/D H/D

19 10 4.2 1.42 52

fb X1 X2 X3

0.323 0.901 1.104 0.967

n37p1_42h8

Nr D Dw P/D H/D

37 10 4.2 1.42 8

fb X1 X2 X3

0.511 0.882 1.161 1.121

n37p1_42h19

Nr D Dw P/D H/D

37 10 4.2 1.42 19

fb X1 X2 X3

0.362 0.918 1.121 1.024
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Table 3.4 continued from previous page

ID Geometry and Results

n37p1_42h30

Nr D Dw P/D H/D

37 10 4.2 1.42 30

fb X1 X2 X3

0.337 0.917 1.124 1.004

n37p1_42h41

Nr D Dw P/D H/D

37 10 4.2 1.42 41

fb X1 X2 X3

0.326 0.916 1.127 0.992

n37p1_42h52

Nr D Dw P/D H/D

37 10 4.2 1.42 52

fb X1 X2 X3

0.319 0.916 1.129 0.982

n61p1_42h8

Nr D Dw P/D H/D

61 10 4.2 1.42 8

fb X1 X2 X3

0.505 0.905 1.176 1.132

n61p1_42h19

Nr D Dw P/D H/D

61 10 4.2 1.42 19

fb X1 X2 X3

0.355 0.934 1.129 1.028
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Table 3.4 continued from previous page

ID Geometry and Results

n61p1_42h30

Nr D Dw P/D H/D

61 10 4.2 1.42 30

fb X1 X2 X3

0.331 0.932 1.134 1.010

n61p1_42h41

Nr D Dw P/D H/D

61 10 4.2 1.42 41

fb X1 X2 X3

0.321 0.931 1.138 0.997

n61p1_42h52

Nr D Dw P/D H/D

61 10 4.2 1.42 52

fb X1 X2 X3

0.315 0.930 1.140 0.987

3.4 Conclusions

The work presented in this section took advantage of the knowledge available in a vast repos-

itory in the literature of CFD simulations of wire-wrapped rod bundles to propose a numerical

model for the laminar regime. The main challenges in these bundles’ spatial discretization were

addressed by smoothing the contacts between the wire and the rods and the walls as proposed

in previous studies. The spatial discretization was validated using the GCI method. 93 bundles

were simulated using the code STAR-CCM+, covering a wide range of P/D and H/D. This

work provides an expanded dataset of laminar flows in wire-wrapped rod bundles to support the

development of correlations valid for a more comprehensive range of geometries.

66



4. ARTIFICIAL NEURAL NETWORK PREDICTION MODEL

Artificial Neural Networks (ANN) have become the preferred machine learning for many ap-

plications. Compared to other machine learning methods for regression, ANNs require fewer

problem-specific implementations. The workflow generally concentrates on the data pre-process

and definition of the parameters of control of the learning process (hyperparameters). This general-

ity of ANNs makes possible the use of publicly available software libraries that not only are highly

optimized but also have a vast commercial and academic community of developers and users, such

as TensorFlow [45], and PyTorch [46].

When applied to regression problems, ANNs are recognized as highly capable of approximat-

ing non-linear functions, a feature often referred to as "Universal Approximation Property." While

some studies [47, 48] demonstrated that an ANN with one single hidden layer could fit complex

non-linear functions, it may require a hidden layer with an unpractical number of nodes. The ca-

pacity to approximate complex functions is also achieved by adjusting the number of hidden layers

[49] or the network depth. ANNs with multiple hidden layers are often called Deep Neural Net-

works (DNN), and the machine learning field concerned with the development and use of DNNs is

denominated Deep Learning.

Regression using ANNs is used to generate surrogates for several functions in engineering.

The ANN-based surrogates are often used to support an optimization problem, mitigating the data

sparsity. In this case, the ANN interpolates the data, which can be numerical [50, 51, 52] of

experimental [53]. In some cases, the obtained surrogate provides the cost function to an optimizer.

GPU-optimized convolutional neural networks, a special case of sparsely connected ANNs, are

capable of reproducing the full flow field of CFD simulations over four orders of magnitude faster

than CPU-based CFD solvers [54].
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4.1 The Artificial Neural Network

The neural network concept is based on the simplified knowledge of how the human brain

works. Unit neurons receive the information obtained from the synapses with other neurons and

transmit a response to the subsequent neurons. The complex processes of a nervous system result

from the multiple interactions between each neuron. The elementary unit of an artificial neural

network is the perceptron. It consists of the summation of all the inputs x weighted by w plus a

trainable bias term b applied to a transfer function σ. Therefore the output oj of a perceptron is

given by Equation 4.1. The basic architecture of a perceptron is shown in Figure 4.1

oj = σ(bj +
n∑

i=1

xijwij) (4.1)

Figure 4.1: Basic architecture of a perceptron.

The transfer functions convert the inputs from the previous layer into an output. The transfer

function will attribute a decision character to the node, often associated with a probability distribu-

tion. The most common transfer functions in use for ANNs are presented in Table 4.1. There are

no rules to define what transfer function is better suited to each problem, with the selection being

often empirical. The most used transfer function is the Rectified Linear Unit (ReLu). However,

its application is generally for deep neural networks and Convolutional Neural Networks, often

with more than ten hidden layers. The ReLu function offers the advantage of neutralizing some of

the nodes as they assume zero values when the inputs become negative. They alleviate the burden

68



of training by simplifying the gradient calculation to zero. Thus, the network becomes virtually

a sparse ANN, decreasing the tendency to overfitting and increasing training efficiency. Its appli-

cation to smaller networks, especially for regression, is limited since its discontinuous derivative

tends to create oscillations to gradients during optimization. For this role, the hyperbolic tangent

(tanh) is one of the most popular transfer functions, as it provides values in both the positive and

negative range and has a continuous derivative. During the early days of the ANN research, the

sigmoid function was the most common. It became out of favor as it returns only positive val-

ues and tends to zero when receiving negative values. The accumulation of zeroes in the network

minimizes the gradients and stalls training, a limitation known as "gradient vanishing" [55].

Table 4.1: Common transfer functions for ANNs.

The perceptron is essentially a linear classifier. Although the transfer function may be non-

linear, the function input is a linear combination of weights, meaning that the perceptron is not
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capable of discovering non-linear relationships between a set of inputs and outputs. However,

combining multiple layers of perceptrons with non-linear transfer functions forms a network capa-

ble of reproducing non-linear functions. Such a network is denominated the feed-forward neural

network [56], or sometimes multi-layer perceptrons. Figure 4.2 shows the typical schematics of a

densely connected feed-forward neural network.

Figure 4.2: Basic architecture of a feed-forward neural network.

Training is performed using a dataset of size N given by S = {(x⃗i, y⃗i = f ∗(xi)), i ∈ [n]}. The

weights of the network are adjusted using the backpropagation method [57] in such way that the

network function f will approximate f ∗. The most common error function used in backpropaga-

tion, and the one adopted in this study, is the mean squared error. The error function E(X, θ) for a

set of weights and biases denoted θ and the calculated output ŷi is calculated using Equation 4.2.

E(X, θ) =
1

2N

N∑
i=1

(ŷi − yi)
2 (4.2)

E(X, θ) =
100%

N

N∑
i=1

∣∣∣∣ ŷi − yi
ŷi

∣∣∣∣ (4.3)

The partial derivative of the error is calculated in respect to each weight by applying the chain

rule (Equation 4.4), where okj = bjk +
∑

(xkijw
k
ij).
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∂E

∂wk
ij

=
∂E

∂akj

∂akj
∂wk

ij

(4.4)

The weights are adjusted at each training step (t). In the most simple form of backpropagation,

the change in the weight value is proportional to a learning rate coefficient (α) and the gradient

∂E
∂wk

ij
. This strategy of optimizing a function by applying steps related to the function gradient is

defined as gradient descent.

Several gradient-based algorithms have been proposed in order to improve the optimization

efficiency [58, 59], with some of these developments accounting for some of the noticeable ad-

vancements in machine learning recently [60, 61]. The main addition from the most advanced

methods to the aforementioned basic approach is incorporating momentum to the gradient de-

scent. By building inertia in the search direction, the optimization with momentum becomes more

resilient to gradient oscillations and helps the search to move on from flat spots. Algorithms with

momentum generally converge faster and are less prone to get trapped at a local minimum.

The Adam [62] method for stochastic optimisation was adopted since it provided accurate

results at a faster rate. The method employs adaptive learning rates for each parameter based on

first and second moments of the gradients. The same coefficient values (α = 0.001, β1 = 0.9,

β2 = 0.999 and ϵ = 10−8) proposed by the authors of the method were used in this study. The

two momentum vectors are initiated as zero, then they are calculated by Equations 4.5 and 4.6,

respectively, for the current step t.

mt = β1mt−1 + (1− β1) ∗
[
∂E

∂wt

]
(4.5)

vt = β2vt−1 + (1− β2) ∗
[
∂E

∂wt

]2
(4.6)

Then the bias-corrected first and second moments estimate is computed using Equations 4.7

and 4.8, respectively.
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m̂t =
mt

1− βt
1

(4.7)

v̂t =
vt

1− βt
2

(4.8)

Then, the updated weights are calculated based on Equation 4.9.

wt+1 = wt − m̂t

(
α√
v̂t + ϵ

)
(4.9)

4.2 Model definition

The objective of the presented neural network is to interpolate the results of pressure drop and

flow split obtained with CFD as a function of the bundle geometry. The dataset is composed by 93

examples, where xi ∈ X := [Nr, P
D
, H
D
]T and its respective label is yi ∈ Y := [f,X1, X2, X3]

T .

The whole dataset was generated using CFD simulations following the procedure of Chapter 3.

A dataset has to be normalized before training; otherwise, the importance of each independent

variable will be biased by its absolute value. The method adopted is the z-score, which means

removing the mean of each variable and scaling the standard deviation to unity as in Equation

4.10. The scaler is calculated for each parameter from the training data; then, a scaling layer

is added to the input layer. The normalization of the variance decreases the gradient elongation,

reducing the zig-zagging during the gradient descent towards the minimum [63].

scaler =
x− x̄

σ(x)
(4.10)

Apart from the historical decline in the interest for the sigmoid function, it was selected for

this model. As all the values involved in this problem are positive, the sigmoid function performed

well. The sigmoid function also provided a marginal resistance against overfitting to the model,

maybe by selectively neutralizing part of the network similar to the ReLu function. It has the

advantage of not introducing oscillations to the gradients, although without the benefit of decreas-

72



ing the computational cost. The computational cost of training the presented model is relatively

low, especially when compared to the typical applications of large CNNs, such as compute vision,

which often will involve networks with over tens of millions of trainable parameters. Therefore, a

transfer function that improves accuracy and generalization at the cost of training efficiency is ben-

eficial. The transfer function of the output layer is linear. The output of a network in a regression

problem works more as a compiler of the results obtained from the hidden layers than a decision

unit. The linear function helps stabilize the gradients during the first step of the backpropagation

process.

The definition of the number of nodes and layers was empirical to minimize the error in the

validation set. The ANN for this work has two hidden layers of 100 nodes each. This model is a

dense network, as all nodes in a layer are fully connected to the nodes of the next one. This model is

a considerably complex network when compared with other problems of apparent similar size and

complexity. Kim et al. [64] used an ANN with a single hidden layer with 15 nodes to predict the

bundle average friction factor in wire-wrapped rod bundles with the same dataset as for the UCTD

correlation. This larger order of the adopted model provides much more generalization power,

recognizing many more features. With the increased model order, however, overfitting becomes

a dominant issue. When this model is trained with the CFD dataset at first, the optimization

process always converges to a local minimum. The solutions have high variance, and the accuracy

is relatively poor. However, the model can be pre-trained before seeing the actual dataset. The

UCTD correlation provides the ideal pre-training dataset for this task, as it already approaches the

actual function. Moreover, the UCTD correlation is a continuous function, meaning that it can

provide infinite data points. There is no such thing as overfitting a continuous function; thus, the

"Universal Approximation Property" is applicable.

4.3 Training

Pre-training uses a synthetic dataset of 90,000 data points generated using the original UCTD

correlation. The synthetic dataset is formed by a regular grid of shape 9×100×100 for 7 ≤ Nr ≤

271, 1.02 ≤ P/D ≤ 1.42 and 8 ≤ H/D ≤ 52. The data were randomly split into a training set and
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a validation set in 80% and 20%, respectively. The pre-trained model predicts the synthetic dataset

with a mean absolute error of 0.032%, and the maximum absolute error in the whole dataset was

0.047%. After that, the model starts the training with the numerical dataset from the point where

it is virtually identical to the UCTD correlation. By starting from a similar function, the search

space of this problem is reduced by several orders of magnitude. The pre-training strategy avoided

the problem of local minimum trapping, and the final model did not present any concern about

outfitting while benefiting from the high order model.

The training was performed using the k-fold cross-validation procedure. One of the primary

concerns in this project was that the results could have high variance between the folds [65], espe-

cially considering the relatively large size of the ANN. Such characteristics could deem the model

unusable as a representation of a continuous function or require averaging of multiple distinct

trained learners to control the model variance [64].

The cross-validation was performed using five-folds, so the training/test split ratio of 80%/20%.

Figure 4.3 shows the statistics obtained after training with the CFD using the k-fold cross-validation

method for the CFD dataset (93 points), the validation dataset (42 points), and the same dataset

used for pre-training (90,000 points). The variance of the model is very low, especially for an ANN.

The 95th percentile of the standard deviation in the experimental dataset for fb is 91%, while for

X3 it is 2.59%. The average standard deviation of X3 is 0.98%, indicating that this method has

very high repeatability.

It is noticeable that the variance between the folds in the 90,000 points dataset is slightly higher,

with a 90th percentile of 2.23% for fb and 3.49% for X3. This uncertainty comes from the fact that

the 90,000 points contain the larger bundles, in the range of 91 ≤ Nr ≤ 271 pins, which the CFD

dataset used for training lacks. Neural networks are exceptional interpolators but are substandard

when extrapolating. Therefore, it is remarkable that the presented model can accurately predict the

experimental bundles in the higher range of Nr with low variance.

The ANN provides a continuous function that represents the population of the CFD dataset.

Figure 4.4 shows the curves of the ANN and UCTD functions for fb in the space of P/D and
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Figure 4.3: Distribution of the standard deviation between the 5 folds after training using the k-fold
cross-validation for the dataset of CFD simulations (left), the dataset of experiments (center) and
the dataset of 90,000 points used for pre-training with outliers omitted for clarity (right).

H/D for bundles with 7 ≤ Nr ≤ 61 and Re = 250. As expected, due to the low variance of the

ANN predictions, the curves from the ANN model are very smooth, as for UCTD. A well-defined

trend to predict a large effect by the number of pins for large P/D and small H/D is observed in

the UCTD function, while the ANN keeps the importance of the number of pins relatively small

throughout the domain.

Figure 4.5 shows plots of fb as a function of P/D for the values of H/D in the CFD dataset,

7 ≤ Nr ≤ 61 andRe = 250. There is a good agreement between the ANN predictions and the CFD

data points. The function obtained from the ANN is also smooth. These characteristics strongly

support the conclusion that the ANN was capable of representing the underlying features of the

CFD dataset. Therefore, the ANN represents the general population of numerical representations

of wire-wrapped rod bundles in this range, keeping the simulation parameters. This property of

the ANN model allows it to assume the place of other simulations for the whole range of validity

of the training for a fraction of the computational cost.

Some critical divergences between the predictions of the ANN model and UCTD are observed

in 4.5. The difference in the pin number effect for larger P/D and smaller H/D is notorious,
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Figure 4.4: Plots of the friction factor as a function of P/D and H/D for the ANN model (left)
and UCTD (right).

as observed in Figure 4.4. The extent where the pin effect is the largest is for P/D > 1.25. It

coincides with the limit of P/D in the experimental dataset (P/D = 1.256), in which the UCTD

correlation was calibrated. The ANN had data points from the CFD simulations to interpolate

this area, while the UCTD correlation could only extrapolate this region for its calibration in the

laminar regime. Another discrepant behavior between the two models is that the ANN predicts

that for H/D ≈ 19 the bundle average friction factor starts to decrease at a constant rate for

P/D > 1.2. In contrast, the UCTD correlation predicts ever-increasing values for fb in this

study’s range of P/D. However, the rate of increase in fb for large P/D values also decreases

with H/D for UCTD. Unfortunately, there are no experimental data points in this range for final

verification of the behavior of both models, but the numerical data support this trend of the ANN

model. Another region of these curves where the ANN and the UCTD disagreed is for fb values

of low P/D and high H/D, with UCTD tending to predict lower fb values as H/D increases

for low P/D. This area of the experimental dataset lacks data points, suggesting that the UCTD

might be data starved in this area either. This tendency might be contributing to the higher pitch of
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the UCTD correlation for larger H/D values. With the lower bound predicting lower values and

the center of the range anchored on the experimental data, the overall slope of UCTD tends to be

higher for high H/D than for the ANN.

Figure 4.5: fb as a function of P/D and H/D for bundles with different numbers of pins. The
experimental data map (right, bottom) shows the distribution of the experimental dataset in P/D
and H/D, with the largest P/D in the experiments delimited (P/D = 1.126).
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The tendency of UCTD to present larger relative differences to the ANN model for fb (dfbr )

further from the experimental data is visible in Figure 4.6. One may notice that the experimental

points populate the level closer to the relative difference of zero. Moreover, some landmarks in the

surface curves are associated with data clusters. For example, the wave at P/D ≈ 1.05 is centered

on the cluster of data points around this point, composed mostly of the Marten [4] bundles. Another

area in Figure 4.6 where the trends of UCTD seems to be influenced by the data distribution is the

presence of a tab of positive dfbr for low H/D and pin number that lowers to negative values as

the number of pins increase. This tendency follows the distribution of Nr in the data, with more

bundles with Nr ≤ 61 (mostly Nr = 37) at lower P/D and more bundles with Nr ≥ 91 at higher

P/D.

Figure 4.6: Relative differences between the predictions of the ANN model and UCTD for the
bundle average friction factor.

Figure 4.7 shows X1, X2 and X3 as a function of P/D. The ANN and the simulation points

have an excellent agreement with UCTD for H/D ≥ 19. The X3 curves have a more visible diver-

gence, but X3 is respective to a minimal flow area; thus, any fluctuation in X1 and X2 will cause
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an oversized response of X3. Therefore, it still can be considered a good agreement. However, the

predictions of UCTD strongly diverge from the ANN model for H/D = 8 as P/D increases. Not

only is the magnitude of relative differences large, up to 93% for X1 and 57% for X2, but also the

relative distribution of axial velocity changes. For instance, UCTD predicts that the axial velocity

is considerably larger in the interior than in the edge.

The authors of UCTD [19], in the publication of the more recent PCTD correlation [66], note

that the hydraulic diameter of the edge subchannels is larger than the interior. Therefore the mean

axial velocity in the edge must be larger than the bundle average axial velocity, meaning that the

condition of X2 > 1 is necessary for physical validity. The ANN model predicts X2 > 1 for the

whole domain, while UCTD violates this condition for bundles with H/D up to 14 in this study’s

range of P/D.

The presence of bundles with X2 < 1 in UCTD seems to stem from the dependence of UCTD

on the experimental data distribution. Figure 4.8 shows the relative difference between UCTD

and the ANN model for X2 (dX2
r ). The landmarks of the fb relative difference surface seem to be

strongly influenced by the distribution of the experimental data points. There are larger differences

between the two models in a line close to P/D = 1.15, more visible for Nr = 7, which coincides

with the separation between the two clusters of experimental data. For dX2
r , there is as a step slop

towards larger P/D and smaller H/D. This region is where the furthest point in P/D from any

experimental data is for a similar H/D.

This section demonstrated that the ANN represents the general trends and features of the nu-

merical solutions across all the validity ranges. The CFD dataset is homogeneously distributed in

the whole domain of P/D and H/D, meaning that the ANN model is statistically supported in

all this range. On the other hand, all the current correlations for pressure drop in wire-wrapped

rod bundles are dependent on experimental data, which is scarce. Under this perspective, even

though UCTD has a robust formulation based on extensive domain knowledge, it is still suscepti-

ble to becoming dependent on the experimental data distribution, therefore prone to provide poor

predictions when extrapolating the parameters of the experimental data.
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Figure 4.7: Flow split parameter for interior (X1), edge (X2) and corner (X2) regions as a function
of P/D and H/D for bundles with different numbers of pins.

4.4 Model Verification with Experimental Data

The ANN model accuracy for fb and X2 in the experimental data is evaluated and compared

with the UCTD correlation. The reference for accuracy chosen for this work is the relative error

to the measured values, as presented in Equation 4.11. The dispersion of the error is measured by
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Figure 4.8: Relative differences between the predictions of the ANN model and UCTD for the flow
split parameter in the edge region (X2).

ϵRMS , as presented in Equation 4.14, where n is the total number of data points.

ϵ =
Prediction−Measurement

Prediction
× 100% (4.11)

ϵMean =
1

n

∑
n

ϵi (4.12)

ϵRMS =

√
1

n

∑
n

ϵ2i (4.13)

There are 348 data points belonging to 42 bundles at several Reynolds numbers in the laminar

regime. A direct evaluation of the predictions for fb can be performed by comparing each mea-

surement point with the respective prediction. Table 4.2 presents statistics of the relative errors for

the ANN model and UCTD in this dataset.
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Table 4.2: Mean and RMS of the prediction errors for the ANN model and UCTD for all the 348
data points (42 bundles) of bundle average friction factor in the laminar regime.

Model Mean relative error (fb) RMS relative error (fb)

ANN 10.0% 21.7%

UCTD 3.17% 17.7%

The similarity between the predictions of the two models for the experimental dataset is noto-

rious. Figure 4.9 shows a comparison between the predicted and the measured values for fb for

all data points. This consistency between the ANN and UCTD, which are models distinct in their

conceptual structures and calibration, highlights the intrinsic uncertainty of the data. The exper-

imental data itself has its error distribution around the true function. Considering the agreement

between the two models, this error distribution of measurements seems close to what the ANN and

UCTD predict.

Figure 4.9: Comparison between the measured and the predicted values of average bundle friction
factor (fb).
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The estimators of the predictions considering every measurement as individual data points

may not represent the population correctly. The bundles in this dataset have different numbers of

measurements. Moreover, each experiment has systematic errors from the instrumentation, facility

characteristics, and experimental methods. By weighting each measurement point individually, the

systematic errors of each bundle are weighted differently in the overall statistics. Besides that, not

all the data dispersion quantified by ϵRMS is a result of the prediction variance. Since this data

is for laminar flows, it is expected that the friction factor will follow the line of proportionality

defined by CfbL/Re. However, the measurements of each bundle are dispersed around this line

due to random errors in the experiment itself.

Figure 4.10 shows examples of laminar data for Chun3 [23], Marten43 [4] and Engel [16]. For

Chun3, both the ANN and UCTD predict data with good agreement to Cexp
fbL, and there is minimal

dispersion of the experimental data around it. Thus, Chun3 contributes to good statistics of ϵMean

and ϵRMS . However, Chun3 has fewer measurement points in the laminar regime than Marten43

and Engel, so it has less impact on the general statistics if each measurement is accounted for

individually. Marten43 will disproportionately introduce a bias to ϵMean in the ANN, as the ANN

disagrees more with the experimental data than UCTD, and this bundle has a larger number of

measurements. The errors of the measurement points, however, are not statistically independent

between them, since the relative position of the points is dependent on Cexp
fbL, so ϵMean of the ANN

is being overestimated. The Engel bundle has a considerable dispersal of the measurements around

the Cexp
fbL slope; thus, this bundle will increase ϵRMS due to uncertainties of the experiment itself.

The accuracy is expressed in terms of the laminar friction factor constant of the experiment

(Cexp
fbL), better representing the contribution to the overall statistics of each experiment. Cexp

fbL is

calculated as the mean of fb × Re for the measurements of an experiment in the laminar regime.

The UCTD criterion for transition Reynolds is adopted. Figure 4.11 shows a comparison between

Cexp
fbL and the predicted values denoted by Cpred

fbL . Besides the fact that the CfbL plot makes it much

easier to understand the distribution of the data, the real contribution of each experiment to the

dataset is better demonstrated.
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Figure 4.10: Friction factor as a function of Re with the

Cexp
fbL =

1

n

∑
n

fb,iRei (4.14)

Figure 4.11: Relative error between the mean laminar friction factor coefficient (Cexp
fbL) of the

experimental data and the predictions of the ANN and UCTD (Cpred
fbL ).

84



The ANN model improves the predictions of CfbL for most of the experiments, except for the

ones performed by Marten. For this reason, all the experiments from Marten [3, 4] are highlighted

to facilitate their identification. For all the other bundles, the ANN tends to partially correct under

predictions while not worsening the results of the bundles over predicted by UCTD. Thus, there

is a significant overall improvement, especially regarding the tendency of UCTD to underpredict.

The tendency of both the ANN model and UCTD to predict higher CfbL values for Marten is

systematic, occurring in all this set of experiments.

Figure 4.12 shows the relative errors for CfbL as a function of P/D. The distribution of the

errors does not present any clear correlation with P/D. One aspect of the ANN predictions to

be assessed is if their relative errors are dependent on the geometry. Since The ANN was entirely

trained on CFD data, biases from numerical errors are the main concern. A distinguished skewness

in the error distribution by the geometry would indicate inaccuracy in CFD results. However, no

clear trend can be identified, highlighting the consistency of the CFD dataset. Figure 4.13 shows

the relative errors forCfbL as a function ofH/D. No discernible correlation between the prediction

errors of the ANN and H/D can be clearly identified, also stressing the independence between the

simulation errors and the geometry.

The Marten bundles do not seem to present an exceptionally high uncertainty. These bundles

have a relatively low dispersion between their measurements and the Cexp
fbL slope, as shown in

Figure 4.10. However, as these experiments were performed by the same authors and in the same

laboratory, they share systematic errors. Therefore, since they represent a large share of the dataset

(21 of 42 bundles), the systematic errors of the Marten bundles introduce an oversized bias to

the dataset. The existing correlations, including the UCTD, rely on this experimental data for

calibration, relying on the Marten work. This dependency between the calibration data and the

predictions by UCTD can be why the over predictions of the Marten bundles are smaller for UCTD

than for the ANN model. Conversely, UCTD predicts smaller Cexp
fbL for almost all the other bundles

than the ANN model, under predicting most of the remaining dataset.

The ANN model is independent of this experimental dataset. Not even the geometries of the
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Figure 4.12: Relative error of CfbL between the experimental data and the predictions as a function
of P/D.

Figure 4.13: Relative error of CfbL between the experimental data and the predictions as a function
of H/D.
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simulated bundles match with the ones of the experimental data. Apart from the excellent agree-

ment between the ANN predictions and the experimental data by itself, it is remarkable that the

accuracy of the ANN model is comparable to what a model calibrated in this same data can achieve.

The capacity of the ANN model to fit the experimental data is a complete result of its representa-

tion of the phenomena. From this perspective, the ANN model allows a statistical analysis of the

experimental dataset from an independent point of view that was not available before this work.

Tables 4.3 and 4.4 presents the error statistics of the ANN model and UCTD in the experi-

mental dataset considering all the bundles and removing the Marten bundles, respectively. When

considering all bundles, the considerably larger mean relative error in the ANN model results from

the strong bias associated with a large number of bundles from a single author. In Table 4.4, the

UCTD correlation has the largest mean relative error, an indication of how UCTD is skewed by

the fact that half of its calibration in the laminar regime is dependent on the bundles from Marten.

As see in Figures 4.12 and 4.13, the Marten bundles share similar P/D to Carelli, Chiu1, Chiu2

and Engel, and similar H/D to Chiu1, Chiu2, Engel and Cheng. None of these bundles confirm

the trends observed in the Marten bundles and are the work of different groups. The ANN model

performs considerably better than UCTD for all these bundles. Therefore, considering the superior

performance of the ANN model for all the bundles, including the ones similar to the Marten ones,

and its statistical independence to the experimental data, the error statistics excluding the Marten

bundles, are more representative of the relative performance between the ANN model and UCTD.

Table 4.3: Mean and RMS of the relative error in CfbL (42 bundles).

Model Mean relative error RMS relative error

ANN 7.41% 3.37%

UCTD 1.21% 2.03%
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Table 4.4: Mean and RMS of the relative error in CfbL not considering the Marten [3, 4] experi-
ments (21 bundles).

Model Mean relative error RMS relative error

ANN −3.81% 2.48%

UCTD −6.92% 2.63%

The amount of data available to verify the flow split is limited to the three bundles listed in

Table ??. The accuracy of the ANN model and UCTD are similar, with a too-small dataset to

allow a clear distinction. The relevance of this result is that the flow split predictions of the ANN

model are based on the training in the 93 simulated bundles. Hence they represent the set of

physical rules from the CFD calculations throughout the dataset range. As shown in Figure 4.7,

UCTD incurs in nonphysical behavior for low H/D. The ANN model performs similarly with the

experimental data and is more reliable across all the geometries. The ANN can be considered a

better predictor of flow split.

4.5 Conclusions

The ANN model presented in this section fully represents the statistics of the dataset of CFD

simulations with high fidelity. Doing so provides a continuous function that corresponds to the

CFD method by a fraction of the computational cost. This work demonstrated that when the

ANN model is used in place of the UCTD correlation, it accurately predicts the experimental

dataset. Unlike the empirical correlations calibrated with the experimental data, the ANN model

is entirely independent of the experiments in its conception. This statistical independence means

that the accuracy of the ANN is due only to the model representation of the phenomena. The

statistical independence of the ANN model provided a unique insight into the importance of each

experimental study to the dataset. This work made it clear that the fact that half of the experimental

dataset is composed of experiments performed by the same author introduces a bias to the overall

88



Figure 4.14: Comparison between the experimental data of X2 and the predictions by the ANN
model and UCTD.

statistics of the dataset. The ANN model also took advantage of the extended range of data of

the CFD simulations. Since the ANN model based on the CFD dataset was representative of

experiments, the CFD dataset provides more confidence that the ANN model is more accurate

outside of the range of the experimental data than the extrapolations of the empirical correlations.
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