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ABSTRACT

Ground penetrating radar (GPR) is a non-destructive, rapid, and continuous measurement
tool that can predict density in asphalt concrete. Despite the promise of GPR as a quality
assurance tool, the technology has been slow to adoption. Some of the hurdles include: GPR
antenna stability and sensitivity; identifying the optimal air void content prediction model;
understanding the sensitivity of dielectric to asphalt mixture variability; and lack of significant
field deployment experience.

This research focused on a high-frequency (2.5 GHz), multi-channel, GPR system, which
was designed specifically for the purpose of asphalt concrete density profiling. The stability of
the GPR density profiler was thoroughly evaluated in the laboratory. The device was deployed to
the field on several projects for multiple days of paving each. From these data the team
compared the error and bias of two density prediction models. A laboratory study on mixture
composition sensitivity was conducted. Finally, the density profile data from field projects was
compared to traditional quality assurance testing from field cores.

The GPR density profiler has several advantages over traditional density test methods.
Risks of incorrectly accepting or rejecting asphalt production, based on compaction, are
dramatically reduced when using this equipment, as long as the calibration is unbiased. The
empirical density prediction model, which had less error and less bias than the mechanistic
model studied was recommended for use. Testing a standard reference material in the field each
day may mitigate problems with bias. Recommendations were given for implementing the GPR

density profiler in different construction and forensic settings.
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CHAPTER 1

INTRODUCTION®

PROBLEM STATEMENT

Long-term asphalt mixture performance is largely governed by compaction quality during
construction (/). Reducing the air voids seals the layer against moisture and oxidation and
enhances structural integrity. In asphalt concrete construction, relative density or air voids
content is a critical quality assurance (QA) metric. The most common test methods for density
are bulk density testing of field cores and in-situ nuclear density gauge testing (2). These
methods, however, have limitations.

1) They are spot measurements providing limited information about the true air voids
distribution and uniformity. This exposes the receiving agency to considerable risk of

incorrect acceptance, and the contractor to the risk of incorrect penalty.
2) They put the operator and traveling public at safety risk since traffic control is required.
3) Coring is a comparatively slow method, requiring sampling and laboratory testing.

One promising technology for rapid, continuous QA of in-situ density is ground
penetrating radar (GPR). This technology has shown significant promise in several past research
projects (3—8). The greatest benefit of GPR is the ability to rapidly collect continuous, near full-
coverage measurements as opposed to spot measurements as demonstrated in Figure 1. GPR
works by sending discrete pulses of electromagnetic waves into the pavement and capturing the

reflections as the signal moves through the different pavement layers. The amplitude of radar

* Part of this chapter is from Materials Evaluation, Vol. 78, No. 10 © 2020. Reprinted with permission of The
American Society for Nondestructive Testing Inc.



reflections and the time delay between reflections are used to calculate layer dielectric constants.
The dielectric constant is a material electrical property, and for asphalt concrete, is affected by
the aggregate type, asphalt content, and air void content. As the dielectric decreases, the air void

content is assumed to be increasing (less dense).

6 8 10 12
Predicted Voids (%)

-4 o
Figure 1. Comparison of Asphalt Concrete Compaction QA Methods.

Lower frequency radar can penetrate deep into the pavement, while higher frequency
radar, at 2 GHz, will measure shallow depths at a higher resolution. A high-frequency radar,
therefore, could have good resolution measurements for typical asphalt concrete overlays less
than 2 in. thick. Another advantage with a smaller, high-frequency antenna is that the unit is
more portable, and easier to deploy for quick, nondestructive field measurements. One developed
device is the GSSI PaveScan Rolling Density Meter, shown in Figure 2 in both a cart-mounted
and vehicle-mounted configuration. This device will be referred to as a GPR density profiler

throughout the dissertation.




Figure 2. GSSI PaveScan Rolling enity Meter using GPR Technology. Reprinted from (9).

Despite the promise of GPR as a QC/QA tool, the GPR density profiler technology has
yet to move beyond research and into practice. Among the hurdles to implementation are:
e System stability concerns.
e Identifying the most suitable air voids prediction model.

e Lack of significant field deployment experience.

RESEARCH OBJECTIVES
The objectives of this research are:
1. To quantify the antenna stability and sensitivity of a GPR density profiler.
2. To identify the optimal air void content prediction model from the layer dielectric
constant.
3. To quantify the signal sensitivity to changes in asphalt mixture composition.

4. Assess the practicality of using a GPR density profiler for QA and forensic applications.



Chapter II of this report presents the literature review findings. Chapters III through VI
cover different laboratory and field tests and data analyses. Chapter VII is the conclusion which

summarizes key findings and recommendations.



CHAPTER IT

LITERATURE REVIEW*

OVERVIEW

The literature review addresses the following topics:
e Electromagnetic wave propagation, reflection, and transmission theory.
e Empirical correlations between layer dielectric (from GPR) and HMA density.
e Micromechanics models of layer dielectric constant to density.

e HMA density variation in construction.

RADAR WAVE PROPAGATION

GPR is a subsurface imaging technology using electromagnetic waves. The method for
air void content prediction, evaluated in this project, leverages basic principles of radar wave
propagation, reflection, and transmission, as summarized in this section.

An electromagnetic wave travels at the speed of light inside a vacuum. In any other
media, the wave travels at the rate of speed of light divided by the square root of the material’s

relative dielectric constant (Equation 1).

v =

- 1
NS (D
where ¢ = speed of light (3.0x10® meters per second)

¢ = dielectric constant

* Part of this chapter is from Materials Evaluation, Vol. 78, No. 10 © 2020. Reprinted with permission of The
American Society for Nondestructive Testing Inc.
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As the wave travels from one media to another, a portion of signal voltage is reflected at
the interface while the remaining voltage is transmitted through the interface and into the next
media. The ratio of the reflected voltage to the original voltage is called the reflection coefficient
and can be calculated from the relative dielectric constants for the interfacing materials

(Equation 2).

L,i+1 \/-a_l_\/g—l (2)

where pii+1 = reflection coefficient between the i and i"+1 materials.

The transmission coefficient and reflection coefficient add to 1.0, as shown in Equation 3.

Tiiva =1+pii41 (3)

where Tii+1 = transmission coefficient between the i and i"+1 materials.
The relationship of the initial radar wave amplitude, Ao, and the amplitude of the
reflected wave off the first surface, A1, is related by the reflection coefficient as shown in

Equation 4.

A1 = Aopor 4)

For deeper layers, the reflected radar wave amplitude is a function of the initial
amplitude, reflection coefficient for the layer of interest, transmission coefficients, and
attenuation coefficients. The equation for the reflected amplitude for the first interface is given in

Equation 5, and a generalized equation for the m™ reflection amplitude is given in Equation 6.

Ay = Agp126,°To1Tio (5)



i=m
Am = AoPm-1m l_[ . 5i+12Ti,i+1Ti+1,i (6)
L=

The thickness of each layer can be calculated with Equation 7

CAtl'

YT ™)

where d; = thickness of the layer
At; = time between signal output and the peak reflection
Knowing the initial amplitude, the returning amplitude, and the wave travel time, the user

can detect layer interfaces, calculate layer thickness, and calculate the layer dielectric constants.

EMPIRICAL MODELS OF DIELECTRIC CONSTANT TO AIR VOIDS

There is a relationship between the overall dielectric constant of asphalt concrete and the
air void content, which can be estimated empirically. This approach requires the development of
a calibration curve using several cores. This is performed by making spot measurements with the
radar in several locations on the compacted asphalt concrete, and then coring the same locations
and measuring the air void content of the cores in the lab. With this correlation established, the
GPR layer dielectric values can be immediately converted to percent air voids. The calibration
must be performed on a project-by-project basis since layer dielectric is affected by the specific
asphalt mix design, comprised of asphalt content, aggregate type, and aggregate gradation.

The empirical approach is intuitive and can be performed with linear or non-linear
regression analysis. The draw-backs are that this requires 6 to 12 cores to establish a good
correlation, every mix design requires a new calibration, and predictions outside of the range of

the original calibration may not be reliable. For example, when predicting air voids for low



dielectric values, beyond the limit of the calibration data, the model tends to over-predict the air
voids content. In extreme cases, the predictions can be well beyond the limits of physical

interpretation (greater than 100 percent). The empirical model developed by Hoegh et. al, on the
other hand, constrains the predicted air voids within physically reasonable values (/0). There are
several examples in the literature of projects that employed empirical calibrations for GPR (3, 8,

10-14).

MICRO-MECHANICS MODELS OF DIELECTRIC CONSTANT TO AIR VOIDS

A micro-mechanics model evaluates the composite dielectric constant based on the
mixture composition. Knowing the composite dielectric constant, and several mixture properties,
the unknown material component, air voids, can be predicted. There are several examples of
research projects using mechanics-based models to predict air voids (/5-20)

The micro-mechanics models are also intuitive, even though the calculations appear more
complicated. This model can be calibrated with fewer cores to get the dielectric constant of the
aggregate. In most cases, the asphalt content is assumed to be constant, so the only remaining
unknown is the air void content. In one method, the asphalt content is also allowed to vary, so
this model predicts both the air void and the asphalt contents simultaneously (20).

The generalized micro-mechanics model is shown in Equation 8. This is a self-consistent
model, which describes the composite dielectric constant as the sum of the individual component

dielectric constants, with contributions relative to their volumetric content.

zn: o (egii-}-_ 2£e> =0 5)

i=1

where n = Number of components in a composite material.



0. = Volume fraction of component, where all volumes sum to 1.0.
¢ = Composite surface dielectric constant from the GPR density profiler.

&i = Dielectric constant of component i.

For a 3-phase system, which exists in asphalt concrete, the self-consistent model takes the
form shown in Equation 9, and expanded as Equation 10. The source for each model value is
summarized in Table 1. The dielectric constant of the solids is obtained from a calibration core.

The model is used to solve for two unknowns: the specific weight and the binder content.

8(65—8) L9 (Sb—8)+ 0 <€a—€)_0
S\gg + 2¢ P \e, + 2¢ \e, +2¢/ ©)
() o () (e ) (i)
0 1- -6 =0
GsViw <€S+2€ O ey + 2¢ * GsVw P/ \142¢ (10)

where Subscripts s, b, and a = Solids, binder, and air, respectively.
yd = Specific weight of the dry bulk compacted sample.
yw = Specific weight of water.

Gs= Specific gravity of the solids (aggregate).

Table 1. Source of Volumetric and Dielectric Values. Reprinted from (9).

Component Volume Fraction Dielectric
Ya
=
: GsYw
Sl e yd— Predicted with model &
(aggregate) e From calibration core

¢ Gs— Known by mix design
« yw —Defined as 1,000 kg/m?

Binder 0, &p
(asphalt) e Predicted with model e Seed value 0f 4.0
Ya
_ 0, = (1 e g )
Air voids @ Gy 0 €a

e Definedas 1.0

e Calculated from previous values

9



While most mechanistic approaches have made the asphalt content fixed, one approach
called pavement self-consistent model (PaveSCM) uses optimization algorithms which allow the
binder content to vary within a constrained range. The specific weight and binder contents are

then used to calculate the air voids content.

ASPHALT CONCRETE PRODUCTION VARIABILITY IN CONSTRUCTION

All steps of asphalt concrete production and construction have inherent variability that
may influence mixture performance. Many aspects of this variation will also affect the mixture
dielectric. A brief review of production variation of certain parameters is given in this section.
These data are used to inform the design of a sensitivity analysis of the density profiler system to
mixture variability.

As reported in a TxDOT research report (27), production variation was evaluated using
QC/QA data queried from seven completed paving projects with unique mixture designs
(Table 2). The projects represent a range of mix types, and each project had a minimum of 10
production lots. The percent change from the current job mix formula for asphalt content,
theoretical maximum specific gravity, and percent retained on each sieve, were calculated for
each lot as tested by both the contractor and the agency. The data were then statistically analyzed

to find the average and extreme variation for a typical asphalt mixture.

10



Table 2. Asphalt Mixture Summary for Mixture Production Variability Projects.

Project ID Mix Binder Optimum Theo. RAP/ Number

Type Type AC (%) Max SG RAS of Lots
US 385-Hartley DG-C 64-28 5.1 2.45 Yes 34
FM 3083-Montgomery | DG-D 64-22 5.2 2.462 Yes 14
US 84-Freestone SP-C 64-22 5.3 2.453 Yes 20
US 175-Kaufman SP-D 64-22 5.6 2.437 Yes 10
IH 30-Tarrant SMA-C 64-22 6.0 2.444 No 10
SH 171-Limestone | SMA-D 76-22 6.0 243 Yes 22
US 290-Travis TOM-C 76-22 6.5 2.407 No 31

A summary of the ranges in asphalt content, theoretical maximum specific gravity (SG),

and air voids is shown in Table 3 (27). The expected range of these properties for any given

project was calculated as shown.

Table 3. Production Summary and Expected Project Variance — Texas Study.

Project ID Mix Type AC (%) Theo. Max SG | Air Voids (%)
Avg. | St.Dev. | Avg. | St. Dev. | Avg. | St. Dev.
US 385-Hartley DG-C 5.01 0.199 | 2.45 0.007 | 6.13 1.07
FM 3083-Montgomery DG-D 517 | 0.098 |247| 0.013 6.08 0.87
US 84-Freestone SP-C 520 | 0.090 | 2.45 0.005 5.53 0.87
US 175-Kaufman SP-D 538 | 0.136 | 247 | 0.008 6.75 0.91
IH 30-Tarrant SMA-C 6.09 | 0.097 | 246 | 0.005 5.30 1.29
SH 171-Limestone SMA-D 6.09 | 0.099 |244 | 0.007 | 594 1.18
US 290-Travis TOM-C 6.40 | 0.091 2.41 0.011 NA NA
Pooled Averages | 5.63 0.128 2.45 0.008 5.95 1.05
Expected range o.f property within a 1095 10.016 1
project (1.97*St Dev.)

By comparison, a study from Hughes et. al. on an end-results specifications similarly

compiled quality assurance data for seven projects in Virginia from different mix types (22). The

standard deviations of asphalt content and air voids from each project are summarized in Table 4.

The pooled averages of each property and the expected data range on any given project are

shown. In this data set, the range of asphalt contents was +0.35 percent, which is 0.1 percent
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asphalt higher than the Texas data. In contrast, the range of air voids was £1.22 percent, smaller

than the Texas data range by 0.9 percent air.

Table 4. Production Summary and Expected Project Variance — Virginia Study.

) ) AC (%) Air Voids (%)

Project Mix Type Avg. | St.Dev. | Avg. | St. Dev.
Route 11 SM-9.5D 6.0 0.16 3.2 0.88
Route 612 SM-12.5D/RAP 5.5 0.21 3.6 0.85
Route 231 SM-9.5A/RAP 5.6 0.19 3.4 0.39
Route 151 SM-12.5D 59 0.07 3.1 0.90
Route 29 SM-12.5D 59 0.25 2.8 0.59
Route 33 SM-9.5A 55 0.12 4.2 0.71
Route 1-64 SM-9.5D 5.5 0.17 4.6 0.41
Pooled Averages | 5.67 0.18 3.55 0.62

Expected range o.f property within a 1035 12
project (1.97*St Dev.)

The results from the TxDOT study were considered when selecting test parameters in

sensitivity analysis of mixture variability in Chapter V.
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CHAPTER III

GPR ANTENNA STABILITY AND SENSITIVITY ANALYSES

OVERVIEW
The reliability of test equipment is important when considering implementation in a QA
framework. This chapter discusses two controlled studies of antenna stability and sensitivity:

e General antenna stability and inter-antenna variability.

e Antenna temperature sensitivity.

ANTENNA STABILITY AND INTER-ANTENNA VARIABILITY

Methods

This study assessed the long-term stability of the antennas in a constant-on condition and
compared the readings among the different antennas. The test factors are shown in Table 5. Two
3-channel systems were used for this study. The systems were turned on, allowed to warm up for
the prescribed 10 minutes, calibrated with air and metal plate readings, then triplicate dielectric
measurements were made every thirty minutes on three materials (Figure 3). Garolite is a fiber-
glass epoxy laminate, acetal is a high-quality engineering thermoplastic, and the asphalt slab was
TxDOT Item 347, Thin Overlay Mix Type C. The data were analyzed with linear analysis of the

main factors and an interaction of the antenna and time.

Table 5. Test Factors and Levels for Antenna Stability and Inter-Antenna Variability

Study.
Factor Levels
Antenna #3, #4, #7, #77, #78, #87
Garolite (fiber-glass epoxy laminate)
Material Acetal (engineering thermoplastic)
Asphalt concrete slab
Time 0 to 6 hours in 30-minute increments
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Figure 3. Materils and Test Setup.

Results

This discussion highlights a few aspects of the statistical analysis while the complete data
results and statistical model are contained in the appendix. The effects of the main factors and
interaction are summarized in Table 6, ordered from most to least significant. Effects with a
p-value less than 0.05 (LogWorth greater than 1.3) were statistically significant. Material type
was clearly significant but was not the focus of this study. Antenna type was significant, and the
biggest differences were among the early production antennas (#3, #4, and #7) which were also
statistically different than the newer production antennas (see Figure 4). Based on the
researcher’s experience, the range in the early product antennas is still very good (max difference
of 0.08) compared to 1GHz frequency antennas. All the newer antennas were statistically
indistinguishable. While there may be a time*antenna interaction (there was some slight

downward drift in some antennas), the time effect by itself was not significant.

Table 6. Factor Effects for Antenna Stability and Inter-Antenna Variability Study.

Factor/Interaction | p-value | LogWorth (-logio(p-value)) | Model R? Value
Material <0.001 328
Ant <0.001 45
_Anenna 0.999
Time* Antenna <0.001 9.3
Time 0.170 0.76

14



4.06

0,

4.04 | I 95% Conf. Interval |

4.02 O
¢
o
@ 4.00 -
()]
2 ®
© 398

3.96

3.94

#3 #4 #7 #78 #87 #88
Antenna ID

Figure 4. Effect of Antenna, Least-Squares Mean Plot.

In summary, there was a difference in readings among the antennas, notably for the early
production antennas, though the difference has limited practical significance. These early
production antennas were the ones deployed on most of the field projects described later in
Chapters IV, V, and VL. In general, the antennas are stable over time, though a couple antennas

experienced a slight decreasing drift in dielectric over the 6-hour testing period.

TEMPERATURE SENSITIVITY

Methods

Changes in antenna temperature are known to affect the amplitude measurements. The
manufacturer has a built-in linear temperature adjustment in the software. The purpose of this
study was to compare the uncorrected and temperature-corrected dielectric constant
measurements and to assess whether an additional adjustment is warranted. The test factors are
shown in Table 5. The same six antennas and the same three materials were used for this study as
for the previous study. After the initial warm-up period and air and metal plate calibrations at

room temperature, the antennas were conditioned in an environmental chamber for two hours to
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the target temperatures (Figure 5). Triplicate measurements were made at each temperature on

each material.

Table 7. Test Factors and Levels for Temperature Sensitivity Study.

Factor Levels
Antenna #3, #4, #7, #77, #78, #87
Garolite
Material Acetal

Asphalt concrete slab
Temperature | 10C, 20C, 30C, 40C, 50C

The data were analyzed in three ways. First, modeling the data without the temperature
correction using all factors and the antenna*temperature interaction. Second, model the data with
the manufacturer’s temperature correction using only antenna and material factors. This would
indicate whether the corrected data is temperature dependent. And third, model the data with the

manufacturer’s temperature correction using all factors and the antenna*temperature interaction.
16



Results

The complete data results and statistical model are contained in the appendix. The effects
of the main factors and interaction for each analysis scenario are summarized in Table 8, and the
leverage plots of dielectric vs temperature are shown for each model in Figure 6. In all models,
material type and antenna were significant, which was known from the previous study. Without
any temperature correction applied to the original data, the temperature effect was very strong,
where the dielectric constant decreased as the temperature increased at a rate of 0.15/10°C. The
interaction term was also significant, suggesting that some antennas were more sensitive to
temperature than others. When the manufacturer temperature correction is applied, the effect of
temperature completely drops out. With only the main effects in the model, temperature effect
has a p-value of 0.43, far greater than the 0.05 criteria for statistical significance. When adding in
an interaction term, the model does improve some, again suggesting that some antennas may be
more sensitive to temperature than others. This would suggest that the internal calibration

parameters for some antennas (most notably antenna #7) could be refined.
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Table 8. Factor Effects Summary for Antenna Stability and Inter-Antenna Variability
Study.

Factor/Interaction p-value LogWorth (-logio(p-value)) | Model R? Value
No Temperature Correction
Material <0.001 240
Temperature <0.001 110 0.988
Antenna <0.001 31
Antenna*Temperature | <0.001 15
Manufacturer Temperature Correction (No Interaction)
Material <0.001 328
Antenna <0.001 45 0.996
Temperature 0.427 0.37
Manufacturer Temperature Correction (with Interaction)
Material <0.001 370
Antenna*Temperature | <0.001 68 0.999
Antenna <0.001 22
Temperature 0.114 0.94

In summary, temperature greatly affects the dielectric constant, however, the built-in
temperature correction does a good job of accounting for the effect. Some antennas could be

recalibrated for temperature to further improve the correction.
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CHAPTER 1V

COMPARISON OF AIR VOID CONTENT PREDICTION MODELS*

OVERVIEW

As discussed in the literature review, there are both empirical and mechanistic models for
predicting air void content from the dielectric constant. In this chapter, the prediction power of
an empirical model and a mechanistic model are compared using field data collected from 15
different projects on multiple days of paving. Different methods for calibrating each model are

also compared.

METHODS

Field Data Collection

From 2016 to 2019, the researchers deployed a 3-channel, 2.5 GHz GPR density profiler
(Figure 7) on several hot mix asphalt construction projects throughout Texas. The mixture design
properties of the projects are shown in Table 9. On some projects, the original pushcart system

was integrated into a vehicle.

Figure 7. GPR Dns Profiler. eprinted from 9).

* Part of the data reported in this chapter is from Materials Evaluation, Vol. 78, No. 10 © 2020. Reprinted with
permission of The American Society for Nondestructive Testing Inc.
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Table 9. Asphalt Mixture Summaries.

Proiect ID Mix | Binder | Optimum | Aggregate Theo. Thickness
) Type | Type | AC (%) Type | MaxSG | (in.
US 183-Austin
TOM-F -22 2 t 2.34 .
(AUS) (6] 76 7 Sandstone 345 0.75
IH 10-San Quartzite
P- 4-22 2 2.462 1.
Antonio (SAT) SP-C 6 > Limestone 6 >
US 90-Liberty Sandstone
SP-D 70-22 5.1 . 2.443 2.0
(HOU) Limestone
) Dolomite
SH 6'(\\/;‘i‘ngus DG-D | 64-22 5.2 Gravel 2.447 ( 20 )
RAP approx.
SH 6-Waco 76-22 Sandstone
TOM- . 2.434 1.2
(WACQC) OM-C + Evo. 66 Dolomite 3 >
Sandstone
SH 3 O(—;I({)ge):ge St sma-C | 7622 6.0 Dolomite 2.405 2.0
RAP
RELLIS Campus | DG-D 64-22 5.0 Limestone 2.533 2.25
(BRY) TOM-F 76-22 7.2 Dolomite 2.515 0.9
US 287-Groveton Sandstone
P- 4-22 4, 2. 2.
(LFK) SP-C 6 8 Limestone 503 0
SL 79-Del Rio
(LRD) DG-B 64-22 4.5 Gravel 2.451 3.5
SH 149-Beckville
(ATL) SP-C 76-22 53 Igneous 2.470 1.5
IH 45-Huntsville
MA-D -22 2 Limest 2.392 2.
(BRY) S 76 6 imestone 39 0
FM 158-Bryan Sandstone
P-D 4-22 2 2.44 2.
(BRY) S 6 > Limestone 6 0
US 59-Texarkana
(ATL) SMA-D 76-22 6.4 Gravel 2.362 2.0
SH 40-College St. Sandstone
P- 4-22 . 2.4 .
(BRY) SP-C 6 50 Limestone 65 30

On most projects, nine calibration cores were collected on the first sublot of testing
representing low, moderate, and high dielectric values. On each of six subsequent lots, two
random cores were collected to be used for verification. At each core location, the researchers
took dielectric readings directly over the location to be cored. They then collected the cores and

measured the air voids in the lab.

21



The researchers collected plant mix, aggregates, and asphalt binder for further laboratory
testing (see Chapter V). They also obtained the contractor and agency QC/QA data to compare

against the predicted QC/QA results (see Chapter VI).

Model Calibration and Verification

The two models in Table 10 are compared in this analysis. The empirical model is a
simple best-fit non-linear regression line with an exponential form. The mechanistic model is the
PaveSCM model, which maintains mechanistically-sound interpretation of the data, and allows

prediction of both the air voids content and the asphalt content.

Table 10. Comparison Models.

Empirical

Exponential Voids = a * exp(b = Diel)

Mechanistic

() e ) + (o) ()
PaveSCM +6 + |1-— -6 =0
ave GoYw \& + 2¢ b &p + 2¢ GsYw PJ\1 + 2¢

Each of these models must be calibrated before being used to predict air voids. The
models were compared under various calibration-predictions scenarios as summarized in
Table 11. Predictions were made for production within the same lot as calibration and also for
production from different production lots. The empirical model is typically calibrated with 6 or 9
cores. Calibration of the mechanistic model can, theoretically, be done with a single core, using
more cores for calibration will improve the model predictions. There are diminishing returns,

however, as more cores are added since the calibration efficiency suffers.
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Table 11. Details of Calibration and Verification Samples for Model Comparisons.

Different-Day Prediction Same-Day Prediction

Calibration Cores

Empirical and Mechanistic Empirical
- 9 from first sublot - 6 from first sublot
Mechanistic

- 1, 3, and 6 from first sublot

Verification Cores

Empirical and Mechanistic Empirical and Mechanistic
- 12 from subsequent 6 sublots - Remaining 3 from first sublot
each

Different-lot prediction was when the calibration was done on one lot of data while the
prediction/verification testing was from different production lots. In almost all cases, this also
meant that measurements for the calibration cores and the verification cores took place on
different days. In the different-lot prediction scenario, nine cores were used for calibration for
both the empirical and mechanistic models, and 10 verification cores were used from the
subsequent six sublots.

In the same-lot prediction scenario, only six calibration cores were used for the empirical
models while the mechanistic models were calibrated with one, three, and then six calibration
cores. For both model types, the three remaining cores from that same sublot were used for

verification.

Statistical Analysis
For each project, goodness of fit statistics were calculated comparing the verification
cores to the calibration model results for each prediction scenario. These were root mean squared

error (RMSE) and the absolute mean bias error (MBE).
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The primary goodness of fit statistic was the RMSE (Equation 11)a popular statistic used
to compare the prediction performance of different models. The RMSE represents the overall
error of the model and penalizes the errors more as they grow larger. The lower the RMSE the
better a model fits a dataset. It is calculated by averaging the squares of the residuals, then taking

the square root of that value to return a value in the original units.

1 . . 11
RMSE = \/EZ(VOldsi,actual - VOldsi,pr\e‘dicted)2 ( )

i

where RMSE = Root mean squared error.

n = Number of samples.

i = i-th sample.

Also evaluated was the absolute MBE (Equation 12), which is termed bias in this report.
The MBE is the overall bias of the model (Equation 13) and describes how much the model
tends to under or over predict the data. A bias closer to zero is better. When evaluating bias
across all projects, the absolute value of MBE was used, since the magnitude of the bias is most

critical. Otherwise, the positive and negative biases would cancel eachother out when averaging

and tend toward zero.

Absolute MBE or "bias" = |MBE| (12)

1 . ,
MBE = ﬁ Z Vozdsi_actual - VOldsi,predicted (13)
i

where MBE = Mean bias error.

Multiple analyses of variance (MANOV As) were performed to determine which model

and calibration method provided the lowest RMSE and lowest absolute bias across all projects.
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The data sets and predictor variables were different depending on the specific research question,
as shown in Table 12. Separate MANOV As were performed for each response variable: RMSE,
and absolute bias. Tukey’s HSD multiple comparison tests were done to show which levels of a
predictor variable were statistically similar. In all cases, a p-value of 0.05 was used to define

statistical significance.

Table 12. Details for MANOV As.

Reseal.‘ch Response Predictor Variables Data Set
Question Variables
Empirical vs
PaveSCM
models and RMSE ModelType NumCalibCores Same day
number of (% voids) Project calibrations
calibration
cores Absolute bias
o
S?me day vs. (% voids) CalibrationDay Empirical
different day . o
o Project calibrations
calibration
RMSE
Asphalt o
content (% asphalt) NumCalibCores PaveSCM,
. . . Different day
prediction with . Project .
PaveSCM Absolute bias (2 projects only)
(% asphalt)

One of the theoretical advantages of the PaveSCM model is that it can predict both air
voids content and asphalt content simultaneously. Using the same statistical analysis methods,
the ability of PaveSCM to predict asphalt content was studied. Only two projects, SH 149-

Beckville and FM 158-Bryan, projects have detailed asphalt content measurements for each core.

RESULTS
This section first presents the overall goodness of fit for the calibration data in each

scenario. Then, the goodness of fit for the verification data is presented, first comparing the
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different models, and then the comparing predictions from testing on the same day vs different

day of model calibration. The complete statistical analysis results are contained in Appendix E.

Model Calibration

The predicted and actual air voids of the calibration data are presented in Figure 8 for the
empirical model and in Figure 9 for the PaveSCM model. Each graph are calibrations produced
with a different number of cores. All calibration cores were taken on the first day of testing. The
R?and RMSE values shown are the average of all the R? and RMSE calculated from each project
individually. The empirical calibration models matched the original data well. The average R?
was above 0.8 and the average RMSE was less than 0.8 percent air voids. The PaveSCM model
data did not fit the calibration cores as well. The average R? was about 0.5 and the average
RMSE values were about 1.2 percent air voids. Because only one core was used for each of the

PaveSCM-1 core calibrations, there was no error and R?> was undefined.

Empirical-6 cores Empirical-9 cores
18 T 20 -
X 16 X 18 /
5 14 g 16
S 12 '© 14
> >
=10 = 12
< < 10
3. 3 e
0]
c 6 £ 6
T 47, . E 4
& o2l # Avg.R2=085 £ ol #% "Avg R2=082
L7 Avg.RMSE=0.74 L7 Avg.RMSE =0.78
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 1012 14 16 18 20
Actual Air Voids, % Actual Air Voids, %

Figure 8. Predicted vs. Actual Air Voids for Calibration Data — Empirical Model.
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PaveSCM-1 core
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Figure 9. Predicted vs. Actual Air Voids for Calibration Data — Pave SCM.

Model Verification

The predicted and actual air voids of the verification data are presented in Figure 10 for
the empirical model and in Figure 11 for PaveSCM. Each graph is a different prediction
scenario, either predicting data the same day or different day as the calibration, and varying the
number of cores used in the calibration. Only the average RMSE is noted in the graphs. The R?
value, which is generally a poor metric for evaluating the prediction capability models, was not
reported. The average RMSE ranged from 1.2 to 2.1 percent voids. The Same Day-Empirical-6

cores model had the best fit overall and the Same Day-PaveSCM-1 core model had the worst fit.
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Figure 10. Predicted vs. Actual Air Voids for Verification Data — Empirical Model.
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Figure 11. Predicted vs Actual Air Voids for Verification Data — PaveSCM.
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Figure 12 shows box plot graphs of the goodness of fit parameters, RMSE and absolute
bias. The data labels shown are the median value, as opposed to the average shown in the
previous figures. Each box is a different model type, calibrated with 1, 3, or 6 cores. Only same
day calibrations are shown. The RMSE across all 15 field projects was lowest for the empirical
model, with a median of 1.06. The PaveSCM model had higher error, but got progressively
better as more cores were used for calibration. Similarly, the bias for the empirical model was
much less (median of 0.23) than the PaveSCM models. Though the median bias for all models
was less than 1.4, some of the calibrated projects had biases as high as 3 percent air voids. This

amount of bias is unacceptable and would cause significant problems in practice.
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Figure 12. Performance of Empirical vs. PaveSCM Models (Same Day Only):
RMSE (left) and Absolute Bias (Right).

The results of the statistical analyses shows that model type and number of cores had a
significant impact on RMSE and absolute bias. For RMSE, there was no statistical difference

among the Empirical-6 cores, PaveSCM-6 cores, and PaveSCM-3 cores models. For bias,
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Empirical-6 cores was the best; PaveSCM-6 cores and PaveSCM-3 cores were statistically

similar; and the PaveSCM-1 core model was the worst.

Table 13. Statistical Analysis Results — Model Comparison.

Test Response Predictor Variable Model
e Variable Name p-value p-value Adjusted R?
Project <0.001
.. RMSE <0.001 0.77
Empirical ModelType NumCores <0.001
Vs
PaveSCM | Absolute Project <0.001 <0.0001 0.70
Bias ModelType NumCores <0.001

The verification analysis with the PaveSCM model consistently showed that using more
cores for calibration improves the performance of the model. When using only one core to
calibrate, which theoretically can be done, then all the error in that one measurement will
translate through to every subsequent measurement. But even when using 6 cores for calibration,
the error was still greater than for the empirical model using 6 cores. This may be because the
PaveSCM model is trying to predict another mixture component, the asphalt content. The results
of predicting asphalt content are contained later in this chapter.

The goodness of fit box plots comparing predictions from the same day and different day
of calibration are shown in Figure 13. The statistical analysis results are in Table 14. Data from
both the empirical and PaveSCM models were included in the analysis. In the raw data, some
projects had smaller errors and other very large errors, so it’s not surprising that the Project
factor was significant in both analyses. It was important to include this factor to draw out the
effects of the other two factors. For RMSE, Calibration Day was near significant (p-value of
0.08), with more error overall observed when testing on a different day than on the calibration

day. Additional testing would show whether this factor is actually significant or not. For absolute
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bias, the Calibration Day factor was again nearly significant (p-value of 0.06) and, again, may

indicate that testing on a different day than calibration could yield biased predictions. The Model

Type factor was not significant for RMSE, which is a different finding that the previous analysis

(Figure 12). This further suggests that the PaveSCM model does better, similar to the empirical

model, with more calibration cores. For bias, however, Model Type was significant (p-value

<0.001) and the PaveSCM model had higher bias than the empirical model and more variability

within the bias.
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Table 14. Statistical Analysis Results — Same vs Different Day.

Test 1\17 i slg z; ls : Predictor Variable Model
Name p-value | p-value | Adjusted R®

Project 0.014

RMSE Calibration Day 0.085 0.017 0.49
Same vs Model Type 0.226

Different Day

Model Type <0.001

Abgioalélte Project 0.014 0.016 0.57
Calibration Day 0.064

Finally, it’s noted that the R’ values for the RMSE model are less than 0.5 for RMSE and
less 0.6 for absolute bias. This is because there is substantial scatter in the data (also noted by the
tall box plot graphic). Some projects had very little to no model bias while some projects had
substantial bias above 2 percent air voids.

In practice, the effects of high RMSE and the effects of high bias in the validation data
are not equal. Consider the two sets of verification data in Figure 14. Neither data set is
concentrated along the 1:1 line, hence the RMSE values of 1.0 and 2.1, but the first data set has a
negligible bias. So, while the reliability of any given measurement here could be off by as much
as 1.5 percent air voids, the average of all measurements will converge to the actual mean air
voids in the pavement. With enough measurements (and the GPR density profiler takes tens of
thousands of measurements each project), the errors from the scattered data will have very little
impact on the overall prediction capabilities. On the other hand, the data set in the second plot is
severely biased and underpredicts the actual air voids by about 2 percent air voids. This is a

consistent shift in the data that cannot be fixed with more sampling. In practice, bias error of this
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degree would result in penalizing acceptable construction or, if biased in the other direction,

acceptance of poor construction.
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Figure 14. Examples of Non-Biased (left) and Biased (right) Predictions.

In some of these projects with verification bias, the equipment is measuring a certain
value one day and then a different value, sometimes significantly different, the next. Based on
the researcher’s experience, he believes this shift is related to the equipment and/or the methods
for doing the daily metal-plate and air calibrations. Though the equipment showed good stability
inside the laboratory, there is some other confounding factors occurring in the field. As discussed
later in Chapter V, the author does not believe the data shift is related to changes in the produced
mixture. It might be related to the climate, antenna height/angle, and reliability of the antennas.
The older antenna models were used for nearly all the field data collection. As noted in Chapter
III, the older antennas have more inter antenna variability than the new antennas, but practically
the variability is minimal.

The bias issue can be mitigated by testing a standard reference material each day of
testing, similar to what is done with the nuclear density gauge. Since the time this research was
performed, the radar manufacturer now provides a standard reference block to use when

deploying in the field.
33



The asphalt content predictions from the PaveSCM model vs actual asphalt content for
two projects are shown in Figure 15 and the goodness of fit scores are in Figure 16. The R?
values for both projects were very low (0.31 and 0.03) and indicate that the models failed to
predict asphalt content in these two cases. The RMSE of both projects was about 0.25 percent
asphalt. Because the PaveSCM algorithm imposes an allowable error limit of 0.5 percent asphalt,
the algorithm essentially allowed prediction errors up to this limit. In practice, the asphalt content
should only vary within +/-0.2 percent on a given project, so predictions with an RMSE more
than that is not suitable for implementation. The absolute biases were 0.16 and 0.05 percent
asphalt. As discussed in the next chapter, asphalt content within this practical range of variance,
has little impact on the overall dielectric value. Until a more sensitive radar system is developed,

measuring asphalt content with radar is not feasible.
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CHAPTER V

SENSITIVITY ANALYSIS OF MIXTURE VARIABILITY"

OVERVIEW

In this chapter, the sensitivity of the dielectric constant to asphalt concrete mixture
variability was analyzed. Asphalt slabs were fabricated in the lab covering a wide range of
mixture types and variations in mixture properties. The data were analyzed statistically with an
analysis of variance to identify the significance of each factor effect on the dielectric constant,

and to relate the practical impact of each factor in a typical production scenario.

METHODS

The laboratory test design included five unique mixtures (

* Part of the data reported in this chapter is from Materials Evaluation, Vol. 78, No. 10 © 2020. Reprinted with
permission of The American Society for Nondestructive Testing Inc.
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Table 15), and varying the asphalt content, coarse aggregate substitution, and air voids
content. Asphalt content was varied +0.5 percent from the target, the coarse aggregate blend
proportion was varied by +12 percent by weight, and the air voids content was varied by £2.6
percent. When choosing these values, the researchers considered the results of a production
variance study, as discussed in the Literature Review in Table 3, and were sure to exceed these
values. While the change in aggregate type is not likely to occur on a given project, these data
are useful in understanding why calibrating air void prediction models for each mixture is

important.
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Table 15. Base Mixture Design Summary for Laboratory Mixture Variability Study.

. . Binder Optimum | Theo. Max RAP/
Mixture Name Mix Type Type AC (%) SG RAS
SH 6-Valley Mills-DG D DG-D 64-22 6.1 2.416 Yes
SH 6-Lake Waco-TOM C TOM-C 76-22 6.6 2.397 No
SH 30-College St-SMA C SMA-C 76-22 6.0 2.380 Yes
SH 149-Beckville-SP C SP-C 76-22 5.3 2.469 Yes
SL 79-Del Rio-DG B DG-C 64-22 4.5 2.453 Yes

Table 16 shows an example test matrix from one mixture. The other mixtures varied in a

similar manner except using their respective design asphalt contents and target air voids. In each

design, the predominant coarse aggregate was substituted with the same limestone aggregate. In

total, 40 unique slabs (5 mixture types * 8 variations) were fabricated for this test.

Table 16. Example Testing Plan for One Mixture in Laboratory Variability Study.

AC Coarfe A.gg A?r Coarse Agg. Air
Slab ID Rank Substitution | Voids AC, % Substitutiorglig % | Voids, %
Rank Rank

SH 6-DG D-1 M M L 5.2 0 33
SH 6-DG D-2 M M H 5.2 0 8.5
SH 6-DG D-3 L M M 4.7 0 5.9
SH 6-DG D-4 H M M 5.7 0 5.9
SH 6-DG D-5 M L M 5.2 -12 5.9
SH 6-DG D-6 M H M 5.2 12 5.9
SH 6-DG D-7 L H L 4.7 12 3.3
SH 6-DG D-8 H L H 5.7 -12 8.5

The surface dielectric of each slab was measured using one antenna, scanning along five

linear profiles, and averaging results from the five scans together (Figure 17). Care was taken to

avoid the slab edges which significantly alter the behavior of the reflecting radar signal. To

further mitigate possible edge effects, other asphalt slabs were placed adjacent to the target slab

during testing.
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13.6 in.

Figure 17. Surface Dielectric Profiling on Slabs. Reprinted from (9).

After dielectric testing, the bulk SG and air voids content of each slab were measured.
The outer 2 inches of the slabs were trimmed away, as this part of the slab had little influence on
the dielectric measurements. Then the slabs were melted, uncoated aggregate removed, and the
mixture theoretical maximum SG was tested. The theoretical maximum SG for each mixture was
the average of this value and the value taken at the time of molding. The asphalt content was
measured with an ignition oven following Tex-236-F. The asphalt correction factor used in the
associated TxDOT mix design was also applied to these mixtures. The bulk SG for each coarse
aggregate was measured according to Tex-201-F. The aggregate SG was used as a surrogate for
the coarse aggregate substitution and also as a surrogate for the aggregate dielectric constant.

For the mixture sensitivity study, an analysis of variance was done with the response

variable, model factors, and model interactions in Table 17.
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Table 17. ANOVA Response Variable and Model Factors
Model Factor
Mix Design

Response Variable

Air voids

Coarse Aggregate SG
Asphalt Content

Surface Dielectric

RESULTS

Mix Design * Coarse Aggregate SG

Mix Design * Asphalt Content

A summary of three sensitivity models is shown in Table 18. The models consider which

mixture properties have the greatest influence on the surface dielectric. The full laboratory and

statistical results are in Appendix E.

Table 18. Summary of Dielectric Sensitivity Study.

Model # | Model Adj. R? | Model Factor | Parameter Estimate | p-value | Significant
Air Voids -0.08 <0.001 Yes
1 0.70 Coarse Agg. SG -3.47 <0.001 Yes
Asphalt Content -0.12 0.011 Yes
Mix Design -0.32t00.10 <0.001 Yes
) 0.90 Air Voids -0.11 <0.001 Yes
Coarse Agg. SG -0.08 0.133 No
Asphalt Content -0.09 0.941 No
Mix Design -0.97t0 3.19 0.036 Yes
Air Voids -0.12 <0.001 Yes
3 0.93 Coarse Agg. SG 22.6 0.022 Yes
Asphalt Content -0.13 0.020 Yes
Coarse Agg- 5G™ | 7 0t090.9 0012 |  Yes
Mix Design

In the first model, all three parameters (air voids, coarse aggregate SG, and asphalt

content) were statistically significant. The parameter with the most leverage (greatest influence)

was the air voids content. The effect of coarse aggregate SG and asphalt content also had a

significant effect on the dielectric, which is explains why different mix designs require different
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calibrations. However, based on the second model, the influence of varying the coarse aggregate
SG and the asphalt content within a given mix design is less pronounced.

By including a mix design factor in the second model, we can evaluate the dielectric
sensitivity from varying each property within a given mix design. The mix design itself
accounted for most of the change in dielectric between certain designs. Some designs were not
statistically different. Changes in the aggregate SG and in air voids was also significant, though
less influential than in the first model.

In the last model, an aggregate SG*mix design interaction term was included. Normally,
adding in an interaction term when the primary factor was insignificant is discouraged, so this
model is considered exploratory and may or may not reveal the correct trends; however, the
researchers believe this model captures actual trends better than the previous two. All factors and
the interaction were significant. The most influential factor was air voids, followed by the
aggregate SG*mix design interaction. The interaction parameter estimate ranged from -27 to 90,
suggesting that the trend between dielectric and aggregate SG was positive in some cases and
negative in others. Asphalt content was also significant, with moderate overall influence.

Based on Model 3 results, the take-away from this study is that day-to-day changes in the
mixture asphalt content within the range studied do have some influence on the dielectric, though
not as significantly as air voids content or from switching to a different mixture design entirely.

A summary of the expected change in mixture properties, and corresponding change in
dielectric content, within a project during production, is shown in Table 19. The mixture changes
are based on the variability analysis in the Literature Review (Table 3). A change of 2.1 percent
air voids will result in a change of +0.25 dielectric. The effect of asphalt content would only

change the dielectric by £0.03, which is barely detectible by the latest radar antennas in a
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controlled laboratory environment, but likely not detectable under field conditions or with the

early production radar antennas. Changing the aggregate SG does change the dielectric, but

within the test range of 12 percent substitution, the change in dielectric would only be +0.04 to

+0.08, and still marginally within the detection capability of the radar antennas.

Table 19. Application of Sensitivity Results.

Expected Change of Property Within | Estimated Change in
Property . . .
a Project Dielectric
Avg. Air Voids (%) +2.1 +0.25
Likely only with mi
In practice: ey 'on y with mix NA
Coarse Agg. SG design change

In lab study: +0.019 +0.08 to £0.04*

Asphalt Content (%) +0.25 +0.03

* Will vary considerably based on the original and substitute aggregate.

42



CHAPTER VI

ASSESMENT OF A GPR DENSITY PROFILER IN PRACTICAL APPLICATIONS®

OVERVIEW

This chapter explores two practical applications of the GPR density profiler: first, for QA
testing of asphalt concrete construction, and second, for forensic investigations. The QA
application is examined first with a statistical risk analysis based on the sample sizes of
traditional coring vs density profiling. Then, the density profiler is deployed on several
construction projects and used as a secondary QA tool and compared with traditional QA testing
results from cores. In the forensic investigations, the density profiler was used on two existing
projects to measure if there were density issues and attempt to identify sources of pavement

distress.

QUALITY ASSURANCE - STATISTICAL RISK ANALYSIS

The acceptance and payment of asphalt mixture construction has inherent risk to the
agency and the contractor. The agency (consumer) is at risk of accepting production when in fact
the pavement has significant poorly constructed areas. This is a statistical Type II error. On the
other hand, risk to the contractor (producer) occurs if the production is penalized when the
construction actually had acceptable quality (a statistical Type I error). In this section, a
statistical risk analysis is performed to show the relationships among the air voids standard

deviation, tolerable error, number of samples, and producer and consumer risk.

* Part of the data reported in this chapter is from Materials Evaluation, Vol. 78, No. 10 © 2020. Reprinted with
permission of The American Society for Nondestructive Testing Inc.
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Methods
Producer and consumer risk were evaluated based on the sample size (number of air void
measurements) for a given tolerable testing error and project variability. Equation 14 shows the

relationship of these parameters (23).

(Zaj2 + Zﬁ)za2 (14)
n= 2

where n = Number of air void content samples.
Za/2 = Z-critical value for producer risk.
Zp = Z-~critical value for consumer risk.
a and B = Producer and consumer risk, respectively.
Between 0.0 (willing to accept no risk) and 1.0 (willing to accept all risk).
s = Standard deviation of void content within a project.

e = Tolerable error in the average result.

The standard deviation chosen for this analysis was 1.4 percent air voids. This value
corresponds to the 80™ percentile standard deviation of air voids among all the projects and
paving periods in this study (Figure 18). This means, that 80 percent of projects and paving

periods tested had an air void standard deviation of 1.4 percent or less.
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Figure 18. Cumulative Frequency of Standard Deviations for Project Void Contents.

A range of tolerable errors were used in the analysis. Since voids are reported to an
accuracy of 0.1 percent, a tolerance of 0.1 percent was used on the low end. A tolerance of 3
percent voids was used on the high end, which lacks the ability to distinguish among the pay

factor criteria.

Results

Figure 19 and Figure 20 show the risk analysis results for producers (contractors) and
consumers (TxDOT), respectively. Though the graphs are similar, overall risks are higher for the
producer. For a given error tolerance, increasing the number of samples reduces the risk. Also,
increasing the samples at a given level of risk increases the overall confidence of the
measurement.

To help interpret the graphs, consider the following example. Under the present
conditions, only one core sample is tested per sublot. To accept paving based on a single core
location, and assuming the overall average air void content is within 2 percent of the reading,

TxDOT must accept a 40 percent chance of incorrectly accepting the sublot. Given that the air
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voids target range for a placement bonus is from 3.5 to 7, or to 8.5 percent depending on the
mixture, the chance of correctly assigning a bonus or a penalty pay factor is very low. On the
other hand, since the GPR density profiler produces such a rich set of data, often over 10,000
readings per sublot with a 3-channel system, TxDOT can lower their risk to well below 10

percent, and have confidence that the measured average air voids are within 0.1 percent of the

true mean.
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Figure 19. Number of Samples vs. Producer (Contractor) Risk and Tolerable Error.
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Figure 20. Number of Samples vs. Consumer (TxDOT) Risk and Tolerable Error.

The power of increased sampling with the density profiler is only useful, however, if the
calibration between the dielectric and the air voids content is unbiased. If there is an error bias,
as was noted when testing on different days than the calibration (see Figure 13), than increased
sampling will not help find the true population mean. Testing a reference material daily would

help correct for this kind of bias error.

QUALITY ASSURANCE - FIELD DEPLOYMENT
This section discusses deploying the density profiler in the field, the subsequent analysis,

and comparison of QA results to TxDOT results and pay factors.

Methods

The research team identified nine HMA construction projects throughout east, central,
and west Texas for field evaluation. The projects represent a cross section of lift thicknesses,
gradations, aggregate types, and asphalt contents, as detailed in Table 20. These are a subset of

the same projects from field testing in Chapter IV.
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For several sublots, the researcher used the GPR density profiler to scan both wheel
paths, the mat centerline, and, in some locations, the longitudinal joint. With measurements
spaced every 6 inches, this level of testing is near full-coverage in the direction of travel and
well-covered transversely. Air voids content was predicted using the exponential empirical
calibration method. The contractor and agency QA data were compared against the predicted QA

results using averages and percent within limits metrics.
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Table 20. Asphalt Mixture and Production Summaries.

Project ID Mix Type Binder Optimum AC | Aggregate | Theo. Max Thi?kness Sublot
Type (%) Type SG (in.) Lo
o 6-(\\];126CY)MMS DG-D 64-22 52 D((.)}ij:vnellte 2447 (apir(ix) !
RAP
SH 30('];:3‘;*‘56 St SMA-C 76-22 6.0 Delomite 2405 20 7
RAP
SL 7(3—}]{); Rio DG-B 64-22 45 Gravel 2.451 3.5 8
SH 14&?31‘““‘3 SP-C 7622 53 Igneous 2.470 1.5 7
IH 45(?;??““*’ SMA-D 76-22 6.2 Limestone 2.392 2.0 7
Mt | w0 | em | e | e | e | w |
us Sif;i'“)‘rkana SMA-D 7622 6.4 Gravel 2362 20 4
TS | e | em | w0 | | e | w0 |
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As discussed in Chapter IV, the GPR data sometimes shifted on different days of testing.
So, predictions taken on different days than calibration had greater bias than same-day predictions.
The researcher attempted to correct for the bias by calculating the average bias in the daily
verification cores and subtracting that bias in all the air void predictions. However, this seemed to
over-correct the data, creating even greater disparity in the data distributions on different days. The
researcher decided against applying daily corrections.

Since the time that the data were collected, the equipment manufacturer has updated the
antenna hardware, making it more stable throughout a given test period and from day to day. They
also now provide a reference block for daily verification of the antennas and, potentially, a means

to apply daily corrections to the calibration equation.

Results

Figure 27 presents the empirical calibrations developed from each construction project. The
average R?value of all projects was 0.83 and was as high as 0.95. The graph also illustrates how a
unique calibration must be determined for each mix since the calibration curves are spread
throughout the plot. Even if the mix type is the same, different mineralogy of aggregates and other

mixture design factors mean that a calibration must be performed for each job.
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Figure 21. Example Air Void Calibrations.
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Examples of the predicted in-place air voids are illustrated in Figure 22 as heat maps. The
maps show the spatial layout of air voids are helpful to quickly identify problem areas of under or
over-compaction. The first map is what the manufacturer’s software displays in play-back mode.
The data can be smoothed in the direction of travel using a moving average but interpolation
between the different line scans is not provided. The second map was created with mapping
software Surfer, by Golden Software, and similar plots can be created using data analysis and
plotting software like MatLab. This map was colored to show areas of bonus, penalty, and

rejection.

L#3
C#4

R#7

B TEE .
v

3000 3500 4000 4500 5000 5500

3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000

Reject _|Penalty| Bonus Penal Reject
1 2 3 4 5 6 7 8

9 10 11 12
Air Voids, %

Figure 22. Example Air Void Heat Maps for SS 248-Tyler: (a) Built-in PaveScan RDM
Software and (b) Mapping Software After Post-Processing.

To aid the comparison the analysis, the air voids for each sublot and project were
summarized and presented as a variety of statistics. In this section, the following air void statistics
are presented at the project and sublot levels: average, probability distribution, percent within
limits (PWL), and the overall pay factor.

The average air voids for each project are shown in Figure 23. The range within the box

plot represents the range of sublot averages. Most projects had average air voids between 4 and 7
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percent. The only TOM project had air voids above 10 percent. This thin mixture type tends to
show very high air voids when tested with the bulk SSD method, which is why it is accepted based
based on permeability and not air voids. Some of these projects had considerable variability among
the sublot averages. SH 6-Valley Mills-DG TyD and SH 149-Beckville-SP TyC had averages that
shifted by more than 2 percent air voids from one sublot to another. It is unknown, however,
whether the shift in the data among sublots is an actual change in production or bias in the

measurements from the density profiler antennas.
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Figure 23. Average Sublot Air Voids by Project.

Figure 24 are examples of probability distributions for two projects, where each curve is a
different sublot. These show that within a single project the air void distributions can change
significantly from lot to lot. As noted by sublots 6-2 and 7-2 in [H-45-Hunstville, the data is not
always normally distributed. On this project, air voids near the joint were high because of poor

compaction practices, resulting in the skewed distribution on some sublots.
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Figure 24. Example Air Voids Distribution by Sublot: (a) SH 6-Valley Mills and
(b) IH 45-Hunstville.

The PWL values by project are shown in Figure 25. The limits for defining PWL were the
air void contents for the full payment pay factor. The full payment range of air voids is 3.7 percent
on the low end up to between 7 and 8.5 percent air voids on the upper end, depending on the
mixture type. If the limit were lowered to the remove and replace criteria, all the PWL results
would increase. Two projects had average PWL results above 90 percent, three projects were
between 80 and 90 percent on average, and three projects were below 70 percent on average. The
wider the spread on a given box plot, the more variability there was among sublots. Again, this

variability may be related to the construction variability and/or equipment calibration variability.
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Figure 25. Percent Within Limits by Project.

A statistical analysis was done to compare the PWL results from only the central part of the

mat, excluding the longitudinal joints, to the entire mat including the joint. The inclusion of joints

made a statistically significant difference in the PWL results. The least squares means plot in

Figure 26 shows that including the joint decreases the PWL result from 88% to 83%, on average.
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Figure 26. Percent Within Limits of the Asphalt Mat Excluding and Including Joints.

The range of pay factors on each project, excluding the joint data, is shown in Figure 27.

The blue box plots are the overall pay factors calculated from the density profiler data, and the
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orange box plots are calculated from the TxDOT QA cores (1 per sublot). The overall pay factors
were calculated by finding the pay factor for each measurement in the sublot, then averaging all
those pay factors together to get an overall pay factor for the sublot. In this calculation, a
measurement in the remove and replace range was assigned a pay factor of $0. For graphing
purposes, when the sublot pay factor was categorized as remove and replace, a pay factor of $0.7
was assigned. Based on the dielectric profiler data, five projects should have received a placement
bonus on average; two projects would have received just under full payment; and one project,

IH 45-Hunstville, would have been significantly penalized. In contrast, the TXDOT QA data shows
that all seven projects received placement bonus on average; however, three sublots from

SH 30-College Station would have received a remove and replace result. These data suggest that
TxDOT typically overpays the contactor, but in some cases, TxDOT unnecessarily penalized the

contractor.
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Figure 27. Range of Pay Factors by Project Based on GPR Density Profile and TxDOT Data.




The discrepancy between pay factors from a single core per sublot and pay factors from the
comprehensive density profiler is further illustrated in Figure 28. Overall, there is no correlation
between the two pay factors. Sublots that are penalized in one method receive full payment in the
other, and vice versa, and within projects that have full and bonus payment according to both
methods, there is still no clear correlation. The sources for the discrepancy are (1) that a single core
measurement has a very high probability of misrepresenting the actual production average (see
previous Statistical Risk Analysis discussion), and (2) any bias that might exist in the antenna

calibration will shift the predicted air voids away from the true air voids distribution.
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Figure 28. Sublot Pay Factors Based on TxDOT QA Testing and Density Profiler Testing.

FORENSIC INVESTIGATIONS
During the research, TxDOT wanted help investigating two recently constructed projects:
US 287-Groveton and SS 248-Tyler. This section describes the condition of each project,

TxDOT’s concerns, researcher test methods, results, and recommendations.
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US 287-Groveton

US 287, near Groveton, in the Lufkin District, was overlaid with 2 inches of Item 344,
Superpave Type C. During construction, the inspector noted several locations with, what appeared
to be, segregation and potential high-air voids (Figure 29). The area office requested help from the
TxDOT Construction Division and TTI to investigation the scope and severity of high air void

locations, and asked for recommendations on whether corrective action was warranted.

Figure 29. Surface Texture Possibly Indicating Segregation and High Air Voids.

Six months after construction, TTI deployed the vehicle-mounted GPR density profiler
equipped with three antennas. Two passes were done in both the southbound and northbound
directions, resulting in six line-scans spaced about 2-ft apart. Nine calibration cores were taken in
the southbound lane at locations identified as having low, moderate, and high dielectric values. An
exponential non-linear regression model was used for the calibration. Using the calibration, density
maps were made for the entire project.

The resulting density calibration in Figure 30 had an R?-value of 0.82. Applying this
calibration to the rest of the project, Figure 31 shows the air void distribution for the north and
southbound lanes, with an average of 4.0 and 3.7 percent, respectively. The spread on the data was
considerably narrow with most of the data lying within a 2 percent air void spread. Compared to

the in-place air voids payment table in Item 344, the pavement meets density requirements, and, if
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anything, may be over-compacted. However, making this conclusion is not entirely appropriate

since the road had been in service for over 6 months and had additional compaction under traffic.
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Figure 30. Dielectric to Air Void Calibration for US 287.
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Figure 31. Overall Air Void Distributions for US 287.

Figure 32 presents the air void heat maps. The color legend on these maps is set to match
the pay factors of Item 344 where green = bonus, orange and blue hues = penalty, and solid red

and purple = reject. If this were newly constructed pavement, most of the project would have been

59



over-compacted. There is evidence though of traffic-related compaction as higher density within
the wheel paths is noticeable.

Some specific locations with visible segregation in the field were identified, photographed,
and then located on the heat maps (Figure 33). These locations did correlate with areas of higher
air void contents, 6 to 8 percent, than much of the project. However, this level of air voids is not

concerning.

60



N i T T ]

FZERT =

TR e
oL

»ﬂ’ - § -1‘|.
3 4%&&*‘& P R s
- :

M

SB ‘_ T dﬁ;::_‘:g'u ..‘1’:_ w e
‘ . A

e § A bl + .‘“‘:.{"lm i r Ry I — 3 T ? i RSN - 5 a8 A | DALY B

902 S 907 912 917 922

Air Voids (%)

Figure 32. Air Void Distribution Maps for US 287.
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Figure 33. Comparison of Visible Segregation and Air Voids Maps.
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In conclusion, the research team did not believe the roadway had a project-wide
compaction issue. There may be some concern at specific locations with visible segregation, but
the core voids and the voids from the density profiler did not suggest they were excessively high.
Since the plans still called for surfacing the road with a seal coat, the researchers did not
recommend any action to the existing HMA. The density profiler was helpful in providing peace

of mind to the agency and avoiding unnecessary maintenance.

SS 248 — Tyler

The pavement on SS 248, east of Tyler, in the Tyler District, was rehabilitated, including
lane widening in both directions, and was finished with a 2-inch mat of Item 341, Dense-grade
Type C. Within 6 months of placement, premature fatigue cracking was appearing in the outside
lane wheel paths in both the eastbound and westbound directions (Figure 34). The area office
requested help from the TxDOT Construction Division and TTI to provide forensic analysis on

the project, and to determine if, perhaps, poor compaction was the source of the distress.

Figure 34. Premature Wheel Path Fatigue Cracking in the Outside Lane.
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About a year after construction, TTI deployed the vehicle-mounted GPR density profiler.
A single pass was done in each lane (two westbound lanes and two eastbound lanes) and down
the center-turn lane. Ten calibration cores were taken at locations identified as having low,
moderate, and high dielectric values. No calibration cores were taken directly on areas with
visible distress. An exponential non-linear regression model was used for the calibration. Using
the calibration, density maps were made for the entire project.

Figure 35 presents the calibration developed on SS 248. The R? value was 0.76.
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Figure 35. Calibration of Air Voids to GPR on SS 248.

The air voids heat map for each lane are shown in the five parts of Figure 35. Again, the
maps are colored to show the regions of bonus, penalty, and rejection (remove and replace).
Areas that were visibly distressed were marked on the map and the dielectric/air void data were
omitted since the distress significantly affects the dielectric reading. Also omitted were areas that

have been patched.
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Figure 36. Air Void Distribution Maps for SS 248-Tyler.
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Figure 36. Air Void Distribution Maps for SS 248-Tyler. (Continued)
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Table 21 presents the percent of pavement within each placement pay factor region for all
measured data (in and between the wheel paths). The eastbound outside lane had significant
amounts in the penalty (15 percent) and remove and replace (5 percent) categories. The
westbound outside lane has a small amount in the penalty category (3 percent). All other lanes
had virtually no placement problems. When considering data only from between the wheel paths
(Table 22), which is considered untrafficked and, therefore, better represents an “as constructed”
condition, none of the lanes have significant data in the remove and replace region, and the

amount in the penalty region is all below 5 percent.

Table 21. Percent within Pay Factor Categories for SS 248, In and Between Wheel Paths.

Section Air Voids (%) | Percent of Pavement by Pay Factor
Avg. | St Dev | Bonus | Penalty | Remove and Replace
EBOL | 7.2 1.59 79.7 15.3 5.0
WBOL | 64 1.05 96.7 3.1 0.3
EBIN | 5.4 0.88 98.9 1.0 0.1
WBIL | 5.5 0.74 99.4 0.6 0.1
CTL 6.1 0.99 97.6 1.9 0.5

Table 22. Percent within Placement Categories for SS 248, Between Wheel Paths Only.

Section Air Voids (%) | Percent of Pavement by Pay Factor
Avg. | St Dev | Bonus | Penalty | Remove and Replace
EBOL | 6.0 1.04 97.3 2.4 0.3
WBOL | 5.8 0.80 99.4 0.6 0.1
EBIN | 53 0.85 98.0 1.9 0.1
WBIL | 5.3 0.65 99.7 0.3 0.0
CTL 6.3 1.12 95.3 4.0 0.6

In conclusion, the researchers did not believe the distress was caused by poor
compaction. The majority of the pavement was in good condition, especially areas with little
traffic (center turn lane, and between the wheel paths). The east bound outside lane had the worst

density overall, with 15 percent in penalty and 5 percent in reject. The higher voids in the wheel
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path, however, are likely a result of fatigue cracking rather than the cause of fatigue cracking.
Cracking distress itself increases the air voids of the mat, and microcracking within the layer,
though not yet visible, will also increase the air voids. The researchers concluded that the
premature distress was a result of poor subgrade and base support over areas where the pavement

was widened.
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CHAPTER VII

CONCLUSION

OVERVIEW

The industry standard test methods for QC/QA of asphalt concrete compaction are
significantly limited in that they drastically under sample production, put operators and traffic at
risk since traffic control is required, and are comparatively slow. A GPR density profiler
provides rapid, non-destructive, near-full coverage results of the compacted mat air void content
and distribution. Despite the promise of GPR as a QC/QA tool, the GPR density profiler
technology has yet to move beyond research and into practice.

The objectives of this research were to quantify the antenna stability and sensitivity of a
GPR density profiler; to identify the optimal air void content prediction model; to quantify the
signal sensitivity to changes in asphalt mixture composition; and to assess the practicality of
using a GPR density profiler for QA and forensic applications. These objectives were

accomplished through laboratory experiments, field evaluations, and statistical analyses.

SUMMARY AND FINDINGS

Chapter III — GPR Antenna Stability and Sensitivity Analysis

This chapter presented two studies conducted in a controlled laboratory environment. The
first was a long-term antenna stability and inter-antenna variability study. The second was a
temperature sensitivity study.

Among the six antennas tested, the early production antennas had the greatest
discrepancy in readings, ranging from an average dielectric of 3.96 to 4.04. Even though the

antennas each have their own bias, the range is small enough to capture trends in air void content
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in the field. The newer antennas were statistically identical. Generally, the antennas were stable
over time, though a couple antennas experienced a slight decreasing drift in dielectric over the
6-hour testing period.

The effect of temperature on the antennas was very significant, decreasing the dielectric
by 0.15/10°C; however, the built-in temperature correction effectively eliminated this effect.
Based on findings, the antennas should be stable enough to detect changes in mixture production

in the field.

Chapter IV — Comparison of Air Void Content Prediction Models

This chapter discussed an extensive field evaluation comparing two air void content
prediction models, one empirical and one mechanistic (PaveSCM). The models were evaluated
in terms of the overall prediction error (RMSE) and bias error. Different methods for calibrating
each model were also compared.

The RMSE across all 15 field projects was lowest for the empirical model, with a median
error of 1.06 percent air voids. The PaveSCM model had higher error (1.22 to 1.78), which
improved as more cores were used for calibration. The absolute bias error was also lowest for the
empirical model and was much higher for the PaveSCM model. For certain projects, the bias
error was as high as 3 percent air voids, which is completely unacceptable and would cause
significant problems in practice.

Predictions made on the same day as core calibrations tended to have less overall error
and less bias error than predictions taken on other days of paving; however, based on a statistical
analysis, the effect of Calibration Day was only nearly significant (p-value slightly above 0.05).
The research fails to conclude that errors are higher when testing on a day different than

calibration. Additional testing would show whether this factor is significant or not.
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In practice, the effects of high RMSE and the effects of high bias in the validation data
are not equal. Given the high sample rate of the density profiler, general data scatter errors
(RMSE) will have very little impact on the overall prediction accuracy. However, predictions
that are biased cannot be corrected by taking more samples. The researcher failed to identify the
source of bias errors in the field. The bias issue could be mitigated by testing a standard
reference material each day of testing.

The PaveSCM model failed to predict asphalt content on the two projects evaluated

Chapter V — Sensitivity Analysis of Mixture Variability

In this chapter, the sensitivity of the dielectric constant to asphalt concrete mixture
variability was analyzed. Asphalt slabs were fabricated in the lab covering a wide range of
mixture types with variations in mixture asphalt content, substitution of the coarse aggregate, and
compacted air void content. The statistical and practical significance of each factor was
analyzed.

Within a given mixture design, the most influential factor on the dielectric constant was
air voids, followed by the amount of coarse aggregate substitution. Asphalt content was also
significant, with moderate overall influence. A change of +2.1 percent air voids, the typical
widest range expected in production, will result in a change of +0.25 dielectric. The typical
change in asphalt content (+0.25 percent) would only change the dielectric by +£0.03, which is
barely detectible in a controlled laboratory environment, and likely not detectable under field
conditions. Changes from substituting the course aggregate, which is will not happen in practice
without a new mixture design, does change the dielectric. But within the test range of 12 percent
substitution, the dielectric change is marginally within the detection capability of the radar

antennas.
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Chapter VI — Assessment of a GPR Density Profiler in Practical Applications

This chapter explored two practical applications of the GPR density profiler: first, for QA
testing of asphalt concrete construction, and second, for forensic investigations. The QA
application was examined with a statistical risk analysis. Then, the density profiler was deployed
on several construction projects and used as a secondary QA tool and compared with traditional
QA testing results from cores. In the forensic investigations, the density profiler was used on two
existing projects to measure if there were density issues and attempt to identify sources of
pavement distress.

Based on the statistical analysis, when accepting construction based on a single core, the
agency assumes a 40 percent chance of incorrectly accepting the sublot. The chances of correctly
assigning a bonus or a penalty pay factor is very low. On the other hand, since the GPR density
profiler produces such a rich data set, the agency lowers their risk to well below 10 percent, and
has confidence that the measured average air voids are within 0.1 percent of the true mean. This
is only true, however, if the density profiler is unbiased. Testing a reference material daily would
help correct for bias error.

In the QA deployment study, the air void content data were summarized by sublot
averages, probability distributions, PWL, and the overall pay factor. Most projects had
reasonable air void results within each sublot, though some projects had high variability, where
the averages from one sublot to another shifted by more than 2 percent. Sublot data were
normally distributed, except when including measurements taken near the joint, which skews the
results to higher air voids. When evaluating pay factors from the single QA core per sublot,
TxDOT generally overpaid the contractor, but in some cases, TxDOT unnecessarily penalized

the contractor. There was no correlation between the pay factors from TxDOT QA cores and the
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pay factors from the GPR density profiler data. The sources for the discrepancy are that a single
core measurement has a very high probability of misrepresenting actual production, and also, any
bias that might exist in the equipment calibration will shift the predictions away from the true air
void distribution.

In the first forensic investigation, the density profiler showed that there were no project-
wide compaction issues and immediate pavement maintenance was unnecessary. In the second
investigation, the researchers found that the air void contents in untrafficked areas were
acceptable, and concluded that the premature distress was not caused by poor asphalt
compaction. The higher voids in the distressed wheel paths were a result of fatigue cracking, and
not the cause. The distress was likely a result of poor subgrade and base support over areas

where the pavement was widened.

RECOMMENDATIONS

The GPR density profiler used in this study is an effective tool for measuring the in-situ
air void content of asphalt concrete. The ability to measure air void content rapidly,
continuously, and with nearly full-coverage makes the density profiler significantly more
advantageous than traditional spot coring or testing with a nuclear density gauge. Accepting
sublot production based on a single measurement exposes both the agency and contractor to
significant risks. These risks are virtually eliminated with the density profiler because the
sampling rate is so high. Another advantage of the technology is that the data are mapped
spatially. If an issue does arise, the specific problem area can be identified and dealt with
accordingly.

The empirical exponential model for predicting air voids from the surface dielectric

constant is robust with lower error and bias than the mechanistic PaveSCM model. This
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empirical model works well and should continue to be promoted. Similar empirical models have
been developed that constrain predictions at low and high extremes and could be an
improvement on this basic model. The PaveSCM model, and other mechanistic models can
continue to be studied and, when used, should be calibrated with multiple cores.

With either model, the system must be calibrated for each asphalt mixture design. Even
then, the calibration is prone to becoming biased, possibly based on drift in the antennas,
environmental factors, or the errors in the metal and air wave calibrations. This daily prediction
bias must be reduced or managed. Testing a standard reference material in the field each day, as
now provided by the manufacturer, is strongly recommended. This reference material should be
used to verify the antenna calibration, and potentially used to offset any daily bias. Identifying
the sources of bias should continue to be studied.

The industry continues to demonstrate growing interest in GPR for asphalt mixture
quality evaluations. Many avenues of possible use for GPR’s ability to measure asphalt mixture
density exist. In a construction setting, some potential approaches could include:

e Asa “no risk” process control enhancement
e For pay factor or acceptance framework.
e To evaluate longitudinal joints
e To evaluate lots or sublots when random QA cores result in a remove/replace decision.
o Use the GPR assessment to define how widespread the problem is and identify
areas that do not need correction.)

e For forensic investigations.

The promising results from this tool in both construction and forensic settings make GPR
for asphalt mixture density evaluation a good candidate for implementation efforts.

Further research topics warranting efforts include:
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Expedited, benchtop methods to determine the mixture-specific calibration ahead of
paving.
Refined regression methods to handle the influence of outliers in the calibration data set.
Exploration of this tool permeable friction course or thin overlay mixes which are not
currently accepted based on density measurements.
Effect of low-speed and high-speed data collection on prediction errors.
Models to account for trace metals in igneous aggregates.
Mounting on roller-compactors for real-time compaction monitoring.

o Must account for presence of surface moisture.

Rigorous testing of GPR-based density profiler systems from other vendors.
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ANTENNA STABILITY AND SENSITIVITY DATA AND ANALYSES

APPENDIX A

Table 23 and Table 24 present the data for the antenna stability test and the temperature

sensitivity test, respectively.

Table 23. Data for Stability and Inter-Antenna Variability Study.

. Time from 1st | Dielectric
AITHN) WAL Reading (hr) Constant
3 Garolite 0.00 4.74
3 Acetal 0.00 2.87
3 Slab 0.00 4.30
3 Garolite 0.26 4.74
3 Acetal 0.26 2.88
3 Slab 0.28 4.33
3 Garolite 0.94 4.74
3 Acetal 0.94 2.88
3 Slab 0.94 4.32
3 Garolite 1.75 4.79
3 Acetal 1.75 291
3 Slab 1.75 4.37
3 Garolite 2.27 4.76
3 Acetal 2.27 2.90
3 Slab 2.27 4.35
3 Garolite 2.79 4.77
3 Acetal 2.79 2.89
3 Slab 2.79 4.33
3 Garolite 3.30 4.76
3 Acetal 3.30 2.90
3 Slab 3.30 4.30
3 Garolite 3.84 4.75
3 Acetal 3.84 2.90
3 Slab 3.84 4.30
3 Garolite 4.28 4.76
3 Acetal 4.28 291
3 Slab 4.28 4.30
3 Garolite 4.82 4.78
3 Acetal 4.81 291
3 Slab 481 431
3 Garolite 5.25 4.75
3 Acetal 5.25 2.89
3 Slab 5.24 4.29
3 Garolite 5.74 4.76
3 Acetal 5.74 2.90
3 Slab 5.74 4.29
4 Garolite 0.00 4.77
4 Acetal 0.00 2.90
4 Slab 0.00 4.33
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. Time from 1st | Dielectric
AITHN) Material Reading (hr) Constant
4 Garolite 0.31 4.83
4 Acetal 0.31 2.93
4 Slab 0.30 4.40
4 Garolite 0.95 4.86
4 Acetal 0.95 2.92
4 Slab 0.95 4.40
4 Garolite 1.73 4.85
4 Acetal 1.73 2.93
4 Slab 1.73 4.42
4 Garolite 2.26 4.82
4 Acetal 2.25 2.92
4 Slab 2.25 4.40
4 Garolite 2.77 4.84
4 Acetal 2.77 2.93
4 Slab 2.77 4.40
4 Garolite 3.28 4.83
4 Acetal 3.28 2.94
4 Slab 3.28 4.38
4 Garolite 3.82 4.82
4 Acetal 3.82 2.93
4 Slab 3.82 4.37
4 Garolite 4.26 4.83
4 Acetal 4.25 2.93
4 Slab 425 4.37
4 Garolite 4.79 4.85
4 Acetal 4.79 2.94
4 Slab 4.79 4.36
4 Garolite 5.22 4.83
4 Acetal 5.22 2.93
4 Slab 5.22 4.35
4 Garolite 5.72 4.82
4 Acetal 5.72 2.92
4 Slab 5.72 4.35
7 Garolite 0.00 4.75
7 Acetal 0.00 2.92
7 Slab 0.00 431
7 Garolite 0.31 4.74
7 Acetal 0.31 2.90
7 Slab 0.31 431




Table 23. Data for Stability and Inter-Antenna Variability Study. (continued)

. Time from 1st | Dielectric
AITHN) WAL Reading (hr) Constant
7 Garolite 0.95 4.72
7 Acetal 0.95 2.89
7 Slab 0.95 4.30
7 Garolite 1.73 4.70
7 Acetal 1.73 2.88
7 Slab 1.73 4.29
7 Garolite 2.26 4.71
7 Acetal 2.26 2.89
7 Slab 2.26 4.29
7 Garolite 2.77 4.71
7 Acetal 2.77 2.89
7 Slab 2.77 4.29
7 Garolite 3.28 4.71
7 Acetal 3.28 2.89
7 Slab 3.28 4.25
7 Garolite 3.82 4.71
7 Acetal 3.82 2.89
7 Slab 3.81 4.25
7 Garolite 4.26 471
7 Acetal 4.26 2.89
7 Slab 4.26 4.25
7 Garolite 4.78 4.70
7 Acetal 4.78 2.88
7 Slab 4.78 423
7 Garolite 5.21 4.70
7 Acetal 5.21 2.88
7 Slab 5.21 4.24
7 Garolite 5.71 4.70
7 Acetal 5.71 2.88
7 Slab 5.71 422
78 Garolite 0.00 4.80
78 Acetal 0.00 2.92
78 Slab 0.00 4.36
78 Garolite 0.30 4.79
78 Acetal 0.30 2.92
78 Slab 0.30 4.36
78 Garolite 0.99 4.79
78 Acetal 0.96 2.92
78 Slab 0.96 4.37
78 Garolite 1.73 4.77
78 Acetal 1.73 291
78 Slab 1.74 4.35
78 Garolite 2.26 4.77
78 Acetal 2.26 291
78 Slab 2.26 4.34
78 Garolite 2.77 4.76
78 Acetal 2.77 291
78 Slab 2.77 4.35
78 Garolite 3.28 4.77
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. Time from 1st | Dielectric
AITON) WAL Reading (hr) Constant
78 Acetal 3.28 2.92
78 Slab 3.28 432
78 Garolite 3.81 4.79
78 Acetal 3.81 2.93
78 Slab 3.81 4.33
78 Garolite 4.25 4.80
78 Acetal 4.25 2.93
78 Slab 4.25 4.33
78 Garolite 4.77 4.79
78 Acetal 4.77 2.93
78 Slab 4.78 4.29
78 Garolite 5.21 4.75
78 Acetal 5.21 2.91
78 Slab 5.21 4.30
78 Garolite 5.71 4.78
78 Acetal 5.71 2.91
78 Slab 5.71 432
87 Garolite 0.00 4.80
87 Acetal 0.00 2.92
87 Slab 0.00 4.35
87 Garolite 0.30 4.81
87 Acetal 0.30 2.93
87 Slab 0.30 4.37
87 Garolite 0.98 4.79
87 Acetal 0.98 2.91
87 Slab 0.98 4.37
87 Garolite 1.73 4.78
87 Acetal 1.74 2.92
87 Slab 1.73 4.37
87 Garolite 2.26 4.79
87 Acetal 2.26 291
87 Slab 2.26 4.36
87 Garolite 2.77 4.79
87 Acetal 2.77 2.92
87 Slab 2.77 4.37
87 Garolite 3.27 4.79
87 Acetal 3.27 2.92
87 Slab 3.27 4.32
87 Garolite 3.80 4.78
87 Acetal 3.81 2.92
87 Slab 3.80 4.32
87 Garolite 4.25 4.80
87 Acetal 4.25 2.93
87 Slab 4.24 4.34
87 Acetal 4.78 2.92
87 Acetal 4.83 2.93
87 Slab 4.77 4.33
87 Garolite 5.20 4.81
87 Acetal 5.20 2.93




Table 23. Data for Stability and Inter-Antenna Variability Study. (continued)

. Time from 1st | Dielectric
AITHN) WAL Reading (hr) Constant
87 Slab 5.20 4.34
87 Garolite 5.76 4.80
87 Acetal 5.70 2.93
87 Slab 5.75 4.33
88 Garolite 0.00 4.74
88 Acetal 0.00 2.91
88 Slab 0.00 4.28
88 Garolite 0.30 4.70
88 Acetal 0.30 2.88
88 Slab 0.66 4.33
88 Garolite 0.98 4.77
88 Acetal 0.99 2.90
88 Slab 0.98 4.33
88 Garolite 1.73 481
88 Acetal 1.73 2.93
88 Slab 1.73 4.33
88 Garolite 2.26 4.78
88 Acetal 2.26 291
88 Slab 2.25 4.35
88 Garolite 2.77 4.80
88 Acetal 2.76 2.92
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. Time from 1st | Dielectric
AITHN) WAL Reading (hr) Constant
88 Slab 2.76 4.34
88 Garolite 3.27 481
88 Acetal 3.27 2.93
88 Slab 3.26 432
88 Garolite 3.80 4.80
88 Acetal 3.80 2.93
88 Slab 3.79 4.34
88 Garolite 4.24 4.82
88 Acetal 4.24 2.93
88 Slab 4.23 4.34
88 Garolite 481 4.82
88 Acetal 481 2.94
88 Slab 4.80 4.35
88 Garolite 5.19 4.82
88 Acetal 5.19 2.93
88 Slab 5.19 4.34
88 Garolite 5.75 481
88 Acetal 5.75 2.93
88 Slab 5.74 4.32




Statistical Model for Stability and Inter-Antenna Variability Study.

Summary of Fit

4.06

RSquare 0.999432
RSquare Adj 0.999396 404
Root Mean Square Error 0.019649 g
Mean of Response 3.99733 § 402
Observations (or Sum Wgts) 216 g 400
Analysis of Variance % 398

3.96
Source DF Sum of Mean Square F Ratio

Squares 3T 4 7 78 8 88

Model 13 137.24 10.5569| 27343.73 Antenna
Error 202 0.0004 Prob > F 50
C. Total 215 137.32 <.0001*

w 45
Parameter Estimates §

2 40
Term Estimate| Std Error| t Ratio Prob>|t| E
Intercept 4.01 0.003 1592.0 <.0001* % 35
DelTime -0.00 0.001 -1.38 0.1704| °
Antenna[3] -0.02 0.003 -5.56 <.0001* 30
Antennal4] 0.04 0.003 12.79 <.0001*
Antenna(7] -0.05 0003|  -1623]  <0001* heeel Moo e
Antenna[78] 0.01 0.003 1.89 0.0604
Antenna[87] 0.01 0.003 479 <.0001*
Material[Acetal] -1.09 0.002 -580.4 <.0001*
Material[Garolite] 0.77 0.002 406.08 <.0001*
(DelTime-2.92711)*Antenna[3] 0.00 0.002 0.69 0.4901
(DelTime-2.92711)*Antennal4] 0.00 0.002 0.71 0.4766
(DelTime-2.92711)*Antenna[7] -0.01 0.002 -5.05 <.0001*
(DelTime-2.92711)*Antenna[78] -0.00 0.002 -2.04 0.0426*
(DelTime-2.92711)*Antenna[87] -0.00 0.002 -0.65 0.5192
Effect Tests
Source Nparm DF Sum of F Ratio Prob > F

Squares
DelTime 1 1 0.00 1.8925 0.1704
Antenna 5 5 0.16 81.6129 <.0001*
Material 2 2 136.92 177314.8 <.0001*
DelTime*Antenna 5 5 0.02 11.7655 <.0001*
Antenna Material
Least Squares Means Table Least Squares Means Table
Level Least Sq Std Error Mean Level Least Sq Std Error Mean
Mean Mean

3 3.9893096 0.00327487 3.98931 Acetal 2.9117932 0.00230055 2.91194
4 4.0441716 0.00327483 4.04417 Garolite 4.7768689 0.00233276 4.77673
7 3.9574354 0.00327483 3.95747 Slab 4.3291711 0.00231567 4.32922
78 4.0115895 0.00327484 4.01161
87 4.0202683 0.00327610 3.96847
88 4.0128921 0.00327484 4.01295
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Table 24. Data for Temperature Sensitivity Study.

Antenna | Material Tem[zgr)ature ]():fll;i:;: Antenna | Material Tem[zgr)ature ]():fll;i:;:
3 Garolite 10 4.77 4 Acetal 20 2.90
3 Acetal 10 2.89 4 Slab 20 4.40
3 Slab 10 435 7 Garolite 20 4.84
4 Garolite 10 4.73 7 Acetal 20 2.95
4 Acetal 10 2.87 7 Slab 20 4.45
4 Slab 10 4.32 3 Garolite 30 4.86
7 Garolite 10 494 3 Acetal 30 2.96
7 Acetal 10 2.98 3 Slab 30 442
7 Slab 10 4.50 4 Garolite 30 4.79
3 Garolite 10 4.73 4 Acetal 30 2.92
3 Acetal 10 2.86 4 Slab 30 4.36
3 Slab 10 4.30 7 Garolite 30 4.70
4 Garolite 10 472 7 Acetal 30 2.89
4 Acetal 10 2.87 7 Slab 30 4.27
4 Slab 10 4.33 3 Garolite 30 4.86
7 Garolite 10 491 3 Acetal 30 2.96
7 Acetal 10 2.96 3 Slab 30 441
7 Slab 10 448 4 Garolite 30 4.81
3 Garolite 10 4.72 4 Acetal 30 2.92
3 Acetal 10 2.86 4 Slab 30 4.35
3 Slab 10 4.30 7 Garolite 30 4.69
4 Garolite 10 471 7 Acetal 30 2.88
4 Acetal 10 2.87 7 Slab 30 4.26
4 Slab 10 4.31 3 Garolite 30 4.86
7 Garolite 10 491 3 Acetal 30 2.95
7 Acetal 10 2.97 3 Slab 30 4.40
7 Slab 10 4.49 4 Garolite 30 4.81
3 Garolite 20 4.74 4 Acetal 30 2.92
3 Acetal 20 2.88 4 Slab 30 4.36
3 Slab 20 4.36 7 Garolite 30 4.70
4 Garolite 20 NaN 7 Acetal 30 2.88
4 Acetal 20 2.90 7 Slab 30 4.27
4 Slab 20 4.39 3 Garolite 40 4.88
7 Garolite 20 4.85 3 Acetal 40 2.97
7 Acetal 20 2.95 3 Slab 40 445
7 Slab 20 4.46 4 Garolite 40 4.84
3 Garolite 20 4.76 4 Acetal 40 2.93
3 Acetal 20 2.89 4 Slab 40 4.42
3 Slab 20 4.36 7 Garolite 40 4.64
4 Garolite 20 4.76 7 Acetal 40 2.85
4 Acetal 20 2.89 7 Slab 40 4.25
4 Slab 20 4.40 3 Garolite 40 4.86
7 Garolite 20 4.83 3 Acetal 40 2.95
7 Acetal 20 2.94 3 Slab 40 4.43
7 Slab 20 4.44 4 Garolite 40 4.83
3 Garolite 20 475 4 Acetal 40 2.93
3 Acetal 20 2.88 4 Slab 40 4.40
3 Slab 20 4.36 7 Garolite 40 4.64
4 Garolite 20 4.77 7 Acetal 40 2.86
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Table 24. Data for Temperature Sensitivity Study. (continued)

Antenna | Material Tem[zgr)ature ]():fll;i:;: Antenna | Material Tem[zgr)ature ]():fll;i:;:
7 Slab 40 4.24 87 Garolite 10 4.69
3 Garolite 40 4.86 87 Acetal 10 2.88
3 Acetal 40 2.95 87 Slab 10 4.30
3 Slab 40 443 88 Garolite 10 4.79
4 Garolite 40 4.84 88 Acetal 10 2.90
4 Acetal 40 2.93 88 Slab 10 4.33
4 Slab 40 4.38 78 Garolite 10 4.80
7 Garolite 40 4.65 78 Acetal 10 291
7 Acetal 40 2.86 78 Slab 10 4.38
7 Slab 40 4.25 87 Garolite 10 4.68
3 Garolite 50 4.82 87 Acetal 10 2.87
3 Acetal 50 2.94 87 Slab 10 4.29
3 Slab 50 4.44 88 Garolite 10 4.79
4 Garolite 50 4.85 88 Acetal 10 291
4 Acetal 50 2.94 88 Slab 10 4.34
4 Slab 50 445 78 Garolite 20 4.74
7 Garolite 50 4.59 78 Acetal 20 2.88
7 Acetal 50 2.84 78 Slab 20 4.32
7 Slab 50 4.23 87 Garolite 20 4.69
3 Garolite 50 4.82 87 Acetal 20 2.87
3 Acetal 50 2.94 87 Slab 20 4.32
3 Slab 50 4.44 88 Garolite 20 4.75
4 Garolite 50 4.85 88 Acetal 20 2.90
4 Acetal 50 2.94 88 Slab 20 4.36
4 Slab 50 4.46 78 Garolite 20 4.75
7 Garolite 50 4.58 78 Acetal 20 2.89
7 Acetal 50 2.83 78 Slab 20 4.33
7 Slab 50 423 87 Garolite 20 NaN
3 Garolite 50 4.83 87 Acetal 20 2.87
3 Acetal 50 2.94 87 Slab 20 4.32
3 Slab 50 4.45 88 Garolite 20 4.76
4 Garolite 50 4.83 88 Acetal 20 2.90
4 Acetal 50 2.94 88 Slab 20 4.36
4 Slab 50 4.46 78 Garolite 20 4.74
7 Garolite 50 4.58 78 Acetal 20 2.89
7 Acetal 50 2.83 78 Slab 20 4.33
7 Slab 50 4.24 87 Garolite 20 4.68

78 Garolite 10 4.81 87 Acetal 20 2.87
78 Acetal 10 2.91 87 Slab 20 4.33
78 Slab 10 4.36 88 Garolite 20 4.77
87 Garolite 10 4.70 88 Acetal 20 2.90
87 Acetal 10 2.88 88 Slab 20 4.36
87 Slab 10 4.30 78 Garolite 30 4.76
88 Garolite 10 4.79 78 Acetal 30 2.91
88 Acetal 10 2.90 78 Slab 30 4.35
88 Slab 10 4.36 87 Garolite 30 4.76
78 Garolite 10 4.80 87 Acetal 30 2.91
78 Acetal 10 2.91 87 Slab 30 4.33
78 Slab 10 4.37 88 Garolite 30 4.78
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Table 24. Data for Temperature Sensitivity Study. (continued)

Antenna | Material Tem[zzr)ature ]():fll:;i;l;: Antenna | Material Tem[zzr)ature ]():fll:;i;l;:
88 Acetal 30 2.93 78 Garolite 40 478
88 Slab 30 4.34 78 Acetal 40 2.91
78 Garolite 30 4.75 78 Slab 40 4.38
78 Acetal 30 2.90 87 Garolite 40 4.76
78 Slab 30 4.33 87 Acetal 40 2.90
87 Garolite 30 4.76 87 Slab 40 4.33
87 Acetal 30 291 88 Garolite 40 478
87 Slab 30 4.33 88 Acetal 40 2.93
88 Garolite 30 4.80 88 Slab 40 4.36
88 Acetal 30 2.93 78 Garolite 50 4.75
88 Slab 30 4.35 78 Acetal 50 2.90
78 Garolite 30 4.74 78 Slab 50 4.42
78 Acetal 30 2.90 87 Garolite 50 4.76
78 Slab 30 4.34 87 Acetal 50 2.90
87 Garolite 30 4.75 87 Slab 50 4.39
87 Acetal 30 2.90 88 Garolite 50 4.76
87 Slab 30 4.32 88 Acetal 50 2.93
88 Garolite 30 4.79 88 Slab 50 4.40
88 Acetal 30 2.93 78 Garolite 50 4.77
88 Slab 30 4.35 78 Acetal 50 NaN
78 Garolite 40 4.79 78 Slab 50 441
78 Acetal 40 2.93 87 Garolite 50 4.73
78 Slab 40 4.39 87 Acetal 50 2.89
87 Garolite 40 4.77 87 Slab 50 4.37
87 Acetal 40 291 88 Garolite 50 4.75
87 Slab 40 4.34 88 Acetal 50 2.92
88 Garolite 40 4.78 88 Slab 50 4.39
88 Acetal 40 2.94 78 Garolite 50 4.77
88 Slab 40 4.36 78 Acetal 50 2.90
78 Garolite 40 4.79 78 Slab 50 441
78 Acetal 40 2.92 87 Garolite 50 4.74
78 Slab 40 4.39 87 Acetal 50 2.89
87 Garolite 40 4.77 87 Slab 50 4.37
87 Acetal 40 291 88 Garolite 50 4.76
87 Slab 40 4.34 88 Acetal 50 2.93
88 Garolite 40 4.77 88 Slab 50 4.39
88 Acetal 40 2.93
88 Slab 40 4.36




Statistical Model for Temperature Sensitivity
(No Temperature Correction)

Residual by Predicted Plot

g 037,
. E 02 o $
Summary of Fit FERN " o8
»ZI N 50 o”. " H
=2 00 . 3 'o-‘—l!‘o-ﬂ—
RSquare 0.988527 35 h, e TV, wl®
RSquare Adj 0.987938 z o g. LI
Root Mean Square Error 0.089554 ° 02 .
25 3 35 4 45 5 55
Mean of Response 3.946332 dielMeanTTI_noTempCorr Predicted
Observations (or Sum Wgts) 267
Analysis of Variance
Source DF Sum of Mean Square F Ratio
Squares
Model 13 174.82754 13.4483 1676.876
Error 253 2.02902 0.0080 Prob > F
C. Total 266 176.85656 <.0001*
Parameter Estimates
Term Estimate Std Error| t Ratio Prob>|t|
Intercept 4.3976556 0.012857 342.05 <.0001*
Antenna[3] -0.095994 0.012201 -7.87 <.0001*
Antennal4] -0.03487 0.012313 -2.83 0.0050*
Antennal[7] -0.098976 0.012201 -8.11 <.0001*
Antennal78] 0.0667667 0.012318 542 <.0001*
Antennal[87] 0.0762978 0.012313 6.20 <.0001*
Material[Acetal] -1.077233 0.007753 -138.9 <.0001*
Material[Garolite] 0.7354371 0.007775 94.59 <.0001*
Temperature -0.014993 0.000388 -38.68 <.0001*
Antenna[3]*(Temperature-30) -1.829e-5 0.000863 -0.02 0.9831
Antennal4]*(Temperature-30) 0.0056331 0.000867 6.50 <.0001*
Antenna[7]*(Temperature-30) -0.005844 0.000863 -6.77 <.0001*
Antenna[78]*(Temperature-30) -0.002433 0.000879 -2.77 0.0061*
Antenna[87]*(Temperature-30) -0.000869 0.000867 -1.00 03172
Effect Tests
Source Nparm DF Sum of F Ratio Prob > F
Squares
Antenna 5 5 1.69977 42.3892 <.0001*
Material 2 2 161.26871 10054.37 <.0001*
Temperature 1 1 11.99605 1495.797 <.0001*
Antenna*Temperature 5 5 0.75940 18.9381 <.0001*
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Statistical Model for Temperature Sensitivity
(Manufacturer Temperature Correction and No Interaction)

Residual by Predicted Plot

s 020

3 015

g 010
Summary of Fit £ 005 _&

= 000

g -0.05
RSquare 0.995768 > -0.10
RSquare Adj 0.995637 3 o1
Root Mean Square Error 0.052943 3
Mean of Response 4.01174
Observations (or Sum Wgts) 267
Analysis of Variance
Source DF Sum of Mean Square F Ratio

Squares
Model 8 170.17528 21.2719|  7589.099
Error 258 0.72316 0.0028| Prob >F
C. Total 266 170.89844 <.0001*
Parameter Estimates
Term Estimate Std Error| t Ratio Prob>|t|
Intercept 4.0077554 0.0076 527.32 <.0001*
Antenna[3] 0.0278028 0.007213 3.85 0.0001*
Antennal[4] 0.0180469 0.007279 2.48 0.0138*
Antenna(7] -0.022088 0.007213 -3.06 0.0024*
Antennal[78] 0.0004082 0.00728 0.06 0.9553
Antenna[87] -0.028643 0.007279 -3.94 0.0001*
Material[Acetal] -1.105384 0.004583 -241.2 <.0001*
Material[Garolite] 0.7561049 0.004596 164.50 <.0001*
Temperature 0.0001823 0.000229 0.80 0.4269
Effect Tests
Source Nparm DF Sum of F Ratio Prob > F
Squares

Antenna 5 0.10807 7.7114 <.0001*
Material 2 169.95464| 30317.04 <.0001*
Temperature 1 1 0.00177 0.6331 0.4269
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Statistical Model for Temperature Sensitivity
(Manufacturer Temperature Correction With Interaction)

Residual by Predicted Plot

Tg 0.08 N
. T, &
Summary of Fit £ 00 X . N "
E 0.00 f' 1 -
RSquare 0.998845 g o0 " e : n :
RSquare Adj 0.998785 T -0.06 N
Root Mean Square Error 0.027935 © -008 *
Mean of Response 4.01174 3 35 4 4.5
Observations (or Sum Wgts) 267 dielMeanTT! Predicted
Analysis of Variance
Source DF Sum of Mean Square F Ratio
Squares
Model 13 170.70100 13.1308 16826.20
Error 253 0.19744 0.00078 Prob > F
C. Total 266 170.89844 <.0001*
Parameter Estimates
Term Estimate Std Error| t Ratio Prob>|t|
Intercept 4.0073594 0.004011 999.21 <.0001*
Antenna[3] 0.0279203 0.003806 7.34 <.0001*
Antennal4] 0.0176106 0.003841 4.58 <.0001*
Antennal[7] -0.021971 0.003806 -5.77 <.0001*
Antennal78] 0.0006621 0.003842 0.17 0.8633
Antennal[87] -0.028813 0.003841 -7.50 <.0001*
Material[Acetal] -1.105198 0.002419 -457.0 <.0001*
Material[Garolite] 0.7558018 0.002425 311.62 <.0001*
Temperature 0.0001916 0.000121 1.58 0.1143
Antenna[3]*(Temperature-30) 0.0025378 0.000269 9.43 <.0001*
Antennal4]*(Temperature-30) 0.0023968 0.00027 8.87 <.0001*
Antenna[7]*(Temperature-30) -0.006684 0.000269 -24.84 <.0001*
Antenna[78]*(Temperature-30) 0.0002816 0.000274 1.03 0.3054
Antenna[87]*(Temperature-30) 0.0012246 0.00027 453 <.0001*
Effect Tests
Source Nparm DF Sum of F Ratio Prob > F
Squares
Antenna 5 5 0.10793 27.6603 <.0001*
Material 2 2 169.83945 108818.3 <.0001*
Temperature 1 1 0.00196 2.5108 0.1143
Antenna*Temperature 5 5 0.52573 134.7358 <.0001*
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APPENDIX B

FIELD PROJECT DETAILS

The SH 6-Valley Mills project was located outside of Waco, starting at the Valley Mills
city limit and running east 10 miles (Figure 37). This roadway is an undivided two-way rural
highway with occasional passing and turning lanes. The AADT is about 7,000. A dense-graded
Ty-D mix with a thickness of 2.0 in. was laid over existing HMA. Paving occurred in summer
2016. The SH 6-Waco project was located on the south side of Waco, starting at Bagby Ave. and
running west 10 miles. This roadway is a divided four-lane freeway with an AADT around
70,000 on the east end and 25,000 on the west end. A TOM-C mix with a thickness of 1.0 in.

was laid over a milled surface. Paving occurred in summer 2017.

Elm Matt
Rock Creek

SH 6-Valley

Crawford

Windsor

— o,

)

Figure 37. SH 6-Valley Mills and Waco Project Locations.
The SH 30 project was located in College Station between Texas Avenue and SH 6. This
roadway is an urban four-lane minor arterial with an AADT of 20,000. An SMA-C mix with a

thickness of 2.0 in. was laid over a milled surface. Paving occurred in summer 2017.
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Figure 38. SH 30 Project Location.

The RELLIS test sections were located near Bryan, TX at the Texas A&M RELLIS
Campus (Figure 39). Several test sections consisting of a 1-inch TOM-F surface over a 2-inch
dense-graded Ty-D mix were constructed over both flexible and rigid substrates. Sections were
assigned to different rolling patterns to compact under, at, and above optimum. The pavement
designs and locations of each test section are illustrated in Figure 40 and Figure 41. Paving

occurred in late summer 2017.
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Figure 39. RELLIS Project Location.
Flexible

0.91n. TOM-F 0.9in.

DG TY-D
2.25in.

Flex Base

8in.

2.25in.

Rigid

Jointed

Concrete

Figure 40. Pavement Layer Designs.
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TOM

D-mix

Figure 41. Schematic Layout for Test Section and Compaction Level for Each Section.
The SL 79-Del Rio project was located in the Laredo District, just west of Del Rio,
between US 90 and Dr. Fermin Calderon Blvd. for about 1.5 miles (Figure 39). This roadway is
a rural principal arterial. As part of significant rehabilitation, two 3.5-inch lifts of Superpave Ty-
B were laid, which is considerably thicker than any of the other projects tested in this study.
Paving occurred in spring 2018 and the entire project remained closed to traffic while other

construction work was continuing. All testing by the research team was done a month after

paving.
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Figure 42. SL 79 Project Location.
The SH 149-Beckville project was located in the Atlanta District between Tatum and
Beckville for approximately 5 miles (Figure 43). The roadway is a rural minor arterial with an

AADT of 6,500. A SP-C mix with a thickness of 1.5 inches was laid over new and existing

pavement in summer 2017.
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Figure 43. SH 149 Project Location

The IH 45-Huntsville project was located in the Bryan District between Huntsville and
Madisonville, for several miles (Figure 44). The roadway is a divided rural interstate with four
lanes and an AADT of 35,000. A SMA-D mix with a thickness of 2.0 inches was laid over
milled pavement in summer 2017. During compaction, the team noticed that the rollers tended to
under-compact the confined joint. This was caused by the rollers riding up on the adjoining cold

mat, inhibiting loading in the jointed wedge region. The surface was later finished with a PFC.
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Figure 44. IH 45 Project Location.

The FM 158-Bryan project was in the Bryan District between SH 21 and Business 6

(Texas Ave.) for 1.2 miles (Figure 45). The roadway is an urban principal arterial with 4 lanes

and a center turn lane and carries between 9,700 and 13,000 AADT. The surface was milled and

then in-laid with 2 inches of SP-D in late spring of 2019.
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Figure 45. FM 158 Project Location.
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The US 59-Texarkana project was in the Atlanta District and was just southwest of
Texarkana and ran 5 miles (Figure 46). The roadway was a rural principal arterial with 4 lanes
and a center turn lane and had 15,000 to 16,000 AADT. An SMA-D mixture was placed at 2.0

inches thick in the summer of 2019. In this project, data were only collected for one day of

paving.
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Figure 46. US 59 Project Location.

The SH 40-College Station project was in the Bryan District on the south side of College

Station (Figure 47). The roadway is a four lane, divided, urban principal arterial with 13,000 to
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21,000 AADT. In the summer of 2019, a SP-C mixture was placed between 1.5 and 3-inches

thick. In most cases the mix was overlaid on a seal coat surface, and in some cases the surface

was milled prior to an inlay. Compaction was accomplished with 3 vibratory passes of the

breakdown roller, 2 static passes with a pneumatic roller, followed by a finish roller.

TFLEER FTUIEL Y

41
L |

SOUTHER
TRACE

tte's Child Care @

peofic

Bryan (&)
GARTENS o L"
Ky Southern Oaks Park SPRING CREEK O I;, H 'E'E
REATTA SHENANDOAH ‘ ¥
MEADOWS
©Q reatta Park Shes p
o College Station

SO

Figure 47. SH 40 Project Location.
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APPENDIX C

FIELD DATA

GPR DENSITY PROFILER CALIBRATION AND VERIFICATION

Calibration and prediction performance are summarized in Table 25, Table 26, and each

project’s calibration and verification data are illustrated in Figure 48.

Table 25. Calibration Summaries.

Project R? | RMSE a b
SH 6-Valley Mills-DG D | 092 | 0.76 | 1679.7 | -1.060
SH 30-College St-SMA C | 0.94 | 0.45 4909 | -0.844
SH 6-Lake Waco-TOM C | 091 | 0.73 183.5 | -0.588
RELLIS-DG D 0.80 | 0.98 |1213.5|-0.919
RELLIS-TOM F 0.85| 1.07 550.7 | -0.709
SL 79-Del Rio-DG B 0.97 | 0.55 336.8 | -0.725
SH 149-Beckville-SPC | 0.97 | 0.56 | 4529.0 | -1.448
IH 45-Huntsville-SMA C | 0.95 | 0.58 | 4308.1 | -1.130
FM 158-Bryan-SP D 0.62 | 1.80 | 1307.3|-0.994
SH 40-College St-SP TyC | 0.94 | 0.50 256.9 | -0.785
US 59-Texarkana-SMA D | 0.82 | 0.79 79.8 | -0.698

Table 26. Prediction Performance by Project.

Prediction Within Calibration Lot* Prediction for Subsequent Lots
Project 2 Bias | Margin of Bias Margin of
R RMSE (%) | Error (%) RMSE (%) Error (%)

SH 6-Vlly Mills-DG D NA NA -0.88 +0.47 1.61 0.78 +2.84
SH 30-Cllg St-SMA C 0.93 0.21 -0.04 +0.5 1.28 0.98 +1.66
SH 6-Lk Waco-TOM C 0.81 0.50 -0.42 +0.65 1.98 -1.62 +2.3
RELLIS-DG D 0.82 0.84 -0.20 +1.63 2.36 2.17 +1.87
RELLIS-TOM F 0.53 1.62 0.17 +3.22 NA NA NA
SL 79-Del Rio-DG B 0.84 0.95 -0.31 +2.16 0.89 0.31 +1.7
SH 149-Beckville-SP C 0.79 0.77 0.43 +1.54 1.02 0.35 +1.96
IH 45-Huntsvll-SMA C 0.02 1.60 -0.66 +3.5 1.64 -0.48 +3.21
FM 158-Bryan-SP D -2.84 1.80 1.72 +1.32 2.20 2.05 +1.66
SH 40-Cllg St-SP TyC -0.11 1.66 0.07 +3.98 1.27 1.06 +1.44
US 59-Txrkn-SMA D -12.4 1.57 -0.93 +3.02 0.72 -0.30 +1.48

* Within-lot calibrations made using 66% of the calibration cores (typically 6 cores), and the remaining cores

used for verification.

Red cells indicate bias greater than +1%.
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PREDICTED AIR VOID DISTRIBUTIONS

Summary statistics and air void distribution data are presented in Table 27 and Figure 49.

Table 27. Predicted Air Void Summary Statistics.

Project Lot Predicted Air Voids (%)

Average | St. Dev. | Median | 5th_Percentile | 95th Percentile

6-1 6.9 1.1 6.9 5.3 8.9

6-2 6.9 1.2 6.9 5.0 9.0

8-1 6.9 1.3 6.8 4.9 9.2

SH 6-Valley Mills 8-2 7.0 1.2 6.9 5.3 8.9

9-1 7.7 1.6 7.4 5.7 10.6

11-1 5.7 3.2 5.6 4.0 7.6

11-2 5.6 0.9 5.5 4.2 7.2

2-1 5.9 1.0 5.8 4.3 7.5

3-1 5.8 1.0 5.7 4.4 7.6

3-2 6.3 0.8 6.2 5.0 7.6

SH 30-College Station | 3-3 6.3 0.9 6.3 5.1 7.8

4-2 5.7 0.9 5.7 4.2 7.2

4-3 5.7 0.9 5.6 4.3 7.2

4-4 5.4 1.0 53 4.0 7.0

2-1 11.3 1.2 11.2 9.5 13.5

3-1 10.6 1.2 10.6 8.8 12.4

SH 6-Lake Waco 3-2 11.4 1.0 11.3 9.8 13.0

3-3 11.2 1.2 11.3 9.3 13.1

8-1 12.0 1.6 11.9 9.6 14.8

8-2 11.8 1.1 11.8 10.0 13.7

6-2 4.6 0.9 4.5 3.3 6.3

6-3 4.3 0.7 4.3 3.3 5.5

7-1 5.0 0.8 4.9 3.8 6.4

: 7-2 4.3 0.7 4.3 3.3 5.5

SL79-Del Rio 237779 07 | 49 38 6.2

8-2 4.3 0.7 4.2 32 5.5

8-3 4.2 0.7 4.1 32 5.4

8-4 4.1 0.9 4.1 3.0 5.4

Table 27. Predicted Air Void Summary Statistics. (Continued)
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Predicted Air Voids (%)
Project Lot | Average | St. Dev. | Median | 5th_Percentile | 95th Percentile
2-3 5.7 1.4 5.5 3.6 8.2
2-4 4.2 1.6 3.8 22 7.0
3-1 5.9 1.6 5.7 3.8 8.5
SH 149-Beckville | 2-2 5.6 1.3 5.5 3.7 7.9
4-1 6.4 1.4 6.2 4.4 9.1
4-2 5.6 1.0 5.5 4.0 7.4
4-3 4.6 1.0 4.5 33 6.3
4-1 6.0 1.2 5.9 4.4 7.9
6-1 6.8 33 6.3 4.5 10.6
6-2 6.9 1.9 6.7 4.4 10.2
IH 45-Huntsville 6-3 6.3 1.9 6.2 3.9 9.1
7-1 5.8 1.3 5.5 4.1 8.2
7-2 6.8 1.9 6.4 4.2 10.1
7-3 6.5 1.9 6.0 4.2 10.1
2-1 5.3 4.0 5.0 3.4 7.6
4-1 6.4 3.6 6.1 4.3 9.1
4-2 6.8 1.2 6.7 5.2 9.0
FM158-Bryan 5-1 6.4 1.6 6.2 4.3 9.1
5-2 6.7 1.8 6.4 4.3 9.7
6-1 5.6 1.3 5.5 3.8 7.9
6-2 6.1 1.3 6.0 4.3 8.4
2-4 5.4 0.5 5.4 4.7 6.2
USS9-Texarkana 3-1 5.4 0.5 5.4 4.7 6.2
3-2 5.5 0.4 5.4 4.8 6.2
3-3 5.4 0.4 5.4 4.8 6.1
5-1 4.0 0.8 3.9 29 5.2
5-2 3.7 0.7 3.6 2.8 5.3
5-3 3.6 0.9 3.4 2.5 5.3
SH40-College Station | 6-1 3.9 0.7 3.8 3.0 5.2
6-2 3.9 0.8 3.8 2.8 5.2
6-3 3.8 0.7 3.7 29 5.4
7-1 4.3 0.8 4.2 3.0 5.6
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APPENDIX D

LABORATORY DATA

The laboratory data for the mixture sensitivity analysis is in Table 28
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Table 28. Laboratory Results for Dielectric Sensitivity Study.

Date Design Actual Surface Dielectric
Project AC | Coarse | Voids Asphalt | Coarse Agg |AirVoids| Asphalt Coarse |Air Voids
Tested Gmm | Gmb Average | St Dev
Rank [ Agg Rank | Rank |Content (%) | Sub. (%) (%) Content (%) Agg SG (%)
SH 6-Valley Mills-DG D |10/24/2018| 2 2 1 5.2 0 3.3 5.39 2.420 | 2.265 | 2.567 6.43 5.01 0.08
SH 6-Valley Mills-DG D |10/24/2018| 2 2 3 5.2 0 8.5 5.97 2.412 | 2.219| 2.567 8.01 4.96 0.13
SH 6-Valley Mills-DG D | 10/24/2018| 1 2 2 4.7 0 5.9 5.12 2.424 |1 2.233 | 2.567 7.89 4.82 0.16
SH 6-Valley Mills-DG D | 10/24/2018| 3 2 2 5.7 0 5.9 6.04 2.407 | 2.226 | 2.567 7.50 4.76 0.06
SH 6-Valley Mills-DG D |10/24/2018| 2 1 2 5.2 -12 5.9 5.96 2.419 | 2.216 | 2.583 8.37 4.88 0.15
SH 6-Valley Mills-DG D |10/24/2018| 2 3 2 5.2 12 5.9 5.50 2.413 | 2.214 | 2.551 8.22 4.94 0.05
SH 6-Valley Mills-DG D |10/24/2018| 1 3 1 4.7 12 3.3 5.16 2.425 | 2.285| 2.551 5.80 5.21 0.06
SH 6-Valley Mills-DG D |10/24/2018| 3 1 3 5.7 -12 8.5 6.01 2.416 | 2.190 | 2.583 9.36 4.77 0.18
SH 30-College St-SMA C|10/23/2018| 2 2 1 6 0 3 6.35 2.377 | 2.330| 2.554 1.97 5.64 0.20
SH 30-College St-SMA C [10/23/2018| 2 2 3 6 0 5.5 6.22 2.384 | 2.274 | 2.554 4.61 5.20 0.14
SH 30-College St-SMA C [10/23/2018| 1 2 2 5.5 0 3 5.77 2.405 | 2.324 | 2.554 3.38 5.68 0.18
SH 30-College St-SMA C|10/23/2018| 3 2 2 6.5 0 6.52 2.380 | 2.256 | 2.554 5.21 5.15 0.12
SH 30-College St-SMA C|10/23/2018| 2 1 2 6 -12 5.5 6.43 2.385 | 2.269 | 2.555 4.84 5.41 0.11
SH 30-College St-SMA C|10/23/2018| 2 3 2 6 12 5.5 6.71 2.380 | 2.274 | 2.553 4.47 5.10 0.11
SH 30-College St-SMA C|10/23/2018| 1 3 1 5.5 12 3 6.20 2.409 | 2.322 | 2.553 3.59 5.53 0.22
SH 30-College St-SMA C|10/23/2018| 3 1 3 6.5 -12 8 6.57 2.387 | 2.241 | 2.555 6.13 5.34 0.07
SH 6-Lake Waco-TOM C | 10/24/2018| 2 2 1 6.6 0 7.4 7.31 2.400 | 2.213 | 2.622 7.82 4.84 0.04
SH 6-Lake Waco-TOM C | 10/24/2018| 2 2 3 6.6 0 12.6 7.47 2.394 | 2.140 | 2.622 10.61 4.52 0.05
SH 6-Lake Waco-TOM C | 10/24/2018| 1 2 2 6.1 0 10 6.46 2.426 | 2.189 | 2.622 9.75 4.75 0.09
SH 6-Lake Waco-TOM C | 10/24/2018| 3 2 2 7.1 0 10 7.34 2.395 | 2.159 | 2.622 9.86 4.62 0.13
SH 6-Lake Waco-TOM C | 10/24/2018| 2 1 2 6.6 -12 10 7.33 2.418 | 2.201 | 2.664 8.97 4.76 0.05
SH 6-Lake Waco-TOM C | 10/24/2018| 2 3 2 6.6 12 10 6.90 2.394 | 2.162 | 2.579 9.66 4.62 0.09
SH 6-Lake Waco-TOM C | 10/24/2018| 1 3 1 6.1 12 7.4 6.26 2.404 | 2.201 | 2.579 8.42 4.77 0.04
SH 6-Lake Waco-TOM C | 10/24/2018| 3 1 3 7.1 -12 12.6 7.37 2.417 | 2.132| 2.664 | 11.80 4.48 0.04
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Table 28. Laboratory Results for Dielectric Sensitivity Study. (Continued)

Date Design Actual Surface Dielectric
Project AC | Coarse [ Voids Asphalt | Coarse Agg |AirVoids| Asphalt Coarse [Air Voids
Tested Gmm [ Gmb Average| St Dev
Rank [ Agg Rank | Rank |Content (%) | Sub. (%) (%) Content (%) Agg SG (%)
SH 149-Beckville-SP C |10/24/2018| 2 2 1 5.3 0 3 5.72 2.478 | 2.370| 2.632 4.36 4.95 0.10
SH 149-Beckville-SP C |10/24/2018| 2 2 3 5.3 0 8 6.08 2.460 | 2.302 | 2.632 6.42 4.68 0.08
SH 149-Beckville-SP C |10/24/2018| 1 2 2 4.8 0 5.5 5.64 2.484 1 2.370| 2.632 4.58 4.92 0.06
SH 149-Beckville-SP C |10/24/2018| 3 2 2 5.8 0 5.5 6.80 2.449 | 2.345 | 2.632 4.25 4.91 0.12
SH 149-Beckville-SP C |10/24/2018| 2 1 2 5.3 -12 5.5 5.95 2.464 | 2.358 | 2.602 4.29 5.19 0.07
SH 149-Beckville-SP C |10/24/2018| 2 3 2 5.3 12 5.5 6.03 2.479 | 2.357 | 2.659 4.91 4.88 0.06
SH 149-Beckville-SP C |10/24/2018| 1 3 1 4.8 12 3 5.64 2.497 | 2.400 | 2.659 3.89 4.96 0.06
SH 149-Beckville-SP C |10/24/2018| 3 1 3 5.8 -12 8 6.42 2.440 | 2.303 | 2.602 5.61 4.93 0.04
SL79-Del Rio-DGB |11/23/2018| 2 2 1 4.5 0 3 5.12 2.451 | 2.328 | 2.569 5.04 5.68 0.10
SL 79-Del Rio-DG B 11/23/2018[ 2 2 3 4.5 0 8 5.14 2.455 | 2.264 | 2.569 7.78 5.23 0.11
SL 79-Del Rio-DG B 11/23/2018[ 1 2 2 4 0 5.5 4.75 2.470 | 2.304 | 2.569 6.75 5.48 0.20
SL79-Del Rio-DGB |11/23/2018| 3 2 2 5 0 5.5 5.32 2.438 | 2.292 | 2.569 5.99 5.34 0.15
SL79-Del Rio-DGB |11/23/2018| 2 1 2 4.5 -12 5.5 4.95 2.456 | 2.293 | 2.563 6.61 5.46 0.09
SL79-Del Rio-DGB |11/23/2018| 2 3 2 4.5 12 5.5 4.96 2.456 | 2.312 | 2.575 5.86 5.46 0.20
SL 79-Del Rio-DG B 11/23/2018| 1 3 1 4 12 3 4.58 2.474 | 2.352 | 2.575 491 5.78 0.06
SL79-Del Rio-DGB |11/23/2018| 3 1 3 5 -12 8 5.36 2.437 | 2.247 | 2.563 7.79 5.25 0.12
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APPENDIX E

DETAILED FIELD AND LABORATORY STATISTICAL RESULTS

Model Verification Study Statistical Results: Empirical vs PaveSCM Models, Same Day
RMSE Absolute Bias

4 Actual by Predicted Plot 4 Actual by Predicted Plot
45 3
4
25
35
™ "
g o2 g 2
s % 815
W2 =
2 15 £
! 05
U-SU . . o.. A .
0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3
RMSE_V Predicted RMSE=0.4795 RSq=0.85 abs_Bias Predicted RMSE=0.4066 R5g=0.80
Palue <0001 PValue<.0001
< Effect Summary 4 Effect Summary
Source LogWorth PValue Source LogWorth PValue
Project 8,090 i [ | 0.00000 Prediction_Type 6.046 [ ‘ 0.00000
Prediction_Type 3.351 B R B AR A 0.00045 Project 4.832 & 0.00001
Remove Add Edit [ ] FDR Remove Add Edit [ ] FOR
4 Residual by Predicted Plot 4 Residual by Predicted Plot
1.0 1.0
= . . K] . .
E 05 " . . * 2 05- ° .
% 0.0 : ":”'. . - = .'.‘ ﬁ ¢ . . .', . '0-_ . .
= T e Al * * F o e 3 v
o -05 . . & o e LRI
$ 0 5 05 A
o " - = -
15 - -10 .
0 05 1 15 2 25 3 35 4 45 3 g 0 v 15 2 25 3
RMSE_V Predicted abs_Bias Predicted
4 Analysis of Variance 4 Summary of Fit
Sum of RSquare 0.797881
Source DF  Squares MeanSquare F Ratio RSquare Adj 0.702436
Model 17 45.168655 265608 115574 Root Mean Square Emor  0.406559
Error 36 8276172 0.22339 Prob>F Mean of Response 0.878240
C. Total 53 53.444828 <.0001 Observations (or Sum Wagts) 54
= 4 Analysis of Variance
<4 Parameter Estimates S
Term Estimate Std Error tRatio Prob:|t| Source DF  Squares MeanSquare F Ratio
Intercept 1.6470863 0.074833 2201 <.0001" e 2 ST 500
- . Error 36 5.050451 016529 Prob> F
Proj.ect[FM 158-Bryan-SF' L] -0.851211 0.2353 -4 € Total 53 20440328 T
Project[IH 10-San Antonio-SP C] -0.248996 0463214  -0.54
Project[IH 45-Huntsville-SMA (] -0.237808 0235334 -1.01 4 Parameter Estimates
Project[RELLIS_ TOM F2] 03643423 0.235304 155 T Estimate StdError tRatio Prob> [t]
Project[RELLIS-DG D] 1.3418065 0.2353%4 5.70 Intercept 09001173 0.063453 14,19 <0001
Project[SH 149-Beckville-SP C] -0.554604 0.235304  -2.36 Project[FM 158-Bryan-5P D] -0.636007 0.1995%
Project[SH 30-Callege 5t-SMA (] -0.758030 0.235384  -3.22 Project[IH 10-5an Antonic-SP €] -0.063964 0.392773
Project[SH 40-College St-SPTyC]  1.3042500 0.23534  5.54 E'DJEC:{'RHEES;HTKAWF'!]E’SMAQ gi:g;ig g} ggggg
- N ~ _ AT rojec ) -0. 5
Proj.ect[SH i} LakeWaFo TOM C] 1110441 0.235304 4,72 Project[RELLIS-DG D] 0.6646136 0.109508
Proj.ect[SH E-Valley.Mllls-DG L] -0.634286 0.235304  -2.60 Project[SH 149-Beckville-SP (] 0527751 D.199508
Project[SL 79-Del Rio-DG B] -0.439026 0.2353%4  -1.87 Project[SH 30-College 5t-SMA ] -0.318331 0.100508 -150 0.1195
Project{US 183-Austin-TOM F2] 0.0091077 0.2353%4  0.04 Project[SH 40-College St-SP TyC]  0.7891981 0.199598  3.05
Project[US 287-Groveton-SP C] 0.658825 0.2353M4 2.80 Project[SH B-Lake Wace-TOM C] -0.535174 0199598 -2.78
Project[US 59-Texarkana-SMA D] 14272463 0.235304 6.06 Project[SH 6-Valley Mills-DG D] -0.088460 0.199588  -0.44 0.6602
Prediction_Type[SameDay Empl-6c] -0.418023 0115166  -3.63 L e
. .- rojec -Austin- A L 3 3 L/
Prediction_Type[SameDay_PSCM-1c] 0.4702694 0.115166 4.08 Project{US 287-Groveton-SP 07531418 0.199508

Prediction_Type[SameDay_PSCM-3c] 0.0379403 0115166 033 Project[Us 50-Texarkana-SMA D] 0.458115 0.199508

Prediction_Type[SameDay_Emp1-6c] -0.631648 0.097652
Prediction_Type[SameDay_PSCM-1c] 0.5836255 0.097652
Prediction_Type[SameDay PSCM-3c] 0.0552196 0.097652
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Model Verification Study Statistical Results: Same Day vs Different Day, Empirical

RMSE

4 Actual by Predicted Plot
8

=t
n

RMSE_V Actual

1 15 2 25 3
RMSE_V Predicted RMSE=0.2675 RSq=0.91
PValue=0.0013

4 Effect Summary

Source LogWorth PValue
Project 2.089 0.00102
Medel_Type 0.131 ‘. 0.73892
Remove Add Edit [] FDR

[ Residual by Predicted Plot
4 Summary of Fit

RSquare 0.909682

RSquare Adj 0.792269

Root Mean Square Error 0.267459

Mean of Response 1.658988

Observations (or Sum Wagts) 24
4 Analysis of Variance

Sum of

Source DF  Squares Mean Square

Model 13 7.2049782 0.554220

Error 10 07153454 0.071535

C Total 23 7.9203236

< Parameter Estimates

Term Estimate Std Error tRatio Prob>|t]
Intercept 16430481 0.057023 2883 <0001
Project[FM 158-Bryan-SP D] 07315505 0.183074 4.00
Project[IH 10-San Antonio-SP C] -0.692077 0.256967 2.60
Project[IH 45-Huntsville-SMAC] 0.2715361 0.183074 148
Project[RELLIS_TOM F2] -0.367386 0.183074 2.01
Project[RELLIS-DG D] 0.9933772 0.183074 5.44
Project[SH 149-Beckwille-SP C] -0.667222 0.183074 3.64
Project[SH 30-College St-SMA C] -0.279973 0.183074 153
Project[SH 40-College S5t-SP TyC] -0.494953 0.183074 2.70
Project[SH 6-Lake Waco-TOM (] 0.6049832 0.183074 3.30
Project[SH 6-Valley Mills-DG D]  -0.252149 0.183074 138
Project[SL 79-Del Rio-DG B] -0.52327 0.183074 2.80
Project[US 183-Austin-TOM F2]  0.3035919 0.183074 1.66
Model_Type[Emp1] 0.0195415 0.057023 0.34

Absolute Bias

4 Actual by Predicted Plot

-
n

abs_Bias Actual

0 0.5 1 15 2
abs_Bias Predicted RMSE=0.427 R5q=0.83
PValue=0.0224

4 Effect Summary

Source LogWorth PValue
Project 1.637 | 0.02308
Prediction_Type ovoo @i P i b 0.19959

Remove Add Edit [ | FDR

[* Residual by Predicted Plot

4 Summary of Fit

RSquare 0.827952

RSquare Adj 0.604291

Root Mean Square Error 0.426981

Mean of Response 0.749619

Observations (or Sum Wagts) 24

4 Analysis of Variance
Sum of

Source DF Squares Mean Square  F Ratio

Maodel 13 8773505 0.674885 3.7018

Error 10 1.823125 0.182312 Prob>F

C. Total 23 10.596630 0.0224*

4 Parameter Estimates

Term Estimate Std Error tRatio Prob=|t|
Intercept 072204 0091033 7.93 <.00071"
Project[FM 158-Bryan-SP D] 0.900787 0.292266 3.08
Project[IH 10-5an Antonio-SP C] -0.59616  0.41023  -1.45
Project[IH 45-Huntsville-SMA C] 0.0095113  0.292266 0.03
Project[RELLIS_TOM F2] -0.512936 0.292266 -1.76
Project[RELLIS-DG D] 11202303 0.292266 3.83
Project[SH 149-Beckville-5P C] -0.560216 0.292266  -1.92
Project[SH 30-College St-SMAC]  0.0414926 0.292266 0.14
Project[SH 40-College 5t-SP TyC]  -0.344317 0.292266 -1.18
Project[SH 6-Lake Waco-TOM C]  0.8320822 (0.202266 2.85
Project[SH 6-Valley Mills-DG D] -0.081167 0.292266 -0.28
Project[SL 79-Del Rio-DG B] -0.621602 0.292266 -2.13
Project[US 183-Austin-TOM F2] 0.1272044 0.292266 0.44

Prediction_Type[DiffDay_Emp1-9¢c] -0.125038 0.091033 -1.37
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Model Verification Study Statistical Results: Empirical vs PaveSCM, Different Day

RMSE

< Actual by Predicted Plot
3

25

RMSE_V Actual

0 05 1 15 2 25 3 35
RMSE_V Predicted RMSE=0.5428 RSq=0.71
PValue=0.1154

£ Effect Summary

Source LogWorth PValue
Calib_Day 1.440 gl | 0.0364
Project osz [ 0.15039
Remove Add Edit [ | FDR
[ Residual by Predicted Plot
4 Summary of Fit
RSquare 0.714678
RSquare Adj 0.358025
Root Mean Square Emor 0.542791
Mean of Response 1.430761
Observaticns (or Sum Wagts) 28
< Analysis of Variance
Sum of
Source DF Squares Mean Square  F Ratio
Model 15 8.855676 0.590378  2.0038
Ermror 12 3535460 0.2945622 Prob> F
C. Total 27 12391145 0.1154
<4 Parameter Estimates
Term Estimate Std Error tRatio Prob>[t|
Intercept 1.470823  0.10645 1390 <0001%
Project[FM 158-Bryan-SP D] 0.1688617 0.372829 045 0.6587
Project[IH 10-5an Antonio-SP C] -0.504083 0.372829 -135 0.2013
Project[IH 45-Huntsville-SMAC] 0.2706213 0.372820 073 04818
Project[RELLIS_TOM F2] 0.0247214 0372829 0.07 0.9482
Project[RELLIS-DG O] 1.3905485 0372829 373
Project[SH 149-Beckville-SP (] -0.566068 0.372820 -1.52
Project[SH 30-College St-SMAC] -0.558144 0372829 -1.50 5
Project[SH 40-College 5t-5P Ty(]  -0.26389 0.372829 -0.71 0.4926
Project[SH 6-Lake Waco-TOM C] -0.182671 0.372820 -049 0.6330
Project[SH 6-Valley Mills-DGD]  -0412549 0372829 -1.11 0.2902
Project[SL 79-Del Rie-DG B] -0.576809 0372829 -155 01478
Project[US 183-Austin-TOMF2]  0.2712305 0.372829 073 04809
Project[US 287-Groveton-SP C]  0.4981822 0.524386 095 0.3608
Project[US 50-Texarkana-SMA D] 0.3740287 0.524386 0.71
Calib_Day[DiffDay] 0.2507598  0.10645 2.36
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Absolute Bias

4 Actual by Predicted Plot
1.5

=
in

abs_Bias Actual

0 05 1
abs_Bias Predicted RMSE=0.2941 R5q=0.73
PValue=0.096%

4 Effect Summary

15

Source LogWorth
Calib_Day 2.155
Project o715l !
Remove Add Edit [ | FDR
P Residual by Predicted Plot
4 Summary of Fit
RSquare 0.726742
RSquare Adj 0385169
Root Mean Square Error 0.294054
Mean of Response 0.421002
Observations (or Sum Wagts) 28
4 Analysis of Variance
Sum of
Source DF Squares Mean Square  F Ratio
Model 15 2.7595825 0.183972 21276
Error 12 1.0376155 0.086468 Prob> F
C, Total 27 3.7971980 0.0968
4 Parameter Estimates
Term Estimate Std Error t Ratio
Intercept 0.4556811 0.057669 7.90
Project[FM 158-Bryan-5P O] 0.2076935 0.201978 1.03
Project[IH 10-5an Antonio-5P C] -0.333007 0.201978 -1.75
Project[IH 45-Huntsville-SMAC] -0.211142 0.201978 -1.05
Project[RELLIS_TOM F2] -0.207633 0.201978  -147
Project[RELLIS-DG D] 0.5770257 0.201978 2.86
Project[SH 149-Beckville-SP C] -0.282052 0.201978 -1.40
Project[SH 30-College 5t-SMAC] -0.110228 0.201978  -0.55
Project[SH 40-College 5t-SP TyC] -0.026867 0.201978  -0.13
Project[SH 6-Lake Waco-TOM C]  0.0640414 0.201978 0.32
Project[SH 6-Valley Mills-DGD]  -0.037027 0.20197¢ -0.18
Project[SL 79-Del Rio-DG B] -0.247321 0.201978 -1.22
Project[US 183-Austin-TOMF2]  0.2825111 0.201978 1.40
Project[US 287-Groveton-SP C] 0.469976 0.284083 1.65
Project[US 59-Texarkana-SMA D] 0.1266004 0.284083 0.45
Calib_Day[DiffDay] 0.1872119 0.057669 3.25

PValue
0.00700
0.19281

Prob=[t]

0.3241
0.1060
0.3165
0.1663
0.0144*
0.1879
0.5952
0.5964
0.7566
0.8576
0.2443
0.1872
0.1240




Dielectric Sensitivity Study Statistical Results

Model 1
Actual by Predicted Plot
6.0

S 55

v

<

2

<|

£ 5.0

3

L

[}

45
40 45 5.0 5.5
Dielectric_Avg Predicted RMSE=0.1886 RSq=0.72
PValue<.0001
Summary of Fit
RSquare 0.724724
RSquare Adj 0.701784
Root Mean Square Error 0.18859
Mean of Response 5.07108
Observations (or Sum Wgts) 40
Analysis of Variance
Sum of

Source Squares Mean Square
Model 3.3708866 1.12363 31.5926
Error 1.2803850 0.03557
C. Total 4.6512716
Parameter Estimates
Term Estimate Std Error t Ratio
Intercept 15.273472 2.297724 6.65
AC_Perc -0.119897 0.044979  -2.67
CoarseAgg_SG -3.468216 0.926989 -3.74
Voids_Perc -0.076843 0.014439 -5.32

Model 2
Actual by Predicted Plot
6.0 1

555

v

<

2

<l

£ 5.0

§

]

o

45
5.0 2.9 6.0
Dielectric_Avg Predicted RMSE=0.1087 RSq=0.92
PValue<.0001
Summary of Fit
RSquare 0.918744
RSquare Adj 0.90097
Root Mean Square Error 0.108677
Mean of Response 5.07108
Observations (or Sum Wgts) 40
Analysis of Variance
Sum of

Source Squares Mean Square  F Ratio
Model 4.2733299 0.610476 51.6884
Error 0.3779418 0.011811 Prob> F
C. Total 4.6512716 0001*
Parameter Estimates
Term Estimate Std Error t Ratio
Intercept 6.4797945 2.651319 244
Voids_Perc -0.105352 0.017951  -5.87
CoarseAgg_SG -0.078637 1.048723 -0.07
AC_Perc -0.085687 0.055652 -1.54
Project[SH 149-Beckville-SPC]  -0.325942 0.066416  -4.91
Project[SH 30-College St-SMA C] 0.0954%44 0.071636 133
Project[SH 6-Lake Waco-TOM C] 0.0129058 0.071594  0.18
Project[SH 6-Valley Mills-DGD]  -0.064355 0.05264 -1.22
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Prob>|t]
0.0202*

0.9407
0.1335



Dielectric Sensitivity Study Statistical Results

Model 3

Actual by Predicted Plot
60

5.5+

g Actual

5.0

Dielectric_Av:

454

45 5.0 5.5 60
Dielectric_Avg Predicted RMSE=0.0932 RSq=0.95
PValue<.0001

Summary of Fit

RSquare 0.947749
RSquare Adj 0.927221
Root Mean Square Error 0.093166
Mean of Response 5.07108
Observations (or Sum Wgts) 40

Analysis of Variance

Sum of
Source DF Squares Mean Square  F Ratio
Model 11 4.4082368 0.400749  46.1702
Error 28 0.2430348 0.008680 Prob> F
C. Total 39 4.6512716 <.0001*

Parameter Estimates

Term Estimate Std Error tRatio Prob>|t|
Intercept -50.98008 23.83654 -2.14 0.0413*
Voids_Perc -0.118315 0.016669 -7.10
CoarseAgg_SG 22.561547  9.33405 242 0
AC_Perc -0.126467 0.051376 -246 O.
Project[SH 149-Beckville-SP C] -0.976187 0.333167 -293 0
Project[SH 30-College St-SMA C] 3.1926274 1.271055 2,51 0.0181*
Project[SH 6-Lake Waco-TOM (] -0.795603 0.318661 -2.50 0.0187*
Project[SH 6-Valley Mills-DG D] -0.845518 0.318828 -2.65 0.0130
Project[SH 149-Beckville-SP C]*(CoarseAgg_SG-2.58861)  -27.02458 9.444478  -2.86
Project[SH 30-College St-SMA C]*(CoarseAgg_SG-2.58861) 90.944021 37.05563 2.45
Project[SH 6-Lake Waco-TOM C]*(CoarseAgg_SG-2.58861) -20.40139 9.348854 -2.18 0.0376
Project[SH 6-Valley Mills-DG D]*(CoarseAgg_SG-2.58861) -21.0013 9.526321 -2.20 0.0359*
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Model of RMSE for Verification Cores by Day and Model.

4 Actual by Predicted Plot | '*/Model_Type
35 4 Leverage Plot
g 35 -
- e = 30 .
[} * =
£ 2 25
3 &L :
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=15 5 - 4___'_____—
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7o w 10 e
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= T x - ¥ T ¥ T % 054
05 1 15 2 25 3 35 65
i = - - " " T T
RMSE_V p”d":;;leM_%Ea?'ﬁﬁaz‘” RSq=0.49 145 150 155 160 165 170
alue=t. Model_Type Leverage, P=0.2257
4 Effect Summary ~ Calib_Day
Source LogWorth PValue 4 Leverage Plot
Project 7T P 0 1 1 [ |oomm 35
Calib_Day 1.070 I Ho B i | 0.08513 1.
Model_Type ocsci : | i | i [ i ! |o2»n 2 304
Remove Add Edit [ ] FDR < - . .
I Residual by Predicted Plot 8,0l ° = H
4 Summary of Fit § B '4___-—-;'-'_'_—
RSquare 0.486956 é = — e [
RSquare Adj 0.276476 W i
Root Mean Square Error 0624864 S 1.0 : -
Mean of Response 1.533548 = as
Observations (or Sum Wagts) 56 by
T T T T
4 Analysis of Variance 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.8
Eanoh Calib_Day Leverage, P=0.0851
Source DF Squares Mean Square  F Ratio
Model 16 14453412 0903338 23136
Error 39 15.227743 0390455 Prob> F
C. Total 35 20,681155 0.0166*
4 Parameter Estimates
Term Estimate Std Error tRatio Prob>|t|
Intercept 1.60087 0.086653 1847 <.0001"
Project[FM 158-Bryan-SP D] -0.125528 0.303492 -041 0.6814

Project[IH 10-San Antonio-SP ] 3.5771e5 030392  0.00 0.9999
Project[IH 45-Huntsville-SMAC] 0.0544436 0.303492 0.18 0.8586
Project[RELLIS_TOM F2] -0.089946 0.303492 -0.30 0.7685
Project[RELLIS-DG D] 11473097 0303492 378  0.0005°
Project[SH 149-Beckville-SPC]  -0.643744 0303492 -2.12  0.0403*
Project[SH 30-College St-SMA C] -0.522431 0.303492 -1.72  0.0931
Project[SH 40-College St-SPTyC]  -0.01523 0.303492  -0.05 0.9602
Project[SH 6-Lake Waco-TOMC]  -0.17614 0303492 -0.58 0.5650
Project[SH 6-Valley Mills-DG D] ~ -0.500819 0303492 -1.65 0.1069
Project[SL 79-Del Rio-DG B] -0.666092 0302492 -2.20 0.0240*
Project[US 183-Austin-TOMF2]  0.0333782 0.302492  0.11 0.9130
Project[US 287-Groveton-SP €] 05540182 0.426863  1.30 0.2020
Project[US 59-Texarkana-SMA D] 1.0248408 0.426863 240 0.0212*
Mode!_Type[Emp1] -0.102787 0.083501 -1.23 0.2257
Calib_Day[DifDay] 0.1530794 0.086653 177 0.0851
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Model of Absolute Bias for Verification Cores by Day and Model.

4 Actual by Predicted Plot

PValue

2.3
2
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§ 1.5
b
F 1
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=
05
0 /
0 0.5 1 1.5 2 25
abs_Bias Predicted RMSE=0.4645 R5q=0.57
PValue=0.0016
4 Effect Summary
Source LogWorth
Model_Type 3.422 | :
Project 1.843 :
Calib_Day 1197

0.00038
0.01435
0.06338

Remove Add Edit [ | FDR

> Residual by Predicted Plot

4 Summary of Fit

RSquare

RSquare Adj

Root Mean Square Error
Mean of Response
QObservations (or Sum Wagts)

4 Analysis of Variance
Sum of
Squares
10.967212
8.416395
19.383608

DF
16
30
55

Source
Model
Error

C. Total

| Parameter Estimates
Term

Intercept

Project[FM 158-Bryan-SP D]
Project[IH 10-5an Antonio-SP C]
Project[IH 45-Huntsville-SMAC]
Project[RELLIS_TOM F2]
Project[RELLIS-DG D]

Project[SH 149-Beckville-5P C]
Project[SH 30-College St-SMA C]
Project[SH 40-College St-5P TyC]
Project[SH &-Lake Waco-TOM C]
Project[SH 6-Valley Mills-DG D]
Project[SL 79-Del Ric-DG B]
Project[US 183-Austin-TOM F2]
Project[US 287-Groveton-5P C]
Project[U5 59-Texarkana-5MA O]
Calib_Day[DiffDay]
Model_TypelEmp1]

0.565798
0.387664
0464348
0.66236
56

Mean Square

0.683431

F Ratio
3.1763

0.215805 Prob> F

Estimate
0.7133327
0.0907706
-0.166916
-0.182800
-0.513119
0.7372464

-0.59701
-0.113262
-0.082454
0.2173847

-0.09706
-0.469131
0.0250872
0.720579
0.4550231
01230115
-0.241558

Std Error
0.064421
0.225628
0.225628
0.225628
0.225628
0.225628
0.225628
0.225628
0.225628
0.225628
0.225628
0.225628
0.225628
0.317347
0.317347
0.064421
0.062075

t Ratio
11.07
0.40
-0.74
-0.81
-2.27
3.27
-2.65
-0.50
-0.37
0.97
-043
-2.08
0.11
2.27
1.43
1.91
-3.89

Prob= |t]

0.6897
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Comparison of PWL When Including or Excluding Joint Data.

| Actual by Predicted Plot
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| Effect Summary
Source LogWorth PValue e All_Data Mo_loints
rc)_s . ; X Type
P ommm orss
Remove Add Edit [ | FDR
Residual by Predicted Plot
| Summary of Fit
RSquare 0.928165
RSquare Adj 0.871573
Root Mean Square Error 4412184
Mean of Response 85.74073
Observations (or Sum Wgts) 28
| Analysis of Variance
Sum of
Source DF Squares MeanSquare  FRatio
Model 14 38396784 274263 140883
Error 13 253.0738 19467 Prob>F
C. Total 27 40927542 <.0001*
Parameter Estimates
Term Estimate Std Error t Ratio Prob:|t]
Intercept 85.740725 0.833824 102.83 <.00071°
Type[All_Data] -2.453661 0.833824 -2.094  0.0114°
proj_sI[FM 158-Bryan-5P D_5-1] -6.235487 3.006397 -2.07 0.0585
proj_sl[IH 45-Huntsville-SMAC 4-1] -7.951083 3.006397 -2.64 0.0202°
proj_sl[IH 45-Huntsville-SMAC_6-1] -22.69730 3.006397  -7.55 000
proj_si[IH 45-Huntsville-SMAC_7-1] -12.49654 3.006397 -4.16 0.0011
proj_sl[SH 149-Beckville-5P C_3-1] -4.835331 3.006397 -1.61 0.1318
proj_sl[SH 30-College 5t-SMA C_2-1] -4.624788 3.006397 -1.34 01479
proj_sl[SH 30-College 5t-SMA C_3-3] -11.76128 3.006397 -3.91 0.0018
proj_sI[SH B-Valley Mills-DG D_6-2]  3.5364806 3.006397 118 0.2530
proj_sI[SH 6-Valley Mills-DG D_8-1] 2.9559191 3.006397 0.08 0.3434
proj_sI[SL 79-Del Rio-DG B_7-1] 74410523 3.006397 2.48 0.0279*
proj_sl[US 59-Texarkana-SMA D _2-4] 14.13052 3.006397 4,70 0.000
proj_sl[US 59-Texarkana-SMA D 3-1] 14.205637 3.006397 4,73 0.000
proj_sl[US 59-Texarkana-SMA D_3-2] 14166844 3.006397 4,71 0.000
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