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ABSTRACT 

 

Ground penetrating radar (GPR) is a non-destructive, rapid, and continuous measurement 

tool that can predict density in asphalt concrete. Despite the promise of GPR as a quality 

assurance tool, the technology has been slow to adoption. Some of the hurdles include: GPR 

antenna stability and sensitivity; identifying the optimal air void content prediction model; 

understanding the sensitivity of dielectric to asphalt mixture variability; and lack of significant 

field deployment experience. 

This research focused on a high-frequency (2.5 GHz), multi-channel, GPR system, which 

was designed specifically for the purpose of asphalt concrete density profiling. The stability of 

the GPR density profiler was thoroughly evaluated in the laboratory. The device was deployed to 

the field on several projects for multiple days of paving each. From these data the team 

compared the error and bias of two density prediction models. A laboratory study on mixture 

composition sensitivity was conducted. Finally, the density profile data from field projects was 

compared to traditional quality assurance testing from field cores. 

The GPR density profiler has several advantages over traditional density test methods. 

Risks of incorrectly accepting or rejecting asphalt production, based on compaction, are 

dramatically reduced when using this equipment, as long as the calibration is unbiased. The 

empirical density prediction model, which had less error and less bias than the mechanistic 

model studied was recommended for use. Testing a standard reference material in the field each 

day may mitigate problems with bias. Recommendations were given for implementing the GPR 

density profiler in different construction and forensic settings. 
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CHAPTER I  

INTRODUCTION* 

PROBLEM STATEMENT 

Long-term asphalt mixture performance is largely governed by compaction quality during 

construction (1). Reducing the air voids seals the layer against moisture and oxidation and 

enhances structural integrity. In asphalt concrete construction, relative density or air voids 

content is a critical quality assurance (QA) metric. The most common test methods for density 

are bulk density testing of field cores and in-situ nuclear density gauge testing (2). These 

methods, however, have limitations.  

1) They are spot measurements providing limited information about the true air voids 

distribution and uniformity. This exposes the receiving agency to considerable risk of 

incorrect acceptance, and the contractor to the risk of incorrect penalty. 

2) They put the operator and traveling public at safety risk since traffic control is required. 

3) Coring is a comparatively slow method, requiring sampling and laboratory testing. 

One promising technology for rapid, continuous QA of in-situ density is ground 

penetrating radar (GPR). This technology has shown significant promise in several past research 

projects (3–8). The greatest benefit of GPR is the ability to rapidly collect continuous, near full-

coverage measurements as opposed to spot measurements as demonstrated in Figure 1. GPR 

works by sending discrete pulses of electromagnetic waves into the pavement and capturing the 

reflections as the signal moves through the different pavement layers. The amplitude of radar 

 

* Part of this chapter is from Materials Evaluation, Vol. 78, No. 10 © 2020. Reprinted with permission of The 
American Society for Nondestructive Testing Inc. 
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reflections and the time delay between reflections are used to calculate layer dielectric constants. 

The dielectric constant is a material electrical property, and for asphalt concrete, is affected by 

the aggregate type, asphalt content, and air void content. As the dielectric decreases, the air void 

content is assumed to be increasing (less dense). 

        
Figure 1. Comparison of Asphalt Concrete Compaction QA Methods. 

Lower frequency radar can penetrate deep into the pavement, while higher frequency 

radar, at 2 GHz, will measure shallow depths at a higher resolution. A high-frequency radar, 

therefore, could have good resolution measurements for typical asphalt concrete overlays less 

than 2 in. thick. Another advantage with a smaller, high-frequency antenna is that the unit is 

more portable, and easier to deploy for quick, nondestructive field measurements. One developed 

device is the GSSI PaveScan Rolling Density Meter, shown in Figure 2 in both a cart-mounted 

and vehicle-mounted configuration. This device will be referred to as a GPR density profiler 

throughout the dissertation. 

 

 
9.5% 
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Figure 2. GSSI PaveScan Rolling Density Meter using GPR Technology. Reprinted from (9). 

Despite the promise of GPR as a QC/QA tool, the GPR density profiler technology has 

yet to move beyond research and into practice. Among the hurdles to implementation are:  

 System stability concerns. 

 Identifying the most suitable air voids prediction model. 

 Lack of significant field deployment experience. 

RESEARCH OBJECTIVES 

The objectives of this research are: 

1. To quantify the antenna stability and sensitivity of a GPR density profiler. 

2. To identify the optimal air void content prediction model from the layer dielectric 

constant. 

3. To quantify the signal sensitivity to changes in asphalt mixture composition. 

4. Assess the practicality of using a GPR density profiler for QA and forensic applications. 
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Chapter II of this report presents the literature review findings. Chapters III through VI 

cover different laboratory and field tests and data analyses. Chapter VII is the conclusion which 

summarizes key findings and recommendations. 
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CHAPTER II   

LITERATURE REVIEW* 

OVERVIEW 

The literature review addresses the following topics: 

 Electromagnetic wave propagation, reflection, and transmission theory.  

 Empirical correlations between layer dielectric (from GPR) and HMA density. 

 Micromechanics models of layer dielectric constant to density. 

 HMA density variation in construction. 

RADAR WAVE PROPAGATION 

GPR is a subsurface imaging technology using electromagnetic waves. The method for 

air void content prediction, evaluated in this project, leverages basic principles of radar wave 

propagation, reflection, and transmission, as summarized in this section. 

An electromagnetic wave travels at the speed of light inside a vacuum. In any other 

media, the wave travels at the rate of speed of light divided by the square root of the material’s 

relative dielectric constant (Equation 1). 

𝑣
𝑐

√𝜀
 (1) 

where  c = speed of light (3.0x108 meters per second) 

 ε = dielectric constant 

 

* Part of this chapter is from Materials Evaluation, Vol. 78, No. 10 © 2020. Reprinted with permission of The 
American Society for Nondestructive Testing Inc. 
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As the wave travels from one media to another, a portion of signal voltage is reflected at 

the interface while the remaining voltage is transmitted through the interface and into the next 

media. The ratio of the reflected voltage to the original voltage is called the reflection coefficient 

and can be calculated from the relative dielectric constants for the interfacing materials 

(Equation 2).  

𝜌 ,  
𝜀 𝜀

𝜀 𝜀
 (2) 

where  ρi,i+1 = reflection coefficient between the ith and ith+1 materials.  

The transmission coefficient and reflection coefficient add to 1.0, as shown in Equation 3. 

𝑇 , 1 𝜌 ,  (3) 

where  Ti,i+1 = transmission coefficient between the ith and ith+1 materials.  

The relationship of the initial radar wave amplitude, A0, and the amplitude of the 

reflected wave off the first surface, A1, is related by the reflection coefficient as shown in 

Equation 4. 

𝐴 𝐴 𝜌  (4) 

For deeper layers, the reflected radar wave amplitude is a function of the initial 

amplitude, reflection coefficient for the layer of interest, transmission coefficients, and 

attenuation coefficients. The equation for the reflected amplitude for the first interface is given in 

Equation 5, and a generalized equation for the mth reflection amplitude is given in Equation 6.  

𝐴 𝐴 𝜌 𝛿 𝑇 𝑇  (5) 
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𝐴 𝐴 𝜌 , 𝛿 𝑇 , 𝑇 ,  (6) 

The thickness of each layer can be calculated with Equation 7 

𝑑
𝑐∆𝑡

2 𝜀
 (7) 

where di = thickness of the layer 

 Δti = time between signal output and the peak reflection  

Knowing the initial amplitude, the returning amplitude, and the wave travel time, the user 

can detect layer interfaces, calculate layer thickness, and calculate the layer dielectric constants. 

EMPIRICAL MODELS OF DIELECTRIC CONSTANT TO AIR VOIDS 

There is a relationship between the overall dielectric constant of asphalt concrete and the 

air void content, which can be estimated empirically. This approach requires the development of 

a calibration curve using several cores. This is performed by making spot measurements with the 

radar in several locations on the compacted asphalt concrete, and then coring the same locations 

and measuring the air void content of the cores in the lab. With this correlation established, the 

GPR layer dielectric values can be immediately converted to percent air voids. The calibration 

must be performed on a project-by-project basis since layer dielectric is affected by the specific 

asphalt mix design, comprised of asphalt content, aggregate type, and aggregate gradation.  

The empirical approach is intuitive and can be performed with linear or non-linear 

regression analysis. The draw-backs are that this requires 6 to 12 cores to establish a good 

correlation, every mix design requires a new calibration, and predictions outside of the range of 

the original calibration may not be reliable. For example, when predicting air voids for low 
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dielectric values, beyond the limit of the calibration data, the model tends to over-predict the air 

voids content. In extreme cases, the predictions can be well beyond the limits of physical 

interpretation (greater than 100 percent). The empirical model developed by Hoegh et. al, on the 

other hand, constrains the predicted air voids within physically reasonable values (10). There are 

several examples in the literature of projects that employed empirical calibrations for GPR (3, 8, 

10–14). 

MICRO-MECHANICS MODELS OF DIELECTRIC CONSTANT TO AIR VOIDS 

A micro-mechanics model evaluates the composite dielectric constant based on the 

mixture composition. Knowing the composite dielectric constant, and several mixture properties, 

the unknown material component, air voids, can be predicted. There are several examples of 

research projects using mechanics-based models to predict air voids (15–20) 

The micro-mechanics models are also intuitive, even though the calculations appear more 

complicated. This model can be calibrated with fewer cores to get the dielectric constant of the 

aggregate. In most cases, the asphalt content is assumed to be constant, so the only remaining 

unknown is the air void content. In one method, the asphalt content is also allowed to vary, so 

this model predicts both the air void and the asphalt contents simultaneously (20). 

The generalized micro-mechanics model is shown in Equation 8. This is a self-consistent 

model, which describes the composite dielectric constant as the sum of the individual component 

dielectric constants, with contributions relative to their volumetric content. 

𝜃
𝜀 𝜀
𝜀 2𝜀

0 (8) 

where n = Number of components in a composite material. 
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θa = Volume fraction of component, where all volumes sum to 1.0.  

 ε = Composite surface dielectric constant from the GPR density profiler. 

 εi = Dielectric constant of component i. 

For a 3-phase system, which exists in asphalt concrete, the self-consistent model takes the 

form shown in Equation 9, and expanded as Equation 10. The source for each model value is 

summarized in Table 1. The dielectric constant of the solids is obtained from a calibration core. 

The model is used to solve for two unknowns: the specific weight and the binder content.  

𝜃
𝜀 𝜀
𝜀 2𝜀

     𝜃
𝜀 𝜀
𝜀 2𝜀

   𝜃
𝜀 𝜀
𝜀 2𝜀

0 (9) 

𝛾
𝐺 𝛾

𝜀 𝜀
𝜀 2𝜀

𝜃
𝜀 𝜀
𝜀 2𝜀

   1
𝛾
𝐺 𝛾

𝜃
1 𝜀

1 2𝜀
0 (10) 

where Subscripts s, b, and a = Solids, binder, and air, respectively.  

γd = Specific weight of the dry bulk compacted sample.  

 γw = Specific weight of water. 

 Gs = Specific gravity of the solids (aggregate). 

Table 1. Source of Volumetric and Dielectric Values. Reprinted from (9). 
Component Volume Fraction Dielectric 

Solids  
(aggregate) 

𝜃
𝛾
𝐺 𝛾

 

 γd – Predicted with model 
 Gs – Known by mix design 
 γw  – Defined as 1,000 kg/m3 

𝜀  
 From calibration core 

Binder 
(asphalt) 

𝜃  
 Predicted with model 

𝜀  
 Seed value of 4.0 

Air voids 
𝜃 1

𝛾
𝐺 𝛾

𝜃  

 Calculated from previous values 

𝜀  

 Defined as 1.0 
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While most mechanistic approaches have made the asphalt content fixed, one approach 

called pavement self-consistent model (PaveSCM) uses optimization algorithms which allow the 

binder content to vary within a constrained range. The specific weight and binder contents are 

then used to calculate the air voids content. 

 

ASPHALT CONCRETE PRODUCTION VARIABILITY IN CONSTRUCTION 

All steps of asphalt concrete production and construction have inherent variability that 

may influence mixture performance. Many aspects of this variation will also affect the mixture 

dielectric. A brief review of production variation of certain parameters is given in this section. 

These data are used to inform the design of a sensitivity analysis of the density profiler system to 

mixture variability. 

As reported in a TxDOT research report (21), production variation was evaluated using 

QC/QA data queried from seven completed paving projects with unique mixture designs 

(Table 2). The projects represent a range of mix types, and each project had a minimum of 10 

production lots. The percent change from the current job mix formula for asphalt content, 

theoretical maximum specific gravity, and percent retained on each sieve, were calculated for 

each lot as tested by both the contractor and the agency. The data were then statistically analyzed 

to find the average and extreme variation for a typical asphalt mixture.  
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Table 2. Asphalt Mixture Summary for Mixture Production Variability Projects.  

Project ID 
Mix 
Type 

Binder 
Type 

Optimum 
AC (%) 

Theo. 
Max SG 

RAP/ 
RAS 

Number 
of Lots 

US 385-Hartley DG-C 64-28 5.1 2.45 Yes 34 
FM 3083-Montgomery DG-D 64-22 5.2 2.462 Yes 14 
US 84-Freestone SP-C 64-22 5.3 2.453 Yes 20 
US 175-Kaufman SP-D 64-22 5.6 2.437 Yes 10 

IH 30-Tarrant SMA-C 64-22 6.0 2.444 No 10 
SH 171-Limestone SMA-D 76-22 6.0 2.43 Yes 22 

US 290-Travis TOM-C 76-22 6.5 2.407 No 31 

A summary of the ranges in asphalt content, theoretical maximum specific gravity (SG), 

and air voids is shown in Table 3 (21). The expected range of these properties for any given 

project was calculated as shown.  

Table 3. Production Summary and Expected Project Variance – Texas Study. 

Project ID Mix Type 
AC (%) Theo. Max SG Air Voids (%) 

Avg. St. Dev. Avg. St. Dev. Avg. St. Dev. 
US 385-Hartley DG-C 5.01 0.199 2.45 0.007 6.13 1.07 

FM 3083-Montgomery DG-D 5.17 0.098 2.47 0.013 6.08 0.87 
US 84-Freestone SP-C 5.20 0.090 2.45 0.005 5.53 0.87 
US 175-Kaufman SP-D 5.38 0.136 2.47 0.008 6.75 0.91 

IH 30-Tarrant SMA-C 6.09 0.097 2.46 0.005 5.30 1.29 
SH 171-Limestone SMA-D 6.09 0.099 2.44 0.007 5.94 1.18 

US 290-Travis TOM-C 6.40 0.091 2.41 0.011 NA NA 
Pooled Averages 5.63 0.128 2.45 0.008 5.95 1.05 

Expected range of property within a 
project (1.97*St Dev.) ±0.25 ±0.016 ±2.1 

 

By comparison, a study from Hughes et. al. on an end-results specifications similarly 

compiled quality assurance data for seven projects in Virginia from different mix types (22). The 

standard deviations of asphalt content and air voids from each project are summarized in Table 4. 

The pooled averages of each property and the expected data range on any given project are 

shown. In this data set, the range of asphalt contents was ±0.35 percent, which is 0.1 percent 
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asphalt higher than the Texas data. In contrast, the range of air voids was ±1.22 percent, smaller 

than the Texas data range by 0.9 percent air.  

Table 4. Production Summary and Expected Project Variance – Virginia Study. 

Project Mix Type 
AC (%) Air Voids (%) 

Avg. St. Dev. Avg. St. Dev. 
Route 11 SM-9.5D 6.0 0.16 3.2 0.88 
Route 612 SM-12.5D/RAP 5.5 0.21 3.6 0.85 
Route 231 SM-9.5A/RAP 5.6 0.19 3.4 0.39 
Route 151 SM-12.5D 5.9 0.07 3.1 0.90 
Route 29 SM-12.5D 5.9 0.25 2.8 0.59 
Route 33 SM-9.5A 5.5 0.12 4.2 0.71 

Route I-64 SM-9.5D 5.5 0.17 4.6 0.41 
Pooled Averages 5.67 0.18 3.55 0.62 

Expected range of property within a 
project (1.97*St Dev.) ±0.35 ±1.2 

 

The results from the TxDOT study were considered when selecting test parameters in 

sensitivity analysis of mixture variability in Chapter V.  
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CHAPTER III  

GPR ANTENNA STABILITY AND SENSITIVITY ANALYSES 

OVERVIEW 

The reliability of test equipment is important when considering implementation in a QA 

framework. This chapter discusses two controlled studies of antenna stability and sensitivity: 

 General antenna stability and inter-antenna variability. 

 Antenna temperature sensitivity. 

ANTENNA STABILITY AND INTER-ANTENNA VARIABILITY 

Methods 

This study assessed the long-term stability of the antennas in a constant-on condition and 

compared the readings among the different antennas. The test factors are shown in Table 5. Two 

3-channel systems were used for this study. The systems were turned on, allowed to warm up for 

the prescribed 10 minutes, calibrated with air and metal plate readings, then triplicate dielectric 

measurements were made every thirty minutes on three materials (Figure 3). Garolite is a fiber-

glass epoxy laminate, acetal is a high-quality engineering thermoplastic, and the asphalt slab was 

TxDOT Item 347, Thin Overlay Mix Type C. The data were analyzed with linear analysis of the 

main factors and an interaction of the antenna and time. 

Table 5. Test Factors and Levels for Antenna Stability and Inter-Antenna Variability 
Study. 

Factor Levels 
Antenna #3, #4, #7, #77, #78, #87 

Material 
Garolite (fiber-glass epoxy laminate) 
Acetal (engineering thermoplastic) 

Asphalt concrete slab 
Time 0 to 6 hours in 30-minute increments 
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Figure 3. Materials and Test Setup. 

Results 

This discussion highlights a few aspects of the statistical analysis while the complete data 

results and statistical model are contained in the appendix. The effects of the main factors and 

interaction are summarized in Table 6, ordered from most to least significant. Effects with a 

p-value less than 0.05 (LogWorth greater than 1.3) were statistically significant. Material type 

was clearly significant but was not the focus of this study. Antenna type was significant, and the 

biggest differences were among the early production antennas (#3, #4, and #7) which were also 

statistically different than the newer production antennas (see Figure 4). Based on the 

researcher’s experience, the range in the early product antennas is still very good (max difference 

of 0.08) compared to 1GHz frequency antennas. All the newer antennas were statistically 

indistinguishable. While there may be a time*antenna interaction (there was some slight 

downward drift in some antennas), the time effect by itself was not significant.  

Table 6. Factor Effects for Antenna Stability and Inter-Antenna Variability Study. 

Factor/Interaction p-value LogWorth (-log10(p-value)) Model R2 Value 
Material <0.001 328 

0.999 
Antenna <0.001 45 

Time*Antenna <0.001 9.3 
Time 0.170 0.76 
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Figure 4. Effect of Antenna, Least-Squares Mean Plot. 

In summary, there was a difference in readings among the antennas, notably for the early 

production antennas, though the difference has limited practical significance. These early 

production antennas were the ones deployed on most of the field projects described later in 

Chapters IV, V, and VI. In general, the antennas are stable over time, though a couple antennas 

experienced a slight decreasing drift in dielectric over the 6-hour testing period. 

TEMPERATURE SENSITIVITY 

Methods 

Changes in antenna temperature are known to affect the amplitude measurements. The 

manufacturer has a built-in linear temperature adjustment in the software. The purpose of this 

study was to compare the uncorrected and temperature-corrected dielectric constant 

measurements and to assess whether an additional adjustment is warranted. The test factors are 

shown in Table 5. The same six antennas and the same three materials were used for this study as 

for the previous study. After the initial warm-up period and air and metal plate calibrations at 

room temperature, the antennas were conditioned in an environmental chamber for two hours to 



16 

the target temperatures (Figure 5). Triplicate measurements were made at each temperature on 

each material.  

Table 7. Test Factors and Levels for Temperature Sensitivity Study. 

Factor Levels 
Antenna #3, #4, #7, #77, #78, #87 

Material 
Garolite 
Acetal 

Asphalt concrete slab 
Temperature 10C, 20C, 30C, 40C, 50C 

 

  
Figure 5. Temperature Conditioning of Antennas. 

The data were analyzed in three ways. First, modeling the data without the temperature 

correction using all factors and the antenna*temperature interaction. Second, model the data with 

the manufacturer’s temperature correction using only antenna and material factors. This would 

indicate whether the corrected data is temperature dependent. And third, model the data with the 

manufacturer’s temperature correction using all factors and the antenna*temperature interaction. 
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Results 

The complete data results and statistical model are contained in the appendix. The effects 

of the main factors and interaction for each analysis scenario are summarized in Table 8, and the 

leverage plots of dielectric vs temperature are shown for each model in Figure 6. In all models, 

material type and antenna were significant, which was known from the previous study. Without 

any temperature correction applied to the original data, the temperature effect was very strong, 

where the dielectric constant decreased as the temperature increased at a rate of 0.15/10°C. The 

interaction term was also significant, suggesting that some antennas were more sensitive to 

temperature than others. When the manufacturer temperature correction is applied, the effect of 

temperature completely drops out. With only the main effects in the model, temperature effect 

has a p-value of 0.43, far greater than the 0.05 criteria for statistical significance. When adding in 

an interaction term, the model does improve some, again suggesting that some antennas may be 

more sensitive to temperature than others. This would suggest that the internal calibration 

parameters for some antennas (most notably antenna #7) could be refined.  
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Table 8. Factor Effects Summary for Antenna Stability and Inter-Antenna Variability 
Study. 

Factor/Interaction p-value LogWorth (-log10(p-value)) Model R2 Value 
No Temperature Correction 

Material <0.001 240 

0.988 
Temperature <0.001 110 

Antenna <0.001 31 
Antenna*Temperature <0.001 15 

Manufacturer Temperature Correction (No Interaction) 
Material <0.001 328 

0.996 Antenna <0.001 45 
Temperature 0.427 0.37 

Manufacturer Temperature Correction (with Interaction) 
Material <0.001 370 

0.999 
Antenna*Temperature <0.001 68 

Antenna <0.001 22 
Temperature 0.114 0.94 

 

In summary, temperature greatly affects the dielectric constant, however, the built-in 

temperature correction does a good job of accounting for the effect. Some antennas could be 

recalibrated for temperature to further improve the correction. 
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 (a) (b) (c) 

Figure 6. Leverage Plots: (a) No Temperature Correction, (b) Manufacturer Temperature Correction, and (c) Manufacturer 
Temperature Correction and Temperature Factor.
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CHAPTER IV  

COMPARISON OF AIR VOID CONTENT PREDICTION MODELS* 

OVERVIEW 

As discussed in the literature review, there are both empirical and mechanistic models for 

predicting air void content from the dielectric constant. In this chapter, the prediction power of 

an empirical model and a mechanistic model are compared using field data collected from 15 

different projects on multiple days of paving. Different methods for calibrating each model are 

also compared. 

METHODS 

Field Data Collection 

From 2016 to 2019, the researchers deployed a 3-channel, 2.5 GHz GPR density profiler 

(Figure 7) on several hot mix asphalt construction projects throughout Texas. The mixture design 

properties of the projects are shown in Table 9. On some projects, the original pushcart system 

was integrated into a vehicle. 

 
Figure 7. GPR Density Profiler.  Reprinted from (9). 

 

* Part of the data reported in this chapter is from Materials Evaluation, Vol. 78, No. 10 © 2020. Reprinted with 
permission of The American Society for Nondestructive Testing Inc. 



21 

Table 9. Asphalt Mixture Summaries.  

Project ID 
Mix 
Type 

Binder 
Type 

Optimum 
AC (%) 

Aggregate 
Type 

Theo. 
Max SG 

Thickness 
(in.) 

US 183-Austin 
(AUS) TOM-F 76-22 7.2 Sandstone 2.345 0.75 

IH 10-San 
Antonio (SAT) SP-C 64-22 5.2 Quartzite 

Limestone 2.462 1.5 

US 90-Liberty 
(HOU) SP-D 70-22 5.1 Sandstone 

Limestone 2.443 2.0 

SH 6-Valley Mills 
(WAC) DG-D 64-22 5.2 

Dolomite 
Gravel 
RAP 

2.447 2.0 
(approx.) 

SH 6-Waco 
(WAC) TOM-C 76-22 

+ Evo. 6.6 Sandstone 
Dolomite 2.434 1.25 

SH 30-College St. 
(BRY) SMA-C 76-22 6.0 

Sandstone 
Dolomite 

RAP 
2.405 2.0 

RELLIS Campus 
(BRY) 

DG-D 64-22 5.0 Limestone 2.533 2.25 
TOM-F 76-22 7.2 Dolomite 2.515 0.9 

US 287-Groveton 
(LFK) SP-C 64-22 4.8 Sandstone 

Limestone 2.503 2.0 

SL 79-Del Rio 
(LRD) DG-B 64-22 4.5 Gravel 2.451 3.5 

SH 149-Beckville 
(ATL) SP-C 76-22 5.3 Igneous 2.470 1.5 

IH 45-Huntsville 
(BRY) SMA-D 76-22 6.2 Limestone 2.392 2.0 

FM 158-Bryan 
(BRY) SP-D 64-22 5.2 Sandstone 

Limestone 2.446 2.0 

US 59-Texarkana 
(ATL) SMA-D 76-22 6.4 Gravel 2.362 2.0 

SH 40-College St. 
(BRY) SP-C 64-22 5.0 Sandstone 

Limestone 2.465 3.0 

 

On most projects, nine calibration cores were collected on the first sublot of testing 

representing low, moderate, and high dielectric values. On each of six subsequent lots, two 

random cores were collected to be used for verification. At each core location, the researchers 

took dielectric readings directly over the location to be cored. They then collected the cores and 

measured the air voids in the lab. 
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The researchers collected plant mix, aggregates, and asphalt binder for further laboratory 

testing (see Chapter V). They also obtained the contractor and agency QC/QA data to compare 

against the predicted QC/QA results (see Chapter VI). 

Model Calibration and Verification 

The two models in Table 10 are compared in this analysis. The empirical model is a 

simple best-fit non-linear regression line with an exponential form. The mechanistic model is the 

PaveSCM model, which maintains mechanistically-sound interpretation of the data, and allows 

prediction of both the air voids content and the asphalt content. 

Table 10. Comparison Models. 

Empirical 

Exponential 𝑉𝑜𝑖𝑑𝑠 𝑎 ∗ 𝑒𝑥𝑝 𝑏 ∗ 𝐷𝑖𝑒𝑙  

Mechanistic 

PaveSCM 
𝛾
𝐺 𝛾

𝜀 𝜀
𝜀 2𝜀

𝜃
𝜀 𝜀
𝜀 2𝜀

   1
𝛾
𝐺 𝛾

𝜃
1 𝜀

1 2𝜀
0 

 

Each of these models must be calibrated before being used to predict air voids. The 

models were compared under various calibration-predictions scenarios as summarized in 

Table 11. Predictions were made for production within the same lot as calibration and also for 

production from different production lots. The empirical model is typically calibrated with 6 or 9 

cores. Calibration of the mechanistic model can, theoretically, be done with a single core, using 

more cores for calibration will improve the model predictions. There are diminishing returns, 

however, as more cores are added since the calibration efficiency suffers. 
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Table 11. Details of Calibration and Verification Samples for Model Comparisons. 

Different-Day Prediction Same-Day Prediction 

Calibration Cores 

Empirical and Mechanistic 
- 9 from first sublot 

Empirical 
- 6 from first sublot 

Mechanistic 
- 1, 3, and 6 from first sublot 

Verification Cores 

Empirical and Mechanistic 
- 12 from subsequent 6 sublots 

each 

Empirical and Mechanistic 
- Remaining 3 from first sublot 

 

Different-lot prediction was when the calibration was done on one lot of data while the 

prediction/verification testing was from different production lots. In almost all cases, this also 

meant that measurements for the calibration cores and the verification cores took place on 

different days. In the different-lot prediction scenario, nine cores were used for calibration for 

both the empirical and mechanistic models, and 10 verification cores were used from the 

subsequent six sublots. 

In the same-lot prediction scenario, only six calibration cores were used for the empirical 

models while the mechanistic models were calibrated with one, three, and then six calibration 

cores. For both model types, the three remaining cores from that same sublot were used for 

verification.  

Statistical Analysis 

For each project, goodness of fit statistics were calculated comparing the verification 

cores to the calibration model results for each prediction scenario. These were root mean squared 

error (RMSE) and the absolute mean bias error (MBE).  
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The primary goodness of fit statistic was the RMSE (Equation 11)a popular statistic used 

to compare the prediction performance of different models. The RMSE represents the overall 

error of the model and penalizes the errors more as they grow larger. The lower the RMSE the 

better a model fits a dataset. It is calculated by averaging the squares of the residuals, then taking 

the square root of that value to return a value in the original units.  

𝑅𝑀𝑆𝐸  
1
𝑛

𝑉𝑜𝑖𝑑𝑠 , 𝑉𝑜𝑖𝑑𝑠 ,  (11) 

where  RMSE = Root mean squared error.  

 n = Number of samples. 

 i = i-th sample. 

Also evaluated was the absolute MBE (Equation 12), which is termed bias in this report. 

The MBE is the overall bias of the model (Equation 13) and describes how much the model 

tends to under or over predict the data. A bias closer to zero is better. When evaluating bias 

across all projects, the absolute value of MBE was used, since the magnitude of the bias is most 

critical. Otherwise, the positive and negative biases would cancel eachother out when averaging 

and tend toward zero.  

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑀𝐵𝐸 or "𝑏𝑖𝑎𝑠" |𝑀𝐵𝐸| (12) 

𝑀𝐵𝐸  
1
𝑛

 𝑉𝑜𝑖𝑑𝑠 , 𝑉𝑜𝑖𝑑𝑠 ,  (13) 

where   MBE = Mean bias error. 

Multiple analyses of variance (MANOVAs) were performed to determine which model 

and calibration method provided the lowest RMSE and lowest absolute bias across all projects. 
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The data sets and predictor variables were different depending on the specific research question, 

as shown in Table 12. Separate MANOVAs were performed for each response variable: RMSE, 

and absolute bias. Tukey’s HSD multiple comparison tests were done to show which levels of a 

predictor variable were statistically similar. In all cases, a p-value of 0.05 was used to define 

statistical significance. 

Table 12. Details for MANOVAs. 

Research 
Question 

Response 
Variables 

Predictor Variables Data Set 

Empirical vs 
PaveSCM 

models and 
number of 
calibration 

cores 

RMSE 
(% voids) 

 
Absolute bias 

(% voids) 

ModelType_NumCalibCores 
Project 

Same day 
calibrations 

Same day vs. 
different day 
calibration 

CalibrationDay 
Project 

Empirical 
calibrations 

Asphalt 
content 

prediction with 
PaveSCM 

RMSE 
(% asphalt) 

 
Absolute bias  
(% asphalt) 

NumCalibCores 
Project 

PaveSCM, 
Different day 

(2 projects only) 

 

One of the theoretical advantages of the PaveSCM model is that it can predict both air 

voids content and asphalt content simultaneously. Using the same statistical analysis methods, 

the ability of PaveSCM to predict asphalt content was studied. Only two projects, SH 149-

Beckville and FM 158-Bryan, projects have detailed asphalt content measurements for each core. 

RESULTS 

This section first presents the overall goodness of fit for the calibration data in each 

scenario. Then, the goodness of fit for the verification data is presented, first comparing the 
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different models, and then the comparing predictions from testing on the same day vs different 

day of model calibration. The complete statistical analysis results are contained in Appendix E. 

Model Calibration 

The predicted and actual air voids of the calibration data are presented in Figure 8 for the 

empirical model and in Figure 9 for the PaveSCM model. Each graph are calibrations produced 

with a different number of cores. All calibration cores were taken on the first day of testing. The 

R2 and RMSE values shown are the average of all the R2 and RMSE calculated from each project 

individually. The empirical calibration models matched the original data well. The average R2 

was above 0.8 and the average RMSE was less than 0.8 percent air voids. The PaveSCM model 

data did not fit the calibration cores as well. The average R2 was about 0.5 and the average 

RMSE values were about 1.2 percent air voids. Because only one core was used for each of the 

PaveSCM-1 core calibrations, there was no error and R2 was undefined. 

  
Figure 8. Predicted vs. Actual Air Voids for Calibration Data – Empirical Model. 
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Figure 9. Predicted vs. Actual Air Voids for Calibration Data – Pave SCM. 

Model Verification 

The predicted and actual air voids of the verification data are presented in Figure 10 for 

the empirical model and in Figure 11 for PaveSCM. Each graph is a different prediction 

scenario, either predicting data the same day or different day as the calibration, and varying the 

number of cores used in the calibration. Only the average RMSE is noted in the graphs. The R2 

value, which is generally a poor metric for evaluating the prediction capability models, was not 

reported. The average RMSE ranged from 1.2 to 2.1 percent voids. The Same Day-Empirical-6 

cores model had the best fit overall and the Same Day-PaveSCM-1 core model had the worst fit. 
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Figure 10. Predicted vs. Actual Air Voids for Verification Data – Empirical Model. 

  

  
Figure 11. Predicted vs Actual Air Voids for Verification Data – PaveSCM. 
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Figure 12 shows box plot graphs of the goodness of fit parameters, RMSE and absolute 

bias. The data labels shown are the median value, as opposed to the average shown in the 

previous figures. Each box is a different model type, calibrated with 1, 3, or 6 cores. Only same 

day calibrations are shown. The RMSE across all 15 field projects was lowest for the empirical 

model, with a median of 1.06. The PaveSCM model had higher error, but got progressively 

better as more cores were used for calibration. Similarly, the bias for the empirical model was 

much less (median of 0.23) than the PaveSCM models. Though the median bias for all models 

was less than 1.4, some of the calibrated projects had biases as high as 3 percent air voids. This 

amount of bias is unacceptable and would cause significant problems in practice. 

   
Figure 12. Performance of Empirical vs. PaveSCM Models (Same Day Only): 

RMSE (left) and Absolute Bias (Right). 

The results of the statistical analyses shows that model type and number of cores had a 

significant impact on RMSE and absolute bias. For RMSE, there was no statistical difference 

among the Empirical-6 cores, PaveSCM-6 cores, and PaveSCM-3 cores models. For bias, 
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Empirical-6 cores was the best; PaveSCM-6 cores and PaveSCM-3 cores were statistically 

similar; and the PaveSCM-1 core model was the worst.  

Table 13. Statistical Analysis Results – Model Comparison. 

Test 
Response 
Variable 

Predictor Variable Model 

Name p-value p-value Adjusted R2 

Empirical 
vs 

PaveSCM 

RMSE 
Project <0.001 

<0.001 0.77 
ModelType_NumCores <0.001 

Absolute 
Bias 

Project <0.001 
<0.0001 0.70 

ModelType_NumCores <0.001 
 

The verification analysis with the PaveSCM model consistently showed that using more 

cores for calibration improves the performance of the model. When using only one core to 

calibrate, which theoretically can be done, then all the error in that one measurement will 

translate through to every subsequent measurement. But even when using 6 cores for calibration, 

the error was still greater than for the empirical model using 6 cores. This may be because the 

PaveSCM model is trying to predict another mixture component, the asphalt content. The results 

of predicting asphalt content are contained later in this chapter. 

The goodness of fit box plots comparing predictions from the same day and different day 

of calibration are shown in Figure 13. The statistical analysis results are in Table 14. Data from 

both the empirical and PaveSCM models were included in the analysis. In the raw data, some 

projects had smaller errors and other very large errors, so it’s not surprising that the Project 

factor was significant in both analyses. It was important to include this factor to draw out the 

effects of the other two factors. For RMSE, Calibration Day was near significant (p-value of 

0.08), with more error overall observed when testing on a different day than on the calibration 

day. Additional testing would show whether this factor is actually significant or not. For absolute 
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bias, the Calibration Day factor was again nearly significant (p-value of 0.06) and, again, may 

indicate that testing on a different day than calibration could yield biased predictions. The Model 

Type factor was not significant for RMSE, which is a different finding that the previous analysis 

(Figure 12). This further suggests that the PaveSCM model does better, similar to the empirical 

model, with more calibration cores. For bias, however, Model_Type was significant (p-value 

<0.001) and the PaveSCM model had higher bias than the empirical model and more variability 

within the bias. 

   
Figure 13. Performance of Same Day vs Different Day Predictions (Empirical Model Only): 

RMSE (Left) and Absolute Bias (Right). 
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Table 14. Statistical Analysis Results – Same vs Different Day. 

Test 
Response 
Variable 

Predictor Variable Model 

Name p-value p-value Adjusted R2 

Same vs 
Different Day 

RMSE 

Project 0.014 

0.017 0.49 Calibration Day 0.085 

Model Type 0.226 

Absolute 
Bias 

Model Type <0.001 

0.016 0.57 Project 0.014 

Calibration Day 0.064 
 

Finally, it’s noted that the R2 values for the RMSE model are less than 0.5 for RMSE and 

less 0.6 for absolute bias. This is because there is substantial scatter in the data (also noted by the 

tall box plot graphic). Some projects had very little to no model bias while some projects had 

substantial bias above 2 percent air voids. 

In practice, the effects of high RMSE and the effects of high bias in the validation data 

are not equal. Consider the two sets of verification data in Figure 14. Neither data set is 

concentrated along the 1:1 line, hence the RMSE values of 1.0 and 2.1, but the first data set has a 

negligible bias. So, while the reliability of any given measurement here could be off by as much 

as 1.5 percent air voids, the average of all measurements will converge to the actual mean air 

voids in the pavement. With enough measurements (and the GPR density profiler takes tens of 

thousands of measurements each project), the errors from the scattered data will have very little 

impact on the overall prediction capabilities. On the other hand, the data set in the second plot is 

severely biased and underpredicts the actual air voids by about 2 percent air voids. This is a 

consistent shift in the data that cannot be fixed with more sampling. In practice, bias error of this 
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degree would result in penalizing acceptable construction or, if biased in the other direction, 

acceptance of poor construction. 

   
Figure 14. Examples of Non-Biased (left) and Biased (right) Predictions. 

In some of these projects with verification bias, the equipment is measuring a certain 

value one day and then a different value, sometimes significantly different, the next. Based on 

the researcher’s experience, he believes this shift is related to the equipment and/or the methods 

for doing the daily metal-plate and air calibrations. Though the equipment showed good stability 

inside the laboratory, there is some other confounding factors occurring in the field. As discussed 

later in Chapter V, the author does not believe the data shift is related to changes in the produced 

mixture. It might be related to the climate, antenna height/angle, and reliability of the antennas. 

The older antenna models were used for nearly all the field data collection. As noted in Chapter 

III, the older antennas have more inter antenna variability than the new antennas, but practically 

the variability is minimal. 

The bias issue can be mitigated by testing a standard reference material each day of 

testing, similar to what is done with the nuclear density gauge. Since the time this research was 

performed, the radar manufacturer now provides a standard reference block to use when 

deploying in the field. 
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The asphalt content predictions from the PaveSCM model vs actual asphalt content for 

two projects are shown in Figure 15 and the goodness of fit scores are in Figure 16. The R2 

values for both projects were very low (0.31 and 0.03) and indicate that the models failed to 

predict asphalt content in these two cases. The RMSE of both projects was about 0.25 percent 

asphalt. Because the PaveSCM algorithm imposes an allowable error limit of 0.5 percent asphalt, 

the algorithm essentially allowed prediction errors up to this limit. In practice, the asphalt content 

should only vary within +/-0.2 percent on a given project, so predictions with an RMSE more 

than that is not suitable for implementation. The absolute biases were 0.16 and 0.05 percent 

asphalt. As discussed in the next chapter, asphalt content within this practical range of variance, 

has little impact on the overall dielectric value. Until a more sensitive radar system is developed, 

measuring asphalt content with radar is not feasible. 

 
Figure 15. Asphalt Content Predictions With PaveSCM. 
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Figure 16. Goodness of Fit Scores for Asphalt Content Prediction: 

RMSE (left) and Absolute Bias (Right). 
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CHAPTER V  

SENSITIVITY ANALYSIS OF MIXTURE VARIABILITY* 

OVERVIEW 

In this chapter, the sensitivity of the dielectric constant to asphalt concrete mixture 

variability was analyzed. Asphalt slabs were fabricated in the lab covering a wide range of 

mixture types and variations in mixture properties. The data were analyzed statistically with an 

analysis of variance to identify the significance of each factor effect on the dielectric constant, 

and to relate the practical impact of each factor in a typical production scenario. 

METHODS 

The laboratory test design included five unique mixtures (  

 

* Part of the data reported in this chapter is from Materials Evaluation, Vol. 78, No. 10 © 2020. Reprinted with 
permission of The American Society for Nondestructive Testing Inc. 
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Table 15), and varying the asphalt content, coarse aggregate substitution, and air voids 

content. Asphalt content was varied ±0.5 percent from the target, the coarse aggregate blend 

proportion was varied by ±12 percent by weight, and the air voids content was varied by ±2.6 

percent. When choosing these values, the researchers considered the results of a production 

variance study, as discussed in the Literature Review in Table 3, and were sure to exceed these 

values. While the change in aggregate type is not likely to occur on a given project, these data 

are useful in understanding why calibrating air void prediction models for each mixture is 

important. 

  



38 

Table 15. Base Mixture Design Summary for Laboratory Mixture Variability Study. 

Mixture Name Mix Type 
Binder 
Type 

Optimum 
AC (%) 

Theo. Max 
SG 

RAP/ 
RAS 

SH 6-Valley Mills-DG D DG-D 64-22 6.1 2.416 Yes 
SH 6-Lake Waco-TOM C TOM-C 76-22 6.6 2.397 No 
SH 30-College St-SMA C SMA-C 76-22 6.0 2.380 Yes 
SH 149-Beckville-SP C SP-C 76-22 5.3 2.469 Yes 
SL 79-Del Rio-DG B DG-C 64-22 4.5 2.453 Yes 

 

Table 16 shows an example test matrix from one mixture. The other mixtures varied in a 

similar manner except using their respective design asphalt contents and target air voids. In each 

design, the predominant coarse aggregate was substituted with the same limestone aggregate. In 

total, 40 unique slabs (5 mixture types * 8 variations) were fabricated for this test. 

Table 16. Example Testing Plan for One Mixture in Laboratory Variability Study. 

Slab ID 
AC 

Rank 

Coarse Agg 
Substitution 

Rank 

Air 
Voids 
Rank 

AC, % 
Coarse Agg. 

Substitution, % 
Air 

Voids, % 

SH 6-DG D-1 M M L 5.2 0 3.3 
SH 6-DG D-2 M M H 5.2 0 8.5 
SH 6-DG D-3 L M M 4.7 0 5.9 
SH 6-DG D-4 H M M 5.7 0 5.9 
SH 6-DG D-5 M L M 5.2 -12 5.9 
SH 6-DG D-6 M H M 5.2 12 5.9 
SH 6-DG D-7 L H L 4.7 12 3.3 
SH 6-DG D-8 H L H 5.7 -12 8.5 

 
The surface dielectric of each slab was measured using one antenna, scanning along five 

linear profiles, and averaging results from the five scans together (Figure 17). Care was taken to 

avoid the slab edges which significantly alter the behavior of the reflecting radar signal. To 

further mitigate possible edge effects, other asphalt slabs were placed adjacent to the target slab 

during testing.  



39 

 
Figure 17. Surface Dielectric Profiling on Slabs. Reprinted from (9). 

After dielectric testing, the bulk SG and air voids content of each slab were measured. 

The outer 2 inches of the slabs were trimmed away, as this part of the slab had little influence on 

the dielectric measurements. Then the slabs were melted, uncoated aggregate removed, and the 

mixture theoretical maximum SG was tested. The theoretical maximum SG for each mixture was 

the average of this value and the value taken at the time of molding. The asphalt content was 

measured with an ignition oven following Tex-236-F. The asphalt correction factor used in the 

associated TxDOT mix design was also applied to these mixtures. The bulk SG for each coarse 

aggregate was measured according to Tex-201-F. The aggregate SG was used as a surrogate for 

the coarse aggregate substitution and also as a surrogate for the aggregate dielectric constant. 

For the mixture sensitivity study, an analysis of variance was done with the response 

variable, model factors, and model interactions in Table 17. 

13.6 in. 

3 in. 

3 in. 
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Table 17. ANOVA Response Variable and Model Factors 

Response Variable Model Factor 

Surface Dielectric 

Mix Design 
Air voids 

Coarse Aggregate SG 
Asphalt Content 

Mix Design * Coarse Aggregate SG 
Mix Design * Asphalt Content 

RESULTS 

A summary of three sensitivity models is shown in Table 18. The models consider which 

mixture properties have the greatest influence on the surface dielectric. The full laboratory and 

statistical results are in Appendix E. 

Table 18. Summary of Dielectric Sensitivity Study. 

Model # Model Adj. R2 Model Factor Parameter Estimate p-value Significant 

1 0.70 
Air Voids -0.08 <0.001 Yes 

Coarse Agg. SG -3.47 <0.001 Yes 
Asphalt Content -0.12 0.011 Yes 

2 0.90 

Mix Design -0.32 to 0.10 <0.001 Yes 
Air Voids -0.11 <0.001 Yes 

Coarse Agg. SG -0.08 0.133 No 
Asphalt Content -0.09 0.941 No 

3 0.93 

Mix Design -0.97 to 3.19 0.036 Yes 
Air Voids -0.12 <0.001 Yes 

Coarse Agg. SG 22.6 0.022 Yes 
Asphalt Content -0.13 0.020 Yes 

Coarse Agg. SG * 
Mix Design -27.0 to 90.9 0.012 Yes 

 

In the first model, all three parameters (air voids, coarse aggregate SG, and asphalt 

content) were statistically significant. The parameter with the most leverage (greatest influence) 

was the air voids content. The effect of coarse aggregate SG and asphalt content also had a 

significant effect on the dielectric, which is explains why different mix designs require different 
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calibrations. However, based on the second model, the influence of varying the coarse aggregate 

SG and the asphalt content within a given mix design is less pronounced.  

By including a mix design factor in the second model, we can evaluate the dielectric 

sensitivity from varying each property within a given mix design. The mix design itself 

accounted for most of the change in dielectric between certain designs. Some designs were not 

statistically different. Changes in the aggregate SG and in air voids was also significant, though 

less influential than in the first model.  

In the last model, an aggregate SG*mix design interaction term was included. Normally, 

adding in an interaction term when the primary factor was insignificant is discouraged, so this 

model is considered exploratory and may or may not reveal the correct trends; however, the 

researchers believe this model captures actual trends better than the previous two. All factors and 

the interaction were significant. The most influential factor was air voids, followed by the 

aggregate SG*mix design interaction. The interaction parameter estimate ranged from -27 to 90, 

suggesting that the trend between dielectric and aggregate SG was positive in some cases and 

negative in others. Asphalt content was also significant, with moderate overall influence. 

Based on Model 3 results, the take-away from this study is that day-to-day changes in the 

mixture asphalt content within the range studied do have some influence on the dielectric, though 

not as significantly as air voids content or from switching to a different mixture design entirely.  

A summary of the expected change in mixture properties, and corresponding change in 

dielectric content, within a project during production, is shown in Table 19. The mixture changes 

are based on the variability analysis in the Literature Review (Table 3). A change of 2.1 percent 

air voids will result in a change of ±0.25 dielectric. The effect of asphalt content would only 

change the dielectric by ±0.03, which is barely detectible by the latest radar antennas in a 
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controlled laboratory environment, but likely not detectable under field conditions or with the 

early production radar antennas. Changing the aggregate SG does change the dielectric, but 

within the test range of 12 percent substitution, the change in dielectric would only be ±0.04 to 

±0.08, and still marginally within the detection capability of the radar antennas. 

Table 19. Application of Sensitivity Results. 

Property 
Expected Change of Property Within 

a Project 
Estimated Change in 

Dielectric 
Avg. Air Voids (%) ±2.1 ±0.25 

Coarse Agg. SG 
In practice: Likely only with mix 

design change NA 

In lab study: ±0.019 ±0.08 to ±0.04* 
Asphalt Content (%) ±0.25 ±0.03 
* Will vary considerably based on the original and substitute aggregate. 
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CHAPTER VI  

ASSESMENT OF A GPR DENSITY PROFILER IN PRACTICAL APPLICATIONS* 

OVERVIEW 

This chapter explores two practical applications of the GPR density profiler: first, for QA 

testing of asphalt concrete construction, and second, for forensic investigations. The QA 

application is examined first with a statistical risk analysis based on the sample sizes of 

traditional coring vs density profiling. Then, the density profiler is deployed on several 

construction projects and used as a secondary QA tool and compared with traditional QA testing 

results from cores. In the forensic investigations, the density profiler was used on two existing 

projects to measure if there were density issues and attempt to identify sources of pavement 

distress. 

QUALITY ASSURANCE – STATISTICAL RISK ANALYSIS 

The acceptance and payment of asphalt mixture construction has inherent risk to the 

agency and the contractor. The agency (consumer) is at risk of accepting production when in fact 

the pavement has significant poorly constructed areas. This is a statistical Type II error. On the 

other hand, risk to the contractor (producer) occurs if the production is penalized when the 

construction actually had acceptable quality (a statistical Type I error). In this section, a 

statistical risk analysis is performed to show the relationships among the air voids standard 

deviation, tolerable error, number of samples, and producer and consumer risk.  

 

* Part of the data reported in this chapter is from Materials Evaluation, Vol. 78, No. 10 © 2020. Reprinted with 
permission of The American Society for Nondestructive Testing Inc. 
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Methods 

Producer and consumer risk were evaluated based on the sample size (number of air void 

measurements) for a given tolerable testing error and project variability. Equation 14 shows the 

relationship of these parameters (23). 

 

n
𝑍 / 𝑍 𝜎

𝑒
 

(14) 

where n = Number of air void content samples. 

 Zα/2 = Z-critical value for producer risk. 

Zß = Z-critical value for consumer risk. 

α and ß = Producer and consumer risk, respectively.  

     Between 0.0 (willing to accept no risk) and 1.0 (willing to accept all risk). 

s = Standard deviation of void content within a project. 

e = Tolerable error in the average result. 

The standard deviation chosen for this analysis was 1.4 percent air voids. This value 

corresponds to the 80th percentile standard deviation of air voids among all the projects and 

paving periods in this study (Figure 18). This means, that 80 percent of projects and paving 

periods tested had an air void standard deviation of 1.4 percent or less.  
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Figure 18. Cumulative Frequency of Standard Deviations for Project Void Contents. 

A range of tolerable errors were used in the analysis. Since voids are reported to an 

accuracy of 0.1 percent, a tolerance of 0.1 percent was used on the low end. A tolerance of 3 

percent voids was used on the high end, which lacks the ability to distinguish among the pay 

factor criteria.  

Results 

Figure 19 and Figure 20 show the risk analysis results for producers (contractors) and 

consumers (TxDOT), respectively. Though the graphs are similar, overall risks are higher for the 

producer. For a given error tolerance, increasing the number of samples reduces the risk. Also, 

increasing the samples at a given level of risk increases the overall confidence of the 

measurement. 

To help interpret the graphs, consider the following example. Under the present 

conditions, only one core sample is tested per sublot. To accept paving based on a single core 

location, and assuming the overall average air void content is within 2 percent of the reading, 

TxDOT must accept a 40 percent chance of incorrectly accepting the sublot. Given that the air 
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voids target range for a placement bonus is from 3.5 to 7, or to 8.5 percent depending on the 

mixture, the chance of correctly assigning a bonus or a penalty pay factor is very low. On the 

other hand, since the GPR density profiler produces such a rich set of data, often over 10,000 

readings per sublot with a 3-channel system, TxDOT can lower their risk to well below 10 

percent, and have confidence that the measured average air voids are within 0.1 percent of the 

true mean. 

 
Figure 19. Number of Samples vs. Producer (Contractor) Risk and Tolerable Error. 
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Figure 20. Number of Samples vs. Consumer (TxDOT) Risk and Tolerable Error. 

The power of increased sampling with the density profiler is only useful, however, if the 

calibration between the dielectric and the air voids content is unbiased. If there is an error bias, 

as was noted when testing on different days than the calibration (see Figure 13), than increased 

sampling will not help find the true population mean. Testing a reference material daily would 

help correct for this kind of bias error. 

QUALITY ASSURANCE – FIELD DEPLOYMENT 

This section discusses deploying the density profiler in the field, the subsequent analysis, 

and comparison of QA results to TxDOT results and pay factors. 

Methods 

The research team identified nine HMA construction projects throughout east, central, 

and west Texas for field evaluation. The projects represent a cross section of lift thicknesses, 

gradations, aggregate types, and asphalt contents, as detailed in Table 20. These are a subset of 

the same projects from field testing in Chapter IV. 
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For several sublots, the researcher used the GPR density profiler to scan both wheel 

paths, the mat centerline, and, in some locations, the longitudinal joint. With measurements 

spaced every 6 inches, this level of testing is near full-coverage in the direction of travel and 

well-covered transversely. Air voids content was predicted using the exponential empirical 

calibration method. The contractor and agency QA data were compared against the predicted QA 

results using averages and percent within limits metrics. 
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Table 20. Asphalt Mixture and Production Summaries.  

Project ID Mix Type 
Binder 
Type 

Optimum AC 
(%) 

Aggregate 
Type 

Theo. Max 
SG 

Thickness 
(in.) 

Sublot 
Count 

SH 6-Valley Mills 
(WAC) DG-D 64-22 5.2 

Dolomite 
Gravel 
RAP 

2.447 2.0 
(approx.) 7 

SH 6-Waco 
(WAC) TOM-C 76-22 

+ Evotherm 6.6 Sandstone 
Dolomite 2.434 1.25 5 

SH 30-College St. 
(BRY) SMA-C 76-22 6.0 

Sandstone 
Dolomite 

RAP 
2.405 2.0 7 

SL 79-Del Rio  
(LRD) DG-B 64-22 4.5 Gravel 2.451 3.5 8 

SH 149-Beckville 
(ATL) SP-C 76-22 5.3 Igneous 2.470 1.5 7 

IH 45-Huntsville 
(BRY) SMA-D 76-22 6.2 Limestone 2.392 2.0 7 

FM 158-Bryan 
(BRY) SP-D 64-22 5.2 Sandstone 

Limestone 2.446 2.0 7 

US 59-Texarkana 
(ATL) SMA-D 76-22 6.4 Gravel 2.362 2.0 4 

SH 40-College St. 
(BRY) SP-C 64-22 5.0 Sandstone 

Limestone 2.465 3.0 7 
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As discussed in Chapter IV, the GPR data sometimes shifted on different days of testing. 

So, predictions taken on different days than calibration had greater bias than same-day predictions. 

The researcher attempted to correct for the bias by calculating the average bias in the daily 

verification cores and subtracting that bias in all the air void predictions. However, this seemed to 

over-correct the data, creating even greater disparity in the data distributions on different days. The 

researcher decided against applying daily corrections. 

Since the time that the data were collected, the equipment manufacturer has updated the 

antenna hardware, making it more stable throughout a given test period and from day to day. They 

also now provide a reference block for daily verification of the antennas and, potentially, a means 

to apply daily corrections to the calibration equation. 

Results 

Figure 27 presents the empirical calibrations developed from each construction project. The 

average R2 value of all projects was 0.83 and was as high as 0.95. The graph also illustrates how a 

unique calibration must be determined for each mix since the calibration curves are spread 

throughout the plot. Even if the mix type is the same, different mineralogy of aggregates and other 

mixture design factors mean that a calibration must be performed for each job. 

 
Figure 21. Example Air Void Calibrations. 
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Examples of the predicted in-place air voids are illustrated in Figure 22 as heat maps. The 

maps show the spatial layout of air voids are helpful to quickly identify problem areas of under or 

over-compaction. The first map is what the manufacturer’s software displays in play-back mode. 

The data can be smoothed in the direction of travel using a moving average but interpolation 

between the different line scans is not provided. The second map was created with mapping 

software Surfer, by Golden Software, and similar plots can be created using data analysis and 

plotting software like MatLab. This map was colored to show areas of bonus, penalty, and 

rejection. 

 

 

 

Figure 22. Example Air Void Heat Maps for SS 248-Tyler: (a) Built-in PaveScan RDM 
Software and (b) Mapping Software After Post-Processing. 

To aid the comparison the analysis, the air voids for each sublot and project were 

summarized and presented as a variety of statistics. In this section, the following air void statistics 

are presented at the project and sublot levels: average, probability distribution, percent within 

limits (PWL), and the overall pay factor. 

The average air voids for each project are shown in Figure 23. The range within the box 

plot represents the range of sublot averages. Most projects had average air voids between 4 and 7 
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percent. The only TOM project had air voids above 10 percent. This thin mixture type tends to 

show very high air voids when tested with the bulk SSD method, which is why it is accepted based 

based on permeability and not air voids. Some of these projects had considerable variability among 

the sublot averages. SH 6-Valley Mills-DG TyD and SH 149-Beckville-SP TyC had averages that 

shifted by more than 2 percent air voids from one sublot to another. It is unknown, however, 

whether the shift in the data among sublots is an actual change in production or bias in the 

measurements from the density profiler antennas. 

 
Figure 23. Average Sublot Air Voids by Project. 

Figure 24 are examples of probability distributions for two projects, where each curve is a 

different sublot. These show that within a single project the air void distributions can change 

significantly from lot to lot. As noted by sublots 6-2 and 7-2 in IH-45-Hunstville, the data is not 

always normally distributed. On this project, air voids near the joint were high because of poor 

compaction practices, resulting in the skewed distribution on some sublots. 
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 (a) (b) 

Figure 24. Example Air Voids Distribution by Sublot: (a) SH 6-Valley Mills and  
(b) IH 45-Hunstville. 

The PWL values by project are shown in Figure 25. The limits for defining PWL were the 

air void contents for the full payment pay factor. The full payment range of air voids is 3.7 percent 

on the low end up to between 7 and 8.5 percent air voids on the upper end, depending on the 

mixture type. If the limit were lowered to the remove and replace criteria, all the PWL results 

would increase. Two projects had average PWL results above 90 percent, three projects were 

between 80 and 90 percent on average, and three projects were below 70 percent on average. The 

wider the spread on a given box plot, the more variability there was among sublots. Again, this 

variability may be related to the construction variability and/or equipment calibration variability.  
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Figure 25. Percent Within Limits by Project. 

A statistical analysis was done to compare the PWL results from only the central part of the 

mat, excluding the longitudinal joints, to the entire mat including the joint. The inclusion of joints 

made a statistically significant difference in the PWL results. The least squares means plot in 

Figure 26 shows that including the joint decreases the PWL result from 88% to 83%, on average. 

 
Figure 26. Percent Within Limits of the Asphalt Mat Excluding and Including Joints. 

The range of pay factors on each project, excluding the joint data, is shown in Figure 27. 

The blue box plots are the overall pay factors calculated from the density profiler data, and the 
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orange box plots are calculated from the TxDOT QA cores (1 per sublot). The overall pay factors 

were calculated by finding the pay factor for each measurement in the sublot, then averaging all 

those pay factors together to get an overall pay factor for the sublot. In this calculation, a 

measurement in the remove and replace range was assigned a pay factor of $0. For graphing 

purposes, when the sublot pay factor was categorized as remove and replace, a pay factor of $0.7 

was assigned. Based on the dielectric profiler data, five projects should have received a placement 

bonus on average; two projects would have received just under full payment; and one project, 

IH 45-Hunstville, would have been significantly penalized. In contrast, the TxDOT QA data shows 

that all seven projects received placement bonus on average; however, three sublots from 

SH 30-College Station would have received a remove and replace result. These data suggest that 

TxDOT typically overpays the contactor, but in some cases, TxDOT unnecessarily penalized the 

contractor.
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Figure 27. Range of Pay Factors by Project Based on GPR Density Profile and TxDOT Data. 
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The discrepancy between pay factors from a single core per sublot and pay factors from the 

comprehensive density profiler is further illustrated in Figure 28. Overall, there is no correlation 

between the two pay factors. Sublots that are penalized in one method receive full payment in the 

other, and vice versa, and within projects that have full and bonus payment according to both 

methods, there is still no clear correlation. The sources for the discrepancy are (1) that a single core 

measurement has a very high probability of misrepresenting the actual production average (see 

previous Statistical Risk Analysis discussion), and (2) any bias that might exist in the antenna 

calibration will shift the predicted air voids away from the true air voids distribution.  

 
Figure 28. Sublot Pay Factors Based on TxDOT QA Testing and Density Profiler Testing. 

FORENSIC INVESTIGATIONS 

During the research, TxDOT wanted help investigating two recently constructed projects: 

US 287-Groveton and SS 248-Tyler. This section describes the condition of each project, 

TxDOT’s concerns, researcher test methods, results, and recommendations. 
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US 287-Groveton 

US 287, near Groveton, in the Lufkin District, was overlaid with 2 inches of Item 344, 

Superpave Type C. During construction, the inspector noted several locations with, what appeared 

to be, segregation and potential high-air voids (Figure 29). The area office requested help from the 

TxDOT Construction Division and TTI to investigation the scope and severity of high air void 

locations, and asked for recommendations on whether corrective action was warranted. 

 
Figure 29. Surface Texture Possibly Indicating Segregation and High Air Voids. 

Six months after construction, TTI deployed the vehicle-mounted GPR density profiler 

equipped with three antennas. Two passes were done in both the southbound and northbound 

directions, resulting in six line-scans spaced about 2-ft apart. Nine calibration cores were taken in 

the southbound lane at locations identified as having low, moderate, and high dielectric values. An 

exponential non-linear regression model was used for the calibration. Using the calibration, density 

maps were made for the entire project. 

The resulting density calibration in Figure 30 had an R2-value of 0.82. Applying this 

calibration to the rest of the project, Figure 31 shows the air void distribution for the north and 

southbound lanes, with an average of 4.0 and 3.7 percent, respectively. The spread on the data was 

considerably narrow with most of the data lying within a 2 percent air void spread. Compared to 

the in-place air voids payment table in Item 344, the pavement meets density requirements, and, if 
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anything, may be over-compacted. However, making this conclusion is not entirely appropriate 

since the road had been in service for over 6 months and had additional compaction under traffic. 

  
Figure 30. Dielectric to Air Void Calibration for US 287. 

  
Figure 31. Overall Air Void Distributions for US 287. 

Figure 32 presents the air void heat maps. The color legend on these maps is set to match 

the pay factors of Item 344 where green = bonus, orange and blue hues = penalty, and solid red 

and purple = reject. If this were newly constructed pavement, most of the project would have been 
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over-compacted. There is evidence though of traffic-related compaction as higher density within 

the wheel paths is noticeable.  

Some specific locations with visible segregation in the field were identified, photographed, 

and then located on the heat maps (Figure 33). These locations did correlate with areas of higher 

air void contents, 6 to 8 percent, than much of the project. However, this level of air voids is not 

concerning. 
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Figure 32. Air Void Distribution Maps for US 287. 
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Figure 32. Air Void Distribution Maps for US 287 (continued). 
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Figure 33. Comparison of Visible Segregation and Air Voids Maps. 
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In conclusion, the research team did not believe the roadway had a project-wide 

compaction issue. There may be some concern at specific locations with visible segregation, but 

the core voids and the voids from the density profiler did not suggest they were excessively high. 

Since the plans still called for surfacing the road with a seal coat, the researchers did not 

recommend any action to the existing HMA. The density profiler was helpful in providing peace 

of mind to the agency and avoiding unnecessary maintenance.  

SS 248 – Tyler 

The pavement on SS 248, east of Tyler, in the Tyler District, was rehabilitated, including 

lane widening in both directions, and was finished with a 2-inch mat of Item 341, Dense-grade 

Type C. Within 6 months of placement, premature fatigue cracking was appearing in the outside 

lane wheel paths in both the eastbound and westbound directions (Figure 34). The area office 

requested help from the TxDOT Construction Division and TTI to provide forensic analysis on 

the project, and to determine if, perhaps, poor compaction was the source of the distress. 

 
Figure 34. Premature Wheel Path Fatigue Cracking in the Outside Lane. 
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About a year after construction, TTI deployed the vehicle-mounted GPR density profiler. 

A single pass was done in each lane (two westbound lanes and two eastbound lanes) and down 

the center-turn lane. Ten calibration cores were taken at locations identified as having low, 

moderate, and high dielectric values. No calibration cores were taken directly on areas with 

visible distress. An exponential non-linear regression model was used for the calibration. Using 

the calibration, density maps were made for the entire project. 

Figure 35 presents the calibration developed on SS 248. The R2 value was 0.76. 

 

Figure 35. Calibration of Air Voids to GPR on SS 248. 

The air voids heat map for each lane are shown in the five parts of Figure 35. Again, the 

maps are colored to show the regions of bonus, penalty, and rejection (remove and replace). 

Areas that were visibly distressed were marked on the map and the dielectric/air void data were 

omitted since the distress significantly affects the dielectric reading. Also omitted were areas that 

have been patched.  
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Figure 36. Air Void Distribution Maps for SS 248-Tyler. 
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Figure 36. Air Void Distribution Maps for SS 248-Tyler. (Continued) 



68 

 
Figure 36. Air Void Distribution Maps for SS 248-Tyler. (Continued) 
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Figure 36. Air Void Distribution Maps for SS 248-Tyler. (Continued) 
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Figure 36. Air Void Distribution Maps for SS 248-Tyler. (Continued) 
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Table 21 presents the percent of pavement within each placement pay factor region for all 

measured data (in and between the wheel paths). The eastbound outside lane had significant 

amounts in the penalty (15 percent) and remove and replace (5 percent) categories. The 

westbound outside lane has a small amount in the penalty category (3 percent). All other lanes 

had virtually no placement problems. When considering data only from between the wheel paths 

(Table 22), which is considered untrafficked and, therefore, better represents an “as constructed” 

condition, none of the lanes have significant data in the remove and replace region, and the 

amount in the penalty region is all below 5 percent.  

Table 21. Percent within Pay Factor Categories for SS 248, In and Between Wheel Paths. 

Section 
Air Voids (%) Percent of Pavement by Pay Factor 
Avg. St Dev Bonus Penalty Remove and Replace 

EBOL 7.2 1.59 79.7 15.3 5.0 
WBOL 6.4 1.05 96.7 3.1 0.3 
EBIN 5.4 0.88 98.9 1.0 0.1 
WBIL 5.5 0.74 99.4 0.6 0.1 
CTL 6.1 0.99 97.6 1.9 0.5 

 

Table 22. Percent within Placement Categories for SS 248, Between Wheel Paths Only. 

Section 
Air Voids (%) Percent of Pavement by Pay Factor 
Avg. St Dev Bonus Penalty Remove and Replace 

EBOL 6.0 1.04 97.3 2.4 0.3 
WBOL 5.8 0.80 99.4 0.6 0.1 
EBIN 5.3 0.85 98.0 1.9 0.1 
WBIL 5.3 0.65 99.7 0.3 0.0 
CTL 6.3 1.12 95.3 4.0 0.6 

 

In conclusion, the researchers did not believe the distress was caused by poor 

compaction. The majority of the pavement was in good condition, especially areas with little 

traffic (center turn lane, and between the wheel paths). The east bound outside lane had the worst 

density overall, with 15 percent in penalty and 5 percent in reject. The higher voids in the wheel 
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path, however, are likely a result of fatigue cracking rather than the cause of fatigue cracking. 

Cracking distress itself increases the air voids of the mat, and microcracking within the layer, 

though not yet visible, will also increase the air voids. The researchers concluded that the 

premature distress was a result of poor subgrade and base support over areas where the pavement 

was widened. 
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CHAPTER VII  

CONCLUSION 

OVERVIEW 

The industry standard test methods for QC/QA of asphalt concrete compaction are 

significantly limited in that they drastically under sample production, put operators and traffic at 

risk since traffic control is required, and are comparatively slow. A GPR density profiler 

provides rapid, non-destructive, near-full coverage results of the compacted mat air void content 

and distribution. Despite the promise of GPR as a QC/QA tool, the GPR density profiler 

technology has yet to move beyond research and into practice. 

The objectives of this research were to quantify the antenna stability and sensitivity of a 

GPR density profiler; to identify the optimal air void content prediction model; to quantify the 

signal sensitivity to changes in asphalt mixture composition; and to assess the practicality of 

using a GPR density profiler for QA and forensic applications. These objectives were 

accomplished through laboratory experiments, field evaluations, and statistical analyses. 

SUMMARY AND FINDINGS  

Chapter III – GPR Antenna Stability and Sensitivity Analysis 

This chapter presented two studies conducted in a controlled laboratory environment. The 

first was a long-term antenna stability and inter-antenna variability study. The second was a 

temperature sensitivity study. 

Among the six antennas tested, the early production antennas had the greatest 

discrepancy in readings, ranging from an average dielectric of 3.96 to 4.04. Even though the 

antennas each have their own bias, the range is small enough to capture trends in air void content 
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in the field. The newer antennas were statistically identical. Generally, the antennas were stable 

over time, though a couple antennas experienced a slight decreasing drift in dielectric over the 

6-hour testing period.  

The effect of temperature on the antennas was very significant, decreasing the dielectric 

by 0.15/10°C; however, the built-in temperature correction effectively eliminated this effect. 

Based on findings, the antennas should be stable enough to detect changes in mixture production 

in the field. 

Chapter IV – Comparison of Air Void Content Prediction Models 

This chapter discussed an extensive field evaluation comparing two air void content 

prediction models, one empirical and one mechanistic (PaveSCM). The models were evaluated 

in terms of the overall prediction error (RMSE) and bias error. Different methods for calibrating 

each model were also compared. 

The RMSE across all 15 field projects was lowest for the empirical model, with a median 

error of 1.06 percent air voids. The PaveSCM model had higher error (1.22 to 1.78), which 

improved as more cores were used for calibration. The absolute bias error was also lowest for the 

empirical model and was much higher for the PaveSCM model. For certain projects, the bias 

error was as high as 3 percent air voids, which is completely unacceptable and would cause 

significant problems in practice. 

Predictions made on the same day as core calibrations tended to have less overall error 

and less bias error than predictions taken on other days of paving; however, based on a statistical 

analysis, the effect of Calibration Day was only nearly significant (p-value slightly above 0.05). 

The research fails to conclude that errors are higher when testing on a day different than 

calibration. Additional testing would show whether this factor is significant or not. 
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In practice, the effects of high RMSE and the effects of high bias in the validation data 

are not equal. Given the high sample rate of the density profiler, general data scatter errors 

(RMSE) will have very little impact on the overall prediction accuracy. However, predictions 

that are biased cannot be corrected by taking more samples. The researcher failed to identify the 

source of bias errors in the field. The bias issue could be mitigated by testing a standard 

reference material each day of testing.  

The PaveSCM model failed to predict asphalt content on the two projects evaluated 

Chapter V – Sensitivity Analysis of Mixture Variability 

In this chapter, the sensitivity of the dielectric constant to asphalt concrete mixture 

variability was analyzed. Asphalt slabs were fabricated in the lab covering a wide range of 

mixture types with variations in mixture asphalt content, substitution of the coarse aggregate, and 

compacted air void content. The statistical and practical significance of each factor was 

analyzed. 

Within a given mixture design, the most influential factor on the dielectric constant was 

air voids, followed by the amount of coarse aggregate substitution. Asphalt content was also 

significant, with moderate overall influence. A change of ±2.1 percent air voids, the typical 

widest range expected in production, will result in a change of ±0.25 dielectric. The typical 

change in asphalt content (±0.25 percent) would only change the dielectric by ±0.03, which is 

barely detectible in a controlled laboratory environment, and likely not detectable under field 

conditions. Changes from substituting the course aggregate, which is will not happen in practice 

without a new mixture design, does change the dielectric. But within the test range of 12 percent 

substitution, the dielectric change is marginally within the detection capability of the radar 

antennas. 
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Chapter VI – Assessment of a GPR Density Profiler in Practical Applications 

This chapter explored two practical applications of the GPR density profiler: first, for QA 

testing of asphalt concrete construction, and second, for forensic investigations. The QA 

application was examined with a statistical risk analysis. Then, the density profiler was deployed 

on several construction projects and used as a secondary QA tool and compared with traditional 

QA testing results from cores. In the forensic investigations, the density profiler was used on two 

existing projects to measure if there were density issues and attempt to identify sources of 

pavement distress. 

Based on the statistical analysis, when accepting construction based on a single core, the 

agency assumes a 40 percent chance of incorrectly accepting the sublot. The chances of correctly 

assigning a bonus or a penalty pay factor is very low. On the other hand, since the GPR density 

profiler produces such a rich data set, the agency lowers their risk to well below 10 percent, and 

has confidence that the measured average air voids are within 0.1 percent of the true mean. This 

is only true, however, if the density profiler is unbiased. Testing a reference material daily would 

help correct for bias error. 

In the QA deployment study, the air void content data were summarized by sublot 

averages, probability distributions, PWL, and the overall pay factor. Most projects had 

reasonable air void results within each sublot, though some projects had high variability, where 

the averages from one sublot to another shifted by more than 2 percent. Sublot data were 

normally distributed, except when including measurements taken near the joint, which skews the 

results to higher air voids. When evaluating pay factors from the single QA core per sublot, 

TxDOT generally overpaid the contractor, but in some cases, TxDOT unnecessarily penalized 

the contractor. There was no correlation between the pay factors from TxDOT QA cores and the 
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pay factors from the GPR density profiler data. The sources for the discrepancy are that a single 

core measurement has a very high probability of misrepresenting actual production, and also, any 

bias that might exist in the equipment calibration will shift the predictions away from the true air 

void distribution. 

In the first forensic investigation, the density profiler showed that there were no project-

wide compaction issues and immediate pavement maintenance was unnecessary. In the second 

investigation, the researchers found that the air void contents in untrafficked areas were 

acceptable, and concluded that the premature distress was not caused by poor asphalt 

compaction. The higher voids in the distressed wheel paths were a result of fatigue cracking, and 

not the cause. The distress was likely a result of poor subgrade and base support over areas 

where the pavement was widened. 

RECOMMENDATIONS 

The GPR density profiler used in this study is an effective tool for measuring the in-situ 

air void content of asphalt concrete. The ability to measure air void content rapidly, 

continuously, and with nearly full-coverage makes the density profiler significantly more 

advantageous than traditional spot coring or testing with a nuclear density gauge. Accepting 

sublot production based on a single measurement exposes both the agency and contractor to 

significant risks. These risks are virtually eliminated with the density profiler because the 

sampling rate is so high. Another advantage of the technology is that the data are mapped 

spatially. If an issue does arise, the specific problem area can be identified and dealt with 

accordingly. 

The empirical exponential model for predicting air voids from the surface dielectric 

constant is robust with lower error and bias than the mechanistic PaveSCM model. This 
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empirical model works well and should continue to be promoted. Similar empirical models have 

been developed that constrain predictions at low and high extremes and could be an 

improvement on this basic model. The PaveSCM model, and other mechanistic models can 

continue to be studied and, when used, should be calibrated with multiple cores.  

With either model, the system must be calibrated for each asphalt mixture design. Even 

then, the calibration is prone to becoming biased, possibly based on drift in the antennas, 

environmental factors, or the errors in the metal and air wave calibrations. This daily prediction 

bias must be reduced or managed. Testing a standard reference material in the field each day, as 

now provided by the manufacturer, is strongly recommended. This reference material should be 

used to verify the antenna calibration, and potentially used to offset any daily bias. Identifying 

the sources of bias should continue to be studied. 

The industry continues to demonstrate growing interest in GPR for asphalt mixture 

quality evaluations. Many avenues of possible use for GPR’s ability to measure asphalt mixture 

density exist. In a construction setting, some potential approaches could include: 

 As a “no risk” process control enhancement 

 For pay factor or acceptance framework. 

 To evaluate longitudinal joints 

 To evaluate lots or sublots when random QA cores result in a remove/replace decision.  

o Use the GPR assessment to define how widespread the problem is and identify 

areas that do not need correction.) 

 For forensic investigations. 

The promising results from this tool in both construction and forensic settings make GPR 

for asphalt mixture density evaluation a good candidate for implementation efforts.  

Further research topics warranting efforts include: 
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 Expedited, benchtop methods to determine the mixture-specific calibration ahead of 

paving. 

 Refined regression methods to handle the influence of outliers in the calibration data set. 

 Exploration of this tool permeable friction course or thin overlay mixes which are not 

currently accepted based on density measurements. 

 Effect of low-speed and high-speed data collection on prediction errors. 

 Models to account for trace metals in igneous aggregates. 

 Mounting on roller-compactors for real-time compaction monitoring. 

o Must account for presence of surface moisture. 

 Rigorous testing of GPR-based density profiler systems from other vendors. 
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APPENDIX A  

ANTENNA STABILITY AND SENSITIVITY DATA AND ANALYSES 

Table 23 and Table 24 present the data for the antenna stability test and the temperature 

sensitivity test, respectively. 

Table 23. Data for Stability and Inter-Antenna Variability Study. 

Antenna Material 
Time from 1st 
Reading (hr) 

Dielectric 
Constant 

3 Garolite 0.00 4.74 
3 Acetal 0.00 2.87 
3 Slab 0.00 4.30 
3 Garolite 0.26 4.74 
3 Acetal 0.26 2.88 
3 Slab 0.28 4.33 
3 Garolite 0.94 4.74 
3 Acetal 0.94 2.88 
3 Slab 0.94 4.32 
3 Garolite 1.75 4.79 
3 Acetal 1.75 2.91 
3 Slab 1.75 4.37 
3 Garolite 2.27 4.76 
3 Acetal 2.27 2.90 
3 Slab 2.27 4.35 
3 Garolite 2.79 4.77 
3 Acetal 2.79 2.89 
3 Slab 2.79 4.33 
3 Garolite 3.30 4.76 
3 Acetal 3.30 2.90 
3 Slab 3.30 4.30 
3 Garolite 3.84 4.75 
3 Acetal 3.84 2.90 
3 Slab 3.84 4.30 
3 Garolite 4.28 4.76 
3 Acetal 4.28 2.91 
3 Slab 4.28 4.30 
3 Garolite 4.82 4.78 
3 Acetal 4.81 2.91 
3 Slab 4.81 4.31 
3 Garolite 5.25 4.75 
3 Acetal 5.25 2.89 
3 Slab 5.24 4.29 
3 Garolite 5.74 4.76 
3 Acetal 5.74 2.90 
3 Slab 5.74 4.29 
4 Garolite 0.00 4.77 
4 Acetal 0.00 2.90 
4 Slab 0.00 4.33 

Antenna Material 
Time from 1st 
Reading (hr) 

Dielectric 
Constant 

4 Garolite 0.31 4.83 
4 Acetal 0.31 2.93 
4 Slab 0.30 4.40 
4 Garolite 0.95 4.86 
4 Acetal 0.95 2.92 
4 Slab 0.95 4.40 
4 Garolite 1.73 4.85 
4 Acetal 1.73 2.93 
4 Slab 1.73 4.42 
4 Garolite 2.26 4.82 
4 Acetal 2.25 2.92 
4 Slab 2.25 4.40 
4 Garolite 2.77 4.84 
4 Acetal 2.77 2.93 
4 Slab 2.77 4.40 
4 Garolite 3.28 4.83 
4 Acetal 3.28 2.94 
4 Slab 3.28 4.38 
4 Garolite 3.82 4.82 
4 Acetal 3.82 2.93 
4 Slab 3.82 4.37 
4 Garolite 4.26 4.83 
4 Acetal 4.25 2.93 
4 Slab 4.25 4.37 
4 Garolite 4.79 4.85 
4 Acetal 4.79 2.94 
4 Slab 4.79 4.36 
4 Garolite 5.22 4.83 
4 Acetal 5.22 2.93 
4 Slab 5.22 4.35 
4 Garolite 5.72 4.82 
4 Acetal 5.72 2.92 
4 Slab 5.72 4.35 
7 Garolite 0.00 4.75 
7 Acetal 0.00 2.92 
7 Slab 0.00 4.31 
7 Garolite 0.31 4.74 
7 Acetal 0.31 2.90 
7 Slab 0.31 4.31 
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Table 23. Data for Stability and Inter-Antenna Variability Study. (continued) 

Antenna Material 
Time from 1st 
Reading (hr) 

Dielectric 
Constant 

7 Garolite 0.95 4.72 
7 Acetal 0.95 2.89 
7 Slab 0.95 4.30 
7 Garolite 1.73 4.70 
7 Acetal 1.73 2.88 
7 Slab 1.73 4.29 
7 Garolite 2.26 4.71 
7 Acetal 2.26 2.89 
7 Slab 2.26 4.29 
7 Garolite 2.77 4.71 
7 Acetal 2.77 2.89 
7 Slab 2.77 4.29 
7 Garolite 3.28 4.71 
7 Acetal 3.28 2.89 
7 Slab 3.28 4.25 
7 Garolite 3.82 4.71 
7 Acetal 3.82 2.89 
7 Slab 3.81 4.25 
7 Garolite 4.26 4.71 
7 Acetal 4.26 2.89 
7 Slab 4.26 4.25 
7 Garolite 4.78 4.70 
7 Acetal 4.78 2.88 
7 Slab 4.78 4.23 
7 Garolite 5.21 4.70 
7 Acetal 5.21 2.88 
7 Slab 5.21 4.24 
7 Garolite 5.71 4.70 
7 Acetal 5.71 2.88 
7 Slab 5.71 4.22 

78 Garolite 0.00 4.80 
78 Acetal 0.00 2.92 
78 Slab 0.00 4.36 
78 Garolite 0.30 4.79 
78 Acetal 0.30 2.92 
78 Slab 0.30 4.36 
78 Garolite 0.99 4.79 
78 Acetal 0.96 2.92 
78 Slab 0.96 4.37 
78 Garolite 1.73 4.77 
78 Acetal 1.73 2.91 
78 Slab 1.74 4.35 
78 Garolite 2.26 4.77 
78 Acetal 2.26 2.91 
78 Slab 2.26 4.34 
78 Garolite 2.77 4.76 
78 Acetal 2.77 2.91 
78 Slab 2.77 4.35 
78 Garolite 3.28 4.77 

Antenna Material 
Time from 1st 
Reading (hr) 

Dielectric 
Constant 

78 Acetal 3.28 2.92 
78 Slab 3.28 4.32 
78 Garolite 3.81 4.79 
78 Acetal 3.81 2.93 
78 Slab 3.81 4.33 
78 Garolite 4.25 4.80 
78 Acetal 4.25 2.93 
78 Slab 4.25 4.33 
78 Garolite 4.77 4.79 
78 Acetal 4.77 2.93 
78 Slab 4.78 4.29 
78 Garolite 5.21 4.75 
78 Acetal 5.21 2.91 
78 Slab 5.21 4.30 
78 Garolite 5.71 4.78 
78 Acetal 5.71 2.91 
78 Slab 5.71 4.32 
87 Garolite 0.00 4.80 
87 Acetal 0.00 2.92 
87 Slab 0.00 4.35 
87 Garolite 0.30 4.81 
87 Acetal 0.30 2.93 
87 Slab 0.30 4.37 
87 Garolite 0.98 4.79 
87 Acetal 0.98 2.91 
87 Slab 0.98 4.37 
87 Garolite 1.73 4.78 
87 Acetal 1.74 2.92 
87 Slab 1.73 4.37 
87 Garolite 2.26 4.79 
87 Acetal 2.26 2.91 
87 Slab 2.26 4.36 
87 Garolite 2.77 4.79 
87 Acetal 2.77 2.92 
87 Slab 2.77 4.37 
87 Garolite 3.27 4.79 
87 Acetal 3.27 2.92 
87 Slab 3.27 4.32 
87 Garolite 3.80 4.78 
87 Acetal 3.81 2.92 
87 Slab 3.80 4.32 
87 Garolite 4.25 4.80 
87 Acetal 4.25 2.93 
87 Slab 4.24 4.34 
87 Acetal 4.78 2.92 
87 Acetal 4.83 2.93 
87 Slab 4.77 4.33 
87 Garolite 5.20 4.81 
87 Acetal 5.20 2.93 
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Table 23. Data for Stability and Inter-Antenna Variability Study. (continued) 

Antenna Material 
Time from 1st 
Reading (hr) 

Dielectric 
Constant 

87 Slab 5.20 4.34 
87 Garolite 5.76 4.80 
87 Acetal 5.70 2.93 
87 Slab 5.75 4.33 
88 Garolite 0.00 4.74 
88 Acetal 0.00 2.91 
88 Slab 0.00 4.28 
88 Garolite 0.30 4.70 
88 Acetal 0.30 2.88 
88 Slab 0.66 4.33 
88 Garolite 0.98 4.77 
88 Acetal 0.99 2.90 
88 Slab 0.98 4.33 
88 Garolite 1.73 4.81 
88 Acetal 1.73 2.93 
88 Slab 1.73 4.33 
88 Garolite 2.26 4.78 
88 Acetal 2.26 2.91 
88 Slab 2.25 4.35 
88 Garolite 2.77 4.80 
88 Acetal 2.76 2.92 

Antenna Material 
Time from 1st 
Reading (hr) 

Dielectric 
Constant 

88 Slab 2.76 4.34 
88 Garolite 3.27 4.81 
88 Acetal 3.27 2.93 
88 Slab 3.26 4.32 
88 Garolite 3.80 4.80 
88 Acetal 3.80 2.93 
88 Slab 3.79 4.34 
88 Garolite 4.24 4.82 
88 Acetal 4.24 2.93 
88 Slab 4.23 4.34 
88 Garolite 4.81 4.82 
88 Acetal 4.81 2.94 
88 Slab 4.80 4.35 
88 Garolite 5.19 4.82 
88 Acetal 5.19 2.93 
88 Slab 5.19 4.34 
88 Garolite 5.75 4.81 
88 Acetal 5.75 2.93 
88 Slab 5.74 4.32 
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Statistical Model for Stability and Inter-Antenna Variability Study. 

Summary of Fit 
 
RSquare 0.999432 
RSquare Adj 0.999396 
Root Mean Square Error 0.019649 
Mean of Response 3.99733 
Observations (or Sum Wgts) 216 
 
Analysis of Variance 
 
Source DF Sum of 

Squares 
Mean Square F Ratio 

Model 13 137.24 10.5569 27343.73 
Error 202 0.08 0.0004 Prob > F 
C. Total 215 137.32  <.0001* 
 
Parameter Estimates 
 
Term Estimate Std Error t Ratio Prob>|t| 
Intercept 4.01 0.003 1592.0 <.0001* 
DelTime  -0.00 0.001  -1.38 0.1704 
Antenna[3]  -0.02 0.003  -5.56 <.0001* 
Antenna[4] 0.04 0.003 12.79 <.0001* 
Antenna[7]  -0.05 0.003  -16.23 <.0001* 
Antenna[78] 0.01 0.003 1.89 0.0604 
Antenna[87] 0.01 0.003 4.79 <.0001* 
Material[Acetal]  -1.09 0.002  -580.4 <.0001* 
Material[Garolite] 0.77 0.002 406.08 <.0001* 
(DelTime-2.92711)*Antenna[3] 0.00 0.002 0.69 0.4901 
(DelTime-2.92711)*Antenna[4] 0.00 0.002 0.71 0.4766 
(DelTime-2.92711)*Antenna[7]  -0.01 0.002  -5.05 <.0001* 
(DelTime-2.92711)*Antenna[78]  -0.00 0.002  -2.04 0.0426* 
(DelTime-2.92711)*Antenna[87]  -0.00 0.002  -0.65 0.5192 
 
Effect Tests 
 
Source Nparm DF Sum of 

Squares 
F Ratio Prob > F 

DelTime 1 1 0.00 1.8925 0.1704 
Antenna 5 5 0.16 81.6129 <.0001* 
Material 2 2 136.92 177314.8 <.0001* 
DelTime*Antenna 5 5 0.02 11.7655 <.0001* 

Antenna  
Least Squares Means Table 
 
Level Least Sq 

Mean 
Std Error Mean 

3 3.9893096 0.00327487 3.98931 
4 4.0441716 0.00327483 4.04417 
7 3.9574354 0.00327483 3.95747 
78 4.0115895 0.00327484 4.01161 
87 4.0202683 0.00327610 3.96847 
88 4.0128921 0.00327484 4.01295 

Material 
Least Squares Means Table  
 
Level Least Sq 

Mean 
Std Error Mean 

Acetal 2.9117932 0.00230055 2.91194 
Garolite 4.7768689 0.00233276 4.77673 
Slab 4.3291711 0.00231567 4.32922 
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Table 24. Data for Temperature Sensitivity Study. 

Antenna Material 
Temperature 

(C) 
Dielectric 
Constant 

3 Garolite 10 4.77 
3 Acetal 10 2.89 
3 Slab 10 4.35 
4 Garolite 10 4.73 
4 Acetal 10 2.87 
4 Slab 10 4.32 
7 Garolite 10 4.94 
7 Acetal 10 2.98 
7 Slab 10 4.50 
3 Garolite 10 4.73 
3 Acetal 10 2.86 
3 Slab 10 4.30 
4 Garolite 10 4.72 
4 Acetal 10 2.87 
4 Slab 10 4.33 
7 Garolite 10 4.91 
7 Acetal 10 2.96 
7 Slab 10 4.48 
3 Garolite 10 4.72 
3 Acetal 10 2.86 
3 Slab 10 4.30 
4 Garolite 10 4.71 
4 Acetal 10 2.87 
4 Slab 10 4.31 
7 Garolite 10 4.91 
7 Acetal 10 2.97 
7 Slab 10 4.49 
3 Garolite 20 4.74 
3 Acetal 20 2.88 
3 Slab 20 4.36 
4 Garolite 20 NaN 
4 Acetal 20 2.90 
4 Slab 20 4.39 
7 Garolite 20 4.85 
7 Acetal 20 2.95 
7 Slab 20 4.46 
3 Garolite 20 4.76 
3 Acetal 20 2.89 
3 Slab 20 4.36 
4 Garolite 20 4.76 
4 Acetal 20 2.89 
4 Slab 20 4.40 
7 Garolite 20 4.83 
7 Acetal 20 2.94 
7 Slab 20 4.44 
3 Garolite 20 4.75 
3 Acetal 20 2.88 
3 Slab 20 4.36 
4 Garolite 20 4.77 

Antenna Material 
Temperature 

(C) 
Dielectric 
Constant 

4 Acetal 20 2.90 
4 Slab 20 4.40 
7 Garolite 20 4.84 
7 Acetal 20 2.95 
7 Slab 20 4.45 
3 Garolite 30 4.86 
3 Acetal 30 2.96 
3 Slab 30 4.42 
4 Garolite 30 4.79 
4 Acetal 30 2.92 
4 Slab 30 4.36 
7 Garolite 30 4.70 
7 Acetal 30 2.89 
7 Slab 30 4.27 
3 Garolite 30 4.86 
3 Acetal 30 2.96 
3 Slab 30 4.41 
4 Garolite 30 4.81 
4 Acetal 30 2.92 
4 Slab 30 4.35 
7 Garolite 30 4.69 
7 Acetal 30 2.88 
7 Slab 30 4.26 
3 Garolite 30 4.86 
3 Acetal 30 2.95 
3 Slab 30 4.40 
4 Garolite 30 4.81 
4 Acetal 30 2.92 
4 Slab 30 4.36 
7 Garolite 30 4.70 
7 Acetal 30 2.88 
7 Slab 30 4.27 
3 Garolite 40 4.88 
3 Acetal 40 2.97 
3 Slab 40 4.45 
4 Garolite 40 4.84 
4 Acetal 40 2.93 
4 Slab 40 4.42 
7 Garolite 40 4.64 
7 Acetal 40 2.85 
7 Slab 40 4.25 
3 Garolite 40 4.86 
3 Acetal 40 2.95 
3 Slab 40 4.43 
4 Garolite 40 4.83 
4 Acetal 40 2.93 
4 Slab 40 4.40 
7 Garolite 40 4.64 
7 Acetal 40 2.86 
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Table 24. Data for Temperature Sensitivity Study. (continued) 

Antenna Material 
Temperature 

(C) 
Dielectric 
Constant 

7 Slab 40 4.24 
3 Garolite 40 4.86 
3 Acetal 40 2.95 
3 Slab 40 4.43 
4 Garolite 40 4.84 
4 Acetal 40 2.93 
4 Slab 40 4.38 
7 Garolite 40 4.65 
7 Acetal 40 2.86 
7 Slab 40 4.25 
3 Garolite 50 4.82 
3 Acetal 50 2.94 
3 Slab 50 4.44 
4 Garolite 50 4.85 
4 Acetal 50 2.94 
4 Slab 50 4.45 
7 Garolite 50 4.59 
7 Acetal 50 2.84 
7 Slab 50 4.23 
3 Garolite 50 4.82 
3 Acetal 50 2.94 
3 Slab 50 4.44 
4 Garolite 50 4.85 
4 Acetal 50 2.94 
4 Slab 50 4.46 
7 Garolite 50 4.58 
7 Acetal 50 2.83 
7 Slab 50 4.23 
3 Garolite 50 4.83 
3 Acetal 50 2.94 
3 Slab 50 4.45 
4 Garolite 50 4.83 
4 Acetal 50 2.94 
4 Slab 50 4.46 
7 Garolite 50 4.58 
7 Acetal 50 2.83 
7 Slab 50 4.24 

78 Garolite 10 4.81 
78 Acetal 10 2.91 
78 Slab 10 4.36 
87 Garolite 10 4.70 
87 Acetal 10 2.88 
87 Slab 10 4.30 
88 Garolite 10 4.79 
88 Acetal 10 2.90 
88 Slab 10 4.36 
78 Garolite 10 4.80 
78 Acetal 10 2.91 
78 Slab 10 4.37 

Antenna Material 
Temperature 

(C) 
Dielectric 
Constant 

87 Garolite 10 4.69 
87 Acetal 10 2.88 
87 Slab 10 4.30 
88 Garolite 10 4.79 
88 Acetal 10 2.90 
88 Slab 10 4.33 
78 Garolite 10 4.80 
78 Acetal 10 2.91 
78 Slab 10 4.38 
87 Garolite 10 4.68 
87 Acetal 10 2.87 
87 Slab 10 4.29 
88 Garolite 10 4.79 
88 Acetal 10 2.91 
88 Slab 10 4.34 
78 Garolite 20 4.74 
78 Acetal 20 2.88 
78 Slab 20 4.32 
87 Garolite 20 4.69 
87 Acetal 20 2.87 
87 Slab 20 4.32 
88 Garolite 20 4.75 
88 Acetal 20 2.90 
88 Slab 20 4.36 
78 Garolite 20 4.75 
78 Acetal 20 2.89 
78 Slab 20 4.33 
87 Garolite 20 NaN 
87 Acetal 20 2.87 
87 Slab 20 4.32 
88 Garolite 20 4.76 
88 Acetal 20 2.90 
88 Slab 20 4.36 
78 Garolite 20 4.74 
78 Acetal 20 2.89 
78 Slab 20 4.33 
87 Garolite 20 4.68 
87 Acetal 20 2.87 
87 Slab 20 4.33 
88 Garolite 20 4.77 
88 Acetal 20 2.90 
88 Slab 20 4.36 
78 Garolite 30 4.76 
78 Acetal 30 2.91 
78 Slab 30 4.35 
87 Garolite 30 4.76 
87 Acetal 30 2.91 
87 Slab 30 4.33 
88 Garolite 30 4.78 
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Table 24. Data for Temperature Sensitivity Study. (continued) 

Antenna Material 
Temperature 

(C) 
Dielectric 
Constant 

88 Acetal 30 2.93 
88 Slab 30 4.34 
78 Garolite 30 4.75 
78 Acetal 30 2.90 
78 Slab 30 4.33 
87 Garolite 30 4.76 
87 Acetal 30 2.91 
87 Slab 30 4.33 
88 Garolite 30 4.80 
88 Acetal 30 2.93 
88 Slab 30 4.35 
78 Garolite 30 4.74 
78 Acetal 30 2.90 
78 Slab 30 4.34 
87 Garolite 30 4.75 
87 Acetal 30 2.90 
87 Slab 30 4.32 
88 Garolite 30 4.79 
88 Acetal 30 2.93 
88 Slab 30 4.35 
78 Garolite 40 4.79 
78 Acetal 40 2.93 
78 Slab 40 4.39 
87 Garolite 40 4.77 
87 Acetal 40 2.91 
87 Slab 40 4.34 
88 Garolite 40 4.78 
88 Acetal 40 2.94 
88 Slab 40 4.36 
78 Garolite 40 4.79 
78 Acetal 40 2.92 
78 Slab 40 4.39 
87 Garolite 40 4.77 
87 Acetal 40 2.91 
87 Slab 40 4.34 
88 Garolite 40 4.77 
88 Acetal 40 2.93 
88 Slab 40 4.36 

Antenna Material 
Temperature 

(C) 
Dielectric 
Constant 

78 Garolite 40 4.78 
78 Acetal 40 2.91 
78 Slab 40 4.38 
87 Garolite 40 4.76 
87 Acetal 40 2.90 
87 Slab 40 4.33 
88 Garolite 40 4.78 
88 Acetal 40 2.93 
88 Slab 40 4.36 
78 Garolite 50 4.75 
78 Acetal 50 2.90 
78 Slab 50 4.42 
87 Garolite 50 4.76 
87 Acetal 50 2.90 
87 Slab 50 4.39 
88 Garolite 50 4.76 
88 Acetal 50 2.93 
88 Slab 50 4.40 
78 Garolite 50 4.77 
78 Acetal 50 NaN 
78 Slab 50 4.41 
87 Garolite 50 4.73 
87 Acetal 50 2.89 
87 Slab 50 4.37 
88 Garolite 50 4.75 
88 Acetal 50 2.92 
88 Slab 50 4.39 
78 Garolite 50 4.77 
78 Acetal 50 2.90 
78 Slab 50 4.41 
87 Garolite 50 4.74 
87 Acetal 50 2.89 
87 Slab 50 4.37 
88 Garolite 50 4.76 
88 Acetal 50 2.93 
88 Slab 50 4.39 
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Statistical Model for Temperature Sensitivity  
(No Temperature Correction) 

Residual by Predicted Plot 
 
Summary of Fit 
 
RSquare 0.988527 
RSquare Adj 0.987938 
Root Mean Square Error 0.089554 
Mean of Response 3.946332 
Observations (or Sum Wgts) 267 
 
Analysis of Variance 
 
Source DF Sum of 

Squares 
Mean Square F Ratio 

Model 13 174.82754 13.4483 1676.876 
Error 253 2.02902 0.0080 Prob > F 
C. Total 266 176.85656  <.0001* 
 
Parameter Estimates 
 
Term Estimate Std Error t Ratio Prob>|t| 
Intercept 4.3976556 0.012857 342.05 <.0001* 
Antenna[3]  -0.095994 0.012201  -7.87 <.0001* 
Antenna[4]  -0.03487 0.012313  -2.83 0.0050* 
Antenna[7]  -0.098976 0.012201  -8.11 <.0001* 
Antenna[78] 0.0667667 0.012318 5.42 <.0001* 
Antenna[87] 0.0762978 0.012313 6.20 <.0001* 
Material[Acetal]  -1.077233 0.007753  -138.9 <.0001* 
Material[Garolite] 0.7354371 0.007775 94.59 <.0001* 
Temperature  -0.014993 0.000388  -38.68 <.0001* 
Antenna[3]*(Temperature-30)  -1.829e-5 0.000863  -0.02 0.9831 
Antenna[4]*(Temperature-30) 0.0056331 0.000867 6.50 <.0001* 
Antenna[7]*(Temperature-30)  -0.005844 0.000863  -6.77 <.0001* 
Antenna[78]*(Temperature-30)  -0.002433 0.000879  -2.77 0.0061* 
Antenna[87]*(Temperature-30)  -0.000869 0.000867  -1.00 0.3172 
 
Effect Tests 
 
Source Nparm DF Sum of 

Squares 
F Ratio Prob > F 

Antenna 5 5 1.69977 42.3892 <.0001* 
Material 2 2 161.26871 10054.37 <.0001* 
Temperature 1 1 11.99605 1495.797 <.0001* 
Antenna*Temperature 5 5 0.75940 18.9381 <.0001* 
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Statistical Model for Temperature Sensitivity  
(Manufacturer Temperature Correction and No Interaction) 

Residual by Predicted Plot 
 
 
Summary of Fit 
 
RSquare 0.995768 
RSquare Adj 0.995637 
Root Mean Square Error 0.052943 
Mean of Response 4.01174 
Observations (or Sum Wgts) 267 
 
Analysis of Variance 
 
Source DF Sum of 

Squares 
Mean Square F Ratio 

Model 8 170.17528 21.2719 7589.099 
Error 258 0.72316 0.0028 Prob > F 
C. Total 266 170.89844  <.0001* 
 
Parameter Estimates 
 
Term Estimate Std Error t Ratio Prob>|t| 
Intercept 4.0077554 0.0076 527.32 <.0001* 
Antenna[3] 0.0278028 0.007213 3.85 0.0001* 
Antenna[4] 0.0180469 0.007279 2.48 0.0138* 
Antenna[7]  -0.022088 0.007213  -3.06 0.0024* 
Antenna[78] 0.0004082 0.00728 0.06 0.9553 
Antenna[87]  -0.028643 0.007279  -3.94 0.0001* 
Material[Acetal]  -1.105384 0.004583  -241.2 <.0001* 
Material[Garolite] 0.7561049 0.004596 164.50 <.0001* 
Temperature 0.0001823 0.000229 0.80 0.4269 
 
Effect Tests 
 
Source Nparm DF Sum of 

Squares 
F Ratio Prob > F 

Antenna 5 5 0.10807 7.7114 <.0001* 
Material 2 2 169.95464 30317.04 <.0001* 
Temperature 1 1 0.00177 0.6331 0.4269 
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Statistical Model for Temperature Sensitivity  
(Manufacturer Temperature Correction With Interaction) 

Residual by Predicted Plot 
 
Summary of Fit 
 
RSquare 0.998845 
RSquare Adj 0.998785 
Root Mean Square Error 0.027935 
Mean of Response 4.01174 
Observations (or Sum Wgts) 267 
 
Analysis of Variance 
 
Source DF Sum of 

Squares 
Mean Square F Ratio 

Model 13 170.70100 13.1308 16826.20 
Error 253 0.19744 0.00078 Prob > F 
C. Total 266 170.89844  <.0001* 
 
Parameter Estimates 
 
Term Estimate Std Error t Ratio Prob>|t| 
Intercept 4.0073594 0.004011 999.21 <.0001* 
Antenna[3] 0.0279203 0.003806 7.34 <.0001* 
Antenna[4] 0.0176106 0.003841 4.58 <.0001* 
Antenna[7]  -0.021971 0.003806  -5.77 <.0001* 
Antenna[78] 0.0006621 0.003842 0.17 0.8633 
Antenna[87]  -0.028813 0.003841  -7.50 <.0001* 
Material[Acetal]  -1.105198 0.002419  -457.0 <.0001* 
Material[Garolite] 0.7558018 0.002425 311.62 <.0001* 
Temperature 0.0001916 0.000121 1.58 0.1143 
Antenna[3]*(Temperature-30) 0.0025378 0.000269 9.43 <.0001* 
Antenna[4]*(Temperature-30) 0.0023968 0.00027 8.87 <.0001* 
Antenna[7]*(Temperature-30)  -0.006684 0.000269  -24.84 <.0001* 
Antenna[78]*(Temperature-30) 0.0002816 0.000274 1.03 0.3054 
Antenna[87]*(Temperature-30) 0.0012246 0.00027 4.53 <.0001* 
 
Effect Tests 
 
Source Nparm DF Sum of 

Squares 
F Ratio Prob > F 

Antenna 5 5 0.10793 27.6603 <.0001* 
Material 2 2 169.83945 108818.3 <.0001* 
Temperature 1 1 0.00196 2.5108 0.1143 
Antenna*Temperature 5 5 0.52573 134.7358 <.0001* 
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APPENDIX B  

FIELD PROJECT DETAILS 

The SH 6-Valley Mills project was located outside of Waco, starting at the Valley Mills 

city limit and running east 10 miles (Figure 37). This roadway is an undivided two-way rural 

highway with occasional passing and turning lanes. The AADT is about 7,000. A dense-graded 

Ty-D mix with a thickness of 2.0 in. was laid over existing HMA. Paving occurred in summer 

2016. The SH 6-Waco project was located on the south side of Waco, starting at Bagby Ave. and 

running west 10 miles. This roadway is a divided four-lane freeway with an AADT around 

70,000 on the east end and 25,000 on the west end. A TOM-C mix with a thickness of 1.0 in. 

was laid over a milled surface. Paving occurred in summer 2017. 

 
Figure 37. SH 6-Valley Mills and Waco Project Locations. 

The SH 30 project was located in College Station between Texas Avenue and SH 6. This 

roadway is an urban four-lane minor arterial with an AADT of 20,000. An SMA-C mix with a 

thickness of 2.0 in. was laid over a milled surface. Paving occurred in summer 2017. 

SH 6‐Valley 

SH 6‐Waco 

Waco 
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Figure 38. SH 30 Project Location. 

The RELLIS test sections were located near Bryan, TX at the Texas A&M RELLIS 

Campus (Figure 39). Several test sections consisting of a 1-inch TOM-F surface over a 2-inch 

dense-graded Ty-D mix were constructed over both flexible and rigid substrates. Sections were 

assigned to different rolling patterns to compact under, at, and above optimum. The pavement 

designs and locations of each test section are illustrated in Figure 40 and Figure 41. Paving 

occurred in late summer 2017.  

SH 30 
College Station 
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Figure 39. RELLIS Project Location. 

 

Figure 40. Pavement Layer Designs. 
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Figure 41. Schematic Layout for Test Section and Compaction Level for Each Section. 

The SL 79-Del Rio project was located in the Laredo District, just west of Del Rio, 

between US 90 and Dr. Fermin Calderon Blvd. for about 1.5 miles (Figure 39). This roadway is 

a rural principal arterial. As part of significant rehabilitation, two 3.5-inch lifts of Superpave Ty-

B were laid, which is considerably thicker than any of the other projects tested in this study. 

Paving occurred in spring 2018 and the entire project remained closed to traffic while other 

construction work was continuing. All testing by the research team was done a month after 

paving. 
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Figure 42. SL 79 Project Location. 

The SH 149-Beckville project was located in the Atlanta District between Tatum and 

Beckville for approximately 5 miles (Figure 43). The roadway is a rural minor arterial with an 

AADT of 6,500. A SP-C mix with a thickness of 1.5 inches was laid over new and existing 

pavement in summer 2017. 

Del Rio 

SL 79 
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Figure 43. SH 149 Project Location 

The IH 45-Huntsville project was located in the Bryan District between Huntsville and 

Madisonville, for several miles (Figure 44). The roadway is a divided rural interstate with four 

lanes and an AADT of 35,000. A SMA-D mix with a thickness of 2.0 inches was laid over 

milled pavement in summer 2017. During compaction, the team noticed that the rollers tended to 

under-compact the confined joint. This was caused by the rollers riding up on the adjoining cold 

mat, inhibiting loading in the jointed wedge region. The surface was later finished with a PFC.  

Tatum 

Beckville 
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Figure 44. IH 45 Project Location. 

The FM 158-Bryan project was in the Bryan District between SH 21 and Business 6 

(Texas Ave.) for 1.2 miles (Figure 45). The roadway is an urban principal arterial with 4 lanes 

and a center turn lane and carries between 9,700 and 13,000 AADT. The surface was milled and 

then in-laid with 2 inches of SP-D in late spring of 2019.  

 

Figure 45. FM 158 Project Location. 

Huntsville 

Madisonville 

IH 45 
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The US 59-Texarkana project was in the Atlanta District and was just southwest of 

Texarkana and ran 5 miles (Figure 46). The roadway was a rural principal arterial with 4 lanes 

and a center turn lane and had 15,000 to 16,000 AADT. An SMA-D mixture was placed at 2.0 

inches thick in the summer of 2019.  In this project, data were only collected for one day of 

paving. 

 
Figure 46. US 59 Project Location. 

The SH 40-College Station project was in the Bryan District on the south side of College 

Station (Figure 47). The roadway is a four lane, divided, urban principal arterial with 13,000 to 

Texarkana 

US 59 
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21,000 AADT. In the summer of 2019, a SP-C mixture was placed between 1.5 and 3-inches 

thick. In most cases the mix was overlaid on a seal coat surface, and in some cases the surface 

was milled prior to an inlay. Compaction was accomplished with 3 vibratory passes of the 

breakdown roller, 2 static passes with a pneumatic roller, followed by a finish roller. 

 

Figure 47. SH 40 Project Location. 
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APPENDIX C  

FIELD DATA 

GPR DENSITY PROFILER CALIBRATION AND VERIFICATION 

Calibration and prediction performance are summarized in Table 25, Table 26, and each 

project’s calibration and verification data are illustrated in Figure 48. 

Table 25. Calibration Summaries. 

Project R2 RMSE a b 
SH 6-Valley Mills-DG D 0.92 0.76 1679.7 -1.060 
SH 30-College St-SMA C 0.94 0.45 490.9 -0.844 
SH 6-Lake Waco-TOM C 0.91 0.73 183.5 -0.588 

RELLIS-DG D 0.80 0.98 1213.5 -0.919 
RELLIS-TOM F 0.85 1.07 550.7 -0.709 

SL 79-Del Rio-DG B 0.97 0.55 336.8 -0.725 
SH 149-Beckville-SP C 0.97 0.56 4529.0 -1.448 

IH 45-Huntsville-SMA C 0.95 0.58 4308.1 -1.130 
FM 158-Bryan-SP D 0.62 1.80 1307.3 -0.994 

SH 40-College St-SP TyC 0.94 0.50 256.9 -0.785 
US 59-Texarkana-SMA D 0.82 0.79 79.8 -0.698 

Table 26. Prediction Performance by Project. 

Project 
Prediction Within Calibration Lot* Prediction for Subsequent Lots 

R2 RMSE Bias 
(%) 

Margin of 
Error (%) RMSE Bias 

(%) 
Margin of 
Error (%) 

SH 6-Vlly Mills-DG D NA NA -0.88 ±0.47 1.61 0.78 ±2.84 
SH 30-Cllg St-SMA C 0.93 0.21 -0.04 ±0.5 1.28 0.98 ±1.66 
SH 6-Lk Waco-TOM C 0.81 0.50 -0.42 ±0.65 1.98 -1.62 ±2.3 

RELLIS-DG D 0.82 0.84 -0.20 ±1.63 2.36 2.17 ±1.87 
RELLIS-TOM F 0.53 1.62 0.17 ±3.22 NA NA NA 

SL 79-Del Rio-DG B 0.84 0.95 -0.31 ±2.16 0.89 0.31 ±1.7 
SH 149-Beckville-SP C 0.79 0.77 0.43 ±1.54 1.02 0.35 ±1.96 
IH 45-Huntsvll-SMA C 0.02 1.60 -0.66 ±3.5 1.64 -0.48 ±3.21 

FM 158-Bryan-SP D -2.84 1.80 1.72 ±1.32 2.20 2.05 ±1.66 
SH 40-Cllg St-SP TyC -0.11 1.66 0.07 ±3.98 1.27 1.06 ±1.44 
US 59-Txrkn-SMA D -12.4 1.57 -0.93 ±3.02 0.72 -0.30 ±1.48 

* Within-lot calibrations made using 66% of the calibration cores (typically 6 cores), and the remaining cores 
used for verification. 
Red cells indicate bias greater than ±1%. 
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SH 6-Valley Mills 

  
SH 30-College Station 

   
SH 6-Lake Waco 

Figure 48. Calibration and Verification. 
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RELLIS-DG D 

  
RELLIS-TOM C 

  
SL 79-Del Rio C 

Figure 48. Calibration and Verification. (Continued) 
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SH 149-Beckville 

  
IH 45-Huntsville 

  
FM 158-Bryan 

Figure 48. Calibration and Verification. (Continued) 
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US 59-Texarkana  

  
SH 40-College Station 

 
US 287-Groveton 

Figure 48. Calibration and Verification. (Continued) 
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SS 248-Tyler 

Figure 48. Calibration and Verification. (Continued) 
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PREDICTED AIR VOID DISTRIBUTIONS 

Summary statistics and air void distribution data are presented in Table 27 and Figure 49. 

Table 27. Predicted Air Void Summary Statistics. 

Project Lot 
Predicted Air Voids (%) 

Average St. Dev. Median 5th_Percentile 95th Percentile 

SH 6-Valley Mills 

6-1 6.9 1.1 6.9 5.3 8.9 
6-2 6.9 1.2 6.9 5.0 9.0 
8-1 6.9 1.3 6.8 4.9 9.2 
8-2 7.0 1.2 6.9 5.3 8.9 
9-1 7.7 1.6 7.4 5.7 10.6 
11-1 5.7 3.2 5.6 4.0 7.6 
11-2 5.6 0.9 5.5 4.2 7.2 

SH 30-College Station 

2-1 5.9 1.0 5.8 4.3 7.5 
3-1 5.8 1.0 5.7 4.4 7.6 
3-2 6.3 0.8 6.2 5.0 7.6 
3-3 6.3 0.9 6.3 5.1 7.8 
4-2 5.7 0.9 5.7 4.2 7.2 
4-3 5.7 0.9 5.6 4.3 7.2 
4-4 5.4 1.0 5.3 4.0 7.0 

SH 6-Lake Waco 

2-1 11.3 1.2 11.2 9.5 13.5 
3-1 10.6 1.2 10.6 8.8 12.4 
3-2 11.4 1.0 11.3 9.8 13.0 
3-3 11.2 1.2 11.3 9.3 13.1 
8-1 12.0 1.6 11.9 9.6 14.8 
8-2 11.8 1.1 11.8 10.0 13.7 

SL 79-Del Rio 

6-2 4.6 0.9 4.5 3.3 6.3 
6-3 4.3 0.7 4.3 3.3 5.5 
7-1 5.0 0.8 4.9 3.8 6.4 
7-2 4.3 0.7 4.3 3.3 5.5 
7-3 4.9 0.7 4.9 3.8 6.2 
8-2 4.3 0.7 4.2 3.2 5.5 
8-3 4.2 0.7 4.1 3.2 5.4 
8-4 4.1 0.9 4.1 3.0 5.4 

 

Table 27. Predicted Air Void Summary Statistics. (Continued) 
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Project Lot 
Predicted Air Voids (%) 

Average St. Dev. Median 5th_Percentile 95th Percentile 

SH 149-Beckville 

2-3 5.7 1.4 5.5 3.6 8.2 
2-4 4.2 1.6 3.8 2.2 7.0 
3-1 5.9 1.6 5.7 3.8 8.5 
2-2 5.6 1.3 5.5 3.7 7.9 
4-1 6.4 1.4 6.2 4.4 9.1 
4-2 5.6 1.0 5.5 4.0 7.4 
4-3 4.6 1.0 4.5 3.3 6.3 

IH 45-Huntsville 

4-1 6.0 1.2 5.9 4.4 7.9 
6-1 6.8 3.3 6.3 4.5 10.6 
6-2 6.9 1.9 6.7 4.4 10.2 
6-3 6.3 1.9 6.2 3.9 9.1 
7-1 5.8 1.3 5.5 4.1 8.2 
7-2 6.8 1.9 6.4 4.2 10.1 
7-3 6.5 1.9 6.0 4.2 10.1 

FM158-Bryan 

2-1 5.3 4.0 5.0 3.4 7.6 
4-1 6.4 3.6 6.1 4.3 9.1 
4-2 6.8 1.2 6.7 5.2 9.0 
5-1 6.4 1.6 6.2 4.3 9.1 
5-2 6.7 1.8 6.4 4.3 9.7 
6-1 5.6 1.3 5.5 3.8 7.9 
6-2 6.1 1.3 6.0 4.3 8.4 

US59-Texarkana 

2-4 5.4 0.5 5.4 4.7 6.2 
3-1 5.4 0.5 5.4 4.7 6.2 
3-2 5.5 0.4 5.4 4.8 6.2 
3-3 5.4 0.4 5.4 4.8 6.1 

SH40-College Station 

5-1 4.0 0.8 3.9 2.9 5.2 
5-2 3.7 0.7 3.6 2.8 5.3 
5-3 3.6 0.9 3.4 2.5 5.3 
6-1 3.9 0.7 3.8 3.0 5.2 
6-2 3.9 0.8 3.8 2.8 5.2 
6-3 3.8 0.7 3.7 2.9 5.4 
7-1 4.3 0.8 4.2 3.0 5.6 
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SH 6-Valley Mills  

  
SH 30-College Station 

 
SH 6-Lake Waco 

Figure 49. Air Void Distributions. 
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SL 79-Del Rio 

 
SH 149-Beckville 

 
IH 45-Huntsville 

Figure 49. Air Void Distributions. (Continued) 
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FM 158-Bryan 

 
US 59-Texarkana.  

 
SH 40-College Station  

Figure 49. Air Void Distributions. (Continued) 
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APPENDIX D  

LABORATORY DATA 

The laboratory data for the mixture sensitivity analysis is in Table 28 
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Table 28. Laboratory Results for Dielectric Sensitivity Study. 

 

  

AC 

Rank

Coarse 

Agg Rank

Voids 

Rank

Asphalt 

Content (%)

Coarse Agg 

Sub. (%)

Air Voids 

(%)

Asphalt 

Content (%)
Gmm Gmb

Coarse 

Agg SG

Air Voids 

(%)
Average St Dev

SH 6‐Valley Mills‐DG D 10/24/2018 2 2 1 5.2 0 3.3 5.39 2.420 2.265 2.567 6.43 5.01 0.08

SH 6‐Valley Mills‐DG D 10/24/2018 2 2 3 5.2 0 8.5 5.97 2.412 2.219 2.567 8.01 4.96 0.13

SH 6‐Valley Mills‐DG D 10/24/2018 1 2 2 4.7 0 5.9 5.12 2.424 2.233 2.567 7.89 4.82 0.16

SH 6‐Valley Mills‐DG D 10/24/2018 3 2 2 5.7 0 5.9 6.04 2.407 2.226 2.567 7.50 4.76 0.06

SH 6‐Valley Mills‐DG D 10/24/2018 2 1 2 5.2 ‐12 5.9 5.96 2.419 2.216 2.583 8.37 4.88 0.15

SH 6‐Valley Mills‐DG D 10/24/2018 2 3 2 5.2 12 5.9 5.50 2.413 2.214 2.551 8.22 4.94 0.05

SH 6‐Valley Mills‐DG D 10/24/2018 1 3 1 4.7 12 3.3 5.16 2.425 2.285 2.551 5.80 5.21 0.06

SH 6‐Valley Mills‐DG D 10/24/2018 3 1 3 5.7 ‐12 8.5 6.01 2.416 2.190 2.583 9.36 4.77 0.18

SH 30‐College St‐SMA C 10/23/2018 2 2 1 6 0 3 6.35 2.377 2.330 2.554 1.97 5.64 0.20

SH 30‐College St‐SMA C 10/23/2018 2 2 3 6 0 5.5 6.22 2.384 2.274 2.554 4.61 5.20 0.14

SH 30‐College St‐SMA C 10/23/2018 1 2 2 5.5 0 3 5.77 2.405 2.324 2.554 3.38 5.68 0.18

SH 30‐College St‐SMA C 10/23/2018 3 2 2 6.5 0 8 6.52 2.380 2.256 2.554 5.21 5.15 0.12

SH 30‐College St‐SMA C 10/23/2018 2 1 2 6 ‐12 5.5 6.43 2.385 2.269 2.555 4.84 5.41 0.11

SH 30‐College St‐SMA C 10/23/2018 2 3 2 6 12 5.5 6.71 2.380 2.274 2.553 4.47 5.10 0.11

SH 30‐College St‐SMA C 10/23/2018 1 3 1 5.5 12 3 6.20 2.409 2.322 2.553 3.59 5.53 0.22

SH 30‐College St‐SMA C 10/23/2018 3 1 3 6.5 ‐12 8 6.57 2.387 2.241 2.555 6.13 5.34 0.07

SH 6‐Lake Waco‐TOM C 10/24/2018 2 2 1 6.6 0 7.4 7.31 2.400 2.213 2.622 7.82 4.84 0.04

SH 6‐Lake Waco‐TOM C 10/24/2018 2 2 3 6.6 0 12.6 7.47 2.394 2.140 2.622 10.61 4.52 0.05

SH 6‐Lake Waco‐TOM C 10/24/2018 1 2 2 6.1 0 10 6.46 2.426 2.189 2.622 9.75 4.75 0.09

SH 6‐Lake Waco‐TOM C 10/24/2018 3 2 2 7.1 0 10 7.34 2.395 2.159 2.622 9.86 4.62 0.13

SH 6‐Lake Waco‐TOM C 10/24/2018 2 1 2 6.6 ‐12 10 7.33 2.418 2.201 2.664 8.97 4.76 0.05

SH 6‐Lake Waco‐TOM C 10/24/2018 2 3 2 6.6 12 10 6.90 2.394 2.162 2.579 9.66 4.62 0.09

SH 6‐Lake Waco‐TOM C 10/24/2018 1 3 1 6.1 12 7.4 6.26 2.404 2.201 2.579 8.42 4.77 0.04

SH 6‐Lake Waco‐TOM C 10/24/2018 3 1 3 7.1 ‐12 12.6 7.37 2.417 2.132 2.664 11.80 4.48 0.04

Surface DielectricDesign Actual

Project
Date 

Tested
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Table 28. Laboratory Results for Dielectric Sensitivity Study. (Continued) 

 

 

AC 

Rank

Coarse 

Agg Rank

Voids 

Rank

Asphalt 

Content (%)

Coarse Agg 

Sub. (%)

Air Voids 

(%)

Asphalt 

Content (%)
Gmm Gmb

Coarse 

Agg SG

Air Voids 

(%)
Average St Dev

SH 149‐Beckville‐SP C 10/24/2018 2 2 1 5.3 0 3 5.72 2.478 2.370 2.632 4.36 4.95 0.10

SH 149‐Beckville‐SP C 10/24/2018 2 2 3 5.3 0 8 6.08 2.460 2.302 2.632 6.42 4.68 0.08

SH 149‐Beckville‐SP C 10/24/2018 1 2 2 4.8 0 5.5 5.64 2.484 2.370 2.632 4.58 4.92 0.06

SH 149‐Beckville‐SP C 10/24/2018 3 2 2 5.8 0 5.5 6.80 2.449 2.345 2.632 4.25 4.91 0.12

SH 149‐Beckville‐SP C 10/24/2018 2 1 2 5.3 ‐12 5.5 5.95 2.464 2.358 2.602 4.29 5.19 0.07

SH 149‐Beckville‐SP C 10/24/2018 2 3 2 5.3 12 5.5 6.03 2.479 2.357 2.659 4.91 4.88 0.06

SH 149‐Beckville‐SP C 10/24/2018 1 3 1 4.8 12 3 5.64 2.497 2.400 2.659 3.89 4.96 0.06

SH 149‐Beckville‐SP C 10/24/2018 3 1 3 5.8 ‐12 8 6.42 2.440 2.303 2.602 5.61 4.93 0.04

SL 79‐Del Rio‐DG B 11/23/2018 2 2 1 4.5 0 3 5.12 2.451 2.328 2.569 5.04 5.68 0.10

SL 79‐Del Rio‐DG B 11/23/2018 2 2 3 4.5 0 8 5.14 2.455 2.264 2.569 7.78 5.23 0.11

SL 79‐Del Rio‐DG B 11/23/2018 1 2 2 4 0 5.5 4.75 2.470 2.304 2.569 6.75 5.48 0.20

SL 79‐Del Rio‐DG B 11/23/2018 3 2 2 5 0 5.5 5.32 2.438 2.292 2.569 5.99 5.34 0.15

SL 79‐Del Rio‐DG B 11/23/2018 2 1 2 4.5 ‐12 5.5 4.95 2.456 2.293 2.563 6.61 5.46 0.09

SL 79‐Del Rio‐DG B 11/23/2018 2 3 2 4.5 12 5.5 4.96 2.456 2.312 2.575 5.86 5.46 0.20

SL 79‐Del Rio‐DG B 11/23/2018 1 3 1 4 12 3 4.58 2.474 2.352 2.575 4.91 5.78 0.06

SL 79‐Del Rio‐DG B 11/23/2018 3 1 3 5 ‐12 8 5.36 2.437 2.247 2.563 7.79 5.25 0.12

Surface DielectricDesign Actual

Project
Date 

Tested
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APPENDIX E  

DETAILED FIELD AND LABORATORY STATISTICAL RESULTS 

Model Verification Study Statistical Results: Empirical vs PaveSCM Models, Same Day 
RMSE 

 

 

Absolute Bias 
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Model Verification Study Statistical Results: Same Day vs Different Day, Empirical 
RMSE 

 

 

Absolute Bias 

 

 

 
 
 

 

 
  



 

117 

 

Model Verification Study Statistical Results: Empirical vs PaveSCM, Different Day 
RMSE 

 

 

 
 

Absolute Bias 
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Dielectric Sensitivity Study Statistical Results 

 Model 1 Model 2 
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Dielectric Sensitivity Study Statistical Results 

Model 3 
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Model of RMSE for Verification Cores by Day and Model. 
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Model of Absolute Bias for Verification Cores by Day and Model. 
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Comparison of PWL When Including or Excluding Joint Data. 

  

 


