

DESIGN, ANALYSIS, AND CONTROL OF A CABLE-SUSPENDED ROBOT

FOR

LARGE-SCALE ADDITIVE MANUFACTURING

A Dissertation

by

IVAN CORTES

Submitted to the Graduate and Professional School of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Won-jong Kim

Committee Members, Prabhakar Pagilla

 Bruce Tai

 Mehrdad Ehsani

Head of Department, Guillermo Aguilar

May 2022

Major Subject: Mechanical Engineering

Copyright 2022 Ivan Cortes

ii

ABSTRACT

Additive manufacturing (AM) and cable-suspended robots (CSRs) are two areas of

technology that evolved rapidly in the last decades. This dissertation explores combining

the two ideas to create a cable-suspended robot for large-scale additive manufacturing.

AM technologies allow for the creation of products by combining material, layer by layer,

in an automated process. This capability has been introduced in numerous industries with

the promise of increasing productivity and lowering operating costs. However, AM has

typically been limited to small physical dimensions because AM processes require precise

control of materials. CSRs may facilitate AM at larger scales by providing a low-cost,

flexible method for position control in some types of AM, such as fused deposition

modeling (FDM) or directed energy deposition (DED). However, position control at large

scales is challenged by environmental factors, such as external disturbances and structural

imperfections in the AM machine. An analysis of the CSR configurations and control

strategies is useful in determining whether large-scale AM is a practical application for

this kind of robot. This dissertation presents (1) the general design concept and analyses

of a CSR for large-scale AM, (2) closed-loop control strategies in presence of external

disturbances, and (3) experimental results of a laboratory-scale prototype. The complete

work suggests that a CSR with closed-loop control may be used for precise position

control even withstanding some structural imperfections. However, the control strategies

presented here leave room for improvement of the CSR design as it remains vulnerable to

high-frequency external disturbances.

iii

DEDICATION

 I completed this work thinking of my family. They always supported and

encouraged me, and I am forever grateful for that. I dedicate this dissertation to them first.

 I must also mention my great friends who were always by my side. I lived through

this experience with them. Thank you fellas.

iv

ACKNOWLEDGMENTS

 I would like to give special thanks and acknowledgment to my research advisor

for his constant support and guidance in the last several years. His advice will forever

guide my work as a researcher and engineer. Thank you, Dr. Kim, for all of your help.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professors

Won-jong Kim, Prabhakar Pagilla, and Bruce Tai of the J. Mike Walker ’66 Department

of Mechanical Engineering and Professor Mehrdad Ehsani of the Department of Electrical

and Computer Engineering. Professor Swaroop Darbha, also of the J. Mike Walker ’66

Department of Mechanical Engineering, supported this work as an examiner in the

student’s final examination.

All work conducted for this dissertation was completed by the student

independently.

Funding Sources

Graduate study was supported by fellowship awards from the J. Mike Walker ’66

Department of Mechanical Engineering.

vi

NOMENCLATURE

2D Two dimensional

3D Three dimensional

AC Alternating current

ADC Analog-to-digital converter

AM Additive manufacturing

CCM Cable-connection matrix

CSR Cable-suspended robot

CV Computer vision

DAQ Data acquisition

DC Direct current

DED Directed energy deposition

DLP Digital light processing

DOF Degree of freedom

EBAM Electron beam additive manufacturing

FDM Fused deposition modeling

FPS Frames per second

IMU Inertial measurement unit

PC Personal computer

PID Proportional integral derivative

PPR Pulses per revolution

PWM Pulse-width modulation

vii

SEP Static equilibrium point

SLA Stereolithography

SLS Selective laser sintering

UV Ultraviolet

viii

TABLE OF CONTENTS

Page

ABSTRACT ...ii

DEDICATION ... iii

ACKNOWLEDGMENTS ... iv

CONTRIBUTORS AND FUNDING SOURCES .. v

NOMENCLATURE .. vi

LIST OF TABLES ... x

LIST OF FIGURES ... xi

1. INTRODUCTION .. 1

1.1. Additive Manufacturing .. 2
1.1.1. Technologies and Applications .. 2

1.1.2. Large-Scale Manufacturing .. 10
1.2. Cable-Suspended Robots .. 14

1.2.1. Configurations .. 14
1.2.2. Analysis and Control .. 19

1.2.3. Applications in Additive Manufacturing .. 22

2. CONTRIBUTIONS OF THIS DISSERTATION .. 27

2.1. Cable-Suspended Robot Design .. 27

2.1.1. Configuration Analysis ... 27
2.1.2. Sensor and Actuator Selection ... 28

2.2. Position Control .. 28
2.2.1. System Modeling .. 29
2.2.2. Controller Design ... 29

2.2.3. Cable Placement Estimation ... 29
2.3. Prototype Experiment .. 30

2.3.1. Closed-Loop Control .. 30
2.3.2. Disturbance Testing .. 30

3. ANALYSIS AND SIMULATION ... 31

3.1. Cable-Suspended Robot Design .. 31

ix

3.1.1. Base Configuration ... 31
3.1.2. Kinematics .. 38

3.1.3. Kinetics ... 47
3.1.4. Tension Analysis .. 51
3.1.5. Stiffness Analysis ... 68
3.1.6. Sensors .. 77
3.1.7. Actuators .. 83

3.2. Position Control .. 86
3.2.1. Cable Models .. 87
3.2.2. System Models ... 91
3.2.3. Disturbances ... 95

3.2.4. Tension-Based Control ... 98
3.2.5. Cable-Length Control ... 113
3.2.6. Anchor-Point Position Estimation .. 141

4. EXPERIMENTAL PROTOTYPE ... 151

4.1. Robot Frame .. 152

4.2. Cable System ... 154
4.3. DC Motors ... 156
4.4. Microcontrollers .. 157

4.5. Kinect Camera ... 161
4.6. Personal Computer .. 163

5. EXPERIMENTAL RESULTS ... 165

5.1. DC Motor Servo Loops ... 165

5.2. Camera Position Tracking ... 167
5.3. Nominal Performance ... 172

5.4. Cable-Length Error ... 174
5.5. Camera Measurement Error .. 177
5.6. Dynamic Cable Disturbance.. 179

5.7. Anchor-Point Position Error.. 184
5.8. Anchor-Point Position Estimation ... 186
5.9. AM Layers... 188

6. CONCLUSIONS AND FUTURE WORK .. 196

REFERENCES ... 199

APPENDIX A: ANALYSIS CODES .. 209

APPENDIX B: EXPERIMENT CODES ... 287

APPENDIX C: MAXIMAL CLIQUE ALGORITHM .. 318

x

LIST OF TABLES

Table 1. Comparison of metrics for the three tension-optimization methods. 112

Table 2. DC motor variables, descriptions, and representative values........................... 116

Table 3. List of functions fulfilled by the Arduino Mega 2560 microcontroller

boards. ... 159

Table 4. Algorithm used to measure the 3-D position of the mass using the Kinect

sensor. ... 162

xi

LIST OF FIGURES

Figure 1. (a) The Creator Pro machine from flashforge.com. This FDM machine

features a build volume of 227×148×150 mm, two extruders, and produces

polymer parts with a minimum layer thickness of 0.1 mm. (b) A diagram of

the FDM process [2]. .. 5

Figure 2. (a) The Connex3 Objet500 from Stratasys.com. This production-quality

material jetting machine offers a build size of 490×390×200 mm, multiple

material options, and layers as thin as 16 μm. (b) A diagram of the material

jetting process [2]. .. 6

Figure 3. (a) The DMP Flex 350 machine from 3Dsystems.com. This production-

quality SLS machine produces metal parts in a build volume of 275×275×420

mm with a minimum layer thickness of 5 μm. This machine requires

compressed air, Argon gas, and water cooling to operate. (b) A diagram of

the SLS process [2]. .. 7

Figure 4. (a) The Form 3 machine from Formlabs.com. This desktop SLA machine

features a 145×145×185 mm build volume and a minimum layer thickness of

25 μm. The laser is housed in the lower compartment and the resin held in a

tray in the middle of the machine. (b) A diagram of a DLP machine [2]. In

SLA, a laser is used instead of a projector. In some machines, the projector

or laser are above the resin. .. 8

Figure 5. The Modulo 400 machine from Beam-machines.com (a) and a close view of

the deposition nozzle (b). This DED machine is used to produce or repair

metal parts. The build volume is 650×400×400 mm and the nozzle diameter

is around 1 to 2 mm. The metal is supplied in powder form and is melted at

the nozzle using a laser. .. 9

Figure 6. Full-size boat hull created in 72 hours using FDM of polymer material [5]. ... 10

Figure 7. The Big Area Additive Manufacturing machine from E-ci.com. This large-

format FDM machine extrudes plastics through a large nozzle (with a 0.2- to

0.4-in diameter) and can create pieces as large as 6.1×2.3×1.8 m. 11

Figure 8. Robotic arm with a concrete extruder developed by Apis Cor [6] 12

Figure 9. The EBAM 300 machine by Sciaky Incorporated. This machine uses electron

beam additive manufacturing (EBAM) technology to create high-strength

metal parts. It is claimed to be the largest 3D printer for metal parts that is fit

for industrial and commercial use [14]. .. 13

xii

Figure 10. The simplest CSR, with only one cable that raises or lowers an end effector.

 .. 15

Figure 11. CSR concept that uses two cables and adjustable pulley locations [16]. 16

Figure 12. (a) A CSR configuration with three cables and (b) the movement space. 16

Figure 13. CSR concept with six cables to increase stiffness and improve control [17]. 17

Figure 14. One example of FDM accomplished by using a CSR [53]. 23

Figure 15. Cable-suspended FDM machine controlled using stepper motors. (a) Actual

machine and (b) representative diagram [29]. .. 23

Figure 16. Example of a large CSR that deposits clay material [54]. 25

Figure 17. A recent example of a large-scale CSR for concrete FDM. The test path is a

square with the side length of 0.8 m [55]. .. 26

Figure 18. (a) A CSR configuration with three cables, where one cable anchor point is

lower than the other two and (b) the movement space. 32

Figure 19. (a) A CSR configuration with four cables and (b) the movement space. 33

Figure 20. (a) One embodiment of the SkyCam system, a sport camera that is suspended

by four cables [56]. (b) The system drawing as presented in a 2005 U.S. patent

[57]. ... 35

Figure 21. A CSR configuration for large-scale AM where four cables from the top

corners position the extruder and additional horizontal cables stabilize the

extruder [52]. .. 36

Figure 22. (a) A large-scale AM CSR with 4 cables and (b) a detail view of the AM

nozzle platform. This configuration concept is the object of study in this

dissertation. ... 37

Figure 23. The length of a redundant cable can be bigger than that predicted by (3), but

it should not be shorter. .. 40

Figure 24. (a) An end-effector position that cannot be supported by the four-cable

configuration. The shaded region is the supported workspace. (b) Top view

of the unsupported position. ... 40

Figure 25. (a) An example six-cable configuration and (b) a top view. The shaded

region is the supported workspace, which is the 3-D convex hull of the cable

anchor points and their footprints. .. 41

xiii

Figure 26. (a) Top view of a three-cable CSR. (b) The cables are replaced by spheres

centered at the cable anchor points and with the radius equal to the cable

lengths. The intersection of the three spheres is the position of the end

effector. ... 43

Figure 27. Example of a four-cable system where one cable has slack (two views). 46

Figure 28. Example of a six-cable system where two cables have slack and one cable

is too short (two views). .. 46

Figure 29. Nominal forces acting on a point mass suspended by four cables. 48

Figure 30. External forces that may act on a CSR end effector in an AM application. ... 49

Figure 31. (a) Concrete extrusion diagram depicting the flow of material through an

FDM process [59] and (b) an actual concrete nozzle depositing material

layers [60]. .. 50

Figure 32. (a) Top view of a five-cable CSR system. (b) The same system where all but

three cable tensions are set to zero. The x-y force of one of the cables, shown

as an arrow pointing to the left, is exactly counteracted by the net x-y force

of the other two cables, shown as an arrow pointing to the right. 58

Figure 33. Cable-tension vectors for a four-cable CSR at static equilibrium. Equally-

spaced points are sampled along a 2D plane at (a) 0.3-m height and (b) 0.7-

m height. ... 59

Figure 34. Cable tension (a) minimizing the sum of tensions and (b) minimizing the

sum of squared tensions. ... 60

Figure 35. The sum of the four cable tensions for a CSR at static equilibrium. The

configuration is the same as that in Figure 34, and the sampled points are at

0.7-m height. Plot (a) uses method (15) to calculate the tensions, and (b) uses

method (16). .. 61

Figure 36. The sum of the four squared cable tensions for a CSR at static equilibrium.

The configuration is the same as that in Figure 34, and the sampled points are

at 0.3-m height. Plot (a) uses method (15) to calculate the tensions, and (b)

uses method (17). .. 62

Figure 37. The cable tensions for a CSR in static equilibrium at 0.3-m height. (a) A

three-cable system where there are no redundant cables and the cable tensions

are unique. (b) A six-cable system where the cable tensions were calculated

using (15). ... 63

xiv

Figure 38. Top view of a five-cable CSR. (a) A general x-y force can be produced by

two cables in the system, with all other cables having zero tension. (b) The

same net x-y force can be produced by increasing one of the other cable

tensions and adjusting the cable tensions of the original two cables. The z

force will be greater than before. .. 64

Figure 39. (a) Minimum-required z force for a four-cable CSR vs. the desired x and y

forces. (b) Side view of the same result. These results were calculated at the

position (0.25, 0.75, 0.3) m for the same configuration as Figure 33. 65

Figure 40. The maximum allowable x-y force for a four-cable CSR given the required

z force. These results were calculated for the same configuration and test

position as Figure 40. .. 67

Figure 41. A point mass supported by a cable. The solid line is the original placement

of the cable, and the dotted line is the same cable after displacing the mass in

the positive x direction. The tension vectors before and after the displacement

are shown as arrows. ... 71

Figure 42. (a) Directional stiffness values for a four-cable CSR at 0.3-m height, using

tension method (15). (b) The stiffness values for the same configuration but

using method (17). The results are visually identical. 73

Figure 43. (a) Directional stiffness values for a four-cable CSR at 0.7-m height. (b) The

stiffness values for the same configuration but at 0.1-m height. 75

Figure 44. (a) Directional stiffness values for a three-cable CSR at 0.3-m height. (b)

Directional stiffness values for a six-cable CSR at 0.3-m height. 76

Figure 45. Some locations for a rotary encoder. One location is at the cable spool and

the other is at the guide pulley. The rotary encoder is used to measure the

cable length. .. 78

Figure 46. Some possible locations for a cable-tension sensor. One location is at the

cable spool, where a torque sensor measures the torque on the spool. Another

location is at a specialized pulley location. The third location is by the end

effector, where a force transducer is placed in series with the cable. 80

Figure 47. A servo motor is used to drive the rotation of each cable spool. 83

Figure 48. Some examples of the linear-spring model for the cable tension. In this

model, the cable tension is proportional to the cable stretch, with the same

stiffness regardless of cable length. .. 88

xv

Figure 49. Some examples of the rod model for the cable tensions. In this model, the

cable tension is proportional to the cable stretch but the stiffness of the cable

is inversely proportional to the unstretched cable length. 89

Figure 50. Some examples of the shifted-rod model for the cable tensions. This is the

same model as Figure 49, but the tension functions are slightly shifted to the

left, allowing for a small tensile force for small cable slacks. The amount of

shift is proportional to the unstretched-cable length. .. 90

Figure 51. A four-cable CSR configuration and a helical reference path. The cable

anchor points, but not the cables themselves, are shown. This is the setup used

to test the tension-based control. .. 99

Figure 52. (a) 3-D plot of the simulation results using a feedback-linearization

controller. (b) The Cartesian position and position error for the end effector.

The horizontal lines mark the ±1-cm error bounds. 101

Figure 53. (a) 3-D plot of the simulation results using a feedback-linearization

controller, including some model errors and an external force disturbance. (b)

The Cartesian position and position error for the end effector. The horizontal

lines mark the ±1-cm error bounds. .. 102

Figure 54. Simulation results using a feedback-linearization, including some model

errors and an external force disturbance. This time, the values for kp and kd

are much higher than in Figure 53. While the x- and y-direction errors are

smaller, the z error remains large. ... 103

Figure 55. Simulation results using the sliding-mode controller, with model errors and

an external force disturbance. The errors remain well within the 1-cm

position-error bounds. ... 106

Figure 56. Simulation results using the sliding-mode controller, with model errors and

an external force disturbance. The magnitude of the external disturbance was

increased to 10-N, which is twice the magnitude used in Figure 55. 107

Figure 57. Cartesian forces for the simulation plotted in Figure 52. 109

Figure 58. Cable tensions required to produce the net forces in Figure 57, as calculated

using the least squares optimization method (15). .. 110

Figure 59. Cable tensions required to produce the net forces in Figure 57, as calculated

using the minimum-tension sum optimization method (16). 110

Figure 60. Cable tensions required to produce the net forces in Figure 57, as calculated

using the minimum-squared-tension sum optimization method (17). 111

xvi

Figure 61. Simple model of a DC motor with an external mass load. 114

Figure 62. Block diagram of the servo control loop. ... 117

Figure 63. Bode plot for the loop transfer function of Figure 62. The PID controller in

(64) was used. ... 119

Figure 64. Ramp response for the servo system with a 0.5-kg mass. 120

Figure 65. Ramp response for the servo system with a 0.1-kg mass. 121

Figure 66. Sine tracking for the servo system with a 0.1-kg mass. The reference

function has the amplitude of 1-m and the frequency of 0.25 Hz. 122

Figure 67. Sine tracking for the servo system with a 0.1-kg mass. The reference

function has the amplitude of 1-m and the frequency of 0.5 Hz. 123

Figure 68. One example of a dual-loop control structure for a four-cable CSR. Each

cable-length is individually controlled by a servo loop. The outer-loop

provides the reference cable lengths to the servo loops. The reference lengths

are based on the reference and true position of the end effector. The dashed

lines indicate the flow of information enabled by the external position sensor.

 .. 125

Figure 69. Outer-loop controller with an integral and feed-forward component. The

same control method is applied to every cable in the CSR. 127

Figure 70. Simulation result for a four-cable CSR with cable-length control. This

represents the ideal scenario, when there are no errors in the system

configuration or cable lengths. (a) Side and (b) top views. 128

Figure 71. Cartesian position and error of the four-cable CSR. This is from the ideal

simulation plotted in Figure 70. .. 129

Figure 72. Cable lengths and errors for a four-cable CSR. This is for the ideal

simulation plotted in Figure 70. .. 130

Figure 73. Simulation of a four-cable CSR with cable-length control and cable-length

errors. The bold line is the simulated trajectory, and the thin line is the

reference trajectory. (a) Side and (b) top views. ... 131

Figure 74. Cable lengths for the four-cable CSR simulation from Figure 73. 132

Figure 75. Simulation of a four-cable CSR with cable-length control and cable-length

errors. The closed-loop control law (70) was used to correct for the cable-

length errors. (a) Side and (b) top views. .. 133

xvii

Figure 76. Cartesian position and errors for the simulation plotted in Figure 75. 133

Figure 77. Cable lengths for the simulation plotted in Figure 75. 134

Figure 78. Simulation of a four-cable CSR with cable-length control and anchor point-

position errors. The control law (67) without position feedback was used. (a)

Side and (b) top views. The bold line is the actual trajectory, and the thin line

is the reference. ... 135

Figure 79. Simulation of a four-cable CSR with cable-length control and anchor point-

position errors. The closed-loop control law (70) was used, as opposed to the

simple control law used in Figure 78. (a) Side and (b) top view. 136

Figure 80. Position and position error for the simulation in Figure 79. 137

Figure 81. Simulation of a four-cable CSR with cable-length control and position-

measurement errors. The closed-loop control law (70) was used. (a) Side

view and (b) top views. ... 138

Figure 82. Top view of a four-cable CSR simulation with cable-length control. Two of

the cables are subject to a 0.1-Hz periodic disturbance to their lengths.

Responses (a) without and (b) with position feedback. 139

Figure 83. Top view of a four-cable CSR simulation with cable-length control. Two of

the cables are subject to a 0.5-Hz periodic disturbance to their lengths.

Responses (a) without and (b) with position feedback. 140

Figure 84. A special reference trajectory that is used to ensure that (74) is a valid

relationship for the experimental data. At different vertices in this trajectory,

certain cables are guaranteed to be in tension, even if there are anchor-point

placement errors. ... 143

Figure 85. An illustration of how the cable anchor point can be estimated from

successive measurements of the mass position and cable lengths. 145

Figure 86. Simulation result for a four-cable CSR with cable-length control and anchor

point displacements. The filled circles are the true anchor points, and the

unfilled circles are the ideal anchor points. The bold line is the actual

trajectory, and the thin line is the reference. (a) Side and (b) top views. 146

Figure 87. Estimated anchor-point displacement errors using the first method, where

(74) is assumed to be linear with four unknowns. .. 147

xviii

Figure 88. Estimated anchor-point displacement errors using the second method, where

the optimization method (75) is used to estimate the three unknowns in

(74). ... 148

Figure 89. Estimated anchor-point displacement errors using the second method, where

the optimization method (76) is used to estimate the three unknowns in

(74). ... 149

Figure 90. Simulation result for a four-cable CSR with cable-length control and

estimated anchor point displacements. The filled circles are the true anchor

points, and the unfilled circles are the estimated anchor points using method

(75). The bold line is the actual trajectory, and the thin line is the reference.

(a) Side and (b) top view. ... 150

Figure 91. Complete experimental prototype of a four-cable CSR with an external

position sensor. ... 151

Figure 92. Aluminum bars and links used to construct the robot frame. 152

Figure 93. The basic frame used for the CSR prototype experiment. The frame was

constructed using aluminum bars of various lengths. 153

Figure 94. Eye hooks that serve as the mounting points for the CSR cables to pass

through. These eye hooks effectively set the cable anchor point locations. ... 154

Figure 95. Four cables are tied to the 0.5-kg test mass of the experiment. The cables

run through the eye hooks of the robot frame. .. 155

Figure 96. DC motors and cable spools used to wind the excess cable lengths. The DC

motors are equipped with high-precision quadrature encoders. 156

Figure 97. Wiring for the DC motors and encoders. .. 157

Figure 98. Wiring for the Arduino Mega 2560 microcontroller board. This controller

ran the main program of the CSR. .. 158

Figure 99. The wiring for the Arduino Nano microcontroller boards. These boards are

used to count the encoder pules. Only two Arduino Nanos are shown here,

but the wiring is the same for all four Arduino Nanos. 159

Figure 100. The wiring of the Arduino Uno microcontroller board. This board was used

to control the movement of two small servo motors in some of the experiment

trials. ... 160

xix

Figure 101. The Kinect v2 camera, a camera and infrared-sensor package, was designed

for use with a popular gaming system. This sensor was used in the

experimental prototype to measure the position of the test mass. 161

Figure 102. The laptop PC used for real-time communication with the Kinect, running

the computer-vision algorithm, and data communication to the Arduino

Mega. .. 164

Figure 103. Experiment results of the DC motor servo loops. The reference cable

lengths are calculate based on the desired movement of the CSR, and the

actual cable lengths are measured using the motor encoders. (a) Cable length

and (b) length error. .. 166

Figure 104. Original images from the camera sensor. (a) A color image with 1080 ×

1920 px resolution. (b) A depth image with 424 × 512 px resolution. 167

Figure 105. Visual results of the computer vision image-processing algorithm as

applied to the color image. The same steps are applied, separately, to the

depth image. First, a working area is cropped from the full image. Then, a

focus area containing the last-known location of the mass is processed using

computer-vision tools. Finally, the position of the test mass is calculated and

marked within the original color image. ... 168

Figure 106. An example of the data output from the camera sensor and computer-vision

algorithm used to measure the real-time position of the test mass in the CSR

experiment. (a) The position of the test mass and (b) details of the position

for various time ranges. .. 170

Figure 107. Typical sampling period for the camera for an experimental trial. 171

Figure 108. Nominal performance test of the experimental CSR system, without any

deliberate system errors or external disturbances. The solid line is the

reference trajectory and the solid dots are the position data recorded by the

camera system. (a) Side and (b) top views. .. 172

Figure 109. Position data for the nominal performance experiment plotted in Figure

108. ... 173

Figure 110. Experiment results with cable-length errors and no real-time position

feedback. (a) Side and (b) top views. ... 175

Figure 111. Experiment results with cable-length errors and including real-time

position feedback. (a) Side and (b) top views... 176

xx

Figure 112. Experimental results with camera measurement errors and no real-time

position feedback. (a) Top view showing the x-y position of the test mass as

measured by the camera and (b) side view showing the measured height. 177

Figure 113. Experimental results with camera measurement errors and including real-

time position feedback. ... 178

Figure 114. Experiment results with slow dynamic cable disturbances and no real-time

position feedback. (a) Side and (b) top views... 180

Figure 115. Experiment results with slow dynamic cable disturbances and including

real-time position feedback. (a) Side and (b) top views. 181

Figure 116. Experiment results with a moderately-fast dynamic cable disturbances and

no real-time position feedback. (a) Side and (b) top views. 182

Figure 117. Experimental results with dynamic cable disturbances and including real-

time position feedback. (a) Side and (b) top views. 183

Figure 118. Experimental results with cable anchor-point position errors and no real-

time position feedback. (a) Side and (b) top views. 185

Figure 119. Experimental results with cable anchor-point position errors and including

real-time position feedback. (a) Side and (b) top views. 186

Figure 120. Estimated anchor-point displacement errors using experimental data and

estimation method (75). .. 187

Figure 121. Experiment testing the vertical movement of 10 mm between two planar

trajectories, without real-time position feedback. (a) Side view from the front

and (b) side view showing the vertical movement. .. 189

Figure 122. Mass position for the experiment shown in Figure 121. Beginning at 35 s,

the reference trajectory was raised by 10 mm in the z direction, representing

a change in AM-layer height. Real-time position feedback was not used in

this test. ... 189

Figure 123. Mass position for an experiment with a 10-mm height change at 35 s. The

real-time position feedback from the camera was used to reduce the

positioning error. Shown here are (a) a 3-D perspective view and (b) a time

plot of the x-y-z position. The reference height is shown as a solid line in the

z-direction plot. ... 191

xxi

Figure 124. Experiment testing the vertical movement of 5 mm between two planar

trajectories without real-time position feedback. (a) Side view from the front,

and (b) side view showing the vertical movement. .. 192

Figure 125. Mass position for the experiment shown in Figure 124. Beginning at 35 s,

the reference trajectory was increased by 5 mm in the z direction. Real-time

position feedback was not used in this test. .. 193

Figure 126. Mass position for an experiment with a 5-mm height change at 35 s. The

real-time position feedback from the camera was used to reduce the

positioning error. Shown here are (a) a 3-D perspective view and (b) a time

plot of the x-y-z position. The reference height is shown as a solid line in the

z-direction plot. ... 194

Figure 127. Folder and file structure for the MATLAB analysis codes in this

dissertation. ... 209

Figure 128. Folder structure for the Arduino and Python experiment codes. 287

Figure 129. An example CCM, visualized as a grid, before being sorted by the maximal

clique algorithm. This is a 10×10 matrix, and the red squares represent

elements in the matrix that are ones. The empty spaces represent zeros. 322

Figure 130. An example of a CCM, visualized as a grid, after being sorted by the

maximal clique algorithm. A group of five cables were found to connect to

each other and are grouped in the top left corner of the newly-ordered

connection matrix. .. 323

1

1. INTRODUCTION

Automation is often touted as the next step of evolution for many industrial

processes, and additive manufacturing (AM) is one example of a process that relies on

automation to precisely control the flow of materials. This dissertation analyzes and

experiments with one solution for AM—the use of a cable-suspended robot (CSR).

Specifically, the goal of this research is to develop a suitable configuration and control

strategy for a CSR that can be used for large-scale, extrusion- or deposition-based AM.

The research activities included in this work are hardware and controller design,

mathematical analysis, and experimentation with a prototype of the envisioned CSR.

This research is at the intersection of two technology ideas: AM and CSRs. Both

ideas have been studied extensively in various forms. However, attempting to use a CSR

for AM presents significant engineering challenges. In particular, a CSR may not be able

to provide the structural rigidity required for some AM processes. Furthermore, a large-

scale CSR is likely to experience structural imperfections or external disturbances. Such

disturbances are rarely considered in laboratory-scale CSRs and are specifically addressed

in this work.

The remainder of this chapter gives a brief review of AM, CSRs, and related

concepts while Chapter 2 summarizes the contributions of this dissertation. Chapter 3

details the analyses and simulations performed. Chapter 4 describes the experimental

prototype and accompanying equipment. Chapter 5 presents the experimental results and

their significance. Finally, Chapter 6 offers the conclusions reached through this work.

2

1.1. Additive Manufacturing

AM is a technical term that encompasses many different technologies. Therefore,

it is important to distinguish the technologies and identify those that this research

addresses. In addition, the proposed emphasis on large-scale manufacturing requires a

consideration of environmental disturbances not usually present in small, controlled

settings. The functional and performance requirements of AM at a large scale set the

expectations for a CSR used in this application and guide the scope of the research.

1.1.1. Technologies and Applications

Popular science and media publications often use the term three-dimensional (3-

D) printing when discussing AM technologies. The idea is that “3D printing” allows for

the creation of objects in a 3-D space, as opposed to the usual printing of two-dimensional

(2-D) images on a flat surface. AM is a technical term that includes various technologies

and processes, each specialized for use with different materials. The American Society for

Testing Materials defines seven AM process categories in ISO/ASTM 52900:2015. These

are: material extrusion, material jetting, binder jetting, directed energy deposition, powder

bed fusion, sheet lamination, and vat photopolymerization. A cable suspended-robot may

be impractical for some AM processes due to the handling requirements of bulk materials.

A brief overview of some common AM technologies reveals how they differ from

traditional manufacturing processes and how CSRs could play an important role.

Many traditional manufacturing processes are subtractive in nature. Some

examples are cutting and milling, in which material is removed from a larger piece to

reveal a final part. Individual parts can then be combined using fasteners or small amounts

3

of binding material (for example, weld or glue). These steps work well, since bulk material

can be transported in large pieces and a variety of cutting tools have been developed to

remove excess material precisely. However, the process of removing material might be

seen as wasteful, constrained, or expensive in some cases. Waste occurs when much of

the material being removed is not used for the final product. The shape of the final part is

constrained by the dimensions of the bulk material and, also, by the configuration of the

cutting tool. Often, specialized tool setups are created to achieve a desired product shape.

The time and energy required to design these tools and perform the material removal

means there is an increase in production costs. Experienced designers learn about the

common material subtraction processes and use this knowledge to specify parts that are

easier to manufacture.

There are other manufacturing processes by which a part is created from a batch

of raw material and where only the necessary amount of material is used. Some examples

are injection molding, casting, and pressing. In these cases, the raw material is handled in

fluid or powder form so that it can take shape of a pre-made container, or mold. Once

inside the mold, the material is solidified. The mold is carefully designed so that the lose

material will fill every void, and the material flow is closely controlled throughout the

process. These methods can be very efficient for mass production, since molds can be

duplicated and, often, reused. Still, it takes some time to create the mold.

AM is a newer form of production that has developed rapidly in the last few

decades. In contrast to subtractive manufacturing and molding, AM technologies create

parts by adding small amounts of material at a time, typically in thin layers that resemble

4

2-D slices of the part [1]. As the new material is added, it binds to the previous material.

This fine control of material allows for the creation of complex parts without the need for

a mold or significant cutting. Furthermore, the incremental addition of material makes AM

processes perfect candidates for automation. In most AM processes, the designer only

needs to provide a digital model of the final part, and specialized software determines the

necessary machine-level commands to create the part. The end result is that, although

material is added slowly, the process is efficient and effective for creating custom parts

quickly. Depending on the specific technology, AM can produce quick prototypes or even

mass produce full-quality parts. Some of the most common AM technologies, and example

applications, are described in the following paragraphs.

Perhaps the most recognizable AM technology is fused deposition modeling

(FDM). The working principle of this technology is that a new layer of material is

deposited on top of an existing layer, and the two layers fuse together by contact. The

material is delivered in a semi-fluid form using an extrusion nozzle, and the material

solidifies shortly after being deposited. Therefore, this technology is applicable to

materials that can be liquified and extruded in a controlled manner. One of the main

functions of an FDM machine is to move the nozzle in precise patterns in order to create

the part. Another major function of the machine is to accurately the control material

flowrate through the nozzle. The material properties determine how fast new layers can

be added while maintaining the structural integrity of the part. In some cases, extra

material is deposited to serve as structural support. The extra material is later removed.

The overall speed of production, energy requirement, and quality of the part largely

5

depend on the material being used, the nozzle diameter, and the positioning resolution of

the machine. Also, the part size is constrained by the size of the FDM machine.

Plastics or plastic composites are popular materials for FDM machines. So-called

“desktop 3D printers,” used by many hobbyists today, are a good example (Figure 1).

These machines are not much larger than the common paper printer and typically feature

three stepper motors to control the X-Y-Z movement of the nozzle, another motor to feed

a spool of material into the extruder, and heating elements to melt the material that is being

deposited. To use this machine, one would simply create a 3-D model, process it using a

special FDM software, and then send the processed data to the machine. The data seen by

the machine is usually in the form of G-code, which is a sequential list of standard

machine-level commands. Thus, the extrusion process is completely automated. There

may be minimal post-processing to remove material fibers or support structures from the

part. A variety of hard and flexible materials are available—even some containing wood

or metal particles [2]. The various materials are accommodated by adjusting some

machine settings, such as the nozzle temperature or extrusion speed.

Figure 1. (a) The Creator Pro machine from flashforge.com. This FDM machine

features a build volume of 227×148×150 mm, two extruders, and produces polymer

parts with a minimum layer thickness of 0.1 mm. (b) A diagram of the FDM process [2].

(a) (b)

6

If the working principle of FDM were taken to a microscopic level, one might

arrive at another AM technology called material jetting. In this method, small amounts of

material are deposited using a microscopic jet spray, similar to the way a common printer

deposits ink on paper. Depending on the material being used, material jetting could

involve the use of an ultraviolet (UV) light to cure the material. Some machines even

feature multi-material printing, allowing for the creating of parts with localized

mechanical properties. In general, material jetting machines offer much higher resolution

than FDM but are also larger and more expensive (Figure 2). Material jetting is excellent

for creating production parts with high precision. For example, this technology is often

used in dentistry.

Figure 2. (a) The Connex3 Objet500 from Stratasys.com. This production-quality

material jetting machine offers a build size of 490×390×200 mm, multiple material

options, and layers as thin as 16 μm. (b) A diagram of the material jetting process [2].

Another group of AM technologies is powder bed fusion. This includes selective

laser sintering (SLS), which can even be used to create metal parts [3]. In this method, a

thin layer of material powder is spread evenly over a surface. Then, select areas of the

(a) (b)

7

material are sintered using a high-power laser. The sintered areas are solidified, and the

non-sintered powder provides structural support. The newly-sintered layer is then lowered

slightly, making way for the next layer of material. This process typically produces much

higher-quality parts than FDM, but at an increased cost. For successful sintering, and to

avoid warping, the temperature and gas constant of the material must be controlled. Even

a moderately-sized build volume requires a relatively large machine to create a stable build

environment (Figure 3). Nevertheless, SLS machines see extensive use in industry, and

are even used for mass production. Multiple parts can be made during a single build

process, since the laser can trace complex patterns across the entire build surface in mere

seconds. One disadvantage is that the material powder must be available in large batches

to be spread over the entire build surface for each new layer, even if the sintered area is

small. Therefore, much of the material is unused during each build.

Figure 3. (a) The DMP Flex 350 machine from 3Dsystems.com. This production-quality

SLS machine produces metal parts in a build volume of 275×275×420 mm with a

minimum layer thickness of 5 μm. This machine requires compressed air, Argon gas,

and water cooling to operate. (b) A diagram of the SLS process [2].

(a) (b)

8

Similar to powder bed fusion, but with liquid material instead of powder, is a group

of technologies called vat polymerization. As the name suggests, these technologies

feature liquid polymers that are held in vats and then selectively hardened using light

energy. This group includes digital light processing (DLP) and stereolithography (SLA)

machines (Figure 4). These processes can also require control of environmental variables

like temperature or gas content for the material to harden in a predictable manner. The

liquid-material requirement limits this process to certain types of polymers in resin form.

Figure 4. (a) The Form 3 machine from Formlabs.com. This desktop SLA machine

features a 145×145×185 mm build volume and a minimum layer thickness of 25 μm.

The laser is housed in the lower compartment and the resin held in a tray in the middle

of the machine. (b) A diagram of a DLP machine [2]. In SLA, a laser is used instead of a

projector. In some machines, the projector or laser are above the resin.

Another AM technology group is sheet lamination, where material sheets are cut

to shape and then fused together, like layers of a cake. The cutting and binding process

varies depending on the material type. For example, paper layers can easily be cut to shape

using a blade and, then, bound together using glue.

(a) (b)

9

There are many other AM technologies, each suited for different materials and

applications. For example, directed energy deposition (DED) is a category of AM

technologies that is similar to welding and is commonly used to manufacture metal parts

[2, 4]. Typically, metal is fed through a nozzle and melted using a high-power laser near

the nozzle outlet. Like FDM, DED depends on accurate positioning of the nozzle and

careful control of the material flowrate. The positioning function of the machine can be

fulfilled by a gantry mechanism, like the desktop FDM printers, or with robotic

manipulators that can approach the working piece at specific angles. Recently, DED has

been used to create a variety of functional and artistic metal pieces (Figure 5).

Figure 5. The Modulo 400 machine from Beam-machines.com (a) and a close view of

the deposition nozzle (b). This DED machine is used to produce or repair metal parts.

The build volume is 650×400×400 mm and the nozzle diameter is around 1 to 2 mm.

The metal is supplied in powder form and is melted at the nozzle using a laser.

In summary, the various AM technologies each provide a way to combine material

in a controlled way. Some of the processes introduce the material in small amounts

whereas others hold the raw material in large batches. The large batches are typically kept

(a) (b)

10

in a controlled environment to preserve the material’s properties. On the other hand, those

technologies that control the flow of material in small amounts may be easier to implement

at a large scale because the material can be protected until the point of delivery (for

instance, at a nozzle). Section 1.1.2 gives some examples of how AM technologies were

implemented at a large scale, and Section 1.2.3 explains the role that a CSR could play in

the build process.

1.1.2. Large-Scale Manufacturing

Large-scale production may not be practical for all of the AM technologies. Some

of the technologies require tight environmental controls that are difficult to maintain for

large build volumes, and some technologies require the transfer of material in large

batches. Consequently, large-scale AM has so far been limited to material deposition

methods like FDM or DED. For the purpose of this discussion, large scale manufacturing

is loosely defined as any size such that the completed part would require machinery to be

transported. For example, a large-scale machine could produce objects the size of a car.

There are several active examples of large-scale FDM. Figure 6 shows an example of

Figure 6. Full-size boat hull created in 72 hours using FDM of polymer material [5].

11

Figure 7. The Big Area Additive Manufacturing machine from E-ci.com. This large-

format FDM machine extrudes plastics through a large nozzle (with a 0.2- to 0.4-in

diameter) and can create pieces as large as 6.1×2.3×1.8 m.

large-scale plastic FDM by the Advanced Structures and Composites Center at the

University of Maine. This image shows a boat hull that was manufactured in 72 hours

using the “World’s Largest 3D Printer” [5]. The printer is an FDM system that deposits

polymer using a Cartesian positioning system, similar to the positioning system found in

desktop printers like the one in Figure 1. A comparable machine, appropriately named the

Big Area Additive Manufacturing, was created by the company Cincinnati and uses

pelletized thermoplastics to reduce operation costs (Figure 7).

FDM has also been implemented with other materials. Figure 8 shows a robotic

arm with a concrete extruder as its end effector. A special concrete mix is pumped to the

extruder through a hose. The mix is fluid enough to be pumped and extruded, but it also

sets quickly so that it can be layered. According to its creators, this specialized machine

can create a small home in 24 hours [6]. Concrete construction is one major intended

application for large-scale FDM and aims to increase availability of low-cost housing

12

Figure 8. Robotic arm with a concrete extruder developed by Apis Cor [6]

[7−10]. The machines used in concrete extrusion are similar to those used in polymer

extrusion because they both operate under the same FDM principle. The main machine

functions are to position the extrusion nozzle and control the material flow.

There are many more examples of large-scale FDM applications, often illustrated

in popular science publications [11−13]. However, the machines used are usually similar

in their construction and operation. One may conclude that implementing FDM at a large

scale is a matter of nozzle placement and material transport to the nozzle. However, a

large-scale implementation may be more vulnerable to structural imperfections or external

disturbances. For example, an outdoor concrete 3-D printer must take into account

environmental variables like temperature, humidity, and wind. The FDM machine must

be rigid enough to withstand external forces, and the material must be carefully selected

so that it solidifies in a predictable manner, even if environmental conditions change.

The DED technologies also have applications at large scales, particularly in metal

manufacturing. Figure 9 shows an example of a large metal 3-D printer by Sciaky

Incorporated that is capable of printing metal parts over 19 ft in length [14]. The pictured

13

Figure 9. The EBAM 300 machine by Sciaky Incorporated. This machine uses electron

beam additive manufacturing (EBAM) technology to create high-strength metal parts. It

is claimed to be the largest 3D printer for metal parts that is fit for industrial and

commercial use [14].

machine uses a metal wire feed and electron beam additive manufacturing (EBAM)

technology to combine the metal. This process allows for the use of high-strength

materials, such as titanium and Inconel. Therefore, one common application is the

production of aerospace components. According to the Sciaky company, “forgings that

used to take 6-12 months to complete can be completed in 2 days with the EBAM 300.”

Like FDM, DED is scaled to various sizes by implementing appropriate positioning

mechanisms for the nozzle.

The use of other AM technologies being used at large scales is limited, though

some were attempted [15]. Some barriers for scaling other technologies may be the

requirement for environmental controls, such as temperature or gas content, or the large

amounts of bulk material used to create each part layer. Nevertheless, the remaining work

14

in this dissertation focuses on extrusion- or deposition-based AM. In these technologies

one main function of the AM machine is to move a material nozzle in a controlled manner.

This is a task that can be accomplished by many mechanisms, including a CSR. Section

1.2 gives an overview of CSRs and how they were studied in the past, including some

existing applications in AM. Section 1.2.3 explains how the AM applications provide

constraints that help guide the scope of this dissertation.

1.2. Cable-Suspended Robots

 The second technology idea relevant to this dissertation is CSRs. In the large-scale

manufacturing examples pictured in Figures 6−9, the position of the extruder or deposition

nozzle is controlled by a rigid mechanism, such as a gantry or robotic arm. In contrast, a

CSR controls the end effector position using flexible cables. Some limitations arise from

the fact that the cables can only pull, and not push, the end effector. However, the

flexibility of the cables could mean lower transportation and setup costs compared to a

rigid machine. A complete description of CSRs and their application to AM is presented

in this section.

1.2.1. Configurations

For this dissertation, a CSR is defined as a robot where the end effector movement

is controlled using cables. Furthermore, the only forces acting on the end effector, besides

its weight, are the cable tensions. Some rigid structures may be used, but only to anchor

the cables. CSRs exist in many configurations, as dictated by the intended use. The

distinguishing features of the configurations are the number and placement of cables.

These determine the degrees of freedom (DOFs) that the system can effectively control.

15

Depending on the configuration, the robot may be referred to as a CSR, cable-driven robot,

cable-driven mechanism, cable-driven parallel robot, or similar [16−21].

The simplest CSR is a single cable that lowers or lifts the end effector (Figure 10).

This simple example illustrates the working principle and some limitations of a CSR. The

end effector height is controlled by varying the cable length, typically by a motor and

spool that winds the cable. The end effector height can be calculated from the cable length.

An important detail is the location of the cable anchor point. The effector cannot be lifted

above the anchor point, and the effector will move up and down directly below the anchor

point. There is no way to control the left-right movement of the effector once the anchor

point is fixed. Thus, this CSR configuration offers 1-DOF control, and any external force

perpendicular to the cable tension would cause the end effector to swing uncontrollably.

Also, the maximum downward acceleration is that due to gravity since the cable cannot

push down on the end effector. This configuration is similar to a construction crane.

Figure 10. The simplest CSR, with only one cable that raises or lowers an end effector.

A second cable may be added, as in Figure 11, to add another control DOF. The

pictured example is from a study where researchers optimized the 2-D force on the point

Motor and spool

Rigid cable

anchor point

End effector

16

Figure 11. CSR concept that uses two cables and adjustable pulley locations [16].

P by moving the cable anchor points. The anchor points were adjusted by moving the

pulleys in the top corners of the machine [16]. Together, the two cables produce a 2-D

force on the end effector, and the direction of the force is adjusted by moving the anchor

points. Still, the only downward force on the effector is its weight, so the downward

acceleration is limited to gravity.

Figure 12 depicts a CSR configuration that allows for 3-DOF position control. The

Figure 12. (a) A CSR configuration with three cables and (b) the movement space.

x

y

(a) (b)

17

three cables, together, counteract the force of gravity, and the 3-D position of the end

effector is uniquely defined by the three cable lengths. If any of the cables is removed, the

end effector would swing down to a new position. The downward acceleration is still

limited because there is no cable pulling down on the effector. Also, the movement of the

effector is limited to the triangular-prism space created by the three anchor point columns.

To improve the control and stiffness of the end effector, some configurations use

additional cables. If the additional cables do not increase the control DOFs, they are called

redundant. Redundant cables can be used to increase the system stiffness. Figure 13 shows

an example of a CSR with six cables [17]. Despite having six cables, the pictured system

does not have 6 DOFs. Instead, the cables are arranged to increase the system stiffness

and constrain the θ orientation of the end effector. Thus, the pictured system has 3-DOF

control along coordinates x, y, and θ. There is no control in the z direction (the z direction

is not pictured, but it points out of the page). Cables 2 and 3 pull the end effector down,

allowing for downward accelerations larger than gravity. These two cables also increase

Figure 13. CSR concept with six cables to increase stiffness and improve control [17].

x

y

θ

18

the CSR’s stiffness since movements in the positive y direction are resisted by the cable

tensions. Furthermore, cables 2 and 3 can be considered redundant as they could be

removed without losing control DOFs.

In general, adding cables to a CSR configuration increases the control DOFs and

stiffness. However, the placement of the cables plays an important role in defining the

control directions and allowable movement space. Furthermore, some cables may produce

tensions that oppose each other (as in Figure 13), creating moments and shear forces on

the end effector. If each cable length is controlled by a separate motor, a larger number of

cables also increases the complexity of real-time control, increasing the risk of errors or

instabilities. Errors and instabilities can lead to high cable tensions, unwanted shear, or

moments. Therefore, one method for selecting a CSR configuration is to use the minimum

number of cables such that the desired DOFs and stiffness are achieved. Then, the cables

should be anchored such that the desired movement space can be achieved without any

cables interfering with each other.

If the end effector is small enough, such that all cables meet relatively close to

each other on the effector body, the end effector may be modeled as a point mass. Then,

there are 3 possible DOFs, corresponding to 3-D space coordinates of the end-effector

body, and at least three cables are needed to provide the position control. If the end effector

is large, relative to the dimensions of the CSR, and the cables are attached to the effector

in separate locations, then three additional DOFs, corresponding to the orientation of the

end-effector, are possible. In this case, at least 6 cables are needed for full control. There

are many examples of both point-mass and rigid-body CSRs in the literature [19−24].

19

1.2.2. Analysis and Control

The sample configurations presented in Section 1.2.1 illustrate some of the control

challenges for CSRs. These challenges arise from the flexibility of the cables but are also

related to the cable placement. Analyses found in literature are typically accompanied by

co-design of the CSR configuration to achieve a specific purpose. As with other robotic

systems, one may be interested primarily on the position-control capabilities of a CSR.

Some quantities of interest might be the positioning precision, accuracy, power

requirement, and robustness to disturbances.

Some analyses focus on the kinematic properties of the CSR configurations

[19−20, 25−27]. The kinematics describe how the cable lengths relate to the position and

orientation of the end effector. This relationship is often described using trigonometric

functions or vector norms. However, these mathematical equations might not hold if there

is cable slack or unknown stretch. Whenever a cable is in slack, it no longer plays a role

in the movement of the end effector. On the other hand, cable stretch can be difficult to

measure, so the effective cable length may not be known. Position control strategies based

on kinematics may include efforts to avoid cable slack, estimate the slack, or accurately

measure the cable length [17, 21, 28−29]. Cable slack is more difficult to avoid when there

are redundant cables, and cables with little stretch can easily transition to slack. All of

these factors play a role in the positioning accuracy and resolution of the CSR.

CSR system dynamics, which include the cable tensions and the end effector

accelerations, are also an active area of study [21, 24, 30]. For stiff cables, even a small

cable stretch can produce a large tensile force. Furthermore, negative cable tensions are

20

not possible, so cable slack is problematic in the sense that it produces no tension. In a real

system, there may be residual tensions from cable sagging or vibrations. These phenomena

are difficult to predict, so many studies avoid them altogether by carefully designing and

constructing the CSR machine components [31]. Some studies try to account for the cable

mass and elasticity, but it is also common for the cables to be treated as massless and

inextensible [17−18, 21, 30, 32]. There is also extensive research in optimizing the

stiffness for CSR configurations with redundant cables [17, 32−34]. A higher stiffness

makes the system more robust to external force disturbances.

Various controllers were designed and tested using laboratory-scale experiments

[25−30]. One of the simplest methods of control that does not explicitly account for cable

tensions is to independently control each cable length to move the end effector to the

desired position. This method depends on accurate kinematics, since the required cable

lengths are calculated using the position-to-cable-length equations, and a good

independent control loop for each cable length. Any system imperfection, such as cable-

length errors or cable anchor-point errors, can result in unwanted cable sagging or

positioning error. If the CSR is accurately constructed and there is minimal cable sagging

this method is simple and effective [35]. One could envision an augmented control system

where position errors are measured and used to adjust the cable lengths in real time, as in

[30−31, 36−38]. However, the majority of studies in the literature primarily depended on

accurate kinematics and avoided using position feedback.

If the individual cable tensions can be controlled, then another form of control can

be used, where the cable tensions are varied to accelerate the end effector along a desired

21

trajectory [39−40]. In a CSR configuration with redundant cables, there may not be a

unique solution of cable tensions for a desired acceleration, so researchers optimized the

cable tensions to achieve various objectives, such as increased stiffness, decreasing the

likelihood of cable sag, or reducing vibrations [24−25, 27]. Some researchers tested

additional layers of control, such as fuzzy logic or input shaping [30, 38, 41−42]. Some

techniques, such as sliding mode control, increase robustness to uncertainties like

unknown end-effector mass [22, 43−44]. There are also controller designs based on the

analysis of the reachable CSR workspace and avoidance of cable collisions [28, 45−46].

Finally, some control techniques focused on path planning and optimization to achieve

specific movements [47−48]. Many of these works include demonstrations of stability,

optimality, or algorithm efficiency [49−50]. These kinds of assurances are important, since

CSRs are highly nonlinear systems, and real-time calculations and data processing for

such systems could be too slow to allow for feedback control.

The successful position control of a CSR depends on the quality of the sensors and

actuators used. To control the cable lengths, some researchers relied on the open-loop

control of stepper motors [34, 38]. Others used rotary encoders on the motor shaft [31, 37,

41, 50]. The cable tensions were measured using force transducers mounted either on the

end effector or near the cable anchor point [17, 27, 41]. The cables used were typically

made of thin steel wire, which experience negligible sagging and stretching at small scales

[17, 21]. To measure the position of the end effector, some researchers used camera

tracking or laser systems [34, 36−37]. Another way is to measure the effector’s

acceleration using an inertial measurement unit (IMU) [17, 38, 50]. In general, higher-

22

quality components allow for a more precise position control. The sampling period of the

sensors also plays a major role in any digital-controller implementation. For example, if

the position measurements are too slow, then position errors cannot be detected fast

enough to quickly correct. A variety of systems, including personal computers (PCs), data

acquisition (DAQ) boards, and commercial microcontrollers, are used to implement the

real-time control [17, 31, 37−38].

1.2.3. Applications in Additive Manufacturing

To advance in the design of a CSR, it is important to first identify an intended

application. The application guides the selection of a configuration and control strategy,

as well as the choice of practical sensors and actuators. One can also begin to consider any

likely disturbances. In this dissertation, the intended application is large-scale AM.

Using a CSR for AM is not a new idea. There are several proposals for portable, cable-

suspended AM systems [34, 51−52]. However, there are a few realizations of this concept.

One realization is found in [53], where researchers created a cable-suspended FDM

machine that could create a 2.16-m foam statue in 38 hours (Figure 14). In this system, six

cables were used to suspend a foam extruder with 6-DOF control. The cable lengths were

independently controlled using separate motors that each tracked a reference cable length

using proportional-integral-derivative (PID) control. A feedforward term was added to the

controller in order to compensate for the static weight of the extruder. Also, a laser was

mounted by the extruder to monitor the height of the foam. This data was used to adjust

the height between layers. The true, 3-D position of the extruder was not measured to

correct for errors in real time, resulting in some printing errors.

23

Figure 14. One example of FDM accomplished by using a CSR [53].

Another example of a cable-suspended FDM machine is pictured in Figure 15.

Here the extruder platform is suspended by a spring, and three cable pairs at the floor level

move the extruder above the build platform [29]. In this case, stepper motors were used to

Figure 15. Cable-suspended FDM machine controlled using stepper motors. (a) Actual

machine and (b) representative diagram [29].

(a) (b)

24

precisely control the length of each cable, and there was no other position feedback for the

nozzle. This machine is much smaller than the one in Figure 14, and is similar in size to

the desktop FDM machine in Figure 1. This machine also illustrates the importance of

selecting a CSR configuration to match the application. In this case, the single spring

pulling up on the extruder is solely responsible for counteracting gravity and also

maintaining the tension in the other cables. The floor-level cables, although important for

positioning the extruder along the X-Y plane, could interfere with the workpiece after some

number of layers. Thus, the allowable build volume is much smaller than the machine.

Nevertheless, the system’s stiffness is enhanced by this configuration, compared to

something like Figure 12, since any movement direction of the nozzle is counteracted by

at least one cable tension or by the spring tension.

The machine configurations pictured in Figures 14−15 can be scaled and used to

produce larger pieces. As discussed in Section 1.1.2, the ability to extrude materials for

large-scale AM is an active area of study with many proven examples. However, it has yet

to be determined how well a CSR might perform at a large scale since such a system can

be vulnerable to environmental disturbances like wind, cable vibrations, or imprecise

cable placement. To qualify a CSR for large-scale AM, one might be interested in

measuring the system’s positioning resolution, tracking error for straight or circular paths,

and the ability to maintain the proper extruder orientation even if there are some

disturbances. Position feedback could help enable this functionality. If so, it is useful to

investigate exactly how the position feedback might be used in control.

25

One remarkable example of the intended application is shown in Figure 16, where

the CSR concept was scaled to a 13.6×9.4×3.3-m build volume to deposit clay material

[54]. According to the creators of this system, who specialize in CSRs for construction,

the pictured machine uses thermal sensors to monitor the clay structure. However, there is

no real-time feedback of the nozzle position. The eight cables of the CSR are

independently controlled using servo motors. This configuration allows for a 6-DOF

control of the extrusion nozzle. The clay material, which is stored in a cylinder onboard

the extruder platform, can be deposited in widths of 6−30 mm, and the movement speed

of the nozzle is up to 1 m/s. Despite being implemented inside a controlled environment

with minimal disturbances, the nozzle movement is affected by vibrations. Nevertheless,

the creators of this machine produced pieces up to 3.5 m in length and 0.86 m in height.

Concrete extrusion using the same machine is expected in future work.

Figure 16. Example of a large CSR that deposits clay material [54].

26

Another notable work was recently published in [55]. In this work, an eight-cable

CSR was designed specifically for concrete FDM (Figure 17). Significant contributions in

this research were the full design of a winch, extrusion system, and cable tension sensors.

The authors also considered cable sagging and incorporated the relevant calculations in

the controller design. The controller consists of three layers. The first layer calculates

reference cable tensions based on the desired extruder position and the system kinematics,

including the calculation of cable sagging. This layer also minimizes the sum of cable

tensions using a common optimization method. The second layer uses feedback from the

cable tension sensors to calculate new reference cable lengths. Finally, the third layer of

the controller manages the eight cable lengths via rotation of the winches. There is no

measurement or feedback of the true nozzle position.

Figure 17. A recent example of a large-scale CSR for concrete FDM. The test path is a

square with the side length of 0.8 m [55].

27

2. CONTRIBUTIONS OF THIS DISSERTATION

The contributions of this dissertation are placed in three groups of work. The first

group is the design and analysis of a CSR for large-scale AM. This includes the discussion

of a configuration, its structural properties, and the consideration for various sensors and

actuators. The second group contains several control strategies for the CSR that rely on

the definition of system models. The third group of work is the construction and use of a

prototype experiment to test some of the control strategies. This chapter summarizes the

main contributions in each of these groups while the details are presented in Chapters 3−5.

As a whole, the most novel contribution of this dissertation is the new consideration given

to some types of system imperfections and disturbances.

2.1. Cable-Suspended Robot Design

The first contribution of this dissertation is the recommendation of a general design

for a portable CSR that can be used for large-scale AM. This is not a detailed design, but

an overview of the machine configuration and an analysis of the structural implications.

The analysis includes tension and stiffness properties, as well as some algorithms to study

the useful operation space of the robot. Some sensor and actuator options are also

discussed.

2.1.1. Configuration Analysis

A basic configuration for the proposed CSR is selected. As discussed in Section

1.2.1, the configuration includes the number and location of cables in the system. These

details determine the robot operation space and affect the system’s portability. The

28

forward and inverse kinematics are studied, and the effects of system imperfections are

detailed in mathematical equations. The control DOFs and the allowable movement region

are also described. Finally, the configuration is supported by simulations of the system

tension and stiffness at different positions throughout the movement region. These

analyses include a brief introduction to some cable stiffness models.

2.1.2. Sensor and Actuator Selection

Upon the selection of a robot configuration, the number and types of required

sensors and actuators are considered. These elements of the design are discussed in general

terms as the proper component selection in a large-scale CSR is more appropriate in future

work. Nevertheless, the operating principle of the sensors and actuators is presented.

The main function of the actuators is to control the cable lengths. Thus, the

resolution or frequency limitations of the actuators directly affects the positioning

precision of the system. These limitations, as well as the power and control systems

required to operate the actuators, are discussed.

Some sensors are included with the actuator design, but others can be used to

directly measure the real-time position of the CSR to provide feedback. Various types of

sensors for this purpose are presented, and their limitations are anticipated.

2.2. Position Control

The second contribution of this dissertation is the synthesis of position control

strategies for the CSR while considering system imperfections and disturbances. The

control effort can be divided into two tasks, system modeling and controller design. A

third, novel task involves estimating cable-placement errors when they are unknown.

29

2.2.1. System Modeling

The first task in providing position control is creating a mathematical model of the

CSR. Several cable-stiffness models are included, and two CSR-system models are

detailed. One system model is based on controlling the cable lengths, and the other model

assumes direct control of the cable tensions. Both models allow for including system

imperfections and external disturbances. The imperfections include cable placement

errors, cable-lengths errors, and sensor-measurement errors. Dynamic disturbances

include external forces, measurement noises, and sudden cable-length changes. All of the

models are simulated in MATLAB to produce time-series plots.

2.2.2. Controller Design

The second task in providing position control is to create effective control laws for

the system. Several control laws, using both system models, are presented. The first

system model, which is based on cable-length control, assumes that the cable lengths and

position of the CSR are measured in real time. The second system model, which is based

on cable-tension control, assumes that the cable tensions are measured. The control laws,

their stability, and robustness are analyzed in MATLAB by simulating the closed-loop

control of the CSR in various conditions.

2.2.3. Cable Placement Estimation

One novel task in this dissertation is estimating-cable placement errors using

indirect measurements. This result can be useful in practice since it may be impossible to

avoid some cable-placement errors for large-scale CSRs. A novel algorithm for estimating

the cable placement is simulated and tested in the forthcoming experiment.

30

2.3. Prototype Experiment

The third contribution of this dissertation is the validation the CSR configuration

and controller design via experimentation. Though it is desirable to test a large-scale

machine, the experiment in this dissertation was performed using a representative model

in a laboratory setting. The experiment represents the robot configuration, sensors, and

actuators selected during the design phase of this work. The prototype is not equipped to

perform FDM, or any other AM, since the focus is on the positioning function of the CSR.

2.3.1. Closed-Loop Control

The experiment was an opportunity to test the real-time control of a CSR with

position feedback. As mentioned in Sections 1.2.2−1.2.3, there are a few examples of

closed-loop position control in the literature. In most cases, the control system relies on

tension feedback only. In a few cases, a camera or laser was used to record the CSR

movement. This dissertation provides experimental results with and without the use of

position feedback to show that close-loop control can be used to improve system

performance.

2.3.2. Disturbance Testing

The prototype experiment also demonstrates the effectiveness of closed-loop

control despite various disturbances and system imperfections, such as cable-length and

camera-tracking errors. To the author’s knowledge, no experiment has been conducted

previously to test a CSR under thse conditions, and the results can be useful for successful

implementations of a large-scale CSRs.

31

3. ANALYSIS AND SIMULATION

This chapter contains analysis and simulation to support the design and control of

a CSR for AM. First, the CSR configuration is selected. The configuration properties, such

as the kinematics and stiffness, are derived. The system’s sensors and actuators are also

described. Second, this chapter presents the controller design, offering various system

models and control methods that address system imperfections and disturbances. This

chapter also includes a novel method to estimate cable-placement errors.

3.1. Cable-Suspended Robot Design

The intended application is an important factor in selecting a CSR design. In this

dissertation, it is envisioned that a CSR be used for some types of AM, like FDM or DED,

where the main function of the AM machine is to position the extrusion or deposition

nozzle. Therefore, the CSR should provide for 3-D positioning of the nozzle with some

accuracy and without interfering with the workpiece. The AM machine should also exhibit

some minimum stiffness so that external forces do not significantly disturb the build

process. In this section, a CSR configuration is selected and analyzed for AM use.

3.1.1. Base Configuration

To provide for 3-D positioning of an AM nozzle, a CSR must have at least three

cables. As shown in Figure 12, three cables originating from the same height can position

a rigid body within a triangular-prism region. The triangle vertices are the three cable

anchor points. Ideally, a CSR with this configuration could deposit material in 2-D slices

that fit within the trianglular footprint and up to the height of the cable anchor points.

32

Figure 18. (a) A CSR configuration with three cables, where one cable anchor point is

lower than the other two and (b) the movement space.

Figure 18 shows another three-cable configuration where one of the cable anchor

points is lower than the other two. Compared to Figure 12, this configuration has the same

triangular footprint. However, the allowable 3-D movement region is reduced. This

simple example demonstrates that, in order to maximize the use of vertical space, all of

the cable anchor points should be at the same height.

A three-cable configuration has the advantage of no redundant cables since any

resting position of the suspended body would require a positive tension in all three cables.

Furthermore, the three required cable tensions are unique for each equilibrium position.

This fact is explored in Section 3.1.4. One major disadvantage of a three-cable system is

that the triangular footprint significantly constrains the possible size and shape of the

material layers. For example, the maximum diameter of a circular layer would be much

smaller than any of the triangle sides. Any non-triangular shape would meet geometric

restrictions if it is to fit within the trianglular footprint.

A workspace with a square or rectangular footprint can be used instead of a

triangular one. Then, four or more cables are needed. Figure 19 depicts a simple CSR with

(a) (b)

33

Figure 19. (a) A CSR configuration with four cables and (b) the movement space.

four cables arranged in a square at equal height. With this setup, the suspended body can

be positioned within a rectangular-prism region. Compared to the three-cable

configuration, the four-cable system provides a more efficient use of the space.

The four-cable system is over-constrained, however, since only three cables are

needed to hold the body at rest in any position within the work region. The fourth cable is

redundant. Interestingly, the redundant cable can change depending on, among other

things, the instantaneous position of the body. For example, if the suspended body in

Figure 19 is exactly in the center of the machine, any one of the four cables could be

considered redundant, since any of them could be removed without affecting the position

of the body. Whenever there are more than three cables there can be ambiguities about the

redundant cables.

More cables can be added to the CSR. If done so with equal spacing, the footprint

of the resulting CSR is always an equilateral polygon. As the number of cables increases,

(a) (b)

34

the workspace footprint approaches the shape of a circle. Since additional cables may

over-constrain the system without significantly increasing the workspace region, a four-

cable configuration appears to be a favorable selection.

Many of the CSR configurations in the literature use more than four cables, and

for good reason. If the orientation of the rigid body is to be controlled, in addition to its

position, then six or more cables are required. This is because six independent forces are

needed to fully control the 6 DOFs of a rigid body. There are numerous examples in the

literature of clever cable arrangements that provide positional and angular control of the

CSR end effector. Some of these examples are mentioned in Section 1.2.1 [19−24]. The

number of cables alone does not determine the control DOFs. The placement of the cables

must also be considered. Some cable arrangements are subject to cable collisions or a

limited range of movement even if the arrangement offers 6-DOF control. For this reason,

it is beneficial to minimize the number of cables used.

The present focus is on the application of CSRs for large-scale AM. In a large-

scale AM machine, the dimensions of the material nozzle are much smaller than the

lengths of the cables. Then, for the purpose of controlling the cable lengths, the nozzle

assembly can be modeled as a point mass. In other words, the cables can be considered to

meet at a single point, as depicted in Figures 18−19. In this case, the CSR’s primary

function is to provide 3-DOF position control. Four cables are sufficient for this task. To

support this claim, one may look to one existing example of a large-scale CSR, pictured

in Figure 20. This system, called the SkyCam, is commonly used to move a camera within

large sports venues that can be more than 100 m in length. Four cables provide the position

35

Figure 20. (a) One embodiment of the SkyCam system, a sport camera that is suspended

by four cables [56]. (b) The system drawing as presented in a 2005 U.S. patent [57].

control for the camera platform. Since the camera platform is much smaller than the cable

lengths, the cables can be approximated as meeting at a single point. The platform itself

contains mechanisms that regulate the camera orientation.

A CSR for large-scale AM could be constructed similar to Figure 20 by replacing

the camera platform with a nozzle mechanism. This idea was demonstrated in [52−55],

but with the use of more than four cables to control the extruder orientation. As an

example, in [52] a four-cable configuration was proposed to control the extruder

movement, plus eight additional horizontal cables to maintain the nozzle orientation

(Figure 21). In the pictured machine, the pulleys of the horizontal cables are raised as

material layers are added. This way, the cables do not interfere with the workpiece. The

material itself would be stored in a container besides the machine and pumped to the

extruder via a hose. The stated motivation for this concept was that this machine would be

more cost effective than a traditional concrete manufacturing process. Furthermore, the

(a) (b)

36

Figure 21. A CSR configuration for large-scale AM where four cables from the top

corners position the extruder and additional horizontal cables stabilize the extruder [52].

cable-driven machine would be lighter and easier to transport than a rigid mechanism like

the ones pictured in Figures 6−8.

In this dissertation, a four-cable configuration is selected for study. The

configuration is depicted in Figure 22. The components in this image are not to drawn to

scale and are exaggerated for clarity. Four cables, alone, position the extruder platform

within the large rectangular-prism work region. Since the extruder is much smaller than

the cable lengths, the extruder is treated as a point mass. The orientation of the extruder is

locally, and independently, controlled using a gimbal mechanism. The details of this

mechanism are not prescribed in this dissertation, but the mechanism could provide for

orientation and fine-position control. The coarse positioning is provided by the CSR. The

AM material is delivered from a reservoir to the extruder via a thin hose from above. Some

mechanism may be necessary to guide the hose and ensure that it does not weigh down or

push excessively on the extruder. The other structures required in this configuration are

37

Figure 22. (a) A large-scale AM CSR with 4 cables and (b) a detail view of the AM

nozzle platform. This configuration concept is the object of study in this dissertation.

four towers with pulleys that serve as stationary cable anchor points. Each cable length is

controlled by its own winch mechanism at the ground level. Since all of the cables pull at

the extruder from above, the cables will not interfere with the material layers that are being

deposited. The extruder can also be positioned anywhere in the work region without any

cables crossing each other.

The four-cable concept in Figure 22 guides the remaining analysis work in several

ways. First, the concept must be supported by answering questions of stability and

stiffness. Without any cables at ground level, upward forces cannot be completely

counteracted. Furthermore, the effective mass of the extruder may vary during operation

due to the attached material hose. The issue of redundant cables must also be studied to

ensure that operation of the machine is smooth enough for its intended use. Finally, the

(a) (b)

AM nozzle

platform

Cable

winch

Cable pulleys

AM

material

hose

Nozzle-

stabilizing

mechanism

38

towers that position the cables must be precisely located for proper operation, and any

placement errors could significantly affect the positioning accuracy. The analysis in the

forthcoming sections answers these questions. An important assumption in the analysis

methods is that the extruder can be treated as a point mass.

3.1.2. Kinematics

The kinematics of a robot describes how the end-effector position and the robot

joint variables are related to each other. In the case of a CSR the joint variables are the

cable lengths. The forward kinematics describes how the cable lengths are used to

calculate the end-effector position, and the inverse kinematics describes how the end-

effector position is used to calculate the cable lengths. These calculations are complicated

by the fact that cable slack can occur and may be difficult to accurately model especially

if there are cable vibrations. The calculations could also be complicated if there is more

than one solution for a certain robot state. This is not a problem for the configuration in

Figure 22 since every 3-D position of the end effector corresponds to a unique set of cable

lengths, assuming the cables have no slack.

The inverse kinematics can be derived using a vector approach, as is often seen in

the literature. Let the position of the end effector be stored in the vector

p = [x y z]T. (1)

As previously noted, this is the point-mass approximation of the end effector, and all

cables are assumed to meet at this coordinate. The position of the i’th cable anchor point

is stored in the vector

ci = [xi y
i

zi]T. (2)

39

If cable i has no slack, the required cable length is the Euclidian distance from the anchor

point to the end effector. That is, the cable length is

li = ‖ci − p‖2=√(xi − x)2+(y
i
− y)

2
+(zi − z)2. (3)

The calculation is the same for every cable in the system.

The actual length of a cable may differ from that predicted in (3). If there is slack

in a cable, its length must be slightly longer than the straight-line distance from the anchor

point to the effector. The amount of slack depends on factors like the density and length

of the cable. A heavier and longer cable will have more slack. The elasticity of the cable

will also change its effective length. With stretch, the cable length will be slightly larger

than the un-loaded length. Together, cable elasticity and slack make it difficult to predict

the true cable lengths. One solution is to experimentally determine the cable lengths at

many points in the CSR workspace and use this data to add a correction factor in (3).

If a cable is redundant at a certain time instant, it can be removed without affecting

the end-effector position. Therefore, the length of a redundant cable can be longer than

that calculated in (3), as demonstrated in Figure 23. However, its length should not be

shorter, since a shorter cable would pull the end effector away from the desired position.

Neither should the redundant-cable length be much longer than that prescribed in (3)

because the cable should be ready to provide tension in subsequent time steps. The best

policy for managing cables is to keep them close to the lengths required by the kinematics.

40

Figure 23. The length of a redundant cable can be bigger than that predicted by (3), but

it should not be shorter.

One should also consider whether the desired end-effector position is stable, in the

sense that the end effector could remain at rest in that position. Figure 24 shows an

example of a position that cannot be supported by a four-cable CSR because it would

require at least one of the cables to be in compression. Nevertheless, one could naively

Figure 24. (a) An end-effector position that cannot be supported by the four-cable

configuration. The shaded region is the supported workspace. (b) Top view of the

unsupported position.

Redundant

cable

(a) (b)

41

calculate the cable lengths for such a position. This example demonstrates that the

kinematic calculations can be made more realistic by imposing some restrictions on the

end-effector position.

The supported workspace of a CSR is the 3-D convex hull of the cable anchor

points and their footprints on the ground. To demonstrate this principle, consider the six-

cable example pictured in Figure 25. This configuration is identical to that in Figure 24

but with two additional cable anchor points. One of the new points is higher than the

original four and is to the right of the square area. The second new anchor point is at a

lower height and in the interior of the square area. The new point to the right expands the

supported workspace, but the new point in the interior does not. In fact, the cable anchor

point in the interior could be removed without changing the supported region. Also, there

are some positions in the workspace, such as the one pictured, where the end effector is

higher than the short anchor point. If the CSR were to be used for AM, all of the cables

Figure 25. (a) An example six-cable configuration and (b) a top view. The shaded

region is the supported workspace, which is the 3-D convex hull of the cable anchor

points and their footprints.

(a) (b)

42

should remain higher than the end effector to avoid disturbing the work piece layers.

Based on the above considerations, a three-step process can be used to constrain

the kinematic workspace for a general AM CSR. First, the 2-D convex hull for all of the

cable anchor points, as seen from a top view, is drawn. This is demonstrated in Figure

25(b). Second, any cable anchor point in the interior of the convex hull is removed. This

step is optional if all of the anchor points must be used for another reason. Finally, the 2-

D convex-hull shape is placed at the height of the lowest anchor point. Then, the entire 3-

D region below the convex hull will be available for AM, and any point within this space

can be used to calculate the valid cable lengths using (3).

The forward kinematics describes how the end-effector position can be calculated

from the cable lengths. Redundant cables and cable slack also complicate this calculation.

If (3) is squared on both sides, the result is

li
2
 = (x − xi)

2+(y − y
i
)

2
+(z − zi)

2, (4)

which is the equation of a sphere. The radius of the sphere is the cable length and the

center is the cable anchor point. A sphere can similarly be drawn for each cable, and the

intersection of the spheres is the location of the end effector. However, any cable slack or

stretch makes (4) invalid. Furthermore, only three valid spheres are required to find the

end-effector position. Knowing this, the forward kinematics calculation can be based on a

procedure that first identifies three valid spheres and, then, finds their intersection. In other

words, only three cables without slack are needed to define the position of the end effector,

and the challenge is correctly finding three such cables.

43

The simplest forward-kinematics case is when the CSR only has three cables.

Then, any valid position of the end effector creates a tension in the three cables and (4)

gives three valid equations. These equations can then be solved, numerically or

analytically, for the position of the end effector. If there are two solutions to the equations,

the solution with the smaller z coordinate is selected, since gravity will pull the end

effector to the lowest possible height. Figure 26 gives a visual example of a three-cable

system with the cables replaced by spheres. The intersection point of the spheres indicates

the point-mass position, and the equation for each sphere is given by (4).

Suppose that a fourth cable is added to Figure 26. If the new cable is taut, the

imaginary sphere corresponding to the cable will intersect the other spheres at the location

of the point mass. If the new cable has slack, the sphere prescribed by (4) will contain the

point-mass. Then, that particular sphere is not useful for finding the position of the point

Figure 26. (a) Top view of a three-cable CSR. (b) The cables are replaced by spheres

centered at the cable anchor points and with the radius equal to the cable lengths. The

intersection of the three spheres is the position of the end effector.

(a) (b)

44

mass. If the slacked cable is gradually shortened, it will eventually start pulling on the end

effector. At that point, one of the original three cables would get slack. It is also possible

for the fourth cable to be too short to connect to the other cables. A cable that is too short

can be visualized as a sphere that does not intersect the other spheres.

 The forward kinematics gets more complicated as cables are added. For example,

it is possible to have six cables such that two groups of three cables can each support a

different position for the suspended mass. It is also possible that various solutions exist

depending on which cables are included in the calculation.

One procedure for the forward kinematics calculation of a general CSR system is

presented here. First, some conditions for a valid end-effector position are stipulated:

1. For all of the cables to come together at the end-effector position, any set of two

cables must be able to reach each other.

2. When the end effector is at a resting position, three cables will be in tension and

the remaining cables will either be in tension or have slack.

3. The end-effector position must be within the 3D convex hull of the cable anchor

points and their footprint points on the ground.

These conditions can be visualized using imaginary spheres, like those presented in Figure

26. Condition 1 says that if all spheres simultaneously overlap at some point, then any two

spheres must overlap with each other. Condition 2 says that the end-effector point is at the

intersection of three sphere boundaries, and the rest of the spheres either touch or contain

that point. The third condition excludes sphere-intersection points that are not in the

45

supported work region of the CSR. Based on these conditions, the following steps are used

to determine the position of the end effector given a set of cable lengths and anchor points:

1. Remove any cables that cannot reach all other cable ends. Alternatively, keep the

largest group of cables such that any two cables in the group can connect.

2. Enumerate all possible combinations of three cables. For each combination, find

the intersection points of the cable spherical boundaries, using (4). This will yield

a set of candidate points for the end-effector position.

3. Remove all candidate intersection points that are not within the 3D convex hull of

the anchor points and their footprint points.

4. Select the candidate intersection point that is contained within all of the spherical

boundaries. This will be the end-effector position.

For a small number of cables, this procedure can easily be programmed in a computer

algorithm. As the number of cables grows, the same algorithm will take exponentially

more time to complete. Step 2 includes enumerating all possible combinations of three

cables, which is an operation that takes much more time as the number of cables increases.

Step 1 can also take time, since it is not trivial how to select the largest group of cables

that can connect with each other. One way to accomplish this task is to form an adjacency

matrix for the cables and, then, use a maximal clique algorithm [58].

Some examples of the procedure are now presented. The steps outlined above were

programmed in an algorithm using MATLAB, and the code for this algorithm is presented

in Appendix B. Figure 27 shows an example where four cable anchor points are arranged

in a square, at equal height. The cable lengths were purposefully selected so that one cable

46

Figure 27. Example of a four-cable system where one cable has slack (two views).

Figure 28. Example of a six-cable system where two cables have slack and one cable is

too short (two views).

is excessively long. The procedure outlined above determines that the pictured position is

the result of this arrangement. As expected, three of the cables are in tension, and the

fourth cable has slack. A more complicated example is pictured in Figure 28. Here, six

cables are arranged in a hexagon, but with the anchor points at different heights. Some of

47

the cables are too long, and one cable is too short. The algorithm predicts that the pictured

position is the result. Again, three cables are in tension. Two cables reach the end effector

but have slack. The cable that is too short to connect to the end effector is shown floating

in space. Disregarding the short cable, one can visually confirm the validity of the solution.

The procedure presented here is one forward-kinematics solution that addresses

cable slack and short cables. The procedure is not perfect, however. In particular, the first

step, which checks that the cables can all connect to each other in pairs, is a necessary-

but-not-sufficient condition for a valid solution to exist. It is possible for the cables to be

long enough to reach each other in pairs and, yet, not be able to reach a common point.

Furthermore, the procedure is intended to be used with CSRs where the anchor points are

all above end effector. The algorithm was not attempted with configurations that have

additional cables at ground level.

3.1.3. Kinetics

The kinetics of a dynamical system deals with the forces that cause the system’s

motion. In a CSR the body of interest is the end effector. Presently, the focus is on an end

effector that is much smaller than the CSR configuration, so a point-mass approximation

is used. For a point mass there are no moments to consider, and the motion is entirely due

to the sum of linear forces acting on the mass.

The nominal forces acting on the end effector are the cable tensions and gravity

(Figure 29). Other forces can come from air drag or contact with foreign objects. Cables

that have slack contribute a small force compared to the cables that are in tension, and no

cables can produce a compressive force.

48

Figure 29. Nominal forces acting on a point mass suspended by four cables.

The cable tensions act along the cables. If there is negligible sagging, the cable

tensions approximately point from the end effector to the cable anchor points. If there is

sagging, the tension vectors tilt down, towards the horizon. If the sagging is significant,

such that the cable hangs in a “U” shape, the weight of the cable produces a small force

on the end effector towards the ground. For simplicity of analysis, it is assumed that any

cable with slack provides a negligible tension and that any tension points exactly from the

end effector to the cable anchor point. For any static equilibrium point (SEP), the sum of

the cable tensions must be zero in the x and y directions and equal to the end-effector

weight in the positive-z direction. To accelerate the end effector, the tensions must provide

a net force in the direction of acceleration. Since none of the cables can push the end

effector, the maximum downward acceleration is that due to gravity. Only three cables

need to be in tension to support an end-effector, but it is possible for all of the cables to be

in tension. This idea is explored in Section 3.1.4.

mg

T
1
 T

2

T
3
 T

4

x

y

z

49

The gravity force always acts in the negative z direction and is equal to the weight

of the end effector. The mass of the end effector could change if it carries a payload that

varies. For example, the mass of an AM nozzle can vary due to the flow of material. Any

hose attached to the nozzle would also add weight. The total weight of the end effector is

important because it ultimately determines the tensions that the cables must withstand. On

the other hand, a light end effector could more easily be displaced by disturbance forces.

Other external forces can act on the end effector (Figure 30). Drag, either from the

ambient air or from energy dissipation in the cables, can dampen the end-effector

movement. Wind can push the body or cables. The movements of the hose attached to the

AM nozzle can produce lateral and downward forces. When material is being deposited,

there will be a reaction force. Ideally, the external forces should be much smaller than the

weight of the end effector and the cable tensions. Otherwise, the forces would significantly

disturb the movement of the CSR.

Figure 30. External forces that may act on a CSR end effector in an AM application.

x

y

z

Drag

Hose force

Material-flow

reaction

Wind

50

One plausible application for a large-scale CSR is concrete FDM. Figure 31

depicts an FDM nozzle for concrete [59−60]. The concrete composition and material

flowrate are carefully selected to ensure ease of extrusion and good layer adhesion. Many

cement mixtures and nozzle geometries have been tested [61]. For example, the cement

mixtures were varied in percent water content, and circular nozzles were up to several

inches in diameter. The exact method of material deposition has also been modified in

hopes of improving the layer adhesion. In some cases, the nozzle hovers clear above the

previous layer, relying solely on gravity to deposit the new concrete. In other cases, the

nozzle is purposefully lowered to provide some downward pressure on the material,

helping eliminate gaps in the layers. Many studies experimented with the rheological

properties of concrete for AM [62−63]. For example, a material slump experiment helps

evaluate whether a fresh concrete volume will maintain its shape over time. Some studies

focus specifically on the flow of the concrete to evaluate extrudability [64−65]. Despite

all the previous work, it remains unclear how much reaction force an FDM extrusion

Figure 31. (a) Concrete extrusion diagram depicting the flow of material through an

FDM process [59] and (b) an actual concrete nozzle depositing material layers [60].

(a) (b)

51

nozzle will experience while depositing material. In previous large-scale AM studies, the

nozzle reaction forces were not a major issue since the machines were rigid enough to

withstand reactions. In a flexible CSR, the reaction forces can be more significant for

successful operation because these forces could more easily displace the extruder. Further

studies measuring nozzle reaction forces are recommended, especially since the nozzle

geometry and material properties remains an active area of study. In this dissertation, the

exact nozzle and material properties are not specified.

3.1.4. Tension Analysis

With the CSR configurations, kinematics, and system forces desribed, a more

detailed discussion of the cable tensions can begin. In a general robotic system, the joint

variables are controlled via the joint forces. In a CSR the joint variables are the cable

lengths and the joint forces are the cable tensions. Aside from gravity the cable tensions

are the primary forces used to control the precise movement of the end effector.

Cables have two specific properties that affect their use in control. First, they can

only provide a tensile force. Second, the direction of the force depends on instantaneous

position of the respective cable. Since all of the cables lead to the point mass of the end

effector, the coordinates of the end effector can be used to determine the position of the

cables. As in Section 3.1.2, let the coordinates of the end effector be given by (1), the

coordinates of the ith cable-anchor point by (2), and the cable lengths by (3). Equation (3)

assumes that the cables are taut. A slack cable provides no tension. Let the tension vector

for the ith cable be denoted as

Ti =[Tix Tiy Tiz]T. (5)

52

The net force on the end effector due to the cable tensions is the vector sum

Fcables = ∑ Ti

i

. (6)

Now, what remains is defining the Cartesian components of Ti in (5). Suppose the

magnitude of Ti is known. After all, the CSR is controlled by varying this quantity for

each cable. Since cable i is in tension, it runs in, approximately, a straight line from the

end effector to the cable anchor point. Then, the direction of Ti is given by the unit vector

vi =
ci − p

‖ci − p‖2

=
[xi − x y

i
− y zi − z]T

√(xi − x)2+(y
i
− y)

2
+(zi − z)2

.
(7)

In (7), the numerator is a vector from the end effector to the cable anchor point, and the

denominator is the magnitude of that vector. Then, the tension vector can be expressed as

Ti = ti
[xi − x y

i
− y zi − z]T

√(xi − x)2+(y
i
− y)

2
+(zi − z)2

,
(8)

where ti is the tension magnitude for cable i. Note that the denominator is just the cable

length from (3).

 The sum of cable tensions in the Cartesian coordinates, generally stated in (6), can

be expanded, using (8), as the column vector

Fcables = [

Fx

Fy

Fz

] = ∑
1

𝑙𝑖
[

xi − x

y
i
− y

zi − z
] ti

i

, (9)

where li was substituted for the vector norm in (8). This is the final, but still general form

of the CSR cable forces that will be used for further analysis. A similar derivation was

53

used in previous studies (Section 1.2.2). Others used a geometric approach with

trigonometric functions instead of vectors.

 To produce the desired end effector movement in 3D space, the three Cartesian-

direction forces must be controlled during the movement. From (9) it appears that every

cable can play a part in providing the three force components, but the cable-specific

contributions depend on the anchor placements with respect to the end effector. Suppose

that there are three cables in a CSR. Then, the sum of cable forces can be stated as the

matrix equation

Fcables = [

Fx

Fy

Fz

] =

[

x1 − x

l1

x2 − x

l2

x3 − x

l3
y

1
− y

l1

y
2
− y

l2

y
3
− y

l3
z1 − z

l1

z2 − z

l2

z3 − z

l3]

[

t1
t2
t3

]. (10)

The matrix in (10) simply transforms the cable tensions into the Cartesian directions and

sums the forces component-wise. There is a unique set of tensions for any desired force

vector as long as the matrix is nonsingular. To ensure that this is the case, the three cables

should satisfy the following conditions:

1. The cable anchor points are distinct. This means that the cables will each pull the

end effector in a different direction. If any two cables share the same anchor point,

then they could be replaced by a single cable.

2. All three Cartesian coordinates appear in the vectors from the cable anchor points

to the end-effector position. This means that the cable tensions can provide a force

to the end effector in the required x, y, and z directions.

54

3. No combination of two anchor points plus the end effector forms a straight line.

This means that no two cables pull the end effector in exactly the opposite

direction. If this were the case, then the two cables could only pull the effector

along a straight line, and the third cable would only increase the control to 2D.

The unique set of cable tensions is calculated by taking the inverse of the matrix in (10)

and multiplying the inverse by the desired force vector. This procedure alone does not

guarantee that the tensions will be positive. As will be discussed later, the placement of

the cables and the force of gravity can be used to ensure positive tensions.

Now, suppose there are four cables in the system. The matrix equation becomes

Fcables = [

Fx

Fy

Fz

] =

[

x1 − x

l1

x2 − x

l2

x3 − x

l3

x4 − x

l4
y

1
− y

l1

y
2
− y

l2

y
3
− y

l3

y
4
− y

l4
z1 − z

l1

z2 − z

l2

z3 − z

l3

z4 − z

l4]

[

t1
t2
t3
t4

]. (11)

Unlike (10), the inverse of the matrix in (11) does not exist because the matrix is not

square. The same is true for any system with more than three cables, as the matrix has one

column for each cable and three rows, regardless of the number of cables. The non-square

matrix means there is not a unique set of cable tensions that will produce the desired force

vector. However, there may be an infinite number of solutions. Solutions are found using

basic linear algebra methods, some of which are now presented.

 The general form of a matrix equation is commonly stated as

A x = b. (12)

55

In (10−11), A is the direction matrix, x is the vector of cable tensions, and b is the force

vector. For convinience, let x be replaced by the symbol t and let b be replaced by Fcables.

If the inverse of A exists, t is directly calculated using

t = A−1
 Fcables (13)

When the exact inverse of A does not exist because it is not a square matrix, for example,

a pseudo inverse can be used. Depending on the properties of A and on the method used

to calculate the pseudo inverse, (12) may be exactly or approximately satisfied. If there

are no exact solutions, one selects a solution that is close to satisfying (12).

 One of the common pseudo inverses is known as the Moore-Penrose inverse. If

there are multiple solutions, this inverse gives the solution with the minimum 2-norm. If

there are no exact solutions, this inverse gives the solution that minimizes the quantity

‖At − Fcables‖2
2. (14)

This is also known as the least-squares solution. Note that the closer (14) is to zero, the

better (12) is satisfied. In the context of the CSR problem, the Moore-Penrose inverse does

not guarantee that the cable tensions are positive.

 To enforce that the cable tensions remain positive, (12) can be solved as an

optimization problem. For example, one can pose a least-squares problem similar to the

Moore-Penrose method but with a nonnegative constraint on the solution. That is,

min ‖At − Fcables‖2
2

s. t.

t ≥ 0.

(15)

56

If it is known that infinite solutions exist, another way to pose the problem is to

minimize some objective function such that (12) is satisfied exactly. For example, the sum

of tensions can be minimized. That is,

min ∑ tii

s. t.

At = Fcables

t ≥ 0.

(16)

Again, this formulation includes a nonnegative constraint for the solution. Similarly, one

could impose a minimum or maximum tension. Another possibility is to minimize the

tension of a select number of cables. For example, [24] suggests minimizing the tensions

of the two longest cables, since these are generally expected to experience larger tensions.

 Suppose that the cable tension is created by an electric motor. Then, the tension is

proportional to the motor current. In turn, the electrical power is proportional to the square

of the current. Therefore, the power required to create the cable tension using an electric

motor is approximately proportional to the square of the tension. This reasoning gives

another method for optimizing the CSR tensions. That is, minimize the sum of the squared

tensions in order to minimize the total electrical-power consumption. In standard form,

min ∑ tii
2

s. t.

At = Fcables

t ≥ 0.

(17)

Once again, the constraints include an exact solution to (12) and nonnegative terms for t.

A full discussion of the CSR actuators is presented in Section 3.1.7.

In a three-cable system, a unique tension solution is guaranteed by the proper

placement of the cable anchor points. However, there is no guarantee of those tensions

57

being positive for every resultant-force vector. When four or more cables are used, the

system is over-constrained. Then, an infinite number of tension solutions is desired, and a

solution with positive tensions is selected using an objective criterion, like the ones in

(16−17). In any case, it is useful to guarantee that solutions with positive tensions exist.

In some circumstances, this can be achieved by placing restrictions on the force vector.

In light of the discussion in Section 3.1.1, consider the circumstance where all

cable anchor points are higher than the end-effector. Then, the cables can pull the effector

away from the ground but not push the effector towards the ground. So, any force vector

with a negative z component cannot be supported. This fact is easily seen in (9), as the

third element of the vector in the sum will always be positive, and any set of positive cable

tensions will produce a nonnegative z force.

Now, consider the circumstance where all cable anchor points are higher than the

end effector and the CSR is in static equilibrium. For static equilibrium, the x- and y-force

components must be zero, and the z component must be equal to the weight of the mass.

If the end effector is in the convex hull of the cable anchor points, as discussed in Section

3.1.2, then it is always possible to select a set of positive tensions to produce net-zero x

and y forces. To show this, suppose that all but three cable tensions are set to zero. Then,

the three tensions can be set to produce a net-zero x-y force (Figure 32). Furthermore,

multiplying the same cable tensions by any scalar would still result in the net-zero x-y

forces. Then, an appropriate scalar can be selected to produce the required z force for static

equilibrium. Note that any number of cables can be combined to produce a net force

equivalent to that of a single cable. Therefore, a three-cable equivalent system can always

58

Figure 32. (a) Top view of a five-cable CSR system. (b) The same system where all but

three cable tensions are set to zero. The x-y force of one of the cables, shown as an arrow

pointing to the left, is exactly counteracted by the net x-y force of the other two cables,

shown as an arrow pointing to the right.

be created, regardless of the number of cables in the system, and the above result always

applies. It is not necessary for only three cables to be in tension.

The requirement for the end effector to be in the convex hull of the anchor points

ensures that the cable tensions can counteract each other in the x-y directions to maintain

a static equilibrium. In light of the result described in Figure 32, this requirement can be

made even more specific. That is, to allow for static equilibrium of the CSR the end

effector should be in the convex hull of at least three anchor points.

Using the information presented here, tension simulations at various SEPs were

completed in MATLAB. Figure 33 shows the first set of plots that compares the cable

tensions for a four-cable CSR at two heights. The configuration is a cube with 1-m sides,

and gravity acts on the 1-kg point mass. Method (15) was used to calculate the cable

tensions at equally-spaced points for each height. For clarity, the tension vectors for only

one of the cables is shown. Due to the symmetry, the other three cables exhibit the same

(a) (b)

59

Figure 33. Cable-tension vectors for a four-cable CSR at static equilibrium. Equally-

spaced points are sampled along a 2D plane at (a) 0.3-m height and (b) 0.7-m height.

For clarity, only the tension vectors for the cable originating above the origin are shown.

tensions, from the viewpoint of the anchor points. In general, the cable tensions are larger

at the greater height. This is because the z component of the cable tensions decreases as

the mass is raised, so the tension magnitudes must increase to produce the necessary z

force that supports the mass. Also, the points closer to the anchor point have a larger

tension. Thus, the cable shares a higher percentage of the load as the mass moves closer

to the anchor point. If the mass were directly under the anchor point, that cable would

support the entire load. Also, the cable has a positive tension everywhere along the grid of

points, meaning that it always supports the load. Finally, the trend of cable tensions is

smooth. This is significant because if the mass were to slowly transition from one SEP to

another the cable tension would not change suddenly.

(a) (b)

60

Figure 34 shows the cable tensions at static equilibrium using (16−17). Again, only

the tension vectors for one cable are shown, since the other cables exhibit the same results.

As in Figure 33, the tension magnitude increases as the point mass gets closer to the anchor

point. However, there is a clear difference in the tensions elsewhere. When (16) is used,

the tension sum is minimized. This results in regions where the cable has zero tension, as

shown in Figure 34(a). Tensions of zero magnitude could be detrimental to the

performance of the system, since a cable with zero tension could have a little or a lot of

slack, and there may be a noticeable delay in increasing the tension if required. The cable

tension when using (17), shown in Figure 34(b), looks similar to Figure 33 but with

slightly larger tensions near the cable anchor point and some zero-tension points in the

opposite corner. This calculation method minimizes the sum of the squared tensions,

thereby the power consumption by the motors, and it produces a smooth tension trend

without large regions of zero cable tension. Thus, this method is also favorable for control.

Figure 34. Cable tension (a) minimizing the sum of tensions and (b) minimizing the sum

of squared tensions.

(a) (b)

61

The results from using (16) or (17) to calculate the cable tensions is more clearly

seen by calculating the optimized objective function at each tension-sample point. Method

(15), which is the ordinary least-squares solution with a nonnegative constraint, is used as

a baseline to compare against. In Figure 35, the tension sums are plotted using (15) and

(16) for the height of 0.7 m. Method (16) does decrease the tension sums, especially near

the anchor points, but the result is nearly indistinguishable from using (15). The difference

between the two methods is even smaller at lower heights. Since minimizing the tension

sum does not significantly change the results, and since (16) gives large regions of zero

cable tension, (15) is the preferred method. Figure 36 shows the sum of squared tensions

using (15) and (17) at the height of 0.3 m. Again, minimizing the sum of squared cable

tensions does have an effect, but the effect is hardly noticeable. The same is true at greater

heights. However, (17) does produce smooth tension trends (Figure 34(b)) so it can still

Figure 35. The sum of the four cable tensions for a CSR at static equilibrium. The

configuration is the same as that in Figure 34, and the sampled points are at 0.7-m

height. Plot (a) uses method (15) to calculate the tensions, and (b) uses method (16).

(a) (b)

62

Figure 36. The sum of the four squared cable tensions for a CSR at static equilibrium.

The configuration is the same as that in Figure 34, and the sampled points are at 0.3-m

height. Plot (a) uses method (15) to calculate the tensions, and (b) uses method (17).

be used in hopes of slightly reducing electrical power consumption in the CSR.

For comparison, static-equilibrium tensions were also calculated for three- and six-

cable systems (Figure 37). The configurations were set so that they fit within the same

area as the square configuration of Figure 33, and the same height of 0.3 m was used. In

the case of three cables the tensions are unique for every position, and the calculation

involves solving (10) using the true matrix inverse. Since less cables carry the weight of

the mass, the tensions are generally higher than that of the four-cable system. All three

cables are in tension for every point. As before, the cable tension is larger as the point

mass gets closer to the anchor point. The six-cable configuration exhibits the same trend.

In that system, the larger number of cables means that, on average, the cable tensions are

smaller than the three- and four-cable systems. The method in (15) was used to calculate

the tensions in the six-cable system. Once again, the results show that, using this method,

(a) (b)

63

Figure 37. The cable tensions for a CSR in static equilibrium at 0.3-m height. (a) A

three-cable system where there are no redundant cables and the cable tensions are

unique. (b) A six-cable system where the cable tensions were calculated using (15).

the cable remains in tension for all of the sample points. This is a favorable result, as the

cable tensions are more predictable when the cables remain without slack.

One may also be interested in the circumstance where the system is not in static

equilibrium. After all, a net force is required to produce movement of the mass.

Calculating the cable tensions is the same as before. However, the guarantee nonnegative

cable tensions is more complicated. To guarantee a solution, restrictions can be placed on

the desired force vector. As before, consider the case where all cable anchor points are

higher than the end effector. One restriction already mentioned is that the z force must be

nonnegative. Now, suppose that there is some desired x-y force. In general, only two cables

are needed to create this force (Figure 38). If only those two cables are in tension there

will still be a net-positive z force on the mass. This is the minimum allowable z force.

There is no way to produce a smaller z force without having some negative tensions.

(a) (b)

64

Figure 38. Top view of a five-cable CSR. (a) A general x-y force can be produced by

two cables in the system, with all other cables having zero tension. (b) The same net x-y

force can be produced by increasing one of the other cable tensions and adjusting the

cable tensions of the original two cables. The z force will be greater than before.

However, the z force could be increased by raising the original two tensions along with

some of the other cable tensions, all while maintaining the required x-y force.

As previously mentioned, a general CSR can always be simplified to an equivalent

three-cable system by combining some cable tensions. Therefore, the result of Figure 38

can be applied to a CSR of any number of cables. However, different cable combinations

may yield a different minimum z force. One may be interested in the absolute minimum-

allowable z force among all the possible cable combinations. This problem is solved by

min Azt

s. t.

[
Ax

Ay
] t = [

Fx

Fy
]

t ≥ 0,

(18)

where Ax, Ay, and Az are the first, second, and third rows of the cable direction matrix,

respectively. The objective function in (18) is the net z force of the cable tensions, and the

(a) (b)

Cable force

Net force

65

first constraint restricts the tensions to produce the desired x-y force. As the magnitude of

the x-y force increases, the minimum z force also increases. As the x-y force decreases, the

minimum z force also decreases. When the x-y force is zero, the minimum z force is zero.

Figure 39 shows one example of the maximum z force for the four-cable robot

pictured in Figure 33. To create this plot, (18) was repeatedly applied at the arbitrary robot

position (0.25, 0.75, 0.3) m using different positive and negative x-y forces each time. The

force values are plotted as a percent weight of the point mass. The result confirms that the

minimum z force is zero when the x-y force is zero. Furthermore, the slope of the plot in

the x and y directions is indicative of the cables that, when in tension to produce the

required x-y force, also give the minimum z-force allowed. For example, for positive-x

forces the slope of the plot is nearly one (Figure 39(b)). This is because a positive x force

Figure 39. (a) Minimum-required z force for a four-cable CSR vs. the desired x and y

forces. (b) Side view of the same result. These results were calculated at the position

(0.25, 0.75, 0.3) m for the same configuration as Figure 33.

(a) (b)

66

must be supported, at minimum, by the two cables that pull the mass to the right. From

the cable direction matrix of the CSR, one can calculate that the ratio of z-to-x force

provided by those two cables is 0.933, which is exactly the slope of the plot in the positive-

x direction. In the opposite direction, the two left cables are required to provide a negative-

x force. For these cables, the ratio of z-to-x force is −2.8, which is the slope of the plot in

the negative-x direction. In practical terms, (18) gives the minimum z force that must be

applied on the end effector given a required x-y force. Furthermore, the answer to this

question is a linear relationship encoded in the cable-direction matrix. For example, for

the test point in Figure 39, every 1 N of x-direction force requires an additional z force of

0.933 N to be applied to the mass. Again, all of this is to ensure that the cable tensions

remain nonnegative. Note that for small x-y forces the minimum z force is also small.

Therefore, it is expected that slow movements, such as those typical of an AM application,

will not have a problem with maintaining positive cable tensions, since the CSR z force

will remain near 100% of the end effector weight and the minimum z force for slow x-y

movements will be near zero.

The problem of restricting the force vector to ensure positive cable tensions can be

approached the other way around. That is, if the required z force is known then restrictions

can be placed on the x-y force components. Since the x-y forces can be positive or negative,

restrictions are placed on the magnitude of the x-y force vector. It was already stated that

a system with net-zero force in the x and y directions can support any z force, so the

minimum x-y force magnitude is always zero. The maximum is found by solving

max ‖[
Ax

Ay
] t‖

2

 (19)

67

s. t.

Azt = F𝑧
t ≥ 0

Here, the objective function is the magnitude of the x-y force, and the first constraint is

that the tensions produce the required z force. As Fz decreases, the cable tensions must be

smaller and, as a result, the maximum x-y-force magnitude also decreases. In the extreme

case, when Fz is zero, the maximum x-y force is also zero. Physically, a zero Fz means that

the cables provide no tension at all, and the mass is in free fall. It is obvious that no x-y

force can be applied in that situation. On the other hand, a large Fz requires large cable

tensions, which provides the opportunity for the cables to simultaneously produce a large

x-y force.

Figure 40 gives an example of the maximum x-y force of a four-cable CSR given

the required z force. This plot was created by applying (19) at the arbitrary position (0.25,

0.75, 0.3) m for the CSR pictured in Figure 33 and varying the required z force. The forces

Figure 40. The maximum allowable x-y force for a four-cable CSR given the required z

force. These results were calculated for the same configuration and test position as

Figure 40.

68

are plotted as percentages of the mass weight. As the z force increases, so does the

maximum x-y force magnitude. When the required z force is zero, which is to say that

none of the cables are in tension, the x-y force must also be zero. The slope of the plot

indicates the cable that gives the maximum x-y force when that cable, alone, provides the

required z force. In this case, the cable anchored at (1.0, 0, 1.0) m has the maximum x-y-

to-z force ratio of 1.51, which is the slop of the plot. In practical terms, this result means

that for every 1 N of z force required, the maximum additional x-y force that can be

provided by the CSR is 1.51 N in the direction of the cable anchored at (1.0, 0, 1.0) m. For

a CSR used in an AM application, the movements are slow and mostly along a constant

height, as layers of material are deposited. For this type of movement, the required-z force

is nearly 100% of the end-effector weight. Then, the maximum x-y force is also a sizeable

number. Since only small forces are required to produce the slow movements, these results

suggest that a CSR for AM should have no trouble in maintaining positive cable tensions.

 In summary, (15) or (17) can be used to calculate the required CSR cable tensions

given an instantaneous position and desired net force on the end effector. Furthermore, the

slow movements typical of an AM application mean that the cable tensions are expected

to remain positive during nominal CSR operation.

3.1.5. Stiffness Analysis

In simple words, stiffness is resistance to deflection. In order to resist external

disturbances, a robot must have some stiffness. A higher stiffness is usually desirable since

it means that it takes a larger force to deflect the robot by a certain amount. A stiffness

analysis reveals some of the consequences of using flexible cables in a CSR.

69

The basic definition of stiffness can be stated as

K =
F

δ
, (20)

where F is a force that causes the displacement, δ. If one was to experimentally determine

the stiffness of a robot at its end effector, a force could be applied to the end effector and

the resulting displacement measured. Then, (20) would give the stiffness value. However,

the value can depend on the direction of the force and on the position of the effector.

Therefore, a more specific stiffness definition is needed. For example, the stiffness in the

x direction can be stated as

Kx(x, y, z) =
Fx

δx

. (21)

The stiffness in the y and z directions are similarly defined. This equation recognizes that

the stiffness depends on the position of the end effector and on the direction of the force.

Since the stiffness varies with position, the displacement, δx, is an infinitesimal quantity.

The CSR stiffness at static-equilibrium will now be investigated. Let the CSR

point-mass begin at rest at some initial position. A method like those in Section 3.1.4 can

be used to calculate the cable tensions at this initial position. Then, let the mass be

displaced by a small amount. Some force will be required to produce this displacement.

The approximate stiffness is the applied force divided by the displacement. The exact

stiffness is the limit of this calculation as the displacement goes to zero. The immediate

task at hand is finding an expression for the force in terms of the displacement.

At any equilibrium position, the mass is supported by a set of cable tensions. These

tensions are caused by the individual cables stretching by some small amount. A

70

displacement of the end effector will produce a change in the cable stretch amounts and,

consequently, the cable tensions. Therefore, the displacement amount can be related to the

change in cable tensions. The key to this relationship is the cable-tension function, which

is discussed in Section 3.2. For now, the function is assumed to have form

T(l, l0) = α(l − l0), (22)

where α is some stiffness coefficient, l is the stretched cable length, and l0 is the

unstretched cable length. If the cable tension is not a linear function, it can be linearized

locally. At the initial equilibrium point, the stretched-cable length is calculated using (3)

and the cable tension is known. Therefore, the unstretched-cable length can be found using

(22). After a small displacement the new stretched-cable length is lʹ. The unstretched-cable

length remains the same as before, and the new cable tension, Tʹ, can be calculated.

Finally, the force required to produce the small displacement can be calculated from the

difference between the original and new cable tensions.

One example, using the x-direction stiffness, is now presented. A point mass at

some initial position is supported by a cable that is anchored at (xc, yc, zc), as pictured in

Figure 41. The initial, stretched-cable length is

.l = √(xc − x)2+(y
c
− y)

2
+(zc − z)2. (23)

After displacing the mass in the positive-x direction, the new stretched-cable length is

.lʹ =√(xc − x − ∆x)2+(y
c
− y)

2
+(zc − z)2. (24)

The cable’s tension before and after the displacement is T and Tʹ, respectively. To calculate

the stiffness in the x direction, the x-direction force is needed. Applying (9), the x force is

71

Figure 41. A point mass supported by a cable. The solid line is the original placement of

the cable, and the dotted line is the same cable after displacing the mass in the positive x

direction. The tension vectors before and after the displacement are shown as arrows.

found to be

Fx = Tx − Tʹx = T (
xc − x

l
) − Tʹ (

xc − x − ∆x

lʹ
). (25)

Now, applying (22), the force is written as

Fx = α(l − l0) (
xc − x

l
) − α(lʹ − l0) (

xc − x − ∆x

lʹ
). (26)

Equation (26) is the expression that relates the x force to the x displacement. According to

the definition in (21), the approximate x-direction stiffness for the displacement, Δx, is

𝐾�̃�=
Fx

∆x
 =

α(l − l0)

∆x
(
xc − x

l
) −

α(lʹ − l0)

∆x
(
xc − x − ∆x

lʹ
) (27)

and the exact stiffness is the limit of (27) as Δx goes to zero. After performing some

algebra and taking the limit, the result is

Kx = α (1 −
l0

l
+

l0(xc − x)2

l
3

). (28)

Note that (28) depends on the stretched and unstretched cable lengths. The expression also

depends on the x coordinates of the point mass and cable anchor point. At first glance, it

appears that the expression does not depend on the y and z coordinates. However, all three

(xc, yc
, zc)

(x, y, z)

T

Tʹ

(x+∆x, y, z)

l

lʹ

72

Cartesian coordinates are needed to determine l and l0 for a given CSR position.

Furthermore, (28) is the stiffness contribution for just one cable in the system. The

expression must be applied for each cable, and the total stiffness is the sum of the

individual contributions. In summary, the x stiffness of the CSR end effector at a certain

point in the 3-D space is calculated by following these steps:

1. Calculate the cable tensions using a method like those described in Section 3.1.4.

2. Find the unstretched cable lengths. To do this, apply the cable-tension function to

each cable. The cable tensions are known from step 1, and the stretched cable

lengths are calculated using (23). Then, the unstretched cable length is the only

unknown in the cable-tension function and can be solved for.

3. Calculate the x-direction stiffness contribution for each cable using (28). Sum all

of the contributions to find the total x-direction stiffness.

If the displacement in Figure 41 had been in the negative-x direction, the final stiffness

equation would be the same, owing to the fact that the limit of (27) is the same from the

left and the right of Δx equaling zero. The y- and z-direction stiffnesses are like (28) but

with the y and z coordinates in the squared term, respectively. Figure 42 gives an example

of the directional stiffness for a four-cable CSR. The same configuration as Figure 33 is

used, where the work region is a cube with 1-m sides and the end effector is a 1-kg point

mass. The cable stiffness was modeled using Hooke’s Law for a rod, such that a longer or

thinner cable has a smaller stiffness. For this example, the elastic modulus of A36 steel,

which is 200 GPa, was used along with a circular cable diameter of 0.1 mm. The stiffness

of each cable is calculated using

73

α =
EA

l
, (29)

where E is the cable elastic modulus, A is the cross-sectional area, and l is the length. Note

that the stiffness is proportional to the length and the area of the cable, so changing either

of these values would simply scale the results in Figure 42. Nevertheless, these plots are

used to identify some trends in the CSR stiffness. The stiffness values were calculated at

the height of 0.3 m, the same as Figure 34. Also, two different methods for calculating the

cable tensions were tested. Recall that the cable tensions are calculated first to determine

Figure 42. (a) Directional stiffness values for a four-cable CSR at 0.3-m height, using

tension method (15). (b) The stiffness values for the same configuration but using

method (17). The results are visually identical.

(a)

(b)

74

the cable stretch. Then, the stiffness can be found. In Figure 42(a), the cable tensions were

calculated at static equilibrium using method (15), which is the least squares solution with

the nonnegative tension constraint. In Figure 42(b), the tensions were calculated using

method (17), which minimizes the sum of squared tensions. It was shown in Section 3.1.4

that these two methods gave similar results. Therefore, the two sets of stiffness plots in

Figure 42 are visually identical. For the remaining stiffness plots, method (15) is used.

Some trends in Figure 42 are now described. First, the x- and y-direction stiffnesses

are the same but rotated. This is expected since the configuration is symmetric with respect

to the x and y directions. For the x and y directions, the stiffness is generally higher near

the center of the 3-D space. Nevertheless, the stiffness remains within the same order of

magnitude. The z-direction stiffness is about twice as much as the x and y directions, and

the maximum values appear close to the anchor points. Again, the range between the

maximum and minimum stiffness values for the z direction is small, only about 10% of

the average value. From (28), one can see that, in general, the stiffness is increased by

shorter cable lengths, a position farther from the anchor points, and a smaller cable stretch.

Figure 43 shows the stiffness values at a higher and lower height. At the 0.7-m height, the

cables are much shorter and all of the stiffnesses increase substantially. However, the cable

stretch is greater near the center of the x-y area and the stiffness decreases noticeably. At

the 0.3-m height, the cable lengths are larger, so the stiffness values are lower. However,

near the center of the x-y area, the cable stretch is small and the stiffness increases. The

amount of increase is not significant, however. The greater height of 0.7 m produced a

higher variation in stiffness values, as well as the highest values overall. For the purpose

75

Figure 43. (a) Directional stiffness values for a four-cable CSR at 0.7-m height. (b) The

stiffness values for the same configuration but at 0.1-m height.

of design, if a minimum CSR stiffness is desired, a group of test points at a lower height

can be used to ensure that the minimum stiffness is met. Then, the other points in the

workspace can be expected to have a higher stiffness.

For comparison, Figure 44 shows the directional stiffness values for a three- and

six-cable system. The configurations are the same as in Figure 37, and the cables are

modeled the same as those in the four-cable system. The stiffness values are calculated at

the 0.3-m height for direct comparison with results for the four-cable configuration in

Figure 42. The stiffness values are smaller for the three-cable system owing to the larger

(a)

(b)

76

Figure 44. (a) Directional stiffness values for a three-cable CSR at 0.3-m height. (b)

Directional stiffness values for a six-cable CSR at 0.3-m height.

cable stretch amounts necessary for less cables to support the same weight. The three-

cable configuration also exhibits a much more irregular trend in the x and y-direction

stiffnesses, with a large range between the maximum and minimum values and a lack of

symmetry. The six-cable system is more regular and symmetric, with larger stiffness

values, due to the smaller cable stretch. In fact, the average z stiffness is approximately

twice as large for the six-cable configuration as it is for the four-cable system.

(a)

(b)

77

 In summary, the CSR generally exhibits the lowest directional stiffnesses at lower

heights, and the overall stiffness can be increased by increasing the cable stiffness,

increasing the number of cables or decreasing the end effector mass.

3.1.6. Sensors

Effective control of a CSR, like any other robot system, depends on the use of

high-quality sensors. The sensors can be placed into one of three groups. The first group

includes the sensors that are used to monitor the cable states, like their lengths or their

tensions. The second group includes the sensors that are used to directly measure the

position of the end effector. The final group includes any sensors that detect changes in

the robot configuration. For example, these sensors could measure the exact position of

the cable anchor points.

The first group of sensors includes those that monitor the cables states. These

sensors are the most essential for basic operation of the CSR because they are closely

associated with the robot kinematics and dynamics. As discussed in Section 3.1.2, the

robot kinematics describes the relationship between the cable lengths and the end-effector

position. One of the main functions for this group of sensors is to accurately measure the

cable lengths so that the end-effector position can be estimated.

The sensor of choice for measuring the cable lengths is the rotary encoder. One of

the most practical ways to manage the CSR cables is to store them in a spool, and then

unwind the spool as an additional length is needed. The cables can also be directed using

low-friction pulleys. Any such spool or pulley can serve as an attachment point for a rotary

encoder (Figure 45). The encoder registers the shaft rotation, converting the movement to

78

Figure 45. Some locations for a rotary encoder. One location is at the cable spool and

the other is at the guide pulley. The rotary encoder is used to measure the cable length.

an electrical signal that can be decoded by a microcontroller board. Encoders vary in their

internal mechanism and the electrical signals they produce. Most commonly, a relative (or

incremental) encoder with a digital output is used. In this type of encoder, incremental

changes in the angular position of the shaft are converted to binary electrical pulses. Then,

a specialized circuit keeps the count of the pulses to calculate the rotation amount.

One quantity of interest relevant to an encoder is its resolution. The sensing

resolution is the smallest-detectable amount of the shaft rotation. Ultimately, this quantity

dictates how accurately the changes in the cable length can be measured since the change

in the cable length is proportional to the shaft rotation. The encoder resolution is

commonly provided in terms of pulses per revolution (PPR) of the encoder shaft. For

example, an encoder with 360 PPR provides one electrical pulse for each degree of the

encoder rotation. Moreover, some encoders provide multiple channels of such pulses, so

the maximum detectable count for each shaft rotation can be multiple times the PPR. The

encoder channels are typically out of phase by 90°, or one quadrature, to allow for

detecting the direction of the shaft rotation. For a CSR, it is necessary to accurately detect

Cable spool

Guide pulley

End effector
Rotary

encoder

Rotary

encoder

79

the shaft rotation and direction. Then, the change in cable length is the rotation amount

times the spool (or pulley) radius. In this respect, the radius should remain constant or be

accurately known at all times. Otherwise, there will be systematic errors in the cable-

length calculation.

Another important quantity is the encoder slew rate. In short, the slew rate is the

maximum rotation speed that the encoder can accurately register. If not properly selected,

the encoder could give false readings of the shaft movement, which will result in an

inaccurate calculation of the cable lengths. In some cases, it may be necessary to sacrifice

sensing resolution in order to achieve the desired encoder slew rate. Such determination

should be made considering the expected working conditions of the CSR. For example, in

a CSR for AM all of the movements must be relatively slow. Then, the required slew rate

will be lower, and a high sensing resolution will be prioritized. In any case, it is also

important to consider the frequency limitations of other system components, such as the

microcontroller. The microcontroller’s sampling frequency should be high enough to read

the encoder pulses, and the microcontroller’s clock speed should be fast enough to perform

calculations between encoder pulses.

In some cases, commercial encoders can come with optional signal decoders or

associated electronics that ensure their proper operation. The selection of the encoders for

a specific CSR design is a task that is left for future work. Ultimately, the objective is to

accurately measure the cable lengths under all of the expected working conditions of the

CSR. One example of encoder selection and implementation is presented in the

experiment of Chapter 4.

80

Figure 46. Some possible locations for a cable-tension sensor. One location is at the

cable spool, where a torque sensor measures the torque on the spool. Another location is

at a specialized pulley location. The third location is by the end effector, where a force

transducer is placed in series with the cable.

Another quantity that can be measured for each cable is its tension. Besides

gravity, the cable tensions are the main forces used to move the end effector. As discussed

in Section 3.1.4, accurate tension control is also beneficial when there are redundant cables

in the CSR. The tensions can be optimized, cable slack can be avoided, and dangerously-

high tensions can be prevented. One sensor that can be used for this purpose is a force

transducer. These devices convert linear force into an electrical signal that can be

measured using an analog-to-digital converter (ADC). These sensors come in many

varieties such as a load cell, strain gage, or pressure plate. Depending on the form factor

of the sensor, it can be placed in various locations of the CSR (Figure 46).

 One possible location for a tension sensor is at the cable pulley. Here, the tension

is indirectly calculated by measuring the pulley torque. If an electric motor drives the

pulley, the torque can be estimated by monitoring the current of the motor. Otherwise, a

Cable spool

Guide pulleys

End effector

Torque

sensor

Force

transducer

with pulley

In-line force

transducer

81

specialized tension sensor can be attached to the spool. Another location for a cable-

tension sensor is at one of the pulleys. A force transducer is attached to the pulley in order

to measure the linear force produced by the cable on the pulley. To ensure accurate

readings, it may be beneficial to fabricate a specialized-pulley fixture so that the direction

of the cable tensions on the pulley is always the same. Care should be taken so that this

fixture is rigid and does not unexpectedly affect the effective cable length. Finally, a third

location for a tension sensor is at the end effector. Here, the force transducer is placed in

line with the cable, so that the cable tension is measured directly. This method is the most

accurate, since the true tension at the end effector is measured, but it may be more difficult

to manage the sensor because it will be moving with the end effector.

As with the encoder, some performance quantities for the tension sensor should be

carefully selected. For example, the sensor should be able to measure the full range of

expected cable tensions, and the measurement resolution should be good enough for the

intended use of the tension data. The sampling rate and frequency response of the sensor

is also important to ensure that sudden cable tensions will be detected. Finally, the power-

source and signal processing requirements for the tension sensor should be considered.

Some sensors require special signal conditioners or power supplies to function correctly,

and these requirements may constrain the placement of the sensor.

The second group of CSR sensors includes those that are used to directly measure

the position of the end effector. These sensors are not critical for nominal operation of the

robot but can be used to enhance performance in adverse conditions. For example, a laser

system can be used to record the 3-D position of the end effector with high resolution and

82

verify that the effector is moving as expected, even if there are errors in the cable-length

measurements. Alternatively, the 3-D position can be recorded and estimated using a

camera with computer vision (CV). Some disadvantages of these two sensors are that they

require a clear line-of-sight to the target and some level of calibration. As such, the sensors

should be placed in a fixed location where they will not be disturbed and their view will

remain unobstructed. The target must also be clearly identified so that it can easily be

distinguished from foreign objects. For example, special reflectors or transmitters can be

fixed to the end effector. Another factor to consider when using these sensors is that their

use may require costly equipment or computation power. Nonetheless, the independent

measurement of the true end-effector position allows for some advanced control options

that increase the CSR’s tolerance of unknown or unmodeled system kinematics or

dynamics. Some control schemes that make use of an independent position-measurement

sensor are presented in Section 3.2.

The third and final group of sensors are those that are used to monitor the state of

the CSR configuration. The configuration consists of the number and placement of the

cables. These details are important because they determine the kinematics of the robot. If

there is any chance of the configuration changing, for example, due to external

disturbances, it may be useful to detect the changes. In this dissertation, a portable CSR

for on-site AM is envisioned. Then, one of the main tasks for setting up the CSR in a new

build site is to accurately place the cable anchor points in the predetermined locations. In

Figure 22, the four cables are anchored in a square pattern using tall construction towers.

Ideally, these towers are placed perfectly and remain fixed. In reality, there can be

83

placement errors or movements due to environmental disturbances. Measurement sensors

can be used during the CSR installation to accurately position the cable anchor points or

during the CSR operation to detect disturbances to the anchor point positions. Some

examples of sensors that can be used for this purpose are lasers, radars, or cameras.

3.1.7. Actuators

The main function of the CSR is to control the position of the end effector. To this

end, the robot depends on actuators that can accurately vary the cable lengths. One

practical way to manage the cable lengths is to store each cable in its own spool, and then,

unwind the cables as needed. Each spool is rotated by an independent servo motor. The

majority of the CSRs in the literature employ this method. As an example, [55] presents

the detailed design of a cable winch that incorporates the motor and spool in one package.

A servo motor is a closed-loop electromechanical system that incorporates an

electric motor, encoder, and controller (Figure 47). Sometimes, a gearbox is included to

increase the output torque. The servo motor is an all-in-one package that implements

closed-loop control to produce controlled movements of the motor shaft. To use the servo

motor, one simply provides power and a proper command signal. For example, the servo

Figure 47. A servo motor is used to drive the rotation of each cable spool.

Cable spool
End effector

DC motor

with an

encoder

and

gearbox

Power

supply with

pulse-width

modulation

84

motor may be programmed to rotate to whatever angular position the user selects. Or, the

servo motor may be programmed to rotate at the angular velocity specified by the user. In

the case of the CSR, a servo motor with position control is required. Once the desired

cable length is known, the corresponding angular position of the cable spool is calculated

and given to the servo motor as a reference signal. A high-quality servo motor will quickly

move to the desired position with little overshoot, regardless of the cable tension. One

example of such a servo motor is presented in Section 5.1.

There are several options for the type of electric motor to be used in the servo. One

option is a stepper motor. This kind of motor is commonly used in small robots because it

is designed to rotate in fine angular increments, or steps, that allow for fine position

control, even in the absence of an encoder. However, these motors tend to be heavy, and

the shaft motion can be jerky at some speeds. Any non-smooth shaft rotation due to

saliency can produce undesirable cable vibrations. There is also a risk of missing steps

when sudden movements are attempted. If this type of motor is used, a model with

sufficient torque and stepping resolution should be selected. It would also be beneficial to

include a rotary encoder in case there are any missed steps.

Another common motor type is the alternating-current (AC) motor, of which there

are different variations. Although these are widely used in industry, they are best suited

for operation at constant speeds. Therefore, AC motors are not a good choice for CSRs.

Another type of motor, which is the type usually found in servo applications, is the

direct-current (DC) motor. As the name suggests, this type of motor is powered using a

DC power source although multiple phases may be needed depending on the motor type.

85

Generally, the output torque is proportional to the motor armature current, and the

unloaded speed of the motor shaft is proportional to the input voltage. To drive a DC

motor, one may use a variable power supply or a constant power supply with pulse-width-

modulation (PWM). In the PWM method, the constant voltage is switched between the on

and off states at a frequency on the order of tens of kilohertz. By varying the fraction of

on and off times, different voltage levels can be approximated. The PWM signal can be

generated by many common microcontroller boards.

There is some other useful information about DC motors that should be noted.

First, it is common for DC motors to be paired with a gearbox. The gearbox increases the

output torque and decreases the rotation speed. The gear ratio of the gearbox should be

selected based on the expected movement speed of the CSR. Another property of DC

motors is that the torque is highest when the motor shaft is forcefully held from rotating.

This condition is also called stall, and it is important because a CSR may be held at

stationary positions for extended periods of time, during which the DC will continue to

consume energy. If this energy expenditure is an issue, a braking system can be installed

to assist in supporting stationary positions. On the other hand, the highest motor speed is

achieved when there is no load torque. Therefore, cable slack can result in high-speed

motor rotations if proper care is not taken. Finally, many commercial DC motors can be

purchased with rotary encoders already mounted on the motor shaft.

Additional actuators may be used elsewhere in the CSR. In particular, it may be

necessary to add actuators to the end effector in order to control its orientation. In an AM

application, the material nozzle should remain at a proper angle to deposit material on top

86

of previous layers. Figures 20 and 22 give some ideas of the mechanisms that may be used

to stabilize the end effector. A full solution is not designed in this dissertation since the

end effector is treated as a point mass. Nevertheless, the full design of the end effector will

require a selection of actuators and associated hardware. It is likely that DC motors with

custom gears and fixtures will be used in any design. Then, an additional consideration is

how to power the actuators. One suggestion is to run power cables along with the material

hose that is shown in Figure 22.

Finally, one may consider the actuators necessary to deliver the AM material to

the end effector, since this is the intended use of the CSR. At minimum, a pump must be

used to move the semi-fluid material through a hose that leads to the nozzle. If the

material’s viscosity is high, a screw-type pump can be used. If the viscosity is low, a piston

may be another solution. To prevent the hose from weighing down the end effector, a

support structure can guide the hose above the CSR.

3.2. Position Control

Now that the overall design and a basic understanding of the CSR properties were

established, the focus turns to position control for an AM application. An immediate

objective is to enable the movement of the end effector in straight and curved paths while

maintaining a constant height. This is the type of movement required for depositing layers

of material in AM. One may also consider what will happen if there are external

disturbances to the system and whether any adverse effects can be corrected.

87

First, two CSR system models and disturbances are presented. Then, some control

strategies based on tension and cable-length measurements are designed and simulated.

Finally, a method for estimating anchor-point placement errors is described and tested.

3.2.1. Cable Models

Before discussing the system-wide models for the CSR, the cables themselves are

modeled. After all, it is the properties of the cables, such as their flexibility and their

inability to provide compression, that differentiate a CSR from other types of robots. A

few cable models are included in this work, and they are presented in order of increasing

complexity. However, all of these models are relatively simple and do not fully account

for some complicated behaviors, like sagging and vibrations. Therefore, these models are

best at representing light cables where the overwhelmingly-dominant force is tension.

The first cable model, which is the simplest but also the least accurate for a cable

with varying length, treats the cable like a linear spring. For a linear spring, the tension is

proportional to the spring deflection, and the slope of the linear relationship is called the

spring constant. In this dissertation, the cable deflection is also called the cable stretch.

The common-sense expectation is that even a small cable stretch produces a large tensile

force, and that a cable with slack produces zero tension. To match these expectations, the

spring model for a cable features a large spring constant and a piecewise discontinuity at

zero stretch. This model can be summarized in the mathematical expression

.t = {
f(l − l0) for (l − l0) > 0

0 otherwise
, (30)

where t is the cable tension, l is the stretched cable length, and l0 is the unstretched cable

length. The tension is proportional to the cable stretch amount with the exception that

88

Figure 48. Some examples of the linear-spring model for the cable tension. In this

model, the cable tension is proportional to the cable stretch, with the same stiffness

regardless of cable length.

negative stretch, or cable slack, produces zero tension. Two examples of this cable model

are plotted in Figure 48, where the spring constant of 2000 N/m was arbitrarily selected

as an example. The spring constant is the slope of the line for both cable lengths.

The constant-stiffness assumption of the first model may be accurate for a small

range of cable lengths, but it is certainly not true for all cable lengths. Experience dictates

that a longer cable stretches more than a short cable when a tension is applied, so the

model can be improved by making the stiffness dependent on the unstretched length. One

way to accomplish this is to model the taut cable like a thin rod. The cable model becomes

.t = {

EA

l0
(l − l0) for (l − l0) > 0

0 otherwise

, (31)

where E is the elastic modulus and A is the cross-sectional area of the cable. The stiffness

is proportional to these two variables, but it is inversely proportional to the unstretched

cable length. Two examples of this model, using the same cable lengths as Figure 48 for

89

Figure 49. Some examples of the rod model for the cable tensions. In this model, the

cable tension is proportional to the cable stretch but the stiffness of the cable is inversely

proportional to the unstretched cable length.

comparison, are plotted in Figure 49. The elastic modulus of A36 steel, which is 200 GPa,

and a circular diameter of 0.1-mm were used as example values. Note that the slope of the

tension for the 1-m cable is half of that for the 0.5-m cable. As before, negative tensions

are not permitted. This cable model makes more physical sense than the linear-spring

model and agrees with the tensile tests of real cables.

When a cable is stretched, some of the cable tension is due to the cable weight.

However, the tension contributed by the cable weight may be insignificant compared to

the tension due to the cable stretch. In this dissertation, it is assumed that the cable is thin

and can be treated as massless. However, the cable model may be improved by

acknowledging that the cable weight can result in a small tension even when the cable has

some slack. One simple way to incorporate this into the cable model is to shift the tension

function. Furthermore, the shift amount can be proportional to the cable length, since a

longer cable has more mass. Mathematically, this tension model can be expressed as

90

Figure 50. Some examples of the shifted-rod model for the cable tensions. This is the

same model as Figure 49, but the tension functions are slightly shifted to the left,

allowing for a small tensile force for small cable slacks. The amount of shift is

proportional to the unstretched-cable length.

.t = {

EA

l0
(l − l0+sl) for (l − l0+sl) > 0

0 otherwise

, (32)

where s is a positive number. Some examples of this model are plotted in Figure 50. The

lines in this plot are the same as in Figure 49 but are slightly shifted to the left along the

horizontal axis, allowing for a small tensile force even when there is a small cable slack.

The s value used in this example was 0.02, meaning that the shift to the left is 2% of the

cable length. The shift amount could be adjusted using data from experimental

measurements, but the exact cable tension due to the cable weight can vary based on other

factors, such as the orientation of the cable. Thus, this model is a simple approximation.

There is a significant amount of work in the literature related to the modeling and

practical use of cables. In this dissertation, the simple model of Figure 49 is used since it

makes physical sense and since the cable lengths used in simulation and experiments are

relatively short, such that cable weight is small. Then, any slack results in negligible

91

tension. Cable vibrations due are also ignored. However, the issue of cable vibrations is a

significant one that deserves further investigation or experimentation, especially for a

large-scale CSR, since vibrations lead to varying cable tensions.

3.2.2. System Models

The CSR system can essentially be described as an interaction between the end

effector and the cable tensions. In this section, two variations of the CSR-system model

are presented as mathematical equations. The main difference between the two models is

that one assumes direct knowledge of the cable tensions while the other only assumes

knowledge of the cable lengths. Internally, the second model contains and the cable-

tension equation so that the cable tensions can be calculated. The first model does not

include such equation. The second model is ultimately preferred in this dissertation

because it paves the way for some servo-based control strategies.

The CSR dynamic equations are derived using the Newtonian method in the

Cartesian coordinate system. The end effector is assumed to be a point mass with mass m,

and the forces acting on it are gravity, the cable tensions, and a small amount of damping.

The position of the mass is defined in (1), and the Cartesian coordinates are defined in

Figure 29. Then, the acceleration of the end effector is related to the forces by

mẍ = Fx − cẋ

mÿ = Fy − cẏ

mz ̈= Fz − cż − mg,

 (33)

where Fx, Fy, and Fz are the summation of cable tensions along the x, y, and z directions,

respectively. These forces are defined in (8−9) and come from the individual cable

tensions as well as the position of the end effector relative to the cable anchor points. The

92

mg term is the weight of the end effector. The damping coefficient, c, is a lumped

parameter that is included for some energy dissipation in the system. In reality, the energy

dissipation can come from many sources, like air drag or heating of the cables as they flex.

Whatever their source is, energy-dissipation forces can be modeled as damping forces that

are resolved into the three Cartesian directions, and their magnitudes generally increase

with faster end-effector movements. Therefore, as long as the damping forces are much

smaller than the cable tensions, the lumped-parameter damping coefficient assumption is

not a critical choice. However, the value of c could be debated or based on

experimentation. If the movement speed of the CSR is slow, then these damping forces

will also be small, regardless of the exact choice of c.

 The cable-force expressions from (9) are now substituted into (33) to give

mẍ = ∑
xi − x

𝑙𝑖
ti

i

− cẋ

mÿ = ∑
y

i
− y

𝑙𝑖
ti

i

− cẏ

mz ̈= ∑
zi − z

𝑙𝑖
ti

i

− cż − mg.

 (34)

Recall that ti is the tension of the ith cable, li is its length, and (xi, yi, zi) are the coordinates

of its anchor point. The three equations are coupled and nonlinear, since the li term

expands to (3).

The first system model assumes that the cable tensions, ti, are the inputs. This

implies that the tensions are directly controlled. Then, (34) is the entire model. The same

equations can be restated in the matrix form

[
m 0 0

0 m 0

0 0 m

] [
ẍ

ÿ

z̈

] + [
c 0 0

0 c 0

0 0 c

] [
ẋ

ẏ

ż

]+ [
0

0

mg
] = AT, (35)

93

where A is a cable-direction matrix, like those in (10−11), and T is a column vector of the

cable tensions. In this form, the simplicity of the model is clearly seen. The left side of

(35) is three decoupled equations of motion and the right side are the input forces for the

three equations. The matrix A, which is a function of the mass position with respect to the

cable anchor points, is solely responsible for coupling the input cable tensions. Section

3.1.4 discussed exactly how T can be found to produce the desired Cartesian forces. The

steps involve finding an inverse of A. Once a suitable inverse is found, the right side of

(35) is effectively replaced by the desired Cartesian forces and control of the system is

trivial because it is equivalent to three decoupled 1-DOF systems. Some examples of this

tension-based control are provided in Section 3.2.4.

 It may be difficult or impractical to control the cable tensions directly. This is

especially true if the cables are very stiff. For this reason, another model, which does not

assume direct tension control, is developed. To do this, the cable tensions in (34) are

replaced by the cable-tension model from (31). The result is

mẍ = ∑
xi − x

𝑙𝑖

EA

𝑙𝑖
(𝑙𝑖 − 𝑙𝑖0)

i

− cẋ

mÿ = ∑
y

i
− y

𝑙𝑖

EA

𝑙𝑖
(𝑙𝑖 − 𝑙𝑖0)

i

− cẏ

mz ̈= ∑
zi − z

𝑙𝑖

EA

𝑙𝑖
(𝑙𝑖 − 𝑙𝑖0)

i

− cż − mg.

 (36)

Here, the discontinuity in (31) is not explicitly stated, but it still applies. After some

rearranging, the equations can be rewritten as

94

mẍ = EA ∑
xi − x

𝑙𝑖
−

xi − x

𝑙𝑖
2

i

𝑙𝑖0 − cẋ

mÿ = EA ∑
y

i
− y

𝑙𝑖
−

y
i
− y

𝑙𝑖
2 𝑙𝑖0

i

− cẏ

mz ̈= EA ∑
zi − z

𝑙𝑖
−

zi − z

𝑙𝑖
2 𝑙𝑖0

i

− cż − mg.

 (37)

Finally, in matrix form, the model is

[
m 0 0

0 m 0

0 0 m

] [
ẍ

ÿ

z̈

] + [
c 0 0

0 c 0

0 0 c

] [
ẋ

ẏ

ż

]+ [
0

0

mg
] − EAA1 = − EAHL, (38)

where 1 is a column vector of ones with the same number of columns as A, H is a matrix

like A, but with li
2 in the denominators instead of li, and L is a vector of unstretched

cable lengths. Some examples of the A matrix were provided in (10−11).

In this second model, the inputs are the unstretched cable lengths. Any positive

cable stretch creates a tension that acts on the mass. Thus, the cable tensions are indirectly

controlled by controlling the cable lengths. Section 3.2.5 presents some control laws based

on varying the cable lengths.

One final improvement to the model is to include the actuator dynamics. After all,

the cable lengths are varied using actuators that have some associated response

characteristics. Section 3.1.7 describes, for example, how the CSR cables can be wound

in spools using servo motors. The servo motors are expected to quickly follow commands,

but their response cannot be instantaneous. The dynamic behavior of the motor can be

added to the model by adding yet another layer to the model inputs. That is, the vector of

unstretched cable lengths in (38) is not directly controlled but is actually the output of

another set of differential equations. For instance, a well-tuned actuator can accurately be

95

modeled using a second-order differential equation with a select natural frequency and

damping factor. Then, each of the cable lengths in the vector L can be considered as the

output from such a second-order system. The input to these second-order systems becomes

the new inputs for the overall CSR model. An example of this kind of modeling is

presented in Section 3.2.5.1.

3.2.3. Disturbances

Another element in the CSR-system model that merits consideration is the

disturbances. In general, these are any external forces or changes to the system that disrupt

the ideal operation. Their origin could be human error or environmental factors. In other

words, the disturbances are due to systematic or random errors. In any case, it is useful to

identify and accurately model the errors so they can be simulated and dealt with. A number

of possible system errors are now presented.

The most general external disturbance is one that acts directly on the end effector

itself. Some examples are forces due to wind, weight from a payload, or reactions from

contact with other objects. In the case of AM, the deposition of material can cause a

reaction force upward on the nozzle and, also, a force that opposes the nozzle motion.

Cable vibrations will also produce a force on the end effector. These types of disturbances

could be modeled as one or more functions added to the x-y-z Newtonian equations (33).

A reaction force from the steady deposition of material is modeled as steady force in the

positive-z direction, and possibly additional damping forces in the x-y directions. A wind

force is modeled as a sinusoidal force with multiple frequency components that act in the

direction of the wind. Random noise components can also be added to the force magnitude.

96

Forces from the cables are modeled either as Cartesian-direction forces or as forces along

the cable directions. In any case, the forces can be modeled as step inputs, periodic

functions, or noisy signals. There are many decisions to be made about the magnitude of

the forces as well as the period of oscillation. In general, the force magnitudes should be

less than the cable tensions if there is any hope of maintaining good operation. A good

operation is observed when the end-effector position stays within a small error bound in

the x-y-z directions.

Another type of disturbance is one that changes the robot configuration and,

consequently, the kinematics. One example is a change in the cable anchor points. This

can be a static error, like the incorrect placement of the cables, or a dynamic error, like the

cable anchor points swaying during the operation. These types of errors are modeled by

varying the system parameters in (33). The parameters can vary randomly, by a constant

amount, or periodically. A novel technique for estimating unknown anchor-point position

errors of the constant type is presented in Section 3.2.6.

Other model parameters, related to the kinematics, can also be varied and their

effect studied. For example, the end effector mass can be varied to ensure that the system

performance is satisfactory for various payload weights. The linear-damping coefficient

is varied to test different amounts of overall damping on the movement of the mass. The

cable modulus of elasticity or cable-tension function are varied to test the effect of

different cable stiffness values.

There is also another group of errors that are specifically related to the system

sensors. These types of errors are important because the feedback control is affected by

97

the measurement inaccuracies. The cable-length measurements are one example. From the

start of operation, the cable lengths should be known. In practice, this can be accomplished

by bringing the CSR to some initial starting position where the cable lengths are known

(a step called “homing”). Then, the cable lengths are continuously updated by measuring

any length changes over time. Any errors in the initial cable lengths or in the

measurements of the length changes will remain in the system memory. This kind of error

is accounted for in the model by manually changing the cable lengths at some time step in

the simulation. Therefore, a CSR model that accounts for the cable lengths, such as (36)

must be used. A model based on direct tension control, such as (34), does not provide

information about the cable lengths. Another quantity that may or may not be used for

operation is the direct measurements of the of the end-effector position. This measurement

can come from an external sensor, like a camera. Errors in the camera images will have

an effect on the performance if the measurements are used for closed-loop control. For

example, if the camera is not calibrated correctly, there could be a systematic error in the

x-y-z position of the mass. The mathematical equations used in modeling the errors are

based on some physical reasoning or experimental results.

When sensor errors are modeled, it is important to realize that a measurement error

does not affect the true value of the quantity being measured. For instance, an error in the

measurement of the mass x-y-z position does not mean that the true x-y-z position is

changed. Therefore, this kind of measurement error is modeled by creating a copy of the

true mass position and adding the error to the copy. Then, any closed-loop control that

depends on the sensor measurement utilizes the variable copy for calculations, and the true

98

mass position is not affected. The only way for the true mass position to change is to

interact with the mass through the cable tensions.

Various disturbance and error types are modeled and simulated in the forthcoming

sections. Some of the errors are recreated in the CSR experiment of Chapter 5. Whenever

possible, the simulations are compared to the experimental results.

3.2.4. Tension-Based Control

Conceptually, one of the simplest forms of control of the CSR is tension-based

control. If one can accurately control the cable tensions an arbitrary force vector can be

applied to the end effector, within the limits already discussed. Then, control is a matter

of calculating the force vector necessary to produce different movements.

The tension-based control begins with the model in (35) where the control inputs

are the individual cable tensions. This model is applied to the four-cable CSR depicted in

Figure 51, where the side lengths are 10 m and the height is 10 m. The point mass is 10

kg and the damping is 10 N∙s/m. These values and dimensions were arbitrarily selected as

an example. For comparison, the SkyCam system from Figure 19 has a mass of about 13

kg and is suspended over stadiums with lengths exceeding 100 m [56]. The test trajectory

is a circular helix with a radius of 3 m, centered at x = y = 5 m. The trajectory starts at the

position (8, 5, 2) m and goes counter-clockwise with an upward velocity of 1/15 m/s. The

trajectory ends at 60 s when the point mass has completed two circular rotations and

reaches the finishing position of (8, 5, 6) m. The following subsections use this trajectory

to test some tension-based control laws via simulation. For this task, it is useful to re-state

the robot model from (35) as

99

Figure 51. A four-cable CSR configuration and a helical reference path. The cable

anchor points, but not the cables themselves, are shown. This is the setup used to test the

tension-based control.

.Mq̈+Cq̇ +g = AT, (39)

where M, C, and g represent the system matrices and q is a vector of the end-effector

Cartesian coordinates. This form of the model is sometimes called the “standard form” of

a robotic system. Furthermore, the error state is defined as

e = q
r
− q, (40)

where qr is the coordinates from the reference trajectory. Then, the goal of control is to

bring the error to zero, or near zero, and keep it there.

3.2.4.1. Feedback Linearization

One of the common control methods for robotic systems is feedback linearization.

In this method, an inverse of the robot model is included in the control law to effectively

start

finish

100

cancel the robot dynamics. At the same time, a new linear dynamics is imposed on the

system to control the robot state and achieve a desired performance. Mathematically, one

example of a feedback control law is

.AT = M(q
r̈
 + kdė + kpe) + Cq̇ + g, (41)

where kd and kp are constant parameters. Substituting this control law into (39) gives

.Mq̈ +Cq̇ +g = M(q
r̈
 + kdė + kpe) + Cq̇ + g

 0 = M(q
r̈
− q̈) + Mkdė + Mkpe

 0 = ë + kdė +kpe.

(42)

Therefore, the error state will exhibit an unforced, damped, second-order response that is

shaped by the values of kd and kp. The error will go to zero, over time.

To implement (41) it will be necessary to solve for the cable tensions, T. The final

expression for cable tensions is

.T = A
−1

(M(q
r̈
 + kdė + kpe) + Cq̇ + g), (43)

where the inverse of A was used to solve for T. As discussed in Section 3.1.4, A may not

have an exact inverse, so a pseudo inverse is used instead. Various pseudo inverse

methods are tested in Section 3.2.4.3.

101

Figure 52. (a) 3-D plot of the simulation results using a feedback-linearization

controller. (b) The Cartesian position and position error for the end effector. The

horizontal lines mark the ±1-cm error bounds.

Figure 52 shows the simulated response of the CSR using the feedback-

linearization controller. The CSR follows the reference path almost perfectly, such that

the reference path is not visible in the plots. There is some initial error in the y and z

directions because the mass starts from rest, but the position quickly converges to the

trajectory. The kp and kd values used were 15 and 2, respectively, which produced the

lightly-damped response in the error plots. The error plots include a ±1-cm error bound

that the error remains well within after a few seconds.

The same simulation was repeated and plotted in Figure 53. This time, model

uncertainties and an external disturbance were added. The mass was increased by 4 kg and

the damping decreased by 8 N∙s/m, with respect to the nominal values. In addition, an

external force of 5 N was applied directly to the mass. The force is sinusoidal with 0.25-

(a) (b)

102

Figure 53. (a) 3-D plot of the simulation results using a feedback-linearization

controller, including some model errors and an external force disturbance. (b) The

Cartesian position and position error for the end effector. The horizontal lines mark the

±1-cm error bounds.

Hz frequency, and it acts equally in the x, y, and z directions. The model uncertainties and

external disturbance have a clear effect on the response. The model parameters cause a

steady offset in the z error and a low-frequency oscillation in the x-y error, centered around

zero. The error in the mass means that the end effector is heavier than expected, so the z

forces are not large enough to eliminate the z error. The error in the damping term means

that there is much less damping than expected, which adds to the low-frequency

oscillations. The external force disturbance causes a movement in the mass with the same

frequency as the disturbance. This additional movement is about the same magnitude in

all three directions. The total result is that the Cartesian errors are not within the ±1-cm

error bounds.

(a) (b)

103

Figure 54. Simulation results using a feedback-linearization, including some model

errors and an external force disturbance. This time, the values for kp and kd are much

higher than in Figure 53. While the x- and y-direction errors are smaller, the z error

remains large.

Figure 54 shows one final simulation of the system using the same controller. The

same model uncertainties and external-force disturbance as in the simulation of Figure 53

were used. However, the kp and kd values were increased substantially in hopes of reducing

the position errors. The new values, arbitrarily chosed, were kp = 100 and kd = 20. Despite

showing similar effects from the model uncertainties and external disturbance, such as

noticeable oscillations, the x and y errors are reduced to within the error bounds. However,

the z error remains large and outside of the error bound. This suggests that the feedback

linearization approach, alone, is not sufficient for robust control of the system. This is

especially true if the model parameters are not exactly known or are likely to vary, since

the control law (41) relies on an accurate system model. In an AM application, the

104

effective mass of the end effector can vary due to the flow of material. The damping could

also change due to environmental conditions or the cable material properties. Increasing

the controller gains is somewhat helpful in reducing errors, but only to a certain extent.

3.2.4.2. Sliding-Mode Control

To increase the robustness to model uncertainties, a sliding-mode control law can

be used. The starting point for this control law is the same feedback controller in (41). An

additional, switching function is added to the controller. The new control law is

.AT = M̂(q
r̈
 + kdė + kpe) + Ĉq̇ + ĝ + K sign(s), (44)

where the hat accents indicate that the corresponding matrices are only estimates of the

true values. The K is a diagonal gain matrix with the values selected in the forthcoming

derivation. The s is a new variable of a sliding surface. The sliding surface is defined as

.s = ė + kde + kp ∫ e dt , (45)

and its time derivative is

ṡ = ë + kdė + kpe. (46)

When s is zero, and remains there, ṡ is zero and the tracking error is confined to the same

dynamics as given by the feedback-linearization controller in (42). This is why (44) has

the same form as (41). The new sign term is added to ensure that the system will move

towards s = 0 even if there are some model uncertainties. The values of the gain matrix K

are selected using the Lyapunov stability approach and including some knowledge of the

model uncertainties.

Let the candidate Lyapunov function be

105

V =
1

2
sTMs, (47)

which is positive definite. Then, the time derivative of the Lyapunov function is

V̇ =
1

2
ṡ
T
Ms +

1

2
sTMṡ = sTMṡ. (48)

Substituting (46) into this expression gives

V̇ = sTM(ë + kdė + kpe)

= sT(Mq
r̈
− Mq̈ + Mkdė + Mkpe).

(49)

Now, substituting the CSR dynamics for the .Mq̈ term gives

V̇ = sT(Mq
r̈
− AT + Cq̇ + g + Mkdė + Mkpe). (50)

Substituting the control law, (44), gives

V̇ = sT(Mq
r̈
− (M̂(q

r̈
 + kdė + kpe) + Ĉq̇ + ĝ + K sign(s)) + Cq̇ + g + Mkdė + Mkpe). (51)

After some algebra, this equation simplifies to

V ̇ = sT(−(M̂ − M)(q
r̈
 + kdė + kpe) − (Ĉ − C)q̇ − (ĝ − g) − K sign(s)). (52)

For stability, this expression must evaluate to a negative number for every s ≠ 0. Rewriting

V̇ as the sum

V̇ = ∑Vi
̇

i

= ∑ si (−(mî − mi)(q
r̈
 + kdė + kpe)

i
− (cî − ci)q

i̇
− (g

î
− g

i
) − ki sign(si))

i

 (53)

it is clear that V̇ will be negative if Vi
̇ is negative for every i. Suppose that the maximum

error for the values in the M, C, and g matrices are m̅, c̅, and g̅, respectively. Then, if si is

positive, the maximum possible value of Vi
̇ is

|si| (m̅|q
r̈
 + kdė + kpe|

i
 + c̅q

i̇
 + g̅ − ki) . (54)

106

On the other hand, if si is negative, the maximum possible value of Vi
̇ is

−|si| (−m̅|q
r̈
 + kdė + kpe|

i
− c̅q

i̇
− g ̅+ ki) . (55)

In both cases, Vi
̇ is guaranteed to be negative as long as

ki > m̅|q
r̈
 + kdė + kpe|

i
 + c̅q

i̇
 + g̅. (56)

Then, let ki be selected as

ki = m̅|q
r̈
 + kdė + kpe|

i
 + c̅q

i̇
 + g̅ + k0, (57)

where k0 is some positive number. This will guarantee that V̇ will always be negative,

which means that the system will converge to s = 0.

 Figure 55 demonstrates the effectiveness of the sliding-mode controller in

providing robust control. For comparison, the same conditions as in Figure 53 were used.

Figure 55. Simulation results using the sliding-mode controller, with model errors and

an external force disturbance. The errors remain well within the 1-cm position-error

bounds.

107

That is, model uncertainties and an external force disturbance were included. The control

law (44) was implemented with the same kp and kd as used in Figure 53, and the K was

calculated according to (57), using k0 = 5. Now, the position errors converge to zero and

remain within the error bounds.

Even the effects of the external force disturbance are rejected by this new

controller, as evidenced by the lack of oscillations in Figure 55. To further explore this

result, the simulation was repeated with twice the magnitude of the disturbance. That is, a

10-N sinusoidal force was imposed. With this disturbance, the system response is as

shown in Figure 56. Now, the effects of the disturbance are more pronounced in the x and

y directions. Still, the errors remain nearly within the error bounds. As in the feedback-

Figure 56. Simulation results using the sliding-mode controller, with model errors and

an external force disturbance. The magnitude of the external disturbance was increased

to 10-N, which is twice the magnitude used in Figure 55.

108

linearization case, the errors can be reduced to by increasing the kp and kd controller gains.

Interestingly, the z-direction error remains small regardless of the increased disturbance.

The results in this section support the assertion that that the sliding-mode controller

is the better option for tension-based control of the system, especially when there are

model uncertainties and disturbances acting directly on the end effector.

3.2.4.3. Tension Optimization

In feedback-linearization and sliding-mode control, the control laws effectively

calculate the net force required to move the end effector in the desired way. However, in

a CSR with more than three cables the same net force can be created using different cable

tensions, owing to the fact that the system is over-constrained with respect to 3-D

positioning. This gives an opportunity for the cable tensions to be optimized to achieve a

certain objective. Section 3.1.4 presented some possibilities and rational for different

objectives. These options are now tested in simulation.

Once again, the test system is the one presented in Figure 51, and the end effector

is tasked to follow a helical path. Suppose the feedback-linearization control law is used,

and the CSR system exhibits the behavior shown in Figure 52. The Cartesian forces that

produce this behavior are shown in Figure 57. As expected, the z-direction force remains

near the weight of the end effector, and the x-y-direction forces vary periodically, with the

same amplitude, with a zero mean. These behaviors are due to the circular trajectory and

the slow upward movement.

109

Figure 57. Cartesian forces for the simulation plotted in Figure 52.

Now, some different optimization methods to calculate the cable tensions are

tested. All of these methods produce the same net forces shown in Figure 57.

The first method is (15), which is the least-squares method with a nonnegative

tension constraint. This method produces the cable tensions shown in Figure 58. In this

figure, the cables are labeled a through c. Cable a corresponds to the cable that originates

from the anchor point above the origin. The remaining letters are assigned to the anchor

points in the counter-clockwise order, when the CSR is viewed from above. The cable

tensions are always positive, which is favorable because this prevents cable slack. The

tensions curves are also relatively smooth throughout the movement. This is important

because any sudden changes in cable tensions could produce unwanted cable vibrations

or swinging of the mass. For these reasons, this is one of the preferred methods for tension

optimization.

110

Figure 58. Cable tensions required to produce the net forces in Figure 57, as calculated

using the least squares optimization method (15).

Figure 59. Cable tensions required to produce the net forces in Figure 57, as calculated

using the minimum-tension sum optimization method (16).

The second tension-optimization method, (16), aims to minimize the sum of cable

tensions. This method produces the cable tensions shown in Figure 59. Immediately, one

111

can see that there are many discontinuities in the curves. For some intervals, the cable

tensions go to zero or suddenly spike. Therefore, these cable tensions are not practical

because they would be difficult to create in a real system. Also, the cables with zero

tension could easily transition to a slack state that is undesired. Finally, the cable tensions

reach substantially higher values than those in Figure 58. For these reasons, this

optimization method is not preferred.

The third optimization method, (17), minimizes the sum of squared tensions. The

resulting cable tensions are shown in Figure 60. These results are nearly identical to those

in Figure 58. In fact, it is known that the least-squares method produces the solution with

the smallest 2-norm of the cable tensions. This norm is the square root of the objective

function used in (17). Thus, the plotted solution is the same. The difference in the two

Figure 60. Cable tensions required to produce the net forces in Figure 57, as calculated

using the minimum-squared-tension sum optimization method (17).

112

optimization methods is in how the problem is posed. The least-squares method does not

assume that there is a solution to the force-tension equation (11), but the present

optimization problem has the equation as a constraint. In this case, the results are identical,

save for some occasional noise-like behaviors in Figure 58. The slight differences may be

due to the algorithm or tolerance differences of the numerical solvers used to perform the

optimizations. A relevant note is that the least-squares optimization method took about 7

times more time to solve in MATLAB than the present method. In this sense, (17) is the

most preferred method.

The three optimization methods can also be compared according to their objective-

function values. This comparison is done in Table 1, where two different metrics are

calculated for each method. The metrics are calculated from the plotted results in this

section, and their values represent the objective-functions being minimized in the

optimization processes. The first metric is a time integral of the cable tensions. This is a

measure of the tension sums over time. The second metric is a time integral of the squared

tensions. This is a measure of the squared-tension sums over time. As expected, the second

method produces the smallest tension integral among the three methods though it is not

much smaller. The third method produces the smallest squared-tension integral. The first

method gives nearly the same metrics as the third, supporting the explanation that the two

Table 1. Comparison of metrics for the three tension-optimization methods.
Optimization method Time integral of tensions Time integral of squared tensions

Least squares with nonnegative

constraint, (15)
8796.88 392,591.33

Minimize sum of tensions, (16) 8741.86 529,997.92

Minimize sum of squared

tensions, (17)
8796.79 392,481.62

113

methods give essentially the same solution. Based on these results, alone, either the first

or third methods are preferred, and the second method does not provide a useful advantage.

Recall that the electrical power required to maintain a tension is proportional to the

squared tension. In this sense, the largest advantage is provided by the third method.

3.2.5. Cable-Length Control

Another form of control that does not depend on direct knowledge of the cable

tensions is cable-length control. In a generic robotic system, this is equivalent to servo

control of the joint variables. Since the robot kinematics is known, position control of the

end effector is reduced to the control of the individual cable lengths. Specifically, (3) is

used to calculate the required cable lengths for a given robot position. Any motion

trajectory can be discretized into a sequence of positions.

The cable-length control is accomplished in two steps. First, a servo loop is

designed. This loop measures one cable length and commands the associated actuator to

change the length to the desired value. The same loop is applied, separately, to every cable

in the CSR. Second, a kinematics loop is designed. This loop converts the desired robot

trajectory into the required cable lengths. This calculation can include data from another

sensor to correct for position errors in real-time. The kinematics and servo loops are

arranged in a dual-loop structure in Section 3.2.5.2.

3.2.5.1. Servo Control

Servo control is the most basic element of the CSR cable-length control. The

purpose of servo control is to ensure that the cables track some reference lengths. One

servo loop is applied to each cable in the system. Therefore, each servo loop is independent

114

and has no information about the other cables. The main performance goals of the servos

are to control the cable lengths quickly, accurately, and in a variety of conditions.

In Section 3.1.7, it was proposed that DC motors and spools be used to wind the

excess cable lengths. Then, each cable length can be controlled by rotating the respective

spool. In Section 3.1.6, the rotary encoder was presented as one way to measure changes

in the cable length. The use of rotary encoders is so common that it is possible to purchase

a servo motor as a complete package. This package integrates the DC motor, rotary

encoder, and controller. Then, the servo requires no further design other than installing it

to the desired application. To select the servo motor, one would be interested in knowing

the power requirements, signal types, and response characteristics. To give an idea of these

details, a simple servo motor will now be designed.

Figure 61 depicts a simple model of the DC servo system. The DC motor is powered by

an input voltage on the left and produces a torque on the spool. Meanwhile, the spool also

experiences the load force, TL, from the mass. Though not shown here, the spool is

connected to the mass by a rigid, massless cable. Therefore, the same TL force acts upward

on the mass and is counteracted by the weight of the mass. The vertical position of the

mass is labeled z, and the angular position of the motor is θ.

Figure 61. Simple model of a DC motor with an external mass load.

V
+

−

TL

θ

r : spool radius

TL

mg

z

115

The simple model presented here represents one of the servo motors of the CSR

system. In the CSR, the cables run upward from the spool and pass through some pulleys.

Then, the cables descend to the suspended mass. All of the cables in the system are

attached to the same mass. Therefore, one difference between the model in Figure 61 and

the actual CSR is that the effective load for each cable varies in the actual system. The

actual load on each cable depends on many factors, such as the position of the CSR and

the acceleration of the mass. Another difference is that the mass in the CSR moves in 3D,

whereas the simple model only accounts for a mass movement in the vertical direction.

To justify the servo design, the simple model will be required to provide control for a

variety of mass loads. If the performance of the servo is satisfactory for a variety of loads

in the simple model, then it can be expected to also perform well in the CSR system, where

the effective load on the DC motor will also vary.

The modeling for the DC motor begins with the mechanical and electrical

governing equations, which are

Kti = J
d

2
θ

dt2
+B

dθ

dt
+rTL (58)

and

V = L
di

dt
+Rmi+Ke

dθ

dt
. (59)

The explanations and some representative values for the model variables are listed in

Table 2. The same values are later used in simulations of the servo motor control and also

coincide with the experimental hardware in Chapter 4.

116

Table 2. DC motor variables, descriptions, and representative values.

Symbol Description Representative value

i Motor current 1 A

V Motor voltage 1 V

Kt Motor torque constant 0.0202 N∙m/A

J Rotor inertia 1.24×10−6 kg∙m2

B Motor viscous damping 1×10−6 N∙s/rad

r Spool radius 1 cm

L Motor inductance 0.86 mH

Rm Motor resistance 8 Ω

Ke Motor electrical constant 0.0202 V∙s/rad

Now, the governing equation for the mass movement is

.mz̈ = TL − mg. (60)

To couple the motor and mass equations, the kinematic relationship between the motor

rotation and the mass movement is used. That is,

z ̇= rθ̇. (61)

where r is the radius of the motor spool.

After taking the Laplace transform of (58−61) and performing some algebra,

.Z(s) =.V(s)
Ktr

(LJ+Lmr2)s3+(JRm+BL+mr2Rm)s2+(BRm+KtKe)s

− G(s)
mr2(Ls+Rm)

(LJ+Lmr2)s3+(JRm+BL+mr2Rm)s2+(BRm+KtKe)s
.

(62)

The output of this system Z(s) is the vertical position of the mass, and the two inputs are

the gravity acceleration G(s) and the motor voltage V(s). Of course, gravity acceleration

is a constant, so G(s) is eventually replaced by a step input. The V(s) input, which is the

motor voltage, will be the output of the servo controller. This controller calculates the

motor voltage based on the position error of the mass. Thus, the complete servo system

117

Figure 62. Block diagram of the servo control loop.

can be represented as the block diagram shown in Figure 62. In this closed-loop system,

the reference mass position is the input and the actual position is the output. The position

is fed back and compared with the reference, creating the error input, e, for the controller,

C(s).

The remaining task is to design the controller such that the system in Figure 62 is

stable and provides a good reference-tracking performance. Suppose that the common PID

controller is used. The transfer function for this controller is

C(s) = kP+
kI

s
+kDs, (63)

where kP, kI, and kD are the controller gains. However, this form of the controller is not

proper, meaning that the degree of the numerator is greater than that of the denominator.

If the controller is implemented digitally, with the sampling period Ts, the transfer function

can be modified to accurately represent the effects of digital implementation of the

derivative term [66]. The modified form is

C(s) Z(s)

V(s)

Z(s)

G(s)

g

r z

e V
+

−

+ +

118

C(s) = kP+
kI

s
+

kDs

1+
Ts

2
s

, (64)

which is a proper system. With this form of the controller, the loop transfer function of

the servo system is

.L(s) =

(kP+
kI

s
+

kDs

1+
Ts

2
s
) Ktr

(LJ+Lmr2)s3+(JRm+BL+mr2Rm)s2+(BRm+KtKe)s
.

(65)

Rewriting (65) as a fraction of polynomials would reveal that the loop transfer function

has two poles at the origin and relative degree of three. Therefore, the Bode plot of (65)

should exhibit the DC gain and phase of infinity and −180°, respectively. On the other

hand, the high-frequency gain and phase of 0 and −270° is expected. Therefore, the system

crosses over the unity gain and −180° phase at some frequencies. These crossover points

give the sufficient stability margins of the closed-loop system.

As one example, the gains of kP = 500, kI = 500, and kD = 50 were selected. With

a sampling period of Ts = 10 ms, the Bode plot of the loop transfer function is as shown in

Figure 63. The low- and high-frequency results are as expected, and there are ample gain

and phase margins, meaning that the system is stable with sufficient robustness.

Furthermore, the large low-frequency gain and small high-frequency gain mean that this

closed-loop system will be effective for tracking low-frequency reference signals while

suppressing high-frequency disturbances.

Now that a controller has been selected, the closed-loop response of the servo loop

is tested in simulation. The model parameters from Table 2 are used, and a variety of

masses and reference inputs are tested to determine if the servo loop performs well in

119

Figure 63. Bode plot for the loop transfer function of Figure 62. The PID controller in

(64) was used.

various conditions.

In the first simulation, the end-effector mass is 0.5 kg, and the reference command

is a ramp input with the slope of 0.1 m/s. This simulation is plotted in Figure 64. Initially,

the mass position goes negative. This is because the mass starts from rest and it takes some

time for the motor to increase its torque and counteract the weight of the mass.

Nevertheless, the maximum error is relatively small at just over 3 cm. The error soon

begins to decrease and becomes very small after about 2 s. The zero asymptotic error is

due to the integral term in the PID controller. Without the integral term, the ramp input

would produce a steady-state error. The motor voltage and cable tensions exhibit an initial

spike in reaction to the sudden mass acceleration. However, these quantities soon reach a

steady-state value to produce the constant upward velocity for the mass. The steady-state

cable tension is slightly larger than the mass weight to overcome the motor damping.

120

Figure 64. Ramp response for the servo system with a 0.5-kg mass.

The second simulation has the same ramp input as Figure 64, but the mass is

decreased from 0.5 kg to 0.1 kg. This drastic change in mass represents the servo system

having a much lighter load than expected. If the controller was not robust, this kind of

change could cause instability. The new simulation, shown in Figure 65, indicates that the

response is not only stable but improved with the smaller mass. The error plot looks almost

identical to that in Figure 64, but the scale of the error is ten times smaller. The smaller

error is reflected in the position plot, where the mass follows the reference closely from

the start. The motor voltage and cable tensions are also much smaller than in Figure 64,

owing to the smaller weight of the mass. Plots like these can be used to determine the

suitability of the servo system for a given task. For example, the motor voltage plot should

stay within the power supply limits, and the cable tensions should stay within a safe range.

121

Figure 65. Ramp response for the servo system with a 0.1-kg mass.

The third simulation is again performed with the 1-kg mass. This time, the

reference input is a sine function with a 1-m amplitude and 0.25-Hz frequency. This

simulation is plotted in Figure 66. The reference curve is indistinguishable from

thesimulated response, so only the response is plotted in the position plot. The tracking

error remains within a 1-cm bound, but it does not go to zero asymptotically. This is

because the sine input is an infinite-order polynomial that is difficult to track. However,

as long as the error bound is small enough for the intended application, the tracking

performance is acceptable. In steady state, the error oscillates about zero at the same

frequency as the reference input. Unsurprisingly, the motor voltage and the cable tensions

also vary with the same frequency. The motor voltage and cable tension do not have a zero

mean because these must always be positive in order to support the suspended mass.

122

Figure 66. Sine tracking for the servo system with a 0.1-kg mass. The reference function

has the amplitude of 1-m and the frequency of 0.25 Hz.

Finally, the sine reference input is tested with the 0.1-kg mass and an increased

frequency of 0.5 Hz. This simulation is plotted in Figure 67. Once again, the reference

signal is omitted because it is indistinguishable from the response of the system. In this

simulation, the reference input produces movement speeds twice as fast as the 0.25-Hz

reference. As a result, the error bound increases. Otherwise, the characteristics of the

response are the same as seen in Figure 66. This simulation confirms that, in general, faster

movement speeds will result in a larger tracking error for the servo system.

Whether a pre-made servo motor is used or the servo loop is newly designed, it is

convenient to approximate the cable-length servo loop using a simplified model, such as

123

Figure 67. Sine tracking for the servo system with a 0.1-kg mass. The reference function

has the amplitude of 1-m and the frequency of 0.5 Hz.

the second-order differential equation

ωn
2lr =

d
2
l

dt2
+2ζωn

dl

dt
+ωn

2l, (66)

where lr is the reference cable length and l is the actual cable length. The natural frequency,

ωn, and damping factor, ζ, are selected so that the response of the model is an acceptable

representation of the system. If the servo response is sufficiently fast and accurate, a model

like (66) is an acceptable simplification.

The simulations in Section 3.2.5.2 use model (66) for the cable lengths. This is

done to add realistic time delays and dynamics to the changing cable lengths. Since the

CSR movements are slow, the tracking errors are also small. For the experiment presented

in Chapters 4−5, the PID controller developed in the present section is used to implement

124

servo loops in real time, and experiments are performed to verify that the cable-length

tracking errors are small.

3.2.5.2. Dual-Loop Control

With the selection of the servo loops that control the cable lengths, the remaining

task is to design an outer loop for the CSR system. Ultimately, the outer loop provides the

reference cable lengths to the inner-loop servos. In an ideal case, the outer loop can

calculate the reference cable lengths simply based on the desired position of the end

effector and the robot kinematics. However, disturbances to the kinematics or the end

effector produce errors. Therefore, an external sensor can be used to continuously measure

the true position of the end effector, and this data can be used to adjust the reference cable

lengths in real time. Some examples of sensors that can be used for this purpose were

discussed in Section 3.1.6.

Once again, a four-cable configuration like that in Figure 22 or 51 is considered.

The dual-loop control structure for this configuration is shown in Figure 68. There are four

servo loops, one for each cable, that control the cable lengths. The true cable lengths

determine the position of the end effector according to the forward kinematics of the

system. Furthermore, the position is affected by some disturbances. The outer-loop

controller provides the reference cable lengths to the servo loops based, primarily, on the

reference position. The true position can also be used to adjust the reference lengths, but

this requires the use of an external sensor.

A critical element of the dual-loop structure is the outer-loop controller. One

design for this controller is now presented. Recall that the ideal cable lengths for a given

125

Figure 68. One example of a dual-loop control structure for a four-cable CSR. Each

cable-length is individually controlled by a servo loop. The outer-loop provides the

reference cable lengths to the servo loops. The reference lengths are based on the

reference and true position of the end effector. The dashed lines indicate the flow of

information enabled by the external position sensor.

end-effector position are calculated using (3). This equation is also referred to as the

inverse kinematics of the system. For cable i the ideal reference length is

lir =√(xi − xr)2+(y
i
− y

r
)

2
+(zi − zr)2, (67)

where (xr, yr, zr) is the reference position and (xi, yi, zi) is the location of the anchor point

for that cable. This calculation can be repeated, but using the measured position of the end

effector, (xm, ym, zm), instead of the reference position. This allows for the definition of a

new cable length, called the measured cable length, that is based on the data collected by

the external position sensor. That is,

Servo loop 2

Physical

Cartesian position
Physical

cable lengths

Reference

Cartesian

position

Servo loop 1

Servo loop 3

Servo loop 4

Reference

cable lengths

Forward

kinematics

Position

disturbances

+ + Outer-loop

controller

External

sensor

Measured

Cartesian

position

126

lim =√(xi − xm)2+(y
i
− y

m
)

2
+(zi − zm)2. (68)

To clarify, there are three different cable lengths defined in the system. The first length is

the true, physical cable length that is controlled by the servo loop. The second length is

the ideal reference cable length given by (67). The third length is the measured cable

length given by (68). This quantity can be seen as the predicted cable length based on the

measured end-effector position and the ideal CSR configuration.

If the position of the end effector is not measured (68) cannot be calculated and

the reference cable length can be calculated simply as (67). However, if the position

measurements are available, then the measured cable length can be compared against the

reference cable length to evaluate the real-time performance of the system. If there is no

position error for the end effector, the complete system is working as intended and lir and

lim will coincide. If there is a position error, then lir and lim will differ. This difference is

called the cable-length error and is defined as

lie = lir − lim. (69)

It is proposed that the reference cable lengths provided to the servo loops be

adjusted using lie. For example, the adjusted reference cable length can be defined as

lʹir = lir + kI ∫ lie dt. (70)

Here, the cable-length error is integrated and multiplied by an integral gain, kI. Thus, (70)

can be seen as an integral controller with the feed-forward term, lir. A block-diagram

representation of the controller is shown in Figure 69.

From (69), it is evident that anything that causes a change in the measured position

away from the reference position will also cause a change in the reference cable lengths,

127

Figure 69. Outer-loop controller with an integral and feed-forward component. The

same control method is applied to every cable in the CSR.

causing the closed-loop CSR system to react in some way. Therefore, the proposed

controller effectively converts the measured-position error into the cable space. Some of

the possible sources for the measured-position error are: errors in the true cable lengths,

errors in the anchor-point placement, and position-sensor errors, and dynamic force

disturbances. These errors will now be simulated to test whether the proposed outer-loop

controller is stable and effective.

The subject of simulation is a four-cable CSR with the side lengths of 0.75 m and

the height of 0.795 m. These dimensions were selected to match the experiment of Chapter

4. The mass of the end effector is 1.0 kg, and the system’s mechanical damping was

selected as 2 N∙s/m. This value was estimated by repeated simulations and comparison to

the real experiment. The cable tensions were modeled using (31), with the same material

properties that were used to create Figure 49. Finally, (66) was used to model the cable-

length servo loops, with ωn = 50 rad/s and ζ = 0.9. These were selected by comparing the

simulation results to the experimental observations.

Inverse

kinematics

Reference

Cartesian

position

Inverse

kinematics

lir
Integral

controller

+

−

lie

lim

lʹir
 +

+

Measured

Cartesian

position
Outer-loop controller

To servo

loop i

From external sensor

128

First, the ideal performance of the system is simulated. In this case, there are no

disturbances to the system, and the reference-cable lengths are calculated using (67). The

resulting motion trajectory is plotted in Figure 70. The reference trajectory is a spiral path

at the consant height of 1 m, and the CSR follows it almost exactly, such that the reference

and actual trajectories coincide in the 3D plot. Figure 71 provides more details on the

position of the mass throughout the movement in this simulation. Again, the reference and

true positions of the mass coincide almost exactly. The difference between the reference

and actual positions in the z direction is noticeable only because of the small scale on the

vertical axis. The error plots show that the mass remains within a few millimeters of the

reference trajectory in all three coordinates. The x- and y-direction errors are periodic with

zero mean and about the same frequency as the spiral movement. The z-direction error

Figure 70. Simulation result for a four-cable CSR with cable-length control. This

represents the ideal scenario, when there are no errors in the system configuration or

cable lengths. (a) Side and (b) top views.

(a) (b)

129

Figure 71. Cartesian position and error of the four-cable CSR. This is from the ideal

simulation plotted in Figure 70.

does not have a zero mean but also varies periodically, albeit at a higher frequency and

smaller amplitude. This behavior, along with the x-y error, is a result of the cable stretch

not being accounted for in the control law. The result is that the mass hangs slightly lower

than the desired height and lags in the x-y motion. This error is acceptable if it remains

within a predetermined error bound. The slightly-chaotic behavior in the error plots around

25 s is insignificant and due to the circular motion suddenly changing to a constant radius.

Some of the error in the mass position is also due to errors in the cable lengths.

Figure 66 suggested that a simple servo loop will exhibit a small error for periodic

reference inputs. The same behavior is seen in the cable lengths of the ideal simulation

(Figure 72). Here, the cables are labeled using alphabet letters, with cable La being the

130

Figure 72. Cable lengths and errors for a four-cable CSR. This is for the ideal simulation

plotted in Figure 70.

cable anchored above the origin and the subsequent cables labeled in the counter-

clockwise direction when the CSR is viewed from above.

The first source of error that is investigated is cable-length errors. To do this, the

true cable lengths of the system are disturbed by constant amounts. Furthermore, it is

assumed that the servo loops contain no knowledge of the length errors. This kind of error

can occur in a real-life application if the servo loops are not properly calibrated or if the

effective cable lengths change unexpectedly during the CSR operation. The effects of this

kind of error are demonstrated in Figure 73. Again, the cable lengths are controlled using

(67), but the actual lengths produced are incorrect due to the length errors. The result is a

131

Figure 73. Simulation of a four-cable CSR with cable-length control and cable-length

errors. The bold line is the simulated trajectory, and the thin line is the reference

trajectory. (a) Side and (b) top views.

noticeable discrepancy between the mass position and the reference trajectory. The plot of

cable lengths for this simulation, shown in Figure 74, clearly show that the true and

encoder-measured cable lengths are separated by a constant amount, owing to the constant

cable-length errors. Recall that the encoders are the feedback sensors used to measure the

true cable lengths in the servo loops. If these encoders are not setup accurately, or if there

are any missed encoder counts, there will be a difference between the true and measured

cable lengths. As a result, there will be a tracking error for the cable lengths like that shown

in Figure 74. The length errors used in this simulation were −3 cm for La, +1 cm for Lc,

and −2 cm for Ld. These quantities are evident in the cable-length error plots. The only

cable without an error is Lb, which has a response similar to the ideal case in Figure 72.

(a) (b)

132

Figure 74. Cable lengths for the four-cable CSR simulation from Figure 73.

Now, the same simulation with cable-length errors is repeated, this time using the

closed-loop feedback control law (70). The kI value used in this control law was 2. The

result of this simulation is plotted in Figure 75, and the time plot of the mass position is

shown in Figure 76. The 3D plot is nearly indistinguishable from the ideal case plotted in

Figure 70, demonstrating that the control law is effective in correcting for the cable-length

errors. The time plot of the mass position confirms that the position errors in the Cartesian

coordinates is reduced to a few millimeters. In fact, the position error is reduced even

compared to the ideal case plotted in Figure 71. Again, the chaotic movement at 25 s is

due to the radius of the movement suddenly becoming a constant.

133

Figure 75. Simulation of a four-cable CSR with cable-length control and cable-length

errors. The closed-loop control law (70) was used to correct for the cable-length errors.

(a) Side and (b) top views.

Figure 76. Cartesian position and errors for the simulation plotted in Figure 75.

(a) (b)

134

Figure 77. Cable lengths for the simulation plotted in Figure 75.

The cable lengths for the same simulation are shown in Figure 77. The true cable

lengths are now near zero owing to the feedback control law. Compare this to Figure 74,

where the encoder-measured lengths were near zero but the true cable lengths had a large

error. Interestingly, the true cable-length errors are not zero mean but are slightly positive.

This means that the true cable lengths are slightly shorter than the ideal lengths given by

(67). Thus, the control law helps correct for the cable stretch and produces a more accurate

position for the mass.

The second source of error that was investigated was cable anchor-point errors.

These errors result from inaccurate placement of the cable pulleys, and they alter the

system kinematics. More specifically, an error in the anchor-point placement alters the

135

expected cable lengths and directions. To test this scenario, a three-dimensional position

error was randomly generated for all four cable anchor points. The anchor-point errors

were (−0.047, 0.006, 0.038) m, (0.017, −0.031, −0.013) m, (−0.004, 0.048, −0.034) m, and

(0.036, 0.015, −0.012) m for cables a, b, c, and d, respectively. Then, the CSR response

was simulated using the control law (67). Again, this is the control law without the position

feedback, where the reference cable lengths are calculated using the ideal anchor-point

coordinates. The result of this simulation is plotted in Figure 78. The two views

demonstrate the drastic effect that the anchor-point errors have on the reference tracking.

Internally, the CSR system has no information of the anchor-point errors. In fact, a plot of

the cable lengths in this simulation is identical to the ideal case in Figure 72, meaning that

the reference lengths are faithfully tracked by the servo loops. The tracking errors are due

to the fact that the true CSR configuration is not as expected.

Figure 78. Simulation of a four-cable CSR with cable-length control and anchor point-

position errors. The control law (67) without position feedback was used. (a) Side and

(b) top views. The bold line is the actual trajectory, and the thin line is the reference.

(a) (b)

136

Figure 79. Simulation of a four-cable CSR with cable-length control and anchor point-

position errors. The closed-loop control law (70) was used, as opposed to the simple

control law used in Figure 78. (a) Side and (b) top view.

Now, the simulation is repeated with the same conditions but with the position-

feedback control law. The result is shown in Figure 79. Compared to Figure 78, the

tracking error is much reduced. The position is also plotted versus time in Figure 80, where

it is apparent that the mass follows the reference trajectory to within a couple centimeters.

However, there are some noticeable oscillations and peaks in the error plots. The same

oscillations are evident in Figure 79. Regardless, the true trajectory is much closer to the

reference than the case without feedback control. Furthermore, the anchor-point position

errors in this simulation represent a worst-case scenario in some sense. All of the anchor

points have a three-dimensional position error, and the error magnitudes are significant.

In a real situation, one would hope to minimize such errors from the start. Nevertheless,

the position-feedback control law is an effective method for reducing the position error.

(a) (b)

137

Figure 80. Position and position error for the simulation in Figure 79.

The third source of error investigated is position-sensor errors. Suppose that a

camera or laser system is used to measure the position of the end effector for the purpose

of feedback control. If this measurement has a systematic error, from improper calibration

or otherwise, it is useful to know how the system will respond even if there are no other

errors in the system. To test this scenario, the position measurement is injected with

constant errors. For instance, suppose that (xm, ym, zm) = (x, y, z) + (0.05, 0.02, −0.03) m.

There are no others errors in the system. That is, the robot configuration and cable lengths

are known exactly. This scenario was already presented in Figure 70, but without the

position feedback component. With the position feedback and position-measurement

error, the new control law will produce a change in the reference cable lengths even if the

138

Figure 81. Simulation of a four-cable CSR with cable-length control and position-

measurement errors. The closed-loop control law (70) was used. (a) Side view and (b)

top views.

ideal trajectory closely follows the reference. The new response of the CSR is shown in

Figure 81. Overall, the position-measurement error causes a constant offset in the position

of the mass. The amount and direction of the offset is exactly the negative of the position-

measurement error. In practical terms, the control law will cause the system to follow the

reference trajectory as seen by the position-measurement sensor, even if this measurement

has systematic errors. In the simulated example, there are no other noticeable distortions

or oscillations in the trajectory, other than the shift in position. Therefore, a position-sensor

error like this one could go unnoticed in a practical application. One way to detect the

systematic error in the measurement is to operate the system with and without the position-

feedback term and study the difference in the responses, keeping in mind that other factors

also affect the trajectory errors.

(a) (b)

139

Figure 82. Top view of a four-cable CSR simulation with cable-length control. Two of

the cables are subject to a 0.1-Hz periodic disturbance to their lengths. Responses

(a) without and (b) with position feedback.

The final source of error investigated is dynamic force disturbances. Such

disturbances could have many causes, including contact with foreign objects or

environmental factors, like wind. Another possible cause is disturbances to the CSR cables

themselves. To simulate this, two of the cable lengths in the four-cable configuration are

disturbed using sine functions. Cables b and d are disturbed with the amplitude of 5 cm as

the CSR tracks the reference trajectory. First, a low-frequency disturbance of 0.1 Hz is

tested. The result of this disturbance, with and without the position feedback, is plotted in

Figure 82. Without the position feedback, the mass trajectory is drastically affected, with

as significant departure from the reference trajectory. With the position feedback, the

trajectory closely follows the reference, with some oscillations like those in Figure 79.

(a) (b)

Cable b

Cable d

140

Figure 83. Top view of a four-cable CSR simulation with cable-length control. Two of

the cables are subject to a 0.5-Hz periodic disturbance to their lengths. Responses

(a) without and (b) with position feedback.

Thus, the position-feedback control law is effective in correcting the overall trajectory

error, but there are still some small, high-frequency errors.

The simulation with dynamic cable-length disturbances is repeated, this time with

a 0.5-Hz disturbance applied to cables b and d. The disturbance amplitude is the same as

before. The result of this simulation is plotted in Figure 83. Again, the disturbances cause

a significant error in the trajectory tracking without the feedback control law. However,

the simulation with the feedback control is only slightly improved, as there is still a

noticeable tracking error and some small oscillations. This suggests that the position-

feedback control law is not as effective in reducing errors from high-frequency

disturbances. This result is not surprising, since the mechanism in the control law, (70),

for correcting position errors is an error integral term that has some lag in responding. One

(a) (b)

141

might also expect that increasing the integral gain, kI can produce some oscillations in the

response of the system. This explains, in part, the oscillations observed in Figures 79 and

82. With a large-enough kI, the system becomes unstable. The kI value used in these

simulations was 2, and this value was selected after repeated trials. Values larger than 5

caused instabilities in the system especially when there were significant tracking errors.

For any system with low-frequency disturbances, a small ki value is recommended.

3.2.6. Anchor-Point Position Estimation

One of the possible causes of error in a CSR system is the misplacement of the

cable anchor points. Figure 78 demonstrated the drastic effect that this error can have on

the system trajectory. This is because the reference lengths used in cable-length control

are primarliy based on accurate knowledge of the cable anchor-point locations. In this

section, some novel methods to estimate the anchor point locations are investigated.

The anchor-point estimation methods are based on the assumption that the basic

form of the robot kinematics is known, but that some of the parameters are only

approximately known. Then, experimental data can be used to estimate the uncertain

parameters. The methods begins with the equation for the ideal cable length (3). The

equation is reproduced here for convenience.

li =√(xi − x)2+(y
i
− y)

2
+(zi − z)2 (71)

Recall that (xi, yi, zi) is the ideal location of the cable anchor point and (x, y, z) is the

location of the end effector. Then, (71) gives the Euclidean distance between these two

points. The actual cable length will be slightly longer due to sagging or stretch.

142

Suppose that the anchor-point position for cable i is displaced by some small

amount, given by the vector [δx, δy, δz]T. Then, the new ideal cable length is

lʹi =√(xi + δx − x)2+(y
i
 + δy − y)

2
+(zi + δz − z)2. (72)

This equation can be expanded and rearranged as

lʹi
2 − li

2
 = 2(xi − x)δx + 2(y

i
− y)δy + 2(zi − z)δz + δx2+δy2+δz2, (73)

where (71) was substituted.

Now, suppose that an experiment is run using the cable-length control of the CSR.

The data available from the experiment are the measured mass position and cable lengths

at various times. These measurements can be substituted in (73) to produce the equation

lʹim
2 − lim

2
 = 2(xi − xm)δx + 2(y

i
− y

m
)δy + 2(zi − zm)δz + δx2+δy2+δz2, (74)

where the subscript m indicates the measured values. With these measurements, every

quantity in (74) except the δ terms is known.

The immediate goal is to estimate the unknown terms using a series of

measurements. To ensure that (74) is a valid relationship for the data, special care is taken

to ensure that the cables are taut during the experiment. This could be an issue if there are

redundant cables in the CSR, since they can exhibit sagging. One way to address this issue

is to use a special trajectory where the cables are guaranteed to be in tension. For example,

the trajectory pictured in Figure 84 produces a series of SEPs where at least one of the

cables is guaranteed to be in tension. Then, the data collected during these equilibrium

points are known to approximately satisfy (74) for the cable in tension. For instance, from

10 to 15 s cable c must be in tension, so the data during this period will satisfy (74) for

143

Figure 84. A special reference trajectory that is used to ensure that (74) is a valid

relationship for the experimental data. At different vertices in this trajectory, certain

cables are guaranteed to be in tension, even if there are anchor-point placement errors.

The first method assumes that (74) is a linear equation with four unknown terms.

this cable. Once data sets are collected that satisfy the equation for all cables, one of the

following methods can be used to estimate the (δx, δy, δz) for each cable anchor point.

The four unknowns are δx, δy, δz, and δx2+δy2+δz2. The last term is not

independent of the first three terms. However, treating the fourth term as an independent

constant allows for a straightforward solution. From four distinct time instances, four

independent (74) equations are created. This system of equations will be linear with

respect to the four unknowns and can be solved using basic linear algebra.

The second method recognizes that there are only three unknowns in (74). To

calculate the unknowns, three independent equations are created from three distinct time

instances. Then, the following optimization problem is posed

(a) (b)

a

b

c

d

144

min ‖
‖

F(δx, δy, δz)t = t1
− (lʹim

2 − lim
2)

t = t1

F(δx, δy, δz)t = t2
− (lʹim

2 − lim
2
)

t = t2

F(δx, δy, δz)t = t3
− (lʹim

2 − lim
2
)

t = t3

‖
‖

2

s. t.
lb ≤ δx ≤ub

lb ≤ δy ≤ub

lb ≤ δz ≤ub.

(75)

where .F(δx, δy, δz) is the nonlinear function on the right side of (74). In other words, this

optimization problem finds the values of δx, δy, and δz that best satisfy (74) for all three

distinct time instances. If the equation is exactly satisfied, the objective value will be zero.

However, due to system imperfections or measurement errors, the minimum objective

value may only be close to zero. The optimization problem also allows for specifying the

lower and upper bounds of the δ values. These bounds, lb and ub in (75), are selected

based on the knowledge of the physical CSR.

A third method is developed using a geometric approach. This method is similar

to a location-triangulation problem, as illustrated in Figure 85. The illustration shows one

circle drawn around the mass at different time instances. The radius of the circle is equal

to the measured cable length at that instance. Ideally, the circles will intersect at the true

anchor point location. In 3D, the circles are spheres. If there is measurement noise in the

mass position or cable lengths, the spheres will not intersect perfectly at the anchor point.

Then, several additional measurements can be used to improve the estimate of the point.

Mathematically, this method can be expressed as the task of finding the point in

space that is closest to all of the sphere boundaries. Then, this problem can be posed as

145

Figure 85. An illustration of how the cable anchor point can be estimated from

successive measurements of the mass position and cable lengths.

min ∑ |√(xi + δx − xm)2+(y
i
 + δy − y

m
)

2
+(zi + δz − zm)2 − lʹim|

t = tn

t3

tn = t1

s. t.
lb ≤ δx ≤ub

lb ≤ δy ≤ub

lb ≤ δz ≤ub.

(76)

The quantity in the sum is the distance between the estimated anchor point and the

spherical boundary at time tn. The term in the square root is the Euclidean distance from

the mass position to the estimated anchor point. The lʹim term is the radius of the sphere,

which is the measured cable length. Then, the absolute value of the difference between

these two terms is the distance from the estimated anchor point to the spherical boundary.

The objective value in (76) is the sum of this distance for the three time instances, and the

goal is to find the anchor-point location that minimizes this sum. At least three time

instances are required to identify the anchor point.

Anchor point

Mass at t = t1 Mass at t = t
3

Mass at t = t
2

lʹ
m

lʹ
m

lʹ
m

146

Figure 86. Simulation result for a four-cable CSR with cable-length control and anchor

point displacements. The filled circles are the true anchor points, and the unfilled circles

are the ideal anchor points. The bold line is the actual trajectory, and the thin line is the

reference. (a) Side and (b) top views.

The three methods described above are now tested in simulation. The same

configuration and reference trajectory from Figure 84 is used. However, the anchor points

are displaced from their ideal locations by random amounts up to 5 cm in the x, y, and z

directions. An initial simulation is run, where the reference cable lengths are calculated

using (67). That is, feedback from the position measurement is not used and the anchor

points are assumed to be in their ideal locations. The result of this simulation is shown in

Figure 86. If the anchor points were in their ideal locations, the mass would closely follow

the reference trajectory, similar to Figure 70. Instead, the errors in the anchor points

produce large errors in the trajectory. The cables are labeled a to c, and their anchor points

are plotted. The filled circles are the anchor points after the random displacements, and

(a) (b)

Cable a Cable b

Cable c Cable d

147

the unfilled circles are the ideal anchor points. Every anchor point is displaced in 3-D,

which represents a worst-case-scenario. There are twelve unknown displacements.

Now, the data from the simulation in Figure 86 are used to estimate the anchor-

point displacements. Using the first method, where (74) is assumed to be a linear equation

with four unknowns, the anchor point displacements are estimated as shown in Figure 87.

In this plot, the true anchor-point displacements for each cable are plotted as circles. The

estimates, which were calculated using the data from four different time instances, are

solid points. To test the effect of measurement noise, random values up to 2 mm were

generated and added to the mass-position and cable-length data at the four time instances.

The anchor-point displacement calculation was repeated for this case and plotted using an

“×” symbol. The estimates without noise are generally close to the true values, with some

exceptions. With noise, the estimates are further from the true values. Some of the

Figure 87. Estimated anchor-point displacement errors using the first method, where

(74) is assumed to be linear with four unknowns.

148

Figure 88. Estimated anchor-point displacement errors using the second method, where

the optimization method (75) is used to estimate the three unknowns in (74).

estimated values with noise do not appear within the plot range, meaning that that they are

fairly inaccurate. One disadvantage of this method is that the bounds for the estimates are

not explicitly set, allowing for estimates that are obviously inaccurate.

The displacement estimates were repeated using the second method, as presented

in (75). The results of this calculation are plotted in Figure 88. These estimated values,

with and without measurement noise, are closer to the true values than the estimates seen

in Figure 87. Based on this, the second method is preferred. The estimates without the

noise are more accurate since any measurement noise is not accounted for in (74).

Finally, the results of the third estimation method, (76), are plotted in Figure 89.

These results are similar to those in Figure 88. Specifically, the estimates with and without

measurement noise are near to the true values. A close observation reveals that methods

(75) and (76) are minimizing the norm of the same vector. That vector is

149

Figure 89. Estimated anchor-point displacement errors using the second method, where

the optimization method (76) is used to estimate the three unknowns in (74).

[

 (√(xi + δx − xm)2+(y

i
 + δy − y

m
)

2
+(zi + δz − zm)2 − lʹim)

t = t1

(√(xi + δx − xm)2+(y
i
 + δy − y

m
)

2
+(zi + δz − zm)2 − lʹim)

t = t2

(√(xi + δx − xm)2+(y
i
 + δy − y

m
)

2
+(zi + δz − zm)2 − lʹim)

t = t3]

. (77)

The difference is that (75) minimizes the 2-norm of the vector whereas (76) minimizes the

1-norm. Either method could be used, or both could be used and the results compared.

To demonstrate the usefulness of these methods, the CSR simulation was repeated.

This time, the estimated anchor-point displacement values from Figure 88, corresponding

to the case with measurement noise, were used to calculate the reference cable lengths. In

other words, the location of the anchor points was updated based on the estimated results.

The resulting simulation is shown in Figure 90. Clearly, the estimated anchor-point

150

Figure 90. Simulation result for a four-cable CSR with cable-length control and

estimated anchor point displacements. The filled circles are the true anchor points, and

the unfilled circles are the estimated anchor points using method (75). The bold line is

the actual trajectory, and the thin line is the reference. (a) Side and (b) top views.

locations, even with the measurement noise, are close enough to the true locations that the

resulting trajectory now closely follows the reference trajectory. The results are even

better for the estimated values without measurement noise.

In a real application of a CSR, one or more initial calibration trials could be run in

order to estimate the true cable anchor points. A special calibration trajectory, such as that

in Figure 84, can be used for this purpose.

The anchor-point position estimation methods presented in this section, along with

the position-feedback results from Section 3.2.5.2, are expected to be effective strategies

for addressing some imperfections in a CSR such as cable-length errors or displacements

of the cable anchor points from their idea locations. The same methods are tested in the

forthcoming experiments in Chapter 5.

(a) (b)

151

4. EXPERIMENTAL PROTOTYPE

In order to support the analyses from Chapter 3, a laboratory-scale prototype of a

four-cable CSR was created and operated. The complete prototype is pictured in Figure

91. The components of this prototype are presented in this chapter. The experimental

results are discussed in Chapter 5.

Figure 91. Complete experimental prototype of a four-cable CSR with an external

position sensor.

152

4.1. Robot Frame

The first major component of the prototype is the robot frame that is used to set

the robot configuration. In Figure 22, it was suggested that individual towers be used to

anchor each cable pulley. Then the cables would run from the motors, up to the pulleys,

and back down to the end effector. However, any movement or flexibility of the towers

moves the pulley locations and alters the robot configuration. For the experiment, it was

important to maintain a fixed position for the cable anchor points. Therefore, the robot

frame was constructed using a cubic structure.

To construct the robot frame, aluminum bars and joints, like those pictured in

Figure 92, were used. The bars are hollow, with a square cross-section of 0.5 in, and they

have 5/32-in diameter holes spaced at 0.5 in along every side. These holes serve as

standard mounting points for other components. Some of the components are pictured.

Figure 92. Aluminum bars and links used to construct the robot frame.

Aluminum bars and joints of various lengths were joined to form a rectangular

prism, as shown in Figure 93. The prism had the outer dimensions 32×32×30.5 in. The

153

Figure 93. The basic frame used for the CSR prototype experiment. The frame was

constructed using aluminum bars of various lengths.

frame also had an arch attached across two of the top bars. This arch served as the

mounting point for the camera sensor that is discussed in Section 4.5.

The robot frame was firmly secured to the top of an optical table using mounting

screws. Sitting below the frame was a black construction paper that marked the ground

level of the CSR system. The black paper was important because it provided a uniform

background to contrast with the end-effector.

32 in
32 in

31 in

Camera height is

40 in

154

When assembled, the robot frame was rigid and resistant to movement. This was

important because the frame maintained the robot configuration throughout the

experiment, and any significant vibrations would be difficult to quantify. The next sections

detail several components that were attached to the robot frame.

4.2. Cable System

One of the main purposes of the robot frame is to create the anchor points for the

four CSR cables. To provide for this function, four short aluminum bars and small eye

hooks were attached to the top corners of the frame, as seen in Figure 94. When the

position of the eyehooks is taken into account, the final cable anchor points are at the

height of 0.79 m and arranged in a square with side lengths of 0.74 m.

 For cables, a braided fishing line was used. The specific line used was the Power

Pro Spectra 65-lb line with 0.4-mm dimeter. This line is light, low in friction, and fairly

inextensible. To test the cable stretching properties, the test mass of 1 kg was suspended

Figure 94. Eye hooks that serve as the mounting points for the CSR cables to pass

through. These eye hooks effectively set the cable anchor point locations.

Eyehooks

Eyehook

Cable

155

from a 1-m section of the braided line. The stretch amount for this condition was about

1.5 mm or 0.15% of the cable length. Since the 1-kg load is more than the load during the

CSR operation, and since the cable lengths were always shorter than 1 m, the stretch of

the braided line was assumed to be negligible at all times. Note that even if the stretch

amount was 2 mm the equivalent linear stiffness of the 1-m cable would be almost 5 kN/m.

The test mass used to represent the end effector was a 0.5-kg brass dead weight,

pictured in Figure 95. Four 0.5-m cables were securely tied to the weight at one end and a

small washer at their other end. Then, another cable of about 1 m was tied to each of the

washers. These longer lengths of cable were then passed through the eye hooks and

attached to the system actuators.

Figure 95. Four cables are tied to the 0.5-kg test mass of the experiment. The cables run

through the eye hooks of the robot frame.

Test mass

156

The purpose of the small washers was to produce known starting cable lengths for

every experiment trial. The washers were large enough that they could not be pulled

through the eye hooks, but they were not large enough to add a significant mass to the

cables. At the start of each trial, the cables were pulled by the actuators until the washers

were stopped by the eye hooks. At that point, the effective cable lengths were known to

be 0.5 m, and the experiment could begin.

4.3. DC Motors

After passing through the eyehooks in Figure 94, the cables ran down to the DC

motors, pictured in Figure 96. The motor shafts were attached to spools of 1-cm diameter

and equipped with high-precision encoders. The motors used were the Maxon A-max

110950, and their electromechanical characteristics are listed in Table 2. The encoders,

equipped from the factory, were the HEDS 5540. These quadrature encoders use optical

sensors to produce 1024 PPR. Therefore, the encoders can be used to measure cable-length

Figure 96. DC motors and cable spools used to wind the excess cable lengths. The DC

motors are equipped with high-precision quadrature encoders.

Optical

encoder

DC

motor

Cable spool

157

Figure 97. Wiring for the DC motors and encoders.

changes as small as 16.5 μm. This allowed for the implementation of precise servo loops

for each cable length. Example results of the servo loops are presented in Section 5.1.

The DC motors were powered using an Agilent E3644A DC power supply

operating at 15 V, and the encoders were powered using a separate supply at 5 V. The

wiring for the encoders and motors is detailed in Figure 97. To control the effective power

input to the motors, L298N driver boards were placed between the power supply and the

motors. These motor drivers were controlled using an Arduino microcontroller board.

4.4. Microcontrollers

A total of six microcontrollers were used in the experimental prototype. The

central microcontroller was the Arduino Mega 2560 board. This board implemented the

main program used in the CSR operation. Four additional Arduino Nano boards were used

Encoder ribbon

connector to

Arduino Nano

Power wires to

DC motors

L298N motor

driver board

Power from

DC supply

Control signals

from Arduino Mega

158

Figure 98. Wiring for the Arduino Mega 2560 microcontroller board. This controller ran

the main program of the CSR.

to count the encoder pulses. The sixth microcontroller was an Arduino UNO board that

was used to create a PWM signal and control some small servo motors. All of the Arduino

codes are in Appendix B.

The main CSR program ran on the Arduino Mega 2560 and implemented all of the

calculations and control loops included in Figure 68, except for the encoder counting and

position-sensor processing. The complete wiring of the Arduino Mega is detailed in Figure

98, and all of the functions fulfilled by this board are listed in Table 3.

The four Arduino Nano boards were used to keep the count of the encoder pulses,

and then, communicate the updated counts to the Arduino Mega upon request. The

communication was accomplished using the i2C serial-communication protocol. One

Arduino Nano was used for each encoder. The wiring for one of these Arduinos is shown

USB connection

to PC

Arduino Mega

5V to

Arduino Uno

Control signals to

L298N motor

drivers

Serial

communication to

Arduino Nanos

159

Table 3. List of functions fulfilled by the Arduino Mega 2560 microcontroller boards.
Function Description External Connections

Timing Keep track of time in the program.

Enforce time delays to achieve sampling periods.

Reference trajectory Calculate the reference trajectory in the Cartesian

coordinates using some mathematical equations.

Reference cable

lengths

Convert the reference trajectory to reference cable

lengths using the robot kinematic equations.

Measured cable

lengths

Periodically update the measured cable lengths

based on the encoder counts.

i2C communication with

the four Arduino Nanos

Camera-measured

position

Read and interpret the camera data regarding the

measured position of the test mass.

Serial communication

with the PC via the USB

connection

Position-feedback Implement the outer-loop controller including the

camera-measured position to update the reference

cable lengths.

Servo controller Implement the PID law that is used to control the

cable lengths.

Motor PWM Generate the command signals for the motor

drivers.

Digital signal to the

L298N motor driver

boards

Debugging Display some diagnostic data upon request.

Provide a convenient structure for

enabling/disabling various functions in the code.

USB communication

with the PC

in Figure 99, and the wiring for the other Arduinos is the same.

Figure 99. The wiring for the Arduino Nano microcontroller boards. These boards are

used to count the encoder pules. Only two Arduino Nanos are shown here, but the wiring

is the same for all four Arduino Nanos.

Ribbon

connector to

encoders

5V power from

DC supply

Serial

communication

to Arduino Mega

Prototyping

breadboard

160

Initially, the encoder-counting task was attempted using a single Arduino board,

but the counts were inaccurate due to missed encoder pulses. It is likely that the digital

signals from the encoders interfered with each other, such that one Arduino could not

accurately process all of the counts. Therefore, a dedicated Arduino Nano was used for

each encoder. Furthermore, only the rising edge from one channel of each encoder was

used for detecting the encoder pulses. This means that the maximum resolution of the

encoders was not utilized. The final sensing resolution of 66 μm per encoder count was

acceptable and, ultimately, allowed for precise control of the cable lengths.

The last microcontroller that was used in the experiment was an Arduino Uno

board. This board is smaller than the Arduino Mega and has a slower clock speed.

Figure 100. The wiring of the Arduino Uno microcontroller board. This board was used

to control the movement of two small servo motors in some of the experiment trials.

Pushbutton switch

with pulldown

resistor

Arduino Uno

5V power from

Arduino Mega

PWM signal to

disturbance servo motors

5V power from DC

supply and PWM signals

from Arduino Uno

Servo arm touching one

of the CSR cables

161

However, the board was only used to generate a PWM signal that swept between a

minimum and maximum duty cycle. The PWM signal controlled two small servo motors

that disturbed the cables in one set of experiment trials. The wiring for this microcontroller

is detailed in Figure 100. The only external wiring for this microcontroller was a single

pushbutton that was used to initiate the sweeping PWM signal.

4.5. Kinect Camera

To experimentally support the position-feedback control law (70) it was necessary

to include some independent sensor that could measure the position of the test mass. For

this task, a Kinect v2 camera was used. This sensor was created by Microsoft for use with

a popular gaming system. The sensor contains a color camera, infrared camera, and

microphone. The placement of the Kinect sensor in the prototype is show in in Figure 101.

Figure 101. The Kinect v2 camera, a camera and infrared-sensor package, was designed

for use with a popular gaming system. This sensor was used in the experimental

prototype to measure the position of the test mass.

Kinect v2 camera sensor

162

 Microsoft provides the cable adapters and drivers necessary for using the Kinect

v2 sensor with a PC instead of the gaming system. Furthermore, there are some open-

source libraries that facilitate the use of the Kinect functions. In this experiment, the

PyKinect2 Python library by Vlad Kolesnikov was used to operate the Kinect sensor via

a Python script. The full script is provided in Appendix B.

 The color and infrared images from the Kinect sensor are used to measure the 3-D

position of the test mass in the CSR. This is accomplished by repeatedly collecting the

image frames from the Kinect sensor and, then, employing some computer-vision

functions that are available through the open-source Python library OpenCV. The full

algorithm is described in Table 4.

Table 4. Algorithm used to measure the 3-D position of the mass using the Kinect sensor.

For every color (or depth) frame captured by the Kinect sensor, where the frame data is

stored in one or more 2-D arrays of the appropriate dimension.

Step 1. Crop the frame according to a pre-determined crop area. This is to cut off the

area of the frame that is outside of the CSR work area. Called it the cropped frame.

Step 2. In the cropped frame, extract a small focus area. Call this the focus area. Only

the focus area will be further processed. The focus area is known to contain the mass

because the area is based on the processing results from the last frame. For the first

frame, or for any time that the mass position is lost, the focus area is expanded to the

entire cropped frame.

Step 3. Filter the focus area by HSV value (for color frames) or by depth values (for

depth frames). After filtering, the frame becomes a binary image. That is, the areas of

the image that passed the filter are filled with a value of one and all other areas are filled

with a value of zero. Call it the filtered image.

Step 4. Apply a polygon-finding algorithm on the filtered image. Keep only the largest

polygon that matches the shape of the mass. In this dissertation, the matching polygon

is a polygon with more than four sides. If necessary, the polygon should be a minimum

size, in pixels. The minimum size can be determined experimentally. Once the desired

polygon is found, fill the polygon area with ones. Make all other areas of the polygon

have a value of zero.

163

Step 5. Using a moment-calculation algorithm, calculate the center of area for the

polygon found in Step 4. Note the pixel position of the polygon in the filtered image.

Step 6. Calculate the pixel position of the polygon center with respect to the cropped

frame from Step 2.

Step 7. Using the position found in Step 6, calculate the true-world coordinates of the

mass. This can be done by comparing the pixel position to a pre-determined set of

calibration data.

Step 8. Save the current pixel position of the mass. Return to Step 1 to process the next

frame.

One of the major requirements for the computer-vision algorithm to work properly

is for the test mass to be easily distinguished from other objects in the images. For this

reason, a black construction paper was placed on the floor of the robot, as seen in Figure

93, and a bright tape was placed on the top of the test mass, as seen in Figure 95.

Furthermore, the space above the test mass was always kept unobstructed. The cables were

thin enough that they did not interfere with the view of the camera.

4.6. Personal Computer

The computer-vision algorithm presented in Section 4.5 required significant data

processing and compatibility with the Kinect v2 drivers. Therefore, a PC was used along

with the Kinect sensor. The PC, pictured in Figure 102, was the Satellite S55t-B from

Toshiba with the Windows 10 operating system. This model had the Intel Core i7-4710HQ

processor operating at 2.50 GHz. Any comparable PC could be used to obtain similar

results.

The algorithm from Table 4 was implemented in a Python script and ran on the PC

at the maximum speed. The rate of capture for the images was about 30 frames per second

(FPS). This maximum speed was governed by the Kinect hardware. At the end of the

164

Figure 102. The laptop PC used for real-time communication with the Kinect, running

the computer-vision algorithm, and data communication to the Arduino Mega.

algorithm, the position data calculated in the script was communicated to the Arduino

Mega via the USB connection.

USB connection to

Arduino Mega

USB connection to

Arduino Mega

165

5. EXPERIMENTAL RESULTS

A series of experiments were performed to support the simulation results from

Chapter 3. In particular, the cable-length control with position feedback was tested, and

some errors were manually introduced into the experimental CSR system to study the

effects on the mass trajectory. Furthermore, the anchor-point position estimation method

from Section 3.2.6 was demonstrated. The tension-based methods, such as the cable-

tension control and the system stiffness calculations, were not included in this set of

experiments due to the lack of force sensors in the experimental setup.

5.1. DC Motor Servo Loops

The cable-length control in the experiment is dependent on the adequate

performance of the DC-motor servo loops, so the first experimental results demonstrate

the reference-tracking performance with respect to the cable lengths. Recall that the cable

lengths are controlled by turning the DC motors that, in turn, wind and unwind the cables.

The reference lengths are calculated according to the desired movement of the CSR and

should be followed closely by the lengths measured with the motor encoders. The same

PID controller that was presented in Section 3.2.5.1 was implemented in the Arduino code

with a time period of 15 ms. The gains were kP = 10000, kI = 20000, and kD = 300 were

selected via experimentation. When tuning the controller gains, a fast response with

smooth motor movements was sought. Furthermore, the response was tested using various

test masses to ensure that the servo response was stable for high or low cable tensions, like

in the simulation of Section 3.2.5.1. Figure 103 shows the length of one cable during one

166

Figure 103. Experiment results of the DC motor servo loops. The reference cable

lengths are calculate based on the desired movement of the CSR, and the actual cable

lengths are measured using the motor encoders. (a) Cable length and (b) length error.

of the experiment trials. In this trial, the CSR mass was moved in a square trajectory and

at a constant height. This movement requires the cable lengths to vary by about 0.2 m. The

measured cable length during this movement closely tracks the reference length, such that

the two curves cannot be distinguished in Figure 103(a). The length error is plotted in

Figure 103(b) using a millimeter scale. The maximum length error in the trial was about

3 mm, and the error typically stayed well within 1 mm. The error increased when there

were sudden changes in the reference cable lengths. After these increases, it takes about

two seconds for the error to approach zero again.

 With this DC servo loop performance, the cable lengths can be accurately

controlled within a few millimeters throughout a trial. Considering the high stiffness of

(a)

(b)

167

the cables and the possibility of an inexact spool radius, especially due to the layering of

the cables as the spool winds up, the four-cable system can be expected to position the

mass with a precision of several millimeters, but not better than that. Furthermore,

redundant cables could exhibit a small slack at certain times of the experiment due to their

lengths being slightly longer than required. This slack should be small and not detrimental

to the performance since the light cables do not provide a significant tension when sagging.

5.2. Camera Position Tracking

The second component to be tested was the camera system. The camera provides

the 3-D position feedback that enables the CSR to react to positioning errors in real time.

As such, it is important to ascertain how precise and accurate the camera can be.

Figure 104 depicts some of the original frames captured by the camera in the CSR

system. The image on the left is from the color sensor, and the image on the right is from

the depth sensor. The depth gray scales do not have any practical meaning, but the data in

Figure 104. Original images from the camera sensor. (a) A color image with

1080 × 1920 px resolution. (b) A depth image with 424 × 512 px resolution.

(a) (b)

168

the corresponding image matrix has the information about the distance from the sensor to

the objects in the image. Centered in the frame is the ground of the CSR, and the cable-

suspended mass is visible in bright orange. Around the ground are some of the instruments

of the experiment. Nothing ever obstructs the view between the camera and the end

effector. At the start of every computer-vision-program loop, the camera produces such

images in matrix form to the experiment PC.

 Figure 105 gives a visual representation of the computer-vision algorithm. The

top-left image is the small focus area that was clipped from the color image in the first

steps of the algorithm. This focus area was then filtered by color values, such that only the

Figure 105. Visual results of the computer vision image-processing algorithm as applied

to the color image. The same steps are applied, separately, to the depth image. First, a

working area is cropped from the full image. Then, a focus area containing the last-

known location of the mass is processed using computer-vision tools. Finally, the

position of the test mass is calculated and marked within the original color image.

Cropped area

Processing

focus area

Test mass

identified and

marked

Focus area

processed using

compuer-vision

tools

169

mass remained in white after the filtering. The program then calculated the location of the

mass based on the white shape. The calculated position is highlighted in the processed

color image and the position data was saved as a pixel location. Figure 105(b) is another

small focus area that was clipped from the depth frame. Again, the mass was identified

within the focus area, and the mass location was found. In a live video feed of the

processed images, one can observe the focus windows and mass position update at 30 FPS.

 The pixel values calculated by the computer-vision algorithm must ultimately be

converted to the world-frame coordinates. In order to do this, a coordinate frame was

established on the CSR ground. Using a ruler, a square grid of nine equally-spaced points

were marked on the ground. The spacing between the points was 20 cm, and the middle

point was centered with respect to the CSR frame. These nine points served as reference

positions for calibration of the camera data. Upon placing the test mass on each of these

points on the ground, the corresponding pixel values given by the computer-vision

algorithm were recorded. Then, this data set was used to implement a linear-interpolation

function in the camera program. The same procedure was repeated for the depth-image

data, using reference heights between 5 and 15 cm. The range of heights was intentionally

kept small to avoid any distortion effects from the camera lens. Preliminary experimental

results showed that the linear interpolation would not give accurate results for the entire

operating space of the system. Therefore, the decision was made to run all trials within the

5 to 15-cm-height range.

The final output of the camera algorithm is the 3-D position of the test mass in

meters. A sample of the data is shown in Figure 106, where the test mass was moved in

170

Figure 106. An example of the data output from the camera sensor and computer-vision

algorithm used to measure the real-time position of the test mass in the CSR experiment.

(a) The position of the test mass and (b) details of the position for various time ranges.

(a)

(b)

171

a circle trajectory at a constant height of 10 cm. As expected, the x and y positions follow

sinusoidal trends, and the z maintains a nearly constant height. The detail view in Figure

106(b) suggests that the x-y measurement resolution, defined as the smallest change in the

data that can reasonably be detected from a visual analysis of the plot, is about 1 mm and

the z resolution is about 2 to 3 mm.

Another important detail about the data is the elapsed time between consecutive

points. This determines the effective sampling rate of the camera and algorithm as a whole.

Figure 107 shows the time between every two consecutive image frames in a sequence of

400 frames. The time period holds steady at about 45 ms, save for a few occasional points.

Despite the maximum framerate of the camera being 30 FPS, the extra time required to

process the image frames and to save the data adds about 10 ms of processing time per

frame. Recall that the time period for the DC motor servo loops was 15 ms. To account

for the slower sampling period of the camera system, the camera data were sampled every

third loop of the servo program. This dual-sampling-period scheme produced smooth

control of the cable lengths and utilized the maximum sampling rate of the camera.

Figure 107. Typical sampling period for the camera for an experimental trial.

172

5.3. Nominal Performance

With the experimental CSR assembled, the DC motor servo loops tested, and the

camera sensor implemented, the cable-length control of the system could begin. The first

test of the complete system explored the nominal performance. This means that the

operating conditions of the robot were as perfect as possible, without any deliberate cable-

length errors, cable anchor-point errors, or external disturbances. Also, this test was

carried out without incorporating the position feedback from the camera sensor.

The trajectory for the nominal-performance test included a square and circle shape

at a constant height. This trajectory tests the system’s ability to follow the straight and

curved paths typically seen in AM applications. The result of the nominal-performance

experiment is plotted in Figure 108. The solid line is the reference path and the dots are

Figure 108. Nominal performance test of the experimental CSR system, without any

deliberate system errors or external disturbances. The solid line is the reference

trajectory and the solid dots are the position data recorded by the camera system.

(a) Side and (b) top views.

(b) (a)

173

the position data captured by the camera. Two views are shown to demonstrate that the

test mass closely follows the reference line. This result is comparable to that in Figure 70.

 The position data of the nominal test is plotted again in Figure 109. This plot shows

the speed of the movement and highlights the small variations in the position of the test

mass. The trajectory begins at 10 s, after the test mass has settled at its starting position.

From 10 to 15 s, the mass moves to the right-most corner of the square shape. Then, the

mass travels at a constant speed along the top two lines of the square, from 15 to 35 s. The

bottom two lines of the square trajectory are traversed twice as fast, from 35 to 45 s. From

45 to 50 s, the mass moves to the start of the circle path. The final movement is the circle

path at a constant linear speed, from 50 to 70 s. The square path appears as straight lines

in the x-y plots, and the circle path appears as sinusoidal lines. The z plot shows that the

Figure 109. Position data for the nominal performance experiment plotted in Figure 108.

test mass maintains a constant height at 10 cm almost perfectly.

174

 The nominal-test results represent a best-case scenario for the CSR. The test was

performed after careful assembly of the experiment prototype in a controlled environment,

and there were no significant disturbances in the laboratory environment. Even so, a small

tracking error can be observed in the results, highlighting the system’s sensitivity to small

imperfections. As previously discussed, these imperfections can occur in many locations

of the robot, like at the cable anchor locations, at the cable spools, or along the cable

lengths. If the same robot configuration were implemented at a large scale, where the

environment is not controlled, system imperfections could be even more prevalent.

5.4. Cable-Length Error

The first type of error that was explored in the experiment was inaccurate cable

lengths. To do this, the same test trajectory as in Figure 108 was used, but errors were

intentionally added to cable-length measurements in the Arduino code. The four cable

lengths, which were measured by the DC-motor encoders, were altered by +5 cm, +2 cm,

0 cm, and −3 cm. These quantities were chosen arbitrarily but small enough so that the

test mass did not touch the ground during the trial. The largest of these errors is about 7%

of the CSR-frame width. One of the length errors was negative, meaning that the altered

cable length is shorter than the measured length. Two of the other cable-length

measurements were increased, and one cable length was unaltered. When a cable length

is manually altered in this way, without the true cable length changing in the physical

system, the servo controller operates with inaccurate values. As a result, the cable length

will have a nearly constant tracking error, even though the servo controller performs its

function adequately.

175

Figure 110. Experiment results with cable-length errors and no real-time position

feedback. (a) Side and (b) top views.

The experimental result with cable-length errors is shown in Figure 110. Here, the

position measurements from the camera were not used in the feedback control to

demonstrate the full effect of the uncorrected cable-length errors. The trajectory of the test

mass is seriously affected, and the tackinging error is large. If this system were being used

for AM, the resulting workpiece would surely be deformed and not able to serve its

intended function.

In the next experiment, the feedback control law, (70), was activated. The control

law incorporates the position error as measured by the camera. The integral gain used in

this experiment was kI = 3.0. This value was selected after repeated experimentation.

Values ranging from kI = 1.0 to kI = 16.0 were tested, and the general observation was that

(a) (b)

176

a larger value produced a smaller error but was more likely to cause unstable vibrations.

Furthermore, kI values greater than about 5.0 marginally decreased the positioning error.

The experiment with the position-feedback control is plotted in Figure 111, using

the same views as in Figure 110 for comparison. The clear effect of the real-time position

feedback is to reduce the tacking error, such that the trajectory of the test mass resembles

the nominal-performance experiment plotted in Figure 108. The only exceptions are some

momentary deviations along the circle part of the motion and the initial error at the start

of the motion. The error at the start of the motion is corrected after the integral term of the

controller has had time to accumulate the persistent error and begins to noticeably affect

the control action. The deviations along the circle path occur as one or more of the cables

transitions through a state of momentary slack. As mentioned previously, cable slack is

Figure 111. Experiment results with cable-length errors and including real-time position

feedback. (a) Side and (b) top views.

(a) (b)

177

one of the prevalent issues in a CSR with redundant cables. Nevertheless, the position

error of the trajectory remains within a small error bound of 15 mm.

5.5. Camera Measurement Error

Until now, both the real-time position feedback and the plotted results of the mass

movement were made possible by the use of the camera as an independent sensor. This

begs the question, what if the camera data is inaccurate? Aside from the camera calibration

used to process the image frames, how can one be confident that the true position of the

mass indeed tracks the reference trajectory in an experiment like the one shown in Figure

111? This question can, in part, be addressed by studying the effect of camera-

measurement errors on the closed-loop performance of the CSR.

Figure 112 shows the experimental result when the camera data is intentionally

Figure 112. Experimental results with camera measurement errors and no real-time

position feedback. (a) Top view showing the x-y position of the test mass as measured by

the camera and (b) side view showing the measured height.

(a) (b)

178

altered by a constant amount. The measured x, y, z values that were measured by the

camera were changed by (2, −1, 3) cm. In this experiment, the real-time position feedback

was not active. As a result, the true trajectory of the mass was something like that shown

in Figure 108. However, due to the errors inserted in the camera data, the trajectory

recorded by the camera appears shifted exactly by the error amounts. That is, the trajectory

is shifted by (2, −1, 3) cm when compared to the reference. Without knowing about the

error in the camera data, one might conclude that the mass did not track the reference.

Thus, the camera should be well-calibrated before being used as an independent sensor.

Next, the experiment was repeated but, this time, activating the real-time position

feedback using the same flawed camera data. The result of this experiment is plotted in

Figure 113. This time, the mas closely followed the reference trajectory, giving a result

Figure 113. Experimental results with camera measurement errors and including real-

time position feedback.

(a) (b)

179

nearly indistinguishable from the nominal experiment of Figure 108. This means that, even

though the camera has some errors in measuring the position of the mass, the effect of the

controller is to drive the mass towards the reference trajectory. Furthermore, the reference

trajectory followed by the mass is the trajectory as seen by the camera, even though the

camera has an error in its view of the real world. This experimental result agrees exactly

with the simulation result presented in Figure 81.

 Returning to the question at hand, regarding the importance of the camera accuracy

in the CSR system, the result in this experiment suggests that one can be confident in the

CSR’s ability to track the reference position as seen by the camera. Then, one major focus

in designing the CSR should be ensuring that an accurate, independent position sensor is

incorporated into the system. If the position sensor is properly calibrated to the real-world,

then the accurate positioning of the mass, as seen by the camera, can be trusted to reflect

the real-world performance. On the other hand, any error accepted in the position-sensor

data will affect the positioning of the mass in a predictable way if that sensor’s data is used

for real-time feedback control of the type considered in this dissertation. Finally, the

plotted results presented herein are understood to be only as accurate as the camera data,

and it is claimed that the true system performance can be improved by simply

incorporating a more accurate position sensor.

5.6. Dynamic Cable Disturbance

Another interesting question is how the CSR performance is affected by dynamic

disturbances. A dynamic disturbance is one that varies with time, as opposed to being

constant. In general, dynamic disturbances are more difficult to reject. One such

180

disturbance can come from external forces on the CSR cables. These forces would be

transmitted to the end effector and could induce vibrations. One way to address this is to

directly measure the forces acting on the mass, as discussed in Section 3.1.6.

To test dynamic cable disturbances in the cable-length control scheme,

servomotors with short arms were attached near the anchor points of cables b and d (Figure

100). These servomotors were programmed to move in a sweeping motion, such that the

arms pushed the two cables periodically and changed the cable lengths by a few

centimeters. Although the servo motion was at a constant speed, the placement of the servo

arms was not precise. The resulting disturbances were irregular and difficult to measure.

The first experiment tested a slow movement of the disturbance servos. The servos

moved at a speed of 0.6 rad/s. The result of this experiment is plotted in Figure 114, using

Figure 114. Experiment results with slow dynamic cable disturbances and no real-time

position feedback. (a) Side and (b) top views.

(a) (b)

181

Figure 115. Experiment results with slow dynamic cable disturbances and including

real-time position feedback. (a) Side and (b) top views.

the same test trajectory as in Figure 108. The test mass periodically moved away from the

reference trajectory in an irregular way that would certainly result in AM build errors.

Although other disturbance magnitudes were not tested, one can predict that the tracking

error is commensurate with the change of the cable lengths due to the disturbance.

 The experiment was repeated, this time including the real-time position feedback.

The result is shown in Figure 115. While there is still some noticeable periodic motion in

the trajectory, the magnitude of the tracking error is reduced, such that the mass remains

within a small distance of the reference curve. Therefore, the inclusion of the feedback

controller is effective in reducing the error due to the slow dynamic cable disturbances

although the effects are not eliminated completely. In explaining this result, it is useful to

recall that the integral term in the feedback controller, (70), must lag the dynamic

(a) (b)

182

Figure 116. Experiment results with a moderately-fast dynamic cable disturbances and

no real-time position feedback. (a) Side and (b) top views.

disturbances, since it takes a finite time for the position-error integral to accumulate.

Therefore, the effective bandwidth of the feedback controller must be limited.

To explore the bandwidth of the feedback controller in rejecting dynamic

disturbances, another experiment was performed with twice the movement speed of the

disturbance servos. The placement of the servo arms was the same as before. The result of

this trial is shown in Figure 116. Clearly, the faster cable disturbances result in a more

drastic effect on the trajectory of the mass. While the overall movement follows the

reference path, there is a chaotic motion that could almost be described as periodic. During

this trial, the test mass was observed to swing slightly as the two cable lengths were

suddenly moved by the servo arms. During these intermittent swings, some of the CSR

(a) (b)

183

Figure 117. Experimental results with dynamic cable disturbances and including real-

time position feedback. (a) Side and (b) top views.

cables appeared to exhibit slack, which is problematic for control, since a slack

cable cannot provide a force to the test mass.

As before, the experiment was repeated with the position feedback control

activated to see if the error could be effectively reduced. The result of this trial is plotted

in Figure 117. This time, the position-feedback control does not produce a major

improvement. At best, the overall trajectory trends closer to the reference curve. However,

the chaotic motions are prevalent. This is the same result as in the simulation of Figure 83.

The results in this section supports the claim that the position-feedback

effectiveness is somewhat limited to constant or low-frequency disturbances. This is a

fundamental reality that warrants future work in search of an improved controller or,

alternatively, some effective means for suppressing the chaotic vibrations in the end

(a) (b)

184

effector. This latter idea is, in part, why the proposed design of the CSR presented in

Figure 22 features a nozzle-stabilization mechanism as part of the end effector. That is,

the CSR may be effective in controlling the overall placement of the AM deposition nozzle

along a desired trajectory, but it may still be necessary to implement some mechanism

near the nozzle may for the fine-positioning task. Otherwise, the CSR may not be able to

function properly in an environment with high-frequency external disturbances, and this

would reduce the usefulness of the machine in AM applications.

5.7. Anchor-Point Position Error

The final error investigated was incorrect anchor-point positions. To this end, the

eyehooks that guided the cables in the experimental CSR were intentionally moved from

their nominal positions. Referring to the labels in Figure 84, the cable-a eyehook was

displaced by (0, 0, 3.75) cm and the cable-c eyehook by (−7.0, 1.0, −2.5) cm. The b and d

eyehooks were not altered. These values were chosen arbitrarily but were influenced by

the experiment setup. In particular, the eyehooks were moved to different holes in the

extruded aluminum pieces that made up the robot frame (Figure 92). The largest of the

anchor-point displacements was about 10% of the frame width. It is unlikely that a real

implementation of a CSR would have such large errors, so these displacements represent

a worst-case scenario.

The effect of the anchor-point errors on the trajectory is shown in Figure 118. The

test trajectory was the same as the one used in the simulation of Figure 84. Just as in the

simulation, the errors drastically affect the path of the mass. The effect is comparable in

magnitude to that of Figure 110, where the cable lengths were altered. To be exact, the

185

Figure 118. Experimental results with cable anchor-point position errors and no real-

time position feedback. (a) Side and (b) top views.

positioning error in both of these experiments is due to an incorrect kinematics resulting

from errors in setting up the robot configuration. Ideally, these errors would be prevented

by careful setup of the machine. However, the portable CSR system that is proposed in

this dissertation would be more susceptible to setup errors from repeated assembly of the

machine in new locations.

 The experiment was repeated with the use of the position-feedback, and these

results are shown in Figure 119. Again, the controller is effective in reducing the tracking

error almost completely. This result is somewhat surprising since the controller in no way

helps predict the errors in the robot configuration due to the anchor-point displacements.

Thus, the CSR system with the closed-loop position feedback is significantly tolerant to

errors in the robot configuration, should they be present in the machine.

(a) (b)

186

Figure 119. Experimental results with cable anchor-point position errors and including

real-time position feedback. (a) Side and (b) top views.

5.8. Anchor-Point Position Estimation

Despite the CSR system being tolerant to some anchor-point-position errors, one

may still be interested in gathering information about the true anchor-point positions. After

all, once a configuration error is known, the robot kinematic equations can be updated to

improve the performance of the CSR even without the use of the position-feedback

control. This concept was demonstrated in the simulations of Section 3.2.6. The

experimental counterpart of this simulation is now be presented.

The same experiment from Figure 118 was used to test the anchor-point

estimation. The data were then processed using the method (75). The result is shown in

Figure 120, where the true and estimated anchor-point displacements are compared. Some

(a)
(b)

187

Figure 120. Estimated anchor-point displacement errors using experimental data and

estimation method (75).

of the displacements are estimated quite accurately while for others there is some error.

The simulations in Section 3.2.6 showed that even approximately correct estimates can

significantly improve the CSR performance. Furthermore, the confidence in the estimation

results can be increased by repeating the experiment several times. In fact, this estimation

method could be incorporated into the setup of the CSR machine in a practical application,

such that any constant anchor-point placement errors can be estimated before using the

system. Then, the estimates would be used to update the robot kinematic equations to be

used thereafter, and any errors in the estimates would be accounted for by using the closed-

loop position feedback.

The anchor-point position estimation presented herein is offered as one additional

tool for improving the use of the CSR in a large-scale application. Ideally, the setup of

such a machine would be accompanied by accurate position sensors that could be used to

188

position the cable anchor points to begin with. The method presented in this section can

be substituted or used in conjunction with the usual equipment as a means to reduce

operating costs or to increase confidence in the CSR configuration.

5.9. AM Layers

If the CSR is to be used for AM, it is also important to test the vertical motion of

the end effector. In particular, one may be interested in experimenting with incremental

changes in the mass height. This kind of movement is necessary for depositing material

layers in an AM process. The material layers can be described as 2-D paths deposited on

level planes. Each plane is slightly higher in the z direction than the previous plane.

To test this kind of movement, an experiment was performed where the CSR mass

moves in a 2-D trajectory, rises by 1 cm, and then continues along a second 2-D trajectory.

The overall path is like the one shown in Figure 108, but with the change in height

following after the first two straight-path segments. This complete motion represents the

layering process of an AM operation. The result of this test is plotted in Figure 121. The

change in height can be observed in the bottom right data points of Figure 121(b), where

the reference trajectory goes from 0.095 to 0.105 m. Before and after the vertical

movement, there is some noticeable z-direction error. In this test, the real-time position

feedback from the camera was not used, so the small position errors are the result of the

small system imperfections like inexact spool radii, cable stretch, or measurement errors.

Still, the overall motion of the mass is close to the desired trajectory. The same experiment

189

Figure 121. Experiment testing the vertical movement of 10 mm between two planar

trajectories, without real-time position feedback. (a) Side view from the front and (b)

side view showing the vertical movement.

Figure 122. Mass position for the experiment shown in Figure 121. Beginning at 35 s,

the reference trajectory was raised by 10 mm in the z direction, representing a change in

AM-layer height. Real-time position feedback was not used in this test.

(a) (b)

190

data are plotted versus time in Figure 122. Here, the reference height is shown as a solid

line in the z-direction plot. The vertical motion being studied occurs from 35 to 40 s.

During this time span, the mass tracks the trajectory with the same error that is shown in

Figure 121.

 The experiment was repeated, this time with the use of the real-time feedback

control enabled by the camera system. The result of this experiment is shown in Figure

123. Now, the mass tracked the reference trajectory much closer, and the error was

reduced. If this CSR were to be used for AM, the position-feedback control would produce

a more precise deposition of the material layers in the 2-D path and a more consistent layer

height. Without the feedback control, the minimum layer height would increase.

191

Figure 123. Mass position for an experiment with a 10-mm height change at 35 s. The

real-time position feedback from the camera was used to reduce the positioning error.

Shown here are (a) a 3-D perspective view and (b) a time plot of the x-y-z position. The

reference height is shown as a solid line in the z-direction plot.

(a)

(b)

192

The 10-mm vertical movement was about 1.3% of the experimental CSR heigh

and about four times the z-measurement resolution observed in Figure 106. To explore the

practical limit of the layer-height precision for this CSR, another experiment was run with

a height change of 5 mm. This is about 0.6% of the frame height and about two times the

z-measurement resolution. The result of this trial is shown in Figure 124. This figure can

be compared with the 10-mm experiment shown in Figure 121. The change in height is

apparent in the bottom right of Figure 124(b), but the persistent error in the z-direction is

significant enough that the 2-D trajectory does not remain at a consistent height after the

vertical movement. In this case, it cannot be said that the CSR is effective in moving the

end effector in 2-D paths along the planes with 5-mm precision. This conclusion is

supported by the time plot of the mass position, shown in Figure 125. The mass height

Figure 124. Experiment testing the vertical movement of 5 mm between two planar

trajectories without real-time position feedback. (a) Side view from the front, and (b)

side view showing the vertical movement.

(a) (b)

193

Figure 125. Mass position for the experiment shown in Figure 124. Beginning at 35 s,

the reference trajectory was increased by 5 mm in the z direction. Real-time position

feedback was not used in this test.

varies by several millimeters throughout the trial, such that it is difficult to distinguish

between the two heights in the mass trajectory. Overall, it cannot be said that the mass

tracks the reference z position effectively.

The experiment for a 5-mm vertical movement was repeated with the real-time

position feedback. The result is shown in Figure 126. The trajectory of the mass followed

the reference much closer this time, such that the heights can be distinguished from each

other in the z-direction plot of Figure 126(b). Although there are still small variations in

the z-position of the mass, the CSR is effective in maintaining a level height throughout

the movement. Thus, the precision of the positioning in the z-direction appears to be about

four times the camera-measurement resolution for this system.

194

Figure 126. Mass position for an experiment with a 5-mm height change at 35 s. The

real-time position feedback from the camera was used to reduce the positioning error.

Shown here are (a) a 3-D perspective view and (b) a time plot of the x-y-z position. The

reference height is shown as a solid line in the z-direction plot.

(a)

(b)

195

If the goal is to use the CSR for large-scale AM, experiments like the ones

presented here would be beneficial in determining the achievable positioning resolution

of the system. Furthermore, the inclusion of real-time position feedback can help improve

the positioning precision almost to the same level as the measurement resolution, as shown

in this section. The real-world results would vary based on some design details, such as

the accuracy of the servo motors or the precision of the system sensors. Nevertheless, the

same methods that were demonstrated in this dissertation can be used to achieve better

results in a practical application.

196

6. CONCLUSIONS AND FUTURE WORK

This dissertation explored one idea born from the combination of two modern

technologies, AM and CSRs. On their own, these technologies enable manufacturing tasks

in flexible ways that are suitable for automation and reduced costs. Some of the AM

technologies, like FDM, are so simple in working principle that they were already

demonstrated at large scales. One prevalent example is the construction of buildings using

concrete extrusion. At such scales, it is worth considering novel mechanisms that can

provide for accurate positioning of the AM nozzle in a low-cost, flexible manner that is

also portable. One novel mechanism is the CSR. The focus of this dissertation was the

design, analysis, and control of such a machine.

First, the conceptual design of a four-cable CSR was presented. In this design, the

coarse position of the AM nozzle is controlled by the system cables but the fine position

and orientation of the nozzle is controlled by some unspecified mechanism. The design of

this mechanism is a critical element for the final realization of the AM concept and is

suggested for future work. Otherwise, the CSR configuration must be revisited to provide

for full orientation control of the nozzle. Another part of the design that was unspecified

is the management strategy for the material hose. Since the hose is sure to add weight,

tension, and lateral forces to the nozzle mechanism, effective hose management should be

studied and eventually tested. Related items for further consideration are the nozzle

dimensions and the fluid reaction forces that result from depositing material. Once the

nozzle mechanism is designed the system cables can also be selected.

197

Second, the analyses and experiments presented in this dissertation demonstrate

that a four-cable CSR with a square footprint can be used to provide the slow movements

typically seen in AM processes. Furthermore, the cable-length control of the system with

a dual-loop structure allows for precise positioning of the nozzle as long as the cables are

relatively light and inextensible. This idea was supported through simulations and

successfully implemented in the laboratory-scale experiment to provide for precise

positioning of the robot test mass. Several movement trajectories, including straight and

circular paths were successfully tracked in the experiment with errors smaller than 1 cm.

Vertical movements between the paths also demonstrated that the CSR can accurately

provide AM layer height changes as small as 5 mm. However, all of the motions in this

dissertation were realtively slow. In future work, higher accelerations could be tested to

analyze the system dynamics more fully and to study the phenomenon of cable slack.

Futhermore, additional external forces could be tested to mimic the realistic working

conditions of a large-scale CSR. For example, the forces could mimic realistic cable

mechanics or the existence of a material hose.

Finally, CSR imperfections like cable-length errors, position-sensor errors, cable

anchor-point errors, and some dynamic cable disturbances were effectively addressed

using the real-time feedback from an independent position sensor. In every case, except

for the fast dynamic cable disturbances, the position feedback greatly reduced the

trajectory-tracking errors from several centimeters to less than 1 cm. The positon data

from the independent sensor was also used to estimate the true position of the cable anchor

points when these were displaced from their ideal locations. Therefore, the indpenedent

198

position meausurement is a useful addition not just for real-time control but also for offline

analysis of the CSR. This provides an opportunity to apply analysis tools beyond what

was done in this dissertation. For example, artificial intelligence tools like machine

learning could be an effective way to address the CSR system imperfections in real time.

The work presented here is a significant contribution to the field since it is a marked

departure from previous studies, where ideal working conditions for the CSR were the

norm.

One possible improvement for experimentation is the further development and

testing of the CSR for FDM. This means selecting and implementing a material extruder

in place of the test mass. Then, the full operation of the machine could be studied with

realistic contact forces from depositing AM layers. There is also an opportunity to test

some of the tension-based control methods like those presented in this dissertation. This

would require installing tension sensors in the experiment and implementing the sensor

data in a closed-loop controller. A secondary position sensor, such as an IMU, could also

be a beneficial addition to the experiment since it would corroborate the position data

collected by the camera.

Even though various aspects of the CSR were studied, simulated, and tested in this

work, there remain many open questions that should be answered before the idea of a CSR

for large-scale AM is implemented in full. Nevertheless, the content of this dissertation

serves as a foundational work for exploring this idea, and the analysis tools developed

here can be useful in future efforts.

199

REFERENCES

[1] F. Calignano, D. Manfredi, E. P. Ambrosio, S. Biamino, M. Lombardi, E. Atzeni, A.

Salmi, P. Minetola, L. Iuliano, and P. Fino, “Overview on additive manufacturing

technologies,” Proc. IEEE, vol. 105, no. 4, pp. 593−612, Apr. 2017.

[2] J. Gardan, “Additive manufacturing technologies: state of the art and trends,” in

Additive Manufacturing Handbook, A. B. Badiru, V. V. Valencia, and D. Liu, Eds., Boca

Raton, FL, USA: CRC Press, 2017, pp. 155−161.

[3] Y. Ning, Y. S. Wong, J. Y. H. Fuh, and H. T. Loh, “An approach to minimize build

errors in direct metal laser sintering,” IEEE Trans. Autom. Sci. Eng., vol. 3, no. 1, pp.

73−80, Jan. 2006.

[4] Q. Wang, J. Li, M. Gouge, A. R. Nassar, P. Michaleris, and E. W. Reutzel, “Reduced-

order multivariable modeling and nonlinear control of melt-pool geometry and

temperature in directed energy deposition,” in Proc. 2016 American Control Conference,

Boston, MA, USA, Aug. 2016, pp. 845–851.

[5] The University of Maine. “World’s largest 3D printer.” Advanced Structures and

Composites Center. https://composites.umaine.edu/am-equipment (accessed Jul. 15,

2021).

[6] Apis Cor. “Introducing apis cor.” Apis-Cor. https://www.apis-cor.com/news (accessed

Jul. 15, 2021).

[7] S. Lim, R. A. Buswell, T. T. Le, S. A. Austin, A. G. F. Gibb, and T. Thorpe,

“Developments in construction-scale additive manufacturing processes,” Automation in

Construction, vol. 21, pp. 262−268, Jan. 2012.

200

[8] M. Sakin and Y. C. Kiroglu, “3D printing of buildings: construction of the sustainable

houses of the future by BIM,” in Proc. 9th Int. Conf. on Sustainability in Energy and

Buildings, Crete, Greece, Jul. 2017, pp. 702−711.

[9] M. Yossef and A. Chen, “Applicability and limitations of 3D printing for civil

structures,” in Proc. Conf. on Autonomous and Robotic Construction of Infrastructure,

Ames, IA, Jun. 2015, pp. 237−246.

[10] P. Wu, J. Wang, and X. Wang, “A critical review of the use of 3-D printing in the

construction industry,” Automation in Construction, vol. 68, pp. 21−31, Aug. 2016.

[11] M. Harris, J. Potgieter, K. Arif, and R. Archer, “Large scale 3D printing: feasibility

of novel extrusion based process and requisite materials,” in Proc. 24th Int. Conf.

Mechatronics and Machine Vision in Practice, Auckland, New Zeeland, Nov. 2017, pp.

1−6.

[12] Y. Vijay, N. D. Sanandiya, S. Dristas, and J. G. Ferandez, “Control of process settings

for large-scale additive manufacturing with sustainable natural composites,” ASME

Journal of Mechanical Design, vol. 141, no. 8, pp. 1−12, Aug. 2019.

[13] Z. Wang, R. Liu, T. Sparks, and F. Liou, “Large-scale deposition system by an

industrial robot (I): design of fused pellet modeling system and extrusion process

analysis,” 3D Printing and Additive Manufacturing, vol. 3, no. 1, pp. 39−47, Mar. 2016.

[14] Sciaky Inc. “The EBAM 300® system.” Electron Beam Additive Manufacturing

(EBAM®). https://www.sciaky.com/additive-manufacturing/industrial-metal-3d-printers

(accessed Jul. 15, 2021).

201

[15] G. Cesaretti, E. Dini, X. De Kestelier, V. Colla, and L. Pambaguian, “Building

components for an outpost on the Lunar soil by means of a novel 3D printing technology,”

Acta Astronautica, vol. 93, no. 1, pp. 430−450, Jan. 2014.

[16] S. Donohoe, S. A. Velinsky, and T. A. Lasky, “Optimal force generation for an

underconstrained planar cable robot,” Mechanics Based Design of Structures and

Machines, vol. 43, no. 1, pp. 19−37, Sep. 2015.

[17] H. Jamshidifar, A. Khajepour, B. Fidan, and M. Rushton, “Kinematically-constrained

redundant cable-driven parallel robots: modeling, redundancy analysis, and stiffness

optimization,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 2, pp. 921−930, Apr. 2017.

[18] S. Tadokoro, Y. Murao, M. Hiller, R. Murata, H. Kohkawa, and T. Matsushima, “A

motion base with 6-DOF by parallel cable drive architecture,” IEEE/ASME Trans.

Mechatronics, vol. 7, no. 2, pp. 115−123, Jun. 2002.

[19] R. G. Roberts, T. Graham, and J. M. Trumpower, “On the inverse kinematics and

statics of cable-suspended robots,” in Proc. 1997 IEEE Int. Conf. Syst., Man, Cybern.,

Orlando, FL, USA, Oct. 1997, pp. 4291−4296.

[20] R. G. Roberts, T. Graham, and T. Lippitt, “On the inverse kinematics, statics, and

fault tolerance of cable-suspended robots,” Journal of Robotic Systems, vol. 15, no. 10,

pp. 581−597, Dec. 1998.

[21] H. Yuan, E. Courteille, and D. Deblaise, “Static and dynamic stiffness analyses of

cable-driven parallel robots with non-negligible cable mass and elasticity,” Mechanism

and Machine Theory, vol. 85, no. 2015, pp. 64−81, Mar. 2015.

202

[22] J. J. Gorman, K. W. Jablokow, and D. J. Cannon, “The cable array robot: theory and

experiment,” in Proc. Int. Conf. Robotics and Automation, Seoul, Korea, May 2001, pp.

2804−2810.

[23] E. Barnett and C. Gosselin, “Time-optimal trajectory planning of cable-driven

parallel mechanisms for fully specified paths with G1-discontinuities,” Journal of

Dynamic Systems, Measurement, and Control, vol. 137, no. 1, pp. 1−12, Jul. 2015.

[24] W.-J. Shiang, D. Cannon, and J. Gorman, “Dynamic analysis of the cable array

robotic crane,” in Proc. IEEE Int. Conf. Robotics and Automation, Detroit, MI, USA, May

1999, pp. 2495−2500.

[25] M. Gouttefarde, J.-F. Collard, N. Riehl, and C. Baradat, “Geometry selection of a

redundantly actuated cable-suspended parallel robot,” IEEE Trans. on Robotics, vol. 31,

no. 2, pp. 501−509, Apr. 2015.

[26] B. Wang, B. Zi, S. Qian, “Collision free force closure workspace determination of

reconfigurable planar cable driven parallel robot,” in Proc. 2016 Asia-Pacific Conf.

Intelligent Robot Systems, Tokyo, Japan, Jul.2016, pp. 26−30.

[27] D. Song, L. Zhang, and F. Xue, “Configuration optimization and a tension

distribution algorithm for cable-driven parallel robots,” IEEE Access, vol. 6, no. 1, pp.

33928−33940, Jun. 2018.

[28] S.-R. Oh and S. K. Agrawal, “The feasible workspace analysis of a set point control

for a cable-suspended robot with input constraints and disturbances,” IEEE Trans. Control

Systems Technology, vol. 14, no. 4, pp. 735−742, Jul. 2006.

203

[29] Y. Zhong and S. Qian, “A cable-driven parallel robot for 3D printing,” in Proc. IEEE

Int. Conf. Mechatronics, Robotics, and Automation, Hefei, China, May 2018, pp.

199−203.

[30] B. Zi, B. Y. Duan, J. L. Du, and H. Bao, “Dynamic modeling and active control of a

cable-suspended parallel robot,” Mechatronics, vol. 18, no. 1, pp. 1−12, Feb. 2008.

[31] R. Mersi, S. Vali, M. S. Haghighi, G. Abbasnejad, and M. T. Masouleh, “Design and

control of a suspended cable-driven parallel robot with four cables,” in Proc. Int. Conf.

Robotics and Mechatronics, Tehran, Iran, Oct. 2018, pp. 470−475.

[32] Z. Amare, B. Zi, S. Qian, J. Du, and Q. J. Ge, “Three-dimensional static and dynamic

stiffness analyses of the cable drive parallel robot with non-negligible cable mass and

elasticity,” Mechanics Based Design of Structures and Machines, vol. 46, no. 4, pp.

455−482, Aug. 2017.

[33] D. Surdilovic, J. Radojicic, and J. Krüger, “Geometric stiffness analysis of wire

robots: a mechanical approach,” in Cable-Driven Parallel Robots, T. Bruckmann and A.

Pott, Berlin, D.E.: Springer, 2013, ch. 8, pp. 389–404.

[34] B. Zi, N. Wang, S. Qian, and K. Bao, “Design, stiffness analysis and experimental

study of a cable-driven parallel 3D printer,” Mechanism and Machine Theory, vol. 132,

no. 2019, pp. 207−222, Feb. 2019.

[35] J.-D. Deschenes, P. Lambert, S. Perreault, N. Martel-Brisson, N. Zoso, A. Zaccarin,

and P. Hebert, “A cable-driven parallel mechanism for capturing object appearance from

multiple viewpoints,” in Proc. Sixth Int. Conf. 3-D Digital Imaging and Modeling,

Montreal, Canada, Aug. 2007, pp. 367−374.

204

[36] M. H. Korayem, H. Tourajizadeh, M. Taherifar, S. Khayatzadeh, M. Maddah, A.

Imanian, and A. Tajik, “A novel method for recording the position and orientation of the

end effector of a spatial cable-suspended robot and using for closed loop control,” Int. J.

Adv. Manufacturing Technologies, vol. 72, no. 5, pp. 739−755, May 2014.

[37] J. Lin and C.-K. Chiang, “Motion control of a cable-suspended robot using image

recognition with coordinate transformation,” Journal of Systems and Control Engineering,

vol. 235, no. 1, pp. 52−67, Jul. 2020.

[38] J. Lin and G. –T. Liao, “A modularized cable-suspended robot: implementation and

oscillation suppression control,” Journal of Systems and Control Engineering, vol. 230,

no. 9, pp. 1030−1043, Aug. 2016.

[39] A. B. Alp and S. K. Agrawal, “Cable suspended robots: feedback controllers with

positive inputs,” in Proc. American Control Conference, Anchorage, AK, USA, May

2002, pp. 815−820.

[40] A. Aflakiyan, H. Bayani, and M. T. Masouleh, “Computed torque control of a cable

suspended parallel robot,” in Proc. Int. Conf. Robotics and Mechatronics, Tehran, Iran,

Oct. 2015, pp. 749−754.

[41] S.-R. Oh and S. K. Agrawal, “A reference governor-based controller for a cable robot

under input constraints,” IEEE Trans. Control Systems Technology, vol. 13, no. 4, pp.

639−645, Jul. 2005.

[42] M. H. Korayem, M. Yousefzadeh, and S. Manteghi, “Tracking control and vibration

reduction of flexible cable-suspended parallel robots using a robust input shaper,” Scientia

Iranica B, vol. 25, no. 1, pp. 230−252, Jan. 2018.

205

[43] S.-R. Oh and S. K. Agrawal, “Nonlinear sliding mode control and feasible workspace

analysis for a cable suspended robot with input constraints and disturbances,” in Proc.

American Control Conf., Boston, MA, USA, Jul. 2004, pp. 4631−4636.

[44] M. H. Korayem, H. Tourajizadeh, and M. Bamdad, “Dynamic load carrying capacity

of flexible cable suspended robot: robust feedback linearization control approach,”

Journal of Intelligent and Robotic Systems, vol. 2010, no. 60, pp. 341−363, May 2010.

[45] G. Mottola, C. Gosselin, and M. Carricato, “Dynamically feasible motions of a class

of purely-translational cable-suspended parallel robots,” Mechanisms and Machine

Theory, vol. 132, no. 2019, pp. 193−206, Feb. 2019.

[46] H. Tourajizadeh and M. H. Korayem, “Optimal regulation of a cable suspended robot

equipped with cable interfering avoidance controller,” Advanced Robotics, vol. 30, no. 19,

pp. 1273−1287, May 2016.

[47] M. H. Korayem, H. Tourajizadeh, A. Zehfroosh, and A. H. Korayem, “Optimal path

planning of a cable-suspended robot with moving boundary using optimal feedback

linearization approach,” Nonlinear Dynamics, vol. 78, no. 2, pp. 1515−1543, Oct. 2014.

[48] D. Lin, G. Mottola, M. Carricato, and X. Jiang, “Modeling and control of a cable

suspended sling-like parallel robot for throwing operations,” Applied Sciences, vol. 2020,

no. 10, pp, 1−17, Dec. 2020.

[49] S.-R. Oh and S. K. Agrawal, “A control Lyapunov approach for feedback control of

cable-suspended robots,” in Proc. IEEE Int. Conf. Robotics and Automation, Roma, Italy,

Apr. 2007, pp. 4544−4549.

206

[50] R. de Rijk, M. Rushton, and A. Khajepour, “Out-of-plane vibration control of a planar

cable-driven parallel robot,” IEEE/ASME Trans. Mechatronics, vol. 23, no. 4, pp.

1684−1692, Aug. 2018.

[51] B. Khoshnevis, “Automated construction by contour crafting—related robotics and

information technologies,” Automation in Construction, vol. 13, no. 1, pp. 5−19, Jan.

2004.

[52] P. Bosscher, R. L. Williams II, L. S. Bryson, and D. Castro-Lacouture, “Cable-

suspended robotic contour crafting system,” Automation in Construction, vol. 17, no. 1,

pp. 45−55, Feb. 2007.

[53] E. Barnett and C. Gosselin, “Large-scale 3D printing with a cable-suspended robot,”

Additive Manufacturing, vol. 7, pp. 27−44, Jul. 2015.

[54] J.-B. Izard, A. Dubor, P.-E. Herve, E. Cabay, D. Culla, M. Rodriguez, and M.

Barrado, “Large-scale 3D printing with cable-driven parallel robots,” Construction

Robotics, vol. 1, no. 1, pp. 1−8, Dec. 2017.

[55] T. P. Tho and N. T. Thinh, “Using a cable-driven parallel robot with applications in

3D concrete printing,” Applied Sciences, vol. 2021, no. 11, pp. 1−23, Jan. 2021.

[56] R. Cravotta, “Flying over the action,” EDN, vol. 48, no. 26, pp. 30−33, Jul. 2003.

[57] R. R. Thompson and M. S. Blackstone, “Three-dimensional moving camera assembly

with an informational cover housing,” U.S. Patent 6873355 B1, Mar. 29, 2005.

[58] Y.-W. Wei, W.-M. Chen, and H.-H. Tsai, “Accelerating the Bron-Kerbosch algorithm

for maximal clique enumeration using GPUs,” IEEE Trans. Parallel and Distributed

Systems, vol. 32, no. 9, pp. 2352−2366, Sep. 2021.

207

[59] H. Jeong, S.-J. Han, S.-H. Choi, Y. J. Lee, S. T. Yi, and K. S. Kim, “Rheological

property criteria for buildable 3D printing concrete,” Materials, vol. 2019, no. 12, pp.

1−21, Feb. 2019.

[60] F. Bos, R. Wolfs, Z. Ahmed, and T. Salet, “Additive manufacturing of concrete in

construction: potentials and challenges of 3D concrete printing,” Virtual and Physical

Prototyping, vol. 11, no. 3, pp. 209−225, Aug. 2016.

[61] M. Valente, A. Sibai, and M. Sambucci, “Extrusion-based additive manufacturing of

concrete products: revolutionizing and remodeling the construction industry,” Journal of

Composites Science, vol. 2019, no. 3, pp. 1−20, Sept. 2019. Available online at

www.tandfonline.com.

[62] N. Roussel, “Rheological requirements for printable concretes,” Cement and

Concrete Research, vol. 112, no. 1, pp. 76−85, Oct. 2018.

[63] R. A. Buswell, W. R. L. de Silva, S. Z. Jones, and J. Dirrenberger, “3D printing using

concrete extrusion: a roadmap for research,” Cement and Concrete Research, vol. 112,

no. 1, pp. 37−49, Oct. 2018.

[64] A. Perrot, D. Rangeard, and A. Pierre, “Structural built-up of cement-based materials

used for 3D-printing extrusion techniques,” Materials and Structures, vol. 2016, no. 49,

pp. 1213−2330, Feb. 2015.

[65] T. T. Le, S. A. Austin, S. Lim, R. A. Buswell, A. G. F. Gibb, and T. Thorpe, “Mix

design and fresh properties for high-performance printing concrete,” Materials and

Structures, vol. 2012, no. 45, pp. 1221−1232, Jan. 2012.

208

[66] C. L. Phillips and H. T. Nagle, “Digital controller design,” in Digital Control System

Analysis and Design, 3rd Ed., Upper Saddle River, NJ: Prentice Hall, Inc., 1995, ch. 8,

sec. 9, pp. 314−315.

209

APPENDIX A:

ANALYSIS CODES

The tables in this appendix contain the MATLAB codes used in the analysis work

of this dissertation. To run these codes, the files should be saved as shown in Figure 127.

Figure 127. Folder and file structure for the MATLAB analysis codes in this

dissertation.

210

Table A1. masterScript.m is the script that runs all of the other analysis codes.

% ===

% Analysis

% ===

%% Cable tension function

addpath('analysis')

addpath('utilities')

close all; clear all; clc;

% Run the tension analysis scripts (found in the analysis folder)

plotTensionFunctions

%% Tension

addpath('analysis')

addpath('utilities')

close all; clear all; clc;

% Run the tension analysis scripts (found in the analysis folder)

% These scripts plot the cable tensions at different positions

tensionAnalysis_4Cable

tensionAnalysis_3Cable

tensionAnalysis_6Cable

% This analaysis plots the x-y or z force requirements for a cable robot

minMaxForceAnalysis_4cable

%% Stiffness

addpath('analysis')

addpath('utilities')

close all; clear all; clc;

% Run the tension analysis scripts (found in the analysis folder)

stiffnessAnalysis_4Cable

stiffnessAnalysis_3Cable

stiffnessAnalysis_6Cable

%% Position to cable lengths

addpath('utilities')

close all; clear all; clc;

% Positions to calculate cable lengths for

positions = [0.3 0.4 0.5];

% Cable anchor point locations

B = 1; % square base length [m]

H = 1; % height [m]

anchorPoints = [0 0 H; B 0 H; B B H; 0 B H];

% Calculate ideal cable lengths for the positions and cable anchor points

cableLengths = positionToCableLengths(positions, anchorPoints);

% Display the cable suspended robot

time = 0;

plotCables = true;

animatedPlot(time, positions, cableLengths, anchorPoints, plotCables);

%% Cable lengths to position

addpath('utilities')

addpath('findLargestSquare')

close all; clear all; clc;

% Build area size

211

B = 1; % square base length [m]

H = 1; % height [m]

% Square example

% Cable lengths in [m]

cableLengths = [0.7 0.9 1.0 0.8];

% Cable anchor point locations in [m]

anchorPoints = [0 0 H; B 0 H; B B H; 0 B H];

% Calculate the resulting end effector position

[position, ~, ~] = cableLengthsToPosition(cableLengths, anchorPoints);

% Display the cable suspended robot

if isnan(position)

 disp('Valid position could not be found')

else

 time = 0;

 plotCables = true;

 animatedPlot(time, position, cableLengths, anchorPoints, plotCables);

end

% Hexagon example

cableLengths = [0.8,0.7,0.2,0.5,0.5,0.6];

anchorPoints = [B/2-(B/2)*(sqrt(3)/2) B/2-B/4 H;

 B/2 0 0.9*H

 B/2+(B/2)*(sqrt(3)/2) B/2-B/4 0.8*H;

 B/2+(B/2)*(sqrt(3)/2) B/2+B/4 H;

 B/2 B H

 B/2-(B/2)*(sqrt(3)/2) B/2+B/4 1.1*H;];

% Calculate the resulting end effector position

[position, activeCables, redundantCables] = cableLengthsToPosition(cableLengths,

anchorPoints);

% Display the cable suspended robot

if isnan(position)

 disp('Valid position could not be found')

else

 time = 0;

 plotCables = true;

 animatedPlot(time, position, cableLengths, anchorPoints, plotCables);

end

% NOTE: solution not guaranteed to use largest number of cables, since only

% one cable clique is processed (there could be a larger clique)

% ===

% Simulation

% ===

%% DC motor servo control

addpath('simulations')

addpath('utilities')

close all; clear all; clc;

dcMotorServoSim

%% Closed-loop control using tension feedback

addpath('simulations')

addpath('utilities')

close all; clear all; clc;

cableRobotSim_tension

%% Closed-loop control using cable length feedback

addpath('simulations')

addpath('utilities')

close all; clear all; clc;

cableRobotSim_cableLengths

212

%% Cable anchorpoint disturbance prediction

addpath('simulations')

addpath('utilities')

addpath('analysis')

close all; clear all; clc;

cableRobotSim_disturbancePrediction

Table A2. esimateDisturbances.m is a function that estimates the anchor point

displacements from a set of simulation or experimental data.

function [dist_est] = estimateDisturbances(t, positions, cableLengths, anchorPoints,

timeStamps, method)

% Estimates the cable anchor point disturbances for a cable-suspended

% robot given simluation or experiment data.

% t: a time vector in [s]

% positions: the Cartesian positions in [m] associated with the times [t]

% cableLengths: the cable lengths in [m] associated with the times [t]

% anchorPoints: locations of the anchor point locations in [m]

% timeStamps: the time instances used in the solving method [s]

% method: selects the solving method. See the switch statement below.

% dist_est: the estimated anchorpoint disturbances, one row for each

% cable, each in the Cartesian form [dx,dy,dz], in [m]

 % Number of time points to sample

 nTimes = length(timeStamps);

 % Number of cables

 [nCables,~] = size(anchorPoints);

 dist_est = NaN(nCables, 3);

 % Initialize matrices for methods 1 to 4

 if method<5

 A = NaN(nTimes*nCables,4);

 B = NaN(nTimes*nCables,1);

 end

 % Initialize matrices for method 5

 if method==5

 P = NaN(nTimes*nCables,3);

 L = NaN(nTimes*nCables,1);

 end

 % Initialize matrices for method 6

 if method==6

 res = 0.001; % grid unit size in [m]

 maxDist = 0.05; % maximum allowable disturbance [m]

 maxVal = 0;

 n = 2*ceil(maxDist/res)+1;

 gridMaxDist = res*(n+1)/2;

 grid = zeros(n,n,n*nTimes);

 end

 % Loop through timeStamps

 for i=1:nTimes

 % Find the index number for the current time sample

 sampleIndex = find(t>=timeStamps(i),1,'first');

 % Extract data for current time sample

 x = positions(sampleIndex,1);

 y = positions(sampleIndex,2);

213

 z = positions(sampleIndex,3);

 l = cableLengths(sampleIndex,1:4);

 % Populate matrices to solve for disturbances

 if method<=5

 % Calculate ideal cable lengths, assuming no disturbances

 l_i = positionToCableLengths([x,y,z], anchorPoints);

 % For methods 1 to 4:

 % A*disturbance = B

 % For method 5:

 % P=cartesian location, L=cable length

 for c=1:nCables

 matrixRow = (c-1)*nTimes + i;

 ancX = anchorPoints(c,1);

 ancY = anchorPoints(c,2);

 ancZ = anchorPoints(c,3);

 A(matrixRow,:) = [1 -2*(x-ancX) -2*(y-ancY) -2*(z-ancZ)];

 B(matrixRow) = l(c)^2 - l_i(c)^2;

 P(matrixRow,:) = [x,y,z];

 L(matrixRow) = l(c);

 end

 elseif method==6

 % For method 6 (discrete grid approximation)

 for gx=1:n

 for gy=1:n

 for gz=1:n

 for c=1:nCables

 dx = anchorPoints(c,1) - gridMaxDist + res*gx;

 dy = anchorPoints(c,2) - gridMaxDist + res*gy;

 dz = anchorPoints(c,3) - gridMaxDist + res*gz;

 dist = norm([dx-x, dy-y, dz-z]);

 if abs(dist-l(c))<res/2

 gz0 = (c-1)*n;

 grid(gx,gy,gz+gz0) = grid(gx,gy,gz+gz0) + 1;

 end

 end

 end

 end

 end

 end

 end

 % Solve using selected method

 switch method

 case 1 % Method 1: Solve as a set of linear equations using pseudo inverse

 for c=1:nCables

 matrixRows = (c-1)*nTimes+1:(c-1)*nTimes+nTimes;

 est = pinv(A(matrixRows,:))*B(matrixRows);

 % Keep last three elements only

 dist_est(c,:) = est(2:4)';

 end

 case 2 % Method 2: Solve as a set of linear equations using pseudo inverse

 % Remove smallest singular value

 for c=1:nCables

 matrixRows = (c-1)*nTimes+1:(c-1)*nTimes+nTimes;

 [~,sVals,~] = svd(A(matrixRows,:));

 tol = (sVals(end)+sVals(end-1))/2;

 est = pinv(A(matrixRows,:), tol)*B(matrixRows);

 % Keep last three elements only

 dist_est(c,:) = est(2:4)';

 end

 case 3 % Method 3: Solve as least squares problem using linear equations

 x0 = [0,0,0,0];

 ub = [0.0075,0.05,0.05,0.05];

214

 lb = [0,-0.05,-0.05,-0.05];

 for c=1:nCables

 matrixRows = (c-1)*nTimes+1:(c-1)*nTimes+nTimes;

 fun = @(x) norm(B(matrixRows)-A(matrixRows,:)*x');

 est = fmincon(fun,x0,[],[],[],[],lb,ub);

 % Keep last three elements only

 dist_est(c,:) = est(2:4)';

 end

 case 4 % Method 4: Solve as least squares problem using nonlinear equations

 x0 = [0,0,0];

 lb = [-0.05,-0.05,-0.05];

 ub = [0.05,0.05,0.05];

 for c=1:nCables

 matrixRows = (c-1)*nTimes+1:(c-1)*nTimes+nTimes;

 fun = @(x) norm(B(matrixRows)-A(matrixRows,2:4)*x'-norm(x)^2);

 dist_est(c,:) = fmincon(fun,x0,[],[],[],[],lb,ub);

 end

 case 5 % Method 5: Solve as minimization problem using graphical method

 for c=1:nCables

 x0 = anchorPoints(c,:);

 lb = x0 - 0.05*[1 1 1];

 ub = x0 + 0.05*[1 1 1];

 fun = @(x) distanceSum(x,c);

 est = fmincon(fun,x0,[],[],[],[],lb,ub);

 dist_est(c,:) = est' - x0';

 end

 case 6 % Method 6: Discrete graphical method

 for c=1:nCables

 gzRange = (c-1)*n+1:(c-1)*n+n;

 cableGrid = grid(:,:,gzRange);

 maxVal = max(cableGrid,[],'all');

 maxInd = find(cableGrid==maxVal);

 numInd = length(maxInd);

 xIdAvg = 0;

 yIdAvg = 0;

 zIdAvg = 0;

 for i=1:numInd

 [xId,yId,zId] = ind2sub(size(cableGrid),maxInd(i));

 xIdAvg = xIdAvg + xId/numInd;

 yIdAvg = yIdAvg + yId/numInd;

 zIdAvg = zIdAvg + zId/numInd;

 end

 xest = anchorPoints(c,1)-gridMaxDist+res*xIdAvg;

 yest = anchorPoints(c,2)-gridMaxDist+res*yIdAvg;

 zest = anchorPoints(c,3)-gridMaxDist+res*zIdAvg;

 dist_est(c,:) = [xest,yest,zest]-anchorPoints(c,:);

 end

 end

 % For use with method 5

 function [distSum] = distanceSum(x,c)

 distSum = 0;

 zeroMatrixRow = (c-1)*nTimes;

 for point=1:nTimes

 row = zeroMatrixRow+point;

 distSum = distSum + abs(norm(x-P(row,:))-L(row));

 end

 end

end

215

Table A3. minMaxForceAnalysis.m is a script that that calculates the allowable x, y, and

z forces in a four-cable CSR such that positive cable tensions are maintained.

% Force analysis, 4 cables

% Calculates, for set of points:

% 1. The minimum z force given an x-y force

% 2. The maximum x-y force given a z force

clear all;

% ====================

% Physical configuration of the cable-suspended robot (cables not shown)

% (Square shape with side lengths B)

% ====================

% d_________________c

% /| /|

% a/_|______________b/ |

% | | | |

% | | | | H

% | | | |

% | | | |

% | |______________|__|

% | / | / B

% |/________________|/

% B

% ====================

% Define some variables

% ====================

global B H anchorPoints

% Anchor point dimensions (see physical configuration above)

B = 1.0; % length of each side [m]

H = 1.0; % height of cable anchor points [m]

anchorPoints = [0 0 H; B 0 H; B B H; 0 B H]; % anchor points for 4 cables

% Mass of the end effector in [kg]

mass = 1;

g = 9.81; % gravity acceleration [m/s^2]

% ====================

% Run analysis

% ====================

% Select point in the CSR workspace

x = B/4;

y = 3*B/4;

z = 0.3;

position = [x,y,z];

% Create the cable direction matrix (for some analysis)

[numCables, ~] = size(anchorPoints);

cableDirections = NaN(3,numCables);

for c=1:numCables

 dx = anchorPoints(c,1)-position(1);

 dy = anchorPoints(c,2)-position(2);

 dz = anchorPoints(c,3)-position(3);

 magnitude = norm([dx dy dz]);

 cableDirections(:,c) = [dx;dy;dz]/magnitude;

 zz = norm(cableDirections(1:2,c),2)/cableDirections(3,c);

 xx = cableDirections(3,c)/cableDirections(1,c);

end

216

% Vary the x-y force and calculate the minimum z force

n = 21;

Fx = NaN(n*n,1);

Fy = NaN(n*n,1);

minFz = NaN(n*n,1);

f = linspace(-2*mass*g,2*mass*g,n);

sampleIndex = 0;

for i=1:length(f)

 for j=1:length(f)

 % Increase sample index number

 sampleIndex = sampleIndex+1;

 % Calculate x,y,z location in [m] based on sample number

 Fx(sampleIndex) = f(i);

 Fy(sampleIndex) = f(j);

 % Solve for the tensions using an optimization method

 [Fz, ~] = positionToMinZForce(anchorPoints, position, Fx(sampleIndex),

Fy(sampleIndex));

 minFz(sampleIndex) = Fz;

 end

end

% Plot the results in a 3D figure

figure(1);

surf(reshape(100*Fx/(mass*g),[n,n]),reshape(100*Fy/(mass*g),[n,n]),reshape(100*minFz/(

mass*g),[n,n]));

grid on;

xlabel('F_x [% weight]')

ylabel('F_y [% weight]')

zlabel('Minimum F_z [% weight]')

% Vary the z force and calculate the maximum x-y force magnitude

n = 101;

Fz = NaN(n,1);

maxFxy = NaN(n,1);

f = linspace(0,2*mass*g,n);

sampleIndex = 0;

for i=1:length(f)

 % Increase sample index number

 sampleIndex = sampleIndex+1;

 % Calculate x,y,z location in [m] based on sample number

 Fz(sampleIndex) = f(i);

 % Solve for the tensions using an optimization method

 [Fxy, ~] = positionToMaxXYForce(anchorPoints, position, Fz(sampleIndex));

 maxFxy(sampleIndex) = Fxy;

end

% Plot the results in a 2D plot

figure(2);

plot(100*Fz/(mass*g),100*maxFxy/(mass*g),'k.')

grid on;

xlabel('F_z [% weight]')

ylabel('Maximum F_{xy} [% weight]')

217

Table A4. plotTensionFunctions.m is a script that that plots the cable tension versus cable

stretch amount. Several cable models are tested.

% Plot cable tension functions

% Four different tension functions are plotted. The function is changed

% using the 'fun' variable below.

clear all;

% ====================

% Select cable lengths to try

% ====================

% Three different unstretched cable lengths to use in calculations.

% The tension functions calculate cable tension based on unstretched and

% stretched cable lengths.

l0 = [0.1 0.5 1];

% ====================

% Calculate and plot cable tension (and stiffness)

% ====================

% Calculate tension and stiffness for each sample point, tension function 1

fun = 1;

figure()

subplot(1,2,1)

for u=1:length(l0) % loop through the unstretched cable lengths

 unstretchedLength = l0(u);

 % Create array of stretched cable lengths

 l = linspace(0.75*unstretchedLength, 1.2*unstretchedLength);

 % Calculate the tensions and stiffness for each stretched cable length

 tension = NaN(length(l),1);

 stiffness = NaN(length(l),1);

 for s=1:length(l) % loop through stretched cable lengths

 stretchedLength = l(s);

 % Call the tension function

 [tension(s),stiffness(s)] = tensionFunction(fun, stretchedLength,

unstretchedLength, []);

 end

 % Plot tension vs cable strech

 subplot(1,2,1)

 plot(l, tension);

 title('Constant stiffness, no negative tension allowed')

 xlabel('Stretched cable length [m]')

 ylabel('Tension [N]')

 grid on

 hold on

 % Plot stiffness vs cable strech

 subplot(1,2,2)

 plot(l, stiffness);

 xlabel('Stretched cable length [m]')

 ylabel('Stiffness [N/m]')

 grid on

 hold on

end

% Add legend for three unstretched cable lengths

leg = legend('L0=0.1 m','L0=0.5m','L0=1.0m');

title(leg,'Unstretched cable length')

218

% Calculate tension and stiffness for each sample point, tension function 2

fun = 2;

figure()

subplot(1,2,1)

for u=1:length(l0) % loop through the unstretched cable lengths

 unstretchedLength = l0(u);

 % Create array of stretched cable lengths

 l = linspace(0.75*unstretchedLength, 1.2*unstretchedLength);

 % Calculate the tensions and stiffness for each stretched cable length

 tension = NaN(length(l),1);

 stiffness = NaN(length(l),1);

 for s=1:length(l) % loop through stretched cable lengths

 stretchedLength = l(s);

 % Call the tension function

 [tension(s),stiffness(s)] = tensionFunction(fun, stretchedLength,

unstretchedLength, []);

 end

 % Plot tension vs cable strech

 subplot(1,2,1)

 plot(l, tension);

 title('Rod stiffness')

 xlabel('Stretched cable length [m]')

 ylabel('Tension [N]')

 grid on

 hold on

 % Plot stiffness vs cable strech

 subplot(1,2,2)

 plot(l, stiffness);

 xlabel('Stretched cable length [m]')

 ylabel('Stiffness [N/m]')

 grid on

 hold on

end

% Add legend for three unstretched cable lengths

leg = legend('L0=0.1 m','L0=0.5m','L0=1.0m');

title(leg,'Unstretched cable length')

% Calculate tension and stiffness for each sample point, tension function 3

fun = 3;

figure()

subplot(1,2,1)

for u=1:length(l0) % loop through the unstretched cable lengths

 unstretchedLength = l0(u);

 % Create array of stretched cable lengths

 l = linspace(0.75*unstretchedLength, 1.2*unstretchedLength);

 % Calculate the tensions and stiffness for each stretched cable length

 tension = NaN(length(l),1);

 stiffness = NaN(length(l),1);

 for s=1:length(l) % loop through stretched cable lengths

 stretchedLength = l(s);

 % Call the tension function

 [tension(s),stiffness(s)] = tensionFunction(fun, stretchedLength,

unstretchedLength, []);

 end

 % Plot tension vs cable strech

 subplot(1,2,1)

 plot(l, tension);

 title('Rod stiffness, no negative tension allowed')

 xlabel('Stretched cable length [m]')

219

 ylabel('Tension [N]')

 grid on

 hold on

 % Plot stiffness vs cable strech

 subplot(1,2,2)

 plot(l, stiffness);

 xlabel('Stretched cable length [m]')

 ylabel('Stiffness [N/m]')

 grid on

 hold on

end

% Add legend for three unstretched cable lengths

leg = legend('L0=0.1 m','L0=0.5m','L0=1.0m');

title(leg,'Unstretched cable length')

% Calculate tension and stiffness for each sample point, tension function 4

fun = 4;

figure()

subplot(1,2,1)

for u=1:length(l0) % loop through the unstretched cable lengths

 unstretchedLength = l0(u);

 % Create array of stretched cable lengths

 l = linspace(0.75*unstretchedLength, 1.2*unstretchedLength);

 % Calculate the tensions and stiffness for each stretched cable length

 tension = NaN(length(l),1);

 stiffness = NaN(length(l),1);

 for s=1:length(l) % loop through stretched cable lengths

 stretchedLength = l(s);

 % Call the tension function

 [tension(s),stiffness(s)] = tensionFunction(fun, stretchedLength,

unstretchedLength, []);

 end

 % Plot tension vs cable strech

 subplot(1,2,1)

 plot(l, tension);

 title('Modified rod stiffness, small tension for small slack')

 xlabel('Stretched cable length [m]')

 ylabel('Tension [N]')

 grid on

 hold on

 % Plot stiffness vs cable strech

 subplot(1,2,2)

 plot(l, stiffness);

 xlabel('Stretched cable length [m]')

 ylabel('Stiffness [N/m]')

 grid on

 hold on

end

% Add legend for three unstretched cable lengths

leg = legend('L0=0.1 m','L0=0.5m','L0=1.0m');

title(leg,'Unstretched cable length')

220

Table A5. stiffnessAnalysis_3Cable.m is a script that that calculates and plots the

directional stiffness of a three-cable CSR at a given height.

% Stiffness analysis

clear all;

% ====================

% Physical configuration of the cable-suspended robot (cables not shown)

% (Equilateral triangle that fits within a BxB square)

% ====================

% c

% |

% a | b

% | | |

% | | |

% | | | H

% | | |

% | | |

% | |

% | |

%

% ====================

% Define some variables

% ====================

global B H anchorPoints mass

% Anchor point dimensions (see physical configuration above)

B = 1.0; % length of each side [m]

H = 1.0; % height of cable anchor points [m]

anchorPoints = [B/2-(B/2)*(sqrt(3)/2) B/2-B/4 H;

 B/2+(B/2)*(sqrt(3)/2) B/2-B/4 H;

 B/2 B H]; % anchor points for 3 cables

% Mass of the end effector in [kg]

mass = 1;

% ====================

% Create sample points and run analysis

% ====================

% Create evenly-spaced grid sample points at a single height

n = 25; % number of points per grid dimension

x = NaN(n*n,1);

y = NaN(n*n,1);

z = 0.3*ones(n*n,1); % height [m]

sampleIndex = 0;

for i=1:n

 for j=1:n

 % Increase sample index number

 sampleIndex = sampleIndex+1;

 % Calculate x,y,z location in [m] based on sample number

 x(sampleIndex) = i*B/(n+1);

 y(sampleIndex) = j*B/(n+1);

 end

end

% Solve and plot sampling of tensions

method = 2;

plotOption = 1;

plotStiffness([x y z], method, plotOption);

221

% ====================

% Solve and plot function

% ====================

function plotStiffness(samplePoints, method, plotOption)

 % Access some global variables

 global B H anchorPoints mass

 % Initialize arrays to store results

 [numSamples,~] = size(samplePoints); % number of samples

 O = NaN(numSamples,1);

 % Position

 X = O;

 Y = O;

 Z = O;

 % Stiffness magnitudes

 Kx = O;

 Ky = O;

 Kz = O;

 % Calculate the stiffness for each sample location

 for i=1:numSamples

 % Calculate tension at the location

 position = [samplePoints(i,1) samplePoints(i,2) samplePoints(i,3)];

 K = positionToStiffness(position, anchorPoints, mass, method);

 % Store position

 X(i) = position(1);

 Y(i) = position(2);

 Z(i) = position(3);

 % Store stiffness values

 Kx(i) = K(1);

 Ky(i) = K(2);

 Kz(i) = K(3);

 end

 switch plotOption

 % Plot cable stiffness, seperate plot for each direction

 case 1

 figure('Name',sprintf('Method %i',method))

 % x plot

 subplot(1,3,1);

 plot3(X,Y,Kx,'.k');

 title('X stiffness')

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Stiffness [N/m]')

 xlim([0 B])

 ylim([0 B])

 view(-20,20)

 grid on

 axis square

 % y plot

 subplot(1,3,2);

 plot3(X,Y,Ky,'.k');

 title('Y stiffness')

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Stiffness [N/m]')

 xlim([0 B])

 ylim([0 B])

 view(-20,20)

 grid on

 axis square

 % z plot

 subplot(1,3,3);

222

 plot3(X,Y,Kz,'.k');

 title('Z stiffness')

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Stiffness [N/m]')

 xlim([0 B])

 ylim([0 B])

 view(-20,20)

 grid on

 axis square

 % Plot cable tensions, all tension vectors together in one plot

 case 2

 O = zeros(numSamples,1);

 figure()

 subplot(1,1,1)

 hold on

 quiver3(X,Y,Z, Kx,O,O, 'r');

 quiver3(X,Y,Z, O,Ky,O, 'g');

 quiver3(X,Y,Z, O,O,Kz, 'b');

 hold off

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

 end

end

Table A6. stiffnessAnalysis_4Cable.m is a script that that calculates and plots the

directional stiffness of a four-cable CSR at a given height.

% Stiffness analysis, 4 cables

clear all;

% ====================

% Physical configuration of the cable-suspended robot (cables not shown)

% (Square shape with side lengths B)

% ====================

% d_________________c

% /| /|

% a/_|______________b/ |

% | | | |

% | | | | H

% | | | |

% | | | |

% | |______________|__|

% | / | / B

% |/________________|/

% B

% ====================

% Define some variables

% ====================

global B H anchorPoints mass

223

% Anchor point dimensions (see physical configuration above)

B = 1.0; % length of each side [m]

H = 1.0; % height of cable anchor points [m]

anchorPoints = [0 0 H; B 0 H; B B H; 0 B H]; % anchor points for 4 cables

% Mass of the end effector in [kg]

mass = 1;

% ====================

% Create sample points and run analysis

% ====================

% Create evenly-spaced grid sample points at a single height

n = 21; % number of points per grid dimension

x = NaN(n*n,1);

y = NaN(n*n,1);

z = 0.3*ones(n*n,1); % height [m]

sampleIndex = 0;

for i=1:n

 for j=1:n

 % Increase sample index number

 sampleIndex = sampleIndex+1;

 % Calculate x,y,z location in [m] based on sample number

 x(sampleIndex) = i*B/(n+1);

 y(sampleIndex) = j*B/(n+1);

 end

end

% Solve and plot sampling of tensions

method = 2;

plotOption = 1;

plotStiffness([x y z], method, plotOption);

% ====================

% Solve and plot function

% ====================

function plotStiffness(samplePoints, method, plotOption)

 % Access some global variables

 global B H anchorPoints mass

 % Initialize arrays to store results

 [numSamples,~] = size(samplePoints); % number of samples

 O = NaN(numSamples,1);

 % Position

 X = O;

 Y = O;

 Z = O;

 % Stiffness magnitudes

 Kx = O;

 Ky = O;

 Kz = O;

 % Calculate the stiffness for each sample location

 for i=1:numSamples

 % Calculate tension at the location

 position = [samplePoints(i,1) samplePoints(i,2) samplePoints(i,3)];

 K = positionToStiffness(position, anchorPoints, mass, method);

 % Store position

 X(i) = position(1);

 Y(i) = position(2);

 Z(i) = position(3);

 % Store stiffness values

 Kx(i) = K(1);

224

 Ky(i) = K(2);

 Kz(i) = K(3);

 end

 switch plotOption

 % Plot cable stiffness, seperate plot for each direction

 case 1

 figure('Name',sprintf('Method %i',method))

 % x plot

 subplot(1,3,1);

 plot3(X,Y,Kx,'.k');

 title('X stiffness')

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Stiffness [N/m]')

 xlim([0 B])

 ylim([0 B])

 view(-20,20)

 grid on

 axis square

 % y plot

 subplot(1,3,2);

 plot3(X,Y,Ky,'.k');

 title('Y stiffness')

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Stiffness [N/m]')

 xlim([0 B])

 ylim([0 B])

 view(-20,20)

 grid on

 axis square

 % z plot

 subplot(1,3,3);

 plot3(X,Y,Kz,'.k');

 title('Z stiffness')

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Stiffness [N/m]')

 xlim([0 B])

 ylim([0 B])

 view(-20,20)

 grid on

 axis square

 % Plot cable tensions, all tension vectors together in one plot

 case 2

 O = zeros(numSamples,1);

 figure()

 subplot(1,1,1)

 hold on

 quiver3(X,Y,Z, Kx,O,O, 'r');

 quiver3(X,Y,Z, O,Ky,O, 'g');

 quiver3(X,Y,Z, O,O,Kz, 'b');

 hold off

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

 end

end

225

Table A7. stiffnessAnalysis_6Cable.m is a script that that calculates and plots the

directional stiffness of a six-cable CSR at a given height.

% Stiffness analysis

clear all;

% ====================

% Physical configuration of the cable-suspended robot (cables not shown)

% (Regular hexagon that fits in a BxB square)

% ====================

% e

% f | d

% a | | | c

% | | b | ||

% | | | | ||

% | | | | || H

% | | | | ||

% | | | | ||

% | | |

% | | |

% |

% ====================

% Define some variables

% ====================

global B H anchorPoints mass

% Anchor point dimensions (see physical configuration above)

B = 1.0; % length of each side [m]

H = 1.0; % height of cable anchor points [m]

anchorPoints = [B/2-(B/2)*(sqrt(3)/2) B/2-B/4 H;

 B/2 0 H

 B/2+(B/2)*(sqrt(3)/2) B/2-B/4 H;

 B/2+(B/2)*(sqrt(3)/2) B/2+B/4 H;

 B/2 B H

 B/2-(B/2)*(sqrt(3)/2) B/2+B/4 H;]; % anchor points for 3 cables

% Mass of the end effector in [kg]

mass = 1;

% ====================

% Create sample points and run analysis

% ====================

% Create evenly-spaced grid sample points at a single height

n = 21; % number of points per grid dimension

x = NaN(n*n,1);

y = NaN(n*n,1);

z = 0.3*ones(n*n,1); % height [m]

sampleIndex = 0;

for i=1:n

 for j=1:n

 % Increase sample index number

 sampleIndex = sampleIndex+1;

 % Calculate x,y,z location in [m] based on sample number

 x(sampleIndex) = i*B/(n+1);

 y(sampleIndex) = j*B/(n+1);

 end

end

% Solve and plot sampling of tensions

226

method = 2;

plotOption = 1;

plotStiffness([x y z], method, plotOption);

% ====================

% Solve and plot function

% ====================

function plotStiffness(samplePoints, method, plotOption)

 % Access some global variables

 global B H anchorPoints mass

 % Initialize arrays to store results

 [numSamples,~] = size(samplePoints); % number of samples

 O = NaN(numSamples,1);

 % Position

 X = O;

 Y = O;

 Z = O;

 % Stiffness magnitudes

 Kx = O;

 Ky = O;

 Kz = O;

 % Calculate the stiffness for each sample location

 for i=1:numSamples

 % Calculate tension at the location

 position = [samplePoints(i,1) samplePoints(i,2) samplePoints(i,3)];

 K = positionToStiffness(position, anchorPoints, mass, method);

 % Store position

 X(i) = position(1);

 Y(i) = position(2);

 Z(i) = position(3);

 % Store stiffness values

 Kx(i) = K(1);

 Ky(i) = K(2);

 Kz(i) = K(3);

 end

 switch plotOption

 % Plot cable stiffness, seperate plot for each direction

 case 1

 figure('Name',sprintf('Method %i',method))

 % x plot

 subplot(1,3,1);

 plot3(X,Y,Kx,'.k');

 title('X stiffness')

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Stiffness [N/m]')

 xlim([0 B])

 ylim([0 B])

 view(-20,20)

 grid on

 axis square

 % y plot

 subplot(1,3,2);

 plot3(X,Y,Ky,'.k');

 title('Y stiffness')

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Stiffness [N/m]')

 xlim([0 B])

 ylim([0 B])

 view(-20,20)

227

 grid on

 axis square

 % z plot

 subplot(1,3,3);

 plot3(X,Y,Kz,'.k');

 title('Z stiffness')

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Stiffness [N/m]')

 xlim([0 B])

 ylim([0 B])

 view(-20,20)

 grid on

 axis square

 % Plot cable tensions, all tension vectors together in one plot

 case 2

 O = zeros(numSamples,1);

 figure()

 subplot(1,1,1)

 hold on

 quiver3(X,Y,Z, Kx,O,O, 'r');

 quiver3(X,Y,Z, O,Ky,O, 'g');

 quiver3(X,Y,Z, O,O,Kz, 'b');

 hold off

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

 end

end

Table A8. tensionAnalysis_3Cable.m is a script that that calculates and plots the cable

tensions of a three-cable CSR at a given height.

% Tension analysis, 3 cables

% Calculates cable tensions at static equilibrium.

% Can calculate tensions for other cartesian forces by changing

% 'cartesianForces' in the plotTensions() function below.

clear all;

% ====================

% Physical configuration of the cable-suspended robot (cables not shown)

% (Equilateral triangle that fits within a BxB square)

% ====================

% c

% |

% a | b

% | | |

% | | |

% | | | H

% | | |

% | | |

% | |

% | |

%

228

% ====================

% Define some variables

% ====================

global B H anchorPoints

% Anchor point dimensions (see physical configuration above)

B = 1.0; % length of each side [m]

H = 1.0; % height of cable anchor points [m]

anchorPoints = [B/2-(B/2)*(sqrt(3)/2) B/2-B/4 H;

 B/2+(B/2)*(sqrt(3)/2) B/2-B/4 H;

 B/2 B H]; % anchor points for 3 cables

% Mass of the end effector in [kg]

mass = 1;

g = 9.81; % gravity acceleration [m/s^2]

% ====================

% Create sample points and run analysis

% ====================

% Create evenly-spaced grid sample points at a single height

global n

n = 21; % number of points per grid dimension, global because used in

plotting

x = NaN(n*n,1);

y = NaN(n*n,1);

z = 0.3*ones(n*n,1); % height [m]

sampleIndex = 0;

for i=1:n

 for j=1:n

 % Increase sample index number

 sampleIndex = sampleIndex+1;

 % Calculate x,y,z location in [m] based on sample number

 x(sampleIndex) = i*B/(n+1);

 y(sampleIndex) = j*B/(n+1);

 end

end

% Solve and plot sampling of tensions

method = 0; % for 3 cables, the method doesn't matter

cartesianForces = [0;0;mass*g]; % static equilibrium

plotOption = 3;

plotTensions([x y z], cartesianForces, method, plotOption);

% ====================

% Solve and plot function

% ====================

function [] = plotTensions(samplePoints, cartesianForces, method, plotOption)

 % Access some global variables

 global B H anchorPoints

 global n

 % Initialize arrays to store results

 [numSamples,~] = size(samplePoints); % number of samples

 O = NaN(numSamples,1);

 % Position

 X = O;

 Y = O;

 Z = O;

 % Tension directions

 va = NaN(numSamples,3);

 vb = NaN(numSamples,3);

 vc = NaN(numSamples,3);

229

 % Tension magnitude

 Ta = O;

 Tb = O;

 Tc = O;

 % Tension sum

 Tsum = O;

 % Calculate tension for each sample location

 for i=1:numSamples

 % Calculate tension at the location

 position = [samplePoints(i,1) samplePoints(i,2) samplePoints(i,3)];

 [cableTensions,tensionDirections] = positionToTension(position, anchorPoints,

cartesianForces, method);

 % Store position

 X(i) = position(1);

 Y(i) = position(2);

 Z(i) = position(3);

 % Store tension directions

 va(i,:) = tensionDirections(1,:);

 vb(i,:) = tensionDirections(2,:);

 vc(i,:) = tensionDirections(3,:);

 % Store cable tensions

 Ta(i) = cableTensions(1);

 Tb(i) = cableTensions(2);

 Tc(i) = cableTensions(3);

 % Store sum of cable tensions^2

% Tsum(i) = norm(cableTensions)^2;

 Tsum(i) = sum(cableTensions, 'all');

 end

 switch plotOption

 % Plot cable tensions, seperate plots by cable

 case 1

 figure('Name',sprintf('Method %i',method))

 % cable a plot

 subplot(1,3,1);

 quiver3(X,Y,Z, Ta.*va(:,1),Ta.*va(:,2),Ta.*va(:,3),'k');

 hold on

 [maxVal, maxTensionIndex] = max(Ta);

 avgVal = mean(Ta,'all', 'omitnan');

 plot3(X(maxTensionIndex),Y(maxTensionIndex),Z(maxTensionIndex),'r.')

 title({'Cable a',sprintf('Maximum tension: %0.3f [N]',maxVal)})

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

stem3(anchorPoints(1,1),anchorPoints(1,2),anchorPoints(1,3),'filled','Color','k')

stem3(anchorPoints(2,1),anchorPoints(2,2),anchorPoints(2,3),'filled','Color','r')

stem3(anchorPoints(3,1),anchorPoints(3,2),anchorPoints(3,3),'filled','Color','r')

 % cable b plot

 subplot(1,3,2);

 quiver3(X,Y,Z, Tb.*vb(:,1),Tb.*vb(:,2),Tb.*vb(:,3),'k');

 hold on

 [~, maxTensionIndex] = max(Tb);

 plot3(X(maxTensionIndex),Y(maxTensionIndex),Z(maxTensionIndex),'r.')

230

 title({'Cable b',sprintf('Maximum tension: %0.3f [N]',maxVal)})

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

stem3(anchorPoints(1,1),anchorPoints(1,2),anchorPoints(1,3),'filled','Color','r')

stem3(anchorPoints(2,1),anchorPoints(2,2),anchorPoints(2,3),'filled','Color','k')

stem3(anchorPoints(3,1),anchorPoints(3,2),anchorPoints(3,3),'filled','Color','r')

 % cable c plot

 subplot(1,3,3);

 quiver3(X,Y,Z, Tc.*vc(:,1),Tc.*vc(:,2),Tc.*vc(:,3),'k');

 hold on

 [~, maxTensionIndex] = max(Tc);

 plot3(X(maxTensionIndex),Y(maxTensionIndex),Z(maxTensionIndex),'r.')

 title({'Cable c',sprintf('Maximum tension: %0.3f [N]',maxVal)})

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

stem3(anchorPoints(1,1),anchorPoints(1,2),anchorPoints(1,3),'filled','Color','r')

stem3(anchorPoints(2,1),anchorPoints(2,2),anchorPoints(2,3),'filled','Color','r')

stem3(anchorPoints(3,1),anchorPoints(3,2),anchorPoints(3,3),'filled','Color','k')

 % Plot cable tensions, all tension vectors together in one plot

 case 2

 figure('Name',sprintf('Method %i',method))

 subplot(1,1,1)

 plot3(-1,-1,-1,'k', -1,-1,-1,'r', -1,-1,-1,'g') % dummy points for

custom legend

 legend('Cable a','Cable b','Cable

c','AutoUpdate','off','Location','SouthOutside')

 hold on

 quiver3(X,Y,Z, Ta.*va(:,1),Ta.*va(:,2),Ta.*va(:,3), 'k');

 quiver3(X,Y,Z, Tb.*vb(:,1),Tb.*vb(:,2),Tb.*vb(:,3), 'r');

 quiver3(X,Y,Z, Tc.*vc(:,1),Tc.*vc(:,2),Tc.*vc(:,3), 'g');

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

stem3(anchorPoints(1,1),anchorPoints(1,2),anchorPoints(1,3),'filled','Color','k')

stem3(anchorPoints(2,1),anchorPoints(2,2),anchorPoints(2,3),'filled','Color','r')

stem3(anchorPoints(3,1),anchorPoints(3,2),anchorPoints(3,3),'filled','Color','g')

231

 % Plot cable tensions, all tension vectors together in one plot

 % In addition, plot the sum of the tensions in a surface

 case 3

 % Cable tensions

 figure('Name',sprintf('Method %i',method))

 subplot(1,2,1)

 plot3(-1,-1,-1,'k', -1,-1,-1,'r', -1,-1,-1,'g') % dummy points for

custom legend

 legend('Cable a','Cable b','Cable

c','AutoUpdate','off','Location','SouthOutside')

 title('Tension vectors by cable')

 hold on

 quiver3(X,Y,Z, Ta.*va(:,1),Ta.*va(:,2),Ta.*va(:,3), 'k');

 quiver3(X,Y,Z, Tb.*vb(:,1),Tb.*vb(:,2),Tb.*vb(:,3), 'r');

 quiver3(X,Y,Z, Tc.*vc(:,1),Tc.*vc(:,2),Tc.*vc(:,3), 'g');

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

stem3(anchorPoints(1,1),anchorPoints(1,2),anchorPoints(1,3),'filled','Color','k')

stem3(anchorPoints(2,1),anchorPoints(2,2),anchorPoints(2,3),'filled','Color','r')

stem3(anchorPoints(3,1),anchorPoints(3,2),anchorPoints(3,3),'filled','Color','g')

 % Tension sums

 subplot(1,2,2)

 surf(reshape(X,[n,n]),reshape(Y,[n,n]),reshape(Tsum,[n,n]));

 title('Tension sum')

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Tension [N]')

 xlim([0 B])

 ylim([0 B])

 view(-20,20)

 grid on

 axis square

 end

end

Table A9. tensionAnalysis_4Cable.m is a script that that calculates and plots the cable

tensions of a four-cable CSR at a given height.

% Tension analysis, 4 cables

% Calculates cable tensions at static equilibrium.

% Can calculate tensions for other cartesian forces by changing

% 'cartesianForces' in the plotTensions() function below.

clear all;

% ====================

% Physical configuration of the cable-suspended robot (cables not shown)

% (Square shape with side lengths B)

% ====================

% d_________________c

% /| /|

% a/_|______________b/ |

232

% | | | |

% | | | | H

% | | | |

% | | | |

% | |______________|__|

% | / | / B

% |/________________|/

% B

% ====================

% Define some variables

% ====================

global B H anchorPoints

% Anchor point dimensions (see physical configuration above)

B = 1.0; % length of each side [m]

H = 1.0; % height of cable anchor points [m]

anchorPoints = [0 0 H; B 0 H; B B H; 0 B H]; % anchor points for 4 cables

% Mass of the end effector in [kg]

mass = 1;

g = 9.81; % gravity acceleration [m/s^2]

% ====================

% Create sample points and run analysis

% ====================

% Create evenly-spaced grid sample points at a single height

global n

n = 21; % number of points per grid dimension, global because used in

plotting

x = NaN(n*n,1);

y = NaN(n*n,1);

z = 0.3*ones(n*n,1); % height [m]

sampleIndex = 0;

for i=1:n

 for j=1:n

 % Increase sample index number

 sampleIndex = sampleIndex+1;

 % Calculate x,y,z location in [m] based on sample number

 x(sampleIndex) = i*B/(n+1);

 y(sampleIndex) = j*B/(n+1);

 end

end

% Solve and plot sampling of tensions

method = 2;

cartesianForces = [0;0;mass*g]; % static equilibrium

plotOption = 3;

plotTensions([x y z], cartesianForces, method, plotOption);

% Solve and plot sampling of tensions

method = 3;

cartesianForces = [0;0;mass*g]; % static equilibrium

plotOption = 3;

plotTensions([x y z], cartesianForces, method, plotOption);

% Solve and plot sampling of tensions

method = 4;

cartesianForces = [0;0;mass*g]; % static equilibrium

plotOption = 3;

plotTensions([x y z], cartesianForces, method, plotOption);

% ====================

% Solve and plot function

% ====================

233

function [] = plotTensions(samplePoints, cartesianForces, method, plotOption)

 % Access some global variables

 global B H anchorPoints

 global n

 % Initialize arrays to store results

 [numSamples,~] = size(samplePoints); % number of samples

 O = NaN(numSamples,1);

 % Position

 X = O;

 Y = O;

 Z = O;

 % Tension directions

 va = NaN(numSamples,3);

 vb = NaN(numSamples,3);

 vc = NaN(numSamples,3);

 vd = NaN(numSamples,3);

 % Tension magnitude

 Ta = O;

 Tb = O;

 Tc = O;

 Td = O;

 % Tension sum

 Tsum = O;

 % Calculate tension for each sample location

 for i=1:numSamples

 % Calculate tension at the location

 position = [samplePoints(i,1) samplePoints(i,2) samplePoints(i,3)];

 [cableTensions, tensionDirections] = positionToTension(position, anchorPoints,

cartesianForces, method);

 % Store position

 X(i) = position(1);

 Y(i) = position(2);

 Z(i) = position(3);

 % Store tension directions

 va(i,:) = tensionDirections(1,:);

 vb(i,:) = tensionDirections(2,:);

 vc(i,:) = tensionDirections(3,:);

 vd(i,:) = tensionDirections(4,:);

 % Store cable tensions

 Ta(i) = cableTensions(1);

 Tb(i) = cableTensions(2);

 Tc(i) = cableTensions(3);

 Td(i) = cableTensions(4);

 % Store sum of cable tensions^2

% Tsum(i) = norm(cableTensions)^2;

 Tsum(i) = sum(cableTensions, 'all');

 end

 switch plotOption

 % Plot cable tensions, seperate plots by cable

 case 1

 figure('Name',sprintf('Method %i',method))

 % cable a plot

 subplot(2,2,1);

 quiver3(X,Y,Z, Ta.*va(:,1),Ta.*va(:,2),Ta.*va(:,3),'k');

 hold on

 [maxVal, maxTensionIndex] = max(Ta);

 plot3(X(maxTensionIndex),Y(maxTensionIndex),Z(maxTensionIndex),'r.')

 avgVal = mean(Ta,'all');

 title({'Cable a',sprintf('Max tension: %0.3f [N]',maxVal)})

 xlabel('X [m]')

234

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

stem3(anchorPoints(1,1),anchorPoints(1,2),anchorPoints(1,3),'filled','Color','k')

stem3(anchorPoints(2,1),anchorPoints(2,2),anchorPoints(2,3),'filled','Color','r')

stem3(anchorPoints(3,1),anchorPoints(3,2),anchorPoints(3,3),'filled','Color','r')

stem3(anchorPoints(4,1),anchorPoints(4,2),anchorPoints(4,3),'filled','Color','r')

 % cable b plot

 subplot(2,2,2);

 quiver3(X,Y,Z, Tb.*vb(:,1),Tb.*vb(:,2),Tb.*vb(:,3),'k');

 hold on

 [~, maxTensionIndex] = max(Tb);

 plot3(X(maxTensionIndex),Y(maxTensionIndex),Z(maxTensionIndex),'r.')

 title({'Cable b',sprintf('Maximum tension: %0.3f [N]',maxVal)})

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

stem3(anchorPoints(1,1),anchorPoints(1,2),anchorPoints(1,3),'filled','Color','r')

stem3(anchorPoints(2,1),anchorPoints(2,2),anchorPoints(2,3),'filled','Color','k')

stem3(anchorPoints(3,1),anchorPoints(3,2),anchorPoints(3,3),'filled','Color','r')

stem3(anchorPoints(4,1),anchorPoints(4,2),anchorPoints(4,3),'filled','Color','r')

 % cable c plot

 subplot(2,2,3);

 quiver3(X,Y,Z, Tc.*vc(:,1),Tc.*vc(:,2),Tc.*vc(:,3),'k');

 hold on

 [~, maxTensionIndex] = max(Tc);

 plot3(X(maxTensionIndex),Y(maxTensionIndex),Z(maxTensionIndex),'r.')

 title({'Cable c',sprintf('Maximum tension: %0.3f [N]',maxVal)})

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

stem3(anchorPoints(1,1),anchorPoints(1,2),anchorPoints(1,3),'filled','Color','r')

stem3(anchorPoints(2,1),anchorPoints(2,2),anchorPoints(2,3),'filled','Color','r')

stem3(anchorPoints(3,1),anchorPoints(3,2),anchorPoints(3,3),'filled','Color','k')

stem3(anchorPoints(4,1),anchorPoints(4,2),anchorPoints(4,3),'filled','Color','r')

 % cable d plot

 subplot(2,2,4);

 quiver3(X,Y,Z, Td.*vd(:,1),Td.*vd(:,2),Td.*vd(:,3),'k');

235

 hold on

 [~, maxTensionIndex] = max(Td);

 plot3(X(maxTensionIndex),Y(maxTensionIndex),Z(maxTensionIndex),'r.')

 title({'Cable d',sprintf('Maximum tension: %0.3f [N]',maxVal)})

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

stem3(anchorPoints(1,1),anchorPoints(1,2),anchorPoints(1,3),'filled','Color','r')

stem3(anchorPoints(2,1),anchorPoints(2,2),anchorPoints(2,3),'filled','Color','r')

stem3(anchorPoints(3,1),anchorPoints(3,2),anchorPoints(3,3),'filled','Color','r')

stem3(anchorPoints(4,1),anchorPoints(4,2),anchorPoints(4,3),'filled','Color','k')

 % Plot cable tensions, all tension vectors together in one plot

 case 2

 figure('Name',sprintf('Method %i',method))

 subplot(1,1,1)

 plot3(-1,-1,-1,'k', -1,-1,-1,'r', -1,-1,-1,'g', -1,-1,-1,'b') % dummy

points for custom legend

 legend('Cable a','Cable b','Cable c','Cable

d','AutoUpdate','off','Location','SouthOutside')

 hold on

 quiver3(X,Y,Z, Ta.*va(:,1),Ta.*va(:,2),Ta.*va(:,3), 'k');

 quiver3(X,Y,Z, Tb.*vb(:,1),Tb.*vb(:,2),Tb.*vb(:,3), 'r');

 quiver3(X,Y,Z, Tc.*vc(:,1),Tc.*vc(:,2),Tc.*vc(:,3), 'g');

 quiver3(X,Y,Z, Td.*vd(:,1),Td.*vd(:,2),Td.*vd(:,3), 'b');

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

stem3(anchorPoints(1,1),anchorPoints(1,2),anchorPoints(1,3),'filled','Color','k')

stem3(anchorPoints(2,1),anchorPoints(2,2),anchorPoints(2,3),'filled','Color','r')

stem3(anchorPoints(3,1),anchorPoints(3,2),anchorPoints(3,3),'filled','Color','g')

stem3(anchorPoints(4,1),anchorPoints(4,2),anchorPoints(4,3),'filled','Color','b')

 % Plot cable tensions, all tension vectors together in one plot

 % In addition, plot the sum of the tensions in a surface

 case 3

 % Cable tensions

 figure('Name',sprintf('Method %i',method))

 subplot(1,2,1)

 plot3(-1,-1,-1,'k', -1,-1,-1,'r', -1,-1,-1,'g', -1,-1,-1,'b') % dummy

points for custom legend

 legend('Cable a','Cable b','Cable c','Cable

d','AutoUpdate','off','Location','SouthOutside')

 title('Tension vectors by cable')

 hold on

 quiver3(X,Y,Z, Ta.*va(:,1),Ta.*va(:,2),Ta.*va(:,3), 'k');

 quiver3(X,Y,Z, Tb.*vb(:,1),Tb.*vb(:,2),Tb.*vb(:,3), 'r');

236

 quiver3(X,Y,Z, Tc.*vc(:,1),Tc.*vc(:,2),Tc.*vc(:,3), 'g');

 quiver3(X,Y,Z, Td.*vd(:,1),Td.*vd(:,2),Td.*vd(:,3), 'b');

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

stem3(anchorPoints(1,1),anchorPoints(1,2),anchorPoints(1,3),'filled','Color','k')

stem3(anchorPoints(2,1),anchorPoints(2,2),anchorPoints(2,3),'filled','Color','r')

stem3(anchorPoints(3,1),anchorPoints(3,2),anchorPoints(3,3),'filled','Color','g')

stem3(anchorPoints(4,1),anchorPoints(4,2),anchorPoints(4,3),'filled','Color','b')

 % Tension sums

 subplot(1,2,2)

 surf(reshape(X,[n,n]),reshape(Y,[n,n]),reshape(Tsum,[n,n]));

 title('Tension sum')

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Tension [N]')

 xlim([0 B])

 ylim([0 B])

 view(-20,20)

 grid on

 axis square

 end

end

Table A10. tensionAnalysis_6Cable.m is a script that that calculates and plots the cable

tensions of a six-cable CSR at a given height.

% Tension analysis, 6 cables

% Calculates cable tensions at static equilibrium.

% Can calculate tensions for other cartesian forces by changing

% 'cartesianForces' in the plotTensions() function below.

clear all;

% ====================

% Physical configuration of the cable-suspended robot (cables not shown)

% (Regular hexagon that fits in a BxB square)

% ====================

% e

% f | d

% a | | | c

% | | b | ||

% | | | | ||

% | | | | || H

% | | | | ||

% | | | | ||

% | | |

% | | |

% |

237

% ====================

% Define some variables

% ====================

global B H anchorPoints

% Anchor point dimensions (see physical configuration above)

B = 1.0; % length of each side [m]

H = 1.0; % height of cable anchor points [m]

anchorPoints = [B/2-(B/2)*(sqrt(3)/2) B/2-B/4 H;

 B/2 0 H

 B/2+(B/2)*(sqrt(3)/2) B/2-B/4 H;

 B/2+(B/2)*(sqrt(3)/2) B/2+B/4 H;

 B/2 B H

 B/2-(B/2)*(sqrt(3)/2) B/2+B/4 H;]; % anchor points for 3 cables

% Mass of the end effector in [kg]

mass = 1;

g = 9.81; % gravity acceleration [m/s^2]

% ====================

% Create sample points and run analysis

% ====================

% Create evenly-spaced grid sample points at a single height

global n

n = 21; % number of points per grid dimension, global because used in

plotting

x = NaN(n*n,1);

y = NaN(n*n,1);

z = 0.3*ones(n*n,1); % height [m]

sampleIndex = 0;

for i=1:n

 for j=1:n

 % Increase sample index number

 sampleIndex = sampleIndex+1;

 % Calculate x,y,z location in [m] based on sample number

 x(sampleIndex) = i*B/(n+1);

 y(sampleIndex) = j*B/(n+1);

 end

end

% Solve and plot sampling of tensions

method = 2;

cartesianForces = [0;0;mass*g]; % static equilibrium

plotOption = 3;

plotTensions([x y z], cartesianForces, method, plotOption);

% ====================

% Solve and plot function

% ====================

function [] = plotTensions(samplePoints, cartesianForces, method, plotOption)

 % Access some global variables

 global B H anchorPoints

 global n

 % Initialize arrays to store results

 [numSamples,~] = size(samplePoints); % number of samples

 O = NaN(numSamples,1);

 % Position

 X = O;

 Y = O;

 Z = O;

 % Tension directions

 va = NaN(numSamples,3);

 vb = NaN(numSamples,3);

238

 vc = NaN(numSamples,3);

 vd = NaN(numSamples,3);

 ve = NaN(numSamples,3);

 vf = NaN(numSamples,3);

 % Tension magnitude

 Ta = O;

 Tb = O;

 Tc = O;

 Td = O;

 Te = O;

 Tf = O;

 % Tension sum

 Tsum = O;

 % Calculate tension for each sample location

 for i=1:numSamples

 % Calculate tension at the location

 position = [samplePoints(i,1) samplePoints(i,2) samplePoints(i,3)];

 [cableTensions, tensionDirections] = positionToTension(position, anchorPoints,

cartesianForces, method);

 % Store position

 X(i) = position(1);

 Y(i) = position(2);

 Z(i) = position(3);

 % Store tension directions

 va(i,:) = tensionDirections(1,:);

 vb(i,:) = tensionDirections(2,:);

 vc(i,:) = tensionDirections(3,:);

 vd(i,:) = tensionDirections(4,:);

 ve(i,:) = tensionDirections(5,:);

 vf(i,:) = tensionDirections(6,:);

 % Store cable tensions

 Ta(i) = cableTensions(1);

 Tb(i) = cableTensions(2);

 Tc(i) = cableTensions(3);

 Td(i) = cableTensions(4);

 Te(i) = cableTensions(5);

 Tf(i) = cableTensions(6);

 % Store sum of cable tensions^2

% Tsum(i) = norm(cableTensions)^2;

 Tsum(i) = sum(cableTensions, 'all');

 end

 switch plotOption

 % Plot cable tensions, seperate plots by cable

 case 1

 figure('Name',sprintf('Method %i',method))

 % cable a plot

 subplot(2,3,1);

 quiver3(X,Y,Z, Ta.*va(:,1),Ta.*va(:,2),Ta.*va(:,3),'k');

 hold on

 [maxVal, maxTensionIndex] = max(Ta);

 avgVal = mean(Ta,'all', 'omitnan');

 plot3(X(maxTensionIndex),Y(maxTensionIndex),Z(maxTensionIndex),'r.')

 title({'Cable a',sprintf('Average tension: %0.3f [N]',avgVal)})

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

239

 axis square

stem3(anchorPoints(1,1),anchorPoints(1,2),anchorPoints(1,3),'filled','Color','k')

stem3(anchorPoints(2,1),anchorPoints(2,2),anchorPoints(2,3),'filled','Color','r')

stem3(anchorPoints(3,1),anchorPoints(3,2),anchorPoints(3,3),'filled','Color','r')

stem3(anchorPoints(4,1),anchorPoints(4,2),anchorPoints(4,3),'filled','Color','r')

stem3(anchorPoints(5,1),anchorPoints(5,2),anchorPoints(5,3),'filled','Color','r')

stem3(anchorPoints(6,1),anchorPoints(6,2),anchorPoints(6,3),'filled','Color','r')

 % cable b plot

 subplot(2,3,2);

 quiver3(X,Y,Z, Tb.*vb(:,1),Tb.*vb(:,2),Tb.*vb(:,3),'k');

 hold on

 [~, maxTensionIndex] = max(Tb);

 plot3(X(maxTensionIndex),Y(maxTensionIndex),Z(maxTensionIndex),'r.')

 title({'Cable b',sprintf('Maximum tension: %0.3f [N]',maxVal)})

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

stem3(anchorPoints(1,1),anchorPoints(1,2),anchorPoints(1,3),'filled','Color','r')

stem3(anchorPoints(2,1),anchorPoints(2,2),anchorPoints(2,3),'filled','Color','k')

stem3(anchorPoints(3,1),anchorPoints(3,2),anchorPoints(3,3),'filled','Color','r')

stem3(anchorPoints(4,1),anchorPoints(4,2),anchorPoints(4,3),'filled','Color','r')

stem3(anchorPoints(5,1),anchorPoints(5,2),anchorPoints(5,3),'filled','Color','r')

stem3(anchorPoints(6,1),anchorPoints(6,2),anchorPoints(6,3),'filled','Color','r')

 % cable c plot

 subplot(2,3,3);

 quiver3(X,Y,Z, Tc.*vc(:,1),Tc.*vc(:,2),Tc.*vc(:,3),'k');

 hold on

 [~, maxTensionIndex] = max(Tc);

 plot3(X(maxTensionIndex),Y(maxTensionIndex),Z(maxTensionIndex),'r.')

 title({'Cable c',sprintf('Maximum tension: %0.3f [N]',maxVal)})

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

stem3(anchorPoints(1,1),anchorPoints(1,2),anchorPoints(1,3),'filled','Color','r')

stem3(anchorPoints(2,1),anchorPoints(2,2),anchorPoints(2,3),'filled','Color','r')

stem3(anchorPoints(3,1),anchorPoints(3,2),anchorPoints(3,3),'filled','Color','k')

stem3(anchorPoints(4,1),anchorPoints(4,2),anchorPoints(4,3),'filled','Color','r')

stem3(anchorPoints(5,1),anchorPoints(5,2),anchorPoints(5,3),'filled','Color','r')

240

stem3(anchorPoints(6,1),anchorPoints(6,2),anchorPoints(6,3),'filled','Color','r')

 % cable d plot

 subplot(2,3,4);

 quiver3(X,Y,Z, Td.*vd(:,1),Td.*vd(:,2),Td.*vd(:,3),'k');

 hold on

 [~, maxTensionIndex] = max(Td);

 plot3(X(maxTensionIndex),Y(maxTensionIndex),Z(maxTensionIndex),'r.')

 title({'Cable d',sprintf('Maximum tension: %0.3f [N]',maxVal)})

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

stem3(anchorPoints(1,1),anchorPoints(1,2),anchorPoints(1,3),'filled','Color','r')

stem3(anchorPoints(2,1),anchorPoints(2,2),anchorPoints(2,3),'filled','Color','r')

stem3(anchorPoints(3,1),anchorPoints(3,2),anchorPoints(3,3),'filled','Color','r')

stem3(anchorPoints(4,1),anchorPoints(4,2),anchorPoints(4,3),'filled','Color','k')

stem3(anchorPoints(5,1),anchorPoints(5,2),anchorPoints(5,3),'filled','Color','r')

stem3(anchorPoints(6,1),anchorPoints(6,2),anchorPoints(6,3),'filled','Color','r')

 % cable e plot

 subplot(2,3,5);

 quiver3(X,Y,Z, Te.*ve(:,1),Te.*ve(:,2),Te.*ve(:,3),'k');

 hold on

 [~, maxTensionIndex] = max(Te);

 plot3(X(maxTensionIndex),Y(maxTensionIndex),Z(maxTensionIndex),'r.')

 title({'Cable e',sprintf('Maximum tension: %0.3f [N]',maxVal)})

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

stem3(anchorPoints(1,1),anchorPoints(1,2),anchorPoints(1,3),'filled','Color','r')

stem3(anchorPoints(2,1),anchorPoints(2,2),anchorPoints(2,3),'filled','Color','r')

stem3(anchorPoints(3,1),anchorPoints(3,2),anchorPoints(3,3),'filled','Color','r')

stem3(anchorPoints(4,1),anchorPoints(4,2),anchorPoints(4,3),'filled','Color','r')

stem3(anchorPoints(5,1),anchorPoints(5,2),anchorPoints(5,3),'filled','Color','k')

stem3(anchorPoints(6,1),anchorPoints(6,2),anchorPoints(6,3),'filled','Color','r')

 % cable f plot

 subplot(2,3,6);

 quiver3(X,Y,Z, Tf.*vf(:,1),Tf.*vf(:,2),Tf.*vf(:,3),'k');

 hold on

 [~, maxTensionIndex] = max(Tf);

 plot3(X(maxTensionIndex),Y(maxTensionIndex),Z(maxTensionIndex),'r.')

 title({'Cable f',sprintf('Maximum tension: %0.3f [N]',maxVal)})

 xlabel('X [m]')

 ylabel('Y [m]')

241

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

stem3(anchorPoints(1,1),anchorPoints(1,2),anchorPoints(1,3),'filled','Color','r')

stem3(anchorPoints(2,1),anchorPoints(2,2),anchorPoints(2,3),'filled','Color','r')

stem3(anchorPoints(3,1),anchorPoints(3,2),anchorPoints(3,3),'filled','Color','r')

stem3(anchorPoints(4,1),anchorPoints(4,2),anchorPoints(4,3),'filled','Color','r')

stem3(anchorPoints(5,1),anchorPoints(5,2),anchorPoints(5,3),'filled','Color','r')

stem3(anchorPoints(6,1),anchorPoints(6,2),anchorPoints(6,3),'filled','Color','k')

 % Plot cable tensions, all tension vectors together in one plot

 case 2

 figure('Name',sprintf('Method %i',method))

 subplot(1,1,1)

 plot3(-1,-1,-1,'k', -1,-1,-1,'r', -1,-1,-1,'g', -1,-1,-1,'b', -1,-1,-

1,'m', -1,-1,-1,'c') % dummy points for custom legend

 legend('Cable a','Cable b','Cable c','Cable d','Cable e','Cable

f','AutoUpdate','off','Location','SouthOutside')

 hold on

 quiver3(X,Y,Z, Ta.*va(:,1),Ta.*va(:,2),Ta.*va(:,3), 'k');

 quiver3(X,Y,Z, Tb.*vb(:,1),Tb.*vb(:,2),Tb.*vb(:,3), 'r');

 quiver3(X,Y,Z, Tc.*vc(:,1),Tc.*vc(:,2),Tc.*vc(:,3), 'g');

 quiver3(X,Y,Z, Td.*vd(:,1),Td.*vd(:,2),Td.*vd(:,3), 'b');

 quiver3(X,Y,Z, Te.*ve(:,1),Te.*ve(:,2),Te.*ve(:,3), 'm');

 quiver3(X,Y,Z, Tf.*vf(:,1),Tf.*vf(:,2),Tf.*vf(:,3), 'c');

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

stem3(anchorPoints(1,1),anchorPoints(1,2),anchorPoints(1,3),'filled','Color','k')

stem3(anchorPoints(2,1),anchorPoints(2,2),anchorPoints(2,3),'filled','Color','r')

stem3(anchorPoints(3,1),anchorPoints(3,2),anchorPoints(3,3),'filled','Color','g')

stem3(anchorPoints(4,1),anchorPoints(4,2),anchorPoints(4,3),'filled','Color','b')

stem3(anchorPoints(5,1),anchorPoints(5,2),anchorPoints(5,3),'filled','Color','m')

stem3(anchorPoints(6,1),anchorPoints(6,2),anchorPoints(6,3),'filled','Color','c')

 % Plot cable tensions, all tension vectors together in one plot

 % In addition, plot the sum of the tensions in a surface

 case 3

 % Cable tensions

 figure('Name',sprintf('Method %i',method))

 subplot(1,2,1)

 plot3(-1,-1,-1,'k', -1,-1,-1,'r', -1,-1,-1,'g', -1,-1,-1,'b', -1,-1,-

1,'m', -1,-1,-1,'c') % dummy points for custom legend

 legend('Cable a','Cable b','Cable c','Cable d','Cable e','Cable

f','AutoUpdate','off','Location','SouthOutside')

242

 title('Tension vectors by cable')

 hold on

 quiver3(X,Y,Z, Ta.*va(:,1),Ta.*va(:,2),Ta.*va(:,3), 'k');

 quiver3(X,Y,Z, Tb.*vb(:,1),Tb.*vb(:,2),Tb.*vb(:,3), 'r');

 quiver3(X,Y,Z, Tc.*vc(:,1),Tc.*vc(:,2),Tc.*vc(:,3), 'g');

 quiver3(X,Y,Z, Td.*vd(:,1),Td.*vd(:,2),Td.*vd(:,3), 'b');

 quiver3(X,Y,Z, Te.*ve(:,1),Te.*ve(:,2),Te.*ve(:,3), 'm');

 quiver3(X,Y,Z, Tf.*vf(:,1),Tf.*vf(:,2),Tf.*vf(:,3), 'c');

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 xlim([0 B])

 ylim([0 B])

 zlim([0 H])

 view(-20,20)

 grid on

 axis square

stem3(anchorPoints(1,1),anchorPoints(1,2),anchorPoints(1,3),'filled','Color','k')

stem3(anchorPoints(2,1),anchorPoints(2,2),anchorPoints(2,3),'filled','Color','r')

stem3(anchorPoints(3,1),anchorPoints(3,2),anchorPoints(3,3),'filled','Color','g')

stem3(anchorPoints(4,1),anchorPoints(4,2),anchorPoints(4,3),'filled','Color','b')

stem3(anchorPoints(5,1),anchorPoints(5,2),anchorPoints(5,3),'filled','Color','m')

stem3(anchorPoints(6,1),anchorPoints(6,2),anchorPoints(6,3),'filled','Color','c')

 % Tension sums

 subplot(1,2,2)

 surf(reshape(X,[n,n]),reshape(Y,[n,n]),reshape(Tsum,[n,n]));

 title('Tension sum')

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Tension [N]')

 xlim([0 B])

 ylim([0 B])

 view(-20,20)

 grid on

 axis square

 end

end

Table A11. displayMatrix.m is a function that plots a graphical representation of a binary

matrix (i.e. a matrix with only zeros and ones).

function displayMatrix(matrix)

% Creates a figure that displays the given matrix. 1's in the matrix are

% filled with a solid color. 0's are not filled.

%

% matrix: any square matrix composed of 0's and 1's

 % Size of matrix

 n = length(matrix);

 % Create new figure and format for friendly viewing of the matrix

 figure

 subplot(1,1,1)

 xticks(1:n);

 set(gca,'xaxisLocation','top')

 yticks(1:n);

 yticklabels(n:-1:1);

243

 xlim([0 n+1])

 ylim([0 n+1])

 hold on

 axis square

 box on

 % Fill 1's in the matrix with a red square

 % 0's are not filled in

 for i=1:n

 for j=1:n

 if matrix(i,j)

 rectangle('Position',[j-1+0.5,-i+n+0.5,1,1],'FaceColor',[1 0 0])

 end

 end

 end

end

Table A12. exampleScript.m is a script that demonstrates a matrix-ordering algorithm, in

relation to the largest-maximal-clique analysis.

% Demonstration of matrix ordering to find the largest filled square in a

% symmetric matrix.

close all; clear all; clc;

% Create the original matrix semi-randomly.

% This is a symmetric matrix, with 1's on the diagonal and otherwise

% randomly filled with 1's and 0's.

matrixSize = 20;

% Start with the identity matrix

originalMatrix = eye(matrixSize);

% Fill the upper right triangle with 1's and 0's

% Reflect the upper right values accross to the lower right

for i=1:matrixSize-1

 for j = i+1:matrixSize

 val = round(rand(1)+0.2);

 originalMatrix(i,j) = val;

 originalMatrix(j,i) = val;

 end

end

adjacencyMatrix = originalMatrix;

for i=1:length(adjacencyMatrix)

 adjacencyMatrix(i,i)=0;

end

%% Reorder matrix to give largest square

tic

[reorderedMatrix, squareSizes, order] = findCliques(originalMatrix, true);

sortingTime = toc;

% Display the original and sorted matrices, with some information in the figure titles

displayMatrix(originalMatrix);

title("Original matrix")

displayMatrix(reorderedMatrix);

title({'Reordered matrix',sprintf('Largest square size:

%i',max(squareSizes)),sprintf('Algorithm time: %f [s]',sortingTime)})

244

Table A13. findCliques.m is a function that is used to find maximal cliques in a network

of simply-connected nodes. This function relies on a matrix representation of the nodes.

function [newMatrix,cliqueSize,newOrder] = findCliques(originalMatrix, recursion)

% Finds the cliques in a symmetric, binary matrix with 1's on the diagonal.

%

% originalMatrix: symmetric matrix with 1's on the diagonal and 0's or

% 1's elsewhere. Such a matrix can represent a relationship between

% nodes in a graph. Cell {i,j} of the matrix is "1" if nodes i and j

% are related in some way.

% recursion: boolean that selects whether the algorithm is applied

% recurseively. If set to true, every clique will be found. If set to

% false, only the first clique will be found. The first clique is not

% necessarily the biggest.

% newMatrix: the original matrix but with rows/solumns reordered to display

% the clique(s) found

% squareSizes: array the lists the dimension of each clique found. The

% clique sizes are in the same order as the newMatrix.

% order: the order of rows/columns of newMatrix, with respect to the

% originalMatrix order.

 % Extract some information

 n = length(originalMatrix); % number of matrix rows (or columns)

 Q = originalMatrix; % Copy of the original matrix

 I = ones(n); % Matrix of ones, same size as original matrix

 % Stop if the input matrix is a single element

 if n==1

 newMatrix = 1;

 cliqueSize = 1;

 newOrder = 1;

 return

 end

 % Main algorithm

 % Method: remove rows/columns of the original matrix such that

 % the number of 0's in the new matrix is less than the original matrix.

 % A clique is found when the remaining matrix has no 0's.

 %

 % x is a vector that states what rows/columns of the original matrix

 % are kept in the new matrix. A "0" in position i of x means that

 % row/column i of the original matrix is removed. A "1" in that

 % position means that row/column i is kept.

 %

 % The number of 1's in the new matrix is found by calculating x'*Q*x,

 % where Q is the original matrix. The number of zeros in the new matrix

 % is found by calculating x'*I*x - x'*Q*x = x'*(I-Q)*x. A clique is

 % found when x'*(I-Q)*x is equal to zero. The largest clique is given

 % by the x with the most 1's such that x'*(I-Q)*x=0.

 %

 % At each loop of the algorithm J = x'*(I-Q)*x is calculated using a

 % new candidate x. The candidate x is created by taking the previous

 % x and changing one of its elements from 1 to 0. The candidate x that

 % reduces J the greatest is taken as the "best" x because it will

 % lead to finding a clique.

 x = ones(n,1); % starting x is all 1's

 for i=1:10000 % number of iteration is arbritrarily capped at 10000

 % Calculate the number of zeros in the new matrix

 J = x'*(I-Q)*x;

 % If there are no zeros in the new matrix, a clique has been found

 if J==0

 % Attempt to make the current clique larger

245

 % Loop through the elements of x

 for e=1:n

 % If element e of x is a 0

 if x(e)==0

 % Create a copy of x and store it in y

 y = x;

 % Change element e from 0 to 1

 y(e)=1;

 % If the number of zeros in the new matrix is still

 % zero, we have found a larger clique, so we add the

 % new row to the new matrix

 if y'*(I-Q)*y==0

 x(e) = 1;

 end

 end

 end

 % Extract indices of 1's and 0's in the final x

 a = find(x==1);

 b = find(x==0);

 % If recursion was requested

 if recursion==true

 % If there are rows left over in the original matrix

 if ~isempty(b)

 % Create a matrix from the remaining rows/columns

 subMatrix = originalMatrix(b,b);

 % Send the matrix to the clique algorithm

 [~,a_sub,b_sub] = findCliques(subMatrix, true);

 % Append the results of the recursion

 newOrder = [a; b(b_sub)];

 cliqueSize = [length(a) a_sub];

 newMatrix = reorderMatrix(originalMatrix,newOrder);

 % If recursion was requested, but there are no remaining

 % rows. This happens if the entire original matrix is a

 % clique.

 else

 % The order is just the rows in the current clique

 newOrder = a;

 newMatrix = reorderMatrix(originalMatrix,newOrder);

 cliqueSize = length(a);

 end

 % If recursion was not requested

 else

 % Create matrix order

 newOrder = [a;b];

 % Count clique size

 cliqueSize = length(a);

 % Create new matrix using the new order

 newMatrix = reorderMatrix(originalMatrix,newOrder);

 end

 % Return the solution

 return

 end

 % J is positive, so remove rows to reduce J

 maxJchange = 0; % The maximum change in J is intially set to 0

 % Loop through the elements of x

 for e=1:n

 % If element e of x is a 1

 if(x(e)==1)

 % Create a copy of x and store it in y

 y = x;

 % Change element e from 1 to 0

 y(e)=0;

246

 % Calculate the change in J using the modified x vector

 Jchange = J - y'*(I-Q)*y;

 % If Jchange is larger than the maximum J change

 if Jchange>maxJchange

 % Update the maximum J change

 maxJchange = Jchange;

 % Update the best x

 bestx = y;

 end

 end

 end

 % Save the best x for the next loop iteration

 x = bestx;

 end

end

Table A14. reorderMatrix.m is a helper function that is used to reorder the columns and

rows of a given matrix.

function [newMatrix] = reorderMatrix(originalMatrix, newOrder)

% Reorders the colums/rows of the given matrix to achieve the new order.

% Utilizes the swapMatrixorder() function.

%

% originalMatrix: any square matrix

% newOrder: vector with the desired matrix order, every matrix row/column

% number of the original matrix should appear exactly once

% newMatrix: returned matrix, same as originalMatrix but with the

% rows/columns ordered according to newOrder

 % Copy original matrix

 newMatrix = originalMatrix;

 % The starting order is a vector from 1 to matrix size

 order = 1:length(originalMatrix);

 % Swap matrix rows/columns until the desired order is reached

 for i=1:length(order)

 % Loop through current order, an compare to new order

 if order(i)~=newOrder(i)

 % Location of current row/column (that is NOT the desired one)

 a = i;

 % Location of wanted row/column (that is the desired one)

 b = find(order==newOrder(i),1);

 % Swap order in the matrix so that current row is the desired one

 newMatrix = swapMatrixOrder(newMatrix, a, b);

 % Update the current matrix order

 order(b) = order(i);

 order(i) = newOrder(i);

 end

 end

end

Table A15. swapMatrixOrder.m is a helper function that is used to swap two

columns/rows of a given matrix.

function [newMatrix] = swapMatrixOrder(originalMatrix, a, b)

% Swaps the rows and columns a and b in the given matrix.

%

247

% originalMatrix: any square matrix

% a: any row or column number of the original matrix, row number 1 is the

% top row and column number 1 is the left-most column

% b: any row or column number of the original matrix

% newMatrix: returned matrix, same as originalMatrix but with row and column

% a and b swapped

 % Copy the original matrix

 newMatrix = originalMatrix;

 % Swap rows a and b of the new matrix

 newMatrix([a b],:) = newMatrix([b a],:);

 % Swap columns a and b of the new matrix

 newMatrix(:,[a b]) = newMatrix(:,[b a]);

end

Table A16. cableRobotSim_cableLengths.m is a script that runs simulations of a four-

cable CSR using cable-length-based control with camera-position feedback.

% Cable Robot Simulation

close all; clear all;

% ====================

% Physical configuration of the cable-suspended robot (cables not shown)

% (Square shape with side lengths B)

% ====================

% Z

% | |_camera_|

% | |_|

% | d_________________c

% | /| /|

% a/_|______________b/ |

% | | | |

% | | Y | | H

% | | / | |

% | |/ | |

% | |______________|__|

% | / | / B

% |/________________|/___________ X

% B

% ====================

% Initialize variables

% ====================

% Anchor point dimensions (see physical configuration above)

global B H anchorPoints

B = 0.75; % length of each side [m]

H = 0.795; % height of support [m]

anchorPoints = [0 0 H; B 0 H; B B H; 0 B H]; % anchor points for 4 cables

% Mass dynamics

global m c g

m = 1; % mass [kg]

c = 2; % viscous damping [Ns/m]

g = 9.81; % gravity [m/s^2]

% Cable length servo dynamics

global wn zeta

wn = 50; % natural frequency [rad/s] of second-order length response

zeta = 0.9; % damping factor of second-order length response

248

% ====================

% Disturbances

% ====================

% Camera position error

global x_camError y_camError z_camError;

x_camError = 0.00; % x measurement error [m]

y_camError = 0.00; % y measurement error [m]

z_camError = 0.00; % z measurement error [m]

% x_camError = 0.05; % x measurement error [m]

% y_camError = 0.02; % y measurement error [m]

% z_camError = -0.03; % z measurement error [m]

% Encoder cable length error

global la_error lb_error lc_error ld_error;

la_error = 0.00; % cable a length error [m]

lb_error = 0.00; % cable b length error [m]

lc_error = 0.00; % cable c length error [m]

ld_error = 0.00; % cable d length error [m]

% la_error = 0.03; % cable a length error [m]

% lb_error = 0.000; % cable b length error [m]

% lc_error = -0.01; % cable c length error [m]

% ld_error = 0.02; % cable d length error [m]

% Anchorpoint position errors

global da db dc dd

% da = [0.01, -0.02, 0];

% db = [-0.03, 0, 0.01];

% dc = [0.01, 0.01, 0];

% dd = [0, 0.02, 0.005];

% Create random [x, y, z] disturbance for each cable anchor point

maxDist = 0.00; % maximum disturbance amount [m]

da = round(2*(rand(1,3)-0.5)*maxDist,4);

db = round(2*(rand(1,3)-0.5)*maxDist,4);

dc = round(2*(rand(1,3)-0.5)*maxDist,4);

dd = round(2*(rand(1,3)-0.5)*maxDist,4);

% ====================

% Simulate and plot

% ====================

% States

% x = [x,y,z, vx,vy,vz, la_enc,lb_enc,lc_enc,ld_enc, la_dot,lb_dot,lc_dot,ld_dot];

% = [position, velocity, cable lengths according to encoder, cable length time

derivatives, camera cable length error integrals]

x0 = B/2;

y0 = B/2;

z0 = B;

cableLengths = positionToCableLengths([x0,y0,z0], anchorPoints);

la0 = cableLengths(1);

lb0 = cableLengths(2);

lc0 = cableLengths(3);

ld0 = cableLengths(4);

X0 = [x0,y0,z0, 0,0,0, la0,lb0,lc0,ld0, 0,0,0,0, 0,0,0,0];

% Run simulation

tf = 40;

t = [0 tf];

[t,x] = ode45(@dynamics, t, X0);

% Clip simulation

tstart = 10;

ind = find(t>=tstart,1,'first');

t = t(ind:end);

x = x(ind:end, :);

249

% Plot result

basicPlot(t,x);

positions = x(:,1:3);

cableLengths = x(:,7:10)+[la_error,lb_error,lc_error,ld_error];

trueAnchorPoints = anchorPoints+[da; db; dc; dd];

plotCables = false;

animatedPlot(t, positions, cableLengths, trueAnchorPoints, plotCables);

% Add reference curves to the animated plot

% theta = linspace(0,2*pi);

% xref = 0.75/2+0.25*sin(theta);

% yref = 0.75/2+0.25*cos(theta);

% zref = 0.1*ones(length(theta),1);

[xref, yref, zref] = spiral(B/2, B/2, B/3, B, 0.1, t);

plot3(xref,yref,zref,'r');

plot3(xref-x_camError,yref-y_camError,zref-z_camError,'g');

% Add some fake points for custom legend

h = zeros(2, 1);

h(1) = plot(NaN,NaN,'-r');

h(2) = plot(NaN,NaN,'-g');

legend(h,'True reference path','Reference path according to

camera','Location','southoutside');

% % Plot resulting cable tensions

% plotCableTensions(t,x)

% ====================

% Model

% ====================

function dx = dynamics(t,x)

 % Select controller

 controller = 2;

 % Access global variables

 global B H anchorPoints

 global m c g wn zeta

 global x_camError y_camError z_camError

 global la_error lb_error lc_error ld_error

 global da db dc dd

 % True anchor points

 trueAnchorPoints = anchorPoints+[da; db; dc; dd];

 % True unstretched cable lengths

 la = x(7) + la_error;

 lb = x(8) + lb_error;

 lc = x(9) + lc_error;

 ld = x(10) + ld_error;

 % Mass position as measured by camera

 x_cam = x(1) + x_camError;

 y_cam = x(2) + y_camError;

 z_cam = x(3) + z_camError;

 % Cable lengths estimated from camera position measurements

 cableLengths = positionToCableLengths([x_cam,y_cam,z_cam], anchorPoints);

 la_cam = cableLengths(1);

 lb_cam = cableLengths(2);

 lc_cam = cableLengths(3);

 ld_cam = cableLengths(4);

 % Cable lengths calculated from true mass position

 cableLengths = positionToCableLengths([x(1),x(2),x(3)], trueAnchorPoints);

 FL = 0.025;

 la_m = cableLengths(1) + FL/2 + (FL/2)*cos(t*2*pi*0.1);

250

 lb_m = cableLengths(2);

 lc_m = cableLengths(3) + FL/2 + (FL/2)*sin(t*2*pi*0.1);

 ld_m = cableLengths(4);

 % Calculate the cable tensions based on cable stretch amount

 tensionFunctionSelect = 3;

 [Ta,~] = tensionFunction(tensionFunctionSelect, la_m, la, []);

 [Tb,~] = tensionFunction(tensionFunctionSelect, lb_m, lb, []);

 [Tc,~] = tensionFunction(tensionFunctionSelect, lc_m, lc, []);

 [Td,~] = tensionFunction(tensionFunctionSelect, ld_m, ld, []);

 % Resolve cable tensions into Cartesian components

 TaC = Ta*[-x(1), -x(2), H-x(3)]/la_m;

 TbC = Tb*[B-x(1), -x(2), H-x(3)]/lb_m;

 TcC = Tc*[B-x(1), B-x(2), H-x(3)]/lc_m;

 TdC = Td*[-x(1), B-x(2), H-x(3)]/ld_m;

 Tx = TaC(1) + TbC(1) + TcC(1) + TdC(1);

 Ty = TaC(2) + TbC(2) + TcC(2) + TdC(2);

 Tz = TaC(3) + TbC(3) + TcC(3) + TdC(3);

 % Get reference position

 [xr, yr, zr] = spiral(B/2, B/2, B/3, B, 0.1, t);

 % Convert reference position to reference cable lengths

 cableLengths = positionToCableLengths([xr,yr,zr], anchorPoints);

 la_r = cableLengths(1);

 lb_r = cableLengths(2);

 lc_r = cableLengths(3);

 ld_r = cableLengths(4);

 % Calculate cable length errors (reference minus camera estimated)

 la_e_cam = la_r - la_cam;

 lb_e_cam = lb_r - lb_cam;

 lc_e_cam = lc_r - lc_cam;

 ld_e_cam = ld_r - ld_cam;

 % ------------

 % Control laws

 % ------------

 switch controller

 case 1 % Simple cable length servo without camera feedback

 u = [la_r lb_r lc_r ld_r];

 case 2 % Servo plus integral feedback from camera measurements

 ki = 2.0;

 u = [la_r lb_r lc_r ld_r] + ki*[x(15) x(16) x(17) x(18)];

 end

 % ------------

 % Calculate state derrivatives

 % ------------

 dx = zeros(18,1);

 % Mass dynamics

 dx(1) = x(4);

 dx(2) = x(5);

 dx(3) = x(6);

 dx(4) = (Tx - c*x(4))/m;

 dx(5) = (Ty - c*x(5))/m;

 dx(6) = (Tz - c*x(6))/m - g;

 % Cable length dynamics (second order response)

 dx(7) = x(11);

 dx(8) = x(12);

 dx(9) = x(13);

251

 dx(10) = x(14);

 dx(11) = u(1)*wn^2 - 2*wn*zeta*x(11) - wn^2*x(7);

 dx(12) = u(2)*wn^2 - 2*wn*zeta*x(12) - wn^2*x(8);

 dx(13) = u(3)*wn^2 - 2*wn*zeta*x(13) - wn^2*x(9);

 dx(14) = u(4)*wn^2 - 2*wn*zeta*x(14) - wn^2*x(10);

 % Camera cable length error dynamics

 dx(15) = la_e_cam;

 dx(16) = lb_e_cam;

 dx(17) = lc_e_cam;

 dx(18) = ld_e_cam;

end

% ====================

% Reference path functions

% ====================

function [x,y,z] = spiral(cx, cy, r, z0, z1, t)

 % cx, cy is the x,y center of the spiral

 % r is the final radius of the circle in [m]

 % z0 is the initial height of the circle [m]

 % z1 is the final height of the circle [m]

 % freq is the frequency of the circle path [Hz]

 % t is the current time in [s]

 % if the time input is a vector, calculate for each time value

 x = zeros(length(t),1);

 y = zeros(length(t),1);

 z = zeros(length(t),1);

 for i=1:1:length(t)

 % growing radius, lowering height

 radius = t(i)/100;

 height = z0-t(i)/10;

 if(radius>=r)

 radius = r;

 end

 if(height<z1)

 height = z1;

 end

 x(i) = cx + radius*cos(t(i)/2);

 y(i) = cy + radius*sin(t(i)/2);

 z(i) = height;

 end

end

function [x,y,z] = helix(cx, cy, r, z0, z1, freq, t_span, t)

 % cx, cy is the x,y center of the helix

 % r is radius of helix in [m]

 % z0 is start height [m]

 % z1 is end height in [m]

 % freq is the frequency of the helix path [Hz]

 % t_span is the time span of the helix trajectory in [s]

 % t is the current time in [s]

 x = cx + r*cos(2*pi*freq*t);

 y = cy + r*sin(2*pi*freq*t);

 z = z0 + z1*(t/t_span);

end

% ====================

% Plotting functions

% ====================

252

function basicPlot(t,x)

 global B H anchorPoints

 global x_camError y_camError z_camError

 global la_error lb_error lc_error ld_error

 [xr, yr, zr] = spiral(B/2, B/2, B/3, B, 0.1, t);

 cableLengths = positionToCableLengths([xr, yr, zr], anchorPoints);

 la_r = cableLengths(:,1);

 lb_r = cableLengths(:,2);

 lc_r = cableLengths(:,3);

 ld_r = cableLengths(:,4);

 % Plot mass x,y,z position

 figure;

 subplot(3,2,1);

 plot(t,xr,'r', t,x(:,1)+x_camError,'g', t,x(:,1),'k');

 title('Mass position')

 ylabel('X [m]')

 grid on;

 subplot(3,2,3);

 plot(t,yr,'r', t,x(:,2)+y_camError,'g', t,x(:,2),'k');

 ylabel('Y [m]')

 grid on;

 subplot(3,2,5);

 plot(t,zr,'r', t,x(:,3)+z_camError,'g', t,x(:,3),'k');

 ylabel('Z [m]')

 xlabel('Time [s]')

 legend('Reference', 'Measured by camera', 'True', 'location', 'northwest')

 grid on;

 % Plot x, y, z mass position error

 subplot(3,2,2);

 plot(t,xr-x(:,1)-x_camError,'g', t,xr-x(:,1),'k');

 title('Mass position error')

 ylabel('X error [m]')

 grid on;

 subplot(3,2,4);

 plot(t,yr-x(:,2)-y_camError,'g', t,yr-x(:,2),'k');

 ylabel('Y error [m]')

 grid on;

 subplot(3,2,6);

 plot(t,zr-x(:,3)-z_camError,'g', t,zr-x(:,3),'k');

 grid on;

 ylabel('Z error [m]')

 xlabel('Time [s]')

 legend('Measured by camera', 'True', 'location', 'northwest')

 set(gcf,'position',[200,200,1000,800]);

 % Plot cable lengths

 figure;

 subplot(4,2,1);

 plot(t,la_r,'r', t,x(:,7),'g', t,x(:,7)+la_error,'k');

 title('Cable lengths')

 ylabel('La [m]')

 grid on;

 subplot(4,2,3);

 plot(t,lb_r,'r', t,x(:,8),'g', t,x(:,8)+lb_error,'k');

 ylabel('Lb [m]')

 grid on;

 subplot(4,2,5);

 plot(t,lc_r,'r', t,x(:,9),'g', t,x(:,9)+lc_error,'k');

 ylabel('Lc [m]')

 grid on;

 subplot(4,2,7);

 plot(t,ld_r,'r', t,x(:,10),'g', t,x(:,10)+ld_error,'k');

 ylabel('Ld [m]')

 xlabel('Time [s]')

253

 legend('Reference', 'Measured by encoder', 'True', 'location', 'northwest')

 grid on;

 % Plot cable length errors

 subplot(4,2,2);

 title('Cable length error')

 plot(t,la_r-x(:,7),'g', t,la_r-x(:,7)-la_error,'k');

 ylabel('La_e [m]')

 grid on;

 subplot(4,2,4);

 plot(t,lb_r-x(:,8),'g', t,lb_r-x(:,8)-lb_error,'k');

 ylabel('Lb_e [m]')

 grid on;

 subplot(4,2,6);

 plot(t,lc_r-x(:,9),'g', t,lc_r-x(:,9)-lc_error,'k');

 ylabel('Lc_e [m]')

 grid on;

 subplot(4,2,8);

 plot(t,ld_r-x(:,10),'g', t,ld_r-x(:,10)-ld_error,'k');

 ylabel('Ld_e [m]')

 xlabel('Time [s]')

 grid on;

 set(gcf,'position',[300,100,1000,800]);

 legend('Measured by encoder', 'True', 'location', 'northwest')

end

function [] = plotCableTensions(time,states)

 global B H anchorPoints

 global da db dc dd

 global la_error lb_error lc_error ld_error

 nTimes = length(time);

 forces = NaN(nTimes,3);

 tensions = NaN(nTimes,4);

 dWork = NaN(nTimes,4);

 dWork(1,:)= [0,0,0,0];

 Work = 0;

 for i=1:length(time)

 t = time(i);

 x = states(i,:);

 % True unstretched cable lengths

 la = x(7) + la_error;

 lb = x(8) + lb_error;

 lc = x(9) + lc_error;

 ld = x(10) + ld_error;

 % Cable lengths calculated from true mass position

 trueAnchorPoints = anchorPoints+[da; db; dc; dd];

 cableLengths = positionToCableLengths([x(1),x(2),x(3)], trueAnchorPoints);

 la_m = cableLengths(1);

 lb_m = cableLengths(2);

 lc_m = cableLengths(3);

 ld_m = cableLengths(4);

 % Calculate the cable tensions based on cable stretch amount

 tensionFunctionSelect = 3;

 [Ta,~] = tensionFunction(tensionFunctionSelect, la_m, la, []);

 [Tb,~] = tensionFunction(tensionFunctionSelect, lb_m, lb, []);

 [Tc,~] = tensionFunction(tensionFunctionSelect, lc_m, lc, []);

 [Td,~] = tensionFunction(tensionFunctionSelect, ld_m, ld, []);

 % Resolve cable tensions into Cartesian components

 TaC = Ta*[-x(1), -x(2), H-x(3)]/la_m;

 TbC = Tb*[B-x(1), -x(2), H-x(3)]/lb_m;

 TcC = Tc*[B-x(1), B-x(2), H-x(3)]/lc_m;

 TdC = Td*[-x(1), B-x(2), H-x(3)]/ld_m;

254

 Tx = TaC(1) + TbC(1) + TcC(1) + TdC(1);

 Ty = TaC(2) + TbC(2) + TcC(2) + TdC(2);

 Tz = TaC(3) + TbC(3) + TcC(3) + TdC(3);

 tensions(i,:) = [Ta Tb Tc Td];

 forces(i,:) = [Tx Ty Tz];

 % Calculate motor energy required

 if i>1

 dT = t-time(i-1);

 dWork(i,:) = tensions(i-1,:).^2*dT;

 Work = Work + sum(dWork(i,:));

 end

 end

 disp('Total work [J]:')

 format long g

 disp(Work)

 figure()

 subplot(1,3,1)

 plot(time,forces(:,1),'.k')

 title('X')

 xlabel('Time [s]')

 ylabel('Net force [N]')

 grid on

 subplot(1,3,2)

 plot(time,forces(:,2),'.k')

 title('Y')

 xlabel('Time [s]')

 grid on

 subplot(1,3,3)

 plot(time,forces(:,3),'.k')

 title('Z')

 xlabel('Time [s]')

 grid on

 figure()

 subplot(1,4,1)

 plot(time,tensions(:,1),'.k')

 title('Cable a')

 xlabel('Time [s]')

 ylabel('Tension [N]')

 grid on

 subplot(1,4,2)

 plot(time,tensions(:,2),'.k')

 title('Cable b')

 xlabel('Time [s]')

 grid on

 subplot(1,4,3)

 plot(time,tensions(:,3),'.k')

 title('Cable c')

 xlabel('Time [s]')

 grid on

 subplot(1,4,4)

 plot(time,tensions(:,4),'.k')

 title('Cable d')

 xlabel('Time [s]')

 grid on

end

255

Table A17. cableRobotSim_disturbancePrediction.m is a script that runs simulations of a

four-cable CSR to demonstrate the anchor-point prediction algorithm in Table A2.

% Disturbance prediction simulation

clear all;

% ====================

% Physical configuration of the cable-suspended robot (cables not shown)

% (Square shape with side lengths B)

% ====================

% Z

% |

% |

% | d_________________c

% | /| /|

% a/_|______________b/ |

% | | | |

% | | Y | | H

% | | / | |

% | |/ | |

% | |______________|__|

% | / | / B

% |/________________|/___________ X

% B

% ====================

% Initialize variables

% ====================

% Anchor point dimensions (see physical configuration above)

global B H anchorPoints

B = 0.75; % length of each side [m]

H = 0.795; % height of support [m]

anchorPoints = [0 0 H; B 0 H; B B H; 0 B H]; % anchor points for 4 cables

% Mass dynamics

global m c g

m = 1; % mass [kg]

c = 2; % viscous damping [Ns/m]

g = 9.81; % gravity [m/s^2]

% Cable length servo dynamics

global wn zeta

wn = 50; % natural frequency [rad/s] of second-order length response

zeta = 0.9; % damping factor of second-order length response

% ====================

% Disturbances

% ====================

% Anchor point position disturbances

% distubance defined as actual minus ideal

% Format: [x,y,z] position error from ideal anchor point

global da db dc dd; % actual disturbances [m]

global da_est db_est dc_est dd_est; % estimated disturbances [m]

% Create random [x, y, z] disturbance for each cable anchor point

maxDist = 0.05; % maximum disturbance amount [m]

da = round(2*(rand(1,3)-0.5)*maxDist,4);

db = round(2*(rand(1,3)-0.5)*maxDist,4);

dc = round(2*(rand(1,3)-0.5)*maxDist,4);

dd = round(2*(rand(1,3)-0.5)*maxDist,4);

% Initial estimate of disturbances is zero

256

da_est = [0,0,0];

db_est = [0,0,0];

dc_est = [0,0,0];

dd_est = [0,0,0];

% ====================

% Simulate and plot

% ====================

% States

% x = [x,y,z, vx,vy,vz, la,lb,lc,ld, la_dot,lb_dot,lc_dot,ld_dot];

% = [position, velocity, cable lengths, cable length time derivatives]

x0 = 7*B/8;

y0 = B/2;

z0 = 0.1;

cableLengths = positionToCableLengths([x0,y0,z0], anchorPoints);

la0 = cableLengths(1);

lb0 = cableLengths(2);

lc0 = cableLengths(3);

ld0 = cableLengths(4);

X0 = [x0,y0,z0, 0,0,0, la0,lb0,lc0,ld0, 0,0,0,0];

% Run first simulation (assume zero anchor point disturbances)

t_f = 120;

t = 0:0.01:t_f;

[t,x] = ode45(@dynamics, t, X0);

%% Plot first simulation

% Clip simulation

tstart = 3;

ind = find(t>=tstart,1,'first');

t = t(ind:end);

x = x(ind:end, :);

basicPlot(t,x);

positions = x(:,1:3);

cableLengths = x(:,7:10);

trueAnchorPoints = anchorPoints+[da; db; dc; dd];

plotCables = false;

animatedPlot(t, positions, cableLengths, trueAnchorPoints, plotCables);

% Add reference curves to the animated plot

xPoints = [7*B/8 7*B/8 7*B/8 7*B/8 6*B/8 6*B/8 B/2 B/2 2*B/8 2*B/8 B/8 B/8 B/8 B/8 B/8

B/8 2*B/8 2*B/8 B/2 B/2 6*B/8 6*B/8 7*B/8 7*B/8 7*B/8];

yPoints = [B/2 B/2 6*B/8 6*B/8 7*B/8 7*B/8 7*B/8 7*B/8 7*B/8 7*B/8 6*B/8 6*B/8 B/2 B/2

2*B/8 2*B/8 B/8 B/8 B/8 B/8 B/8 B/8 2*B/8 2*B/8 B/2];

zPoints = 0.1*ones(1,25);

timeStamps = 0:5:120;

[xr,yr,zr] = pointsPath(xPoints, yPoints, zPoints, timeStamps, t);

stem3(anchorPoints(:,1),anchorPoints(:,2),anchorPoints(:,3),'r')

plot3(xr,yr,zr,'g');

% Add some fake points for custom legend

h = zeros(3, 1);

h(1) = plot(NaN,NaN,'or');

h(2) = plot(NaN,NaN,'.r');

h(3) = plot(NaN,NaN,'-g');

% legend(h,'Ideal anchor points','Actual anchor points','Reference

path','Location','southoutside');

%% Inject random noise to state measurements

% Maximum noise amounts [m]

maxLengthNoise = 0.002;

maxPositionNoise = 0.002;

numPoints = length(t);

257

z = zeros(numPoints,1);

% Generate random noise vectors for each cable length

laNoise = 2*(rand(numPoints,1)-0.5)*maxLengthNoise;

lbNoise = 2*(rand(numPoints,1)-0.5)*maxLengthNoise;

lcNoise = 2*(rand(numPoints,1)-0.5)*maxLengthNoise;

ldNoise = 2*(rand(numPoints,1)-0.5)*maxLengthNoise;

% Generate random noise vectors for each cartesian position

xNoise = 2*(rand(numPoints,1)-0.5)*maxPositionNoise;

yNoise = 2*(rand(numPoints,1)-0.5)*maxPositionNoise;

zNoise = 2*(rand(numPoints,1)-0.5)*maxPositionNoise;

% Create new state vector adding the random noise

x_noise = x + [xNoise yNoise zNoise z z z laNoise lbNoise lcNoise ldNoise z z z z];

% Moving average filter of the noisy state vector

x_noise_filtered = NaN(numPoints,14);

avgSamples = 100;

for i=avgSamples:numPoints

 avgSum = zeros(1,14);

 for j=1:avgSamples

 avgSum = avgSum + x_noise(i-j+1,:);

 end

 x_noise_filtered(i,:) = avgSum/avgSamples;

end

%% ====================

% Anchor-point disturbance prediction algorithms

% ====================

%1,4,5

method = 4;

% Uses data from the first simulation

positions = x(:,1:3);

cableLengths = x(:,7:10);

aEstimate = estimateDisturbances(t, positions, cableLengths, anchorPoints,

[64,74,84,94], method);

bEstimate = estimateDisturbances(t, positions, cableLengths, anchorPoints,

[94,104,114,4], method);

cEstimate = estimateDisturbances(t, positions, cableLengths, anchorPoints,

[4,14,24,34], method);

dEstimate = estimateDisturbances(t, positions, cableLengths, anchorPoints,

[34,44,54,64], method);

% Uses data from the first simulation, plus measurement noise

positions = x_noise(:,1:3);

cableLengths = x_noise(:,7:10);

aEstimateNoise = estimateDisturbances(t, positions, cableLengths, anchorPoints,

[64,74,84,94], method);

bEstimateNoise = estimateDisturbances(t, positions, cableLengths, anchorPoints,

[94,104,114,4], method);

cEstimateNoise = estimateDisturbances(t, positions, cableLengths, anchorPoints,

[4,14,24,34], method);

dEstimateNoise = estimateDisturbances(t, positions, cableLengths, anchorPoints,

[34,44,54,64], method);

% Plot estimated and actual anchor point positions

figure()

subplot(1,4,1)

plot(1:3,da,'or',1:3,aEstimate(1,:),'.k',1:3,aEstimateNoise(1,:),'xb')

xlim([0 4]);ylim([-1.5*maxDist 1.5*maxDist]);

ylabel('Disturbance amount [m]')

xticks([1 2 3]);xticklabels({'X','Y','Z'});grid on;

title('a')

subplot(1,4,2)

plot(1:3,db,'or',1:3,bEstimate(2,:),'.k',1:3,bEstimateNoise(2,:),'xb')

xlim([0 4]);ylim([-1.5*maxDist 1.5*maxDist]);

xticks([1 2 3]);xticklabels({'X','Y','Z'});grid on;

title('b')

258

subplot(1,4,3)

plot(1:3,dc,'or',1:3,cEstimate(3,:),'.k',1:3,cEstimateNoise(3,:),'xb')

xlim([0 4]);ylim([-1.5*maxDist 1.5*maxDist]);

xticks([1 2 3]);xticklabels({'X','Y','Z'});grid on;

title('c')

subplot(1,4,4)

plot(1:3,dd,'or',1:3,dEstimate(4,:),'.k',1:3,dEstimateNoise(4,:),'xb')

xlim([0 4]);ylim([-1.5*maxDist 1.5*maxDist]);

xticks([1 2 3]);xticklabels({'X','Y','Z'});grid on;

title('d')

legend({'Actual','Estimate','Estimate with noise'},'Location','South')

% Save result

da_est = aEstimateNoise(1,:);

db_est = bEstimateNoise(2,:);

dc_est = cEstimateNoise(3,:);

dd_est = dEstimateNoise(4,:);

%% ====================

% Repeat simulation using estimated disturbances

% ====================

X02 = X0;

t2 = 0:0.01:t_f;

[t2,x2] = ode45(@dynamics, t2, X02);

%% ====================

% Plot results (first and second simulation, together)

% ====================

% Clip simulation

tstart = 3;

ind = find(t2>=tstart,1,'first');

t2 = t2(ind:end);

x2 = x2(ind:end, :);

basicPlot(t2,x2);

basicPlot(t2,x2);

trueAnchorPoints = anchorPoints+[da; db; dc; dd];

estimatedAnchorPoints = anchorPoints+[da_est; db_est; dc_est; dd_est];

plotCables = false;

disp("3D plot 1: intial simulation, with unknown disturbances")

positions = x(:,1:3);

cableLengths = x(:,7:10);

animatedPlot(t, positions, cableLengths, trueAnchorPoints, plotCables);

% Add reference curves to the animated plot

xPoints = [7*B/8 7*B/8 7*B/8 7*B/8 6*B/8 6*B/8 B/2 B/2 2*B/8 2*B/8 B/8 B/8 B/8 B/8 B/8

B/8 2*B/8 2*B/8 B/2 B/2 6*B/8 6*B/8 7*B/8 7*B/8 7*B/8];

yPoints = [B/2 B/2 6*B/8 6*B/8 7*B/8 7*B/8 7*B/8 7*B/8 7*B/8 7*B/8 6*B/8 6*B/8 B/2 B/2

2*B/8 2*B/8 B/8 B/8 B/8 B/8 B/8 B/8 2*B/8 2*B/8 B/2];

zPoints = 0.1*ones(1,25);

timeStamps = 0:5:120;

[xr,yr,zr] = pointsPath(xPoints, yPoints, zPoints, timeStamps, t);

stem3(anchorPoints(:,1),anchorPoints(:,2),anchorPoints(:,3),'r')

plot3(xr,yr,zr,'g');

% Add some fake points for custom legend

h = zeros(3, 1);

h(1) = plot(NaN,NaN,'or');

h(2) = plot(NaN,NaN,'.r');

h(3) = plot(NaN,NaN,'-g');

legend(h,'Ideal anchor points','Actual anchor points','Reference

path','Location','southoutside');

259

disp("3D plot 2: final simulation, with estimated disturbances")

positions2 = x2(:,1:3);

cableLengths2 = x2(:,7:10);

animatedPlot(t2, positions2, cableLengths2, trueAnchorPoints, plotCables);

% Add reference curves to the animated plot

[xr,yr,zr] = pointsPath(xPoints, yPoints, zPoints, timeStamps, t);

stem3(estimatedAnchorPoints(:,1),estimatedAnchorPoints(:,2),estimatedAnchorPoints(:,3)

,'r')

plot3(xr,yr,zr,'g');

% Add some fake points for custom legend

h = zeros(3, 1);

h(1) = plot(NaN,NaN,'or');

h(2) = plot(NaN,NaN,'.r');

h(3) = plot(NaN,NaN,'-g');

legend(h,'Estimated anchor points','Actual anchor points','Reference

path','Location','southoutside');

% ====================

% Robot model

% ====================

function dx = dynamics(t,x)

 % Access global variables

 global B H anchorPoints

 global m c g wn zeta

 global da db dc dd;

 global da_est db_est dc_est dd_est;

 % True and estimated anchor point locations

 trueAnchorPoints = anchorPoints + [da; db; dc; dd];

 estimatedAnchorPoints = anchorPoints + [da_est; db_est; dc_est; dd_est];

 % True unstretched cable lengths

 la = x(7);

 lb = x(8);

 lc = x(9);

 ld = x(10);

 % Cable lengths calculated from true mass position

 cableLengths = positionToCableLengths([x(1),x(2),x(3)], trueAnchorPoints);

 la_m = cableLengths(1);

 lb_m = cableLengths(2);

 lc_m = cableLengths(3);

 ld_m = cableLengths(4);

 % Calculate the cable tensions based on cable stretch amount

 tensionFunctionSelect = 3;

 [Ta,~] = tensionFunction(tensionFunctionSelect, la_m, la, []);

 [Tb,~] = tensionFunction(tensionFunctionSelect, lb_m, lb, []);

 [Tc,~] = tensionFunction(tensionFunctionSelect, lc_m, lc, []);

 [Td,~] = tensionFunction(tensionFunctionSelect, ld_m, ld, []);

 % Resolve cable tensions into Cartesian components

 TaC = Ta*[-x(1), -x(2), H-x(3)]/la_m;

 TbC = Tb*[B-x(1), -x(2), H-x(3)]/lb_m;

 TcC = Tc*[B-x(1), B-x(2), H-x(3)]/lc_m;

 TdC = Td*[-x(1), B-x(2), H-x(3)]/ld_m;

 Tx = TaC(1) + TbC(1) + TcC(1) + TdC(1);

 Ty = TaC(2) + TbC(2) + TcC(2) + TdC(2);

 Tz = TaC(3) + TbC(3) + TcC(3) + TdC(3);

 % Get reference cartesian position

% xPoints = [7*B/8 7*B/8 B/2 B/8 B/8 B/8 B/2 7*B/8 7*B/8];

% yPoints = [B/2 7*B/8 7*B/8 7*B/8 B/2 B/8 B/8 B/8 B/2];

% zPoints = [0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1];

% timeStamps = [0 10 20 30 40 50 60 70 80];

260

% xPoints = [7*B/8 7*B/8 B/8 B/8 7*B/8 B/8 7*B/8 7*B/8 B/8 B/8];

% yPoints = [B/8 7*B/8 7*B/8 B/8 B/8 B/8 B/8 7*B/8 7*B/8 B/8];

% zPoints = [0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1];

% timeStamps = [0 10 20 30 40 50 60 70 80 90];

 xPoints = [7*B/8 7*B/8 7*B/8 7*B/8 6*B/8 6*B/8 B/2 B/2 2*B/8 2*B/8 B/8 B/8 B/8 B/8

B/8 B/8 2*B/8 2*B/8 B/2 B/2 6*B/8 6*B/8 7*B/8 7*B/8 7*B/8];

 yPoints = [B/2 B/2 6*B/8 6*B/8 7*B/8 7*B/8 7*B/8 7*B/8 7*B/8 7*B/8 6*B/8 6*B/8 B/2

B/2 2*B/8 2*B/8 B/8 B/8 B/8 B/8 B/8 B/8 2*B/8 2*B/8 B/2];

 zPoints = 0.1*ones(1,25);

 timeStamps = 0:5:120;

 [xr,yr,zr] = pointsPath(xPoints, yPoints, zPoints, timeStamps, t);

 % Convert reference position to reference cable lengths

 cableLengths = positionToCableLengths([xr,yr,zr], estimatedAnchorPoints);

 la_r = cableLengths(1);

 lb_r = cableLengths(2);

 lc_r = cableLengths(3);

 ld_r = cableLengths(4);

 % ------------

 % Control laws

 % ------------

 u = [la_r lb_r lc_r ld_r];

 % ------------

 % Calculate state derrivatives

 % ------------

 dx = zeros(14,1);

 % Mass dynamics

 dx(1) = x(4);

 dx(2) = x(5);

 dx(3) = x(6);

 dx(4) = (Tx - c*x(4))/m;

 dx(5) = (Ty - c*x(5))/m;

 dx(6) = (Tz - c*x(6))/m - g;

 % Cable length dynamics (second order response)

 dx(7) = x(11);

 dx(8) = x(12);

 dx(9) = x(13);

 dx(10) = x(14);

 dx(11) = u(1)*wn^2 - 2*wn*zeta*x(11) - wn^2*x(7);

 dx(12) = u(2)*wn^2 - 2*wn*zeta*x(12) - wn^2*x(8);

 dx(13) = u(3)*wn^2 - 2*wn*zeta*x(13) - wn^2*x(9);

 dx(14) = u(4)*wn^2 - 2*wn*zeta*x(14) - wn^2*x(10);

end

% ====================

% Plotting functions

% ====================

function basicPlot(t,x)

 global B H anchorPoints

 global da_est db_est dc_est dd_est;

 % Anchorpoint estimates

 estimatedAnchorPoints = anchorPoints + [da_est; db_est; dc_est; dd_est];

 % Get reference cartesian position

% xPoints = [7*B/8 7*B/8 B/2 B/8 B/8 B/8 B/2 7*B/8 7*B/8];

% yPoints = [B/2 7*B/8 7*B/8 7*B/8 B/2 B/8 B/8 B/8 B/2];

% zPoints = [0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1];

% timeStamps = [0 10 20 30 40 50 60 70 80];

261

% xPoints = [7*B/8 7*B/8 B/8 B/8 7*B/8 B/8 7*B/8 7*B/8 B/8 B/8];

% yPoints = [B/8 7*B/8 7*B/8 B/8 B/8 B/8 B/8 7*B/8 7*B/8 B/8];

% zPoints = [0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1];

% timeStamps = [0 10 20 30 40 50 60 70 80 90];

 xPoints = [7*B/8 7*B/8 7*B/8 7*B/8 6*B/8 6*B/8 B/2 B/2 2*B/8 2*B/8 B/8 B/8 B/8 B/8

B/8 B/8 2*B/8 2*B/8 B/2 B/2 6*B/8 6*B/8 7*B/8 7*B/8 7*B/8];

 yPoints = [B/2 B/2 6*B/8 6*B/8 7*B/8 7*B/8 7*B/8 7*B/8 7*B/8 7*B/8 6*B/8 6*B/8 B/2

B/2 2*B/8 2*B/8 B/8 B/8 B/8 B/8 B/8 B/8 2*B/8 2*B/8 B/2];

 zPoints = 0.1*ones(1,25);

 timeStamps = 0:5:120;

 [xr,yr,zr] = pointsPath(xPoints, yPoints, zPoints, timeStamps, t);

 % Convert to reference cable lengths

 cableLengths = positionToCableLengths([xr, yr, zr], estimatedAnchorPoints);

 la_r = cableLengths(:,1);

 lb_r = cableLengths(:,2);

 lc_r = cableLengths(:,3);

 ld_r = cableLengths(:,4);

 % Plot mass x,y,z position

 figure;

 subplot(3,2,1);

 plot(t,xr,'r', t,x(:,1),'k');

 title('Mass position')

 ylabel('X [m]')

 grid on;

 subplot(3,2,3);

 plot(t,yr,'r', t,x(:,2),'k');

 ylabel('Y [m]')

 grid on;

 subplot(3,2,5);

 plot(t,zr,'r', t,x(:,3),'k');

 ylabel('Z [m]')

 xlabel('Time [s]')

 legend('Reference', 'True', 'location', 'northwest')

 grid on;

 % Plot x, y, z mass position error

 subplot(3,2,2);

 plot(t,xr-x(:,1),'k');

 title('Mass position error')

 ylabel('X error [m]')

 grid on;

 subplot(3,2,4);

 plot(t,yr-x(:,2),'k');

 ylabel('Y error [m]')

 grid on;

 subplot(3,2,6);

 plot(t,zr-x(:,3),'k');

 grid on;

 ylabel('Z error [m]')

 xlabel('Time [s]')

 set(gcf,'position',[200,200,1000,800]);

 % Plot cable lengths

 figure;

 subplot(4,2,1);

 plot(t,la_r,'r', t,x(:,7),'k');

 title('Cable lengths')

 ylabel('La [m]')

 grid on;

 subplot(4,2,3);

 plot(t,lb_r,'r', t,x(:,8),'k');

 ylabel('Lb [m]')

 grid on;

 subplot(4,2,5);

 plot(t,lc_r,'r', t,x(:,9),'k');

 ylabel('Lc [m]')

 xlabel('Time [s]')

262

 grid on;

 subplot(4,2,7);

 plot(t,ld_r,'r', t,x(:,10),'k');

 ylabel('Ld [m]')

 xlabel('Time [s]')

 legend('Reference', 'True', 'location', 'northwest')

 grid on;

 % Plot cable length errors

 subplot(4,2,2);

 title('Cable length error')

 plot(t,la_r-x(:,7),'k');

 ylabel('La_e [m]')

 grid on;

 subplot(4,2,4);

 plot(t,lb_r-x(:,8),'k');

 ylabel('Lb_e [m]')

 grid on;

 subplot(4,2,6);

 plot(t,lc_r-x(:,9),'k');

 ylabel('Lc_e [m]')

 xlabel('Time [s]')

 grid on;

 subplot(4,2,8);

 plot(t,ld_r-x(:,10),'k');

 ylabel('Ld_e [m]')

 xlabel('Time [s]')

 grid on;

 set(gcf,'position',[300,100,1000,800]);

end

Table A18. cableRobotSim_tension.m is a script that runs simulations of a four-cable CSR

using cable-tension-based control.

% Cable Robot Simulation, tension control

clear all;

% ====================

% Physical configuration of the cable-suspended robot (cables not shown)

% (Square shape with side lengths B)

% ====================

% d_________________c

% /| /|

% a/_|______________b/ |

% | | | |

% | | | | H

% | | | |

% | | | |

% | |______________|__|

% | / | / B

% |/________________|/

% B

% ====================

% Define some variables

% ====================

global anchorPoints

% Anchor point dimensions (see physical configuration above)

B = 10.0; % length of each side [m]

H = 10.0; % height of cable anchor points [m]

anchorPoints = [0 0 H; B 0 H; B B H; 0 B H]; % anchor points for 4 cables

263

% End effector dynamics

global m g c;

m = 10; % mass [kg]

g = 9.81; % gravity acceleration [m/s^2]

c = 10; % coulomb damping for mass movement [Ns/m]

% ====================

% Simulate and plot

% ====================

% States

% x = [x,y,z, vx,vy,vz, x_e,y_e,z_e]

% = [position, velocity, position error]

x0 = 8;

y0 = 5;

z0 = 2;

X0 = [x0,y0,z0,0,0,0,0,0,0];

% Run simulation

tf = 60; % simulation end time [s]

t = 0:0.01:tf;

[t,x] = ode45(@dynamics,t,X0);

%% Plot results

basicPlot(t, x);

positions = x(:,1:3);

plotCables = false;

animatedPlot(t, positions, [], anchorPoints, plotCables)

% Add reference curves to the animated plot

f = 1/30;

xr = 5 + 3*cos(2*pi*f*t);

yr = 5 + 3*sin(2*pi*f*t);

zr = 2 + (1/15)*t;

plot3(xr,yr,zr,'--r');

% Add some fake points for custom legend

h = plot(NaN,NaN,'--r');

legend(h,'Reference path','Location','southoutside');

%% Plot cable tensions

tic

plotCableTensions(t, x);

toc

%% ====================

% Model

% ====================

function [dx, cartesianForces] = dynamics(t,x)

 % Select controller

 controller = 1;

 % Retrieve global variables defined above

 global m g c

 MM = m*eye(3); % mass matrix [kg]

 CC = c*eye(3); % damping matrix [N*s/m]

 gg = [0;0;m*g]; % gravity matrix [N]

 % Disturbances

 F_dist = 0*sin(t*2*pi*0.25); % Force disturbance [N]

 m_dist = 0; % mass disturbance [kg]

 c_dist = 0; % damping disturbance [N*s/m]

 % Maximum allowable disturbances

 mbar = 5; % [kg]

 cbar = 10; % [N*s/m]

 gbar = mbar*g; % [N]

264

 % Set reference trajectory

 f = 1/30;

 xr = 5 + 3*cos(2*pi*f*t);

 yr = 5 + 3*sin(2*pi*f*t);

 zr = 2 + (1/15)*t;

 % First time derivative of reference trajectory

 xr_d = -3*2*pi*f*sin(2*pi*f*t);

 yr_d = 3*2*pi*f*cos(2*pi*f*t);

 zr_d = 1/15;

 % Second time derivative of reference trajectory

 xr_dd = -3*(2*pi*f)^2*cos(2*pi*f*t);

 yr_dd = -3*(2*pi*f)^2*sin(2*pi*f*t);

 zr_dd = 0;

 % Calculate state errors

 xe = xr - x(1);

 ye = yr - x(2);

 ze = zr - x(3);

 % Calculate state error time derivatives

 xe_d = xr_d - x(4);

 ye_d = yr_d - x(5);

 ze_d = zr_d - x(6);

 % ------------

 % Control laws

 % ------------

 % Default is no control

 cartesianForces = zeros(1,3);

 switch controller

 case 1 % Feedback linearization (computed torque)

 Kp = 15;

 Kd = 2;

 q_d = [x(4);x(5);x(6)];

 qr_dd = [xr_dd;yr_dd;zr_dd];

 e = [xe;ye;ze];

 e_d = [xe_d;ye_d;ze_d];

 cartesianForces = MM*(qr_dd + Kd*e_d + Kp*e) + CC*q_d + gg;

 case 2 % Sliding-mode control

 % Parameters

 Sp = 100;

 Sd = 20;

 k0 = 5; % any positive constant

 alpha = 0.5;

 sat = @(x) min(1, max(-1,x/alpha));

 % Define the sliding surface

 e = [xe;ye;ze];

 e_d = [xe_d;ye_d;ze_d];

 e_int = [x(7);x(8);x(9)];

 s = e_d + Sd*e + Sp*e_int;

 % Calculate switching constant

 qr_dd = [xr_dd;yr_dd;zr_dd];

 q_d = [x(4);x(5);x(6)];

 K = mbar*abs(qr_dd+Sd*e_d+Sp*e) + cbar*abs(q_d) + [0;0;gbar] + k0;

 % Control law

 cartesianForces = MM*qr_dd + CC*q_d + gg + MM*Sd*e_d + MM*Sp*e +

K.*sign(s);

 end

265

 % ------------

 % Caclulate state derrivatives

 % ------------

 % Initialize time derivative vector

 dx = zeros(9,1);

 Fx = cartesianForces(1);

 Fy = cartesianForces(2);

 Fz = cartesianForces(3);

 % Mass dynamics

 dx(1) = x(4);

 dx(2) = x(5);

 dx(3) = x(6);

 % From Newton's law: mass*accel = T - c*vel - mass*g;

 dx(4) = ((Fx+F_dist) - (c+c_dist)*x(4))/(m+m_dist);

 dx(5) = ((Fy+F_dist) - (c+c_dist)*x(5))/(m+m_dist);

 dx(6) = ((Fz+F_dist) - (c+c_dist)*x(6))/(m+m_dist) - g;

 % Error integral states

 dx(7) = xe;

 dx(8) = ye;

 dx(9) = ze;

end

% ====================

% Plotting functions

% ====================

function basicPlot(t, x)

 % Generate reference trajectory

 f = 1/30;

 xr = 5 + 3*cos(2*pi*f*t);

 yr = 5 + 3*sin(2*pi*f*t);

 zr = 2 + (1/15)*t;

 % Position

 figure;

 subplot(3,2,1);

 plot(t,xr,'--r', t,x(:,1),'k');

 ylabel('X [m]')

 grid on;

 subplot(3,2,3);

 plot(t,yr,'--r', t,x(:,2),'k');

 ylabel('Y [m]')

 grid on;

 subplot(3,2,5);

 plot(t,zr,'--r', t,x(:,3),'k');

 ylabel('Z [m]')

 xlabel('Time [s]')

 legend('Reference', 'Simulated', 'location', 'northwest')

 grid on;

 % Position error

 maxErrorLine = 0.01;

 subplot(3,2,2);

 plot(t,xr-x(:,1),'k', t,maxErrorLine*ones(length(t),1),'r', t,-

maxErrorLine*ones(length(t),1),'r');

 ylabel('X error [m]')

 grid on;

 subplot(3,2,4);

 plot(t,yr-x(:,2),'k', t,maxErrorLine*ones(length(t),1),'r', t,-

maxErrorLine*ones(length(t),1),'r');

 ylabel('Y error [m]')

 grid on;

 subplot(3,2,6);

266

 plot(t,zr-x(:,3),'k', t,maxErrorLine*ones(length(t),1),'r', t,-

maxErrorLine*ones(length(t),1),'r');

 grid on;

 ylabel('Z error [m]')

 xlabel('Time [s]')

end

function [] = plotCableTensions(time,states)

 global anchorPoints

 nTimes = length(time);

 forces = NaN(nTimes,3);

 tensions = NaN(nTimes,4);

 sum1 = 0;

 sum2 = 0;

 for i=1:length(time)

 t = time(i);

 x = states(i,:);

 [~, cartesianForces] = dynamics(t,x);

 forces(i,:) = cartesianForces;

 % Convert cartesian forces to cable tensions

 method = 4;

 position = [x(1) x(2) x(3)];

 [cableTensions, ~] =

positionToTension(position,anchorPoints,cartesianForces,method);

 tensions(i,:) = cableTensions;

 if i>1

 dT = t-time(i-1);

 sum1 = sum1 + sum(tensions(i-1,:))*dT;

 sum2 = sum2 + sum(tensions(i-1,:).^2)*dT;

 end

 end

 disp('Tension integral:')

 format long g

 disp(sum1)

 disp('Tension squared integral:')

 disp(sum2)

 figure()

 subplot(1,3,1)

 plot(time,forces(:,1),'.k')

 title('X')

 xlabel('Time [s]')

 ylabel('Net force [N]')

 grid on

 subplot(1,3,2)

 plot(time,forces(:,2),'.k')

 title('Y')

 xlabel('Time [s]')

 grid on

 subplot(1,3,3)

 plot(time,forces(:,3),'.k')

 title('Z')

 xlabel('Time [s]')

 grid on

 figure()

 subplot(1,4,1)

 plot(time,tensions(:,1),'.k')

 title('Cable a')

 xlabel('Time [s]')

 ylabel('Tension [N]')

 grid on

267

 subplot(1,4,2)

 plot(time,tensions(:,2),'.k')

 title('Cable b')

 xlabel('Time [s]')

 grid on

 subplot(1,4,3)

 plot(time,tensions(:,3),'.k')

 title('Cable c')

 xlabel('Time [s]')

 grid on

 subplot(1,4,4)

 plot(time,tensions(:,4),'.k')

 title('Cable d')

 xlabel('Time [s]')

 grid on

end

Table A19. dcMotorServoSim.m is a script that runs simulations for a closed-loop DC

servo motor. This script also plots some controller-design analysis plots.

% DC motor servo control simulation

clear all;

% ====================

% Physical configuration:

% A voltage-controlledDC motor with a point mass directly attached using a string

% ====================

%

% voltageSource ----> DC motor -----> mass vertical position

% ^ |

% | |

% ------ load torque -----

%

% ====================

% Define some variables

% ====================

m = 0.5; % weight mass [kg]

g = 9.81; % gravity acceleration [m/s^2]

% DC motor characteristics (see Maxon Amax26 110950 datasheet)

Kt = 0.0202; % torque constant [Nm/A]

Ke = 60/(2*pi*472); % back emf constant [Vs/rad]

B = 0.000001; % linear damping [Ns/rad]

R = 8; % resistance [ohm]

J = 12.4/(1000*100*100);% rotor inertia [kg*m^2]

L = 0.00086; % inductance [H]

r = 0.01; % motor wheel radius [m]

 % ====================

% Transfer functions

% ====================

% Laplace variable

s = tf([1 0],1);

% Open-loop

% Motor voltage [V] to motor speed [rad/s]

omega_V = Kt/(L*J*s^2 + (J*R+B*L)*s + B*R+Kt*Ke);

% Load tension to [V] to motor speed [rad/s]

omega_T = -r*(L*s+R)/(L*J*s^2 + (J*R+B*L)*s + B*R+Kt*Ke);

268

% Motor voltage [V] to mass position [m]

Y_V = Kt*r/((L*J+L*m*r^2)*s^3 + (J*R+B*L+m*r^2*R)*s^2 + (B*R+Kt*Ke)*s);

% Gravity acceleration [m/s^2] to mass position [m]

Y_G = -m*r^2*(L*s+R)/((L*J+L*m*r^2)*s^3 + (J*R+B*L+m*r^2*R)*s^2 + (B*R+Kt*Ke)*s);

% Closed-loop position controller (PID)

P = 500;

I = 500;

D = 50;

Ts = 0.01; % digital sampling period [s]

% Add extra pole at -2/Ts

% (Ref: Digital Control System Analysis and Design by Phillips, Section 8.10)

s = tf([1 0], 1);

C = P + I/s + D*s/(1 + (Ts/2)*s);

% Closed loop system

% Reference position [rad] to mass vertical position [m]

Y_r = (C*Kt*r)/((L*J+L*m*r^2)*s^3 + (J*R+B*L+R*m*r^2)*s^2 + (B*R+Kt*Ke)*s + C*Kt*r);

% Gravity acceleration to motor position [rad]

Y_g = -m*r^2*(L*s+R)/((L*J+L*m*r^2)*s^3 + (J*R+B*L+R*m*r^2)*s^2 + (B*R+Kt*Ke)*s +

C*Kt*r);

% Mass vertical position [m] to tension [N]

% Added two far-left poles to fascillitate simulation (otherwise a

% non-causal transfer function)

T_y = m*s^2/(s+1000)^2;

% Gravity acceleration to tension [N]

T_g = tf(m,1);

%% ====================

% Some analysis plots

% ====================

% Bode plot for stablity margins

% Loop transfer function with simple PID

C_simple = P + I/s + D*s;

L = series(C_simple,Y_V);

figure()

margin(L);

grid on

% Loop transfer function with controller created above

L = series(C,Y_V);

figure()

margin(L);

grid on

%% ====================

% Run and plot simulations

% ====================

% Closed-loop simulation

% -Constant mass with gravity system

% -Step reference input

t = 0:0.0001:6; % time vector for simulation

r = 1*ones(length(t),1); % reference position

G = g*ones(length(t),1); % gravity

y_r = lsim(Y_r, r, t); % position response due to reference input

y_g = lsim(Y_g, G, t); % position response due to gravity

y = y_r + y_g; % total position response

e = r-y; % position error

v = lsim(C, e, t); % controller output (motor voltage)

t_y = lsim(T_y, y, t); % tension response due to mass position

t_g = lsim(T_g, G, t); % tension response due to gravity

T = t_y + t_g; % total tension response

figure()

269

% Plot position response

subplot(2,2,1)

plot(t, y, 'k', t, r, ':k')

xlabel('Time [s]')

ylabel('Mass position [m]')

grid on

title('Step response')

% Plot position error

subplot(2,2,2)

plot(t, e, 'k')

xlabel('Time [s]')

ylabel('Position error [m]')

grid on

% Plot controller output (motor voltage)

subplot(2,2,3)

plot(t, v, 'k')

xlabel('Time [s]')

ylabel('Motor voltage [V]')

grid on

% Plot tension response

subplot(2,2,4)

plot(t, T, 'k')

xlabel('Time [s]')

ylabel('Tension [N]')

grid on

% satVal = 100;

% vSat = v;

% vSat(vSat>satVal) = satVal;

% vSat(vSat<-satVal) = -satVal;

% subplot(1,4,3)

% plot(t,vSat,'r')

% y_vSat = lsim(Y_V, vSat, t);

% y_gSat = lsim(Y_G, G, t);

% ySat = y_vSat + y_gSat;

% subplot(1,4,1)

% plot(t,ySat,'r')

%% Closed-loop simulation

% -Constant mass with gravity system

% -Ramp reference input

t = 0:0.0001:6; % time vector for simulation

r = 0.1*t'; % reference position

G = g*ones(length(t),1); % gravity

y_r = lsim(Y_r, r, t); % position response due to reference input

y_g = lsim(Y_g, G, t); % position response due to gravity

y = y_r + y_g; % total position response

e = r-y; % position error

v = lsim(C, e, t); % controller output (motor voltage)

t_y = lsim(T_y, y, t); % tension response due to mass position

t_g = lsim(T_g, G, t); % tension response due to gravity

T = t_y + t_g; % total tension response

figure()

% Plot position response

subplot(2,2,1)

plot(t, y, 'k', t, r, ':k')

xlabel('Time [s]')

ylabel('Mass position [m]')

grid on

title('Ramp response')

% Plot position error

subplot(2,2,2)

plot(t, e, 'k')

xlabel('Time [s]')

ylabel('Position error [m]')

grid on

270

% Plot controller output (motor voltage)

subplot(2,2,3)

plot(t, v, 'k')

xlabel('Time [s]')

ylabel('Motor voltage [V]')

grid on

% Plot tension response

subplot(2,2,4)

plot(t, T, 'k')

xlabel('Time [s]')

ylabel('Tension [N]')

grid on

%% Closed-loop simulation

% -Constant mass with gravity system

% -Sine reference input

t = 0:0.0001:10; % time vector for simulation

r = sin(2*pi*0.5*t)'; % reference position

G = g*ones(length(t),1); % gravity

y_r = lsim(Y_r, r, t); % position response due to reference input

y_g = lsim(Y_g, G, t); % position response due to gravity

y = y_r + y_g; % total position response

e = r-y; % position error

v = lsim(C, e, t); % controller output (motor voltage)

t_y = lsim(T_y, y, t); % tension response due to mass position

t_g = lsim(T_g, G, t); % tension response due to gravity

T = t_y + t_g; % total tension response

figure()

% Plot position response

subplot(2,2,1)

plot(t, y, 'k', t, r, ':k')

xlabel('Time [s]')

ylabel('Mass position [m]')

grid on

title('Sine response')

% Plot position error

subplot(2,2,2)

plot(t, e, 'k')

xlabel('Time [s]')

ylabel('Position error [m]')

grid on

% Plot controller output (motor voltage)

subplot(2,2,3)

plot(t, v, 'k')

xlabel('Time [s]')

ylabel('Motor voltage [V]')

grid on

% Plot tension response

subplot(2,2,4)

plot(t, T, 'k')

xlabel('Time [s]')

ylabel('Tension [N]')

grid on

Table A20. animatedPlot.m is a function that creates an animated plot from simulation or

experimental data for a CSR of any valid configuration.

function animatedPlot(t, positions, cableLengths, anchorPoints, plotCables)

% Plots positions of a cable suspended robot. If multiple time steps are

% given, gives an animation.

%

% t is a time vector in [s], one time for each end effector position.

% positions is a matrix with the cartesian position of the end effector at

271

% each time step [m]. The three columns of the matrix are the X,Y,Z

% coordinates of the effector.

% cableLengths is a matrix with the cable lengths at each time instant [m].

% One column is required for each cable, and one row for each time.

% anchorPoints is a matrix with one cartesian position for each cable

% anchor location [m]. The three columns of the matrix are the X,Y,Z

% coordinates of anchor points. One row is required for each cable.

% plotCables is a boolean that selects whether to plot cables in the

% animation. If no cables are plotted, just the location of the end

% effector is marked.

 % Get the number of times/positions and cables

 numTimes = length(t);

 [numCables, ~] = size(anchorPoints);

 % If cable lengths not provided, set plotCables to false

 if isempty(cableLengths)

 plotCables = false;

 end

 % Create a figure

 figure();

 subplot(1,1,1);

 hold on;

 % Some plot formatting

 grid on;

 axis square;

 view(-30,15)

 xlabel('X [m]')

 ylabel('Y [m]')

 zlabel('Z [m]')

 % Plot cable anchor points, one at a time

 for c=1:numCables

 % Plot amchor points as filled red circle with line to ground

 stem3(anchorPoints(c,1),anchorPoints(c,2),anchorPoints(c,3),'r','filled')

 end

 % Decrease number of points plotted to avoid slow animation

 n = 1;

 if numTimes>1000

 n = floor(numTimes/1000);

 end

 % Plot end effector positions (and cables, if requested) one time step at a time

 for p=1:n:numTimes

 % If cable plotting is on, clear current plot to make space for

 % updated cables.

 if (plotCables == true)

 % Clear current plot (clear axes)

 cla

 % Plot cable anchor points again, since plot was cleared

 for c=1:numCables

 % Plot amchor points as filled red circle with line to ground

stem3(anchorPoints(c,1),anchorPoints(c,2),anchorPoints(c,3),'r','filled')

 end

 end

 % Display the time in the figure title

 title(sprintf('%0.3f [s]',t(p)))

 % Plot current end effector position as a black point

 plot3(positions(p,1),positions(p,2),positions(p,3),'.k');

 % Plot cables, if requested

 if (plotCables == true)

272

 % Calculate cable lengths based on mass position

 [idealCableLengths] = positionToCableLengths(positions(p,:),

anchorPoints);

 % For each cable, determine if there is slack and plot

 for c=1:numCables

 actualLength = cableLengths(p,c);

 idealLength = idealCableLengths(c);

 if (actualLength>idealLength)

 % Create a curve that illustrates the cable slack

 a = 0.8*sqrt(actualLength^2 - idealLength^2);

 v = linspace(0,idealLength);

 dz = a - a.*(2/idealLength).^2.*(v-idealLength/2).^2;

 cable = [linspace(positions(p,1),anchorPoints(c,1))' ...

 linspace(positions(p,2),anchorPoints(c,2))' ...

 linspace(positions(p,3),anchorPoints(c,3))'-dz'];

 elseif (actualLength/idealLength)<0.95

 vec = [positions(p,1)-anchorPoints(c,1) positions(p,2)-

anchorPoints(c,2) positions(p,3)-anchorPoints(c,3)];

 dir = vec/norm(vec);

 cable = [anchorPoints(c,1) anchorPoints(c,2) anchorPoints(c,3);

anchorPoints(c,:)+actualLength*dir];

 else

 % There is no slack, so cable is a straight line from

 % effector position to anchor point

 cable = [positions(p,1) positions(p,2) positions(p,3);

 anchorPoints(c,1) anchorPoints(c,2) anchorPoints(c,3)];

 end

 % Plot the cable as a solid black line

 plot3(cable(:,1),cable(:,2),cable(:,3),'-k');

 end

 end

 % Plot the points now

 drawnow

 end

end

Table A21. cableLengthsToPosition.m is a function that calculates the most likely

position of the CSR end effector given the cable lengths. In other words, this function

solves the forward kinematic problem for the CSR.

function [position,activeCables,redundantCables] =

cableLengthsToPosition(cableLengths, anchorPoints)

% Calculates the cartesian position of a cable suspended robot end

% effector given the cable lengths and cable anchor positions. This routine

% attempts to deal with redundant cable lengths and/or invalid cables.

%

% cableLengths: cable lengths in [m]

% anchorpoints: Cartesian positions of the cable anchor points. Each cable

% can be seen as originiating from its respective anchor point.

% Each row of this argument is a cartesian position vector. One row

% is required for each cable, in the same order as cableLengths.

% position: the calculated cartesian position of the end effector mass based

% on the cable lengths given. The position is in the unit of [m].

% activeCables: list of the three cables that uniquely define the

% calculated position. The cable numbers are relative to the order of

% the cables in cableLengths.

% redundant cables: list of the cables that are long enough to reach the

% calculated position, but are redundant (they could be removed

% without affecting the effector position).

 % Get number of cables

273

 numCables = length(cableLengths);

 % If only one cable is given, solution is immediately known

 if numCables ==1

 disp('Only one cable given.')

 x = anchorPoints(1);

 y = anchorPoints(2);

 z = anchorPoints(3)-cableLengths;

 return

 end

 % If two or more cables are given:

 % ===

 % Step 1: Create a connection matrix (an adjacency matrix with 1's on

 % the diagonal)

 % ===

 % Connection matrix describes the possible connections between cables.

 % Cables i and j can connect with each other if there is a 1 in the

 % matrix location (i,j) or (j,i). This matrix is symmetric.

 connectionMatrix = eye(numCables);

 % Fill the matrix by checking every cable pair for a possible connection

 for i=1:numCables-1

 for j = i+1:numCables

 % Calculate distance between the two cable anchor points

 distanceBetweenAnchorPoints = norm(anchorPoints(i,:)-anchorPoints(j,:));

 % If distance is less than sum of cable lengths, a connection is possible

 if distanceBetweenAnchorPoints <= cableLengths(i)+cableLengths(j)

 connectionMatrix(i,j) = 1;

 connectionMatrix(j,i) = 1;

 end

 end

 end

 % ===

 % Step 2: Review the connection matrix

 % ===

 % No cables can connect to each other

 % (i.e. the connection matrix is the identity matrix)

 if sum(connectionMatrix, 'all') == numCables

 disp('No solution exists. The cables are all too short to connect to each

other.')

 x = NaN;

 y = NaN;

 z = NaN;

 return

 end

 % Find the largest group of cables that can connect to each other.

 [~,groupSizes,cableOrder] = findCliques(connectionMatrix, true);

 % If no group of three or more connecting cables exists

 if max(groupSizes)<3

 disp('No solution exists because less than 3 cables can connect with each

other.')

 x = NaN;

 y = NaN;

 z = NaN;

 return

 end

 % Extract the list of valid cables

 [maxGroupSize, maxGroupIndex] = max(groupSizes);

 if maxGroupIndex==1

 connectingCables = cableOrder(1:maxGroupSize);

 else

274

 groupStartIndex = sum(groupSizes(1:maxGroupIndex-1))+1;

 connectingCables = cableOrder(groupStartIndex:groupStartIndex+maxGroupSize-1);

 end

 % Generate a list of cable combinations

 cableCombinations = nchoosek(connectingCables,3);

 [numCombinations,~] = size(cableCombinations);

 % Test cable combinations in groups of three

 % Each combination is tested for a possible solution

 for c=1:numCombinations

 % Get cable lengths for current combination

 l1 = cableLengths(cableCombinations(c,1));

 l2 = cableLengths(cableCombinations(c,2));

 l3 = cableLengths(cableCombinations(c,3));

 % Get cable anchor points for current combination

 x1 = anchorPoints(cableCombinations(c,1),1);

 y1 = anchorPoints(cableCombinations(c,1),2);

 z1 = anchorPoints(cableCombinations(c,1),3);

 x2 = anchorPoints(cableCombinations(c,2),1);

 y2 = anchorPoints(cableCombinations(c,2),2);

 z2 = anchorPoints(cableCombinations(c,2),3);

 x3 = anchorPoints(cableCombinations(c,3),1);

 y3 = anchorPoints(cableCombinations(c,3),2);

 z3 = anchorPoints(cableCombinations(c,3),3);

 % Calculate possible solution for end effector position

 x0 = [0,0,0];

 fun = @(pos) [l1^2-((pos(1)-x1)^2+(pos(2)-y1)^2+(pos(3)-z1)^2);

 l2^2-((pos(1)-x2)^2+(pos(2)-y2)^2+(pos(3)-z2)^2);

 l3^2-((pos(1)-x3)^2+(pos(2)-y3)^2+(pos(3)-z3)^2)];

 options = optimset('Display','off');

 [candidatePosition,~] = fsolve(fun,x0,options);

 % Test the solution

 % First, check that the solution is in the allowable area under

 % the triangle created by the three cables. This ensures the

 % three cables are in tension.

 % Height condition:

 maxHeight = min([z1 z2 z3]);

 if candidatePosition(3)>maxHeight

 disp('The candidate position is too high.')

 continue

 end

 % Ground condition:

 if candidatePosition(3)<0

 disp('The candidate position is below the ground.')

 continue

 end

 % Convex hull condition:

 a1 = [y2-y1 -(x2-x1)];

 c1 = x1*(y2-y1)-y1*(x2-x1);

 test1 = a1*candidatePosition(1:2)'<=c1;

 a2 = [y3-y2 -(x3-x2)];

 c2 = x2*(y3-y2)-y2*(x3-x2);

 test2 = a2*candidatePosition(1:2)'<=c2;

 a3 = [y1-y3 -(x1-x3)];

 c3 = x3*(y1-y3)-y3*(x1-x3);

 test3 = a3*candidatePosition(1:2)'<=c3;

 if test1+test2+test3<3

 disp('The candidate position is not within the working area of the three

active cables.')

 continue

 end

 % Second, check if this position is possible considering the

 % remaining cables (they should all have zero or positive slack)

275

 cableLengthsFromCandidatePosition = positionToCableLengths(candidatePosition,

anchorPoints);

 for i=1:length(connectingCables)

 actualCableLength = cableLengths(connectingCables(i));

 requiredCableLength =

cableLengthsFromCandidatePosition(connectingCables(i));

 % Check if the required cable length is smaller than the

 % required length to support the candidate effector position

 if actualCableLength-requiredCableLength<-0.001

 aCableIsTooShort = true;

 break

 else

 aCableIsTooShort = false;

 end

 end

 if aCableIsTooShort==true

 disp('The candidate position is not valid because one or more cable(s) is

not long enough to reach the position.')

 disp('A different position will be attempted.')

 continue

 end

 % If all tests passed, the calculated point is a valid solution

 position = candidatePosition;

 activeCables = cableCombinations(c,:);

 disp('A valid position was found!')

 % Make a list of the redundant cables

 i=1;

 redundantCables = connectingCables';

 while i<=length(redundantCables)

 for j=1:3

 if redundantCables(i)==cableCombinations(c,j)

 redundantCables(i) = [];

 i=i-1;

 break

 end

 end

 i=i+1;

 end

 return

 end

 % All combinations of three cables were tested and no valid solution

 % was found.

 disp('No solution found.')

 position = NaN;

 activeCables = NaN;

 redundantCables = NaN;

end

Table A22. pointsPath.m is a function creates a reference trajectory from a given set of

waypoints and time stamps for the same points. The trajectory simply connects the points

using straight line segments.

function [xr,yr,zr] = pointsPath(xCoordinates, yCoordinates, zCoordinates, timeStamps,

currentTime)

% Used to create a cartesian path from waypoints and time stamps

%

% xCoordinates is a list of x positions in meters

% yCoordinates is a list of y positions in meters

% zCoordinates is a list of z positions in meters

% timeStamps is a list of times in seconds

276

% currentTime is the current time in seconds

%

% Function returns the x,y,z position corresponding to the current time.

% Lists of cooridnates and time stamps should be the same length.

% Optional: instead of time stamps, give the movement speed in [m/s]

 % Get the number of times to sample

 numTimeSamples = length(currentTime);

 % Get the number of points in the path

 numPoints = length(xCoordinates);

 % Calculate the number of segments in the path

 numSegments = numPoints-1;

 % If time stamps not given, calculate them using a constant movement speed

 if(length(timeStamps)==1 && numPoints>1)

 speed = timeStamps; % Movement speed in [m/s]

 timeStamps = NaN(numPoints,1); % Create array of time stamps

 timeStamps(1) = 0; % First time stamp is zero seconds

 for(i=1:numSegments)

 % Changes in coordinates for current segment

 dx = xCoordinates(i+1)-xCoordinates(i);

 dy = yCoordinates(i+1)-yCoordinates(i);

 dz = zCoordinates(i+1)-zCoordinates(i);

 distance = norm([dx,dy,dz],2);

 timeStamps(i+1) = timeStamps(i)+distance/speed;

 end

 end

 % Initialize position arrays to be returned

 xr = NaN(numTimeSamples,1);

 yr = NaN(numTimeSamples,1);

 zr = NaN(numTimeSamples,1);

 % Iterate through time samples

 for(i=1:numTimeSamples)

 % Calculate the current segment number

 segment = find(currentTime(i)>=timeStamps,1,'last');

 if(segment==numPoints)

 % If the current time is beyond the final timestamp, stay at final

position

 x = xCoordinates(end);

 y = yCoordinates(end);

 z = zCoordinates(end);

 else

 % Calculate the current segment start and end times

 segmentStartTime = timeStamps(segment);

 segmentEndTime = timeStamps(segment+1);

 % Calculate current segment progress

 segmentProgress = (currentTime(i)-segmentStartTime)/(segmentEndTime-

segmentStartTime);

 % Calculate start and end coordinates of current segment

 xStart = xCoordinates(segment);

 yStart = yCoordinates(segment);

 zStart = zCoordinates(segment);

 xEnd = xCoordinates(segment+1);

 yEnd = yCoordinates(segment+1);

 zEnd = zCoordinates(segment+1);

 % Calculate current position

 x = xStart + segmentProgress*(xEnd-xStart);

 y = yStart + segmentProgress*(yEnd-yStart);

 z = zStart + segmentProgress*(zEnd-zStart);

 end

277

 % Return reference position

 xr(i) = x;

 yr(i) = y;

 zr(i) = z;

 end

end

Table A23. positionToCableLengths.m is a function that calculates the ideal cable lengths

needed to produce a given end-effector position for a CSR. In other words, this function

solves the inverse kinematics problem.

function [cableLengths] = positionToCableLengths(position, anchorPoints)

% Calculates the cable lengths of a cable-suspended robot given a

% cartesian position. Cables are assumed inextensible and taught.

%

% position: Cartesian position of the end effector in [m]

% anchorpoints: Cartesian positions of the cable anchor points. Each cable

% can be seen as originiating from its respective position.

 % Get the number of cables (number of rows in anchorPoints)

 [numCables, ~] = size(anchorPoints);

 % Get the number of positions to calculate (number of rows in position)

 [numPositions, ~] = size(position);

 % Declare the matrix to store and return results

 cableLengths = NaN(numPositions,numCables);

 % The maximum allowable height of the mass is the lowest cable anchor point.

 maxPossibleHeight = min(anchorPoints(:,3));

 % The point must lie in the convex hull of the 2D projection of the anchor

 % points.

 convexHullIndices = convhull(anchorPoints(:,1:2));

 convexHullPoints = anchorPoints(convexHullIndices,:);

 % Loop through positions

 for pos = 1:numPositions

 % First, check if the position is too high

 if position(pos,3)>=maxPossibleHeight

 fprintf('Position %i is above the maximum height.\n', pos);

% cableLengths(pos,:) = NaN;

% continue

 end

 % Second, check if the position is too low

 if position(pos,3)<0

 fprintf('Position %i is below ground level.\n', pos);

% cableLengths(pos,:) = NaN;

% continue

 end

 % Third, check if the position is within the allowable 2D region

 for point=1:length(convexHullIndices)-1

 % Get point coordinates

 x1 = convexHullPoints(point,1);

 y1 = convexHullPoints(point,2);

 x2 = convexHullPoints(point+1,1);

 y2 = convexHullPoints(point+1,2);

 % Create line from current point to next point

 a = [y2-y1 -(x2-x1)];

 c = x1*(y2-y1)-y1*(x2-x1);

 % Check if position is to the left of the line

278

 if a*position(pos,1:2)'<=c

 onLeft = true;

 else

 onLeft = false;

 end

 % Check if mass point is to the left of the line

 if ~onLeft

 fprintf('Position %i is not within the allowable space.\n', pos);

% cableLengths(pos,:) = NaN;

 break

 continue

 end

 end

 % If above tests passed, calculate length of each cable

 for cable = 1:numCables

 % Ideal cable length is Eucledian distance between point and

 % cable anchor location.

 dx = position(pos,1)-anchorPoints(cable,1);

 dy = position(pos,2)-anchorPoints(cable,2);

 dz = position(pos,3)-anchorPoints(cable,3);

 cableLengths(pos,cable) = norm([dx,dy,dz],2);

 end

 end

end

Table A24. positionToMaxXYForce.m is a function that calculates the maximum-allowed

x-y force for a CSR at a given position in order to maintain positive cable tensions.

function [Fxy, cableTensions] = positionToMaxXYForce(anchorPoints, position, Fz)

 % Create cable direction matrix

 [numCables, ~] = size(anchorPoints);

 cableDirections = NaN(3,numCables);

 for c=1:numCables

 dx = anchorPoints(c,1)-position(1);

 dy = anchorPoints(c,2)-position(2);

 dz = anchorPoints(c,3)-position(3);

 magnitude = norm([dx dy dz]);

 cableDirections(:,c) = [dx;dy;dz]/magnitude;

 end

 % Setup optimization problem

 x0 = zeros(1,numCables);

 lb = zeros(1,numCables);

 fun = @(x) -norm(cableDirections(1:2,:)*x',2);

 options = optimoptions('fmincon','Display','off');

 [cableTensions, fval] =

fmincon(fun,x0,[],[],cableDirections(3,:),Fz,lb,[],[],options);

 Fxy = -fval;

end

Table A25. positionToMinZForce.m is a function that calculates the minimum-allowed z

force for a CSR at a given position in order to maintain positive cable tensions.

function [Fz, cableTensions] = positionToMinZForce(anchorPoints, position, Fx, Fy)

 % Create cable direction matrix

 [numCables, ~] = size(anchorPoints);

 cableDirections = NaN(3,numCables);

 for c=1:numCables

279

 dx = anchorPoints(c,1)-position(1);

 dy = anchorPoints(c,2)-position(2);

 dz = anchorPoints(c,3)-position(3);

 magnitude = norm([dx dy dz]);

 cableDirections(:,c) = [dx;dy;dz]/magnitude;

 end

 % Setup optimization problem

 x0 = zeros(1,numCables);

 lb = zeros(1,numCables);

 fun = @(x) cableDirections(3,:)*x';

 options = optimoptions('fmincon','Display','off');

 [cableTensions, Fz] =

fmincon(fun,x0,[],[],cableDirections(1:2,:),[Fx;Fy],lb,[],[],options);

end

Table A26. positionToStiffness.m is a function that calculates the CSR directional stiffness

values at a given position of the end effector, assuming that the cables are taut.

function [stiffness] = positionToStiffness(position, anchorPoints, mass, method)

% Calculates the stiffness for a given end effector position.

%

% position: Cartesian position of the end effector in [m]

% anchorpoints: Cartesian positions of the cable anchor points. Each cable

% can be seen as originiating from its respective position. One row

% is required for each cable. Each row has the X,Y,Z location of the

% cable anchor point.

% mass: mass of end effector in [kg]

% method: different methods of solving. See switch case statements below for details

% stiffness: calculated cable stiffness in [N/m]

 % Get the number of cables (number of rows in anchorPoints)

 [numCables, ~] = size(anchorPoints);

 % The maximum allowable height of the mass is the lowest cable anchor point.

 maxPossibleHeight = min(anchorPoints(:,3));

 % Check if the position is too high

 if position(3)>=maxPossibleHeight

 disp('Position %i is above the maximum height.');

 stiffness = NaN(1,numCables);

 return

 end

 % Check if the position is too low

 if position(3)<0

 disp('Position is below ground level.');

 stiffness = NaN(1,numCables);

 return

 end

 % The point must lie in the convex hull of the 2D projection of the anchor

 % points.

 convexHullIndices = convhull(anchorPoints(:,1:2));

 convexHullPoints = anchorPoints(convexHullIndices,:);

 % Check if the position is within the allowable 2D region

 for point=1:length(convexHullIndices)-1

 % Get point coordinates

 x1 = convexHullPoints(point,1);

 y1 = convexHullPoints(point,2);

 x2 = convexHullPoints(point+1,1);

 y2 = convexHullPoints(point+1,2);

 % Create line from current point to next point

 a = [y2-y1 -(x2-x1)];

280

 c = x1*(y2-y1)-y1*(x2-x1);

 % Check if position is to the left of the line

 if a*position(1:2)'<=c

 onLeft = true;

 else

 onLeft = false;

 end

 % Check if mass point is to the left of the line

 if ~onLeft

 disp('Position is not within the allowable space.');

 stiffness = NaN(1,numCables);

 return

 end

 end

 % If above tests passed, calculate the stiffness

 % Use whatever solving method was requested

 stiffness = zeros(1,6);

 g = 9.81; % gravity acceleration [m/s^2]

 switch method

 % Approximate method

 case 1

 % Calculate the cable tensions

 d = 0.001; % [m]

 cartesianForces = [0;0;mass*g];

 [cableTensions,~] = positionToTension(position, anchorPoints,

cartesianForces, 2);

 x = position(1);

 y = position(2);

 z = position(3);

 for c=1:numCables

 xa = anchorPoints(c,1);

 ya = anchorPoints(c,2);

 za = anchorPoints(c,3);

 % Calculate the original cable length

 l = norm(anchorPoints(c,:)-position);

 % Calculate the cable length after a small positive disturbance

 ldx = norm(anchorPoints(c,:)-(position+[d,0,0]));

 ldy = norm(anchorPoints(c,:)-(position+[0,d,0]));

 ldz = norm(anchorPoints(c,:)-(position+[0,0,d]));

 % Calculate the unstretched cable length and linear stiffness

 functionSelect = 3;

 [l0,k] = tensionFunction(functionSelect, l, [], cableTensions(c));

 % x stiffness

 stiffness(1) = stiffness(1) + k*(1-(l0/ldx) + l0*(xa-x)*(1/ldx-1/l)/d

);

 % y stiffness

 stiffness(2) = stiffness(2) + k*(1-(l0/ldy) + l0*(ya-y)*(1/ldy-1/l)/d

);

 % z stiffness

 stiffness(3) = stiffness(3) + k*(1-(l0/ldz) + l0*(za-z)*(1/ldz-1/l)/d

);

 end

 % Exact method

 case 2

 % Calculate the cable tensions

 cartesianForces = [0;0;mass*g];

 [cableTensions,~] = positionToTension(position, anchorPoints,

cartesianForces, 2);

 x = position(1);

 y = position(2);

 z = position(3);

 for c=1:numCables

 xa = anchorPoints(c,1);

281

 ya = anchorPoints(c,2);

 za = anchorPoints(c,3);

 % Calculate the original cable length

 l = norm(anchorPoints(c,:)-position);

 % Calculate the unstretched cable length and linear stiffness

 functionSelect = 3;

 [l0,k] = tensionFunction(functionSelect, l, [], cableTensions(c));

 % x stiffness

 stiffness(1) = stiffness(1) + k*(1-(l0/l) + l0*(xa-x)^2/l^3);

 % y stiffness

 stiffness(2) = stiffness(2) + k*(1-(l0/l) + l0*(ya-y)^2/l^3);

 % z stiffness

 stiffness(3) = stiffness(3) + k*(1-(l0/l) + l0*(za-z)^2/l^3);

 end

 end

 % Check calculated stiffness for negative values

 if ~isnan(find(stiffness<0,1))

 disp('The calculated stiffness is negative!')

 end

end

Table A27. positionToTension.m is a function that calculates the CSR cable tensions at a

given position of the end effector, assuming that the cables are taut.

function [cableTensions, tensionDirections] = positionToTension(position,

anchorPoints, cartesianForces, method)

% Calculates the cable tensions for a given end effector position. The

% tension is based purely on a static equilibrium analysis.

%

% position: Cartesian position of the end effector in [m]

% anchorpoints: Cartesian positions of the cable anchor points. Each cable

% can be seen as originiating from its respective position. One row

% is required for each cable. Each row has the X,Y,Z location of the

% cable anchor point.

% cartesianForces: desired sum of Cartesian forces (a 3 by 1 vector) [N]

% method: different methods of solving for the tensions. See switch case

% statements below for details.

% cableTensions: cable tensions in [N], one for each active cable

% tensionDirections: cartesian direction vectors for tensions [m]

 % Get the number of cables (number of rows in anchorPoints)

 [numCables, ~] = size(anchorPoints);

 % The maximum allowable height of the mass is the lowest cable anchor point.

 maxPossibleHeight = min(anchorPoints(:,3));

 % Check if the position is too high

 if position(3)>=maxPossibleHeight

 disp('Position is above the maximum height.');

 cableTensions = NaN(1,numCables);

 tensionDirections = NaN(numCables,3);

 return

 end

 % Check if the position is too low

 if position(3)<0

 disp('Position is below ground level.');

 cableTensions = NaN(1,numCables);

 tensionDirections = NaN(numCables,3);

 return

 end

 % The point must lie in the convex hull of the 2D projection of the anchor

 % points.

282

 convexHullIndices = convhull(anchorPoints(:,1:2));

 convexHullPoints = anchorPoints(convexHullIndices,:);

 % Check if the position is within the allowable 2D region

 for point=1:length(convexHullIndices)-1

 % Get point coordinates

 x1 = convexHullPoints(point,1);

 y1 = convexHullPoints(point,2);

 x2 = convexHullPoints(point+1,1);

 y2 = convexHullPoints(point+1,2);

 % Create line from current point to next point

 a = [y2-y1 -(x2-x1)];

 c = x1*(y2-y1)-y1*(x2-x1);

 % Check if position is to the left of the line

 if a*position(1:2)'<=c

 onLeft = true;

 else

 onLeft = false;

 end

 % Check if mass point is to the left of the line

 if ~onLeft

 disp('Position is not within the allowable space.');

 cableTensions = NaN(1,numCables);

 tensionDirections = NaN(numCables,3);

 return

 end

 end

 % If above tests passed, calculate the cable tensions

 % Default to method 0 if there are only three cables provided

 if numCables==3

 method = 0;

 disp('Only 3 cables given. Exact solving method will be used.')

 end

 % Use whatever solving method was requested

 switch method

 % Exact inverse method, only three cables were given

 case 0

 % Create direction vector matrix for cables (one column for each cable)

 cableDirections = NaN(3,3);

 for c=1:3

 dx = anchorPoints(c,1)-position(1);

 dy = anchorPoints(c,2)-position(2);

 dz = anchorPoints(c,3)-position(3);

 magnitude = norm([dx dy dz]);

 cableDirections(:,c) = [dx;dy;dz]/magnitude;

 end

 % Solve for the tensions using a the common matrix inverse method

 Fsum = cartesianForces;

 cableTensions = (cableDirections\Fsum)';

 tensionDirections = cableDirections';

 % Exact inverse method, selecting and using only three cables

 % There are different ways to choose three active cables

 case 1

 % Select three active cables

 % Generate a list of three-cable combinations

 cableCombinations = nchoosek(1:numCables,3);

 [numCombinations,~] = size(cableCombinations);

 for c=1:numCombinations

 % Get cable anchor points for current cable combination

 x1 = anchorPoints(cableCombinations(c,1),1);

 y1 = anchorPoints(cableCombinations(c,1),2);

283

 x2 = anchorPoints(cableCombinations(c,2),1);

 y2 = anchorPoints(cableCombinations(c,2),2);

 x3 = anchorPoints(cableCombinations(c,3),1);

 y3 = anchorPoints(cableCombinations(c,3),2);

 % Convex hull condition

 a1 = [y2-y1 -(x2-x1)];

 c1 = x1*(y2-y1)-y1*(x2-x1);

 test1 = a1*position(1:2)'<=c1;

 a2 = [y3-y2 -(x3-x2)];

 c2 = x2*(y3-y2)-y2*(x3-x2);

 test2 = a2*position(1:2)'<=c2;

 a3 = [y1-y3 -(x1-x3)];

 c3 = x3*(y1-y3)-y3*(x1-x3);

 test3 = a3*position(1:2)'<=c3;

 % If the point is within the convex hull of the current

 % combination, these cables are kept as the active cables.

 % There may be other valid combinations. The first valid

 % combination is used.

 if test1+test2+test3==3

 activeCables = cableCombinations(c,:);

 break

 end

 end

 % Use the three active cables to calculate a tension solution

 % Create direction vector matrix for cables (one column for each cable)

 cableTensions = zeros(1,numCables);

 cableDirections = zeros(3,numCables);

 for ac=1:3

 cableNo = activeCables(ac);

 dx = anchorPoints(cableNo,1)-position(1);

 dy = anchorPoints(cableNo,2)-position(2);

 dz = anchorPoints(cableNo,3)-position(3);

 magnitude = norm([dx dy dz]);

 cableDirections(:,cableNo) = [dx;dy;dz]/magnitude;

 end

 % Solve for the tensions using a the common matrix inverse method

 Fsum = cartesianForces;

 cableTensions(activeCables) = (cableDirections(:,activeCables)\Fsum)';

 tensionDirections = cableDirections';

 % Least squares method, with non-negative tension constraint

 case 2

 % Create direction vector matrix for cables (one column for each cable)

 cableDirections = NaN(3,numCables);

 for c=1:numCables

 dx = anchorPoints(c,1)-position(1);

 dy = anchorPoints(c,2)-position(2);

 dz = anchorPoints(c,3)-position(3);

 magnitude = norm([dx dy dz]);

 cableDirections(:,c) = [dx;dy;dz]/magnitude;

 end

 % Solve for the tensions using an optimization method

 Fsum = cartesianForces; % Desired summation of forces in Cartesian

directions

 x0 = zeros(1,numCables);

 lb = zeros(1,numCables);

 fun = @(x) norm(Fsum-cableDirections*x');

 options = optimoptions('fmincon','Display','off');

 cableTensions = fmincon(fun,x0,[],[],[],[],lb,[],[],options);

 tensionDirections = cableDirections';

 % Minimize sum of tensions, with non-negative tension constraint

 case 3

 % Create direction vector matrix for cables (one column for each cable)

 cableDirections = NaN(3,numCables);

 for c=1:numCables

 dx = anchorPoints(c,1)-position(1);

284

 dy = anchorPoints(c,2)-position(2);

 dz = anchorPoints(c,3)-position(3);

 magnitude = norm([dx dy dz]);

 cableDirections(:,c) = [dx;dy;dz]/magnitude;

 end

 % Solve for the tensions using an optimization method

 Fsum = cartesianForces; % Desired summation of forces in Cartesian

directions

 x0 = zeros(1,numCables);

 lb = zeros(1,numCables);

 fun = @(x) sum(x);

 options = optimoptions('fmincon','Display','off');

 cableTensions =

fmincon(fun,x0,[],[],cableDirections,Fsum,lb,[],[],options);

 tensionDirections = cableDirections';

 % Minimize sum of tensions^2, with non-negative tension constraint

 case 4

 % Create direction vector matrix for cables (one column for each cable)

 cableDirections = NaN(3,numCables);

 for c=1:numCables

 dx = anchorPoints(c,1)-position(1);

 dy = anchorPoints(c,2)-position(2);

 dz = anchorPoints(c,3)-position(3);

 magnitude = norm([dx dy dz]);

 cableDirections(:,c) = [dx;dy;dz]/magnitude;

 end

 % Solve for the tensions using an optimization method

 Fsum = cartesianForces; % Desired summation of forces in Cartesian

directions

 x0 = zeros(1,numCables);

 lb = zeros(1,numCables);

 fun = @(x) norm(x)^2;

 options = optimoptions('fmincon','Display','off');

 cableTensions =

fmincon(fun,x0,[],[],cableDirections,Fsum,lb,[],[],options);

 tensionDirections = cableDirections';

 otherwise

 disp('Method number not valid.')

 cableTensions = NaN(numCables,1);

 tensionDirections = NaN(numCables,3);

 return

 end

 % Check calculated tensions for negative values

 if ~isnan(find(cableTensions<-0.000001,1))

 disp('At least one of the calculated tensions is negative!')

 end

end

Table A28. tensionFunction.m is a function that calculates the tension in a single cable

given the cable length and stretch amount. Several cable models are tested.

function [output,stiffness] = tensionFunction(functionSelect, stretchedLength,

unstretchedLength, tension)

% This function implements a cable tension model and calculates related

% quantities. The first input argument selects the cable model that is used.

% At least two of the three remaining arguments must be given.

% This function calculates and returns the third quantity that is left out.

% If all three quantities are given, only the stiffness is calculated.

%

% functionSelect: selects which function is used for calculations. See

285

% the switch statements below for details.

% stretchedLength: the instantaneous stretched length of the cable [m]

% unstretchedLength: the instantaneous unstretched length of the cable [m]

% tension: the cable tension [N]

% output: whichever of the three quantities was not provided. NaN if all

% three quantities are provided.

% stiffness: the linear stiffness [N/m] of the cable at the unstretched cable

% length provided.

 % Switch to select stiffness function

 % Each case must specify a formula for the tension, stretched cable

 % length, unstretched cable length, and stiffness.

 switch functionSelect

 % Pure linear stiffness based on cable stretch only

 % Negative tension not allowed

 case 1

 k = 2000; % linear stiffness coefficient [N/m]

 T = @(l,l0) max(0,k*(l-l0)); % tension [N]

 L = @(t,l0) 10+t/k; % stretched length [m]

 L0 = @(t,l) l-t/k; % unstretched length [m]

 K = @(l,l0) max(abs(l-l0)/(l-l0),0)*k; % linear cable stiffness at the

unstretched length [N/m]

 % Stiffness based on cable length and stretch (Hooke's law)

 case 2

 E = 200e9; % Elastic modulus (Pa)

 d = 0.0001; % Cable diameter [m]

 A = pi*(d/2)^2; % Cross sectional area [m^2]

 T = @(l,l0) (E*A/l0)*(l-l0); % tension [N]

 L = @(t,l0) l0+(t*l0)/(E*A); % stretched length [m]

 L0 = @(t,l) E*A*l/(t+E*A); % unstretched length [m]

 K = @(l,l0) (E*A/l0); % linear cable stiffness at the

unstretched length [N/m]

 % Stiffness based on cable length and stretch (Hooke's law)

 % Negative tension not allowed

 case 3

 E = 200e9; % Elastic modulus (Pa)

 d = 0.0001; % Cable diameter [m]

 A = pi*(d/2)^2; % Cross sectional area [m^2]

 T = @(l,l0) max(0,(E*A/l0)*(l-l0)); % tension [N]

 L = @(t,l0) l0+(t*l0)/(E*A); % stretched length [m]

 L0 = @(t,l) E*A*l/(t+E*A); % unstretched length [m]

 K = @(l,l0) max(abs(l-l0)/(l-l0),0)*(E*A/l0);% linear cable stiffness at

the unstretched length [N/m]

 % Stiffness based on cable length and stretch (Hooke's law)

 % Negative tension not allowed

 % Small tension for small slack

 case 4

 E = 200e9; % Elastic modulus (Pa)

 d = 0.0001; % Cable diameter [m]

 A = pi*(d/2)^2; % Cross sectional area [m^2]

 shift = 0.02; % shift in tension function

 T = @(l,l0) max(0,(E*A/l0)*(l-l0+shift*l0)); % tension [N]

 L = @(t,l0) (1-shift)*l0+(t*l0)/(E*A); % stretched length [m]

 L0 = @(t,l) E*A*l/(t+E*A*(1-shift)); % unstretched length [m]

 K = @(l,l0) max(abs(l-l0+shift*l0)/(l-l0+shift*l0),0)*(E*A/l0);% linear

cable stiffness at the unstretched length [N/m]

 end

 % Determine output

 % The output is whatever variable is not given as an input argument

286

 % The stiffenss is always output in addition to 'output'

 if isempty(stretchedLength)

 stretchedLength = L(tension,unstretchedLength);

 output = stretchedLength;

 stiffness = K(stretchedLength,unstretchedLength);

 elseif isempty(unstretchedLength)

 unstretchedLength = L0(tension, stretchedLength);

 output = unstretchedLength;

 stiffness = K(stretchedLength,unstretchedLength);

 elseif isempty(tension)

 tension = T(stretchedLength,unstretchedLength);

 output = tension;

 stiffness = K(stretchedLength,unstretchedLength);

 else

 output = NaN;

 stiffness = K(stretchedLength,unstretchedLength);

 end

end

287

APPENDIX B:

EXPERIMENT CODES

The tables in this appendix contain the Arduino and Python codes used in the

experiment work of this dissertation. To run these codes, the files should be organized as

shown in Figure 128. Note that there are also two MATLAB files included. These two

files were used to plot the experimental results.

Figure 128. Folder structure for the Arduino and Python experiment codes.

Table A29. cableRobotController.ino is an Arduino program that runs on the Arduino

Mega 2560 and executes the main experiment routine.

// For use with kinect_massTracker.py (when using vision-based control)

// ==

// Include libraries

// ==

#include <math.h> // for math functions

#include <Wire.h> // for i2c serial communication

// ==

📂Arduino

 📂cableRobotController

 cableRobotController.ino

 📂nano_encoder

 nano_encoder.ino

 📂Sweep

 Sweep.ino

📂Python

 📂Results

 plotData.m

 pointsPath.m

 kinect_massTracker.py

288

// Initialize variables

// ==

// DC motor pin setup (for L298N H-bridge controllers)

// motor a

#define a1 22

#define a2 24

#define aEnable 2

// motor b

#define b1 26

#define b2 28

#define bEnable 3

// motor c

#define c1 30

#define c2 32

#define cEnable 4

// motor d

#define d1 34

#define d2 36

#define dEnable 5

// Geometric constants for the experimental setup

// The following dimensions are for the eye hook through which the cables run

float b = 0.74; // Length of each side of the cage [m]

float h = 0.79; // Height of the cage [m]

// General controller variables

int pwmA, pwmB, pwmC, pwmD; // PWM value for each motor driver

int timeDelay; // Time delay between each main loop

[ms] (actual time delay will be slightly longer)

float referencePosition[3]; // Reference (or desired) cartesian

position (x,y,z) in [m]

float currentTime; // current time in [s]

long t0; // zero time in [ms]

long controlTime[2]; // Time at each controller iteration

in [ms] [0]=current, [1]=last iteration

long dt; //

Time between controller iterations in [ms]

long iteration; // Controller iteration count

// For cable-length based control:

long encoderCounts0[4]; // Initial encoder counts, value sent

by Arduino Nanos, 4 cables

long encoderCounts[4]; // Current encoder counts, value sent

by Arduino Nanos, 4 cables

// 61.83

float countToLength = 66.0/1000000; // Convserion from encoder count to

cable length [m]

float la_i, lb_i, lc_i, ld_i; // Initial cable lengths in [m]

(calculated from initial encoder counts)

float la_r, lb_r, lc_r, ld_r; // Reference (or desired) cable lengths

in [m]

float la, lb, lc, ld; // Current cable lengths in [m]

(calculated from encoder counts)

float ki_c; // Integral gain for camera-measured

cable-length error

// For vision-based control

float kinectPosition[3]; // Cartesian position based on camera

vision (x,y,z) in [m]

float la_c, lb_c, lc_c, ld_c; // Cable lengths based on kinect camera

data [m]

float la_c_e[2], lb_c_e[2], lc_c_e[2], ld_c_e[2]; // Cable-length errors (reference minus

actual) [0]=current, [1]=last iteration

float la_c_e_i, lb_c_e_i, lc_c_e_i, ld_c_e_i; // Cable-length error time integrals

289

byte xBytes[2]; // Data bytes sent by Kinect for x

position, 2 bytes

byte yBytes[2]; // Data bytes sent by Kinect for y

position, 2 bytes

byte zBytes[2]; // Data bytes sent by Kinect for z

position, 2 bytes

// For cable length PID control

float kp; // Proportial gain

float ki; // Integral gain

float kd; // Derivative gain

float la_e[2], lb_e[2], lc_e[2], ld_e[2]; // Cable-length errors (reference

minus actual) [0]=current, [1]=last iteration

float la_e_d, lb_e_d, lc_e_d, ld_e_d; // Cable-length error time derrivatives

float la_e_i, lb_e_i, lc_e_i, ld_e_i; // Cable-length error time integrals

// Some other options

bool commDebug = false;

bool sendDataToKinect = true;

// Select reference path

// 1. Circle

// 2. T shape

// 3. Calibration path (square with chamfered corners)

// 4. Test path (rotated square with circle within the square)

// 5. Layers path (like Test path, but with height variation)

int path = 3;

// Select a controller to use:

// 1. PID controller based on cable lengths, as measured by encoder

// 2. PID controller based on cable lengths, as measured by encoder, add correction

from Kinect vision

int controller = 2;

// ==

// Setup function (runs once)

// ==

void setup() {

 // Begin i2c serial communication (for communication with Arduino Nanos)

 Wire.begin();

 // Begin serial communication (for communication with Kinect Python script)

 Serial.begin(2000000); // Baud rate

 // Setup motor control pins (digital output)

 // motor a

 pinMode(a1, OUTPUT);

 pinMode(a2, OUTPUT);

 // motor b

 pinMode(b1, OUTPUT);

 pinMode(b2, OUTPUT);

 // motor c

 pinMode(c1, OUTPUT);

 pinMode(c2, OUTPUT);

 // motor d

 pinMode(d1, OUTPUT);

 pinMode(d2, OUTPUT);

 // Set intial cable lengths after zeroing position [m]

 la_i = 0.55;

 lb_i = 0.56;

 lc_i = 0.56;

 ld_i = 0.55;

 // Set intial cable-length errors to zero

290

 la_e[1] = 0.0;

 lb_e[1] = 0.0;

 lc_e[1] = 0.0;

 ld_e[1] = 0.0;

 la_c_e[1] = 0.0;

 lb_c_e[1] = 0.0;

 lc_c_e[1] = 0.0;

 ld_c_e[1] = 0.0;

 // Set intial cable-length error integrals to zero

 la_e_i = 0.0;

 lb_e_i = 0.0;

 lc_e_i = 0.0;

 ld_e_i = 0.0;

 la_c_e_i = 0.0;

 lb_c_e_i = 0.0;

 lc_c_e_i = 0.0;

 ld_c_e_i = 0.0;

 // Move mass to starting position

 zeroPosition();

 // Get the initial encoder counts from the Arduino Nanos

 getEncoderCounts(encoderCounts0);

 // Reset zero time, controller time, and iteration count

 iteration = 0;

 t0 = millis();

 controlTime[1] = t0;

 // Deault controller time delay

 timeDelay = 10;

}

// ==

// Main loop (runs continuosly)

// ==

void loop() {

 // Add delay between loop iterations

 delay(timeDelay);

 // Update controller iteration count

 iteration = iteration + 1;

 // Update current time

 currentTime = (millis()-t0)/1000.0;

 // Update reference position at current time/iteration

 switch (path){

 case 1: // Circle, total runtime about 70s

 circlePath();

 break;

 case 2:{ // Capital 'T' shape, total runtime about 100s

 float xPoints[] = {b/2, 0.5, 0.5, 0.4, 0.4, 0.5, 0.5, 0.6, 0.6, 0.1, 0.1, 0.2,

0.2, 0.3, 0.3, 0.2, 0.2, 0.5};

 float yPoints[] = {b/2, 0.1, 0.2, 0.2, 0.5, 0.5, 0.4, 0.4, 0.6, 0.6, 0.4, 0.4,

0.5, 0.5, 0.2, 0.2, 0.1, 0.1};

 float zPoints[] = {0.10,0.10,0.10,0.10,0.10, 0.10,0.10,0.10,0.10,0.10,

0.10,0.10,0.10,0.10,0.10, 0.10,0.10,0.10};

 float times[] = {0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,

80, 85};

 pointsPath(xPoints, yPoints, zPoints, times, (int)sizeof(xPoints)/4);

 break;

 }

291

 case 3:{ // Calibration shape (square with chamfered corners), total runtime about

135s

 float xPoints[] = {b/2, 7*b/8, 7*b/8, 7*b/8, 7*b/8, 6*b/8, 6*b/8, b/2, b/2,

2*b/8, 2*b/8, b/8, b/8, b/8, b/8, b/8, b/8, 2*b/8, 2*b/8, b/2, b/2, 6*b/8, 6*b/8, 7*b/8,

7*b/8, 7*b/8};

 float yPoints[] = {b/2, b/2, b/2, 6*b/8, 6*b/8, 7*b/8, 7*b/8, 7*b/8, 7*b/8,

7*b/8, 7*b/8, 6*b/8, 6*b/8, b/2, b/2, 2*b/8, 2*b/8, b/8, b/8, b/8, b/8, b/8, b/8, 2*b/8,

2*b/8, b/2};

 float zPoints[] = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,

0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1};

 float times[] = {0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,

80, 85, 90, 95, 100, 105, 110, 115, 120, 125};

 pointsPath(xPoints, yPoints, zPoints, times, (int)sizeof(xPoints)/4);

 break;

 }

 case 4:{ // Test path (rotated square plus circle), total runtime about 80s

 float xPoints[] = {b/2, 7*b/8, b/2, b/8, b/2, 7*b/8, b/2+b/6};

 float yPoints[] = {b/2, b/2, 7*b/8, b/2, b/8, b/2, b/2};

 float zPoints[] = {0.10,0.10,0.10,0.10,0.10,0.10,0.10};

 float times[] = {0, 5, 15, 25, 30, 35, 40};

 testPath(xPoints, yPoints, zPoints, times, (int)sizeof(xPoints)/4);

 break;

 }

 case 5:{ // Layers path (like test path but with change in height), total runtime

about 85s

 float xPoints[] = {b/2, 7*b/8, b/2, b/8, b/8, b/2, 7*b/8, b/2+b/6};

 float yPoints[] = {b/2, b/2, 7*b/8, b/2, b/2, b/8, b/2, b/2};

 float zPoints[] = {0.095,0.095,0.095,0.095, 0.105, 0.105,0.105,0.105};

 float times[] = {0, 5, 15, 25, 30, 35, 40, 45};

 testPath(xPoints, yPoints, zPoints, times, (int)sizeof(xPoints)/4);

 break;

 }

 }

 // Run controller iteration (each control case should update the motor pwm values)

 switch (controller){

 case 1:

 timeDelay = 10;

 kp = 10000.0;

 ki = 20000.0;

 kd = 300.0;

 controller_PID();

 break;

 case 2:

 // Delay cannot be much lower than 40ms due to camera framerate limitation

 timeDelay = 10;

// kp = 2000.0;

// ki = 4000.0;

// kd = 100.0;

 kp = 10000.0;

 ki = 20000.0;

 kd = 300.0;

 if (currentTime>10){

 ki_c = 0.0;

 }

 else{

 ki_c = 0.0;

 la_c_e_i = 0.0;

 lb_c_e_i = 0.0;

 lc_c_e_i = 0.0;

 ld_c_e_i = 0.0;

 }

 controller_PID_camera();

 break;

292

 }

 // Write updated motor PWM outputs

 // pwm values are calculated in the controller function in the switch above

 motor(a1, a2, aEnable, pwmA);

 motor(b1, b2, bEnable, pwmB);

 motor(c1, c2, cEnable, pwmC);

 motor(d1, d2, dEnable, pwmD);

}

// ==

// Trajectory path functions

// ==

// Circle path (starts small and spirals out to maximum radius, constant height)

void circlePath(){

 // Circular motion (radius of circle grows to max value and then stays at max radius)

 float radius = currentTime*0.008;

 // Height hoes from max to a minimum value and then stays there

 float height = 0.7 - currentTime*0.08;

 if(radius>0.2){

 radius = 0.2;

 }

 if(height<0.1){

 height = 0.1;

 }

 referencePosition[0] = b/2 + radius*cos(currentTime*0.2);

 referencePosition[1] = b/2 + radius*sin(currentTime*0.2);

 referencePosition[2] = height;

}

// Straight-lines path defined by x,y,z points and time stamps

void pointsPath(float *xCoordinates, float *yCoordinates, float *zCoordinates, float

*timeStamps, int numPoints){

 // Start time of first segment [s]

 float pathStartTime = 10.0;

 // Initial operation is to lower the mass to starting position

 float x = b/2.0;

 float y = b/2.0;

 float z = 0.65 - currentTime*0.08;

 // Height remains at 0.1 m after reaching it

 if(z<0.1){

 z = 0.1;

 }

 // Path starts at start time

 int segment;

 if(currentTime>=pathStartTime){

 // Find the segment number according to the current time

 float currentPathTime = currentTime-pathStartTime;

 for(int i=0;i<numPoints;i++){

 if(currentPathTime>=timeStamps[i]){

 segment = i;

 }

 }

 // If time is past last time stamp, stay at final position

 if(segment==numPoints-1){

 x = xCoordinates[numPoints-1];

 y = yCoordinates[numPoints-1];

 z = zCoordinates[numPoints-1];

293

 }

 else{

 // Current segment start and end times

 float segmentStartTime = timeStamps[segment];

 float segmentEndTime = timeStamps[segment+1];

 // Segment progress

 float segmentProgress = (currentPathTime-segmentStartTime)/(segmentEndTime-

segmentStartTime);

 // Calcuate x,y,z according to segment progress

 x = xCoordinates[segment] + segmentProgress*(xCoordinates[segment+1]-

xCoordinates[segment]);

 y = yCoordinates[segment] + segmentProgress*(yCoordinates[segment+1]-

yCoordinates[segment]);

 z = zCoordinates[segment] + segmentProgress*(zCoordinates[segment+1]-

zCoordinates[segment]);

 }

 }

 // Store reference position in array

 referencePosition[0] = x;

 referencePosition[1] = y;

 referencePosition[2] = z;

}

// Identical to pointsPath, but with a never-ending circle at the end of the path.

// Last point of path should be starting position of circle (x-y cooridnates:

b/2+circleRadius, b/2)

void testPath(float *xCoordinates, float *yCoordinates, float *zCoordinates, float

*timeStamps, int numPoints){

 // Start time of first segment [s]

 float pathStartTime = 10.0;

 // Radius of circle at the end of the path

 float radius = b/6.0; // [m]

 float circlePeriod = 20.0; // [s]

 // Initial operation is to lower the mass to starting position

 float x = b/2.0;

 float y = b/2.0;

 float z = 0.65 - currentTime*0.08;

 // Height remains at 0.1 m after reaching it

 if(z<0.1){

 z = 0.1;

 }

 // Path starts at start time

 int segment;

 if(currentTime>=pathStartTime){

 // Find the segment number according to the current time

 float currentPathTime = currentTime-pathStartTime;

 for(int i=0;i<numPoints;i++){

 if(currentPathTime>=timeStamps[i]){

 segment = i;

 }

 }

 // If time is past last time stamp, move in circle

 if(segment==numPoints-1){

 z = zCoordinates[numPoints-1];

 x = b/2.0 + radius*cos((currentPathTime-timeStamps[numPoints-

1])*2*3.14159/circlePeriod);

 y = b/2.0 + radius*sin((currentPathTime-timeStamps[numPoints-

1])*2*3.14159/circlePeriod);

 }

 else{

294

 // Current segment start and end times

 float segmentStartTime = timeStamps[segment];

 float segmentEndTime = timeStamps[segment+1];

 // Segment progress

 float segmentProgress = (currentPathTime-segmentStartTime)/(segmentEndTime-

segmentStartTime);

 // Calcuate x,y,z according to segment progress

 x = xCoordinates[segment] + segmentProgress*(xCoordinates[segment+1]-

xCoordinates[segment]);

 y = yCoordinates[segment] + segmentProgress*(yCoordinates[segment+1]-

yCoordinates[segment]);

 z = zCoordinates[segment] + segmentProgress*(zCoordinates[segment+1]-

zCoordinates[segment]);

 }

 }

 // Store reference position in array

 referencePosition[0] = x;

 referencePosition[1] = y;

 referencePosition[2] = z;

}

// ==

// Controller functions

// ==

// PID controller based on cable lengths

void controller_PID(){

 // Calculate time step in [ms] from last controller iteration to now

 controlTime[0] = millis();

 dt = controlTime[0] - controlTime[1];

 // Save current time for next iteration

 controlTime[1] = controlTime[0];

 // Get the reference (desired) cable lengths given the current reference position

 convertPositionToCableLengths(referencePosition, &la_r, &lb_r, &lc_r, &ld_r);

 // Update the current cable lengths (la, lb, lc, ld)

 getCableLengths();

 // Calculate current cable-length errors (reference minus current)

 la_e[0] = la_r - la;

 lb_e[0] = lb_r - lb;

 lc_e[0] = lc_r - lc;

 ld_e[0] = ld_r - ld;

 // Calculate cable-length error integrals, using the trapezoidal method

 la_e_i = la_e_i + (la_e[0]+la_e[1])*dt/2000.0;

 lb_e_i = lb_e_i + (lb_e[0]+lb_e[1])*dt/2000.0;

 lc_e_i = lc_e_i + (lc_e[0]+lc_e[1])*dt/2000.0;

 ld_e_i = ld_e_i + (ld_e[0]+ld_e[1])*dt/2000.0;

 // Calculate cable-length error time derrivatives

 la_e_d = (la_e[0]-la_e[1])*1000.0/dt;

 lb_e_d = (lb_e[0]-lb_e[1])*1000.0/dt;

 lc_e_d = (lc_e[0]-lc_e[1])*1000.0/dt;

 ld_e_d = (ld_e[0]-ld_e[1])*1000.0/dt;

 // Save current cable-length errors for next controller iteration

 la_e[1] = la_e[0];

 lb_e[1] = lb_e[0];

 lc_e[1] = lc_e[0];

 ld_e[1] = ld_e[0];

295

 // Calculate pwm outputs based on the control law

 pwmA = la_e[0]*kp + la_e_i*ki + la_e_d*kd;

 pwmB = lb_e[0]*kp + lb_e_i*ki + lb_e_d*kd;

 pwmC = lc_e[0]*kp + lc_e_i*ki + lc_e_d*kd;

 pwmD = ld_e[0]*kp + ld_e_i*ki + ld_e_d*kd;

}

// PID controller based on cable lengths

void controller_PID_camera(){

 // Calculate time step in [ms] from last controller iteration to now

 controlTime[0] = millis();

 dt = controlTime[0] - controlTime[1];

 // Save current time for next iteration

 controlTime[1] = controlTime[0];

 // Get the reference (desired) cable lengths

 convertPositionToCableLengths(referencePosition, &la_r, &lb_r, &lc_r, &ld_r);

 // Get the current cable lengths

 getCableLengths();

 if(iteration%3 == 0){

 // Get position according to camera

 getKinectData();

 // Get cable lengths according to camera

 convertPositionToCableLengths(kinectPosition, &la_c, &lb_c, &lc_c, &ld_c);

 // Calculate current cable-length errors, according to the camera measurements

 la_c_e[0] = la_r - la_c;

 lb_c_e[0] = lb_r - lb_c;

 lc_c_e[0] = lc_r - lc_c;

 ld_c_e[0] = ld_r - ld_c;

 // Calculate camera cable-length error integrals, using the trapezoidal method

 la_c_e_i = la_c_e_i + (la_c_e[0]+la_c_e[1])*dt/2000.0;

 lb_c_e_i = lb_c_e_i + (lb_c_e[0]+lb_c_e[1])*dt/2000.0;

 lc_c_e_i = lc_c_e_i + (lc_c_e[0]+lc_c_e[1])*dt/2000.0;

 ld_c_e_i = ld_c_e_i + (ld_c_e[0]+ld_c_e[1])*dt/2000.0;

 // Save current camera length error values for next iteration

 la_c_e[1] = la_c_e[0];

 lb_c_e[1] = lb_c_e[0];

 lc_c_e[1] = lc_c_e[0];

 ld_c_e[1] = ld_c_e[0];

 }

 // Adjust the reference cable lengths using the camera feedback

 la_r = la_r + ki_c*la_c_e_i;

 lb_r = lb_r + ki_c*lb_c_e_i;

 lc_r = lc_r + ki_c*lc_c_e_i;

 ld_r = ld_r + ki_c*ld_c_e_i;

 // Calculate current cable-length errors, according to the encoder measurements

 la_e[0] = la_r - la;

 lb_e[0] = lb_r - lb;

 lc_e[0] = lc_r - lc;

 ld_e[0] = ld_r - ld;

 // Calculate encoder cable-length error integrals, using the trapezoidal method

 // The 2000 factor accounts for the 1/2 of the trapezoidal method and and the

 // dt unit in milliseconds.

 la_e_i = la_e_i + (la_e[0]+la_e[1])*dt/2000.0;

 lb_e_i = lb_e_i + (lb_e[0]+lb_e[1])*dt/2000.0;

 lc_e_i = lc_e_i + (lc_e[0]+lc_e[1])*dt/2000.0;

 ld_e_i = ld_e_i + (ld_e[0]+ld_e[1])*dt/2000.0;

296

 // Calculate cable-length error time derrivatives

 la_e_d = (la_e[0]-la_e[1])*1000.0/dt;

 lb_e_d = (lb_e[0]-lb_e[1])*1000.0/dt;

 lc_e_d = (lc_e[0]-lc_e[1])*1000.0/dt;

 ld_e_d = (ld_e[0]-ld_e[1])*1000.0/dt;

 // Save current cable-length errors for next controller iteration

 la_e[1] = la_e[0];

 lb_e[1] = lb_e[0];

 lc_e[1] = lc_e[0];

 ld_e[1] = ld_e[0];

 // Calculate pwm outputs based on the control law

 pwmA = (la_e[0]*kp + la_e_i*ki + la_e_d*kd);

 pwmB = (lb_e[0]*kp + lb_e_i*ki + lb_e_d*kd);

 pwmC = (lc_e[0]*kp + lc_e_i*ki + lc_e_d*kd);

 pwmD = (ld_e[0]*kp + ld_e_i*ki + ld_e_d*kd);

}

// ==

// Hardware helper functions and routines

// ==

// Move mass to starting position

void zeroPosition(){

 // Serial.println(" Moving to start position...");

 // Slowly wind all cables for three seconds

 motor(a1, a2, aEnable, -50);

 motor(b1, b2, bEnable, -50);

 motor(c1, c2, cEnable, -50);

 motor(d1, d2, dEnable, -50);

 delay(2000);

 // Faster wind all cables for two seconds, to remove any slack

 motor(a1, a2, aEnable, -100);

 motor(b1, b2, bEnable, -100);

 motor(c1, c2, cEnable, -100);

 motor(d1, d2, dEnable, -100);

 delay(1000);

 // Faster wind all cables for two seconds, to remove any slack

 motor(a1, a2, aEnable, -200);

 motor(b1, b2, bEnable, -200);

 motor(c1, c2, cEnable, -200);

 motor(d1, d2, dEnable, -200);

 delay(1000);

// Serial.println(" Zeroing position finishes in...");

 delay(1000);

// Serial.println(" 3");

 delay(1000);

// Serial.println(" 2");

 delay(1000);

// Serial.println(" 1");

 delay(1000);

 // Set motor speeds to zero

// motor(a1, a2, aEnable, 0);

// motor(b1, b2, bEnable, 0);

// motor(c1, c2, cEnable, 0);

// motor(d1, d2, dEnable, 0);

}

297

// Motor driver PWM function (intended for use with L298N driver board)

// PWM is from -255 to 255, sign indicates direction of movement

void motor(int in1, int in2, int enablePin, int pwm) {

 int maxPWM = 255;

 int minPWM = 0;

 // Set driver to stop motor if speed is zero

 if(pwm==0){

 digitalWrite(in1,LOW);

 digitalWrite(in2,LOW);

 }

 // Set driver to positive motor direction

 else if(pwm>0){

 digitalWrite(in1,LOW);

 digitalWrite(in2,HIGH);

 }

 // Set driver to negative motor direction

 else if(pwm<0){

 digitalWrite(in1,HIGH);

 digitalWrite(in2,LOW);

 }

 // Limit maximum PWM value

 if(abs(pwm)>maxPWM){

 pwm = maxPWM;

 }

 // Set minimum PWM value

 else if(abs(pwm)<minPWM){

 pwm = minPWM;

 }

 // Write PWM to pin

 analogWrite(enablePin, abs(pwm)); // Write PWM to motor

}

// Get encoder counts from Arduino Nanos using i2c

// countVariable is a pointer to the first element in the count array (array of longs)

void getEncoderCounts(long *countVariable){

 // Initialize byte arrays for storing the incoming serial data

 byte bytesA[4], bytesB[4], bytesC[4], bytesD[4];

 // Request 4 bytes from each Arduino Nano

 Wire.requestFrom(1,4);

 while(Wire.available()<4){} // wait until 4 bytes are available to read

 for(int i=0; i<4; i++){

 bytesA[i] = Wire.read();

 }

 Wire.requestFrom(2,4);

 while(Wire.available()<4){}

 for(int i=0; i<4; i++){

 bytesB[i] = Wire.read();

 }

 Wire.requestFrom(3,4);

 while(Wire.available()<4){}

 for(int i=0; i<4; i++){

 bytesC[i] = Wire.read();

 }

 Wire.requestFrom(4,4);

 while(Wire.available()<4){}

 for(int i=0; i<4; i++){

 bytesD[i] = Wire.read();

 }

 // Empty any extra data in the wire buffer (to deal with any mishandled bytes)

 while(Wire.available()>0){

 Wire.read();

 }

298

 // Convert the data bytes to long numbers (4-byte, signed)

 // note: countVariable[i] is equivalent to *(countVariable+1)

 // i.e. countVariable[i] gives the actual value of the array at i

 countVariable[0] = bytesToLong(bytesA);

 countVariable[1] = bytesToLong(bytesB);

 countVariable[2] = bytesToLong(bytesC);

 countVariable[3] = bytesToLong(bytesD);

}

// Get position data from the Kinect camera

void getKinectData(){

 // Request data from Kinect

 Serial.write(1);

 // Wait for all 6 bytes to be available

 while(Serial.available()<6){}

 // Read 6 data bytes

 xBytes[0] = Serial.read();

 xBytes[1] = Serial.read();

 yBytes[0] = Serial.read();

 yBytes[1] = Serial.read();

 zBytes[0] = Serial.read();

 zBytes[1] = Serial.read();

 // Convert the data bytes to position in [m]

 kinectPosition[0] = bytesToInt(xBytes)/10000.0;

 kinectPosition[1] = bytesToInt(yBytes)/10000.0;

 kinectPosition[2] = bytesToInt(zBytes)/10000.0;

 // Send data back to Kinect (for data checking, turn on commDebug in Python code)

 if (commDebug == true){

 Serial.write(xBytes, 2);

 Serial.write(yBytes, 2);

 Serial.write(zBytes, 2);

 }

 // Send full data set back to Kinect (set sendDataToKinect to true above)

 else if(sendDataToKinect == true){

 float data[8] =

{currentTime,kinectPosition[0],kinectPosition[1],kinectPosition[2],la,lb,lc,ld};

 float* dataPointer = data;

 for (int i=0;i<8;i++){

 byte* b = (byte*) (dataPointer+i);

 Serial.write(b[0]);

 Serial.write(b[1]);

 Serial.write(b[2]);

 Serial.write(b[3]);

 }

 }

}

// ==

// Math and conversion functions

// ==

// Calculate the current cable lengths based on encoder counts

void getCableLengths(){

 // Get current encoder counts (request data from Arduino nanos)

 getEncoderCounts(encoderCounts);

 // Update actual cable lengths based on encoder count numbers

 la = la_i - (encoderCounts[0]-encoderCounts0[0])*countToLength;

 lb = lb_i + (encoderCounts[1]-encoderCounts0[1])*countToLength;

 lc = lc_i - (encoderCounts[2]-encoderCounts0[2])*countToLength;

299

 ld = ld_i + (encoderCounts[3]-encoderCounts0[3])*countToLength;

}

// Calculate four ideal cable lengths based on target position

// Position is the cartesian values x, y, z in [m]

// lengthA, lengthB, lengthC, and lengthD are pointers to floats, where the calculated

cable lengths in [m] will be stored

void convertPositionToCableLengths(float position[3], float *lengthA, float *lengthB,

float *lengthC, float *lengthD){

 // Extract x, y, z from position array

 float x = position[0];

 float y = position[1];

 float z = position[2];

 // Convert cartesian position to cable lengths

 *lengthA = sqrt(pow(x, 2) + pow(y, 2) + pow(h - z, 2));

 *lengthB = sqrt(pow(b - x, 2) + pow(y, 2) + pow(h - z, 2));

 *lengthC = sqrt(pow(b - x, 2) + pow(b - y, 2) + pow(h - z, 2));

 *lengthD = sqrt(pow(x, 2) + pow(b - y, 2) + pow(h - z, 2));

}

// Convert 2 bytes of data (least siginificant byte first) to an integer

long bytesToInt(byte byteArray[2]){

 // initialize int variable, 2-byte precision, signed

 int intValue = 0;

 // bytes are assumed to be in little-endian format (least significant byte first)

 intValue += (int)byteArray[0]; // least significant byte to integer

 intValue += (int)byteArray[1] << 8; // bit shift second byte by 8 bits

 return intValue;

}

// Convert 4 bytes of data (least siginificant byte first) to long

long bytesToLong(byte byteArray[4]){

 // initialize long variable, 4-byte precision, signed

 long longValue = 0L;

 // bytes are assumed to be in little-endian format (least significant byte first)

 longValue += (long)byteArray[0]; // least significant byte to long

 longValue += (long)byteArray[1] << 8; // bit shift second byte by 8 bits

 longValue += (long)byteArray[2] << 16; // bit shift third byte by 16 bits

 longValue += (long)byteArray[3] << 24; // bit shift fourth byte by 24 bits

 return longValue;

}

Table A30. nano_encoder.ino is an Arduino program that runs on the four Arduino Nano

boards, one for each DC motor. This program keeps count of the encoder pulses.

// Encoder counter (use with Arduino nano)

// library for i2c serial communication

#include <Wire.h>

// define channel pin numbers

// chanA and chanB are from the encoder

#define chanA 2

#define chanB 3

300

// initialize variables

volatile long count = 0L; // encoder count

int b; // channel B value

byte byteArray[4];

void setup() {

 // join i2c bus with given address number

 Wire.begin(3);

 // register function to run when data is requested

 Wire.onRequest(requestEvent);

 // initialize interrupt for one encoder channel

 attachInterrupt(digitalPinToInterrupt(chanA), interruptRoutine, RISING);

}

// empty loop since interrupt is always listening to channel a of the encoder

void loop() {

}

// when requsted, sen current encoder count through i2c

void requestEvent() {

 // convert long to bytes using little-endian (least significant byte first)

 byteArray[0] = count & 255;

 byteArray[1] = (count>>8) & 255;

 byteArray[2] = (count>>16) & 255;

 byteArray[3] = (count>>24) & 255;

 Wire.write(byteArray, 4);

}

// routine to run when encoder channel a experiences a rising edge

void interruptRoutine(){

 // get value of encoder channel b

 b = digitalRead(chanB);

 // determine direction of encoder rotation and update count accordingly

 // we use the current value of channel b

 // we know channel a is high

 if(b != 1){

 count = count + 1L;

 }

 else{

 count = count - 1L;

 }

}

Table A31. Sweep.ino is an Arduino program that runs on the Arduino Uno board. This

program controls the servo that actuates the cable-disturbance arm pictured in Figure 100.

#include <Servo.h>

Servo myservo; // create servo object to control a servo

// twelve servo objects can be created on most boards

int pos = 0; // variable to store the servo position

void setup() {

 myservo.attach(3); // attaches the servo on pin 9 to the servo object

 myservo.write(0);

 while(digitalRead(7)==LOW){}

301

}

void loop() {

 for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees

 // in steps of 1 degree

 myservo.write(pos); // tell servo to go to position in variable 'pos'

 delay(60); // waits 15ms for the servo to reach the position

 }

 for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees

 myservo.write(pos); // tell servo to go to position in variable 'pos'

 delay(60); // waits 15ms for the servo to reach the position

 }

}

Table A32. plotData.m is a MATLAB script that reads a data file from an experiment trial

and plots the recorded values.

% Plots experiment results for a 4-cable suspended robot.

% -Run 'kinect_massTracker.py'

% -Results are saved in a 'trajectory.dat' file. Place the file in the

% same folder as this plotting script, and name as desired.

% -Type trajectory file name below and run script.

% close all;

clear all; clc;

% Data format: time[s] x[m] y[m] z[m]

% or

% time[s] x[m] y[m] z[m] la[m] lb[m] lc[m] ld[m]

% with a space between values and a new line for each time

fileName = 'CL_levels_5mm_k3_1.dat';

refPath = 5;

camAdjust = [0.02,-0.01,0.03]; %[m]

camAdjust = 0*camAdjust; %[m]

% Open and read file with raw trajectory data

fileId = fopen(fileName,'rt');

dataCell = textscan(fileId, '%f %f %f %f %f %f %f %f', 'Delimiter', ' ');

dataMat = cell2mat(dataCell);

if(isnan(dataMat(1,5)))

 cableLenghtsIncluded = false;

else

 cableLenghtsIncluded = true;

end

fclose(fileId);

% Find indices for data trimming

t = dataMat(:,1);

tStart = 10;

tChangeColor = t(end);

tFinal = t(end);

i0 = find(t>=tStart,1,'first');

i1 = find(t>=tChangeColor,1,'first');

i2 = find(t>=tFinal,1,'first');

% Extract cartesian position data

x = dataMat(:,2)-camAdjust(1);

y = dataMat(:,3)-camAdjust(2);

z = dataMat(:,4)-camAdjust(3);

% First segment

t1 = t(i0:i1);

x1 = x(i0:i1);

302

y1 = y(i0:i1);

z1 = z(i0:i1);

% Second segment

t2 = t(i1:i2);

x2 = x(i1:i2);

y2 = y(i1:i2);

z2 = z(i1:i2);

% If cable lengths were saved, extract the length data

if cableLenghtsIncluded

 la = dataMat(:,5);

 lb = dataMat(:,6);

 lc = dataMat(:,7);

 ld = dataMat(:,8);

 % First segment

 la1 = la(i0:i1);

 lb1 = lb(i0:i1);

 lc1 = lc(i0:i1);

 ld1 = ld(i0:i1);

 % Second segment

 la2 = la(i1:i2);

 lb2 = lb(i1:i2);

 lc2 = lc(i1:i2);

 ld2 = ld(i1:i2);

end

% Plot time period between samples

figure;

dt1 = t1(2:end) - t1(1:end-1);

dt2 = t2(2:end) - t2(1:end-1);

plot([dt1;dt2]*1000, '.k')

ylabel('Time period [ms]')

xlabel('Sample number')

ylim([0 100]);

grid on;

% Plot x,y,z seperately vs time

figure;

subplot(3,1,1);

plot(t1, x1, '.k', t2, x2, '.r')

ylabel('X [m]');

xlim([10,70])

grid on;

subplot(3,1,2);

grid on;

plot(t1, y1, '.k', t2, y2, '.r')

ylabel('Y [m]');

xlim([10,70])

grid on;

subplot(3,1,3);

grid on;

plot(t1, z1, '.k', t2, z2, '.r')

hold on

plot([0,35,40,70],[0.095,0.095,0.10,0.10],'-r')

ylabel('Z [m]');

xlim([10,70])

grid on;

xlabel('Time[s]')

% Plot cable lengths seperately vs time

if cableLenghtsIncluded

 figure;

 subplot(4,1,1);

 plot(t1, la1, '.k', t2, la2, '.r')

 ylabel('La [m]');

 xlim([10,70])

 grid on;

 subplot(4,1,2);

303

 grid on;

 plot(t1, lb1, '.k', t2, lb2, '.r')

 ylabel('Lb [m]');

 xlim([10,70])

 grid on;

 subplot(4,1,3);

 grid on;

 plot(t1, lc1, '.k', t2, lc2, '.r')

 ylabel('Lc [m]');

 grid on;

 xlim([10,70])

 subplot(4,1,4);

 grid on;

 plot(t1, ld1, '.k', t2, ld2, '.r')

 ylabel('Ld [m]');

 grid on;

 xlabel('Time [s]')

 xlim([10,70])

end

% Plot x,y,z in 3D space

figure;

plot3(x1,y1,z1,'.k', x2,y2,z2,'.r')

hold on;

xlabel('X [m]');

ylabel('Y [m]');

zlabel('Z [m]');

xlim([0 0.75]);

ylim([0 0.75]);

zlim([0 1.0]);

grid on;

axis square

switch refPath

 case 1 % Circle

 theta = linspace(0,2*pi);

 % Reference equation from Arduino code:

 b = 0.74; % m

 h = 0.79; % m

 x = b/2+0.2*sin(theta);

 y = b/2+0.2*cos(theta);

 z = 0.1*ones(length(theta),1);

 plot3(x,y,z,'g');

 case 2 % T shape

 % Plot T points path

 b = 0.74; % m

 xPoints = [b/2 0.5 0.5 0.4 0.4 0.5 0.5 0.6 0.6 0.1 0.1 0.2 0.2 0.3 0.3 0.2 0.2

0.5];

 yPoints = [b/2 0.1 0.2 0.2 0.5 0.5 0.4 0.4 0.6 0.6 0.4 0.4 0.5 0.5 0.2 0.2 0.1

0.1];

 zPoints = 0.1*ones(1,length(xPoints));

 timeStamps = 0:5:85;

 [xr,yr,zr] = pointsPath(xPoints, yPoints, zPoints, timeStamps, t);

 plot3(xr,yr,zr,'g');

 case 3 % Calibration path (square with chamfered corners)

 b = 0.74; % m

 xPoints = [b/2 7*b/8 7*b/8 7*b/8 7*b/8 6*b/8 6*b/8 b/2 b/2 2*b/8 2*b/8 b/8 b/8

b/8 b/8 b/8 b/8 2*b/8 2*b/8 b/2 b/2 6*b/8 6*b/8 7*b/8 7*b/8 7*b/8];

 yPoints = [b/2 b/2 b/2 6*b/8 6*b/8 7*b/8 7*b/8 7*b/8 7*b/8 7*b/8 7*b/8 6*b/8

6*b/8 b/2 b/2 2*b/8 2*b/8 b/8 b/8 b/8 b/8 b/8 b/8 2*b/8 2*b/8 b/2];

 zPoints = 0.1*ones(1,26);

 timeStamps = 0:5:125;

 [xr,yr,zr] = pointsPath(xPoints, yPoints, zPoints, timeStamps, t);

 plot3(xr,yr,zr,'g');

304

 case 4 % Test path (rotated square with circle within the square)

 b = 0.74; % m

 xPoints = [b/2 7*b/8 b/2 b/8 b/2 7*b/8 b/2+b/6];

 yPoints = [b/2 b/2 7*b/8 b/2 b/8 b/2 b/2];

 zPoints = 0.1*ones(1,length(xPoints));

 timeStamps = [0, 5, 15, 25, 30, 35, 40];

 [xr,yr,zr] = pointsPath(xPoints, yPoints, zPoints, timeStamps, t);

 plot3(xr,yr,zr,'g');

 theta = linspace(0,2*pi);

 x = b/2+b/6*cos(theta);

 y = b/2+b/6*sin(theta);

 z = 0.1*ones(length(theta),1);

 plot3(x,y,z,'g');

 case 5 % Layers path (like test path but with height variation)

 dh = 0.010; % m

 b = 0.74; % m

 xPoints = [b/2 7*b/8 b/2 b/8 b/8 b/2 7*b/8 b/2+b/6];

 yPoints = [b/2 b/2 7*b/8 b/2 b/2 b/8 b/2 b/2];

 zPoints = [0.095 0.095 0.095 0.095 0.095+dh 0.095+dh 0.095+dh 0.095+dh];

 timeStamps = [0, 5, 15, 25, 30, 35, 40, 45];

 [xr,yr,zr] = pointsPath(xPoints, yPoints, zPoints, timeStamps, t);

 plot3(xr,yr,zr,'g');

 theta = linspace(0,2*pi);

 x = b/2+b/6*cos(theta);

 y = b/2+b/6*sin(theta);

 z = (0.095+dh)*ones(length(theta),1);

 plot3(x,y,z,'g');

end

%% Plot cable length

addpath('C:\Users\ivan\OneDrive\Documents\PhD\CableFDM\cableFDM\Matlab\FinalFiles\util

ities')

measuredLength = la;

B = 0.74;

H = 0.79;

anchorPoints = [0 0 H; B 0 H; B B H; 0 B H]; % anchor points for 4 cable

[cableLengths] = positionToCableLengths([xr yr zr], anchorPoints);

referenceLength = cableLengths(:,1);

figure()

subplot(2,1,1)

plot(t,referenceLength,'r',t-10, measuredLength,'-.k')

grid on

xlim([0 40])

ylim([0.7 1.1])

ylabel('Cable length [m]')

legend('Reference','Measured')

subplot(2,1,2)

a = find(t>=10,1,'first');

b = find(t>=50,1,'first');

plot(t(1:b-a), (referenceLength(1:b-a)-measuredLength(a:b-1))*1000,'k')

grid on

xlim([0 40])

xlabel('Time [s]')

ylabel('Length error [mm]')

%% Anchor point disturbance prediction algorithm

addpath('C:\Users\ivan\OneDrive\Documents\PhD\CableFDM\cableFDM\Matlab\FinalFiles\anal

ysis')

addpath('C:\Users\ivan\OneDrive\Documents\PhD\CableFDM\cableFDM\Matlab\FinalFiles\util

ities')

B = 0.74;

H = 0.79;

305

anchorPoints = [0 0 H; B 0 H; B B H; 0 B H]; % anchor points for 4 cables

da = [0 0 0.0375];

db = [0 0 0];

dc = [-0.07 0.01 -0.025];

dd = [0 0 0];

positions = [x1 y1 z1];

cableLengths = [la1 lb1 lc1 ld1];

% Moving avg filter

numPoints = length(t1);

states = [positions cableLengths];

states_filt = NaN(numPoints,7);

avgSamples = 100;

for i=avgSamples:numPoints

 avgSum = zeros(1,7);

 for j=1:avgSamples

 avgSum = avgSum + states(i-j+1,:);

 end

 states_filt(i,:) = avgSum/avgSamples;

end

positions = states_filt(:,1:3);

cableLengths = states_filt(:,4:7);

method = 4;

aEstimate = estimateDisturbances(t1, positions, cableLengths, anchorPoints,

[79,89,99,109], method);

bEstimate = estimateDisturbances(t1, positions, cableLengths, anchorPoints,

[109,119,129,19], method);

cEstimate = estimateDisturbances(t1, positions, cableLengths, anchorPoints,

[19,29,39,49], method);

dEstimate = estimateDisturbances(t1, positions, cableLengths, anchorPoints,

[49,59,69,79], method);

trueAnchorPoints = anchorPoints+[da;db;dc;dd];

stem3(trueAnchorPoints(:,1),trueAnchorPoints(:,2),trueAnchorPoints(:,3),'r')

estimatedAnchorPoints =

anchorPoints+[aEstimate(1,:);bEstimate(2,:);cEstimate(3,:);dEstimate(4,:)];

stem3(estimatedAnchorPoints(:,1),estimatedAnchorPoints(:,2),estimatedAnchorPoints(:,3)

,'.r')

% Plot estimated and actual anchor point positions

figure()

subplot(1,4,1)

plot(1:3,da,'or',1:3,aEstimate(1,:),'.k')

xlim([0 4]);ylim([-B/8 B/8]);

ylabel('Diplacement amount [m]')

xticks([1 2 3]);xticklabels({'X','Y','Z'});grid on;

title('a')

subplot(1,4,2)

plot(1:3,db,'or',1:3,bEstimate(2,:),'.k')

xlim([0 4]);ylim([-B/8 B/8]);

xticks([1 2 3]);xticklabels({'X','Y','Z'});grid on;

title('b')

subplot(1,4,3)

plot(1:3,dc,'or',1:3,cEstimate(3,:),'.k')

xlim([0 4]);ylim([-B/8 B/8]);

xticks([1 2 3]);xticklabels({'X','Y','Z'});grid on;

title('c')

subplot(1,4,4)

plot(1:3,dd,'or',1:3,dEstimate(4,:),'.k')

xlim([0 4]);ylim([-B/8 B/8]);

xticks([1 2 3]);xticklabels({'X','Y','Z'});grid on;

title('d')

legend({'Actual','Estimate'},'Location','South')

306

Table A33. pointsPath.m is a MATLAB function that is used to create a reference

trajectory for a set of given waypoints. This function is used by the plotData.m script

shown in Table A32. A nearly identical function was used in the analysis code.

function [xr,yr,zr] = pointsPath(xCoordinates, yCoordinates, zCoordinates, timeStamps,

currentTime)

% Used to create a cartesian path from waypoints and time stamps

%

% xCoordinates is a list of x positions in meters

% yCoordinates is a list of y positions in meters

% zCoordinates is a list of z positions in meters

% timeStamps is a list of times in seconds

% currentTime is the current time in seconds

%

% Function returns the x,y,z position corresponding to the current time.

% Lists of cooridnates and time stamps should be the same length.

% Optional: instead of time stamps, give the movement speed in [m/s]

 % Get the number of times to sample

 numTimeSamples = length(currentTime);

 % Get the number of points in the path

 numPoints = length(xCoordinates);

 % Calculate the number of segments in the path

 numSegments = numPoints-1;

 % If time stamps not given, calculate them using a constant movement speed

 if(length(timeStamps)==1 && numPoints>1)

 speed = timeStamps; % Movement speed in [m/s]

 timeStamps = NaN(numPoints,1); % Create array of time stamps

 timeStamps(1) = 0; % First time stamp is zero seconds

 for(i=1:numSegments)

 % Changes in coordinates for current segment

 dx = xCoordinates(i+1)-xCoordinates(i);

 dy = yCoordinates(i+1)-yCoordinates(i);

 dz = zCoordinates(i+1)-zCoordinates(i);

 distance = norm([dx,dy,dz],2);

 timeStamps(i+1) = timeStamps(i)+distance/speed;

 end

 end

 % Initialize position arrays to be returned

 xr = NaN(numTimeSamples,1);

 yr = NaN(numTimeSamples,1);

 zr = NaN(numTimeSamples,1);

 % Iterate through time samples

 for(i=1:numTimeSamples)

 % Calculate the current segment number

 segment = find(currentTime(i)>=timeStamps,1,'last');

 if(segment==numPoints)

 % If the current time is beyond the final timestamp, stay at final

position

 x = xCoordinates(end);

 y = yCoordinates(end);

 z = zCoordinates(end);

 else

 % Calculate the current segment start and end times

 segmentStartTime = timeStamps(segment);

 segmentEndTime = timeStamps(segment+1);

 % Calculate current segment progress

 segmentProgress = (currentTime(i)-segmentStartTime)/(segmentEndTime-

segmentStartTime);

307

 % Calculate start and end coordinates of current segment

 xStart = xCoordinates(segment);

 yStart = yCoordinates(segment);

 zStart = zCoordinates(segment);

 xEnd = xCoordinates(segment+1);

 yEnd = yCoordinates(segment+1);

 zEnd = zCoordinates(segment+1);

 % Calculate current position

 x = xStart + segmentProgress*(xEnd-xStart);

 y = yStart + segmentProgress*(yEnd-yStart);

 z = zStart + segmentProgress*(zEnd-zStart);

 end

 % Return reference position

 xr(i) = x;

 yr(i) = y;

 zr(i) = z;

 end

end

Table A34. Kinect_massTracker.py is a Python program that operates the Kinect v2

sensor and processes the images in real time to extract the 3-D position of the CSR mass.

Script that uses pykinect and Kinect v2 camera to collect

video and depth images. OpenCV is used to process the images.

This version finds a polygon target and creates a focused window that tracks the target

in the image. Then, further image processing uses only the focused window. The x, y,

and z

data of the target is locally stored and, optionally, sent to an Arduino via serial

communication.

Some options provided below:

-Display live images as they are captured and processed

-Plot 3D graph of the position data

-Communicate with Arduino. Requires Arduino to be running 'cableRobotController.ino'

-Debug Arduino serial communication by displaying sent data and then echo of the

same data.

-Select which data is saved (position only, or full data with cable lengths from

Arduino).

-Select whether the color image is used for position calculation. If not, the depth

image and

kinect libraries are used to calculate the x,y,z position in mm.

Kinect v2 library

from pykinect2 import PyKinectV2

from pykinect2 import PyKinectRuntime

Matrix manipulation library

import numpy as np

Math functions

import math

Plotting library

import PyGnuplot as gp

Serial communication library

import serial

Python strings and C struct conversion library

import struct

Computer vision library

import cv2

Time library

import time

Operating and system libraries

308

import os

import sys

--

--------- Kinect and openCV settings -----------

--

set resolutions for color and depth images [x,y]

colorResolution = [1080, 1920]

depthResolution = [424, 512]

#colorFrame = np.zeros((colorResolution[0]*colorResolution[1]*4))

#depthFrame = np.zeros((depthResolution[0]*depthResolution[1]))

default color image cropping (before any cv processing)

cropX0 = 560

cropX1 = 1340

cropY0 = 180

cropY1 = 960

default depth image cropping (before any cv processing)

dcropX0 = 140

dcropX1 = 405

dcropY0 = 70

dcropY1 = 340

focus crop for color image (only the focused area will be cv processed)

these variables are global because they are updated within the color image handler

function

global focusX0

global focusX1

global focusY0

global focusY1

starting focus area is the entire default cropped color image

focusX0 = 0

focusX1 = cropX1-cropX0

focusY0 = 0

focusY1 = cropY1-cropY0

focus crop for depth image (only the focused area will be cv processed)

these variables are global because they are updated within the depth image handler

function

global dfocusX0

global dfocusX1

global dfocusY0

global dfocusY1

starting focus area is the entire default cropped depth image

dfocusX0 = 0

dfocusX1 = dcropX1-dcropX0

dfocusY0 = 0

dfocusY1 = dcropY1-dcropY0

position variables for the target position

these variables are global because they are updated within the image handler functions

global xPixel

global yPixel

global zDepthVal

global plotX

global plotY

global plotZ

plotX = 0

plotY = 0

plotZ = 0

xPixel = 0

yPixel = 0

zDepthVal = 0

309

script options (setting these to True generally slow down the script)

useColorImage = True # use color image for x,y position. If false, use depth

image with Kinect library conversions

displayImages = True # display images captured by camera

plotData = False # plot the target data live

arduinoComm = False # enable Arduino serial communication

saveArduinoData = False # save data provided by Arduino. If false, just

save local x,y,z data

commDebug = False # print diagnostic data to debug Arduino serial

communication

--

------ Arduino serial communication setup ------

--

Make sure Arduino communication is on if Arduino data is to be saved

if saveArduinoData == True or commDebug == True:

 arduinoComm = True

Setup Arduino serial if Arduino communication is requested

if arduinoComm == True:

 # setup serial using com number and baudrate

 arduino = serial.Serial('COM3', 2000000)

 # small time wait for serial setup

 time.sleep(1)

Function for sending data to Arduino

def sendToArduino(xData, yData, zData):

 # Pack data into bytes (2 bytes per number, little-endian first)

 dataBytes = struct.pack('<hhh', xData, yData, zData)

 # Write data to Arduino (6 bytes)

 arduino.write(dataBytes)

 # Return data from Arduino to debug communication

 if commDebug == True:

 print('Sent to Arduino: ', xData, yData, zData)

 # Get data bytes from Arduino

 xbyte = arduino.read(2)

 ybyte = arduino.read(2)

 zbyte = arduino.read(2)

 # Clear any bytes left in input buffer

 arduino.reset_input_buffer()

 # Convert bytes to short integer numbers

 xdata = struct.unpack('h', xbyte)

 ydata = struct.unpack('h', ybyte)

 zdata = struct.unpack('h', zbyte)

 print('Arduino returned: ', xdata[0], ydata[0], zdata[0])

 print(' ')

 # If saving data from Arduino, retreive it

 if saveArduinoData == True:

 #arduinoDataLine = arduino.readline()

 #dataLines.append(arduinoDataLine)

 # Get data bytes from Arduino

 d1 = arduino.read(4)

 d2 = arduino.read(4)

 d3 = arduino.read(4)

 d4 = arduino.read(4)

 d5 = arduino.read(4)

 d6 = arduino.read(4)

 d7 = arduino.read(4)

 d8 = arduino.read(4)

310

 # Clear any bytes left in input buffer

 arduino.reset_input_buffer()

 # Convert bytes to float numbers

 d1f = struct.unpack('f', d1)[0]

 d2f = struct.unpack('f', d2)[0]

 d3f = struct.unpack('f', d3)[0]

 d4f = struct.unpack('f', d4)[0]

 d5f = struct.unpack('f', d5)[0]

 d6f = struct.unpack('f', d6)[0]

 d7f = struct.unpack('f', d7)[0]

 d8f = struct.unpack('f', d8)[0]

 # Sava data for writing to file

 dataLines.append("%f %f %f %f %f %f %f %f \n" %

(d1f,d2f,d3f,d4f,d5f,d6f,d7f,d8f))

--

---------- Some other helper functions ---------

--

Function that prints x y data when mouse clicks on opencv image

def on_click(event,x,y,p1,p2):

 if event == cv2.EVENT_LBUTTONDOWN:

 print(x,y)

Mapping from Kinect V2 library

def depthToCameraSpace(kinectObject, xP, yP, zD):

 d = PyKinectV2._DepthSpacePoint()

 d.x = xP

 d.y = yP

 # Use depth image data to calculate x,y,z position in [m]

 return kinectObject._mapper.MapDepthPointToCameraSpace(d, zD)

maping from color and depth camera (from measurements)

def mapToMeters(xP,yP,zD):

 # Calibration data

 # xPixels = np.array([151, 378, 600])

 # xMeters = np.array([0.195, 0.395, 0.595])

 # yPixels = np.array([163, 394, 613])

 # yMeters = np.array([0.195, 0.395, 0.595])

 # zDepthVals = np.array([923, 960, 998])

 # zMeters = np.array([0.145, 0.10, 0.05])

 xPixels = np.array([172, 395, 618])

 xMeters = np.array([0.195, 0.395, 0.595])

 yPixels = np.array([50, 148, 366, 589])

 yMeters = np.array([0.095, 0.195, 0.395, 0.595])

 zDepthVals = np.array([923, 960, 998])

 zMeters = np.array([0.145, 0.10, 0.05])

 # Linear interpolation, find lower index

 ix = np.where(xPixels<=xP)[0]

 iy = np.where(yPixels<=yP)[0]

 iz = np.where(zDepthVals<=zD)[0]

 # x interpolation

 if ix.size == 0:

 xMeter = xMeters[0] + (float(xP-xPixels[0])/(xPixels[1]-

xPixels[0]))*(xMeters[1]-xMeters[0])

 elif ix.size == xPixels.size:

 xMeter = xMeters[-1] + (float(xP-xPixels[-1])/(xPixels[-1]-xPixels[-

2]))*(xMeters[-1]-xMeters[-2])

 else:

 xMeter = xMeters[ix[-1]] + (float(xP-xPixels[ix[-1]])/(xPixels[ix[-

1]+1]-xPixels[ix[-1]]))*(xMeters[ix[-1]+1]-xMeters[ix[-1]])

 # y interpolation

 if iy.size == 0:

311

 yMeter = yMeters[0] + (float(yP-yPixels[0])/(yPixels[1]-

yPixels[0]))*(yMeters[1]-yMeters[0])

 elif iy.size == yPixels.size:

 yMeter = yMeters[-1] + (float(yP-yPixels[-1])/(yPixels[-1]-yPixels[-

2]))*(yMeters[-1]-yMeters[-2])

 else:

 yMeter = yMeters[iy[-1]] + (float(yP-yPixels[iy[-1]])/(yPixels[iy[-

1]+1]-yPixels[iy[-1]]))*(yMeters[iy[-1]+1]-yMeters[iy[-1]])

 # z interpolation

 if iz.size == 0:

 zMeter = zMeters[0] + (float(zD-zDepthVals[0])/(zDepthVals[1]-

zDepthVals[0]))*(zMeters[1]-zMeters[0])

 elif iz.size == zDepthVals.size:

 zMeter = zMeters[-1] + (float(zD-zDepthVals[-1])/(zDepthVals[-1]-

zDepthVals[-2]))*(zMeters[-1]-zMeters[-2])

 else:

 zMeter = zMeters[iz[-1]] + (float(zD-zDepthVals[iz[-

1]])/(zDepthVals[iz[-1]+1]-zDepthVals[iz[-1]]))*(zMeters[iz[-1]+1]-zMeters[iz[-1]])

 return [xMeter,yMeter,zMeter]

--

-------- Kinect frame handler functions --------

--

color image handler function

def processColorFrame(frame):

 # access the global variables for the focus window location

 global xPixel

 global yPixel

 global zDepthVal

 global plotX

 global plotY

 global plotZ

 global focusX0

 global focusX1

 global focusY0

 global focusY1

 # reshape the color frame data

 colorImageData = np.reshape(colorFrame,(colorResolution[0], colorResolution[1],-

1)).astype(np.uint8)

 # flip the image horizontally (the image is mirrored by default)

 colorImage = cv2.flip(colorImageData, 1)

 # crop image to default area of interest

 croppedColorImage = np.copy(colorImage[cropY0:cropY1,cropX0:cropX1,:])

 # crop image again to focus on target

 focusedColorImage = np.copy(croppedColorImage[focusY0:focusY1, focusX0:focusX1,

:])

 # filter focused color image based on HSV values

 filteredColorImage = hsvFilter(focusedColorImage)

 # find target in focused image

 targetFound, approx, x, y = findTarget(filteredColorImage)

 # if a target was found

 if targetFound == True:

 # calculate the x, y coordinates in the original color image

 xPixel = (focusX0 + x)

 yPixel = ((cropY1-cropY0) - (focusY0 + y))

 # Convert data to units of [m] (uses color image pixel coordinates and

depth image z depth value)

 mappedValues = mapToMeters(xPixel,yPixel,zDepthVal)

 # Store result for plotting

 # The 2.5cm offset accounts for eyehook displacement from frame

 plotX = mappedValues[0]-0.025

 plotY = mappedValues[1]-0.025

 plotZ = mappedValues[2]

312

 # if display of images is requested

 if displayImages == True:

 # calculate the pixel location of the target in the original color

image coordinates

 shiftedX = x + cropX0 + focusX0

 shiftedY = y + cropY0 + focusY0

 # calculate the pixel location of the polygon approximation in

the original color image coordinates

 shiftedApprox= approx + [cropX0 + focusX0, cropY0 + focusY0]

 # show the target location on the original color image

 cv2.circle(colorImage, (shiftedX, shiftedY), 2, (0,255,0), -1)

 # show the target polygon on the original color image

 cv2.drawContours(colorImage, [shiftedApprox], -1, (0,255,0), 2)

 # update focus window based on current location of target

 # the next focus window is centered at the target location and is 200 by

200 px

 focusX0 = focusX0 + x - 100

 focusX0 = max(0, focusX0)

 focusX1 = focusX0 + x + 100

 focusX1 = min(cropX1-cropX0, focusX1)

 focusY0 = focusY0 + y - 100

 focusY0 = max(0, focusY0)

 focusY1 = focusY0 + y + 100

 focusY1 = min(cropY1-cropY0, focusY1)

 # if no target found in color image

 # reset focus image bounds to default values

 else:

 focusX0 = 0

 focusX1 = cropX1-cropX0

 focusY0 = 0

 focusY1 = cropY1-cropY0

 # if display of images is requested

 if displayImages == True:

 # show default cropped area in blue

 cv2.rectangle(colorImage, (cropX0,cropY0), (cropX1,cropY1), (0,0,255),

2)

 # show updated focused area in red

 cv2.rectangle(colorImage, (cropX0+focusX0, cropY0+focusY0),

(cropX0+focusX1, cropY0+focusY1), (255,0,0), 2)

 # show the color image in an opencv window

 cv2.imshow('KINECT Color Stream', colorImage)

 # show the focused, filtered color image in another opencv window

 cv2.imshow('Color Vision', filteredColorImage)

depth image handler function

def processDepthFrame(frame):

 # access the global variables for the focus window location

 global xPixel

 global yPixel

 global zDepthVal

 global plotX

 global plotY

 global plotZ

 global dfocusX0

 global dfocusX1

 global dfocusY0

 global dfocusY1

 # reshape the depth frame data

 depthImageData = np.reshape(frame,(depthResolution[0], depthResolution[1],-1))

 # flip image horizontally (the image is mirrored by default)

 depthImage = cv2.flip(depthImageData, 1)

 # crop image to default area of interest

313

 croppedDepthImage = np.copy(depthImage[dcropY0:dcropY1,dcropX0:dcropX1])

 # crop image again to focus on target

 focusedDepthImage = np.copy(croppedDepthImage[dfocusY0:dfocusY1,

dfocusX0:dfocusX1])

 # filter cropped image based on depth values

 filteredDepthImage = depthFilter(focusedDepthImage)

 # convert depth image to BGR (for display purposes only)

 depthImage = cv2.cvtColor(depthImage, cv2.COLOR_GRAY2BGR).astype(np.uint8)

 # find largest target in the cropped image

 found, approx, x, y = findTarget(filteredDepthImage)

 # if a target was found, do the following

 if found == True:

 # get the depth value from the cropped depth frame, using the found-

target pixel location

 # create matrix of zeros, same size as focused depth image

 mask = np.zeros(focusedDepthImage.shape)

 # place the filled polygon (approximation of the target) in the empty

mask matrix

 cv2.fillConvexPoly(mask, approx, (1))

 # use the mask with polygon to isolate the target pixels in the depth

image

 maskedImage = np.multiply(focusedDepthImage, mask)

 # the depth value is the average depth value in the isolated pixels

 depthVal = int(round(np.average(maskedImage[maskedImage!=0])))

 # calculate the x, y coordinates in the original depth image

 xPixel = np.float32(x + dcropX0 + dfocusX0)

 yPixel = np.float32(y + dcropY0 + dfocusY0)

 zDepthVal = depthVal

 # if color camera is not being used, calculate 3D position using built-

in kinect function

 if useColorImage == False:

 # convert data to units of [m] (uses depth image pixel coordinates

and z depth value)

 cameraSpacePosition =

depthToCameraSpace(kinect,xPixel,yPixel,zDepthVal)

 # store results for plotting (add offsets to account for camera

location)

 # The 2.5cm offset accounts for eyehook displacement from

frame

 plotX = 0.432 + cameraSpacePosition.x - 0.025

 plotY = 0.398 + cameraSpacePosition.y - 0.025

 plotZ = 1.065 - cameraSpacePosition.z

 # if display of image is requested

 if displayImages == True:

 # calculate the pixel location of the target in the original depth

image coordinates

 shiftedX = x + dcropX0 + dfocusX0

 shiftedY = y + dcropY0 + dfocusY0

 # calculate the approximate polygon coordinates in the original

depth image coordinates

 shiftedApprox = approx + [dcropX0 + dfocusX0, dcropY0 + dfocusY0]

 # show the target location in the original depth image

 cv2.circle(depthImage, (shiftedX, shiftedY), 2, (0,255,0), -1)

 # show the target polygon in the original depth image

 cv2.drawContours(depthImage, [shiftedApprox], -1, (0,255,0), 1)

 # update focus window based on current location of target

 # the next focus window is centered at the target location and is 80 by

80 px

 dfocusX0 = dfocusX0 + x - 40

 dfocusX0 = max(0, dfocusX0)

 dfocusX1 = dfocusX0 + x + 40

 dfocusX1 = min(dcropX1-dcropX0, dfocusX1)

 dfocusY0 = dfocusY0 + y - 40

 dfocusY0 = max(0, dfocusY0)

314

 dfocusY1 = dfocusY0 + y + 40

 dfocusY1 = min(dcropY1-dcropY0, dfocusY1)

 # if no target found in depth image

 # reset focus image bounds to default values (focus window becomes entire cropped

depth image)

 else:

 dfocusX0 = 0

 dfocusX1 = dcropX1-dcropX0

 dfocusY0 = 0

 dfocusY1 = dcropY1-dcropY0

 # if display of image is requested

 if displayImages == True:

 # show square of default cropped depth area in blue

 cv2.rectangle(depthImage, (dcropX0,dcropY0), (dcropX1,dcropY1),

(0,0,255), 1)

 # show updated focused crop area

 cv2.rectangle(depthImage, (dcropX0+dfocusX0, dcropY0+dfocusY0),

(dcropX0+dfocusX1, dcropY0+dfocusY1), (255,0,0), 1)

 # show the image in an opencv window

 cv2.imshow('KINECT Depth Stream', depthImage)

 # show the focused, filtered depth image in another opencv window

 cv2.imshow('Depth Vision', filteredDepthImage)

HSV filtering

def hsvFilter(bgraImage):

 # HSV filtering threshold values

 # orange tape target

 hmin = 0

 hmax = 50

 smin = 0

 smax = 100

 vmin = 200

 vmax = 255

 # Convert BGRA (blue-green-red-alpha) to HSV (hue-saturation-value)

 hsvImage = cv2.cvtColor(bgraImage, cv2.COLOR_BGR2HSV)

 # Filter image using HSV threshold values

 # Pixels that DO NOT fall within the user-selected HSV value range are set to

value of 0

 # Pixels that DO fall within the user-selected HSV value range are set to value

of 1

 h,s,v = cv2.split(hsvImage) # Splits the HSV matrix into separate H, S, V matrices

 hf = cv2.inRange(h,np.array(hmin),np.array(hmax)) # Filters H matrix

 sf = cv2.inRange(s,np.array(smin),np.array(smax)) # Filters S matrix

 vf = cv2.inRange(v,np.array(vmin),np.array(vmax)) # Filters V matrix

 filteredImage = cv2.bitwise_and(hf, cv2.bitwise_and(sf,vf)) # Creates matrix of

1's and 0's according to filtering

 return filteredImage

Depth filtering

def depthFilter(depthImage):

 # Depth threshold values

 depthMin = 800

 depthMax = 1000

 # Filter depth image using depth threshold values

 # Pixels that DO NOT fall within the user-selected depth value range are set to

value of 0

 # Pixels that DO fall within the user-selected depth value range are set to value

of 1

 filteredImage = cv2.inRange(depthImage, np.array(depthMin), np.array(depthMax))

315

 return filteredImage

Largest target detection

def findTarget(filteredImage):

 # Find all contours in the filtered image

 contours, hierarchy = cv2.findContours(filteredImage, cv2.RETR_TREE,

cv2.CHAIN_APPROX_NONE)

 # Count the number of contours found

 numContours = len(contours)

 # If there is at least one found contour, do the following

 if numContours>0:

 # Sort the contours from largest to smallest

 contours = sorted(contours, key=cv2.contourArea, reverse=True)

 # Loop over the sorted contours

 for c in contours:

 # End loop if contour is too small (smaller than 10 px in area)

 if cv2.contourArea(c) < 10:

 break

 # Approximate the contour with an approximate polygon shape

 perimeter = cv2.arcLength(c, True)

 approx = cv2.approxPolyDP(c, 0.01*perimeter, True)

 # If the polygon has at least 4 sides

 if len(approx) >= 4:

 # Find center of the polygon (by pixel number in the

filtered image)

 # Calculate the moments of the polygon

 mom = cv2.moments(approx)

 # If the area of the polygon is not zero

 if mom['m00'] != 0:

 x = int(mom['m10']/mom['m00'])

 y = int(mom['m01']/mom['m00'])

 return (True, approx, x, y)

 # If no target was found, return the following

 return (False, 0, 0, 0)

--

------- Kinect intialization and runtime -------

--

Create a Kinect runtime object

if useColorImage == True:

 # Create object with color and depth capture

 kinect = PyKinectRuntime.PyKinectRuntime(PyKinectV2.FrameSourceTypes_Color |

PyKinectV2.FrameSourceTypes_Depth)

else:

 # Create object with depth capture only

 kinect = PyKinectRuntime.PyKinectRuntime(PyKinectV2.FrameSourceTypes_Depth)

Allow time for Kinect to start

time.sleep(3)

If image display was requested, create display windows

if displayImages == True:

 cv2.namedWindow('KINECT Depth Stream', cv2.WINDOW_NORMAL)

 cv2.resizeWindow('KINECT Depth Stream', depthResolution[1], depthResolution[0])

 cv2.namedWindow('Depth Vision', cv2.WINDOW_AUTOSIZE)

 cv2.setMouseCallback('KINECT Depth Stream', on_click)

 if useColorImage == True:

 cv2.namedWindow('KINECT Color Stream', cv2.WINDOW_NORMAL)

 cv2.resizeWindow('KINECT Color Stream', colorResolution[1]/2,

colorResolution[0]/2)

 cv2.namedWindow('Color Vision', cv2.WINDOW_AUTOSIZE)

 cv2.setMouseCallback('KINECT Color Stream', on_click)

316

Variable used for setting up plot figures (if requested)

firstPoint = True

Create list of data to write to trajectory.dat file

dataLines = []

Main loop, runs until break condition is met

while True:

 # Wait for depth frame to be available

 if kinect.has_new_depth_frame():

 # Store depth frame data

 depthFrame = kinect.get_last_depth_frame()

 # If depth data is not empty

 if depthFrame.size != 0:

 # Process the depth frame (finds the target pixel location and

depth value)

 processDepthFrame(depthFrame)

 # If color image is being used for tracking

 if useColorImage == True:

 # Wait for color frame to be available

 if kinect.has_new_color_frame():

 # Store color frame data

 colorFrame = np.copy(kinect.get_last_color_frame())

 # If color data is not empty

 if colorFrame.size != 0:

 # Process the color frame (finds the target pixel location)

 processColorFrame(colorFrame)

 # If data plotting was requested, update plot figure

 if plotData == True:

 # Send plotting data to gnu plotter

 gp.s([[plotX],[plotY],[plotZ]])

 # Setup gnu plot axes and labels when first point is plotted

 if firstPoint == True:

 gp.c('set xrange [0:1]')

 gp.c('set yrange [0:1]')

 gp.c('set zrange [0:1]')

 gp.c('set grid xtics ytics ztics')

 gp.c('show grid')

 gp.c('set xlabel "x [m]"')

 gp.c('set ylabel "y [m]"')

 gp.c('set zlabel "z [m]"')

 gp.c('show xlabel')

 gp.c('show ylabel')

 gp.c('show zlabel')

 gp.c('splot "tmp.dat" with points pointtype 7')

 firstPoint = False

 # Update plot with any points after the first point

 else:

 gp.c('replot')

 # If Arduino data is not being saved, save local data instead

 if saveArduinoData == False:

 # Add local data to the data line (to be written in trajectory.dat file)

 dataLines.append("%f %f %f %f \n" % (time.clock(),plotX, plotY, plotZ))

 # If Arduino communication was requested

 if arduinoComm == True:

 # Wait for Arduino to request the data (should not take long)

 while arduino.in_waiting == 0:

 pass

 # Clear any bytes in input buffer (clear the latest Arduino request for

data)

 arduino.reset_input_buffer()

317

 # Send data to Arduino as 6 bytes (2 bytes per coordinate)

 # The decimal data is first converted to integers by multiplying by 10000

 sendToArduino(int(plotX*10000), int(plotY*10000), int(plotZ*10000))

 # Get value of pressed key (an openCV window must be active)

 key = cv2.waitKey(1)

 # If key pressed is 27 ('ESC') or time reaches ___s, end the program

 if key == 27 or time.clock()>140:

 # Close kinect object

 kinect.close()

 # Close all opencv windows

 cv2.destroyAllWindows()

 # Write all the data to a .dat file and close the file

 f = open(os.path.join(sys.path[0], "trajectory.dat"), "w")

 for i in range(len(dataLines)):

 f.write(dataLines[i])

 f.close()

 # Delete the temporary file used for gnu plotting

 if plotData == True:

 os.remove("tmp.dat")

 # Exit while loop

 break

318

APPENDIX C:

MAXIMAL CLIQUE ALGORITHM

Section 3.1.2 contains the kinematics of a general CSR system. In the forward

kinematics, the goal was to find the position of the end-effector given the cable lengths.

This task is complicated by the possibility of redundant cables and cable slack. In the most

general case, it is also possible that some of the cable lengths are too short to connect with

the other cables. To solve this problem, a simple algorithm was proposed wherein the first

step was to determine the largest group of cables that can reach each other’s ends,

assuming that the cables are in tension. This step was posed as a maximal clique problem.

Many algorithms were previously studied to solve the maximal clique problem [58]. The

details of these methods are outside the scope of this dissertation. However, a unique

algorithm for finding a maximal clique was implemented in MATLAB for the purpose of

calculating the forward kinematics of a general CSR. The relevant codes were included in

Appendix A and are contained in the folder “FindLargestSquare” that is shown in Figure

127. The maximal clique algorithm developed for this dissertation is now described.

First, let the goal simply be described as: find the largest (or one of the largest)

groups of cables such that any of the two cables in the group can connect with each other.

Then, note that it is easy to determine whether two cables can connect with each other by

checking that the sum of the two cable lengths is greater than the Euclidean distance

between the two cable anchor points. Once this check is performed for all possible pairs

319

of cables in the system, this information can be expressed in a matrix form. Take, for

example, the matrix

[

1 1 0 1

1 1 1 1

0 1 1 0

1 1 0 1

].

In this matrix, each row (or column) represents the possible connections for a single cable.

There is one row (or column) for each cable in the given CSR system. The first row shows

that cable 1 can connect with cables 2 and 4, but not with cable 3. The zero in the (1, 3)

location gives that indication. Cable 2 can connect with all of the other cables. Hence, row

2 is filled with ones. Cable 3 can only connect with cable 2, and cable 4 can only connect

with cables 1 and 2. The diagonal of the matrix is always filled with ones, for a reason that

will later be explained. This matrix is like an adjacency matrix, but with the diagonal

values being ones instead of zeros. The adjacency matrix with zeros in the diagonal is

often used in graph theory. From this point forward, the matrix used in this dissertation

will be referred to as the cable-connection matrix (CCM).

 The order of the cables can be rearranged to produce a different, but equivalent,

CCM. Here, “equivalent” means that the matrix gives the same information about the

system even if the order of the cables is changed. To rearrange the order of the cables, one

can simply swap the appropriate rows and columns of the matrix. The swapMatrixOrder.m

and reorderMatrix.m files in Figure 127 are the MATLAB scripts that perform exactly

this kind of operation for a given CCM.

By rearranging the order of the cables in the CCM, one can easily find groups of

connecting cables. This is because groups of connecting cables will form diagonal blocks

320

in the matrix when those cables are grouped in the matrix order. A diagonal block is a

block of ones along the diagonal of the connection matrix. The maximal clique algorithm

is an algorithm that attempts to find the largest possible diagonal block by reordering the

matrix order in a CCM. To create the algorithm, the main question is how to efficiently

perform this matrix-ordering task.

 In this dissertation, diagonal blocks are found by working backwards. That is, rows

and columns are removed from the original CCM until only a square filled with ones

remains. When row i and column i of the matrix are simultaneously removed, this is like

removing cable i from the CSR system. By removing rows and columns until a filled

square remains, the algorithm is removing cables until all that remains is a group of cables

that can connect with each other, meeting the stated goal.

To determine whether a solution has been found, the algorithm evaluates a cost

function. Simply put, the cost function gives the number of zeros left in the matrix when

certain cables are removed. The cost is defined as

J = xT(1 − Q)x. (78)

where Q is the original CCM and 1 is a matrix of ones with the same dimensions as Q.

The vector x indicates what cables are removed from the system. For example,

x = [1 0 1 1]
T
 (79)

indicates that only cable 2 is removed from the system. Then, J will be the number of zeros

left in the CCM when row 2 and column 2 are removed. A solution is found, and the

algorithm terminates, when J is zero, meaning that the remaining matrix is filled with

ones. At that point, the elements of x with a one indicate the cables that can connect with

321

each other. One important thing to note, however, is that there may be more than one

solution, and the solution depends on the way the algorithm removes cables.

 The working principle of the algorithm in this dissertation is now described. At

each iteration, the algorithm removes the cable that would result in the largest decrease in

the cost, J. The hope is to find the shortest path to a cost of zero as this would mean

removing the fewest number of cables. However, it is not guaranteed that the shortest path

will be found if only because, at some iteration, there may be more than one cable that,

when removed, would result in the same decrease in cost. Therefore, there may be multiple

paths to explore at different steps of the algorithm. In such cases, the algorithm selects the

cable with the lowest index number in the x vector. There may be more efficient methods

to find a cost of zero, but this possibility is left for future work. The complete algorithm

is summarized in Table A35.

Table A35. A summary of the maximal clique algorithm used in this dissertation, posed

as a matrix-ordering problem.

Given a CCM, Q, that is n by n,

let x = [1, …, 1]T (i.e. x is a column vector of ones with length n).

Step 1. Calculate the cost using (78) and the current x.

Step 2. If the cost is zero, stop; A block of ones has been found. If the cost is nonzero,

go to Step 3.

Step 3. For every 1 remaining in the current x, try changing that 1 to a 0 and calculating

the cost again with the modified x. Keep a record of the decrease in cost using the

modified x’s.

Step 4. Look at the record from Step 3 and see what modified x gave the largest

decrease in cost. Choose that x as the new current x. If more than one modified x gave

the same decrease in cost, pick any one of those modified x’s as the new current x.

Return to Step 1.

322

Finally, an example of the algorithm output is presented. A CCM was created

pseudorandomly. This matrix is symmetric, its diagonal is filled with ones, and the rest of

its elements are either one or zero. As such, this matrix represents a CSR system where

some cables can connect with each other and others cannot. The goal of the algorithm is

to find a large (hopefully, the largest) group of cables that can connect with each other.

The result will be displayed as a diagonal block in the upper left corner of the CCM after

the order of the cables has been changed. In order to visualize the matrix before and after

the reordering, a MATLAB function, called displayMatrix.m, was used. This function

displays the matrix as a grid. The one elements of the matrix are filled with a solid color,

and the zero elements are left empty.

Figure 129 shows the CCM before being processed by the algorithm. Only cable

9 can connect with all other cables, as evidenced by the full 9th row. The rest of the cables

Figure 129. An example CCM, visualized as a grid, before being sorted by the maximal

clique algorithm. This is a 10×10 matrix, and the red squares represent elements in the

matrix that are ones. The empty spaces represent zeros.

323

Figure 130. An example of a CCM, visualized as a grid, after being sorted by the

maximal clique algorithm. A group of five cables were found to connect to each other

and are grouped in the top left corner of the newly-ordered connection matrix.

have at least one cable that they cannot connect with, resulting in the empty spaces of the

grid. This matrix was then processed by the MATLAB function, findCliques.m, with a

running time of 0.015562 s, using the same laptop computer that is pictured in Figure 102.

The output of the algorithm is shown in Figure 130, after the cable order has been changed.

A 5×5 block now appears in the top left corner of the grid. This means that the algorithm

found a group of 5 cables that could connect with each other, and grouped them so that

they are now labeled one through five. With respect to the original order of the cables, the

new order is: 1, 5, 7, 8, 9, 2, 3, 4, 6, 10. In other words, by changing the original order of

the cables to the latter order, the resulting CCM is as shown in Figure 130. Practically

speaking, it is now known that the group of five cables depicted are long enough to connect

with each other, and they may be able to connect at a common location in the 3-D

operating space of the CSR. This is the result that was sought.

	Abstract
	Dedication
	Acknowledgments
	Contributors and Funding Sources
	Nomenclature
	Table of Contents
	List of Tables
	List of Figures
	1. Introduction
	1.1. Additive Manufacturing
	1.1.1. Technologies and Applications
	1.1.2. Large-Scale Manufacturing

	1.2. Cable-Suspended Robots
	1.2.1. Configurations
	1.2.2. Analysis and Control
	1.2.3. Applications in Additive Manufacturing

	2. Contributions of this Dissertation
	2.1. Cable-Suspended Robot Design
	2.1.1. Configuration Analysis
	2.1.2. Sensor and Actuator Selection

	2.2. Position Control
	2.2.1. System Modeling
	2.2.2. Controller Design
	2.2.3. Cable Placement Estimation

	2.3. Prototype Experiment
	2.3.1. Closed-Loop Control
	2.3.2. Disturbance Testing

	3. Analysis and Simulation
	3.1. Cable-Suspended Robot Design
	3.1.1. Base Configuration
	3.1.2. Kinematics
	3.1.3. Kinetics
	3.1.4. Tension Analysis
	3.1.5. Stiffness Analysis
	3.1.6. Sensors
	3.1.7. Actuators

	3.2. Position Control
	3.2.1. Cable Models
	3.2.2. System Models
	3.2.3. Disturbances
	3.2.4. Tension-Based Control
	3.2.4.1. Feedback Linearization
	3.2.4.2. Sliding-Mode Control
	3.2.4.3. Tension Optimization

	3.2.5. Cable-Length Control
	3.2.5.1. Servo Control
	3.2.5.2. Dual-Loop Control

	3.2.6. Anchor-Point Position Estimation

	4. Experimental Prototype
	4.1. Robot Frame
	4.2. Cable System
	4.3. DC Motors
	4.4. Microcontrollers
	4.5. Kinect Camera
	4.6. Personal Computer

	5. Experimental Results
	5.1. DC Motor Servo Loops
	5.2. Camera Position Tracking
	5.3. Nominal Performance
	5.4. Cable-Length Error
	5.5. Camera Measurement Error
	5.6. Dynamic Cable Disturbance
	5.7. Anchor-Point Position Error
	5.8. Anchor-Point Position Estimation
	5.9. AM Layers

	6. Conclusions and Future Work
	References
	Appendix A: Analysis Codes
	Appendix B: Experiment codes
	Appendix C: Maximal Clique Algorithm

