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ABSTRACT

We study spectra and spectral measures of the discrete Laplacian and Markov operators on the

Cayley graph of a finitely generated group G (and more generally the density of states of discrete

periodic operators of finite order on G-periodic graphs). Several examples of computations of

spectra and spectral measures of Cayley graphs are surveyed. Some well known theorems and ap-

plications of the theory to other areas of mathematics (Kesten’s theorem, Kadison-Kaplansky con-

jecture, Property (T) and expander graphs) are described, following various papers, monographs

and textbooks.

In the next chapter, we discuss an algebraic approach for the computation of the density of

states: the use of finite support eigenfunctions, following the preprint paper of the author [1]. It is

shown that eigenfunctions of λ with finite support are dense in the l2-eigenspace of λ. Moreover,

if G is a virtually polycyclic finitely generated group, then there are finitely many finite support

eigenfunctions of λ up to translations and linear combinations. This property can be used to ap-

proximate the density of λ. When G has subexponential growth, the density of λ is obtained from

a finite resolution by finitely generated free CG-modules (if it exists) of the CG-module of finite

support eigenfunctions. Such a resolution always exists when G is abelian.

In the final chapter, we discuss some examples and suggest directions for further study of the

use of finite support eigenfunctions.
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1. PRELIMINARIES AND RELATED LITERATURE

This chapter serves as a brief overview of topics in spectral group theory. We begin with a

introductory section on Cayley graphs. Then we move on to a slight generalization, G-periodic

graphs and discuss periodic difference operators acting on them. We define the objects of interest:

the spectrum and the density of states. We then survey examples of computations of spectra and

density of states of infinite Cayley graphs. Moving on, we prove Kesten’s characterization of

amenability, a fundamental result which in many ways started the subject. We also discuss relations

of spectral graph theory to the Kadison-Kaplansky conjecture, a conjecture with deep connections

to non-commutative geometry. Finally, we slightly digress to discuss families of expander graphs,

a powerful tool used in computer science and network theory. These graphs are often constructed

using properties of infinite groups, such as Margulis’ construction using Kazhdan’s Property (T).

It should be noted that there are many more connections of the theory to other fields of math-

ematics that are not covered in this chapter. For instance, there are models in mathematical con-

densed matter physics which use the spectral theory of non-commutative groups, such as crys-

tallographic groups or the discrete Heisenberg group (see [2] for instance). Furthermore, some

problems in computer science (such as the Hanoi towers game) can be formulated as a problem

about the Schreier graphs of self-similar groups (see [3] for instance). Finally, another connection

is that with the K-theory and l2 invariants of manifolds. For a survey see [4]; while for an example

of an application of spectral group theory, see [5].

Some of the content of this chapter comes from the preprint [1].

1.1 Cayley Graphs of Finitely Generated Groups

This introductory section is meant for the reader who may be unfamiliar with geometric group

theory. There are plenty of great texts in geometric group theory; for instance see [6] and [7].

First of all, we give some basic definitions. A group is a set along with an associative binary

operation · : G × G → G which has an identity element and every element g ∈ G has an inverse

1



g−1. A generating set of G is a subset S ⊂ G such that every element in G can be expressed

as the product of elements in S and in S−1 = {s−1|s ∈ S}. A group is finitely generated if it

has a generating set which is finite, i.e. |S| < ∞. A group is commutative (also called abelian)

whenever gh = hg for all g, h ∈ G. Examples of commutative groups are the integers Z under

addition, and the cyclic group of integers modulo n ∈ N , Z/n under the addition in modular

arithmetic.

One of the main tools in the study of finitely generated groups is that of a Cayley graph. Given

a finite generated set S of G, the Cayley graph Γ(G,S) is a graph with set of vertices V = G and

set of edges

E = {(g, sg)|s ∈ S ∪ S−1, g ∈ G}.

Note that the group G naturally acts on the Cayley graph by graph automorphisms via the formula:

g · h := hg−1.

For example, the Cayley graphs of Γ(Z, {1}), Γ(Z, {2, 3}) and Γ(Z/n, {1}) are shown below.

Observe how different Γ(Z, {1}) and Γ(Z, {2, 3}) look, even though the underlying group is the

same (the generating sets are different). This is an important point. A property of a Cayley graph

of a group may not be a property of the underlying group (since the Cayley graph of a group with

another generating set may have different properties). Nonetheless, there are many graph theoretic

invariants that turn out to be group thoeretic invariants as well. For example, the growth rate of the

Cayley graph does not change with the generating set. More generally, coarse geometric invariants

of Cayley graphs are group theoretic invariants (see [6] and [7] for more details).

For the shake of more examples, below are the Cayley graph of the free group of rank two

F2 = Z ∗Z, the free product of two cyclic groups Z/2∗Z/3, and the Heisenberg group < x, y, z :

z = [x, y], [x, z] = [y, z] = 1 > with respect to their usual generating sets (for brevity we omit

further explanations).

Finally, below are the Cayley graphs of the wallpaper groups. A wallpaper group is a group

acting freely by isometries on the Euclidean plane with a compact fundamental domain. It is

well known that there are only 17 wallpaper groups up to group isomorphism. In [8], Coxeter and
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Figure 1.1: Examples of Cayley graphs

Figure 1.2: More examples of Cayley graphs

Moser find natural generating sets for all the 17 wallpaper groups and compute their Cayley graphs

(shown below).

1.2 G-Periodic Graphs and Discrete Periodic Operators of Finite Order

In fact, it will be worthwhile to consider a more general version of graphs, that we will call

G-periodic graphs. In fact, the Cayley graph of a finite extension of G will be a G-periodic graph.

We begin with the most general setting.

Let Γ = (V,E) be a locally finite graph (so the degree of each vertex is finite) with set of

vertices V and set of edges E. Consider the Hilbert space of all complex valued square summable

3



Figure 1.3: The seven Cayley graphs of the wallpaper groups.

functions on V

l2(V ) := {f : V → C :
∑
v∈V

|f(v)|2 <∞}

with the usual inner product

< f, g >:=
∑
v∈V

f(v)g(v).

We define the discrete Laplacian ∆ : l2(V ) → l2(V ) as

∆f(v) :=
1√
degΓv

∑
w∼v

(
f(w)√
degΓw

− f(v)√
degΓv

)

where degΓv is the degree of the vertex v.

It should be noted that there exist plenty of variations of this study [9, 10]. The most obvious

one is to consider the adjacency operator A, Markov operator M and Schrödinger operator

∆+ q (where q : V → R is bounded) defined as

Af(v) :=
∑
w∼v

f(w) Mf(v) :=
1

degΓv

∑
w∼v

f(w) (∆ + q)f(v) := ∆f(v) + q(v)

4



Another variation is to account for multiple edges, or to use transition probabilities.

Definition. Let G be a finitely generated group. A G-periodic graph is a graph Γ = (V,E) which

admits a free, cofinite and edge preserving action of G on the vertices V . More precisely:

i. the action of G is a free action on the set of vertices V .

ii. The orbit space V/G is finite.

iii. For all g ∈ G, u, v,∈ V , (u, v) ∈ E =⇒ (g · u, g · v) ∈ E.

Choosing one vertex from each orbit of the group action, we obtain a fundamental domain

W ⊂ V which is a finite subset (by ii). If G is amenable (see definition below), we call Γ an

amenable periodic graph, if G is abelian, we call Γ an abelian periodic graph, and so on.

Below is an abstract picture of a Z2 periodic graph. The green enclosed region can be inter-

preted as a fundamental domain. This domain is then translated and then edges are attached (in

red) between the vertices (in blue) in a periodic manner.

Figure 1.4: Abstract picture of a Z2 periodic graph

For the rest of this section Γ = (V,E) will always denote a G-periodic graph.

Definition. The left-regular representation of G associated to Γ is the map π : G → U(l2(V ))

defined by

πgf(v) := f(g−1 · v) v ∈ V, f ∈ l2(V ), g ∈ G

5



It is a unitary representation ofG into the space of bounded unitary operators on l2(V ). An operator

T : l2(V ) → l2(V ) is called periodic whenever it commutes with the left-regular representation,

i.e. πgTf = Tπgf for any f ∈ l2(V ), g ∈ G. Since G acting on V preserves edges, it follows that

the discrete Laplacian is periodic.

For a groupG with finite generating set S, we callG is amenable when there exists a sequence

{Fj}∞j=1 of finite subsets of G such that

|((S ∪ S−1) · Fj) \ Fj|
|Fj|

→ 0 as j → ∞.

{Fj}j is called a Følner sequence for (G,S). Note that the amenability of G does not depend on

the finite generating set S [7], because there are many more criteria for the amenability of a group

which do not depend on the choice of a generating set (e.g. existence of an invariant mean).

Definition. For any vertices u, v ∈ V denote by d(v, w) the length of the shortest path in Γ from v

to w, taking value ∞ when no such path exists. The r-thick boundary of a subset F ⊂ V (where

r ∈ N ) is defined to be:

∂rF := {v ∈ V \F : there exists w ∈ F with d(v, w) ≤ r}

Note that {Fj}j is a Følner sequence for (G,S) when |∂1Fj|/|Fj| → 0 on the Cayley graph

Γ(G,S) (its set of vertices is G and set of edges is {(g, s · g) : g ∈ G s ∈ S}). Also note

that when f ∈ l2(V ) is an eigenfunction and there exists F ⊂ G with f ≡ 0 on ∂2F , then IFf

is also an eigenfunction. Here, IF is the projection operator onto functions supported on F , i.e.

IFf(v) = f(v) when v ∈ F and is 0 otherwise. In general, an operator T : l2(V ) → l2(V ) is said

to be of finite order r if for any f, g ∈ l2(V ), v ∈ V ,

f(w) = g(w) for all w with d(w, v) < r =⇒ Tf(v) = Tg(v).

The operator T then has the following property: when f ∈ l2(V ) is an eigenfunction associated
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to T and there exists F ⊂ V with f ≡ 0 on ∂rF , then IFf is also an eigenfunction. The discrete

Laplacian, the Adjacency, the Markov and the Schrödinger operators are all of order 2. Although

we focus in this thesis on the discrete Laplacian and the Markov operator, all of the claims and

techniques hold for periodic bounded self-adjoint operators of finite order on a periodic graph

(with minor changes in the constants related to the order of the operator).

Lemma 1.2.1 (Thick Følner sequences). If G is amenable, then for any thickness r ∈ N , generat-

ing set S of G and fundamental domain W of Γ there exists l ∈ N and a sequence of finite subsets

Fj ⊂ G such that the sequence Fj := Fj ·W ⊂ V satisfies

∂rFj ⊂ (∂lFj) ·W for all j, and
|∂rFj|
|Fj|

≤ |(∂lFj) ·W |
|Fj|

→ 0 as j → ∞.

We call the sequence {Fj} a standard r-thick Følner sequence w.r.t a fixed fundamental domain

W and generating set S of G.

Proof. The case when r = 1 and Γ = Γ(G,S) follows by the definition of amenability. Next, lets

look at the case where r > 1 and Γ = Γ(G,S) . Consider the generating set S ′ := S ∪ S2 ∪ ...Sr

where Sr := {sϵ11 ...sϵrr : s1, ...sr ∈ S, ϵ1, ...ϵr ∈ {+1,−1}}. Since G is amenable, there exists a

1-thick Følner sequence {Fj} By construction, the 1-thick boundary of Fj with respect to Γ(G,Sr)

is precisely the r-thick boundary of Fj with respect to Γ(G,S) therefore {Fj} is our desired Følner

sequence with l = r.

Next, we have the general case. Fix a fundamental domainW and a generating set S ofG Each

element w ∈ W is connected to finitely many vertices v ∈ V = ⊔g∈Gg ·W . So for each such v,

there exists a unique gv ∈ G,wv ∈ W such that v = gv · wv. Consider |gv|, which is the distance

of g from 1 in the Cayley graph Γ(G,S). Out of all v ∼ w and all w ∈ W pick the largest value

of |gv| and call it t. Inductively, it follows that if u ∈ gu ·W, v ∈ gv ·W and d(u, v) ≤ r then

|gug−1
v | ≤ rt. It follows that for each F ⊂ G, ∂r(F ·W ) ⊂ (∂lF) ·W . By the previous case, we

7



may choose an l := rt thick Følner sequence of Γ(G,S), {Fj} and define Fj := Fj ·W . We have:

|∂rFj|
|Fj|

≤ |(∂rtFj) ·W |
|Fj ·W |

=
|∂rtFj||W |
|Fj||W |

=
|∂rtFj|
|Fj|

→ 0

1.3 Spectra and Density of States

The discrete Laplacian ∆ (and the Markov operator M provided the graph is regular) is a self-

adjoint operator on l2(V ). We consider the spectrum sp(∆) of ∆, which is the set of all λ ∈ C

such that (∆ − λI) does not have a bounded inverse. Since ∆ is self-adjoint, sp(∆) ⊂ R. The

pure point spectrum is the set of all λ ∈ C for which (∆− λI) is not injective. An element λ of

the pure point spectrum is called an eigenvalue. A function f ∈ l2(V ) such that (∆ − λI)f = 0

is an eigenfunction of ∆ corresponding to the eigenvalue λ and the space of all such functions is

the eigenspace of ∆ corresponding to λ.

We next discuss the concept of density. According to the spectral theorem of self-adjoint

operators (see [11]), from ∆ we obtain a spectral measureE whose input are Borel sets and outputs

are projections on l2(V ). In the caseB = {λ} where λ is an eigenvalue,E({λ}) is the orthonormal

projection onto the eigenspace of λ. We will denote this eigenspace by Eλ.

Definition. Fix a fundamental domain W of Γ. The density or von Neumann trace of a Borel

subset B ⊂ sp(∆) is

dk(B) :=
1

|W |
tr(E(B)IW )

where tr(·) is the usual trace of a Hilbert space operator and IW is the standard projection l2(V )l2(W )

(which is a Hilbert-Schmidt operator hence E(B)IW is of trace class).

Note that we may commute the operators inside the trace: tr(E(B)IW ) = tr(IWE(B)) (see

[11]). From the spectral theorem, it follows that dk(·) is a measure on sp(∆). It is well known

(for instance see [12]) that this measure is purely continuous except a set of point masses which

occur precisely at the point spectrum of ∆ (i.e. the set of eigenvalues). When λ is an eigenvalue,
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dk({λ}) is called the von Neumann dimension of the eigenspace Eλ (see [12] for further context)

and when Γ = Γ(G,S) is a Cayley graph, dk(B) =< E(B)δ1, δ1 > and is called the spectral

measure of (G,S).

Note that if H ≤ G is a subgroup of finite index (so |G/H| < ∞), then H acts in any Cayley

graph Γ(G,S) of G. One can then check that the density of states of Γ(G,S) with H as the acting

group will be exactly the same as the density of states of Γ(G,S) with G as the acting group.

1.4 Examples of Spectra of Cayley graphs

Surprisingly, there are not that many explicit computations of spectra and spectral measures

(i.e. density of states) of Cayley graphs. To the best of the author’s knowledge, the following is

the list of the explicit computations throughout the literature (CORRECTION: the author was later

notified of the article [13], which sadly, due to a lack of time, was unable to incorporate in the

text).

1. The free groups Fk of rank k ∈ N . This was the first example of the spectrum of a group. It

is due to Kesten [14]. With respect to the natural free generating set S, the spectrum of the Markov

operator on the Cayley graph is

sp(M) = [−
√
2k − 1

k
,

√
2k − 1

k
].

and the spectral measure is absolutely continuous.

2. Free products of cyclic groups. In [15], Kuhn showed that for the free product of cyclic

groups Z/n∗...∗Z/n =< a1, ...ar|an1 = ... = anr = 1 >, the spectrum of the Markov operator with

respect to the generating set {a1, a21, ...an−1
1 , a2, a

2
2, ...a

n−1
2 , ..., ar, a

2
r, ...a

n−1
r } is an closed interval

inside (−1, 1). The numeric expressions for the endpoints of this interval are a bit involved. An

interesting phenomenon is that, when we consider an anisotropic Markov operator (which has

more weight toward certain generators), the spectrum can split into the union of two or more

disjoint closed intervals.

3. Virtually abelian groups (i.e. finite extensions of commutative groups). Using the classical
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Floquet-Bloch transform, the spectrum has a band gap structure, that is, it is the union of finitely

many closed intervals. Moreover, the spectral measure is absolutely continuous expect possibly

from a finite number of point masses. For more details, see the monograph of Berkolaiko and

Kuchment [16].

4. The discrete Heisenberg group. In [17], Béguin, Valette and Zuk compute the spectrum of

the Heisenberg group. With respect to the generating set from the presentation

< x, y : [x, [x, y]] = [y, [y, x]] = 1 >

the spectrum of the Markov operator is [−1, 1]. On the other hand, with respect to the generating

set from the presentation

< x, y, z : z = [x, y], [x, z] = [y, z] = 1 >

the spectrum of the Markov operator is [
−1−

√
2

3
, 1].

5. The Lamplighter group, which is the wreath product Z/2 ≀ Z. In [18], Grigorchuk and

Zuk realize the Lamplighter group as an automaton group, acting on the binary rooted tree by

tree automorphisms. Using a matrix recursions technique, the spectral measure of the Lamplighter

group is computed as the weak limit of the spectral measures of the Schreier graphs of the nth-level

stabilizers of the tree action. They find that sp(M) = [−1, 1]. Moreover, the spectral measure is

discrete, and is given by the formula:

dk((−∞, x]) = σ̄(
1

π
arccos(x)) where σ̄(z) :=

∞∑
q=2

|{p|gcd(p, q) = 1 and p/q ≤ z}|
2q − 1

z ∈ [0, 1].

This is the first example of a group whose spectral measure is purely discrete. On the other hand, in

[19], Grabowski and Virag find a generating set of the Lamplighter group whose spectral measure

is singular continuous. Furthermore, in [12], Grigorchuk and Pittet show that the Lamplighter

group (and more generally every amenable indicable group) has a generating set whose spectral
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measure is continuous. This implies that the continuity or the discreteness of the spectral measure

of a group is not a group invariant.

6. The Grigorchuk groups {Gω}ω with ω ∈ Ω2. The Grigorchuk groups can be realized

as groups acting by tree automorphisms on the infinite binary rooted tree [20]. For any infinite

sequence ω ∈ {0, 1, 2}∞ one can constructs Gω. Let Ω2 be the set of ω where two of the symbols

{0, 1, 2} appear infinitely often. The groups {Gω}ω with ω ∈ Ω2 are infinite torsion groups and

all have intermediate growths which are in-equivalent for two different ω ∈ Ω2 [20]. In particular,

this means that the Cayley graphs of {Gω}ω are not isomorphic. In [21], Dudko and Grigorchuk

show that the spectrum of the Markov operator on Γ(Gω, {aω, bω, cω, dω}) is

[−1

2
, 0] ∪ [

1

2
, 1].

An interesting consequence of this result is that there exists a continuum of Cayley graphs which

are not isomorphic to each other yet their spectra are the same. Therefore, one cannot completely

"Hear the Shape of a Group" [21]. Another example of this phenomenon is the countable family of

groups Zd where d ∈ N . In this case, basic Floquet-Bloch analysis reveals that sp(M) = [−1, 1]

for the standard generating set of Zd. The same question about spectral measures (i.e. whether

there exist two non-isomorphic Cayley graphs whose spectral measures are the same) remains

open.

1.5 Kesten’s Criterion of Amenability

In his paper [14], Kesten initiated the study of random walks on groups and their spectral

properties. Later in his paper [22], he shows a spectral characterization of the amenability of a

finitely generated group:

Theorem 1.5.1 (Kesten’s characterization of amenability). LetG be a finitely generated group with

generating set S. Then G is amenable if and only if the spectral radius of the Markov operator M

is equal to 1.

Kesten’s original proof not only relies on the theory of random walks, but also to a weak Følner

11



condition of amenability from Følner’s original paper (weaker than the usual Følner condition).

The proof of this weak Følner condition requires yet another condition of amenability from an

earlier paper of Følner. In addition, the proof of Kesten requires plenty of Lemmas and long

computations. Instead, we provide a shorter proof, following Pete’s lecture notes [23]. The proof

holds more generally for infinite reversible Markov chains.

Theorem 1.5.2 (Kesten-Cheeger-Dodziuk-Mohar). The following are equivalent for a connected

regular graph Γ = (V,E):

1.(Edge Isoperimetric Inequality) There exists κ > 0 such that for all finite subsets of the vertices

F ⊂⊂ V we have:

κ|F | ≤ |∂1F |

where ∂1F denotes the 1-thick boundary of F .

2.(Sobolev Inequality) There exists κ > 0 such that for all finite supported functions f ∈ D(V ),

κ
∑
v

|f(v)| ≤ 1

2

∑
v∼w

|f(v)− f(w)|.

3.(Dirichlet Inequality) There exists κ̃ > 0 such that for all finite supported functions f ∈ D(V ),

κ̃
∑
v

|f(v)|2 ≤ 1

2

∑
v∼w

|f(v)− f(w)|2.

4.(Kesten’s Criterion) There exists κ̃ > 0 such that the spectral radius of the Markov operator M

satisfies r(M) ≤ 1− κ̃.

Observe that by Følner’s condition, a Cayley graph satisfies the edge isoperimetric inequality

if and only if the underlying group is NOT amenable. Hence this theorem is a generalization of

Kesten’s theorem to infinite regular graphs.
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Proof. 1 =⇒ 2: First of all, since

∑
v∼w

|f(v)− f(w)| ≥
∑
v∼w

| |f(v)| − |f(w)| |

without loss of generality we may assume that f ≥ 0. We use a standard "wedding cake slices"

argument from probability. We will look at the sets {v ∈ V : f(v) > t} where t > 0.

1

2

∑
v∼w

|f(v)− f(w)| =
∑
v

∑
w∼v,f(w)≥f(v)

|f(v)− f(w)|

=
∑
v

∑
w∼v,f(w)≥f(v)

∫ ∞

0

1[f(v),f(w)](t)dt =

∫ ∞

0

∑
v

∑
w∼v,f(w)≥f(v)

1[f(v),f(w)](t)dt

=

∫ ∞

0

∑
v

∑
w∼v,f(w)≥t≥f(v)

1dt =

∫ ∞

0

|∂1St|dt ≥ κ

∫ ∞

0

|St|dt = κ
∑
v

|f(v)|.

2 =⇒ 1: Plug in f = 1F .

2 =⇒ 3: This is a standard Cauchy-Schwartz space estimate: Again, by the triangle inequality,

we may assume without loss of generality that f ≥ 0.

∑
v

|f(v)|2 =
∑
v

f(v)2 ≤ 1

2κ

∑
v∼w

|f(v)2 − f(w)2|

=
1

2κ

∑
v∼w

|f(v)− f(w)| · |f(v) + f(w)| ≤ 1

2κ

√∑
v∼w

|f(v)− f(w)|2
√∑

v∼w

|f(v) + f(w)|2

≤ 1

2κ

√∑
v∼w

|f(v)− f(w)|2
√
2
∑
v

|f(v)|2

After squaring and dividing by the l2 norm of f we obtain:

∑
v

|f(v)|2 ≤ 2

κ2
1

2

∑
v∼w

|f(v)− f(w)|2.

3 =⇒ 1: Plug in f = 1F .
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3 ⇐⇒ 4: Since the Markov operator is self adjoint, its spectral radius is equal to its operator

norm and

r(M) = ||M || = supf∈l2(V )

< Mf, f >

< f, f >

As a result, we have the following series of equivalences:

r(M) ≤ 1− κ̃ ⇐⇒ ∀f ∈ l2(V ) < Mf, f >≤ (1− κ̃) < f, f >

⇐⇒ ∀f ∈ D(V ) < Mf, f >≤ (1− κ̃) < f, f >

⇐⇒ ∀f ∈ D(V ) κ̃||f ||22 ≤ ||f ||22− < Mf, f > .

Finally, observe that

||f ||22− < Mf, f >=
∑
v

(f(v)f(v)− 1

degΓv

∑
w∼v

f(v)f(w))

=
∑
v

1

degΓv

∑
w∼v

f(v)(f(v)− f(w))

=
1

2

∑
v

1

degΓv

∑
w∼v

f(v)(f(v)− f(w)) +
1

2

∑
w

1

degΓw

∑
v∼w

f(w)(f(w)− f(v))

=
1

2

∑
v∼w

|f(v)− f(w)|2.

Finally, we remark that Kesten showed in [14] that for any finitely generated groupG and finite

generating set S of size k, r(M) ≥
√
2k − 1

k
, with equality holding if and only if G is free and

S is a free generating set. Therefore, the spectral radius not only quantifies the amenability of a

group, but also whether a group is freely generated.
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1.6 Relations to the Kadison-Kaplansky Conjecture

We now discuss an important connection between spectra of Cayley graphs and the Kadison-

Kaplansky conjecture about group C∗ algebras.

Definition. Given a finitely generated group G we can consider the left regular representation

π : G → U(l2(G)) ⊂ B(l2(G)) and take the closure of π(G) under the strong operator topology

(i.e. the topology where Tn → T whenever ||Tn − T || → 0). This closure is called the reduced

group C∗ algebra of G and is denoted by C∗
r (G).

Suppose now that G has torsion, that is, there exists g ∈ G and n ∈ N such that gn = 1. Then

p =
1

n

∑n
k=1 g

k is an idempotent, i.e. p2 = p, in the group algebra (and hence also in the group C∗

algebra). If g ̸= 1, then p ̸= 0 or 1, i.e. p is a nontrivial idempotent. It is natural to ask whether

the converse holds. It turns out this is a difficult question, and it remains open for a general finitely

generated group which is torsion-free (i.e. there is no torsion, i.e. no element has finite order).

Conjecture 1 (Kaplansky’s Idempotent Conjecture). IfG is a finitely generated torsion-free group

and F is a field, then the group algebra F [G] has no nontrivial idemptotents.

Conjecture 2 (Kadison-Kaplansky Conjecture). If G is a finitely generated torsion-free group,

then the reduced group C∗ algebra C∗
r (G) has no nontrivial idemptotents.

We remark that one of the main conjectures in noncommutative geometry, the Baum-Connes

Conjecture, implies the Kaplansky-Kadison Conjecture. The Baum-Connes Conjecture has been

proven for wide classed of groups, including amenable groups, Gromov hyperbolic groups and

their subgroups, groups acting properly on trees, lattices of SO(n, 1) and SU(n, 1) and many

more groups. For more details see [24].

The main link between the Kadison-Kaplansky Conjecture and spectra of periodic operators

on Cayley graphs is the following elementary lemma:

Lemma 1.6.1. Let G be a finitely generated group and S a finite generating set and let M be the

Markov operator on Γ(G,S), or more generally any self adjoint operator in C∗
r (G). If sp(M) is

disconnected, then C∗
r (G) contains a nontrivial idempotent.
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Proof. The proof is a standard holomorphic functional calculus argument. If sp(M) ⊂ [−1, 1]

is disconnected, say λ ∈ [−1, 1] − sp(M) , since sp(M) is closed we can find ϵ > 0 such (λ −

ϵ, λ+ ϵ) ⊂ [−1, 1]−sp(M). We can therefore chose two contours on the complex plane Γ1 and Γ2

surrounding [−1, λ− ϵ] and [λ+ ϵ, 1] respectively. Let ϕ be the analytic function on the bounding

domains of Γ1 and Γ2 which is 0 on the bounding domain of Γ1 and 1 on the bounding domain of

Γ2. By the holomorphic functional calculus, we can construct the operator ϕ(M) ∈ C∗
r (G) which

will satisfy ϕ(M)ϕ(M) = (ϕ2)(M) = ϕ(M) and hence ϕ(M) is an idemptent. Finally, ϕ(M) ̸= 0

since ϕ(M)E([λ + ϵ, 1]) = E([λ + ϵ, 1]) ̸= 0 and ϕ(M) ̸= 1 since ϕ(M)E([−1, λ − ϵ]) = 0.

Therefore ϕ(M) is a nontrivial idempotent.

Combining the above elementary lemma with the (not elementary) fact that amenable groups

satisfy the Baum-Connes Conjecture (and hence also the Kadison-Kaplansky conjecture), the fol-

lowing corollaries follow:

Corollary 1.6.1.1. If a finitely generated torsion free group G satisfies the Kadison-Kaplansky

conjecture, then sp(M) is a closed interval for all finite generating sets S.

Corollary 1.6.1.2. If G is a finitely generated amenable torsion free group and S is a finite gener-

ating set, then sp(M) = [m, 1] for some −1 ≤ m ≤ 1.

Corollary 1.6.1.3. If G is a finitely generated amenable torsion free group, S is a finite generating

set, and all the relations of S are generated by words of even length, then Γ(G,S) is bipartite and

hence sp(M) = [−1, 1]

1.7 Digression: Property (T) and Expander Graphs

Another great example of the interplay between group theory and spectral graph theory is the

construction of expander graphs. In this section, we follow [25].

Roughly speaking, expanders are special graphs which are sparse (have small degree) yet very

well connected (each set of verices has a lot of neighbors relative to its size). They are objects of

great importance in theoretical computer science and network theory (see [26] for more details).
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Definition. The Cheeger constant of a connected finite graph Γ = (V,E) is

h(Γ) := infA⊂V
|E(A, V − A)|

min(|A|, |V − A|)

where E(A, V − A) is the set of all edges connecting vertices in A with vertices in V − A.

A family of expanders with fixed degree d ∈ N is a sequence of finite connected graphs Γn =

(Vn, En) such that:

1. |Vn| → ∞ as n→ ∞.

2. Γn has degree d.

3. There exists a constant δ > 0 such that h(Γn) > δ > 0 for all n, i.e. infnh(Γn) > 0

Although is may not appear so at first sight, it is crucial to point out the expanders are a

spectral property. To see this, we introduce more terminology. Given a connected regular finite

graph Γ = (V,E), we always have 0 ∈ sp(∆), 1 ∈ sp(M) and ∆ = 1 − M (which means

that sp(∆) = 1 − sp(M)). Since < ∆f, f >≥ 0 for all f ∈ l2(V ), the eigenvalues of ∆ are

non-negative. Denote the second smallest positive eigenvalue of ∆ by λ1(Γ).

Since constant functions are the only eigenfunction of λ = 0 of ∆, removing this subspace

from l2(V ), we get:

λ1(Γ) := inf{< ∆f, f >

< f, f >
|
∑
v∈V

f(v) = 0}.

For each A ⊂ V , plugging in the function f which takes the value |V −A| on A and the value |A|

on V − A, we obtain λ1(Γ) ≤ 2h(Γ). We also have an estimate in the reverse direction:

Proposition 1.7.1 (Cheeger’s Inequality). For every connected regular finite graph Γ = (V,E),

λ1(Γ) ≥ h(Γ)/2

Proof. See [25].

Corollary 1.7.1.1. Let (Γn = (Vn, En))n be a sequence of connected finite graphs of fixed degree
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d ∈ N . Then

infnh(Γn) > 0 ⇐⇒ infnλ1(Γ) > 0 ⇐⇒ supnsup{|λ| : λ ∈ sp(Mn), λ ̸= 1} < 1

Although it is not hard to show that families of expanders exist (using the probabilistic method),

finding explicit examples is a very nontrivial task. There are many different explicit constructions

of expander graphs, many of which use Cayley and Schreier graphs of groups. In this section we

will outline a construction due to Margulis which uses Kazhdan’s Property (T) [25].

Definition. Let G be a finitely generated group. A unitary representation, ρ : G → U(H) is said

to have almost invariant vectors when for every ϵ > 0 and finite subset K ⊂⊂ G, there exists a

unit vector v ∈ H, ||v|| = 1 with ||ρ(g)v − v|| < ϵ for all g ∈ K.

We say that G has Property (T) if every unitary representation which has almost invariant vectors

much have an invariant vector v ∈ H, i.e. ρ(g)v = v for all g ∈ G.

Proposition 1.7.2. Infinite amenable groups do not have Property (T).

Proof. By Følner’s Criterion of amenability, for every ϵ > 0 and finite K ⊂⊂ G there exists finite

F ⊂⊂ G such that for all g ∈ K

|gF ∆ F | < ϵ|F |

This means precisely that the unit vector f(g) :=
1√
|F |

1F (g) is an almost invariant vector of the

left regular representation π : G→ U(l2(G)):

||π(g)f − f || < ϵ.

Therefore the left regular representation has almost invariant vectors. However, since the group is

infinite and the action of G on itself is transitive, there are no invariant vectors in the left regular

representation. Therefore G does not have Property (T).

We remark that the converse is also true and is due to Hulanicki, though we will not need
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this result. In fact, one can obtain much deeper results via the notion of weak containment of

representations. See [25] and [27] for more on this.

Theorem 1.7.3 (Hulanicki). G is amenable if and only if the left regular representation contains

almost invariant vectors.

Proposition 1.7.4. Free groups do not have Property (T)

Proof. Let Fk be free of rank k ∈ N . By a universal property argument, the abelianization

Fk/[Fk, Fk] is a free abelian group of rank k, and hence is infinite. Consider the left regular

representation of Fk/[Fk, Fk], and compose it with the natural quotient map:

ρ : Fk → Fk/[Fk, Fk] → U(l2(Fk/[Fk, Fk]))

Since Fk/[Fk, Fk] is abelian, it is amenable, and hence ρ has almost invariant vectors. However, ρ

cannot have any invariant vectors. Therefore Fk cannot have Property (T).

Unfortunately, we would have to go outside the scope of this thesis to prove the following

fundamental result:

Theorem 1.7.5. SL2(Z) does not have Property (T), while SLn(Z) does have Property (T) for

n ≥ 3.

The following theorem is the key link between Property (T), a group theoretic property, and

expanders, an object in spectral graph theory.

Theorem 1.7.6. Let G be a finitely generated group with Property (T), and let (Nk)
∞
k=1 be a (not

necessarily nested) sequence of (not necessarily normal) subgroups of G of finite index going to

infinity:

for all k Nk ≤ G, [G : Nk] <∞ and [G : Nk] → ∞ as k → ∞

Then for any finite generating set S of G, the family of Schreier graphs (Γ(G,Nk, S)k forms a

family of expanders of fixed degree.
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Proof. Recall that the Schreier graph Γk := Γ(G,Nk, S) consists of vertices Vk := G/Nk =

{gNk|g ∈ G} and edges Ek = {(sgNk, gNk)|g ∈ G, s ∈ S ∪S−1}. Consider the subspace l2(Vk):

Hk := {f ∈ l2(Vk)|
∑
v∈Vk

f(v) = 0}

Now, G acts on G/Nk and hence also on l2(Vk) = l2(G/Nk). It is easy to check that Hk will be

an invariant subspace of the action of G. We can therefore take the usual l2 direct sum of all these

representations and obtain an infinite dimensional unitary representation of G:

H :=
⊕
k

Hk, ρ : G→ U(H)

Since l2(Vk) splits as the direct sum of the constant functions and Hk, Hk has no invariant vectors,

and therefore H also has no invariant vectors.

By assumption, G has Property (T), and therefore ρ : G → U(H) does not have almost

invariant vectors. This means that there exists an ϵ > 0 and finite K ⊂⊂ G such that for all fH

there exists g ∈ K with

||ρ(g)f − f || ≥ ϵ||f || (∗).

Since K is finite, there exists l ∈ N sich that K is contained in the ball of radius l in Γ(G,S)

centered at the identity.

We claim that for all f ∈ H there exists s ∈ S ∪ S−1 with

||ρ(s)f − f || ≥ ϵ/l ||f ||.

Lets prove this claim. Suppose the contrary, so there exists f ∈ H such that for all s ∈ S ∪ S−1

we have

||ρ(s)f − f || < ϵ/l ||f ||.
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Then for all g ∈ K, we may write g = s1s2...sl where each si is in s ∈ S ∪ S−1 ∪ {1}.

||ρ(s1s2...sl)f−f || ≤ ||ρ(s1...sl)f−ρ(s2...sl)f ||+ ||ρ(s2...sl)f−ρ(s3...sl)f ||+ ...+ ||ρ(sl)f−f ||

< ϵ/l ||f ||+ ϵ/l ||f ||+ ...+ ϵ/l ||f || = ϵ||f ||.

But this contradicts (∗) therefore the claim follows.

We can now show that (Γ(G,Nk, S)k is a family of expanders. The only thing to show is that

h(Γ(G,Nk, S) > δ > 0 for some fixed constant δ > 0. Fix k and A ⊂ Vk and let n := |Vk| and

a := |A|, Consider f ∈ Hk defined by:

f(v) = n− a if v ∈ A f(v) = a if v ∈ V − A

Then there exists s ∈ S such that ||ρ(s)f − f || ≥ ϵ/l ||f ||. This inequality is becomes:

n2|Es(A, V − A)| ≥ ϵ2

l2
na(n− a)

whereEs(A, V −A) is the set of all edges connectingA to V −Awhich have the form (sgNk, gNk)

for some g ∈ G. Rearranging, we get:

|Es(A, V − A)| ≥ ϵ2

l2
a(1− a

n
) =

ϵ2

l2
|A|(1− |A|

|V |
)

If |A| ≤ |V |/2, then

|E(A, V − A)| ≥ |Es(A, V − A)| ≥ ϵ2

l2
|A|(1− 1/2) =

ϵ2

2l2
|A| = ϵ2

2l2
min(|V − A|, |A|).

If |A| > |V |/2, then |V − A| ≤ |V |/2 and |A| > |A− V | so

|E(A, V − A)| ≥ ϵ2

2l2
|V − A| = ϵ2

2l2
min(|V − A|, |A|).
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Since this holds for all subsets A ⊂ V , we conclude that h(Γk) ≥
ϵ2

2l2
> 0, therefore we indeed

obtain a family of expanders.

Example-Construction: Thanks to the above theorem, we have the following explicit con-

struction of expanders. Consider SL3(Z), which has property (T) and is generated by

A =


1 1 0

0 1 0

0 0 1

 B =


0 1 0

0 0 1

1 0 0

 .

For each prime number p, consider the natural maps ϕpSL3(Z) → SL3(Z/p), where Z/p is the

finite field with p elements. Then ker(ϕp) is a subgroup of SL3(Z/p) of finite index and

[SL3(Z/p) : ker(ϕp)] = |SL3(Z/p)| → ∞ as p prime → ∞.

By the above theorem, the family of Cayley graphs (Γ(SL3(Z/p), {A,B}))p prime is a family of

expanders of fixed degree 4.
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2. EIGENFUNCTIONS OF FINITE SUPPORT

All the content of this chapter comes from the preprint [1]. It should be noted that a lot of the

ideas that follow are not original ideas of the author, and credit is attributed accordingly throughout

the text.

2.1 Existence and Approximation in the Amenable Case

The following theorem is due to Kuchment [28] for the case whenG is abelian. In [29], Veselić

generalized the theorem to the case when G is amenable. Later in [30], Higuchi and Nomura gave

a simpler proof using an argument of Delyon and Souillard in [31]. Here we provide the proof of

Higuchi and Nomura.

Theorem 2.1.1 (Strong Localization of Eigenfunctions, Kuchment-Veselić). Let Γ be aG-periodic

graph with amenable group G and let ∆ be the Laplacian operator on it. If λ is an eigenvalue of

∆, then there exists an eigenfunction of λ which has finite support.

Proof. We outline the proof of Higuchi and Nomura from [30]. Since λ is an eigenvalue, there

exists f ∈ l2(V ) \ {0} such that ∆f = λf . without loss of generality ||f || = 1. Fix a fundamental

domain W . Since f ̸= 0 and translations of eigenfunctions are still eigenfunctions, without loss

of generality f(w) ̸= 0 for some w ∈ W . Picking an orthonormal basis {ϕi}i of l2(V ) such that

ϕ1 = f we have:

dk({λ}) = 1

|W |
tr(E({λ})IW ) ≥ < IWE({λ})f, f >

|W |
=
< IWf, f >

|W |
=

∑
w∈W

|f(w)|2 > 0

Next, since the action of G commutes with ∆, for all g ∈ G

|W |dk({λ}) = tr(E({λ})IW ) = tr(E({λ})πg−1πgIW ) = tr(E({λ})Ig·W )

And hence for all finite subsets F of G, dk({λ}) = 1

|F ·W |
tr(E(B)IF·W ).
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Now, pick a standard 2-thick Følner sequence {Fj}j . where Fj = Fj ·W for all j and l ∈ N

is the corresponding constant from Lemma 3.1. Also, pick an orthonormal basis {ϕ1, ...ϕmj
} of

I(Fj∪∂lFj)·WE({λ})l2(V ) and extend it to an orthonormal basis {ϕj}∞j=1 of l2(V ). We have:

tr(I(Fj∪∂lFj)·WE({λ}) =
mj∑
i=1

< I(Fj∪∂lFj)·WE({λ})ϕi, ϕi > +
∞∑

i=mj+1

< I(Fj∪∂lFj)·WE({λ})ϕi, ϕi >

=

mj∑
i=1

< I(Fj∪∂lFj)·Wϕi, ϕi > ≤ mj

Using the above estimate, we claim that there exists j such that |∂2Fj| < mj . If not, that |∂2Fj| ≥

mj for all j and hence

0 < dk({λ}) = 1

|(Fj ∪ ∂lFj) ·W |
tr(I(Fj∪∂lFj)·WE({λ}) ≤

mj

|(Fj ∪ ∂lFj) ·W |
≤ |∂2Fj|

|Fj|
→ 0

a contradiction. Picking j such that |∂2Fj| < mj , it follows that {I∂2Fj
ϕ1, ...I∂2Fj

ϕmj
} is a linearly

dependent set so we can find a1, ...amj
not all zero such that

h :=

mj∑
i=1

ajϕi ≡ 0 on ∂2Fj

It then follows that IFj
h is an eigenfunction with finite support inside Fj which is nonzero due to

the independence of the ϕi on Fj .

Denote byD(Γ) all C-valued functions on the vertices V of Γ with finite support and byDλ(Γ)

all the eigenfunctions of λ in D(Γ). The following theorem is due to Kuchment for the abelian

case [28] and Veselić for the amenable case [29]. Here, we provide a new proof using the argument

of Delyon and Souillard [31].

Theorem 2.1.2 (Finite Support Approximation of Eigenfunctions, Kuchment-Veselić). .

Let GΓ be an G-periodic graph with amenable G and let ∆ be the Laplacian operator on it with

eigenvalue λ. If f ∈ l2(V ) is an eigenfunction of λ, then for all ϵ > 0 arbitrarily small, there exists

24



g ∈ Dλ(Γ) such that ||f − g|| < ϵ, i.e. the finite support eigenfunctions of λ are l2-dense in the

l2-eigenspace of λ.

Proof. Let M be the closure of D(Γ) in l2(V ) and Eλ be the eigenspace of λ. Suppose the

contrary, i.e. M ≠ Eλ. Then the orthogonal complement of M (w.r.t. the subspace Eλ) is not

empty, N := M⊥ ̸= ∅ Note that since for all g ∈ G πgD(Γ) = D(Γ),

f ∈ N ⇐⇒ for all h ∈ D(Γ) < f, h >= 0

⇐⇒ for all h ∈ D(Γ) < πgf, πgh >= 0 ⇐⇒ < πgf, h >= 0

Hence N is also invariant under translations.

Next, consider the orthogonal projection onto N , PN and fix a fundamental domain W. Define

the "density" of N as

d :=
1

|W |
tr(IWPN )

where the trace is taken w.r.t. l2(V ) Pick some f ∈ N with ||f || = 1 and translated so that

f(w) ̸= 0 for some w ∈ W . Then by extending {f} to an orthonormal basis, we conclude that

d > 0. Since N is invariant under translations, it also follows that d =
1

|F ·W |
tr(IF·WPN ) for

every finite subset F of G.

Choose a standard 2-thick Følner sequence {Fj}j . where Fj = Fj ·W for all j, pick an or-

thonormal basis {ψ1, ...ψnj
} of I(Fj∪∂lFj)·WPN l

2(V ) and extend it to an orthonormal basis {ψj}∞j=1

of l2(V ). We conclude that tr(I(Fj∪∂lFj)·WPN ) ≤ nj . Similar to before, if for all j, |∂2Fj| ≥ nj ,

then 0 < d <
|∂2Fj|
|Fj|

→ 0 This cannot happen, so there is some j such that |∂2Fj| ≤ nj . We can

then find b1, ....bj not all zero such that

g :=

nj∑
i=1

bjψi ≡ 0 on ∂2Fj

Then IFj
g ∈ D(Γ). Here comes the contradiction. Since for all i = 1...nj , ψi ∈ IFj

PN l
2(V ) =

IFj
N , there exists ψ̄i ∈ N such that IFj

ψ̄i = ψi so
∑nj

i=1 bjψ̄i ∈ N . On the other hand, the ψi are
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linearly independent over Fj , g ̸= 0. We have:

0 = < g,

nj∑
i=1

bjψ̄i > =
∑
v∈Fj

|g(v)|2 ̸= 0

This is a contradiction, therefore N = ∅ =⇒ M = Eλ and the claim follows.

2.2 Finite Generation in the Commutative Case

For this section, let Γ = (V,E) be a Zd-periodic graph with fundamental domain W .

The Floquet-Bloch transform of f ∈ l2(V ) is a complex valued function with domain V ×T d

(where T d is the d dimensional torus)

f̂(v, eik) :=
∑
g∈Zd

f(g · v)e−ik·g

where v ∈ V , k ∈ Zd, eik = (eikj)dj=1 ∈ T d and k · g is the standard dot product.

One can verify that for all g ∈ Zd, f̂(g · v, eik) = eigf̂(v, eik). This means that the entire

function f̂ may be recovered from its restriction to W × T d, hence from now on we will view f̂ as

a function on this restricted domain.

One can visualized the transform as shown below. For each vertex (purple, red, orange) in

the fundamental domain (green box), we can consider the orbit under the Zd action and then take

"Fourier-like" sum along that orbit. We then obtain 3 functions on the unit torus, one for each

element in the fundamental domain (or equivalently one for each orbit)

The following key theorem is a consequence of standard techniques from Fourier analysis. For

a more detailed exposition see [16].

Proposition 2.2.1. a) Inversion Formula: for all v ∈ W, g ∈ Zd,

f(g · v) =
∫
[−π,π]d

f̂(v, eik)eik·gdk
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Figure 2.1: Abstract picture for the Floquet-Bloch transform

b) The map

f(u) 7→ (2π)−n/2f̂(v, eik)

is a unitary map from l2(V ) to L2(T d, C |W |), the space of all square summable functions from T d

to C |W |.

As a result of the above theorem, by composing ∆ with the Floquet-Bloch transform and its

inverse, we may transform the discrete Laplacian ∆ : l2(Γ) → l2(Γ) to a corresponding self-adjoint

map ∆̂ : L2(T d, C |W |) → L2(T d, C |W |).

Let v1 := (δ1,i)
d
i=1, ...vd := (δd,i)

d
i=1 be the standard basis of Zd and write zj := eivj . By defini-

tion, the image of f ∈ D(Γ) under the Floquet-Bloch transform is a vector of size n = |W | whose

entries are Laurent polynomials in (zj)j (that is, polynomials in (zj)j ∪ (z−1
j )j). We denote this

ring of Laurant polynomials by C[z±1
1 , z±1

2 , ..., z±1
d ]. The next two well known propositions from

[28] allow us to pass questions about finite support eigenfunctions to questions in commutative

algebra.

Proposition 2.2.2. The map ∆̂ : L2(T d, C |W |) → L2(T d, C |W |) restricted to
⊕n

k=1C[z
±1
1 , ..., z±1

d ]

is an C[z±1
1 , ..., z±1

d ]-linear homomorphism from the C[z±1
1 , ..., z±1

d ]-module
⊕n

k=1C[z
±1
1 , ..., z±1

d ]

to itself.

By the above proporition we may express ∆̂ as a |W | × |W | matrix whose entries are rational
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functions on T d ⊂ Cd expressed via Laurant polynomials. Classical Floquet-Bloch theory shows

that λ is an eigenvalue iff det(∆̂−λI) is the zero function on T d. Moreover, λ lies in the spectrum

sp(∆) iff det(∆̂− λI) has a zero. For more details see [16]. Moreover, we have:

Proposition 2.2.3 (Kuchment). A Zd-periodic graph Γ with Laplacian ∆ has an eigenvalue λ if

and only if the map

(∆̂− λIn) :
n⊕

k=1

C[z±1
1 , ..., z±1

d ] →
n⊕

k=1

C[z±1
1 , ..., z±1

d ]

is not injective. The kernel of this map corresponds to the finite support eigenfunctions of λ.

In view of the formula

f̂(g · v, eik) = eigf̂(v, eik) = zg11 ...z
gd
d f̂(v, e

ik) = zgf̂(v, eik)

we see that when we multiply each component of f̂ by the same monomial zg ∈ C[z±1
1 , ..., z±1

d ]

we are essentially translating f by g ∈ Zd. It follows that when we multiply each component of

f̂ by an arbitrary element of C[z±1
1 , ..., z±1

d ], then we are taking linear combinations of translations

of f̂ . Notice that (∆̂− λIn)f̂ = 0 ⇐⇒ (∆̂− λIn)z
gf̂ = 0 hence translations of eigenfunctions

are still eigenfunctions w.r.t. the same eigenvalue (alternatively one can just use the fact that ZdV

preserves edges). Therefore, if we wish to describe all finite support eigenfunctions of λ, it suffices

to find them up to translations by Zd.

The following proposition is due to Kuchement [28], but the proof presented here is new:

Proposition 2.2.4 (Kuchment). Let Γ be a Zd-periodic graph with discrete Laplacian ∆ on it

and let λ be an eigenvalue of ∆. Then λ has finitely many finite support eigenfunctions up to

translation and linear combinations. That is, there are eigenfunctions of λ f (1), ...f (r) such that

every eigenfunction of λ f with finite support is the finite linear combination of translations of

f (1), ...f (r).

Proof. Suppose that we had, a priori, a finite support eigenfunction f ∈ Dλ(Γ). Then we may
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translate it such that, without loss of generality, f has support in ∪g∈Nd -g · W . This means

that f̂ ∈ C[z1, ..., zd]. Next consider the entries of (∆̂ − λIn) (which are elements of the ring

C[z±1
1 , ..., z±1

d ]), look at all the integer powers of z1, ...zd in the terms of the entries and pick the

smallest negative power −P (set P = 0 if all the powers are non-negative). That way, the entries

of (z1, ...zd)P (∆̂ − λIn) all lie in C[z1, ..., zd]. We conclude that the set of all eigenfunctions of λ

whose support is finite and lies in ∪g∈Nd -g ·W is the kernel of the C[z1, ..., zd]-linear map:

(z1, ...zd)
P (∆̂− λIn) :

n⊕
k=1

C[z1, ..., zd] →
n⊕

k=1

C[z1, ..., zd]

By the classical Hilbert Basis Theorem, every ideal of C[z1, ..., zd] is finitely generated, i.e.

C[z1, ..., zd] is Noetherian. Every finitely generated module over a Noetherian ring is a Noetherian

module. The kernel of (z1, ...zd)P (∆̂ − λIn) is certainly a submodule of the finitely generated

C[z1, ..., zd]-module
⊕n

k=1C[z1, ..., zd], so it is finitely generated, say by generators f (1), ...f (r).

But what does this mean? For every eigenfunction with Floquet-Bloch transform f there are

g1, g2, ...gr ∈ C[z1, ..., zd] such that f = g1f
(1)+g2f

(2)+...+grf
(r). Breaking down g1, g2, ...gr into

linear combinations of monomials, and noting that multiplication by zg corresponds to translation

in Γ by g, we see that f is the linear combination of translations of f (1), ...f (r), and the claim

follows.

2.3 Finite Generation in the Amenable Noetherian Case

In this section we generalize Proposition 3.4. Recall that the Hilbert basis theorem (polynomial

rings are Noetherian) was the key ingredient in proving Proposition 3.4.

Throughout this section Γ is a G-periodic graph, where G is amenable.

Definition (Noncommutative Floquet-Bloch transform). Associate to each f ∈ D(Γ) a function

f̂ : V → C[G] sending v ∈ V to

∑
g∈G

f(g−1 · v)g ∈ C[G].
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Since f has finite support, the sum is finite and the map well defined. Notice that

for all h ∈ G ˆ(πhf)(v) = f̂(h−1 · v) = h−1f̂(v).

Fix a fundamental domain W . In view of the above identity, we can recover f̂ : V → C[G] from

f̂ |W , i.e. the vector (f̂(w))w∈W = (
∑

g∈G f(g · w)g)w∈W ∈ C[G]|W |.

It is easy to see that ·̂ : D(Γ) → C[G]|W | is a bijective C-linear map. To the operator ∆ :

D(Γ) → D(Γ) corresponds some other operator ∆̂ : C[G]|W | → C[G]|W |.

Proposition 2.3.1. The map ∆̂ is a left C[G]-module homomorphism from the free C[G]-module

C[G]|W | to itself.

Proof. The simplify the notation in the calculation, we consider instead the adjacency operator

Af(x) :=
∑

y∼x f(y). Fix a fundamental domain W = {w1, ...wn}. For each 1 ≤ i, j ≤ n, we

can find unique h1i,j, ...h
mi,j

i,j ∈ G such that

{v ∈ V |v ∼ wi} = {hki,j · wj|1 ≤ j ≤ n , 1 ≤ k ≤ mi,j}.

Since the group action preserves edges, for all g ∈ G:

{v ∈ V |v ∼ g · wi} = {g · hki,j · wj|1 ≤ j ≤ n , 1 ≤ k ≤ mi,j}.

For each f ∈ D(Γ) and 1 ≤ i ≤ n:

Âf̂(wi) = ˆ(Af)(wi) =
∑
g∈G

Af(g−1 · wi) g =
∑
g∈G

n∑
j=1

mi,j∑
k=1

f(g−1 hki,j · wj) g

=
n∑

j=1

mi,j∑
k=1

∑
g∈G

f(((hki,j)
−1g)−1 · wj) g =

n∑
j=1

mi,j∑
k=1

∑
h∈G

f(h−1 · wj) h
k
i,jh

=
n∑

j=1

mi,j∑
k=1

hki,j
∑
h∈G

f(h−1 · wj) h =
n∑

j=1

(

mi,j∑
k=1

hki,j) f̂(wj)
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Therefore we obtain a left C[G]-module homomorphism which is represented as a matrix of group

algebra elements by (
∑mi,j

k=1 h
k
i,j)

n,n
i=1,j=1.

Recall that a ringR is Noetherian whenever every submodule of a finitely generatedR-module

is finitely generated.

Proposition 2.3.2. Let Γ be anG-periodic graph with amenable groupG, ∆ be the discrete Lapla-

cian on Γ and λ an eigenvalue of ∆.

If the group algebra C[G] is Noetherian (in particular if G is virtually polycyclic),

then there are finitely many finite support eigenfunctions f (1), ...f (r) ∈ Dλ(Γ) such that every

eigenfunction of λ with finite support on Γ is the finite linear combination of translations of

f (1), ...f (r)

Proof. Note that f ∈ Dλ(Γ) iff (∆− λI)f = 0 iff (∆̂− λI)f̂ = 0 iff f ∈ kernel(∆̂− λI). This

kernel is a submodule of C[G]|W |. Since C[G] is Noetherian, kernel(∆̂−λI) is finitely generated.

Say, kernel(∆̂ − λI) =< f̂ (1), ..., f̂ (r) >. Then for all f ∈ Dλ(Γ), there exist h1, ...hr ∈ C[G]

such that f̂ = h1f̂
(1) + ...+ hrf̂

(r). Write h1 =
∑

g∈G agg so that:

h1f̂
(1) = (

∑
g∈G

agg)f̂
(1) =

∑
g∈G

ag(gf̂
(1)) =

∑
g∈G

ag(
ˆπ−1

g f (1))

Hence to h1f̂ (1) corresponds a function which is the finite linear combination of translations of

f (1), and the theorem follows.

The theorem of Paul Hall [32] states that the group algebra of a virtually polycyclic group

is Noetherian (virtually means "finite extension of"). Recall that a finitely generated group G is

polycyclic if it admits a subnormal series whose factors are all cyclic groups. Note that nilpotent

groups are polycyclic, polycyclic groups are solvable and solvable groups are amenable. The

lamplighter group is an example of a solvable group which is not polycyclic. Since finite extensions

of amenable groups are amenable, it follows that virtually polycyclic groups are amenable, thus the

above theorem applies to virtually polycyclic groups. Also note that by Gromov’s Theorem, groups
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of polynomial growth are virtually nilpotent, hence also virtually polycylic. For more details on

these claims see [7]. The point it that we have a large family of groups for which the group algebra

CG is Noetherian.

2.4 Finite Support Approximation of Density

The following proposition allows us to study the density of an eigenvalue via its finite support

eigenfunctions. Essentially, it connects the definition of density of states via a trace formula and

the intuitive definition of density of states as the number of eigenfunctions per unit volume. The

formula is often called Shubin’s formula, named after Mikhail Shubin who used it in the study

of almost periodic elliptic PDE [33]. For the case of G-periodic graphs and discrete periodic

operators on them, there are many similar results which show that the CDF of the empirical density

of states converges to the density of states at all points of continuity (see, for instance [29] and [9]).

However, here we are exclusively interested at a single point of discontinuity, so those results do

not apply.

Proposition 2.4.1. Let Γ be an G-periodic graph with amenable G, discrete Laplacian ∆ and let

λ be an eigenvalue of ∆.

If every element inDλ(Γ) is the linear combination of translations (via the group action) of finitely

many finite support eigenfunctions f (1), ...f (r) (in particular, if C[G] is Noetherian),

then for any fundamental domain W and any generating set S of G there exists j0 ∈ N such that

a standard j0 thick Følner sequence {Fj} of Γ satisfies the following formula:

dk({λ}) = limj→∞
dimC{f ∈ Dλ(Γ) : sprt(f) ⊂ Fj}

|Fj|

Proof. Consider the supports of f (1), ...f (r) which are all finite, hence we can find a finite K ⊂ G

such that ∪r
i=1sprt(f

(i)) ⊂ ∪g∈Kg ·W and let j0 := maxg∈K |g|. Take a standard j0 thick Følner

sequence {Fj}j . As we saw in section 2, dk({λ}) =
1

|Fj|
tr(E({λ})IFj

) Define the C vector

spaces

Uj := Span{πgf i : g ∈ G, i = 1...r sprt(πgf
i) ⊂ Fj}
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Wj := Span{πgf i : g ∈ G, i = 1...r sprt(πgf
i) ⊂ Fj ∪ ∂j0Fj}

By Theorem 2.3, the (closed) subspace of l2(V ) generated by {πgf i : g ∈ G, i = 1...r} is

precisely Eλ. By our choice of j0, for all πgf (i) ∈ {πgf (i) : sprt(πgf
i) ̸⊂ Fj ∪ ∂j0Fj, 1 ≤ i ≤

r} wa have that sprt(πgf (i)) ∩ Fj = ∅, hence < IFj
πgf

(i), πgf
(i) >= 0 and we conclude that

tr(E({λ})IFj
) ≤ dimCWj . On the other hand, each element ϕ of an orthonormal basis for Uj

satisfies < IFj
ϕ, ϕ >= ||ϕ||2 = 1. We end up with the estimate:

dimCUj ≤ tr(E({λ})IFj
) ≤ dimCWj

Next, we work on estimating dimC{f ∈ Eλ : sprt(f) ⊂ Fj}. Obviously Uj ⊂ {f ∈ Eλ :

sprt(f) ⊂ Fj}. On the other hand, if f ∈ Eλ with sprt(f) ⊂ Fj ∪ ∂j0Fj , f is the linear

combination of translations of f (1), ...f (r). The values of f on Fj ∪ ∂j0Fj depend only through the

terms πgf i whose support is not disjoint from Fj ∪ ∂j0Fj . Each such term should have support

inside Fj ∪ ∂2j0Fj , by the construction of j0. Hence there is a function f ′ ∈ Wj which is equal to

f on Fj ∪ ∂j0Fj . We get a map from {f ∈ Eλ : sprt(f) ⊂ Fj} to Wj sending f to f ′ which is

obviously injective. We conclude that: for all j

dimCUj ≤ dimC{f ∈ Eλ : sprt(f) ⊂ Fj} ≤ dimCWj

Finally, we ask: what is qj := |{πgf i : g ∈ G, i = 1...r sprt(πgf
i) ̸⊂ Fj but sprt(πgf

i) ⊂

Fj ∪ ∂j0Fj}|? We get the obvious bound qj ≤ |∂j0Fj|r. Dividing by |Fj|, we take the limit as

j → ∞:

0 ≤ limj→∞
dimCUj − dimCWj

|Fj|
≤ limj→∞

qj
|Fj|

≤ limj→∞
|∂j0F||r
|Fj|

= 0

Therefore, by squeezing between Uj and Wj:

dk({λ}) = limj→∞
1

|Fj|
tr(E({λ})IFj

) = limj→∞
dimC{f ∈ Dλ(Γ) : sprt(f) ⊂ Fj}

|Fj|
.
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2.5 A Free Resolution Formula

Whenever we have a G-periodic graph Γ with G finitely generated amenable, we know that the

G, -module of finite support eigenfunctions K := kernel(∆̂−λI) is nonempty and it’s dense in the

l2-eigenspace. The goal of this section is to use the algebraic structure ofK to find the density of λ.

We would like to apply Proposition 5.1 and use K to estimate dimC{f ∈ Dλ(Γ) : sprt(f) ⊂ Fj}.

The obvious way is to pick a generating set f (1), f (2), ...f (r) ofK and count all g ∈ G and 1 ≤ i ≤ r

such that sprt(πgf (i)) ⊂ Fj . The issue is that the set of all those πgf (i) may not be linearly

independent, and hence our estimate can be far from optimal. This motivates us to consider syzygy

modules.

LetR be a Noetherian ring. If {f (1), f (2), ...f (r)} is a finite generating set of a finitely generated

R-module M , the (first) syzygy module of of M w.r.t. the generators {f (1), f (2), f (r)} is the set of

all g = (g1, ...gr) ∈ Rr such that

g1f
(1) + g2f

(2) + ...+ grf
(r) = 0

and is denoted by Syz(M). Via pointwise multiplication Syz(M) is anR-module as well. SinceR

is Noetherian, Syz(M) ⊂ Rr is finitely generated. Picking a finite set of generators for Syz(M),

we can consider its own syzygy module, Syz(Syz(M)), abbreviated by Syz2(M). By iteration

we can define the (higher) syzygy module Syzk(M) (which is finitely generated) for any positive

power k along with the conventions Syz1(M) = Syz(M) and Syz0(M) =M .

A alternative way to describe syzygies is through free resolutions. Picking a finite generating

set {f (1), f (2), ...f (r0)} for M is equivalent to finding a surjection Rr0 → M → 0. The kernel of

this map is precisely the first syzygy module, so we get the Short Exact Sequence 0 → Syz(M) →

Rr0 → M → 0. Iterating this proccess we get another Short Exact Sequence 0 → Syz2(M) →

Rr1 → Syz(M) → 0 where we choose a generating set of Syz(M) of length r1. We end up with
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the following sequence of maps:

... Syzr(M) ↪→ Rr3Syz3(M) ↪→ Rr2Syz2(M) ↪→ Rr1Syz(M) ↪→ Rr0M → 0

Via composition we get a free resolution of M, that is, a Long Exact Sequence beginning with

→ Rr0 →M → 0 and consequently consisting of free R-modules:

... → Rr3 → Rr2 → Rr1 → Rr0 →M → 0

Then Syzk(M) can be recovered as the kernels (or equivalently images) of each map. Note that

when R is not Noetherian, we can still construct syzygy modules, however, we cannot guarrantee

that the free modules in the resulting resolution will be finitely generated.

Hilbert’s Syzygy Theorem (see [34]) asserts that the dth syzygy module Syzd(M) of a finitely

generated C[z±1
1 , ..., z±1

d ] module M will always be free. This means that if we choose a free

generating set for Syzd(M), then Syzd+1(M) = 0. As a result the correspoding free resolution

will terminate at the (d+ 1)th step.

Theorem 2.5.1. Suppose that Γ is a Zd-periodic graph with fundamental domain W and λ is an

eigenvalue of the Laplacian ∆ on Γ. Let K be the kernel of the map ∆̂−λIn viewed as a map from

the R = C[z±1
1 , ..., z±1

d ]-module
⊕|W |

k=1C[z
±1
1 , ..., z±1

d ] to itself. Then the following formula about

the density of {λ} holds:

dk({λ}) = 1

|W |

d∑
k=0

(−1)krk

where r0, ...rd are the ranks of the free modules in a free resolution of K

0 → Rrd → Rrd−1 ... → Rr1 → Rr0 → K → 0

In particular, dk({λ}) is rational.

Until we state otherwise,R = C[z±1
1 , ..., z±1

d ]. We remark that there exist plenty of algorithms
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for the computation of K and its higher syzygy modules, as well as software for these algorithms

(see [34]). We will use the following notation for an R-submodule M of a free R-module Rn

(n ∈ N ). For each monomial zl = zl11 ...z
ld
d let |zl| := |l| = max1≤i≤d|li|. Next, for all f1 ∈ R, let

|f1| be the maximum length of the monomials it is comprised of and for all f = (f1, ...fn) ∈ Rn

let |f | := max1≤k≤n|fk|. Define

B(M, j) := {f ∈M : |f | ≤ j} |B(M, j)| := dimC({f ∈M : |f | ≤ j})

which are intuitively interpreted as balls in M centered at 0 ∈ M . Note that the "length" |f | of

f ∈ M is taken with respect to the free R-module Rn that M sits in. The proof of Theorem 6.1

will rely on the following estimate:

Lemma 2.5.2. Let M be a submodule of the free R-module Rn (R = C[z±1
1 , ..., z±1

d ]) with syzygy

module

0 → Syz(M) → Rr →M → 0

Then there exists j0 such that for all j > j0 we have the estimate

(2(j − j0) + 1)dr − |B(Syz(M), j − j0)| ≤ |B(M, j)| ≤ (2j + 1)dr − |B(Syz(M), j)|

Proof of Lemma. Fix a generating set {f (1), ..., f (r)} of M . Let j0 := max1≤i≤r|f (i)|. For all

j > j0, there are exactly (2(j− j0)+1)d monomials zk such that |k| ≤ j− j0. For each such k and

for every 1 ≤ i ≤ r, we have zkf (i) ∈ B(M, j). If Uj := SpanC{zkf (i)|1 ≤ i ≤ r, |k| ≤ j − j0}

is linearly independent over C, then certainly r(2(j−j0)+1)d ≤ dimCUj ≤ |B(M, j)|. However,

this is true in general. Instead, the relations
∑

α z
kαf (iα) = 0 with |kα| ≤ j − j0 are in 1-1

correspondence with the syzygies (h1, ...hr) ∈ Syz(M) where |hi| ≤ j − j0 for all i. That is, the

relations
∑

α z
kαf (iα) = 0 in 1-1 correspondence with B(Syz(M), j − j0). This correspondence
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is easily seen to be a linear map and hence we get a Short Exact Sequence:

0 → B(Syz(M), j − j0) → B(Rr, j − j0) → Uj → 0 =⇒

(2(j − j0) + 1)dr − |B(Syz(M), j − j0)| = dimCB(Rr, j − j0) − dimCB(Syz(M), j − j0)

= dimCUj ≤ |B(M, j)|.

For the second inequality, suppose that f ∈ B(M, j). Since M =< f (1), ..., f (r) >, there exist

h1, ...hr s.t. f = h1f
(1) + ... + hrf

(r). But f consists of entries with monomials zk s.t. |k| ≤ j

hence we may remove any monomials zk from h1, ...hr with |k| > j and we still get f = h1f
(1) +

... + hrf
(r). This shows that B(M, j) ⊂ Wj := SpanC{zkf (i)|1 ≤ i ≤ r, |k| ≤ j}. In the exact

same manner as with the first inequality, we get a Short Exact Sequence

0 → B(Syz(M), j) → B(Rr, j) → Wj → 0.

Therefore, the second inequality follows by taking dimensions:

|B(M, j)| ≤ dimCUj = dimCB(Rr, j)−dimCB(Syz(M), j) = (2j+1)dr−|B(Syz(M), j)|.

Proof of Theorem. Using the lemma for each Syzi(K) for all 0 ≤ i ≤ d, we obtain a j0 value for

each. Choose j0 to be the maximum out of all these values and take the following dj0-thick Følner

sequence:

Fj := Fj ·W := {k ∈ Zd : |k| ≤ j} ·W

Then for all j we have:

|Fj| = |W |(2j − 1)d , F̂j = B(R|W |, j) , dimC{f ∈ Dλ(Γ) : sprt(f) ⊂ Fj} = |B(K, j)|
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By Theorem 5.2,

dk({λ}) = limj→∞
dimC{f ∈ Dλ(Γ) : sprt(f) ⊂ Fj}

|Fj|
= limj→∞

|B(K, j)|
|W |(2j + 1)d

By the previous Lemma:

(2(j − j0) + 1)dr0 − |B(Syz(K), j − j0)| ≤ |B(K, j)| ≤ (2j + 1)dr0 − |B(Syz(K), j)|

Dividing by (2j + 1)d and letting j → ∞ we get

limj→∞
|B(K, j)|
(2j + 1)d

= r0 − limj→∞
|B(Syz(K), j)|

(2j + 1)d

By induction and since Syzd+1(K) = 0,

limj→∞
|B(K, j)|
(2j + 1)d

= r0 − r1 + r2 − ...+ (−1)drd

and the theorem follows.

Now let R = CG where G is a finitely generated group of subexponential growth. A

group has subexponential growth whenever the growth function γS(n) = {g ∈ G : |g|S = n} with

respect to any (equivalently all) finite generating sets S ofG is a sequence of subexponential growth

(|g|S is the distance of g from 1 along the Cayley graph Γ(G,S)). Groups of subexponenitial

growth are always amenable [6]. We finish this section with a generalization of Theorem 6.1. The

author believes that further study is needed. A key obstacle is the lack of Hilbert’s Syzygy theorem

to group algebras of non-abelian groups. Nonetheless, whenever the module of finite support

eigenfunctions admits a finite resolution by finitely generated free CG-modules, we obtain the

same conclusion as in Theorem 6.1.

Theorem 2.5.3. Suppose that Γ is a G-periodic graph where G is a finitely generated group of

subexponential growth and λ is an eigenvalue of ∆ on Γ (or any periodic difference operator T of
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finite order). Let K be the CG-module of finite support eigenfunctions of λ.

If K admits a finite resolution by finitely generated free R-modules (R = CG)

0 → Rrd → Rrd−1 ... → Rr1 → Rr0 → K → 0

Then the following formula about the density of {λ} holds:

dk({λ}) = 1

|Γ/G|

d∑
k=0

(−1)krk.

In particular, dk({λ}) is rational.

Proof. Note first that the hypothesis of Proposition 5.1 is satisfied since r0 < ∞. Since G has

subexponential growth, fixing any generating set S of G, the balls of radius n, B(n) = {g : |g|S ≤

n} have a subsequence Fj := B(nj) which is a k-thick Folner sequence for all k ∈ N . This is a

standard argument for groups of subexponential growth and can be found, for instance, in [6].

For each g ∈ G, let |g| := min{j : g ∈ B(nj)}. For each f1 =
∑

g cgg ∈ CG, let |f1| :=

max{|g| : cg ̸= 0}. Next, for each f = (f1, ...fr) let |f | := max{|f1|, ...|fr|}. For each M is a

submodule of Rn let

B(M, j) := {f ∈M : |f | ≤ j} |B(M, j)| := dimC({f ∈M : |f | ≤ j})

and finally, γ(n) = |B(n)| is simply the growth function w.r.t. S. Similar to Lemma 6.2, one can

show that then there exists j0 such that for all j > j0 we have the estimate

γ(nj − nj0)r − |B(Syz(M), j − j0)| ≤ |B(M, j)| ≤ γ(nj)r − |B(Syz(M), j)|

where Syz(M) is the syzygy module w.r.t. a finite generating set of M of size r < ∞. Then the

theorem follows from the same telescoping argument as before using the fact that for arbitrarily
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large k ∈ N :

limj→∞
γ(nj − k)

γ(nj)
= limj→∞

γ(nj)

γ(nj + k)
= 1− limj→∞

|∂kFj|
|∂kFj ∪ Fj|

= 1− 0 = 1.
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3. EXAMPLES AND SUGGESTIONS FOR FURTHER STUDY

To illustrate the ideas of the previous section, we study the density of eigenvalues of the Lapla-

cian on two Z2-periodic graphs. Percolation, magnetic and spectral properties of these examples

has been extensively studied. For deeper studies on similar graphs, see, for instance, [30, 35, 36].

Some of the content of this chapter comes from the preprint [1].

3.1 The graph of the Kagome lattice

We will find the eigenvalue (there is only one) of the Laplacian on the Kagome lattice, then

classify all its finite support eigenfunctions up to translations and linear combinations and finally

find the density of this eigenvalue.

Consider the periodic graph shown below in Figure 3.1. It is called the Kagome lattice or

trihexagonal graph. It is a 4-regular periodic graph, has a group action by Z2 which becomes

multiplication by z1 and z2 under the Floquet-Bloch transform, and a fundamental domain W =

{w1, w2, w3} shown below. We summarize our results for this example in following proposition:

Figure 3.1: The Kagome lattice
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Proposition 3.1.1. The dicrete Laplacian on the trihexagonal graph or Kagome lattice has exactly

one eigenvalue λ = −2/3 with density dk({−2/3}) = 1/3. Moreover, every finite support eigen-

function is linear combination of translations of the eigenfunction with Floquet Bloch transform

( z1 − z2, 1− z1, z2 − 1 )

First, using the description of ∆̂ in the last section, we obtain:

∆̂ =
1

4


−4 1 + z2 1 + z1

1 + z−1
2 −4 1 + z1z

−1
2

1 + z−1
1 1 + z−1

1 z2 −4


where the matrix is ordered based on the ordering {w1, w2, w3} of the fundamental domain.

We next find the eigenvalues of ∆. We have:

det(∆̂−λI3) =
1

43
((6+2λ)(z1+ z−1

1 + z2+ z−1
2 + z1z

−1
2 + z2z

−1
1 )− 36− 168λ− 192λ2− 64λ3)

hence det(∆̂− λI3) ≡ 0 iff λ = −2/3.

Moving on, we find all finite support eigenfunctions of λ. Suppose that f ′ = (f ′
1, f

′
2, f

′
3) is

the Floquet Bloch transform of an eigenfunction with finite support, so f ′
1, f

′
2, f

′
3 ∈ C[z±1

1 , z±1
2 ].

By multiplying f ′ by (z1z2)
m for sufficiently large m ∈ N we may assume that (z1z2)mh ∈⊕3

k=1C[z1, z2]. The function f = (f1, f2, f3) := (z1, z2)
mf ′ corresponds to the eigenfunction f ′

translated by m units in the vertical directions and m units in the horizontal direction and is still

an eigenfunction. By Proposition 3.3, f1, f2, f3 solve the following system of equations:

1

4


2 1 + z2 1 + z1

1 + z−1
2 2 1 + z1z

−1
2

1 + z−1
1 1 + z−1

1 z2 2

 ·


f1

f2

f3

 =


0

0

0
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⇐⇒ (z2 − 1)f1 = (z1 − z2)f3 and (z2 − 1)f2 = (1− z1)f3

Since (z2 − 1), (z1 − z2) and(z2 − 1) are irreducible elements in c[z1, z2]

(z1 − z2)|(z2 − 1)f1 =⇒ (z1 − z2)|f1

hence there is some h ∈ C[z1, z2] such that f1 = (z1 − z2)h. Plugging in this equation to our

system we get

f3 = (z2 − 1)h and f2 = (1− z1)h

Check that (f1, f2, f3) is an eigenfunction forall h ∈ C[z1, z2] (i.e. it solves the equation from

Proposition 3.3.), so it follows that any finite support eigenfunction of ∆ on the Kagome lattice

has Floquet-Bloch transform of the form

( (z1z2)
−m(z1 − z2)h, (z1z2)

−m(1− z1)h, (z1z2)
−m(z2 − 1)h ) h ∈ C[z1, z2], m ∈ N

Therefore all finite support eigenfunctions of λ = −2/3 are translations and linear combinations

of the single eigenfunction:

( z1 − z2, 1− z1, z2 − 1 )

With the use of the inversion formula of the Floquet-Bloch transform (Theorem 3.1), Figure 3.4

displays this eigenfunction, placing numbers next to the vertices in the support of this eigenfunc-

tion. Finally, we use Theorem 6.1 to find the density of {−2/3}. The module of finite sup-

port eigenfunctions is free and of rank 1 and the fundamental domain has 3 vertices, therefore

dk({−2/3}) = 1/3.

3.2 Periodic graph with 2 eigenfunctions

Similarly to the previous example, we can consider the following Z2-periodic graph shown

below in Figure 3.3. After expressing the Laplacian as a matrix of polynomials (via the Floquet

Bloch transform) and then solving this systems of equations over the polynomial ring, we conclude
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Figure 3.2: The unique eigenfunction up to translations and linear combinations

that there are two eigenfunctions of finite support up to translations and linear combinations, shown

below in Figure 3.4.

3.3 Suggestions for further study

1.Projectivity of the Module of Finite Support Eigenfunctions

Similar in spirit to [2], whenever the Laplacian on a periodic graph has an eigenvalue, the

corresponding eigenspace is a projective Hilbert-module over the reduced group C∗ algebra. This

follows from the fact that the spectral projection is aC∗
r (G)-module homomorphism. Given a finite

support function, will the spectral projection to the eigenspace of λ ∈ sppp(∆) be a function of

finite support? If the answer to this question is yes, then the module of finite support eigenfunctions

is a projective module over the group algebra. This can lead to relations of spectral group theory

with the algebraic K-theory of group algebras.

2.Homological Properties of Infinite Group Rings

By the syzygy theorem of Hilbert, every finitely generated C[Zd] module admits a finite free

resolution. Is there any other class of groups of subexponential growth, such that every finitely

generated C[G] module admits a finite resolution by free C[G]-modules of finite rank? Also, could
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Figure 3.3: Another periodic graph

Figure 3.4: The two eigenfunctions up to translations and linear combinations

it happen that the module of finite support eigenfunctions is always free?

3.Extending the Technique to Finite Support Approximate Eigenfunctions

It is well known (see [11]) that λ lies the spectrum of a bounded linear operator A on a Hilbert

space H if and only if it has approximate eigenvectors, that is, for every ϵ > 0 there exists x ∈ H

such that ||Ax− λx|| < ϵ||x||.

In this thesis we focused on the eigenvalues (i.e. elements of the pure-point spectum) and how

to use algebraic methods(Noetherian property, free resolutions, etc..) to study the density of states

of these eigenvalues. It is natuaral to ask whether, through some clever way, one can compute the

45



continuous part of the density of states via similar methods.

Moreover, one can study the Bloch variety in the case of Zd periodic graphs. This variety

(which is algebraic in the case of discrete graphs) is a central object in condensed matter physics

and has recently been studied from the point of view of algebraic geometry (for instance see [37]).

Each eigenvalue (i.e. element of the pure point spectrum) of ∆ corresponds to a flat sheet on the

Bloch variety. Can the method from the last chapter be extended (or at least related) to the study

of algebraic properties of the Bloch variety?

4.Search for more examples

This final suggestion is a bit vague. Through experimentation, the author realized that "most"

Z2 periodic graphs tend to not have eigenvalues (perhaps this can be formalized in a probabilistic

manner via combinatotics, or in a degeneracy manner via algebraic geometry). Can something

be said about the finite support eigenfunctions on Z2 periodic graphs? For instance, if a planar

Z2 periodic graph has no cycles of length 3, then does it have any finite support eigenfunctions?

Also, are there interesting examples of periodic graphs with respect to the Heisenberg group whose

discrete Laplacian has eigenvalues?

46



REFERENCES

[1] C. Kravaris, “On the density of eigenvalues on periodic graphs,” 2021. Arxiv Preprint.

[2] M. Ludewig and G. C. Thiang, “Good Wannier bases in Hilbert modules associated to topo-

logical insulators,” J. Math. Phys., vol. 61, no. 6, pp. 061902, 22, 2020.
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