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ABSTRACT 

 

Agroecosystems, even when crops are planted in monoculture, are complex and 

characterized by heterogeneity. Disease incidence and inoculum density vary across 

space and time, but explanation for this variation enhances prediction and management 

of disease. In many plant pathosystems, such variation is not always well characterized if 

it is observed at all. Advancements in precision agriculture technologies provide the 

opportunity to describe variation in near real-time and to more rapidly respond to the 

threat of disease. Innovative approaches to data collection and analysis are required to 

fully realize the capabilities of these technologies through high-throughput detection or 

high-resolution remote sensing, and to improve management by describing and 

explaining variation in disease and inoculum density. To enhance the value of remote 

sensing, an unsupervised machine learning technique, finite mixture modeling, was 

applied to more efficiently estimate plant height by accounting for spatial variability in 

height, at scale, through aerial imagery. Finite mixture models were fit to three-

dimensional point cloud data to estimate plant height in different terrains. This method 

was effective at estimating height and robust to variation associated with topography. To 

enhance the value of cotton variety trials, the spatial and temporal variation of soilborne 

Fusarium oxysporum f. sp. vasinfectum race 4 was described. First, a DNA-based 

method to quantify soilborne inoculum was developed and validated using spike-in 

experiments in environmental soils. Next, this quantitative PCR-based method was 

utilized to describe the pathogen at high spatial resolution in a research field in Fabens, 
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Texas. Spatial statistical techniques were used to determine the spatial autocorrelation of 

inoculum density in this field, and the results indicated that temporal factors should also 

affect the efficiency of variety trials. To describe the temporal variation in inoculum 

density, a longitudinal study was devised to test the effect of cotton cultivar and other 

organic matter in an environmental growth chamber. Empirical characterization of the 

heterogeneity in plant pathosystems is necessary for the development of more robust 

predictive epidemiological models. High-resolution data and the models that use those 

data are a necessary component associated with management and precision agriculture. 

Empirical characterization of heterogeneity in field is an essential for the development of 

more robust predictive epidemiological models.   
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NOMENCLATURE 

 

AGL Above ground level 

ANCOVA Analysis of covariance 

BIC Bayesian information criterion 

Cq Cycle of quantitation 

ddPCR Droplet digital polymerase chain reaction 
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FMM Finite mixture modeling 
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FOV1 Fusarium oxysporum f. sp. vasinfectum race 1 
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GLM Generalized linear model 

GPS Global positioning satellite 
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m Meters 

p p-value 

PHO84 Phosphate permase gene 

qPCR Quantitative polymerase chain reaction 

r Pearson correlation coefficient 

R2 Coefficient of determination 
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RGB Red-Green-Blue (color channels) 

SAS Statistical analysis system 

Tfo1 FOV4 CA-9 transposase gene 

UAS Unmanned aircraft systems 

Z Z-score 

μ Mean 
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CHAPTER I  

INTRODUCTION  

 

Dimension of the Disease Triangle 

The description of the epidemiology of plant diseases is enhanced by first 

understanding the factors that directly affect the growth and development of plants 

within the constraints of their ecosystems. Plants are sessile organisms, meaning that 

during their life cycles they are constrained to the conditions of their surroundings, and 

they must adapt to those conditions to survive to maturity and produce seeds for future 

propagation. In an agricultural setting the end goal – production of seed, fiber, fuel, or 

food – is dependent upon the use of a specific crop. Nevertheless, host plants, whether 

wild or domesticated, are subject to the conditions of their ecosystems. Whether wild or 

domesticated, conditions such as variable weather, nutrient availability, or pathogen 

inoculum density are common, though interactions between these conditions and plants 

are not always well understood. The disease triangle, a foundational concept in plant 

pathology, was designed for the purpose of better understanding the interactions between 

host plants and the outside factors that can lead to the onset of disease.  

As a conceptual construct, the disease triangle is commonly utilized to describe 

the requirement of three factors for the onset of plant disease: hosts, their pathogens, and 

the environment. Specifically, disease manifestation is brought about by the interaction 

of a susceptible host and a virulent pathogen under conducive environmental conditions 

(Stevens 1960; Scholthof 2007). The utility of the disease triangle is that it decomposes 
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the complex biological interactions underlying pathogenesis into a readily 

understandable format to describe how epidemics start and why they manifest (Scholthof 

2007; Grulke 2011). While this concept is useful in the visualization of disease, nuances 

within each of the points of the triangle are lost when the describing the most basic 

conditions necessary for disease manifestation. The construct of the disease triangle is a 

useful tool to understand the initiation of disease, but to describe disease epidemics other 

factors that affect disease progression and severity must also be considered.  

The disease triangle is limited to the instance of pathogenesis, whereas plant 

disease epidemics are variable and complex, involving many causes that can be modeled 

as dimensions. Alongside the host, pathogen, and environment, other aspects such as 

time and spatial aggregation also affect disease progression. To overcome the limitations 

of this construct, the outside factors that act upon each of the three sides must be better 

understood. Studying these inputs in relation to one of the facets of the disease triangle 

helps to reveal causes of variation in plant disease. By focusing on a specific facet of the 

disease triangle in relation to a specific plant pathosystem, explanatory models can be 

developed to describe disease under different conditions. The research described herein 

focuses on spatial and temporal patterns of variation and investigates the processes that 

causes the variation. These are the processes that govern heterogeneity of pathogen 

distribution, related to disease and inoculum density in relevant agricultural settings. 

Prior to undertaking studies that focus specifically on the pathogen facet of the disease 

triangle, the interactions between the three constituent parts of the disease triangle must 

be better understood.  
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Environmental Factors Affecting Inoculum Density 

Of the three facets of the disease triangle, the environment encompasses a wide 

array of conditions that could affect the onset and progression of diseases in plants. 

Foremost among environmental conditions that are considered when modeling disease is 

the weather. Climatic conditions such as rainfall, temperature, humidity, or wind can 

directly affect the movement of a pathogen (Liu & He 2019). Though some weather 

conditions are erratic, the range of conditions that dictate the initiation of disease can be 

reliably used to predict disease where host and pathogen are present. For instance, the 

dispersal of Puccinia graminis f. sp. tritici, the causal agent of wheat leaf and stem rust, 

is dependent on both wind and relative moisture (Eversmeyer & Kramer 2000). The 

source of primary inoculum of urediniospores is windborne; these spores are carried by 

the prevailing winds where they eventually land on a new host. Following a rainfall 

event, when relative moisture is higher, urediniospores release at a lower rate compared 

to days with dryer conditions (Eversmeyer & Kramer 2000). Environmental conditions 

not only play a role in dispersion of spores, but also in delaying the dispersion of those 

same spores. Weather conditions also play a role in the movement of soilborne 

pathogens. Heavy rains can cause localized flooding, moving soil, and thereby 

potentially transporting inoculum, between and within fields. The outcome of this 

movement is the establishment of new disease loci or expansion of existing ones. 

Overall, the role of weather in spatial and temporal heterogeneity of inoculum cannot not 

be overstated.  
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The soil in which a host is planted also plays a major role in disease 

development, especially the physical and chemical properties. Physical characteristics of 

soil are major determinants of how pathogens or other soil-inhabiting organisms such as 

nematodes move. Specifically, soil type, texture, and pore size can create more 

conducive or inhibitory conditions affecting the movement and growth of soilborne 

pathogens (Voroney & Heck 2015). For example, pore size, the amount of space 

between individual soil particles, may affect the percolation of water carrying inoculum 

either down into the soil or between adjacent plots. Soil biochemistry varies between 

locations and involves components such as nutrient availability, pH, and organic matter; 

each of these can directly affect the growth and development both hosts and pathogens 

(Grulke 2011; Chappelka & Grulke 2015; Chenu et al. 2015; Ojiambo et al. 2017). 

Organic matter, for instance, can be used to fuel the saprophytic (a form of non-

pathogenic) growth of soilborne fungi ensuring survival during potentially detrimental 

conditions (Chenu et al. 2016). Soil moisture can also play a role in pathogen movement. 

The water content of the soil can directly affect the establishment and growth of 

pathogens (Liu & He 2009).  

Rhizosphere inhabiting microorganisms can also affect the interactions between 

hosts and pathogens, in some cases these can lead to soils that can suppress disease 

(Termorshuizen 2016). Other bacteria or fungi may operate as endophytes within their 

hosts, with some providing beneficial enhancements (Ballestrini et al. 2015; Santoyo et 

al. 2016; Wani et al. 2015). Endophytic organisms live within their hosts without the 

manifestation of visible symptoms and in doing so, some may prove beneficial by 
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enhancing drought or salinity tolerance, or by enhancing resistance to a variety of 

stressors (Ballestrini et al. 2015; Santoyo et al. 2016; Wani et al. 2015). Other 

rhizosphere inhabitants, like Trichoderma species, are known to inhibit the growth of 

other pathogenic microorganisms as a form of biocontrol (Ballestrini et al. 2015). 

Despite the benefits of some ubiquitous rhizosphere inhabitants, others, such as 

Fusarium or Rhizoctonia species, may be pathogenic on a multitude of crops (Ballestrini 

et al. 2015).  

Host-related Factors Affecting Inoculum Density 

Due to the prevalence of monoculture cropping practices, agricultural ecosystems 

have relatively low variability in the genetic resistance of a host population (Burdon and 

Thrall 2007). With reduced resistance variation in a host population, there is higher risk 

that an arriving specific, aggressive pathogen race or strain could have a major 

detrimental effect on yield (Burdon and Thrall 2007). The susceptibility of a host plant 

has a direct effect on its survival when presented with high disease pressure. Host 

susceptibility can be regulated by gene-for-gene interactions, where compatibility 

(disease) or incompatibility (no disease) is determined by resistance genes (R) of the host 

and avirulence genes (Avr) of the pathogen (Thrall & Burdon 2002; Thrall et al. 2016). 

Resistance is either qualitative, often due to a single gene conferring resistance, or 

quantitative, potentially the result of multiple minor genes determining resistance in 

combination (Burdon & Thrall 2003). Host populations evolve stronger defensive 

capabilities in response to the selection imposed by infection by pathogens. Certain 

pathogen-associated molecular patterns (PAMPs), such as fungal chitin or flagellin in 
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bacteria, are detected by pathogen recognition receptors (PRR) in plants leading to 

PAMP-triggered immunity (PTI) (Shan et al. 2007; Anderson et al. 2010). Host plants 

are able to defend against infection using PTI (Shan et al. 2007; Anderson et al. 2010). 

In response, pathogen populations evolve to evade or suppress host defenses using 

effectors. Plants react with effector triggered immunity (ETI), including mechanisms 

such as stomatal closure or hypersensitive response to limit the pathogen’s spread in the 

plant (Shan et al. 2007; Anderson et al. 2010). The antagonistic coevolution that 

characterizes pathosystems causes these systems to demonstrate how tenuous resistance 

can be when a pathogen is actively evolving to overwhelm or bypass host defenses. 

Though the best defense against plant diseases is robust genetic resistance, even this 

does not necessarily preclude a pathogen from infecting. Furthermore, resistance in 

crops may be incomplete or potentially come with a fitness cost that is only known when 

it is grown under relevant environmental conditions. And although a resistant host may 

not be affected to the degree that a susceptible host would, a resistant plant may yet be 

colonized by or infected with a pathogen and not succumb to disease. There is still a 

chance for nominally resistant and tolerant cultivars to amplify inoculum by acting as 

reservoirs for the pathogen. 

The underlying molecular mechanisms involved in the coevolution of hosts and 

pathogens are used to develop genetic resistance for agricultural crops. New lines are 

developed that have been selectively bred for resistance; distribution of plants from these 

lines into agroecosystems in turn results in selective pressure for pathogen populations to 

evolve virulence (Burdon & Thrall 1999). In other words, breeding efforts can  directly 
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influence the evolution of pathogen populations leading to epidemics. For example, the 

emergence of Race T of Cochliobolus heterostrophus in the United States in response to 

the widespread use of the Texas male sterile cytoplasm maize, which to the southern 

corn leaf blight epidemic of the early 1970s (Bruns 2017). Comparatively, in natural host 

populations disease is a function of a pathogen’s ability to arrive at new, susceptible 

hosts through dispersal events (Burdon & Thrall 1999). Natural pathogen populations 

experience evolution due to genetic drift, movement between neighboring populations, 

and selection pressure (Burdon & Thrall 1999; Seabloom et al. 2015). The artificiality of 

agricultural coevolution, however, demonstrates that the change in the pathogen is 

dependent on how frequently a trait is present in the host population (Burdon & Thrall 

1999).  

Plants inhabiting natural ecosystems have the advantage of biodiversity and 

variability in genotypes (Alexander 1989). When compared to the spatially uniform 

planting patterns in agricultural operations, wild hosts are more likely to be either 

randomly dispersed or aggregated (Alexander 1989). And, depending on the mode 

through which a pathogen moves and is transmitted, establishment may be more difficult 

in these environments because of the relative sparseness or spatial discontinuity of 

susceptible hosts. A related concept in disease ecology is the dilution effect hypothesis, 

in which increased biodiversity is expected to reduce disease risk through multiple 

different mechanisms (Keesing 2006; Keesing et al. 2006; Citavello et al. 2015). In 

agricultural ecosystems, densely populated monocultures are more conducive to the 

transmission of a pathogen between proximal, susceptible hosts (Termorshuizen 2016), 
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and large uniformly planted monocultures alongside cultivation practices that aid in the 

dispersal of pathogens, have the potential to increase inoculum and the likelihood of 

epidemics (Leclerc et al. 2013; Liu & He 2019). Monoculture settings also allow for the 

perpetual survival especially of soilborne pathogens either saprophytically or in 

overwintering structures, subsequently leading to increased disease pressure in the future 

(Bennett et al. 2011). In addition, cultivation practices that are used to maintain 

uniformity, such as tillage or fertilization, may make the environment more conducive 

for epidemic spread (Alexander 1989). Despite evidence supporting the dilution effect 

hypothesis, increasing biodiversity in agricultural settings is not strategically financially 

feasible enough for growers to employ. Instead, understanding the spatial make-up of 

inoculum and its modes of movement are the best methods that can be utilized to control 

potential disease epidemics.  

Pathogen-related Factors Determining Inoculum Density. 

Agricultural ecosystems are characterized by the heterogeneity of inoculum and 

disease, which is caused in part by the mechanisms through which inoculum moves 

(Plantegenest et al. 2007; Papaix et al. 2015). Spatial and temporal variation in inoculum 

density determines whether a susceptible host and a virulent pathogen will interact and if 

disease will manifest. However, inoculum density does not always correlate with the 

amount of disease appearing in a given host population during a growing season 

(Berbegal et al. 2007; Hao et al. 2009). Inoculum density is dynamic due to multiple 

interconnected environmental and biological factors that benefit pathogen dispersion, 

establishment, and proliferation. These factors may be a direct result of the host or 
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environment acting on the pathogen, or they may be pathogen-related survival strategies. 

Viral pathogens survive in host plants, other viruses are able to replicate within their 

vectors ensuring survival and future transmission (Jeger 2020). Bacterial pathogens can 

overwinter in hosts tissues, soil, or in vectors (Schuster & Coyne 1974). Fungal 

pathogens have developed multiple survival strategies such as teliospores for rusts and 

smuts, which are overwintering forms used to subsist during periods when conditions are 

not conducive for pathogenesis (Brown 1997). Many soilborne fungal pathogens utilize 

different strategies to survive. For example, thick-walled chlamydospores can overwinter 

in soil until exudates from hosts signal the active growth (Brown 1997). Other fungi are 

able to survive in the interim as saprophytes, on plant debris or other organic material 

found in soils (Brown 1997). Dispersal patterns of infectious propagules are dependent 

on the methods a pathogen uses to infest its hosts. Understanding the differences in 

dispersion patterns is useful in modeling the movement of pathogens.  

The movement of inoculum can broadly be classified into two categories: 

density-dependent and frequency-dependent transmission. Density-dependent 

transmission is the spread of infectious propagules through mass action, where 

transmission of inoculum is directly related to host population density (Keesing 2006; 

Ostfeld & Keesing 2012; Young et al. 2017). The pathogen is readily infectious while 

passively moving between proximal hosts, an example of this is the movement of 

windborne spores or the infectious spread of soilborne pathogens. Consequently, 

density-dependent transmission of inoculum can be considered additive (Young et al. 

2017). Frequency-dependent transmission refers to the movement of inoculum through 
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outside means, such as through water or translocation of soil by field implements, over 

short and long distances. The more frequently propagules are transmitted, the more 

likely the pathogen is to establish and for disease to manifest (Keesing 2006; Ostfeld & 

Keesing 2012; Young et al. 2017). Frequency-dependent transmission has mostly been 

used to describe vector-borne diseases (Ostfeld & Keesing 2012). Movement of 

inoculum is interconnected and relies on both density- and frequency-dependent 

transmission through either short-range or long-distance movement.  

Understanding that the modes of inoculum movement are interconnected, 

statistical techniques can be employed to describe the spatial patterns of inoculum in 

fields. Spatial autocorrelation quantitatively describes the relationship between states in 

locations in an n-dimensional (usually 2) space as a function of distance between the 

locations. Moran’s I is an index used to represent spatial autocorrelation as a quantity 

ranging from -1 to +1. Values of Moran’s I allow the spatial distribution of inoculum to 

be described as uniform (-1), random (0), or clustered (+1), where randomness is 

typically assumed as the null hypothesis for testing (Madden 1989). Uniformly dispersed 

pathogens are not expected unless inoculum density is equally and consistently high 

(Madden 1989). When observations are truly randomly dispersed, then there is no spatial 

autocorrelation because each observation of inoculum is independent (Madden 1989). A 

pathogen with a clustered spatial pattern is autocorrelated, where observations are 

dependent on others as a function of spatial aggregation (Madden 1989). The degree to 

which inoculum is spatially autocorrelated is dependent upon its mechanisms of initial 

dispersal and subsequent spread. For instance, a windborne pathogen is likely be 
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randomly distributed due to how it is transported because of the entropy that results from 

diffusion. Conversely, soilborne pathogens are more likely to be spatially aggregated 

because of density-dependent spread and growth from an initial inoculum locus.  

The modes of inoculum movement can be more simply described as the 

translocation of inoculum from a source, such as an infested field or infected tree, to a 

sink, an area where a pathogen can potentially propagate under conducive conditions. 

Each individual host plant or each disease locus is occupied by a group of pathogens that 

shifts through space and time due to vegetative growth and reproduction, and due to 

movement (Burdon & Thrall 1999; Plantegenest et al. 2007; Alexander 2010). This 

source-sink model of inoculum movement helps to illustrate the importance of 

understanding the spatial and temporal variation of a pathogen by describing 

establishment and spread of inoculum as a function of movement. An understanding of 

how inoculum disperses or is transmitted throughout its environment is necessary for 

developing explanatory and spatiotemporally resolved models of inoculum density 

(Plantegenest et al. 2007; Ojiambo et al. 2017). These models can then be used to 

develop better management strategies for implementation and intervention. However, 

before these models can be developed, it is useful to measure inoculum density using 

different quantitative methods for the purposes of calibration and validation.  

Quantifying Variation in Agricultural Ecosystems 

Innovation is required to enhance comprehension of the spatial and temporal 

dynamics that lead to heterogeneity in agricultural ecosystems. Precision 

agriculturecontinues to increase efficiency of crop management by monitoring and 
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analyzing field conditions at high resolution, and especially benefits from such 

innovative methods related to observation and measurement. Improvement of methods 

through which variability is detected and quantified is required to describe epidemics. In 

the realm of quantification, innovations with different types of technology will increase 

detection capabilities to determine where symptoms or heterogeneity exists, with 

consequent benefits to the efficiency and sensitivity of scouting for disease.  

Imaging platforms such as unmanned aircraft systems and related technologies 

have been utilized for whole field imaging to describe the phenotypic variation 

associated with factors such as differential nutrient input (Yin et al. 2011) or disease 

(Zhang et al. 2018). Techniques have been developed to measure phenotypes such as 

height, using structure-from-motion algorithms, biomass (Diaz-Varela et al. 2015; Li et 

al. 2020), and to estimate crop yield (Gracia-Romero et al. 2017). Such techniques have 

opened the door for quantifying the number of diseased plants at the field scale. For 

example, Liu et al. (2019) used red-green-blue images and hue-saturation-intensity 

system to detect powdery mildew of wheat (Blumeria graminis f sp. tritici) by 

calculating different indices describing color. The logarithm of the red color index was 

the best measure of color to detect incidence of powdery mildew in images (Liu et al. 

2019). Others have pioneered techniques utilizing supervised machine learning to 

describe the variation in phenotypes using pattern recognition, in which an algorithm is 

trained to detect certain patterns associated with diseases, such as discoloration or lesion 

shape (Kalischuk et al. 2019; Liu et al. 2019). Innovations such as these, especially those 

related to the detection of pathogens using aerial imagery, provide increased options, 
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efficiency, and scalability for scouting for disease. These techniques are all useful for 

finding disease and they can be used as precursors for analyses to quantify inoculum 

density.  

Empirical characterization of inoculum density is enhanced when data are of high 

spatial resolution through measurement at scale. Disease assays have been used for this 

purpose to describe the variation in symptom severity across different inoculum 

densities. Though disease symptoms are useful for locating inoculum in space, they are 

not always the most reliable predictor for inoculum density, especially when the 

relationship between disease and inoculum density is dependent on host type and host 

effects are unknown – the case in variety trials. Quantitative techniques are widely used 

to describe heterogeneity associated with inoculum density. Prior to the advent of 

molecular techniques, other methods to quantify inoculum included counting fungal 

spores or bacterial colonies. Methods such as high-pressure liquid chromatography to 

quantify specific compounds or metabolites e.g. fumonisins (Seo et al. 2009), have been 

widely used to describe variation in inoculum density. Molecular techniques, such as 

quantitative polymerase chain reaction (qPCR) or sequencing, allow unculturable 

bacteria and viruses to be directly quantified in both hosts and vectors. Detection of 

soilborne pathogens using molecular techniques have seen many advancements in 

quantification using qPCR (Burkhardt et al. 2018; Jiménez-Fernández et al. 2011; 

Scarlett et al. 2013), and more recently droplet digital PCR (ddPCR). For example, 

Scarlett et al. (2013) designed primers specific to Fusarium oxysporum f. sp. 

cucumerinum to quantify the pathogen from environmental soils. Continued study of 
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inoculum density variation can be applied to quantifying inoculum not only across space, 

but also over time. Additional work, however, is still necessary to understand the 

dependence of reliable inoculum quantification on methods, because some methods may 

detect both living and dead tissue or genetic material or otherwise not reliably represent 

infectious inoculum through the use of molecular methods or other proxy.  

Conceptual Overview of Dissertation Research 

Heterogeneity in agricultural systems is a function of the complex interactions 

between the spatial and temporal factors that contribute to the establishment, growth, 

and spread of the pathogen or other factors that affect the development of plants. To 

describe, understand, and predict heterogeneity in detail for agricultural ecosystems, the 

spatial and temporal dynamics of both disease and inoculum, and the interplay between 

them, must be known. To know the spatial and temporal dynamics, the patterns 

associated with each, and the interplay between them, must be described. The research 

herein seeks to empirically answer three questions related to the variation in 

pathosystems across space and time that leads to epidemiologically relevant 

heterogeneity. 

1) What is the spatial distribution of inoculum? The conditions that affect 

inoculum density and phenotypic expression are expected to be heterogeneous with 

respect to their spatial configuration. Knowing where disease is and how much inoculum 

is present are vital to understanding the spatial distribution of inoculum. This question 

can be further broken down into two parts: detection and quantification. To understand 

spatial distribution of inoculum, inoculum must first be detected using different means. 
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The inoculum must then be quantified to describe the potential effect over an expansive 

spatial scale. In this dissertation, an analytical metric was developed to describe 

heterogeneity in plant phenotypes independent of topography using UAS-captured image 

data. Additionally, a method was developed to quantify Fusarium oxysporum f. sp. 

vasinfectum race 4 (FOV4) from environmental samples to describe the spatial 

distribution of inoculum under relevant conditions. 

The heterogeneous distribution of inoculum in an agricultural ecosystem is a 

function of both short-distance spread and long-range transmission through various 

biological, environmental, and human-mediated modes of movement. Locating inoculum 

relies on finding the symptoms of disease. By utilizing different technologies, such as 

low altitude remote sensing, scouting for heterogeneity in an agricultural ecosystem 

becomes more accessible because a wider range can be viewed as opposed to scouting 

on foot. The resultant datasets are of high size and resolution, so innovative methods are 

necessary to efficiently utilize these data for purposes of scouting or estimating 

phenotypes. In this dissertation, the unsupervised machine learning technique finite 

mixture modeling (FMM) is utilized for discerning patterns in datasets related to 

phenotypic variation. Height estimations in the presence of differential nitrogen inputs or 

across variable topographies were discerned from high resolution red-green-blue image 

datasets using a structure-from-motion algorithm. 

Prior to the use of quantitative techniques, the spatial distribution of inoculum is 

a black box. While disease symptoms can be used as an indicator for high levels of 

inoculum, symptom expression may be variable as a function of cultivar tolerance. By 



 

16 

 

quantifying inoculum, the spatial distribution and associated patterns can be used for the 

development of management practices. Without knowing the spatial distribution, these 

tasks prove difficult. A DNA-based quantitative method was developed to quantify 

soilborne Fusarium oxysporum f. sp. vasinfectum race 4 to describe the variability of 

inoculum in-field. A structured sampling plan was developed to account for spatial 

variation in inoculum density. Description of the spatial autocorrelation of inoculum was 

determined using Moran’s I and other spatial statistical techniques.  

2) How does inoculum density vary temporally? Alongside spatial heterogeneity, 

inoculum also varies as a function of time. The degree to which inoculum varies 

temporally is dependent on unknown factors. The soilborne fungal pathogen FOV4 is 

known to be an inoculum density-dependent disease (Hao et al. 2009), but the causes of 

variation in inoculum density have not been well characterized. Anecdotally, variation in 

inoculum density has been attributed to amplification of inoculum by susceptible cotton 

cultivars harboring infection. This research was undertaken to empirically describe the 

temporal variation in inoculum density by quantifying soilborne FOV4 in field locations 

and through growth chamber experiments. In the field, soil samples were collected 

throughout the extent of a cotton variety trial, and inoculum quantity and its spatial 

autocorrelation over time were analyzed to determine whether inoculum density or its 

spatial autocorrelation changes through time. The subsequent growth chamber 

experiment was used to understand what drives variation of inoculum density over time, 

and to assess the relative importance of saprophytic versus pathogenic growth as 

functions of organic matter abundance and host susceptibility. The results clarified the 
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nature of temporal variation in FOV4 inoculum density and they were used to compare 

between field and growth chamber experiments. 

3) Are the spatial and temporal dynamics interdependent? Over the course of a 

growing season, heterogeneity is expected to be a function of the interplay between 

causes of spatial and temporal inoculum density variation. To understand this interplay, 

the patterns associated with heterogeneity of phenotypes, and the spatial and temporal 

variation in inoculum density must be understood in order to compare them. The ways in 

which these patterns interact are potentially complex and typically not known in 

practice, even in the spatially regimented and temporally synchronized operational 

settings of production or research agriculture. Using the empirical evidence gathered in 

this dissertation, the interplay between spatial and temporal dynamics of soilborne FOV4 

will be discussed by examining patterns resulting from the movement and growth of 

inoculum. Plant disease epidemiology relies on describing these patterns to infer cause 

and explain disease epidemics.  

When describing the severity of plant disease epidemics, knowing the amount of 

the pathogen available to initiate infection leading to disease is important. Disease 

pressure may be either high or low, due in part to the multiple interconnected factors that 

affect the number of infectious propagules in a given space at a specific time. And 

though disease pressure may be high at one instance in time, the number of infectious 

propagules in a field ecosystem is expected to be heterogenous and highly variable at 

scale (Plantegenest et al. 2007). These infectious propagules are the main determinant of 

the severity of an epidemic. In many plant pathosystems, the effect of inoculum density 
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has not been well characterized, in part due to the heterogeneity of inoculum, but also 

because of the complex interactions that inoculum density has with other aspects of the 

disease triangle. Gaining a better understanding of the spatiotemporal dynamics of 

inoculum and heterogeneity of phenotypes will assist in the development of more 

effective control and management strategies for plant disease epidemics.  

This research was commenced to describe heterogeneity in plant phenotypes and 

inoculum density, each a function of spatial and temporal processes, through empirical 

observation of relevant agroecosystems and analytical approaches to quantitative 

estimation. The three questions outlined previously were answered in each of a few 

different agricultural systems by developing methods of detection using unmanned 

aircraft systems and by using quantitative, DNA-based techniques to locate disease and 

inoculum, respectively. High-resolution data were utilized to characterize the spatial 

structure associated with plant phenotypes and inoculum density and how these vary 

through time. By using spatially resolved data, while also accounting for variation over 

time, patterns related to plant phenotypes or inoculum density are more readily 

recognized. Description of the patterns that emerge from the data, upon empirical 

investigation, further enhance the predictive ability of models developed using these 

data. Taken together, answers to these three questions were used to describe the interplay 

between the spatial and temporal processes leading to heterogeneity relevant to plant 

disease development. Data generated through these investigations were used to 

synthesize various inputs into models that explain variation in inoculum density using 

high resolution datasets. Overall, the research led to techniques that are readily 
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applicable to precision agriculture, developed and refined through studying 

heterogeneity relevant to agricultural plant disease.  
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CHAPTER II  

A PRACTICAL APPLICATION OF UNSUPERVISED MACHINE LEARNING FOR 

ANALYZING PLANT IMAGE DATA COLLECTED USING UNMANNED 

AIRCRAFT SYSTEMS* 

 

Unmanned aircraft systems are increasingly used in data-gathering operations for 

precision agriculture, with compounding benefits. Analytical processing of image data 

remains a limitation for applications. We implement an unsupervised machine learning 

technique to efficiently analyze aerial image data, resulting in a robust method for 

estimating plant phenotypes. We test this implementation in three settings: rice fields, a 

plant nursery, and row crops of grain sorghum and soybeans. We find that unsupervised 

subpopulation description facilitates accurate plant phenotype estimation without 

requiring supervised classification approaches such as construction of reference data 

subsets using geographic positioning systems. Specifically, we apply finite mixture 

modeling to discern component probability distributions within mixtures, where 

components correspond to spatial references (for example, the ground) and measurement 

targets (plants). Major benefits of this approach are its robustness against ground 

elevational variation at either large or small scale and its proficiency in efficiently 

returning estimates without requiring in-field operations other than the vehicle 

overflight. Applications in plant pathosystems where metrics of interest are spectral 

instead of spatial are a promising future direction. 

*Reproduced from: Davis II, R. L., Greene, J. K., Dou, F., Jo, Y. K., and Chappell, T. M. 2020. A practical 

application of unsupervised machine learning for analyzing plant image data collected using unmanned aircraft 

systems. Agronomy. 10(5): 633. Doi: 10.3390/agronomy10050633.  
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Introduction 

Unmanned aircraft systems (UASs) have been discussed as a cornerstone of 

precision agriculture (Araus et al. 2018; Araus & Cairns 2014; Maes & Steppe 2019; 

White et al. 2012; Yang et al. 2017; Zhang & Kovacs 2012), supporting the collection of 

timely and abundant data at expansive spatial scales through low-altitude remote sensing 

(LARS). Data collected through LARS are of high resolution and volume and can easily 

represent spatial scales exceeding the size of current agricultural operations 

(Haghighattalab et al. 2016; Shi et al. 2016). UAS image collection can be utilized when 

other means would be logistically limited, for example in flooded-field systems such as 

rice. Thermal and other spectral data can be collected at increasingly high resolution and 

detail as imaging technology advances (Bendig et al. 2013; Honkavaara et al. 2012; 

Liebisch et al. 2015; Su et al. 2018; Torres-Sanchez et al. 2015; Vanegas et al. 2015; 

Zhang et al. 2018). As beyond-line-of-sight applications become feasible, the potential 

spatial scale of data collected through LARS becomes practically unlimited. The 

advancement of LARS applications also makes them useful where financial or logistical 

resources are limited, providing information with a short turnaround time and low cost 

for small farms or operations in developing countries (Zhang & Kovacs 2012). 

Research concerning LARS is increasing, and work is ongoing to translate this 

research to applications in commercial agriculture (Jimenez-Brenes et al. 2017; Ota et al. 

2015; Su et al. 2018; Yamamoto et al. 2017). LARS techniques have been used to 

describe various plant metrics in fields, notably plant height (Christensen et al. 2017; 

Khanna et al. 2015; Madec et al. 2017; Watanabe et al. 2017) and height as a surrogate 
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for other metrics of economic interest, such as yield (Gracia-Romero et al. 2017; 

Haghighattalab et al. 2017; Kefauver et al. 2017; Yin et al. 2011). Using UASs, plant 

height has been studied as a readily measurable response to the uptake of nutrients such 

as phosphorus (Gracia-Romero et al. 2017) and nitrogen (Anbessa & Juskiw 2012; 

Kefauver et al. 2017; Vegara-Diaz et al. 2016; Yin et al. 2011). Additional applications 

of LARS include weed identification and mapping in fields (Borra-Serrano et al. 2015; 

Pena et al. 2013), characterizing tree canopies (Diaz-Varela et al. 2015), observing tree 

recovery after pruning (Jimenez-Brenes et al. 2015), and the detection of disease 

outbreaks (Al-Hiary et al. 2011; Zhang et al. 2018). As LARS technology improves, 

sophisticated applications of well-established findings are enabled—for example, in 

1991, a demonstration established that multispectral measurement could be used to 

predict aspects of rust severity (Hansen 1991), and since then, applications have 

advanced commensurate with technology and researchers developing new analytical 

techniques (Su et al. 2018; Su et al. 2019; Westoby et al. 2012). 

Utilization of LARS also faces challenges, especially in the setting of 

commercial agriculture where users of the technology seek to implement LARS in 

response to a current need, instead of for the purpose of advancing the underlying 

technology (Araus et al. 2018; Maes et al. 2019). A major limitation to the practical use 

of LARS for crop phenotyping is the efficiency of the application of the technology 

(Araus et al. 2018; Araus & Cairns 2014; Maes et al. 2019; White et al. 2012), such that 

there is need to streamline the turnaround with data analysis for practical use and rapid 

output of results. Though the economic feasibility of LARS approaches for producers is 
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often implied by referring to on-vehicle sensors as “consumer grade,” several analysis 

steps between image acquisition and result generation are intensive and expensive. A 

non-trivial problem related to physical characterization of crops is the requirement to 

have a positional reference for measurement. On-vehicle sensors are photonic in nature 

and principally record the wavelength and intensity of emissions. A global positioning 

system (GPS) receiver on a vehicle provides the ability to record the position of a 

photonic sensor—the three-dimensional orientation of which may also be recorded by 

accelerometry. Together, photography and positional data can be used by a structure-

from-motion algorithm to infer three-dimensional structure from two-dimensional 

images (Westoby et al. 2012). In common situations where LARS is used to provide 

physical characterization of a crop, for example the average height of above-ground 

biomass, there is a requirement for the position of the ground to be known and used for 

reference (Gracia-Romero et al. 2017; Ota et al. 2015). Approaches to this include 

equipment- and software-intensive construction of a reference surface using GPS 

“control points,” or the explicit classification (computer automated or by eye) of plants 

vs. background for comparison (Haghighattalab et al. 2016; Shi et al. 2016; Zhang et al. 

2014). GPS control points constitute references that are of known geospatial position, 

and also image-recorded position, so that the two can be reconciled in analytical 

processing (Bendig et al. 2013; Haghighattalab et al. 2016; Ota et al. 2015; Shi et al. 

2016; Watanabe et al. 2016; Zhang et al. 2014). The points are effectively anchors for 

processing algorithms to use in constructing a geospatially explicit rendition of physical 

objects from imagery. The technique is not without merit, and not without cost. 
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Here, we focus on addressing these challenges using only image data, without 

GPS control points for ground surface construction, and without computer vision, 

obtaining data from visual inputs, for image classification or feature extraction. We test 

the utility of an unsupervised machine learning technique (hereafter “unsupervised 

learning”) for advancing the analytical use of UAS data acquired by UAS-based LARS, 

intending to complement improvements in data quality currently being made through 

engineering. We believe that advancements in the analytical use of data will support 

optimization of future data collection and interpretation. Attempting to advance the 

utility of LARS in general, we use data from different agricultural settings and from 

different LARS platforms. We explore ways of presenting results and the underlying 

analytical methods of their generation and discuss how each may be optimized to better 

serve producers’ purposes. 

Materials and Methods 

Sites, Materials, and Data 

A field trial of nitrogen fertilizer application rates and timing for rice (Oryza 

sativa L.) crops was conducted in 2017 at the Texas A&M AgriLife Research Center in 

Beaumont, Texas (Figure 1). The project investigated the inbred cultivar Clearfield 272 

(Horizon Ag, Memphis, TN), and the hybrid XLP753 (RiceTec Inc., Alvin, Texas). Rice 

was drill-planted on May 16 and grown with flush irrigation until the four- to five-leaf 

growth stage, after which a permanent flood (5–10 cm depth) was imposed and 

maintained until plant maturity. Aerial imagery of rice fields was collected on August 2, 

2017 from at 15 m above ground level (AGL). A 245 × 45 m field was divided into six 
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research blocks, each consisting of forty 4.8 × 1.5 m plots wherein ten experimental 

treatments were each replicated four times. Nitrogen fertilizer (urea) was applied at four 

time points: pre-planting, pre-flooding, panicle initiation, and late booting (Table S1). 

All other field operations followed the 2014 Texas Rice Production Guidelines (Way et 

al. 2014). 

A private nursery (Amerson’s Nursery) in Lamar, SC, USA, was aerially 

photographed, including a diversity of plants on May 13, 2018 (Figure 2). Flights were 

flown at 15 m AGL. Our effort in this instance was to collect and process image data on 

a variety of plants to investigate the performance and robustness of an analytical 

approach. Areas populated by shrubs, trees, and potted plants were photographed for this 

purpose. 

At the Clemson University Edisto Research and Educational Center (REC) in 

Blackville, South Carolina, where a rotational study concerning agriculturally relevant 

nematodes was underway in 2018, aerial imagery of fields of soybean (Glycine max L.) 

and grain sorghum (Sorghum bicolor (L.) Moench) was collected on July 23, 2018 

(Figure 3). Here, our aim was to test approaches for their ability to recover accurate 

height estimates validated against “ground truth” measurements taken by personnel in 

the field. Accordingly, rectangular pieces of white cardboard were placed at ground level 

in these fields to mark locations at which in-field measurements were made on 

surrounding plants. Five randomly selected plants were measured with a ruler at each of 

eight such locations (four for grain sorghum and four for soybean), and these 

measurements were used for comparison with LARS-based estimates of height. 
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Figure 1. Representative imagery of fields. Rice fields 1 (A) and 2 (B) at the Texas 

A&M Agrilife Research Center in Beaumont, TX. Treatment numbers, directly 

below each plot, refer to the amount of nitrogen input (Table S1) during the 

growing season.  
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Figure 2. An orthomosaic of Amerson’s Nursery in Lamar, SC. 
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Figure 3. Representative images of the Clemson University Edisto REC, Blackville, 

SC, soybean (A) and grain sorghum (B) fields. 

 

Unmanned Aircraft Systems 

The flight platform used was Dà-Jiāng Innovations (DJI) Phantom 4 (Dà-Jiāng 

Innovations, Shenzhen, China), with an attached red-green-blue (RGB) camera. The 
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flight platform used a 30 mm2 CMOS sensor with 12.4 effective megapixels. The 

viewing angle was 94°, the electronic shutter speeds were 8–1/8000 s, and the image size 

was 4000 × 3000 pixels. Raw images were stored in digital negative (DNG) format and 

developed to joint photographic experts group (JPEG) format for analysis. The system 

used a GPS and global navigation satellite system (GLONASS) for positioning. Images 

were stored on a micro secure digital (SD) card. Flights were either structured using the 

flight planning functions of Pix4Dmapper software version 4.1 (Pix4D, Lausanne, 

Switzerland) or conducted manually. Flights in Texas were planned, involving a double 

grid pattern with 75% pairwise overlap in both along-track and cross-track directions 

between sequentially adjacent photographs. Flights in South Carolina were manually 

directed, involving alternating forward and reverse passes and targeting 80% pairwise 

overlap between sequentially adjacent photographs in the along-track direction. Degree 

of overlap was chosen to conform with imaging practices reported in other studies, so 

that our data acquisition step would be in line with current practices (Haghighattalab et 

al. 2016, Shi et al. 2016). 

Image and Data Processing 

For each dataset, images were processed using the structure-from-motion 

algorithm of Pix4Dmapper software, resulting in point clouds. Point clouds comprise 

points inferred through the algorithm, in which each point is projected onto a three-

dimensional space and has a spectral description. The structure-from-motion algorithm 

uses a single camera to infer three-dimensional structure in the way that multiscopic 

vision does, but by processing positional variation of the camera through time as 
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equivalent to the physical distance between two or more cameras. Point clouds, as tables, 

were used directly for analysis. Point clouds were visualized as three-dimensional 

surface plots (Figure 4) through the G3D procedure (three-dimensional graphics) of the 

SAS System v9.4 (SAS Institute, Cary, NC) to confirm point cloud processing success, 

for data subset delineation, and to visually identify potential anomalies or features that 

could interfere with or be utilized in analysis. Three-dimensional renderings of data 

involved latitude and longitude for in-field position and height or spectral (red, green, or 

blue) indices as the third dimension for visualization. Depictions were used to delineate 

data subsets representing areas of interest—fields, plots, or subplots in the research 

settings, and areas of the nursery. Random samples of a given size were taken from the 

dataset for visualization because the resolution of our raw data was much higher than 

that required for visualizing general features—in other words, we used a reduced-

resolution preview of the full-resolution dataset to identify subareas such as plots or field 

margins, because these areas were easily identifiable without full-resolution depiction. 

For example, a point cloud representing the rice field at Beaumont, Texas, includes 3.5 

million points, and 35 thousand points were randomly selected from the dataset for use 

in generating visualizations. Full-resolution point clouds were used for analysis. 

 



 

31 

 

 

Figure 4. Representations of point cloud data. Subsets of point cloud data 

describing field N-6 are used to fit the wireframe surface plots shown here on the 

left, depicting the artifactual slope that formed primarily along the x-axis as a 

result of image processing without global positioning system (GPS) control points. 

This slope is marginalized by including the x- and y-axes as covariates in an 

analysis of covariance (ANCOVA), as shown on the right. 

 

Point clouds were rendered as contour plots using the GCONTOUR procedure of 

the SAS System v4.3 and visually investigated for quality and representativeness of the 

depicted area, as compared to images to identify imaged subjects, by eye. Forty plots 

from the rice research field in Texas were visually identified using a contour map 

rendered from the point cloud. Treatment information associated with each plot, 

including timing (date) and amount (kilogram per hectare) of nitrogen addition, was 

merged with the point cloud dataset by plot for analyzing relationships between 

treatments and inferred rice plant height. Subsets of point cloud data from Amerson’s 

Nursery were generated on the basis of plant type, following visual identification of 

areas targeted for analysis, e.g., an area of potted plants, or an area of a given type of 
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shrub. Subsets of point cloud data from the Edisto REC soybean and grain sorghum 

fields were generated to investigate how the spatial size of an imaged area can be chosen 

to optimize the accuracy or precision of estimated plant characteristics: square-shaped 

sample areas of two, four, eight, sixteen, and thirty-two square meters in area were taken 

from the whole-field point cloud. Each sample was centered on a reference point 

indicated by a white piece of cardboard placed at ground level in the field at random. 

This subsetting was done to emulate a researcher randomly choosing a sample location 

in a field for inclusion in a dataset. 

A preliminary finding guided subsequent methods selection. Initial processing of 

images using Pix4D to generate point clouds resulted in three-dimensional depictions 

that included artifacts, specifically slopes that are known to not exist in reality, given 

that the depicted areas are flooded rice fields and thus necessarily level (Figure 5). 

 

 
 

Figure 5. Marginalization of terrain variation to estimate plant height in an 

idealized setting of flat but sloped terrain. Inclusion of positional variables (e.g., 

latitude and longitude) as covariates allows terrain variation to be marginalized in 

a randomized complete block design, as gradients of other variables are addressed 

in ANCOVA. 
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The use of GPS control points would result in correcting this issue to a degree 

proportional to how accurately the points provide for estimating terrain surface. 

However, in this case, the effect is also easily marginalized by including positional 

variables (latitude and longitude) as covariates in a generalized linear model of height. 

For a flat surface (not level, but flat), as was the case for the rice fields, this technique 

works well. However, for any non-flat surface, terrain variation cannot be described by a 

linear model without concern that variation in plant height is also being described. The 

fact that (artifactual) terrain height variation in a special case (rice fields known to be 

both flat and level) could be marginalized without the use of GPS control points or 

classification of plants vs. ground suggested that a statistical method could be developed 

to do this in other cases. We sought a plant height estimation method that would be 

insensitive to terrain height variation, but without having to describe terrain height 

variation (as is conventionally done when a digital terrain model is developed). We 

settled on the unsupervised learning technique of finite mixture modeling, and the 

following methods were chosen for applying the technique. 

Mixture Modeling 

To investigate the applicability and performance of mixture modeling to infer 

plant height, we fit mixtures of frequency distributions to height observations (points in 

the cloud), irrespective of pixel class (ground vs. plant), using the finite mixture model 

(FMM) procedure of the SAS System v9.4. A FMM is a statistical model that describes 

variation in a population made up of a finite number of subpopulations, without 

classifying individuals’ subpopulation membership. Equation 1 relates φ, the 
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characteristic function of height, h, varying within a given spatial extent and composed 

of a number, k, of component Gaussian distributions each, i, with location and dispersion 

parameters, mean, μ, and variance, σ. 

𝜑𝜇,𝜎(ℎ) =  ∑(√2𝜋𝜎𝑖)
−1

𝑒
(

−(ℎ−𝜇𝑖)
2𝜎𝑖

)
2𝑘

𝑖=1

 

Equation 1 

Initially, we compared mixture models with varying numbers of components (k) 

in order to confirm that k = 2 for images including plant biomass and the ground was an 

appropriate parameter value. Our expectation was that two subpopulations of points in 

the cloud would be detectable through this approach: the ground (terrain between plants 

visible to the UAS), and plant biomass (aboveground plant tissue). In this initial stage, 

we fit mixture models for k = 1 to k = 5 and confirmed that k = 2 resulted in best fit by 

minimizing Schwartz’s Bayesian Information Criterion (BIC). In a few instances, the 

minimum BIC corresponded to k = 3, and visual inspection of histograms of height 

variation confirmed three distinguishable mixture distribution components. Once we had 

optimized k for an FMM fit to data from an area of interest, we then proceeded to 

calculate an average height estimate as the difference between locations (for Gaussian 

mixture components, μi, the means) of “ground” and “plants” distributions. Calculating 

this difference is possible without needing to classify individual pixels as being members 

of one or another component distribution. For areas in which the optimal value of k was 

3, due to some nursery plants being grown in pots, we estimated plant height as the 

difference between the “pot” and “plants” distributions. Additional comparisons between 
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quantile limits of distribution pairs were calculated, expecting that for important reasons 

other than average plant height, the distribution of height in a given point cloud should 

vary. For example, plant row spacing or physical architecture should affect depth of 

visibility into the canopy (Figure 6) and this can be addressed by referencing different 

portions of the “plants” distribution. 

Where ground-truth data were available (soybean and grain sorghum fields in 

South Carolina), plant heights were estimated and thereafter tested for validity as 

predictors of actual measurements, with this validation being conducted through a 

regression approach using the generalized linear model (GLM) procedure of the SAS 

System v9.4: actual heights were regressed against predicted heights. 
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Figure 6. Representation of intermediate plant heights in low-altitude remote 

sensing (LARS) -derived point clouds. In this image, line-of-sight from the 

unmanned aerial system (UAS) is depicted for three angles, labeled A, B, and C. 

The UAS is able to detect the ground (A), the lower leaves of a plant (B), and the 

top of the plant (C) for the plant spacing shown in the figure. As the space between 

plants increases (e.g., due to increasing row spacing), the height of points detected 

at viewing angle (B) will become lower, and the “plants” distribution in a mixture 

will have a lower mean value, irrespective of actual plant height. This poses a 

problem for approaches that use one distributional characteristic (e.g., mean or 

maximum) for multiple plant spacing patterns or architecture. The problem is 

solved by fitting distributions to latent classes of data and choosing, empirically or 

analytically, the optimal parameter or quantile for a given application. 

 

Rice Plant Height & Yield – Beaumont, Texas 

A generalized linear model describing rice plant height, including treatment 

number (as a category), latitude, and longitude as independent variables accounted for 

85% of height variation for field N- 1, and 87% of height variation for field N-6. Table 1 

includes coefficients estimated for this model, which marginalizes artifactual slope that 
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arises from image processing and enhances ability to infer differences arising from 

treatments applied to plots in a randomized complete block design. 

This technique results in a level field, confirmed by observing the slope of 

“ground” area not occupied by rice plots, which is known to be level due to being 

flooded with water. Height estimates calculated as the difference between FMM mixture 

components (“ground” and “plants” distributions) are also shown in Table 1, confirming 

that in an idealized situation of level and flat ground (obviating the need to construct a 

digital surface model or use GPS control points), FMM-derived estimates based on the 

difference between component means are equivalent to estimates calculated by 

subtracting a fixed ground position from a plot’s average distance from a UAS’s sensor. 

For FMM-based height estimation, a spatial buffer of 0.4 m was added to each plot to 

ensure adequate representation of the ground in point cloud data. 
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Table 1. Generalized linear model (GLM)-derived and finite mixture model 

(FMM)-derived height estimates of rice fields N-1 and N-6. The FMM height 

estimates were given 0.4 m of ground buffer on each side of the rice plots. 

Treatment Number GLM Estimated Height (m) FMM Estimated Height (m) 

Field N-1 

1 1.05 1.05 

2 0.85 0.84 

3 0.79 0.79 

4 0.77 0.77 

5 0.73 0.73 

6 0.97 0.97 

7 0.86 0.84 

8 0.77 0.77 

9 0.74 0.73 

10 0.69 0.70 

Field N-6 

11 0.80 0.80 

12 1.21 1.21 

13 1.34 1.34 

14 1.39 1.39 

15 1.36 1.37 

16 1.04 1.04 

17 1.27 1.32 

18 1.31 1.26 

19 1.30 1.26 

20 1.35 1.35 

  

Multiple Plant Species at Amerson’s Nursery – Lamar, South Carolina 

Images from Amerson’s Nursery were initially processed, as were those from the rice 

field at Beaumont, Texas, using Pix4D to generate three-dimensional point clouds 

thereafter analyzed using the FMM procedure of the SAS System. Because the use of 

FMMs proved well suited to inferring heights of rice plots in the earlier stage of this 

study, we applied the technique to a variety of plant types to test whether multiple 

mixture components could be reliably detected across plant types. In this instance FMMs 



 

39 

 

could be used reliably to detect the presence of three mixture components where 

appropriate (Figure 7), representing ground, pots (being the soil surface contained in a 

pot), and plants for potted shrubs. Height estimates are generated by calculating the 

distance between any pair of component means. 

 

Figure 7. (A) Features in the field are represented accurately by a finite mixture 

model (FMM). (B) Data from Amerson’s Nursery: the first distribution (yellow 

box) corresponds to the “ground” class of data points in the point cloud, the second 

distribution (green box) corresponds to the “pots” class of data, and the third 

distribution (red box) corresponds to the “plants” class of data. Overlap in these 

distributions results from plant-to-plant, pot-to-pot, and across-ground variation in 

height. (C) Single aerial image of the area corresponding to data shown in panes 

(A) and (B). (D) An oblique-angle render of the 3D point cloud from Amerson’s 

Nursery, showing the potted plants’ and pots’ heights. 

 

 

Soybean and Grain Sorghum – Blackville, South Carolina 

Images from the Edisto REC at Blackville, South Carolina, were processed as before, 

first using Pix4D and subsequently analyzing point clouds using SAS. 
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Table 2. Heights estimated from soybean fields using image subsample sizes of four, 

eight, and sixteen square meters. 

FMM Estimated Heights (m) 

Area Field 1 Field 2 Field 3 Field 4 

16 m2 0.67 0.69 0.67 0.64 

8 m2 0.61 0.67 0.66 0.62 

4 m2 0.54 0.65 0.60 0.68 

2 m2 0.57 0.66 0.61 0.67 

 

 

Figure 8. Sampling approaches for generating point cloud data subsets used for 

estimating soybean height. Two approaches were taken. In the first approach (A), 

concentric subsets (from 2 to 32 m2) were delineated around a point at which local 

ground truth measurements were recorded (indicated by a white board placed at 

ground level). In the second approach (B), 4 m squares were randomly placed to 

determine whether estimates derived from random samples throughout the field 

were representative of ground truth data. Parameter estimates pertaining to one 

subfield appear in Table 3 
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Table 3. Representative FMM parameter estimates for a soybean field. μ1 and μ2 

correspond to the locations of “ground” and “plant” distributions, respectively. σ1 

and σ2 are respective variances. The difference between μ values is calculated to 

estimate height, irrespective of the absolute value of μ values. Here, negative height 

values result due to the global average height being set to zero. 

 

Soybean Field Parameter Estimates 

Area (m2) μ1 μ2 σ1 σ2 

32 × 32 −0.382 0.255 0.014 0.026 

16 × 16 −0.393 0.228 0.005 0.023 

8 × 8 −0.391 0.221 0.003 0.019 

4 × 4 −0.391 0.221 0.003 0.019 

2 × 2 −0.392 0.268 0.019 0.003 

 

Table 4. Estimated soybean heights measured in the field. Median estimated values 

provided maximum description (R2 = 0.96) of observed variation. 

 

Estimated Soybean Heights (m) 

Field Ave. Obs. Fifth Lower Mean Median Upper Ninety-Fifth 

1 0.49 0.18 0.30 0.59 0.47 0.95 1.05 

2 0.53 0.18 0.42 0.62 0.59 1.08 1.20 

3 0.47 0.13 0.30 0.71 0.44 1.01 1.10 

4 0.44 0.15 0.25 0.83 0.40 0.94 1.02 

R2 0.37 0.94 0.71 0.96 0.69 0.81 
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Discussion  

This study demonstrates the ability of an unsupervised learning technique to 

robustly generate useful results from LARS data in agricultural settings, with an 

emphasis on efficient use of data and rapid output. The approach was to generate three-

dimensional point clouds using LARS data collected from different types of agricultural 

operations and from varying UAS flight patterns, and then to analyze variation without 

classifying areas or points in the cloud. Implicit in the process of measuring plants for 

height above ground is differentiation of plants from ground, and many supervised 

learning analytical approaches address this through classification and subsequent 

comparison. A conventional approach is to construct the entirety of the “ground” class 

via linear or other interpolation between GPS control points and treat a spatial subset of 

point cloud data as the “plants” class. Also common is to construct a surface model from 

point cloud data, enhancing visualization and summarizing features, but also collapsing 

variation in a way that prohibits its being analyzed in raw form. 

We suggest that a difference between human measurement takers and an aerial 

sensor can be exploited. Whereas a human on the ground taking a measurement is 

reliably calibrated (ground position is unlikely to be mistaken), he/she does not record 

the millions of measurements that are represented in a point cloud assembled from 

images taken by an aerial sensor. Indeed, the human does not have reason to take 

millions of measurements because the few taken are likely to be calibrated very 

accurately. We propose that the aerial imager similarly does not have reason to calibrate 

relative to ground in the way that the human does because the aerial imager benefits 
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from the generation of a large number of data points. The calibration of measurements 

derived from aerial imagery can thus be carried out post-measurement, and through a 

statistical approach. The volume of data thus generated supports unsupervised learning 

to infer the distance between two components latent in the resultant distribution of 

heights (Table 2). Results demonstrated that the mean height estimates derived from the 

FMM are robust to variation in spatial extent being examined (Table 2). Furthermore, 

the FMM-derived height estimates were well correlated (R2 = 0.71) with in-field human-

measured soybean heights (Table 3). This process can be generalized to situations in 

which some background, other than the physical ground, is the reference for comparison. 

For example, comparisons between colors or temperatures can be made. Such situations 

include spatial variation in spectral profile arising from disease, stress, or other 

phenomena of practical interest to agricultural producers. Because the approach does not 

rely on a priori or computational classification, it negates the consequences of 

classification error. In an unsupervised learning approach, the difference between plant 

and ground, or healthy and diseased plants, need only be detectable using analyzed 

metrics, not defined in terms of what underlies the difference. A producer monitoring a 

crop for the presence of disease can target areas where two classes of spectral profile are 

detected for investigation. Because the class-detection result of fitting an FMM does not 

depend on absolute values, differences between classes can be detected more reliably 

across varying conditions (lighting, weather, etc.) than may be possible through 

supervised learning approaches that require reliable classification before analysis. 

Additionally, FMMs are straightforward to estimate, such that fitting of models for this 
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purpose can be easily accomplished using many statistical analysis platforms—the 

technique is not proprietary. 

Application of FMMs to the types of problems faced by agricultural producers is 

fitting because of how the effort-intensive process of classification is (or is not) 

conducted. Classification of plant vs. ground in this context is not something that 

directly informs the agricultural producer—the producer can already readily identify 

ground vs. plant. Instead, classification is required by algorithms that rely on data being 

classified for supervised learning activities: these algorithms must know the difference 

between a “ground” point and a “plant” point before inference may be drawn from 

comparison between classes. Again, this information is not in itself of use to the 

producer—the producer does not need to know point or pixel class for any purpose 

outside of the analytical task being undertaken by the relevant algorithm. 

The unsupervised machine learning technique used here provides estimates, but 

with a reduced number of required steps when compared to other approaches that 

involve the use of GPS control points and their inclusion in analysis. The presence of 

multiple classes in a dataset is inferred without data needing to be classified. Thus, we 

expect the approach taken here can be more efficient, simply on the basis of its requiring 

fewer activities to execute. An approach that involves GPS control points and supervised 

classification requires, among other things, 1) construction of physical markers to be 

detected by computer vision algorithms during orthomosaicking; 2) placement of 

physical markers in target areas, ensuring visibility to aerial cameras by clearing plant 

biomass or other materials; 3) precisely georeferencing GPS control points by physically 
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visiting them with GPS equipment; 4) incorporating GPS control points into datasets and 

constructing terrain maps; 5) subsetting point cloud data to exclude pixels associated 

with actual terrain, so that statistical characterization of plants can be carried out. There 

are definitely situations in which these steps are required and advantageous—we 

highlight the most obvious of these, a situation in which the terrain is not visible to the 

aerial camera and thus the fitting of FMMs is not possible. However, where these effort-

intensive steps are not required, efficiency in phenotyping can be gained by taking an 

alternative approach that does not require the steps. A consultant or scout operating 

LARS-based data gathering could collect data in the time it takes to conduct the imaging 

overflights, process data in the time it takes to assemble a point cloud, and then have an 

estimate of plant phenotype in the field for discussion with the producer. By fitting 

FMMs to spatial subsets of data, height estimates can be made precisely despite variable 

topography of terrain (Figure 9). To construct a model of terrain using GPS control 

points, those points must be numerous enough to support fitting a terrain model that 

adequately represents variation in a field. If terrain varies appreciably at small spatial 

scales, then GPS control points must be distributed densely to account for that variation. 

However, to compare two latent height classes, those classes need only be each 

adequately represented by data, and not necessarily identified by class. Height estimates 

for subareas of a field, sampled randomly or with structure, can be averaged to estimate 

the overall mean height in a field. As in a Riemann sum, the size of these spatial subsets 

affects the accuracy of the estimate, practically limited in this case by the minimum size 

at which mixture distribution components can be reliably differentiated and estimated. 
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We suggest that this approach to LARS data usage combines the well-established 

practice of random sampling (computing height estimates for multiple data subsets) with 

the resolution and extent advantages of aerial imagery. Our results demonstrate that 

small spatial subsets (2 m squares) can be used to generate representative estimates 

(Table 3). 

Additionally, Figure 9 shows how the success of the FMM approach in 

recovering height estimates means that there is not a need to “level” point clouds or use 

GPS control points for generating height estimates. Importantly, sources of error or 

variation that result in a given field not being level can be addressed by the FMM 

approach regardless of whether those sources are an image-processing artifact, or a real-

world sloped or hilly field. Correspondence between GLM- and FMM-derived height 

estimates (Table 1) confirms that the FMM can implicitly account for terrain variation 

that is explicitly included as covariates in the GLM. Where this covariate information is 

unavailable, the FMM approach is more useful. Taken together, these considerations 

underscore the robustness of the unsupervised learning approach to analyzing image data 

for practical purposes in agriculture. 
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Figure 9. Topography differences do not affect the difference of μ1 and μ2 when 

estimating height with FMM. Height variance changes dependent on both elevation 

and plant height variation, but this is independent of the difference between μ1 and 

μ2. Three scenarios are shown as schematics on the left and are accompanied by 

real FMM output histograms representing each scenario. Imagery from which 

FMM output was generated is shown at the right. Scenario (A): flat terrain 

represented by a rice plot; scenario (B): sloped terrain present in a grain sorghum 

field; scenario (C): the uneven terrain of a soybean field. 

 

Some situations require GPS control points and comparison between a 

constructed ground and a point cloud of observations. If the ground is not adequately 

visible to an aerial sensor, the “ground” component of a mixture distribution cannot be 

estimated. In such situations, calibration for height estimates cannot be accomplished 

through the technique used here, and a reference surface must be constructed. Thus, the 
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application of this technique is limited to situations in which the ground is visible 

between crop plants—for example, row crops and early developmental stages of field 

crops. Situations calling for GPS control points and those well suited to application of 

FMMs are thus to a degree mutually exclusive. Where plants are dense such that canopy 

can be reasonably represented by a surface, an FMM attempting to differentiate 

(obscured) ground from plants will fail to return good estimates, and classification is not 

likely necessary, because all data in a related point cloud would describe plants. For 

instance, FMMs fit to data from grain sorghum resulted in only one mixture component, 

corresponding to the dense canopy of the crop when imaged (Supplemental Figure 4). 

In this situation, comparison between the plant canopy surface and a ground surface 

constructed using GPS control points would be required to estimate height. On the other 

hand, where plants are spaced such that the ground is visible between them and the 

canopy is discontinuous instead of being like a surface, an FMM is able to address the 

issue of classification efficiently without having to classify data points (Figure 9). Were 

explicit classification attempted for comparison of the “plants” points to a constructed 

ground surface through a supervised learning approach, classification error would result 

in commensurate phenotype estimate error. In such an approach, excluding generous 

buffers from analysis to avoid attempting to classify ambiguous data points is not only 

an additional analysis step with attendant potential for error, but also discards data points 

that may be informative. Unsupervised learning is more robust in situations to which it is 

appropriate. 
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Here, the FMM accounts for overlap between points belonging to each class, 

without that overlap detrimentally affecting estimates of each class’ mean or other 

distributional parameters. A threshold-based classification method will misclassify at a 

rate proportional to the overlap between classes, resulting in biased estimates of class 

means. This bias will increase as a function of the two components’ difference in 

proportional contribution to the mixture, and as a function of the difference between the 

two components’ dispersions. In other words, misclassification is of no consequence to 

supervised learning-based height estimation if the ground and height classes are equally 

represented and equally variable in a given dataset. However, as representation and 

variability differ, misclassification becomes increasingly negative in its impact to such 

an approach. Again, unsupervised learning accounts for this varying issue more robustly. 

 

Conclusions and Future Work 

The analytical method described herein was first explored to estimate rice plot 

height in the absence of GPS control points. An application of the unsupervised machine 

learning approach, finite mixture modeling, was developed to reliably estimate plant 

heights in various terrain configurations. Using imagery data from a nursery, we 

determined that FMMs could be used to detect latent subpopulations present in the 

data—specifically, subpopulations that represented the physical ground and plant 

biomass, allowing expedient estimation of average plant height by calculating the 

difference between subpopulation mean heights. To validate the application, plant 

heights were physically measured in the field and compared to the FMM-derived 
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estimates. Correlation between height estimates derived from the FMM approach and 

measurements taken on the ground was strong (R2 = 0.96). 

Further research should explore additional applications of unsupervised learning 

to technologically enhanced precision agricultural operations. We suggest that many 

contemporary applications are utilizing the remarkable resolution and scale of data 

available through remote sensing, while also involving a constraint that can be 

overcome: the need for explicit classification or calibration. The need for precise 

calibration is served by a human taking measurements in a field, and results in 

measurements that are precise and accurate, so that small sample sizes can be used to 

reach conclusions. Because LARS data are of such high resolution for an imaged extent, 

precise calibration (in this case, on the basis of the position of the ground) can be 

foregone because data are available to support inference on the position of the ground, as 

we have discussed. We believe that exploiting this type of approach will allow remote 

sensing and precision agriculture researchers to increase the efficiency of LARS data 

usage and enable increased focus on new challenges. Additionally, the ability to estimate 

relevant plant or disease phenotypes in the field without needing to construct a digital 

terrain model or use GPS control points means that crop managers can harness the 

benefits of LARS without having to also invest appreciable resources in computation or 

GPS systems. These investments can in turn be focused where they are required, as in 

cropping systems that do require GPS-based construction of a reference surface for 

height or other estimations. 
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CHAPTER III  

DNA-BASED QUANTIFICATION OF FUSARIUM OXYSPORUM F. SP. 

VASINFECTUM IN ENVIRONMENTAL SOILS TO DESCRIBE SPATIAL 

VARIATION IN INOCULUM DENSITY* 

Fusarium wilt of cotton, caused by the soilborne fungal pathogen Fusarium 

oxysporum f. sp. vasinfectum (FOV), occurs in regions of the United States where cotton 

(Gossypium spp.) is grown. Race 4 of this pathogen (FOV4) is especially aggressive and 

does not require the co-occurrence of the root knot nematode (Meloidogyne incognita) to 

infect cotton. Its sudden appearance in far-west Texas in 2016 after many years of being 

restricted to California is of great concern, as is the threat of its continued spread through 

the cotton-producing regions of the United States. The aim of this research was to 

analyze the spatial variability of FOV4 inoculum density in the location where FOV4 is 

locally emerging, using quantitative and droplet digital polymerase chain reaction (qPCR 

and ddPCR) methods. Soil samples collected from a field with known FOV4 incidence 

in Fabens, Texas were analyzed. Appreciable variation in inoculum density was found to 

occur at spatial scales smaller than the size of plots involved in cultivar trial research, 

and was spatially autocorrelated (Moran’s I, Z = 17.73, p < 0.0001). These findings 

indicate that for cultivar trials, accounting for the spatial distribution of inoculum either 

by directly quantifying it or through the use of densely-distributed “calibration checks” 

is important to the interpretation of results. 

 
*Reproduced from: Davis II, R. L., Isakeit, T., Chappell, T. M. (2022) DNA-based quantification of Fusarium 

oxysporum f. sp. vasinfectum in environmental soils to describe spatial variation in inoculum density. Plant Dis. Doi: 

10.1094/PDIS-08-21-1664-RE. 
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Introduction 

Fusarium oxysporum Schlechtend f. sp. vasinfectum (Atk.) W. C. Snyd. & H. N. 

Hans (FOV) is a soilborne fungal pathogen and the causal agent of Fusarium wilt of 

cotton (Kim et al. 2005; Davis et al. 2006). Several races of FOV infect cotton 

(Gossypium spp. L), typically in obligate association with the root knot nematode 

(Meloidogyne incognita (Kofoid & White) Chitwood) to establish infection (Armstrong 

& Armstrong, 1960; Cianchetta et al. 2015). Disease caused by FOV races that require 

root knot nematode for infection can be managed indirectly through the use of 

nematicides. But FOV race 4 (FOV4) is able to establish infection in the absence of root 

knot nematodes, and thus poses an additional challenge to cotton production worldwide 

(Davis et al. 2006; Cianchetta et al. 2015).  

Upon FOV4 colonization of vascular plant tissues, microconidia are produced in 

the xylem and continue to grow, obstructing movement of water and nutrients (Cox et al. 

2019). This leads to the characteristic symptoms of Fusarium wilt of cotton (Davis et al. 

2006; Cox et al. 2019) which vary between cotton cultivars (Zhang et al. 2020). Early in 

the growing season is when symptoms result in the most damage to plants (Halpern et al. 

2018). Symptoms include damping off and resultant stand loss (Davis et al. 2006). 

Further symptoms can occur as the growing season progresses, including chlorosis, wilt, 

stunting, and leaf necrosis (Davis et al. 2006; Sanogo & Zhang 2016). Vascular staining 

is a characteristic symptom that can be used to identify FOV4 infection in fields (Davis 

et al. 2006). In the absence of cotton, thick-walled, overwintering chlamydospores allow 
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FOV4 to persist for years in field soils (Chawla et al. 2012; Hutmacher et al. 2013; 

Gordon 2017). Additionally, the fungus can perpetuate on the roots of non-hosts. 

In the early 2000s, FOV4 was first detected in the San Joaquin Valley of California, in 

Pima cotton fields that had no previous known incidence of the root knot nematode (Kim 

et al. 2005). Prior to this detection, the known races of FOV in the United States were 

limited to those that require root knot nematode injury for infection to occur (Kim et al. 

2005; Davis et al. 2006). Following the confirmation of FOV4 in California, efforts were 

made to prevent spread and to study mechanisms of FOV4 transport (Bennett et al. 

2008). The ability of FOV4 to be transmitted on cotton seeds was confirmed (Bennett et 

al. 2008), and transport via soil has also been indicated as a potential mechanism of 

spread (Cianchetta et al. 2015). FOV4 was later reported in Texas (Halpern et al. 2018) 

and in New Mexico (Zhu et al. 2020). FOV4 is currently limited to El Paso and 

Hudspeth Counties in Texas (Halpern et al. 2018), but threatens Texas’ cotton 

production acreage, which accounts for approximately half of the acreage used to 

produce cotton in the United States (NASS 2020).  

Most races of FOV can be managed through engagement of nematodes. By 

reducing soilborne nematode populations through planting of nematode-resistant 

cultivars or use of chemical fumigation, disease associated with nematode-dependent 

FOV is commensurately reduced (Starr et al. 1989; DeVay et al. 1996). Absent this 

avenue for reducing FOV-caused disease, resistance to FOV itself becomes key to 

managing Fusarium wilt (Sanogo & Zhang 2016). Research on FOV4 host plant 

resistance has resulted in identification of quantitative trait loci and promising 
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germplasm (Ulloa et al. 2006; Ulloa et al. 2013; Ulloa et al. 2020), and resistance to 

FOV4 is expected to be polygenic (Wang et al. 2018). Management methods including 

heat disinfestation (Bennett & Colyer 2010), soil treatments (Bennett et al. 2011), and 

solarization (Bennett et al. 2012), have been tested; however, control of FOV4 continues 

to rely principally on limiting the spread of infected seeds, soil, and other plant debris 

(Davis et al. 2006).  

Under controlled greenhouse conditions, Fusarium wilt of cotton has been 

demonstrated to be an inoculum density-dependent disease (Hao et al. 2009). Thus, in 

the field, spatial variability in Fusarium wilt incidence could be in large part due to 

variable inoculum density. Developing strategies to combat the spread of FOV4 will 

necessitate understanding the distribution and spread of inoculum within and between 

fields. To study the variability of FOV4 inoculum density at sub-field spatial scales, we 

used quantitative real-time polymerase chain reaction (qPCR) methods to analyze soils 

collected directly from affected fields. We implemented DNA-based quantification to 

estimate inoculum density of FOV4 that had been recently isolated from affected fields. 

We expect that the diversity of strains present at the onset of an epidemic changes as 

inter-strain competition (Bell et al. 2019) and other factors affect fungal populations, and 

set out to describe spatial variability in inoculum at a relatively early phase in local 

FOV4 establishment. 
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Figure 10. A) The characteristic vascular staining caused by FOV4 infection. B) A 

stunted cotton plants. C) Inoculum is inconsistent in fields and may cause uneven 

stands or dead patches. D) Heavily infested cotton fields may have large portions of 

the field where cotton seedlings do not survive, leading to stand loss across a larger 

extent of the field. 

 

Materials and Methods  

Fungal collections and cultures 

DNA to be quantified came from two sources: reference isolates from fungal 

cultures, and collections of environmental soils. Multiple reference isolates of FOV races 

1 (FOV1) and 4 were plated on potato dextrose agar and V8 media. Initial fungal isolates 

were collected from the roots of infected cotton plants and propagated prior to single 

spore isolation. FOV isolates from cotton roots were used to begin cultures: FOV1 from 

plants collected in Rowland and Dawson Counties, Texas, and FOV4 from El Paso 

County. The race of initial FOV4 cultures was confirmed using the Agdia AmplifyRP 

Acceler8 kit for FOV4 (Doan et al. 2014), for which specificity to FOV race 4 is 

indicated with an exception for an Egyptian race 3 isolate, FOV1857 (Crutcher et al. 

2016). Isolates of Fusarium verticilliodes (FV) and Fusarium oxysporum f. sp. 

lycopersici (FOL) were also used to examine PCR primer specificity. A SpectraMax 
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QuickDrop Micro-Volume Spectrophotometer was used to determine the concentration 

of fungal DNA in samples.   

Soil sample collections 

Soil samples were collected in December 2019 and July 2020 from a naturally-

infested, commercial cotton field used for trials by Texas A&M AgriLife Research & 

Extension, located in Fabens, Texas (Figure 10). The first group of samples was 

collected in December 2019 at a time when cotton plants were still present in the field. 

Presence of FOV4 was confirmed in these fields by symptoms, fungal isolations from 

roots, and by employing the Agdia AmplifyRP Acceler8 kit for FOV4 (Doan et al. 

2014). Soils were collected following a stratified sampling plan, covering the range of 

damping-off and root rot ratings assigned to cotton plants grown in the field. Single-row 

cotton plots were 4.9 m in length with 1.0 m of spacing between rows. Thirteen plots 

were selected for soil collection to represent the range of damping-off ratings made 

earlier in the season. Three evenly-spaced soil samples were collected from each plot. 

Approximately 15 g of soil were collected from each plot at a depth of roughly 15 cm in 

a 50 mL centrifuge tube. The sampling depth of 15 cm was chosen to remain within the 

root zone of soil, where the likelihood of fungal activity was highest due to root density. 

Soil was stored in these tubes at room temperature until the time of DNA extraction.  

The second group of soil samples was collected in July 2020 from the same 

commercial cotton field used for trials by Texas A&M AgriLife Research & Extension, 

in Fabens, Texas. Using the same sampling protocol, collection was expanded to 131 

plots to provide greater spatial resolution. The field used for sampling in 2020 was used 
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for variety trials. A total of 72 Upland cultivars, replicated four times each, in a 

randomized complete block experimental design, were planted in a spatial arrangement 

of sixteen rows and eighteen columns (Isakeit & Arce 2021). To generate a data subset 

of complete spatial coverage at the plot level, soil samples were taken from every plot in 

five rows of the field (rows 9 through 13). Additional plots were randomly sampled 

throughout the rest of the field. 

DNA extractions 

 To generate samples to be used as standards, FOV1, FOV4, FV, or FOL mycelia 

were scraped from plated cultures using blunted, sterile toothpicks. Fungal DNA was 

extracted from mycelia using a phenol-chloroform based method. Extraction buffer (1 M 

pH=8 Tris-HCl, 0.5 M EDTA, 20% sodium dodecyl sulfate, 5 M NaCl, and sterile 

deionized water) and phenol-chloroform were added to a 2 mL screw cap tube 

containing glass beads and mycelia. The mixture was homogenized for 30 sec by 

shaking, and then centrifuged at 14,000 RPM for 12 minutes. DNA was precipitated 

using 100% ethanol at -20 °C for one hour. Following a ten-minute centrifugation, the 

supernatant was decanted, and the pellet was washed with 70% ethanol and centrifuged 

again for two minutes. The pellet was dried and suspended in TE buffer (1 M pH=8 Tris-

HCl, 0.5 M EDTA, and sterile deionized H2O). DNA was extracted from field soil 

samples using the DNeasy PowerSoil Pro kit (Qiagen GmbH, Hilden, Germany), 

following the manufacturer’s protocol: 250 mg field soil samples were processed, 

yielding 100 μL products (1x10-7 to 0.01 ug/mL). Extracted DNA products were stored 

at 4ºC. 
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Quantification using qPCR 

Primers were designed based on the Tfo1 transposase gene of the “Fusarium 

oxysporum f. sp. vasinfectum strain CA-9 transposon Tfo1 transposase gene, complete 

cds; and disrupted phosphate permease 84 (PHO84) gene” partial sequence (GenBank 

KT323911) accessioned by Ortiz et al. (2017). The primers for this study were designed 

using the IDT PrimerQuest Tool (Integrated DNA Technologies Inc.). To first determine 

which primer pair was best for quantifying FOV4, different annealing temperatures were 

tested for reactions involving each of several primer pairs using the Bio-Rad CFX 

Connect QX200 Real-Time PCR System temperature gradient feature. The primer pair 

selected for further use was the FOV4 A3-2018 forward (5’-

CTAGAGTCCTGGTTGATG-3’) and reverse (5’-ATATTCCCTGCCGATATG-3’) 

primers, at an optimal annealing temperature of 59°C using genomic DNA extracted 

from cultured FOV4. The template sequence amplified by this primer pair was within 

the Tfo1 region as described by Ortiz et al. (2017). The FOV4 A3-2018 primer pair was 

tested for degree of specificity to FOV4 over other isolates, through PCR amplification. 

Amplicons resulting from PCR amplification of environmental soils were sequenced 

(Sanger method, Eton Bioscience, Inc., San Diego, CA) and the sequence results 

analyzed for similarity with published sequences using the NCBI Basic Local Alignment 

Search Tool (BLAST) (Altschul et al. 1990). 

Soilborne DNA was quantified using a Bio-Rad CFX Connect QX200 Real-Time 

PCR System. The qPCR master mix used 5 μL SYBR-based Bio-Rad SsoAdvanced 
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Universal Inhibitor Tolerant SYBR Green Supermix, 1 μL each of forward and reverse 

primers (0.001 ug of each), and 2 μL of DNase-free water. Supermix was vortexed 

briefly and placed on ice. The 96-well plates used for reactions were also kept on ice 

prior to thermal cycling. Reactions included 9 μL of Supermix and 1 μL of template 

DNA (1x10-7 to 0.01 ug/mL) solution and were activated at 95ºC for 3 minutes. Cyclic 

PCR thermal conditions were 10 s at 95ºC for denaturation, and 10 s at 59ºC for 

elongation. Reactions were stopped after 35 cycles. A melt curve was created starting at 

65ºC, increasing by 0.5ºC at a 5 s interval, and terminating at 95ºC. Following the cycle, 

temperature was held at 5ºC. Fluorescence was recorded using Bio-Rad CFX Connect 

Maestro Software for Windows. 

Standard curve fitting 

To fit standard curves, ten-fold dilution series were generated using genomic 

DNA extracted from pure cultures, and resulting standards were included in qPCR runs. 

Genomic DNA was quantified (ng/μL) from 1 μL aliquots of the sample using a 

SpectraMax QuickDrop Micro-Volume Spectrophotometer (Molecular Devices, San 

Jose, CA). Reaction efficiency was calculated in the Bio-Rad CFX Connect Maestro 

Software for Windows program. 

Validation through spike recovery 

Double-autoclaved field soil samples were used as DNA-background-free matrix 

for amending with FOV4 fungal material. Cultured FOV4 of 0.010, 0.0250, 0.050, 

0.075, and 0.100 g were added to 0.5 g quantities sterile soil. Further validation was 

performed by spiking dilutions of a conidia suspension into 0.25 g samples of sterile 
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soil, with the initial suspension concentration (6.75 x 105 conidia/μL) determined using a 

hemocytometer. 

Quantification using droplet digital PCR 

 Droplet digital PCR (ddPCR) was used for corroborating analog qPCR 

quantifications of soilborne FOV4 inoculum using the Bio-Rad AutoDG QX200 Droplet 

Digital PCR System following the manufacturer guidelines. The ddPCR is used to 

quantify genetic material in a sample by classifying whether amplification occurs in each 

of a large number of reaction partitions, being water-oil emulsion droplets in the case of 

ddPCR (Hindson et al. 2011). The number of reaction partitions that include at least one 

template copy (indicated by distinctly higher fluorescence intensity than template-free 

partitions) is analyzed to estimate the quantity of template molecules in a sample, 

assuming that the number of copies per droplet is Poisson-distributed (Hindson et al. 

2011; Rački et al. 2014). Because of the manner through which target genetic material is 

amplified during ddPCR, the output from this procedure facilitates estimating DNA 

concentration in a sample without relying on the fitting of standard curves (Wen et al. 

2020). An EvaGreen-based master mix was used for the analysis at a total volume of 22 

μL per well, consisting of: 11 μL of QX200 ddPCR EvaGreen Supermix, 1.1 μL of 

forward and reverse primers (0.001 ug of each), 7.7 μL of DNase-free water, and 1.1 μL 

of template DNA (1x10-7 to 0.01 ug/mL). Following the generation of droplets, the 96-

well plate was sealed and transferred to the Bio-Rad C1000 Touch Thermal Cycler for 

DNA amplification, which begins at 95ºC for 5 min and cycled for 40 times at 95ºC for 

30 s for denaturation and for elongation at 60ºC for 1 min. Upon completion of the PCR, 
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the plate was transferred to the Bio-Rad QX200 Droplet Reader where fluorimetry was 

used to classify droplets as reaction-positive or -negative. Data output from the QX200 

Droplet Reader was collected using Bio-Rad QuantaSoft Software. 

Data analysis 

The Cq values generated through qPCR were visualized as representations of 

inoculum density across space, using the G3GRID and G3D procedures of the SAS 

System version 9.4 (SAS Institute, Cary, NC). The Cq values were also analyzed as a 

function of template concentration estimates generated through ddPCR, using the GLM 

procedure of the SAS System version 9.4. The VARIOGRAM procedure of the SAS 

System was used to estimate Moran’s I and to generate semivariograms for the study of 

spatial structure in inoculum density variation. 

Results 

Six primer pairs designed for this study were derived from regions including 

Tfo1 transposase and PHO84 phosphate permease gene sequences (GenBank 

KT323911) accession by Ortiz et al. (2017) during characterization of an insertion event 

that distinguished California FOV4 isolates from those of other geographic locations. 

Primers described by Ortiz et al. (2017) did not amplify FOV4 isolates collected from 

Texas, potentially due to recent genetic diversification of FOV4 (Bell et al. 2019). We 

developed additional primer sets based on the sequence results of Ortiz et al. (2017) in 

search of one that amplifies Texas FOV4 isolates in aggregate efficiently without also 

appreciably amplifying Texas FOV1, the other FOV race expected to currently occur in 

Texas cotton fields. A standard curve was fit to translate Cq values to template 
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concentration estimates (Figure 11). If primer pairs resulted in amplification that did not 

meet general criteria, they were eliminated from this study. Criteria were that 

amplification of FOV4 templates must be estimated to be 90-105% efficient (E = 10(-

1/slope) – 1), and that standard curves fit to FOV4 standards must be log-linear with R2 > 

0.98. The “2018” primer pair met these criteria and performed best in terms of standard 

curve determination, and we proceeded with this pair into further analysis. Dilution 

series of plate-cultured isolates of FV and FOL were not significantly correlated with 

amplification from the FOV4 A3-2018 primer pair (for FV: r = -0.149, p = 0.8113; for 

FOL: r = -0.375, p = 0.4642).  

 

Figure 11. A standard curve was constructed from a ten-fold serial dilution of a 

genomic DNA extracted from Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4) 

harvested from plates. The standard curve was used for absolute quantification in 

quantitative real-time polymerase chain reaction (qPCR) analyses.  
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Spike recovery was conducted to study the effectiveness of the quantification 

method in the presence of soilborne polymerase inhibitors, and co-occurring FOV1. We 

combined known quantities of FOV4 mycelial tissue or conidia with sterilized 

environmental soils from the field in Fabens, Texas to simulate unknowns, and 

examined the method’s ability to recover accurate FOV4 quantities. Spike recovery 

results were used to set the limit of detection, being the smallest amount of template that 

can be distinguished from a no-template control. In our aggregate data, no-template 

controls did not result in Cq values lower than 32, so this was set conservatively as the 

limit of detection. The results of the race 4 quantifications correlated strongly (r = -

0.971, p = 0.0059) with the masses of the mycelia mixed with the sterilized soil (Figure 

12). Estimates of FOV1 template concentration were all below the limit of detection 

established for FOV4 (Cq values were above 32). Additionally, estimates of FOV1 

template concentration were not significantly correlated with FOV1 mycelial mass (r = -

0.572, p = 0.2356). Estimates of FOV4 tissue quantity were strongly correlated with 

conidia concentration generated through a dilution series, from 6.75 x 105 to 6.75 x 101 

conidia/μL (r = -0.991, p = 0.001) (Figure 12).  
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Figure 12. Sterilized soil samples were spiked with mycelia of FOV4 by fresh 

weight (in grams) or with a dilution series concentrations of conidia to determine 

how well these quantities could be recovered using qPCR. The resulting cycle of 

quantification (Cq) values were correlated with the masses of mycelia spiked into 

the soil samples (r = -0.971, p = 0.0059). Log10 conidia concentrations were also 

correlated with Cq values (r = 0.991, p = 0.0010). 

 

After validating quantifiability of FOV4 in environmental soils, samples from 

FOV-infested cotton fields were analyzed. Variability in soilborne inoculum density was 

high (Figure 13), ranging from Cq values of 21.46 to below the limit of detection from 

samples collected in July 2020. The highest quantities of soilborne inoculum density fell 

between the amounts of DNA present in samples spiked with 0.05 to 0.075 g of mycelia;  

the lowest were below the quantification for 0.01 g of mycelia. The spike 

recovery experiment that was used to validate the method represented a realistic range of 
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inoculum density found in the soil during the peak of the growing season. Soil samples 

processed from this field had a mean Cq of 28.40 and a variance of 5.83. Field inoculum 

density was spatially heterogeneous at the spatial scale of experimental plots. Mean and 

variance of Cq values were not correlated (r = 0.00337, p = 0.969). A large, positive 

Moran’s I (Z = 17.73, p < 0.0001) indicates that inoculum density is spatially 

autocorrelated and more clustered than would be expected if inoculum were randomly 

distributed within the field. Nonrandom clustered spatial distribution of inoculum is 

consistent with the expectation that FOV4 growth and spread occurs in the field, 

potentially followed multiple introductions of FOV4 from infected seeds. A 

semivariogram of Cq values was used to estimate the spatial scale at which soilborne 

FOV4 inoculum density is spatially autocorrelated. The range of spatial autocorrelation 

using a spherical model was 10.55 m (Figure 14), which is approximately the size of 

two experimental plots in common variety trials conducted in the field. 
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Figure 13. A surface plot depicting the variability of the soilborne inoculum density 

in July 2020 during a variety trial to assess the susceptibility of cotton cultivars. 

The large, positive Moran’s I (Z = 17.73, p < 0.0001) indicates that soilborne FOV4 

inoculum is more clustered than what would be expected if inoculum arrived 

randomly in the field. 
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Figure 14. A semivariogram was used to determine the scale at which soilborne 

FOV4 inoculum density was spatially autocorrelated. An exponential model was 

used to estimate the range (10.55 m) at which mean Cq data were autocorrelated. 

 

The ten-fold dilution series used to construct the standard curve was used to 

compare the output from both the qPCR and ddPCR analyses. The results from qPCR 

proved a good predictor of ddPCR results, the latter of which are expected to be more 

accurate and precise especially at lower template concentrations (r = -0.998, p = 0.0023) 

(Figure 15). Inhibition of PCR by contents of environmental soils is of major concern 

when analyzing samples with qPCR, ddPCR lessens the consequence of PCR inhibition 

(Rački et al. 2014, Wen et al. 2020). Field soil samples were quantified in parallel using 

ddPCR and qPCR to test for a decrease in qPCR quantitative accuracy in the presence of 

expected inhibitors. The qPCR results remained highly predictive of ddPCR results in 
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these comparisons, but variability in qPCR-based quantification led to a decrease in the 

strength of the correlation between techniques (r = -0.942, p < 0.0001) (Figure 16). 

 

 

Figure 15. A dilution series was compared between the qPCR and droplet digital 

PCR (ddPCR). The log normal concentrations of fluorescent genomic DNA, 

measured in copies per microliter (copies/µL), were correlated with the Cq values of 

the standard curve (r = -0.994, p = 0.005). 
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Figure 16. Genomic DNA from soil extractions was compared between qPCR and 

ddPCR analyses to determine the correlation between these two methods. The log 

normal transformed average concentrations of genomic DNA quantifed using 

ddPCR (copies/μL) were correlated with the Cq values from th qPCR output (r = -

0.942, p < 0.0001). 

 

Discussion 

In agricultural settings, soilborne fungal pathogens present a major threat to crop 

or fiber yield and the economic viability of cultivating specific crops in heavily-infested 

areas. This is especially evident with monoculture planting operations where soilborne 

pathogens are present, and especially consequential where operations involve seed 

production if seeds can be infected. Many formae speciales of the pathogenic soil-

inhabiting fungus Fusarium oxysporum are responsible for wilting diseases in many 

large-scale crops, with FOV4 being a current and evolving threat to Pima and Upland 
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cotton production. FOV4 infects cotton independently of root knot nematodes and 

survives well in soils as a saprophyte even in the absence of cotton. Because new disease 

foci can be created by the movement of infested soil or by infected seeds and thereafter 

become a recalcitrant disease threat to any cotton grown at the affected location, there is 

value in knowing or estimating the distribution of inoculum in the field prior to investing 

in cotton production. Inoculum foci are otherwise unknown prior to planting and 

symptom expression, and the DNA-based method to quantify FOV4 inoculum in field 

soils described here allowed us to see how variable inoculum density is in a field 

independently from symptom expression or stand loss. 

Seedborne transmission is hypothesized to be a potential long-distance dispersal 

mechanism for FOV4 (Bennett et al. 2008) and due to the ability of chlamydospores to 

survive for long periods in infested soils, any movement of soil contaminated equipment, 

vehicles or other equipment from FOV4-contaminated fields could also introduce the 

pathogen to cotton production fields in other regions. Through some mechanism, strains 

with the Tfo1 insertion in the PHO84 gene (Ortiz et al. 2017), a sequence unique to 

California race 4 isolates, may have been introduced to cotton production in West Texas. 

Primer pairs developed for this study used this sequence because of the likelihood that 

the Texas isolates would be similar to the California isolate sequences accessioned by 

Ortiz et al. (2017). Additionally, these sequences were used because the insertion of the 

Tfo1 transposon was unique to isolates of FOV4 (Ortiz et al. 2017), and this allowed for 

primer specificity for FOV4 vs. FOV1. Specificity to FOV4 vs. FOV1 was expected to 

be most important for this study because FOV1 is present in Texas. The method used in 
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this study amplified TX FOV4 isolates (classified to the level of race, with the caveat 

that the Acceler8 kit used to do so may not differentiate between races 3 and 4) 

specifically enough to afford accurate target quantification in the presence of substantial 

FOV1 material. Crutcher et al. (2016) demonstrated that the Acceler8 kit returns positive 

results for Egyptian isolates of FOV3; however, California race 3 and other race 3-like 

samples did not result in positive results from the kit. A survey conducted in 2013 did 

not detect FOV3 in Texas (Cianchetta et al. 2015), and description of symptoms 

associated with the El Paso, Texas FOV isolates used in this study were characteristic of 

FOV4 infection (Isakeit & Arce, 2020). Multiple sub-racial variants have been identified 

since our sampling (Diaz et al. 2021) and it is possible that these different sub-racial 

variants exhibit different in-field host specificity or other characteristics. If this is the 

case, then spatial variation of inoculum density at the sub-racial level may affect the 

results reported here, underscoring the need to assume that inoculum density varies in 

space – perhaps not only in aggregate amount at some taxonomic level, but also in 

composition. Further research is necessary to describe the variation in symptom 

expression, if any, that result from genotypic differences between sub-racial variants.  

Spatially, soilborne FOV4 inoculum density is heterogeneous due to the 

existence of multiple disease foci, themselves likely a result of multiple and variable 

introduction events caused by planting infected seeds and/or the movement of infested 

soils by field machinery. Temporally, inoculum density varies due to environmental and 

biotic inputs affecting fungal pathogenic and saprophytic growth, and additional research 

is necessary to understand these inputs and their consequences. Methods used to confirm 
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field infestations often and appropriately rely on the observation of symptomatic plants 

and further confirmation by selective plating and sequencing (Halpern et al. 2017) or by 

using field diagnostic assays of plant material (Doan et al. 2014). This can be limiting 

factor concerning FOV4 in fields because symptom expression varies greatly depending 

on the cultivar and its susceptibility to the pathogen. Indeed, when variation in cultivar 

susceptibility is the purpose of field research, as is the case in variety trials, the ability to 

attribute symptom expression to inoculum density vs. cultivar susceptibility is critically 

important. In other words, as a result of the distribution of FOV4 in soil, symptom 

expression cannot be used as a reliable predictor of inoculum density unless cultivar 

response across a range of inoculum densities is understood. Cultivar response across 

inoculum density, however, is difficult to understand without knowing or controlling 

inoculum density. Providing information on soilborne inoculum density benefits the 

design of field trials aimed at differentiating cultivars in terms of susceptibility. Intensive 

use of densely-interposed known-susceptible cultivars in a field trial as calibration 

checks (J. Olvey, pers comm.) allows spatial resolution of inoculum density to be 

inferred through symptom expression, provided the density of these “checks” is high 

enough to not miss high- or low-inoculum spaces between the checks. Spatial 

autocorrelation of inoculum density at distance of less than 10 m suggests that checks 

between every approximately 5-meter-long plot may be useful in randomized complete 

designs for variety trials. Additionally, grid-distributed checks may be used as a basis for 

generating an interpolated spatial map of infection risk, allowing for symptom variation 

within plots to be attributed to a gradient of inoculum density, and increasing statistical 
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power of analysis used during variety trials. A benefit of calibration checks is that they 

are realistic, and the plants used are subject to the environmental conditions of their 

neighbors – both of these benefits are uniquely provided by the use of actual plants as 

checks. A limitation to calibration checks is that they must be assessed after planting and 

do not provide information on inoculum dynamics after the check plants die – both of 

these limitations can be partially addressed by molecular quantification of inoculum pre-

planting. Thorough use of calibration checks and molecular inoculum quantification 

where useful can provide researchers conducting variety trials with the information 

needed to address the recalcitrant and spatially variable problem represented by FOV4 

inoculum.  

The variability of inoculum raises the question of the amount of sampling 

necessary to describe field-wise inoculum density. The estimate of Moran’s I (Z = 17.73, 

p < 0.0001) resulting from sampling the field in 2020 indicates that the distribution of 

inoculum is nonrandom and clustered. Sampling intensity may be informed by 

empirically determining the spatial scale at which inoculum density values are 

correlated, and sampling at scale minimally greater than that. Sampling intensively in a 

research field at which multiple different cotton varieties (and potentially different 

inoculum amplification rates associated with those varieties) provided data useful for 

estimating spatial autocorrelation using semivariance (Figure 14). Quantities of 

soilborne FOV4 inoculum density were spatially autocorrelated at a spatial scale (range) 

of 10.55 m. A cotton production field, planted uniformly to one variety with minimal 

variation, may lead to a different degree of spatial autocorrelation, and this is a 
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consideration that should be attended by researchers using spatially host-heterogeneous 

fields to develop applications for host-uniform commercial fields.  

Standard, uniform spore counts have been used for consistent disease development in 

greenhouse variety trials, however disease severity varies especially as a function of 

environmental factors that vary between the field and laboratory. More field work 

building on a body of knowledge from laboratory and greenhouse research is necessary 

to understand the inoculum density-dependent susceptibility of cotton cultivars that may 

have resistance to FOV4. Hao et al. (2009) found that FOV4 inoculum may increase 

through time in the presence of cultivars that bear infection without dying, suggesting 

that the use of “tolerant” cultivars may have downstream consequences in terms of 

FOV4 abundance. Accordingly, research focusing on the temporal dynamics of FOV4 in 

varying environments and depending on host presence is necessary for understanding 

potential long-term changes in soilborne inoculum. Neither the spatial extent nor the 

potential temporal amplification of inoculum have previously been quantified in a host-

independent in-field fashion. The utility of this quantification is its facilitating risk 

assessment, potentially prior to cultivar selection. Because the field we investigated was 

the site of a variety trial, it stands to reason that in-field FOV4 inoculum density 

variation may arise as a function of commensurate variation in cotton susceptibility to 

FOV4 infection, consistent with the laboratory findings by Hao et al. (2009). Additional 

research is necessary to determine the degree to which cotton cultivar affects inoculum 

density, and on which to base expectations of inoculum increase or decrease in a given 

location through time. 
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CHAPTER IV  

COMPARATIVE TEMPORAL VARIATION OF FUSARIUM OXYSPORUM F. SP. 

VASINFECTUM RACE 4 IN FIELD SAMPLING AND GROWTH CHAMBER 

TRIALS 

Soilborne inoculum of Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4) is 

spatially variable in cotton fields, however the temporal dynamics of the pathogen are 

not well characterized. Environmental sampling was undertaken to describe the temporal 

dynamic of soilborne FOV4 inoculum density. The variability of soilborne FOV4 

inoculum density was measured in July and December 2020 where the variance of 

samples collected in the field decreased between the two dates (σ2
July = 5.67, σ2

Dec = 

3.38). These findings were compared to an experiment carried out under controlled 

conditions in a growth chamber to identify drivers of temporal variation in inoculum 

density. In this experiment, organic matter content (0, 5, 25, or 50 g per 100 mL of sand) 

and the presence or absence of cottonseeds (susceptible or tolerant Pima cotton, or 

Upland cotton (G. hirsutum) of unknown susceptibility), were studied as hypothetical 

causes of change in inoculum density. No effect of cotton cultivar was detected (r = 

0.212, p = 0.2035) as a cause of amplification of soilborne inoculum. This was supported 

by results from the field sampling where cotton cultivar was not correlated to inoculum 

density. Organic matter was found to be a factor affecting the amplification of inoculum 

in the growth chamber experiment (r = 0.704, p < 0.0001).  
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Introduction 

Plant pathosystems are complex networks with various, interconnected 

components that in combination initiate the onset of disease. The manifestation of plant 

disease is a dynamic process, and the complexities of a given plant pathosystem can be 

decomposed to attribute epidemiological variation to causes. The disease triangle 

represents the combined dependence of disease on the co-occurrence of environmental 

conditions that are conducive for pathogenesis, a virulent pathogen, and a susceptible 

host (Scholthof 2007). While these factors are necessary for the initiation of infection, 

many additional elements influence disease progress and severity over the course of a 

growing season. In soilborne plant pathosystems, inoculum density has a major effect on 

the progression of plant diseases (Stahr & Quesada-Ocampo 2020). Plant diseases 

caused by soilborne pathogens are dependent on inoculum density, meaning that the 

temporal progression of disease is affected by how much inoculum is present in the soil. 

The importance of inoculum density to disease progress has been empirically 

substantiated by research suggesting that quantities of soilborne pathogens at the start of 

the growing season most directly affect the severity of disease (Bailey & Gilligan 1999). 

Fusarium oxysporum f. sp. vasinfectum (FOV) is a soilborne fungal pathogen 

that causes Fusarium wilt of cotton (Gossypium spp.) and has been identified in all 

cotton growing regions in the United States (Davis et al. 2006). Most races of FOV 

require the co-occurrence of the root knot nematode (Meloidogyne incognita) to infect 

cotton, leading to the expression of wilt symptoms (Davis et al. 2006; Kim et al. 2005; 

Cianchetta and Davis 2015). During the periods between growing seasons, FOV can 
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persist in soils as chlamydospores, thick-walled resting spores, and on plant debris as a 

saprophyte (Davis et al. 2006). The highly virulent race 4 (FOV4) is the exception 

because it can infect cotton and cause symptoms in soils where the root knot nematode is 

absent (Davis et al. 2006). In the United States, FOV4 was first identified in Pima cotton 

(G. barbadense) fields in California (Kim et al. 2005). The pathogen was later detected 

in Texas in 2017 (Halpern et al. 2018) and New Mexico in 2019 (Zhu et al. 2020).  

The mode of FOV4 introduction to Texas and its initial location has not been 

confirmed, but infected seed coming from California has nevertheless been implicated as 

the most likely source of initial inoculum (Bennett et al. 2008). Subsequent spread from 

the initial introduction, also not confirmed, could be attributed to the movement of 

infested soil on field implements or through water. As a result of the initial seed 

introductions or the movement of infested soil thereafter, the distribution of FOV4 in 

infested fields is characteristically patchy, resulting in uneven cotton stands (Davis et al. 

2006). In addition to the seed introductions, the movement of soil and plant debris within 

fields likely has caused multiple disease foci of varying inoculum density, observable by 

symptoms of infection, to be distributed throughout infested cotton fields (Davis et al. 

2006). The spatial patterns of inoculum are observable by symptom expression, with 

some research showing a correlation between inoculum density and disease severity in 

cotton (Hao et al. 2009), however the temporal dynamics of soilborne FOV4 inoculum 

have not been characterized in the field. 

Infection of cotton by FOV4 occurs predominantly during the seedling stage, 

where damping-off may result depending on susceptibility (Zhang et al. 2020). With the 
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understanding that this is a monocyclic disease, the temporal dynamics of inoculum can 

be used to predict severity in subsequent growing seasons if field inoculum is being 

amplified by tolerant varieties without any visible aboveground symptoms. Observations 

by Henry et al. (2019) suggest that maintenance of Fusarium wilt population density 

over time is a function of the saprophytic capabilities of the fungus. Hao et al. (2009) 

noted an increase in soilborne FOV4 during greenhouse inoculum density assays with a 

cotton cultivar tolerant to the pathogen, however this result has not been compared to 

results obtained from field research. As with other soilborne pathogens, such as 

Verticillium dahliae (Berbegal et al. 2007), the effect of inoculum density on infection 

probability and disease severity varies by host cultivar.  

The purpose of this work was to examine the temporal dynamics of FOV4 in 

relation to inoculum density. The objectives of this research were to (i) quantify FOV4 

from field soils using quantitative real-time polymerase chain reaction (qPCR), (ii) 

describe the temporal dynamics of soilborne FOV4 inoculum using a growth chamber 

experiment, and to (iii) compare temporal variation in inoculum density between field 

and growth chamber experiments, and between different quantification techniques. 

 

Materials and Methods 

Collection of field soils. 

In July and December of 2020, soil samples were collected from a Texas A&M 

AgriLife Research & Extension field in Fabens, Texas, where Upland cotton variety 

trials were underway. Cotton plants were present during each sampling dates. Using a 
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randomized block design, 72 cotton cultivars were planted in 4.9 m length cotton plots, 

with 1.0 m of spacing between plots in a field consisting of 16 rows and 18 columns; 

each cultivar was replicated four times in the field (Isakeit & Arce 2021). Soil was 

collected from 131 plots, where samples was taken from each plot in rows 9 to 13 and 

randomly sampled from other plots outside of this extent (Figure 17). Three, 10 mL soil 

samples were collected, each corresponding to the front, middle, and end of each field. 

The sampling depth of 15 cm was used to remain within the root zone of the soil where 

the likelihood of fungal activity was greatest. 

 

Figure 17. The map of the sampled portion of the field in 2020 where column 1 is 

nearest the road and column 18 is the end of the variety trial field. Rows 9 to 13 

(green cells) were samples across the length of this field. Other plots (yellow cells) 

were chosen based on the cultivars found within rows 9 to 13. 

 

In November 2021, three soil subsamples were collected from fifteen cotton plots 

in the Upland cotton variety trial field in Fabens, Texas, where the dimension of the field 

were 28 rows by 12 columns. Five plots were selected for sampling from the front, 

middle, and end of the variety trial field to account for spatial variation in inoculum 

density (Figure 18). In a second, smaller field, a single cotton cultivar (Figure 19), 
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Phytogen 400 (PHY400), was coated with each of the eight fungicide treatments in a 

split plot design, with Delta Pine 340 (DP340), a highly susceptible cultivar, planted in 

border plots for the field. Three, 10 mL soil samples were collected from each of sixteen 

plots, where each fungicide treatment was collected twice in each field. Sampling was 

completed before harvesting occurred. Samples collected from the fields were used for 

DNA extractions and were subsequently stored at -20°C following use. 

 

Figure 18. The sampling plan used to collect from a subset of plots in the 2021 

variety trial field in the Texas A&M AgriLife Research and Extension field in 

Fabens, TX. Fifteen plots were sampled three times each to describe the variation 

in inoculum density in a multiyear cotton variety trial field. 
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Figure 19. A fungicide seedcoat treatment efficacy trial was ongoing. Soil was 

sampled from the plots in blue. A single Upland cotton cultivar was planted in this 

field. Eight different seedcoat fungicide treatments were tested for their resistance 

to FOV4. Treatments were planted in double plots (for instance row 46 column 29 

and row 47 column 29 have the same seedcoat treatment). 

 

Fungal isolate cultures. 

Potato dextrose agar (PDA) plates, augmented with lactic acid, were used to 

culture isolates of FOV4. The fungus was grown for 7 to 10 days at room temperature 

(22-23°C). Sterile toothpicks were used to scrape mycelia from the plates.  

A 500 mL liquid culture of yeast extract peptone dextrose broth was used to grow 

conidia. The broth was inoculated with four plugs of plate cultured FOV4. After being 

shaken at room temperature (22-23°C) for four days, one day at 90 rpm and three days at 

120 rpm, the broth was filtered through four layers of sterile cheesecloth. The conidia in 

the resultant suspension were counted using a hemocytometer with an initial inoculum 

density of 6.75 x 105 conidia/mL. The suspension was diluted twice in sterile water; the 
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diluted conidia suspension (6.75 x 104 conidia/mL) was used for inoculating sorghum 

grain for growth chamber experimentation.   

Growth chamber experiment preparation. 

Sorghum grain was used as the organic matter for growth chamber 

experimentation. About 750 mL of sorghum grain was soaked in, 1000 mL screw cap 

beakers for six hours. After the water was drained from the beakers, the sorghum grain 

was autoclaved for one hour at 121°C for two consecutive days. Play sand was also 

autoclaved on the gravity setting for two consecutive days at 121°C for one hour.  

Table 5. Treatments used for the growth chamber experiment. 

Organic 

 Matter (g) 
Seed Type DP357 PHY841 PHY499 DP1522 

0 None None None None None 

5 Low Low Low Low Low 

25 Medium Medium Medium Medium Medium 

50 High High High High High 

 

Four treatments, each repeated three times, were used for organic matter (Table 

5). The treatments consisted of 0, 5, 25, or 50 g of autoclaved sorghum grain. Sorghum 

grain was inoculated with 1 mL of the conidia suspension and mixed with up to 100 mL 

of sterile sand. A randomized complete block factorial design was used in a 40-cell 

seedling tray.Full cells of each treatment type, twelve cells per date, were sampled every 

ten days for 30 days. Cottonseeds Delta Pine 357 (DP357), Phytogen 841 (Phy841), 

Phytogen 499 (Phy499), and Deltapine 1522 (DP1522) were surface sterilized in a 10% 

bleach solution and rinsed twice with sterile deionized water. Cottonseeds were planted 

after 10 days to mimic the build-up of inoculum in a fallow field. Sand, without organic 
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matter present, was also inoculated with 1 mL of the conidia suspension. The experiment 

was repeated twice under the same growth chamber conditions. 

Isolation of genomic DNA. 

The Qiagen DNeasy PowerSoil Pro kit was used to isolate genomic DNA from 

0.25 g of soil, which were homogenized using the Bertin Technology Precellys 24 Lysis 

& Homogenizer. The extractions followed the manufacturer’s protocol. Extracted DNA 

was suspended in 50 μL of elution buffer, with aliquots of 15 μL stored at 4°C until use, 

the remaining DNA was stored at -20°C.  

Quantification of soilborne inoculum. 

Soilborne FOV4 was quantified using qPCR as described in Davis et al. (2022) 

for both field and growth chamber samples. Briefly, 1 μL of genomic DNA (1x10-7 to 

0.01 ug/mL) was quantified in a mixture of 5 μL of Bio-Rad SsoAdvanced Universal 

Inhibitor Tolerant SYBR Green Supermix, 1 μL each of the A3-2018 FOV4 forward and 

reverse primers (0.001 ug of each), and 2 μL of sterile DNase-free water, per well. The 

Bio-Rad CFX Connect QX200 Real-Time PCR System was used for quantification 

using the settings outlined in Chapter III (Davis et al. 2022). A standard curve, 

consisting of a ten-fold serial dilution of plate culture FOV4 genomic DNA, was used to 

compare cycle of quantitation (Cq) values of soil samples to known quantities. The Bio-

Rad CFX Connect Maestro Software for Windows program collected the output data, 

which was used for downstream statistical analysis. Output for both the cycle of 

quantitation (Cq) and the starting quantity (SQ) were used for analysis.  
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Fungal colony counts. 

Colony forming units (CFU) of FOV4 were counted from the growth chamber 

experiment samples to compare the change in viable conidia between the sampling dates. 

Subsamples of approximately 0.25 g of soil were weighed and 1 mL of water was added 

to the tube. A sterile microcentrifuge tube pestle was used to disrupt the contents of the 

tube, which was followed by briefly vortexing. The first serial dilution of the mixture 

was spread on three plates each. Colonies were counted two days after inoculation.  

Data analysis. 

The SAS System version 9.4 (SAS Institute, Cary, NC) was used to analyze data. 

Data were analyzed using the GLM, G3DGRID, and SGPLOT procedures. The G3D and 

G3GRID procedures were used for visualization of Cq values as surface plots to describe 

spatial inoculum density over time. The GLM procedure was used to model the change 

in starting quantity (SQ) values and to compare between means using the LSMEANS 

function. PROC SGPLOT was also used for visualization of results as line graphs and as 

box plots. 

Results 

Temporal dynamics of soilborne FOV4 inoculum density – environmental samples 

Figure 20 compares the ranges of inoculum density in December (range = 6.03, 

σ2 = 1.57, 95% CI [1.25, 2.02]) and July (range = 11.76, σ2 = 6.20, 95% CI [4.14, 

6.73]). Using Levene’s test for the homogeneity of variance, the variance in mean Cq 

between the two sampling dates was determined to be different (p < 0.0001). When 

compared to December, inoculum density was more variable throughout the field in 
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July. Although the range of mean Cq values is smaller, there is no significant difference 

between the averaged estimated inoculum density as a function of time. Surface plots 

generated using PROC G3D and G3GRID were used to visualize the temporal variation 

in soilborne inoculum density between the July and December sampling dates (Figure 

21). Soil samples became more spatially autocorrelated in December (I = 0.114, Z = 

29.6, p < 0.0001) compared to July (I = 0.073, Z = 17.73, p < 0.0001), the positive Z-

score indicated spatial autocorrelation. A spatial effect of inoculum density exists 

between the July and December 2020 sampling dates. There is structure in the inoculum 

density along the in-field columns when comparing mean Cq (r = 0.741, p < 0.0001) 

between the two sampling dates. There was, however, no structure when comparing 

rows and mean Cq between the sampling dates (r = 0.342, p < 0.4241). 
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Figure 20. Box plots illustrating the variability of inoculum density between July 

and December 2020. While there was no difference between the means, the 

variance of inoculum density decreased between July (range = 11.76, σ2 = 6.20, 95% 

CI [4.14, 6.73]) than in December (range = 6.03, σ2 = 1.57, 95% CI [1.25, 2.02]). 
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Figure 21. Surface plots visualizing the mean Cq values estimated from soil samples 

collected from the field in A) July and B) December 2020 to understand the 

temporal dynamic of soilborne FOV4 inoculum density. The x-axis represents the 

rows (1 to 16) and the y-axis represents the columns (1-18) that were sampled from 

the Texas A&M AgriLife Research and Extension experimental field in Fabens, 

Texas. The z-axis is the mean Cq estimates for each plot. In July, variability of 

inoculum density was greater throughout the field when compared to December.  

A 

B 
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Comparative quantification of environmental samples in 2021. 

In 2021, soil samples were collected from two fields to examine the differences 

between a long-term variety trial field, used for testing FOV4 tolerance in cotton plants, 

and a field that was newly used for seedcoat fungicide trials against FOV4 in 2021 

(Figure 22). The difference between the averages of the mean Cq values estimated 

between the two field was significant (r = 0.379, p = 0.0320). Additionally, the range of 

Cq values was smaller for samples collected from the fungicide trial.  

 

Figure 22. Boxplots show the difference in soilborne inoculum density between two 

cotton fields where samples were collected in November 2021, when cotton plants 

were still present in the field. The first, a monoculture field using Phytogen 400 for 

a seedcoat fungicide trial had newly been used for FOV4 trials in 2021. In the 

second field, multiyear cotton variety trials had been underway. The difference 

between the mean Cq values between the two seasons was marginally significant 

with a small effect size (r = 0.379, p = 0.0320). 
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Temporal variation in inoculum density – growth chamber 

Baseline quantifications were done on samples before placing the sand-sorghum grain 

mixture into the germination trays. These quantifications were done to ensure that there 

was a difference between initial and subsequent sampling dates. In Figure 23 the mean 

log2 SQ of the growth chamber soil samples is shown with the days post inoculation 

(DPI) on the x-axis (r = 0.704, p < 0.0001), generated using PROC GLM. Inoculum 

density, which was represented by the starting quantity (SQ), increased between 0 and 

20 dpi for low, medium, and high levels of organic matter. Overall, each organic matter 

treatment follows the same trend for the first 20 dpi. The greatest increase in inoculum 

density was between 0 and 10 dpi when FOV4 was most readily colonizing the organic 

matter in each cell. Inoculum density continued to increase, at a comparatively slower 

rate between 10 and 20 dpi, until it plateaued, for medium and high treatments, from 20 

to 30 dpi.  
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Figure 23. The entire contents of designated cells were collected every ten days over 

a thirty-day period. Genomic DNA from 0.25 g soil samples were quantified using 

qPCR. The mean log2 starting quantities (SQ) for the soil samples were used to fit 

the change in inoculum density over time for each of the organic matter inputs 

(none, low, medium, and high). A quadratic model best fit the data. The 

progression of inoculum density was significant with respect to time (r = 0.704, p < 

0.0001), with the greatest increase in inoculum density occurring by 10 dpi. 

Inoculum continued to increase at a slower pace between 10 and 20 DPI. Following 

this, inoculum density begins to decrease, or it remains relatively steady, based on 

organic matter content. 

 

 Using PROC GLM, a linear regression of mean log2 SQ against cotton cultivar 

was fit to determine if there was an effect of cotton cultivar on inoculum density.  

No effect of cotton cultivar was detected (r = 0.212, p = 0.2035), though PHY499 was 

found to be significantly different from the no seed treatment and cultivars DP357 and 

PHY841 (Figure 24). 



 

91 

 

 

Figure 24. Using a LINES in the LSMEANS statement, the least squares means by 

cultivar were compared. This graph shows if the estimates of mean log2 SQ were 

significantly different from the other seed types. The means covered by the same 

bar were not significantly different. PHY499, an Upland cotton cultivar tolerant to 

FOV4, was significantly different from the other cottonseed cultivars and the no 

seed treatment 

 

Fungal colony counts. 

Fungal colony forming units (CFUs) were counted on the initial planting date 

and for each of the sampling dates (Figure 25). The log10 of CFUs were calculated and 

the data were fit over time based on the organic matter level. The counts for each of the 

treatments increased with respect to time. Medium and high levels of organic matter 

followed a similar trend between the sampling dates; the low organic matter treatment 
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experienced the greatest increase in CFUs over the course of the experiment. The change 

in CFUs over time was significant (r = 0.647, p < 0.0001). 

 

 
 

Figure 25. Colony forming units (CFU) of FOV4 were counted on potato dextrose 

media two days after inoculation. To describe the temporal variation in viable 

conidia, the change in the mean log10 fungal CFUs of each level of organic matter 

(none, low, medium, and high) was plotted over the 30-day experimental period (r = 

0.647, p < 0.0001). With respect to time, inoculum density increased for each of the 

treatments over time, with the low inoculum treatment having the greatest increase 

in viable CFUs over the course of the experiment.  

 

Discussion 

In agricultural ecosystems, plant diseases are expected to vary through time as a 

function of environmental and host-related inputs, as well as variability in the abundance 

and availability of the pathogen. Under the relevant field conditions, soilborne FOV4 
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inoculum density is heterogeneous, varying spatially between plots and even at the intra-

plot level (Davis et al. 2022, Chapter III). This spatial variability affects the temporality 

of inoculum density at field scale. Prior FOV4 research has not thoroughly examined 

how inoculum density changes over time, nor have the drivers of soilborne inoculum 

density been well characterized for this and many other systems. Researchers have 

anecdotally observed change in soilborne inoculum density over time, however the 

environmental or other mechanisms associated with the variation were not characterized. 

Furthermore, the severity of infection from FOV4 is known to vary because Fusarium 

wilt of cotton is an inoculum density-dependent disease (Hao et al. 2009). In their 

greenhouse study, Hao et al. (2009) observed that their resistant cotton cultivar Phytogen 

800 may have increased FOV4 inoculum density over the course of their experiment.  

The result from Hao et al. (2009) raises the question of what actually drives the temporal 

variation in soilborne FOV4 inoculum density.  

In 2020, soil samples were collected in July and December to understand the 

temporal variation in soilborne inoculum density under the relevant environmental 

conditions from a cotton field in Fabens, Texas where yearly variety trials, and other 

FOV4 trials, were performed. This sampling plan was designed to describe the variation 

over the entire extent of the variety trial field, which spanned 18 columns, approximately 

88.2 m. The plots for random sampling (Figure 17) were chosen based on the cultivars 

that were present within the larger sampling block. With this sampling intensity, the 

heterogeneity of inoculum density was empirically described (Davis et al. 2022; Chapter 

III). Temporally, there was a change in range of inoculum density between July and 
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December 2020 (Figure 21). The range and variance in inoculum density were greater in 

July (range = 11.76, σ2 = 6.20, 95% CI [4.14, 6.73]) and decreased in December (range 

= 6.03, σ2 = 1.57, 95% CI [1.25, 2.02]) (Figure 20). Soilborne FOV4 inoculum density 

in December was more uniform than in July (Figure 21). These results can be used to 

verify that there is temporal variation in inoculum density using the DNA-based 

approach described in Chapter III. Conversely, these results do not explain how 

inoculum ends at a relatively uniform level at the end of the season. Despite this result, 

the mechanisms behind the general uniformity of soilborne inoculum are not well 

known. There are two possible ways in which this could be explained. The first possible 

explanation is that soil moved throughout the field during routine tillage could move 

inoculum from and to different locations creating new foci or expanding previously 

established foci. The second concerns the flood irrigation practices used in cotton 

production in this region of Texas. Wang et al. (2004) attributed the spread of FOV in 

Australia to irrigation practices used in cotton production. If this assumption is correct, 

then the change in inoculum density detected between the two sampling dates could be a 

function of both the movement of inoculum through irrigation and the expected 

amplification in the field over the course of the growing season.  

A temporal inoculum density study was undertaken where both cotton cultivar 

and organic matter content were examined as possible drivers of soilborne inoculum 

density. These factors were chosen because they could be experimentally manipulated in 

tandem to determine which is important in inoculum density. Organic matter can mostly 

be controlled by the amount of debris left in the field from previous growing seasons. 
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Growers choose cotton cultivars based on yield potential and other factors relating to 

their hardiness to disease. Not every cotton cultivar, especially many Pima cotton 

cultivars, can withstand infection by FOV4 during the growing season. The levels of 

organic matter in fields are influenced by the practices of the growers and whether the 

previous year’s cotton is removed or plowed under. In the experiment, four organic 

matter treatments, corresponding to 0, 5, 25, or 50 g of sorghum grain, and five seed 

treatments (no seeds, DP357, Phy841, DP1522, and Phy499) were used, each was 

replicated three times per tray over three trays (Table 5). The seeds used were chosen by 

susceptibility to FOV4; a known susceptible Pima cultivar, DP357, and Phy841, a Pima 

cultivar tolerant to FOV4. Two Upland cotton cultivars, Phy499 and DP1522, were also 

utilized. Despite the aforementioned results of Hao et al. (2009), the results of this study 

showed that the susceptibility of a given cotton cultivar was not a major factor in 

increasing soilborne inoculum density (r = 0.212, p = 0.2035). Instead, organic matter is 

the factor that most directly increased soilborne inoculum density in this study.  

Organic matter content affects the environmental conditions that a 

microorganism experiences. As observed in this experiment, the greater the amount of 

organic matter in a pot of soil, the better the soil retained water. Despite the better water 

retention, germination rates were variable. Mostly PHY499 and DP1522 were able to 

germinate in the cells with low amounts of organic material. As the fungal mass 

increased, those tolerant cultivars were unable to withstand the infection. This may be in 

part due to the concentration of inoculum in a 100 mL cell compared to the relatively 

more diffuse inoculum in fields. Under artificial conditions, where the disease pressure 
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is much higher than it would be in the field, the tolerant cultivars were less able to 

withstand infection. 

Over the course of the 30-day growth chamber experiment, for the treatments 

with differing levels of organic matter, three different inoculum growth rates were 

observed. The first, from 0 to 10 dpi, FOV4 grew rapidly to colonize the fresh organic 

matter in each cell. In the period of 10 to 20 dpi, when seeds were added, the rate of 

growth slowed, however inoculum still increased steadily (Figure 23). In the final 

period until the termination of the experiment, inoculum density was either approaching 

or had reached a plateau (Figure 23). The growth of FOV4 seemed to reach a carrying 

capacity by the end of the experiment. A carrying capacity can be described as a species 

maximum population given the environment, resources, and other factors necessary for 

species survival. Each of the individual FOV4 populations within the cells reached a 

carrying capacity in part because of the limiting factor in this experiment. This 

phenomenon can be explained by Liebig’s law of the minimum, which states that a 

population’s growth is limited by the scarcest resource in its environment. And in this 

experiment, the factor that limited population growth was the amount of organic matter 

in each of the cells, resulting in a variable maximum population size as a function of 

organic matter abundance. The maximum inoculum density detected by qPCR does not, 

however, directly equate to the number of viable spores produced. Even if inoculum 

density reaches maximum at a high level, the qPCR analysis cannot differentiate 

between living and non-living tissue. To differentiate between these, fungal colony 

counts were also employed.  
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The temporal change in viable CFUs was significant with respect to time (r = 

0.647, p < 0.0001). Over the course of the experiment, low organic matter treatment 

reaches a level that is equal to that of the medium treatment (Figure 25). The low and 

medium organic matter treatments follow a similar trend throughout the duration of the 

experiment. The results of this experiment may support the idea that after reaching a 

carrying capacity, sporulation of FOV4 may occur and account for increase the amount 

of DNA in soil. Increased sporulation during a period of stress may be similar to stress 

flowering, where plants prioritize reproduction over vegetative growth (Hatayama & 

Takeno 2004; Wada & Takeno 2010; Takeno 2016). This type of stress-adaptive 

prioritization of reproduction has also been documented in bacteria (Ultee et al. 2019). 

Upon reaching carrying capacity, based on the available organic matter content which 

promotes mycelial growth, the lack of resources in the soil may induce sporulation 

(Dahlberg & Van Etten 1982), however this does not necessarily mean that all of the 

new spores are viable, nor is every spore likely to survive until conditions are more 

favorable. To this end, the amount of quantified DNA in this growth chamber 

experiment may relate more to scarcity of usable resources and not the amount viable 

and infectious propagules. The increased sporulation after reaching a carrying capacity 

may be what makes up inoculum for the coming season. Instead of producing new 

spores to infect, the pathogen may be sporulating for survival by creating 

chlamydospores. The overwintering spores are formed and, upon signaling by newly 

planted cotton seedlings, they germinate to infect the new seedlings. Further 
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investigation is required to determine the rates of sporulation, especially in the presence 

of tolerant cotton cultivars as the organic material for FOV4. 

The effect of water on the movement of FOV4 in the variety field may be 

explained by the fact that there is structure in how inoculum was distributed over time. 

The surface plot in Figure 21 shows a relatively even distribution of Cq values across the 

field. There is a spatial effect of column that persists between the two sampling dates (r 

= 0.741, p < 0.0001). The movement of FOV by water has been previously hypothesized 

in Australia where FOV was found outside of the sites where it was originally detected 

(Wang et al. 2004). If, after multiple periods of flood irrigation, inoculum is either 

pushed some distance across the field until it is impeded, or it percolates into the soil, it 

is possible that movement of soil and fungal spores eventually evens out over the 

growing season. Using the data acquired from the growth chamber experiment, this 

result can be further explained. The rate of growth in the first 10 dpi is much more rapid 

than at any time after for all levels of organic matter. Subsequently, the growth rate 

slows and eventually decreases. In the field, within the first two weeks following 

planting, damping-off, one of the characteristic symptoms of FOV4 infection leading to 

seedlings death, is observed. Damping-off at this time can be attributed to the rapid 

amplification of inoculum density alongside the growing, but vulnerable seedlings. The 

seedlings that survive to maturity continue to increase inoculum, but at a slower rate 

compared to the beginning of the season until a carrying capacity, of sorts, is reached. 

Then, as the season progresses, inoculum density eventually is relatively level at the end 

of the season. And because the inoculum levels at the end of the growing season 
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influence the next, inoculum density quantifications at the end of the growing season 

may have utility in predicting the next season’s inoculum density.   

In 2021, soil samples were collected from selected plots in two fields, where a 

variety trial and a fungicide trial were underway. The purpose of sampling from these 

fields was to determine if a difference exists between fields dependent on how recently 

these fields were used for experimentation related to FOV4. The first field examined 

(Figure 18) was the 2021 Upland cotton variety trial field. Multi-year variety trials for 

both Pima and Upland cotton cultivars have been conducted in this field. The second 

field (Figure 19) held a fungicide trial which tested the efficacy of multiple seed coat 

treatments against FOV4. Fungicide seedcoat treatments were on Phy500, an Upland 

cotton cultivar. The 2021 fungicide trial was the first FOV4-related trial to occur in this 

field. 

The first objective of this sampling was to understand whether there was a 

difference between mean Cq values of the two fields. There was marginal significance 

and a small effect size (r = 0.379, p = 0.0320) between the mean Cq values of two field 

(Figure 22). There was more variation in the Cq values corresponding to soilborne 

inoculum density in the variety trial field, presumably because of the multiyear 

amplification of inoculum and the multiple, different cultivars planted in that field. The 

range of mean Cq values in the fungicide trial supports this claim, however the inoculum 

density measured in this field is consistently and relatively high. As a tolerant Upland 

cotton cultivar, this high level of inoculum at the end of the season should be expected 

because of the amount of organic matter present to fuel the growth of FOV4 in the soil 
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throughout the growing season. Similarly, the sampled portion of the 2021 Upland 

cotton variety trial field, while more variable, also has a relatively high amount of 

inoculum. Again, the high levels of inoculum may be a function of these tolerant 

cultivars acting as organic matter for FOV4.  

The results of the growth chamber experiments help to underscore the biological 

significance of organic matter in fields to soilborne plant pathogens that can also live as 

saprophytes. As demonstrated here, inoculum density varies as a function of the amount 

of available organic material, and as abundance of organic matter increases so does the 

rate at which inoculum density increases. Organic matter also limits the maximum 

population size of the fungus per unit soil area. In the field, an expectation could be that 

inoculum density would be greater in plots where a cultivar could withstand the initial 

infection by FOV4. As the tolerant cultivar grows, FOV4 can sporulate throughout the 

growing season, though potentially at a slower, more constant, rate than it would at the 

beginning of the season. Because in this instance organic matter is not a limiting factor, 

amplification of inoculum continues. If organic matter was scarce, such as in plots where 

cotton was completely susceptible and died, Liebig’s law of the minimum would apply 

to this limiting factor. In the event of a very susceptible cultivar, organic matter would 

be the scarcest resource for the growth of FOV4. Instead of vegetative growth, the 

pathogen would be likely to form chlamydospores until a suitable host is present. Unlike 

the growth chamber experiment, higher Cq values (less DNA) were estimated from plots 

where there was no major source of organic matter. This indicates that although 
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inoculum is not actively being amplified, DNA may still be present, even if there was a 

relatively lower concentration found in those plots.  

The relationship between cultivar susceptibility and inoculum density has been 

investigated in different formae speciales of Fusarium oxysporum. For example, lettuce 

cultivars resistant to Fusarium oxysporum f. sp. latucae, the causal agent of Fusarium 

wilt of lettuce, can support the development of the pathogen without expression of 

symptoms aboveground (Scott et al. 2014). Additional research demonstrated that the 

persistence of Fusarium oxysporum f. sp. latucae in soil is driven, in part, by saprophytic 

growth on debris remaining in the soil (Paugh & Gordon 2021). Research performed by 

Henry et al. also supports the results of the present study. Asymptomatic growth of 

Fusarium oxysporum f. sp. fragariae was investigated to determine if resistant 

strawberry cultivars and closely related crops affected the persistence of the pathogen in 

soil (Henry et al. 2019). Their work found that the population densities of Fusarium 

oxysporum f. sp. fragariae were higher on the asymptomatic hosts and attributed that to 

parasitic growth, not pathogenic growth, supporting the long-term survival of the 

pathogen (Henry et al. 2019).  

Mitigation of soil organic matter content, though potentially necessary to 

decrease the saprophytic survival of FOV4 in fields, may not be entirely feasible. 

Organic matter that is decomposed in the soil helps to replenish the nutrients that support 

plant growth. Over the course of the growing season, the organic matter in soil that is 

actively amplifying the population of the pathogen are the cotton plants. Realistically, 

the optimal manner through which inoculum density could be managed would be to 
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remove infected plant debris from fields. This, however, may not be entirely feasible in 

terms of cost and labor for growers. 

The temporal amplification of inoculum has implications for subsequent growing 

seasons. FOV4 persists indefinitely in soils and the only reliable methods to control 

spread is sanitation of field implements, such as tractors, (Davis et al. 2006; Cianchetta 

& Davis 2015). Inoculum is heterogeneously dispersed through fields with some degree 

of spatial autocorrelation (Davis et al. 2022). Prior to planting, soilborne inoculum could 

be spread from disease foci throughout the field by practices such as tillage. Relatively 

high levels of inoculum at different disease foci at the end of the previous season could 

then be spread within or between fields, thereby determining disease pressure for the 

next season. FOV4 is an inoculum density dependent disease (Hao et al. 2009). As such, 

understanding the temporality of inoculum is necessary step in eventually developing 

strategies to mitigate the spread of FOV4 outside of its current geographic range.  

Though this study used one field to describe the temporal variation in soilborne 

FOV4 inoculum density over time, there is some consistent pattern between the growth 

chamber and the field results. While additional work is required for characterization of 

the temporal variation in soilborne inoculum in multiple fields, the results of this study 

provide preliminary evidence supporting that organic matter is the main driver of the 

temporal variation in soilborne inoculum density. Future work pertaining to the temporal 

variation in inoculum density should continue with the methods used here. Incorporation 

of different tolerant Upland cultivars may also be useful in more accurately describing 

the potential for those cultivars to amplify inoculum. In particular, using other methods 
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to either directly inoculate the plants, such as root dip inoculations, or adding plants to 

inoculated soil at different growth stages. Such experimentation can clarify intricacies of 

the temporal dynamics of this pathosystem, especially concerning the relationship of 

infection tolerance as a precursor to the presence of post-cropping organic matter in 

fields experiencing FOV4 infestation. 
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CHAPTER V  

CONCLUSIONS 

 

The metaphorical arms race between host plants and their pathogens results in 

new forms of resistance in plants. Pathogens adapt to these new mechanisms of 

resistance and in turn evolve new mechanisms to evade or suppress host resistance. 

Coevolution between hosts and pathogens affects plant disease epidemics, especially in 

agricultural settings. Because plants are sessile organisms, they are forced to continually 

adapt to the heterogeneity present in their environments throughout their life cycles. 

Within a single field, nutrient availability or inoculum density can vary greatly 

depending on growing practices, and to understand how these affect plants, they must be 

empirically investigated. In this research, three studies were conducted in which 

spatiotemporal dynamics related to the heterogeneity of phenotypes and inoculum 

density were studied. These studies answered the three questions outlined in Chapter I 

concerning the spatial and temporal patterns of inoculum distribution, the processes that 

may give rise to the patterns, and the interplay between spatial and temporal aspects of 

the process. 

Low altitude remote sensing 

Heterogeneity in agricultural systems is not limited to the variation associated 

with inoculum density or disease. Topographical heterogeneity limits the applicability of 

some low altitude remote sensing capabilities in fields because a floor must be made 

prior to and estimations of height as the measurable phenotypic change (for nitrogen or 
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other nutrient input or for disease progress). The construction of a floor, using GPS 

control points, removes the variability associated with topography, thereby potentially 

missing some of the variation associated with plant height present in a field. The 

unsupervised machine learning technique of finite mixture modeling (FMM) was used to 

describe phenotypic variation in agricultural fields. Variation in height was used to test 

the applicability of FMM in large datasets with an unknown number of mixture 

components. Plant height is a readily apparent phenotype that may vary as a result of 

different inputs, such as nitrogen input as was used in the rice plots in Chapter II. Here, 

height was used as the measurable phenotype hypothesized to be affected by differential 

nitrogen input. Using height to estimate phenotypic variation with FMM is readily 

applicable to studying crop heterogeneity associated with disease. Stunting, for instance, 

is a common phenotype that is associated with different types of plant pathogens. 

Variation in plant height can be used as an indicator for disease presence, and this can 

inform sampling practices. Using the methods outlined in Chapter II, plant biomass can 

be quantified by partitioning structure-from-motion or single images and comparing the 

change in means between observations.  

One general utility of unsupervised learning algorithms is their ability to discern 

patterns within a dataset without requiring training of the algorithm. If a systematic 

approach were to be taken to a dataset to apply FMM to different sections of an image, 

patterns in the data would emerge as mixture components. For example, red-green-blue 

(RGB) color indices are widely used to distinguish healthy and infected plant tissues. 

Applying FMM to a single color in the images and using a systematic approach to 
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further subset the image, the algorithm would output graphs that display the relative 

frequency of the two colors. If two colors, green and yellow, were observed in an image, 

then there would be two distributions in the output; if only green or only yellow were 

observed, a single distribution would be in the output instead.  

Epidemiological research relies heavily on recognition of patterns in disease 

through space and time. This method utilizing FMM can be applied to spatial data to 

observe the change in disease patterns over time. The research described in Chapter II 

provides a proof of concept for employing FMM for myriad purposes related to 

precision agriculture.  

Spatial dynamics of soilborne FOV4 

Soilborne fungal pathogens, like Fusarium oxysporum f. sp. vasinfectum race 4 

(FOV4), persist through a variety of strategies, including using overwinter spores or 

adopting a saprophytic phase. Though these are known, the spatial distribution of these 

types of pathogens is difficult to know prior to planting cotton. For a contemporary 

epidemic like FOV4 in West Texas, the goal of understanding the spatiotemporal 

dynamics of inoculum is twofold: mitigation and remediation. 

Before the spatiotemporal dynamics of inoculum can be described, inoculum 

must first be quantified. The DNA-based quantitative method described in Chapter III 

was designed to be preferential to FOV4 and to detect DNA in soil samples. The spatial 

configuration of inoculum is dependent on the sources of initial inoculum and the modes 

through which subsequent short-range and long-distance spread occur. Soilborne FOV4 

is likely to have first been introduced through infested seeds, and later spread because of 
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the translocation of soil within and between fields. In individual fields, multiple 

introductory events are possible. While the modes through which inoculum moves have 

not been characterized empirically, these results can guide investigation of hypothetical 

modes that would be expected to result in various patterns of inoculum distribution. In 

Chapter III, sampling intensity was chosen for the purpose of collecting enough soil in a 

structured and random pattern to describe the spatial autocorrelation of inoculum. Spatial 

autocorrelation can in turn be used to not only inform future sampling, but also for 

designing variety trials with calibration checks (known susceptible or tolerant cultivars) 

to better connect symptom expression to inoculum density.  

Temporal dynamics of FOV4 

Study of the spatial dynamics of FOV4 informs study of the temporal dynamics. 

Spatial and temporal dynamics of inoculum are interdependent, with temporal processes 

of movement and amplification affecting the spatial distribution of inoculum, and spatial 

autocorrelation affecting the structure of disease pressure experienced by a host 

population and therefore the consequent amplification-dependent inoculum distribution 

across space. Variation in inoculum density at the end of one growing season affects 

variability at the beginning of the following season. In both July and December 2020, 

soilborne inoculum has spatially autocorrelated, but the autocorrelation increased at the 

end of the season as estimated inoculum density leveled off in December, due to the 

effect of temporal processes on inoculum amplification/decay and movement. In both 

2020 and 2021, inoculum densities measured in field in December had comparatively 

smaller ranges between the highest and lowest Cq values. Inoculum density was 
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relatively high throughout the time of observation. The amount of organic matter in the 

soil, from the tolerant Upland cotton cultivars planted in these fields, was the likeliest 

reason for the levels of inoculum detected. Comparing these results to the results of the 

growth chamber trial, organic matter was determined to be a driver of inoculum density 

through time. The rapid increase in inoculum density at the beginning of experimental 

period was indicative of the hypothesized increase at the beginning of the growing 

season as new cotton was planted. The reaching of maximum inoculum density toward 

the end of the experimental period could be seen as a carrying capacity being reached. In 

terms of Liebig’s law of the minimum, the growth-limiting factor in this case was 

organic matter.  

Implications of this research 

Dynamic heterogeneity in agricultural fields results from complex and interacting 

processes. The three research projects described in this dissertation are each related to a 

different aspect heterogeneity in agricultural ecosystems. Prior to any field studies, the 

whereabouts and amounts of inoculum are unknown. Describing heterogeneity requires 

that there is detection of differences at scale, and quantification to know if variation 

exists. In addition, knowing how these inoculum and disease aggregate, and if the 

aggregation is sustained or changes, is useful to epidemiological studies that consider 

space and spatial processes.  

Taken together, the techniques described here are useful for the purpose of 

describing patterns that result from the interplay between spatial and temporal processes, 

and for the purpose of inferring those processes themselves. Two methods were outlined 
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discussing how to monitor the spatial distribution of disease or inoculum. The first used 

the unsupervised machine learning technique FMM to reliably estimate quantitative 

phenotypic differences in the presence of variation that presents challenges to other 

techniques. The applications of this method are myriad related to detection and 

differentiation of distributions latent in datasets. At spatial scale, disease incidence and 

the variation in disease can be tracked over time using FMM in addition to the different 

types of image analysis techniques (RGB, multispectral, structure-from-motion). The 

analytical pipeline developed here opens the possibility for expedited routine monitoring 

of spatial and temporal variation.   

In the prior literature, FOV4 was noted to be an inoculum density-dependent 

disease (Hao et al. 2009), with the anecdotal knowledge surrounding the epidemiology 

of FOV4 focused mostly on using the aboveground symptoms of disease to predict 

severity. In California, where the pathogen was first detected in the United States, Pima 

cotton was the main cultivar planted. Inoculum density was expected to be high, 

however quantification of inoculum density relied exclusively on the severity of 

symptoms, which are unreliable due to the differential expression of symptoms based on 

the cultivar and its susceptibility. By developing a DNA-based metric to quantify 

soilborne FOV4, inoculum density measurements are empirically substantiated, and the 

autocorrelation of inoculum is knowable. The results of Chapter III are taken form a 

single field, but these results can be used to inform sampling patterns, and when used in 

tandem with Chapter IV, these results are useful in determining the patterns associated 

with soilborne FOV4 inoculum density. Specifically, there is spatial autocorrelation, 
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organic matter is a driver of the increase in inoculum density, and the movement of 

inoculum may be dependent on initial inoculum. These results not only inform sampling, 

but also inform management practices related to limiting the spread of inoculum within 

and between fields. 

Spatial and temporal variation in inoculum density, and other factors leading to 

heterogeneity, are related to each other. The temporality of disease is directly affected by 

the spatial configuration of inoculum. Inoculum could be moved, new foci established, 

amplified, or any combination of these due to both pathogen related and external factors. 

These, in turn, determine disease pressure over the course of the current season and 

future growing seasons. Furthermore, knowledge of how inoculum survives, and if it is 

being amplified during the time between seasons is necessary to understanding the 

epidemiology of a disease outside of the constraints of the disease triangle. Importantly, 

this research describes methods that can be used as tools to help decompose the 

complexities of the pathogen side of a plant pathosystem to learn about the dynamics of 

inoculum and disease. Aspects such as spatial and temporal variation affect every 

pathosystem in different ways and understanding these and their interactions is an 

important step in developing better models of plant disease epidemics. 
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APPENDIX A 

SUPPLEMENTAL FIGURES AND TABLE CHAPTER II 

Table 6. Nitrogen application tables for field N-1 and field N-6. Nitrogen was 

applied at four relative time points pre-planting (APP-1), pre-flooding (APP-2), 

midseason (APP-3), and heading (APP-4). Treatments were replicated four times in 

each field. 
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Table 7. Fit statistics for the selection of effective components in the FMM 

distributions of the four soybean fields. 
Fit Statistics for Soybean Field 

 Field 1 Field 2 Field 3 Field 4 

-2 Log Likelihood -3601.5 -3999.8 471.6 -2111.8 

AIC -3591.5 -3985.8 481.6 -2101.8 

AICC -3591.5 -3985.8 481.6 -2101.8 

BIC -3557.8 -3938.4 515.6 -2066.6 

Pearson Statistic 6205.0 6510.0 6716.0 8388.0 

Effective Parameters 5 7 5 5 

Effective Components 2 2 2 2 
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Table 8. Fit statistics for a grain sorghum field at the Edisto REC in Blackville, SC. 

The effective components are the number of latent classes found in data 

subpopulations. 
Fit Statistics for a Sorghum Field 

 32m2 16m2 8m2 4m2 

-2 Log Likelihood 34300.9 12074.8 -823.6 -49.4737 

AIC 34316.9 12096.8 -801.6 -39.4737 

AICC 34316.9 12096.8 -801.4 -39.2967 

BIC 34375.9 12166.5 -745.3 -20.2560 

Pearson Statistic 11852.1 4188.0 1239.0 345.0 

Effective Parameters 8 11 11 5 

Effective Components 3 4 4 2 
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Figure 26. A) Aerial imagery of sorghum, showing dense plant biomass and limited 

visibility of the ground. B) Histogram of height variation in 3D point cloud derived 

from imagery of sorghum, and Finite Mixture Model fit to data, showing that only 

one mixture component is estimated, preventing the estimation of average height by 

comparing two component distribution means.  

 

 

 

 

 

 

 

 

 

 

 

 

 


