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ABSTRACT

The purpose of this thesis is to detail the analysis on the stability and effectiveness of a DSA

scheme having two diffusion cells per transport cell. The inspiration to look into such a scheme

originated from Ryosuke Park’s recently published work on an unconditionally stable HOLO

scheme, however, it should be noted that what we analyzed is not equivalent to Ryosuke’s method.

The only concept from his method explored in this thesis was the idea of having two diffusion

cells per transport cell. To accomplish this, a homogeneous, 1-D slab geometry version of the SN

equations with isotropic scattering, and a zero distributed source was discretized with a standard

lumped linear-discontinuous Galerkin source iteration scheme and accelerated with a cell-centered

diffusion equation for the iterative errors in the scalar fluxes on a sub-mesh for the preconditioning

step. A test problem with an incident flux and reflective boundary conditions on a 1000 cm slab

was used to experimentally measure the spectral radius. A Fourier analysis was also performed on

the error reduction matrix of the full scheme to analytically measure the spectral radius under the

same conditions as the experiment. Both of these results were in agreeance and showed that having

two diffusion cells per transport cell by itself does not lead to an unconditionally stable system.
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NOMENCLATURE

HOLO High-Order Low-Order

DSA Diffusion Synthetic Acceleration

NDA Non-Linear Diffusion Acceleration

LDG Lumped Linear Discontinuous Galerkin

N Particle Number

φ Scalar Flux

ψ Angular Flux

σt Total Interaction Macroscopic Cross-Section

σs Scattering Macroscopic Cross-Section

D Diffusion Coefficient

Q Distributed Source
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1. INTRODUCTION

1.1 Background

Within the nuclear industry there exists a growing need for efficient and accurate modeling

of complex systems to justify designs, experiments, and even national policy. These systems can

vary across a wide range of applications from fission reactor designs, inertial confinement fusion,

astrophysics, health physics, and non-proliferation. In each of these cases, many different physical

phenomena must be accurately represented. In particular, accurate representation of the radiation

transport within these systems is of the utmost importance. The accurate representation of radi-

ation transport by itself can be complex, and is often further complicated in problems of interest

due to coupling with other complex physical phenomena, such as in problems involving radiation

hydrodynamics. This can result in models that require excessive computational runtime, incurring

extra costs to investors. Thus, not only do these models have to be accurate, they must also be com-

putationally efficient. It is with this goal in mind, that research into various numerical methods in

radiation transport is often inspired, and is certainly an inspiration for this thesis.

1.1.1 Radiation Transport

In order to accurately represent the effects of radiation within a system, physical conservation

laws are applied to the distribution of particles within the entire phase space of the system (position,

angular direction, and energy). This is typically done by setting the rate of change of particle

number within the phase space equal to the difference between the source rate within the phase

space and the loss rate within the phase space. The resulting equation is the Boltzmann transport

equation, initially devised by Ludwig Boltzmann to describe thermodynamic properties of gases,

but can be applied to particles as well:

d

dt
(N) = (Sources)− (Sinks), (1.1)

1



which, for neutron transport becomes:

1

v

∂ψ

∂t
= Q+

∫ ∞
0

∫
4π

σs(E
′ → E, ~Ω′ · ~Ω)ψ(E ′, ~Ω)d~Ω′dE ′ − ~Ω · ~∇ψ − σtψ, (1.2)

where:

ψ(~r, ~Ω, E, t)dP ≡ Angular Neutron flux, (1.3)

1

v

∂ψ

∂t
dP ≡ Rate of change of neutron number, (1.4)

QdP ≡ Rate of neutrons born into the phase space, (1.5)∫ ∞
0

∫
4π

σs(E
′ → E, ~Ω′ · ~Ω)ψ(E ′, ~Ω)d~Ω′dE ′dP ≡ Rate of neutrons scattered, (1.6)

~Ω · ~∇ψdP ≡ Rate of net advection, (1.7)

σtψdP ≡ Rate of removal due to interactions. (1.8)

The Boltzmann transport equation describes the physical phenomena that affects particle trans-

port throughout a system, and can be used to describe the resulting particle density. When particles

interact with the medium, changes to other material properties, such as pressure, temperature, and

material density, can occur. These non-linearities can introduce difficulties, but many of the nu-

merical approaches remain the same.

1.1.2 Relevant Numerical Methods

Numerical methods used to solve the Boltzmann transport equation fall into two primary cate-

gories: stochastic methods, such as Monte Carlo, and deterministic methods, such as the discrete-

ordinates SN approximation.[1] For our study, it is sufficient to just review the SN method as

applied to the steady-state, mono-energetic Boltzmann equation with isotropic scattering:

~Ω · ~∇ψ + σtψ =
σs
2
φ+

Q

2
, (1.9)
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where:

φ =

∫
4π

ψ(~Ω)d~Ω ≡ Scalar Flux. (1.10)

The steady-state, mono-energetic Boltzmann equation is discretized across the spatial domain

of interest using one of many possible schemes, as well as over angle using collocation at Gauss

quadrature points. The scalar flux is computed using the quadrature formula:

φ =

∫ +1

−1
ψ(µ)dµ ≈

N∑
n=1

ψnwn. (1.11)

This is then solved iteratively until it converges to a solution within some tolerance. If we

re-express equation (1.9) into a reduced version with L representing the sinks (~Ω · ~∇ψ + σtψ),

S representing the scattering source (σs
2

), and l representing the iteration index, then the source

iteration approach can be described as follows:

Lψl+1 = Sφl +
Q

2
, l ≥ 0. (1.12)

Starting with an initial guess for ψ and appropriate boundary conditions, the system of linear

equations can be solved for the next iterate by inverting L. This can be repeated until a set number

of iterations have been completed or until some convergence criteria is met. Given a zero initial

guess, ψl represents the flux due to (l) scatters, thus it is easy to see that problems with weak

scattering converge very quickly while scattering dominated problems will converge slowly. In-

creasing the efficiency of source iteration in these high scattering problems is of great practical

importance.

Over the years many strategies have been developed to improve SN iterative methods. This has

resulted in methods such as Non-Linear Diffusion Acceleration (NDA) and its linear equivalent,

Diffusion Synthetic Acceleration (DSA), where a preconditioning diffusion step is taken during

each iteration to improve the next iterate guess.[2][3][4][5][6][7] Depending on the problem, this

can reduce the number of iterations required for convergence by orders of magnitude. Other meth-

3



ods such as quasi-diffusion and High-Order Low-Order (HOLO) methods have also been devel-

oped in a similar sense, however unlike true acceleration methods, the high order and low order

methods do not necessarily converge to the same solution.[8][9] In both of these approaches, it is

important to ensure that the combined methods are unconditionally stable for the high-scattering

problems of interest. In particular, inconsistent differencing of the accelerated iteration equations

can lead to conditionally unstable schemes.[4]

1.2 Motivation for Work

Recently, Ryosuke Park from Los Alamos National Laboratory published a paper on an asymp-

totic thick diffusion limit preserving HOLO method for use in thermal radiation transport. In this

paper he couples high order SN equations spatially discretized with a lumped linear discontinu-

ous Galerkin (LDG) approximation to a low order cell-centered diffusion equation on a sub-mesh

with two diffusion cells per transport cell.[7][10] The manner in which he does this is very similar,

though not equivalent, to NDA. The results of his work indicate that this method is unconditionally

stable. This has sparked curiosity due to its similarities to NDA and the fact that it is documented

that a lack of consistent differencing between the high order and low order equations often results

in conditionally unstable NDA schemes. However, Park’s method is not a true acceleration scheme

since the high order and low order scalar fluxes are not necessarily the same upon iterative con-

vergence of his HOLO method. Thus, it is not clear if the stability of his scheme arises from the

particular way that the correction terms are defined or the fact that there are two diffusion cells

per SN cell. To shed light on this question, we have defined a DSA scheme somewhat analo-

gous to Park’s HOLO scheme in order to analyze the effects of having two diffusion cells per SN

cell. In particular, the SN equations will be spatially discretized using the standard lumped linear-

discontinuous scheme, and the diffusion discretization will be the standard cell-centered scheme,

but with two diffusion cells per SN cell. There will be no need for correction terms as the diffusion

equation will be used to compute the iterative error in the scalar flux rather than the accelerated

flux itself. It is the purpose of this research to investigate the stability and effectiveness of this

particular DSA scheme with two diffusion cells per SN cell.

4



1.3 Thesis Organization

The organization of the rest of this thesis is as follows: In Section 2 we describe the method

being analyzed in full detail, starting with the general 1-D, steady-state, mono-energetic SN equa-

tions on a slab. Next we derive the proposed DSA scheme with two diffusion cells per SN cell.

This is accompanied with a description of our computational script to compute the spectral radius

of this method under various scattering to total cross-section ratios and cell widths. In Section 3

we describe the Fourier analysis performed on the method along with its detailed derivation. In

Section 4, the results of both the numerical experiment and the Fourier analysis are presented and

discussed. This is preceded by a full description of the various test cases we have tested. And

finally, in Section 5, the thesis concludes with a summarization of our work, results, and possible

directions for related future work.

5



2. DERIVATION OF NUMERICAL SCHEME

2.1 Transport Problem of Interest

The transport problem we apply our proposed DSA scheme to is a homogeneous, 1-D slab ge-

ometry version of the problem detailed in equation (1.9) with isotropic scattering and an isotropic

distributed source. The scheme is a two-step iteration scheme, where the transport step solves the

discrete ordinates SN equations spatially discretized using a lumped linear-discontinuous Galerkin

scheme and the diffusion correction step is spatially discretized using the standard cell-centered

scheme on a sub-mesh. In the diffusion step, we directly solve for the iterative error on the in-

terpolated flux, extrapolate out to the transport unknown locations, and then apply the error as a

correction for the l + 1 iterate as follows:

− ∂

∂x
D
∂ξ

∂x
+ σaξ = σs(φ

l+ 1
2 − φl), (2.1)

where:

ξ = φexact − φl+
1
2 ≡ Iterate Error, (2.2)

φl+1 = ξ + φl+
1
2 , (2.3)

D =
1

3σt
≡ Diffusion Coefficient. (2.4)

The iteration is continued until some tolerance parameter is met and the solution has converged.

Our tests use the zero source version of this problem, allowing for the iterative solution to be the

error, avoiding roundoff difficulties or scenarios where the solution coverges before the spectral

radius. The boundary conditions used in the problem of interest are a reflective condition on the

interior (left) boundary and a vacuum on the exterior (right) boundary.

6



2.2 Numerical Scheme

The following section details the derivation of this acceleration scheme. Starting with equation

(1.9), the assumptions of isotropic scattering, isotropic distributed source, and a homogenous, 1-

D slab geometry are made. This is followed by performing the standard discrete ordinates SN

angular discretization. Then, the system is spatially discretized using the standard lumped linear-

discontinuous Galerkin scheme. This defines the the source iteration equation first used in a two-

step iteration. Finally, the cell-centered diffusion equation for the iterative errors in the scalar

fluxes from the source iteration step is derived on a sub-mesh.

2.2.1 Angular Discretization with the Discrete Ordinates Method

Starting with the steady-state, mono-energetic Boltzmann equation described in equation (1.9),

we rewrite our angular terms in terms of their discrete angular cosines over the domain [−1,+1]:

µ
dψ

dx
+ σtψ =

σs
2
φ+

Q

2
(2.5)

where:

µ = cos(θ). (2.6)

We then apply the definition of scaler flux and collocate using a Gauss-Legendre quadrature,

where the quadrature points, denoted by n, are chosen so that they are the same as the discrete

angles, denoted by m. The result is a scheme that can be iterated to solve for the scalar flux by

lagging the scattering source term:

µm
dψ

l+ 1
2

m

dx
+ σtψ

l+ 1
2

m =
σs
2
φl +

Q

2
(2.7)

φ =

∫ +1

−1
ψm(µ)dµ ≈

N∑
n=1

ψnwn. (2.8)

For DSA, we still lag the scattering source, but the resulting angular fluxes are used to calculate

the half-step scalar flux that is used in the diffusion acceleration step. For simplicity, the indexing

7



for the discrete angles and quadrature points are dropped in later equations in this thesis.

2.2.2 Spatial Discretization with the Lumped Linear-Discontinuous Galerkin Scheme

The resulting equation (2.7) is discretized using a lumped linear-discontinuous Galerkin scheme,

yielding a set of equations for both the positive angular cosines and the negative angular cosines.

Homogeneous material properties are assumed across the 1-D slab so that the only property varying

on each cell is the neutron flux. The cell width is set to h for all cells on the domain.

i− 1
2

i+ 1
2

i

ψi− 1
2

ψi(L)

ψi− 1
2

= ψi(R)

This results in the following system of equations:

µ > 0 : µ[ψi − ψi− 1
2
] +

σth

2
ψi(L) =

σsh

4
φi(L) +

h

4
Q, (2.9)

µ > 0 : µ[ψi+ 1
2
− ψi] +

σth

2
ψi(R) =

σsh

4
φi(R) +

h

4
Q, (2.10)

µ < 0 : µ[ψi − ψi− 1
2
] +

σth

2
ψi(L) =

σsh

4
φi(L) +

h

4
Q, (2.11)

µ < 0 : µ[ψi+ 1
2
− ψi] +

σth

2
ψi(R) =

σsh

4
φi(R) +

h

4
Q. (2.12)

The interior flux, ψi, within each spatial cell is defined in terms of the edge fluxes by averaging

them across the cell:

ψi =
1

2
[ψi(L) + ψi(R)]. (2.13)

The scattering source term in these equations is lagged by using the previous iteration’s edge

fluxes, as done in equation (2.7). By up-winding the flux, and applying the proper boundary

conditions for the exterior cells, the system becomes solvable on each interior cell:

8



µ > 0 : ψi− 1
2

= ψi−1(R), ψi+ 1
2

= ψi(R), (2.14)µ
2

+ σth
2

µ
2

−µ
2

µ
2

+ σth
2


ψL
ψR

 =

σsh
4
φL + hQ

4
+ µψi− 1

2

σsh
4
φR + hQ

4

 , (2.15)

µ < 0 : ψi+ 1
2

= ψi+1(L), ψi− 1
2

= ψi(L), (2.16)−µ
2

+ σth
2

µ
2

−µ
2

−µ
2

+ σth
2


ψL
ψR

 =

 σsh
4
φL + hQ

4

σsh
4
φR + hQ

4
− µψi+ 1

2

 . (2.17)

This system is then solved on each cell across the domain by sweeping from the exterior bound-

ary (where there is an incident angular flux) towards the interior boundary for all of the negative

discrete angular cosines, followed by sweeping from the interior boundary (where there is a reflec-

tive condition) back to the exterior boundary for all positive angular cosines. The resulting angular

fluxes are used to compute the scalar flux on the cell edges using the Gauss quadrature in equation

(2.8).

2.2.3 Cell Centered DSA

For the diffusion step, the traditional cell-center diffusion scheme of the residual, as defined

in equation (2.1), is discretized on a sub-mesh of cells with a width of h/2. After discretization,

equation (2.1) is solved by inverting a tri-diagonal matrix, making this step computationally cheap

to perform compared to the transport sweeps. However, our approach uses cell widths half the size

of the transport cells, and is thus placing the diffusion cell-centers at the 1/4 and 3/4 marks of the

transport cell:

i− 1
2

i+ 1
2

i

ˆφi,(L) ˆφi,(R)

ξi,(R)ξi,(L)

9



The interior fluxes are computed by interpolating from the transport edge fluxes:

φ̂L =
1

4
φR +

3

4
φL, (2.18)

φ̂R =
1

4
φL +

3

4
φR. (2.19)

Then, the following discrete version of (2.1) is solved across the domain with alternating (L) and

(R) indices:

2

3σth
(ξ̂i(L) − ξ̂i−1(R))−

2

3σth
(ξ̂i(R) − ξ̂i(L)) +

σah

2
ξ̂i(L) =

σsh

2
[φ̂L − φ̂R], (2.20)

2

3σth
(ξ̂i(R) − ξ̂i(L))−

2

3σth
(ξ̂i+1(L) − ξ̂i(R)) +

σah

2
ξ̂i(R) =

σsh

2
[φ̂R − φ̂L]. (2.21)

This system can be used to construct the typical tri-diagonal matrix used in traditional diffusion,

with the only difference being the source term used, which is then computed across the domain to

yield the desired error terms. The resulting errors must then be extrapolated back out to the cell

edges to be used as correction terms to the transport fluxes. Here we use the same linear mapping

as before, only inverted:

ξL = −1

2
ξ̂R +

3

2
ξ̂L, (2.22)

ξR = −1

2
ξ̂L +

3

2
ξ̂R, (2.23)

φl+1
L = φ

l+ 1
2

L + ξL, (2.24)

φl+1
R = φ

l+ 1
2

R + ξR. (2.25)

Which completes the full iteration of our DSA method. With some initial guess and appropriate

boundary conditions, the transport sweep can be performed, resulting in the uncorrected, half-step

fluxes. These values are then interpolated to the sub-mesh cell centers. A computationally cheap,

modified diffusion solver is then used to solve for the correction terms on the sub-mesh, which are

extrapolated back to the transport mesh to be applied to the previous iterates flux values. With the

10



zero source version of the problem, we converge the spectral radius rather than the solution itself

to quantitatively describe the scheme’s performance. The results are further discussed in section 4

of this thesis.
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3. FOURIER ANALYSIS

3.1 Description of Stability Analysis using the Fourier Ansatz

To further quantitatively describe the performance of the scheme derived in section 3, we con-

sider the infinite homogeneous medium problem and approximate the error as exponential modes

by the Fourier ansatz, yielding the following iterative system:

δφl+1 = Mδφl (3.1)

where the δφ’s represent the error in the scalar flux and M is the error reduction matrix, whose

eigenvalues govern the stability of the system.

For our proposed DSA method, two separate analyses were done, one for the SN sweep, and

then another for the diffusion preconditioning step, resulting in the M described in equation (3.1).

The determinent of this matrix can then be analyzed for each value of λ in the Fourier exponential

mode proposed. The rate of convergence is then determined by the maximum eigenvalue over all

λ’s, which is our desired spectral radius.

3.1.1 Error Reduction Matrix from the Fourier Ansatz Applied to the Transport Sweeps

We start by deriving the residual form of the transport equation for our defined problem. From

equation (2.5), this yields the following:

µ
∂δψl+

1
2

∂x
+ σtδψ

l+ 1
2 =

σs
2
δφl. (3.2)

Then we apply the same spacial and angular discretization scheme as before, only now our variable

of interest is the error in the angular flux, not the angular flux itself. This leads to the following

angle dependent equations, similar to the original transport sweep derived in equations (2.9 - 2.12):

12



µ > 0 : µ[δψ
l+ 1

2
i − δψl+

1
2

i− 1
2

] +
σth

2
δψ

l+ 1
2

i(L) =
σsh

4
δφli(L), (3.3)

µ > 0 : µ[δψ
l+ 1

2

i+ 1
2

− δψl+
1
2

i ] +
σth

2
δψ

l+ 1
2

i(R) =
σsh

4
δφli(R), (3.4)

µ < 0 : µ[δψ
l+ 1

2
i − δψl+

1
2

i− 1
2

] +
σth

2
δψ

l+ 1
2

i(L) =
σsh

4
δφli(L), (3.5)

µ < 0 : µ[δψ
l+ 1

2

i+ 1
2

− δψl+
1
2

i ] +
σth

2
δψ

l+ 1
2

i(R) =
σsh

4
δφli(R). (3.6)

This system is repeated for each µ in the original Gauss-Legendre quadrature used in the transport

sweep. Since the angles in the Gauss-Legendre quadrature are symetric about µ = 0, an absolute

value of mu is used and the system is redefined to solve for ψ+ and ψ− , representing the directional

angular flux for each absolute value angular cosine at each location on the infinite slab, yielding

the following system:

µ[δψ
l+ 1

2
+,i − δψ

l+ 1
2

+,i− 1
2

] +
σth

2
δψ

l+ 1
2

+,i(L) =
σsh

4
δφli(L), (3.7)

µ[δψ
l+ 1

2

+,i+ 1
2

− δψl+
1
2

+,i ] +
σth

2
δψ

l+ 1
2

+,i(R) =
σsh

4
δφli(R), (3.8)

µ[δψ
l+ 1

2

−,i− 1
2

− δψl+
1
2

−,i ] +
σth

2
δψ

l+ 1
2

−,i(L) =
σsh

4
δφli(L), (3.9)

µ[δψ
l+ 1

2
−,i − δψ

l+ 1
2

−,i+ 1
2

] +
σth

2
δψ

l+ 1
2

−,i(R) =
σsh

4
δφli(R). (3.10)

We then apply the same averaging and upwinding that was used in the transport sweep dis-

cretization. This gives us the system of equations that we wish to apply the Fourier ansatz to for

our analysis:
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µ[
1

2
[δψ

l+ 1
2

+,i(L) + δψ
l+ 1

2

+,i(R)]− δψ
l+ 1

2

+,i−1(R)] +
σth

2
δψ

l+ 1
2

+,i(L) =
σsh

4
δφli(L), (3.11)

µ[δψ
l+ 1

2

+,i(R) −
1

2
[δψ

l+ 1
2

+,i(L) + δψ
l+ 1

2

+,i(R)]] +
σth

2
δψ

l+ 1
2

+,i(R) =
σsh

4
δφli(R), (3.12)

µ[δψ
l+ 1

2

−,i(L) −
1

2
[δψ

l+ 1
2

−,i(L) + δψ
l+ 1

2

−,i(R)]] +
σth

2
δψ

l+ 1
2

−,i(L) =
σsh

4
δφli(L), (3.13)

µ[
1

2
[δψ

l+ 1
2

−,i(L) + δψ
l+ 1

2

−,i(R)]− δψ
l+ 1

2

−,i+1(L)] +
σth

2
δψ

l+ 1
2

−,i(R) =
σsh

4
δφli(R). (3.14)

For our ansatz, we assume a single Fourier mode for each error term in our system, both in

angular flux as well as in scalar flux. This gives us the following six modes that repeat across the

infinite medium:

δψi(L) ≈ e
iλx

i− 1
2 δψL, (3.15)

δψi(R) ≈ e
iλx

i+1
2 δψR, (3.16)

δψi+1(L) ≈ e
iλx

i+1
2 δψL, (3.17)

δψi−1(R) ≈ e
iλx

i− 1
2 δψR, (3.18)

δφi(L) ≈ e
iλx

i− 1
2 δφL, (3.19)

δφi(R) ≈ e
iλx

i+1
2 δφR. (3.20)

Each of which, are substituted into equations (3.11 - 3.14) to yield the following:
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µ[
1

2
[e
iλx

i− 1
2 δψ

l+ 1
2

+,i(L) + e
iλx

i+1
2 δψ

l+ 1
2

+,i(R)]− e
iλx

i− 1
2 δψ

l+ 1
2

+,(R)] +
σth

2
e
iλx

i− 1
2 δψ

l+ 1
2

+,i(L) =
σsh

4
e
iλx

i− 1
2 δφli(L),

(3.21)

µ[e
iλx

i+1
2 δψ

l+ 1
2

+,i(R) −
1

2
[e
iλx

i− 1
2 δψ

l+ 1
2

+,i(L) + e
iλx

i+1
2 δψ

l+ 1
2

+,i(R)]] +
σth

2
e
iλx

i+1
2 δψ

l+ 1
2

+,i(R) =
σsh

4
e
iλx

i+1
2 δφli(R),

(3.22)

µ[e
iλx

i− 1
2 δψ

l+ 1
2

−,i(L) −
1

2
[e
iλx

i− 1
2 δψ

l+ 1
2

−,i(L) + e
iλx

i+1
2 δψ

l+ 1
2

−,i(R)]] +
σth

2
e
iλx

i− 1
2 δψ

l+ 1
2

−,i(L) =
σsh

4
e
iλx

i− 1
2 δφli(L),

(3.23)

µ[
1

2
[e
iλx

i− 1
2 δψ

l+ 1
2

−,i(L) + e
iλx

i+1
2 δψ

l+ 1
2

−,i(R)]− e
iλx

i+1
2 δψ

l+ 1
2

−,i(L)] +
σth

2
e
iλx

i+1
2 δψ

l+ 1
2

−,i(R) =
σsh

4
e
iλx

i+1
2 δφli(R).

(3.24)

Our equations are currently formulated in terms of xi+/− 1
2
. It is beneficial to modify these

equations to be in terms of the cell width, λh, since the medium is homogeneous and has the same

cell width throughout. To achieve this, the entire system is divided by eiλxi:

µ[
1

2
[e−iλ

h
2 δψ

l+ 1
2

+,i(L) + eiλ
h
2 δψ

l+ 1
2

+,i(R)]− e
−iλh

2 δψ
l+ 1

2

+,(R)] +
σth

2
e−iλ

h
2 δψ

l+ 1
2

+,i(L) =
σsh

4
e−iλ

h
2 δφli(L),

(3.25)

µ[eiλ
h
2 δψ

l+ 1
2

+,i(R) −
1

2
[e−iλ

h
2 δψ

l+ 1
2

+,i(L) + eiλ
h
2 δψ

l+ 1
2

+,i(R)]] +
σth

2
eiλ

h
2 δψ

l+ 1
2

+,i(R) =
σsh

4
eiλ

h
2 δφli(R), (3.26)

µ[e−iλ
h
2 δψ

l+ 1
2

−,i(L) −
1

2
[e−iλ

h
2 δψ

l+ 1
2

−,i(L) + eiλ
h
2 δψ

l+ 1
2

−,i(R)]] +
σth

2
e−iλ

h
2 δψ

l+ 1
2

−,i(L) =
σsh

4
e−iλ

h
2 δφli(L),

(3.27)

µ[
1

2
[e−iλ

h
2 δψ

l+ 1
2

−,i(L) + eiλ
h
2 δψ

l+ 1
2

−,i(R)]− e
iλh

2 δψ
l+ 1

2

−,i(L)] +
σth

2
eiλ

h
2 δψ

l+ 1
2

−,i(R) =
σsh

4
eiλ

h
2 δφli(R). (3.28)

It is trivial then to rewrite our system into a matrix equation with repeating elements for each n’th

absolute value of µ in the following form:

Aδψl+
1
2 = Bδφl, (3.29)

where A is a 4nx4n matrix with zeros everywhere except for along the main diagonal, which has
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the form of the following 4x4 matrix repeating for each n’th absolute value of µ:



(µ
2

+ σth
2

)e−iλ
h
2 0 µ(1

2
eiλ

h
2 − e−iλh

2 ) 0

−µ
2
e−iλ

h
2 0 (µ

2
+ σth

2
)eiλ

h
2 0

0 (µ
2

+ σth
2

)e−iλ
h
2 0 −µ

2
eiλ

h
2

0 µ(1
2
e−iλ

h
2 − eiλh

2 ) 0 (µ
2

+ σth
2

)eiλ
h
2


, (3.30)

δψl+
1
2 is a 4nx1 vector constisting of repeating vectors of the angular flux error for each n’th

absolute value of µ: 

δψ
l+ 1

2

+,i(L)

δψ
l+ 1

2

−,i(L)

δψ
l+ 1

2

+,i(R)

δψ
l+ 1

2

−,i(R)


, (3.31)

B is a 4nx2 matrix that consists of the following 4x2 matrix repeating for each n’th absolute value

of µ: 

σsh
4
e−iλ

h
2 0

0 σsh
4
eiλ

h
2

σsh
4
e−iλ

h
2 0

0 σsh
4
eiλ

h
2


, (3.32)

and δφl is a 2x1 vector of the scalar flux error:

δφlL
δφlR

 . (3.33)

Which means that the error in the angular flux can be solved for by a simple matrix inversion of

the matrix A, giving us a similar form as equation (3.1) over the transport half-step:

δψl+
1
2 = A−1Bδφl. (3.34)
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However, in order to get the left hand side in terms of the error in the scalar flux, we must apply

the same quadrature weights from the Gauss-Legendre expansion used in equation (2.4). This is

accomplished by defining a new weight matrix that approximates the integral of the angular flux

over the angular cosines:

δφl+
1
2 = Wδψl+

1
2 = WA−1Bδφl. (3.35)

Here, W is a 2x4n matrix that consists of a repeating 2x4 matrix of the weights associated with

each n’th absolute value of µ:

w(µ) w(µ) 0 0

0 0 w(µ) w(µ)

 . (3.36)

And thus, we have our desired error reduction matrix for our transport sweep using our Fourier

ansatz:

C = WA−1B. (3.37)

From here on out, this error reduction matrix will be referenced as C.

3.1.2 Modified Error Reduction Matrix from the Fourier Ansatz Applied to the Two-Point

Diffusion Half-Step

Next, we derive the error reduction matrix for the full DSA iteration. This is done in a similar

fashion as we did for the sweep, starting with the residual of equation (2.1) (this is the residual of

the residual of the diffusion equation):

− ∂

∂x
D
∂δξ

∂x
+ σaδξ = σs(δφ

l − δφl+
1
2 ). (3.38)

Using the same extrapolation correction and half cell sub-mesh discretization used in deriving
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the original DSA equations, the following half cell equations are derived:

2

3σth
(δξ̂i(L) − δξ̂i−1(R))−

2

3σth
(δξ̂i(R) − δξ̂i(L)) +

σah

2
δξ̂i(L) =

σsh

2
[(

1

4
δφli(R) +

3

4
δφli(L))− (

1

4
δφ

l+ 1
2

i(R) +
3

4
δφ

l+ 1
2

i(L))],

(3.39)

2

3σth
(δξ̂i(R) − δξ̂i(L))−

2

3σth
(δξ̂i+1(L) − δξ̂i(R)) +

σah

2
δξ̂i(R) =

σsh

2
[(

3

4
δφli(R) +

1

4
δφli(L))− (

3

4
δφ

l+ 1
2

i(R) +
1

4
δφ

l+ 1
2

i(L))].

(3.40)

Here, for each full transport cell, equation (3.39) is the left hand half cell equation and (3.40) is the

right hand half cell equation.

Next, we apply a similar fourier ansatz as before, assuming a single mode at each point for

each error term:

δφi(L) ≈ e
iλx

i− 1
2 δφL, (3.41)

δφi(R) ≈ e
iλx

i+1
2 δφR, (3.42)

δξ̂i(L) ≈ e
iλx

i− 1
4 δξ̂L, (3.43)

δξ̂i(R) ≈ e
iλx

i+1
4 δξ̂R, (3.44)

δξ̂i+1(L) ≈ e
iλx

i+3
4 δξ̂L, (3.45)

δξ̂i−1(R) ≈ e
iλx

i− 3
4 δξ̂R. (3.46)

Plugging these approximations into equations (3.39) and (3.40), we get the following:

− 2

3σth
(e
iλx

i+1
4 δξ̂R − 2e

iλx
i− 1

4 δξ̂L + e
iλx

i− 3
4 δξ̂R) +

σah

2
e
iλx

i− 1
4 δξ̂L =

σsh

2
[
1

4
e
iλx

i+1
2 (δφlR − δφ

l+ 1
2

R ) +
3

4
e
iλx

i− 1
2 (δφlL − δφ

l+ 1
2

L )],

(3.47)

− 2

3σth
(e
iλx

i+3
4 δξ̂L − 2e

iλx
i+1

4 δξ̂R + e
iλx

i− 1
4 δξ̂L) +

σah

2
e
iλx

i+1
4 δξ̂R =

σsh

2
[
3

4
e
iλx

i+1
2 (δφlR − δφ

l+ 1
2

R ) +
1

4
e
iλx

i− 1
2 (δφlL − δφ

l+ 1
2

L )].

(3.48)
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Again, our equations are currently formulated in terms of xi+/− 1
2
. Like before, it is beneficial to

modify these equations to be in terms of the cell width, λh, so we again divide the entire system

by eiλxi:

− 2

3σth
(eiλ

h
4 δξ̂R − 2e−iλ

h
4 δξ̂L + e−iλ

3h
4 δξ̂R) +

σah

2
e−iλ

h
4 δξ̂L =

σsh

2
[
1

4
eiλ

h
2 (δφlR − δφ

l+ 1
2

R ) +
3

4
e−iλ

h
2 (δφlL − δφ

l+ 1
2

L )],

(3.49)

− 2

3σth
(eiλ

3h
4 δξ̂L − 2eiλ

h
4 δξ̂R + e−iλ

h
4 δξ̂L) +

σah

2
eiλ

h
4 δξ̂R =

σsh

2
[
3

4
eiλ

h
2 (δφlR − δφ

l+ 1
2

R ) +
1

4
e−iλ

h
2 (δφlL − δφ

l+ 1
2

L )].

(3.50)

It is trivial now to see that this is also a matrix equation of the following form:

Dδξ̂ = E(δφl − δφl+
1
2 ), (3.51)

where D is the following 2x2 matrix:

 ( 4
3σth

+ σah
2

)e−iλ
h
4 − 2

3σth
(eiλ

h
4 + e−iλ

3h
4 )

− 2
3σth

(eiλ
3h
4 + e−iλ

h
4 ) ( 4

3σth
+ σah

2
)eiλ

h
4

 , (3.52)

δξ̂ is the following 2x1 vector of the error of the error on the left and right fluxes on each cell:

δξ̂L
δξ̂R

 , (3.53)

E is the following 2x2 matrix: 3σsh
8
e−iλ

h
2

σsh
8
eiλ

h
2

σsh
8
e−iλ

h
2

3σsh
8
eiλ

h
2

 , (3.54)

δφl is the following 2x1 vector of the scalar flux error before the sweep:

δφlL
δφlR

 , (3.55)
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and δφl+
1
2 is the following 2x1 vector of the scalar flux error after the sweep:

δφl+ 1
2

L

δφ
l+ 1

2
R

 . (3.56)

We wish to derive the error reduction matrix in the form of equation (3.1), so we then invert D

to arrive at the following form:

δξ̂ = D−1E(δφl − δφl+
1
2 ). (3.57)

We then also recognize that φl+
1
2 can be rewritten in terms of C by equations (3.35) and (3.37):

δξ̂ = D−1E(δφl − Cδφl). (3.58)

However, equation (3.58) only applies to the error of the error at the DSA points on the sub-

mesh. In order to get the correct error reduction matrix for the full DSA iteration, we need to

redefine this in terms of the error in the correction term at the transport cell edges, represented as

a δξ. This is accomplished by mapping back using our linear extrapolation:

δξi(L) =
3

2
δξ̂i(L) −

1

2
δξ̂i(R), (3.59)

δξi(R) =
3

2
δξ̂i(R) −

1

2
δξ̂i(L). (3.60)

Which must also have the same Fourier ansatz applied to it, yielding:

δξL =
3

2
eiλ

h
4 δξ̂L −

1

2
eiλ

3h
4 δξ̂R, (3.61)

δξR =
3

2
e−iλ

h
4 δξ̂R −

1

2
e−iλ

3h
4 δξ̂L. (3.62)
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We then rewrite this as the following matrix equation:

δξ = Fδξ̂, (3.63)

where δξ is the vector of the extrapolated errors of the errors:

δξL
δξR

 , (3.64)

and F is the matrix for the mapping from the sub mesh to the original mesh for the sweep:

 3
2
eiλ

h
4 −1

2
eiλ

3h
4

−1
2
e−iλ

3h
4

3
2
e−iλ

h
4 .

 (3.65)

If we substitute this mapping into equation (3.58) for δξ̂, δξ can be represented in the following

way:

δξ = FD−1E(δφl − Cδφl). (3.66)

Which can then be used to solve for the error reduction matrix of the total error at the end of each

DSA iteration, defined as:

δφl+1 = δφl+
1
2 − δξ. (3.67)

By plugging in equations (3.35), (3.37), and (3.66) into equation 92, we can get the following

matrix equation:

δφl+1 = Cδφl − FD−1E(δφl − Cδφl). (3.68)

This can be rewritten in the form of equation (3.1), the desired form of the error reduction matrix

over the full DSA iteration that we wish to analyze, yielding:

δφl+1 = [C − F (D−1(E − EC))]δφl. (3.69)
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Which we further simplify to the following 2x2 error reduction matrix, M , whose eigenvalues

quantitatively describe the stability of the system:

M = C − F (D−1(E − EC)). (3.70)

The largest eigenvalues of matrixM for each λ, converge to the spectral radius of our proposed

two-point DSA numerical method. Thus, we can iterate over the repeating domanin of λ from

0 to 2π
h

for each tested configuration and have a quantitative description of whether or not the

method is stable under those tested conditions. The results of these tests are included in section,

and compared to the computational experiments using the method derived in section 2.
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4. COMPUTATIONAL RESULTS

4.1 Description of Test Problems

For simplicity, the base computational test problem analyzed assumes a 1000 cm slab with a

vacuum boundary condition on the right, a reflective condition on the left, a total cross-section

of 1 cm−1, variable absorption and scattering cross-sections, 1000 cells, and an 8 point Gauss-

Legendre quadrature expansion. The zero source version of the problem was used in all tests

performed. This allows for the iterative solution to be the error, eliminating issues with roundoff

errors and the solution converging before the spectral radius. The slab size was varied to solve for

the spectral radius for different cell sizes. The spectral radius was calculated by taking a ratio of

the L2 norms of differences of successive scalar flux iterates and converging on this value with a

tolerance of 1E-5:

ρ = (
ΣN
i [(φl+1

i )2 − (φli)
2]

ΣN
i [(φli)

2 − (φl−1i )2]
)
1
2 , (4.1)

which becomes the following for the zero source problem:

ρ = (
ΣN
i (φl+1

i )2

ΣN
i (φli)

2
)
1
2 . (4.2)

These values were tabulated for varying cross-sections and cell sizes below. The results are orga-

nized by values of c, the scattering ratio, defined as:

c = σs/σt, (4.3)

as well as by the cell sizes, which were varied by powers of 10, from 0.01 cm to 10 cm for each

tested value of c.

We also solve for the eigenvalues of the error reduction matrixM , from equation (3.70) derived

in Section 3, iterating λ over 0 to 2π
h

for the same combination of c and h as in the computational

test. The largest eigenvalues for each of these combinations of c and h were tabulated as the
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spectral radii for each problem.

4.2 Comparison of Computational Test and Fourier Analysis Results

The following tables, table (4.1), tabulate the results for both the computational tests and the

Fourier analysis respectively. In each of these tables, the data is organized into sets by the scattering

ratio, c. Within each set, the resulting spectral radius, ρ, for each magnitude change in in cell width,

h, is recorded. Both tables are provided below in the same format, adjacent to one another, so that

the reader may more easily compare the results directly.

Table 4.1: Computational Test and Fourier Analysis Results

c = 1.0 c = 0.99 c = 0.95
h(cm) ρ Computational ρ Fourier Analysis h(cm) ρ Computational ρ Fourier Analysis h(cm) ρ Computational ρ Fourier Analysis

0.01 0.222 0.222 0.01 0.219 0.219 0.01 0.206 0.206
0.1 0.229 0.229 0.1 0.226 0.226 0.1 0.213 0.213
1.0 0.572 0.575 1.0 0.565 0.567 1.0 0.534 0.537

10.0 2.825 2.829 10.0 2.034 2.037 10.0 0.934 0.935
c = 0.90 c = 0.50 c = 0.30

h(cm) ρ Computational ρ Fourier Analysis h(cm) ρ Computational ρ Fourier Analysis h(cm) ρ Computational ρ Fourier Analysis
0.01 0.191 0.191 0.01 0.093 0.093 0.01 0.053 0.053

0.1 0.197 0.198 0.1 0.097 0.098 0.1 0.056 0.056
1.0 0.497 0.499 1.0 0.241 0.242 1.0 0.136 0.137

10.0 0.535 0.536 10.0 0.072 0.072 10.0 0.031 0.031
c = 0.10

h(cm) ρ Computational ρ Fourier Analysis
0.01 0.017 0.017

0.1 0.018 0.018
1.0 0.043 0.043

10.0 0.008 0.008

4.3 Analysis of Results

Comparing these results, one can see that the computational tests and Fourier analysis results

are in agreement, as expected. This reinforces that the Fourier analysis was performed correctly on

the desired method that was initially analyzed by the computational tests. In these results, a spectral

radius greater than 1.0 would indicate that the result was non-convergent and that the method was

unstable under those conditions. In both the computational tests, as well as the Fourier analysis,

the results show convergence, regardless of cell width, for the cases where the scattering ratio was
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equal to 0.10, 0.30, 0.50, 0.90, and 0.95. However, in the cases dominated by scattering, where

the scattering ratio equaled 0.99, and 1.0, the method was non-convergent when the cell width was

equal to 10.0 cm. Regardless of scattering ratio, there is a dependence on the cell width for the

spectral radius.

There is also an observable trend of slower convergence as the scattering ratio increases. While

this is expected, the amount that the convergence slows for each of the 10.0 cm cases indicates poor

performance in high scattering problems with optically thick cells, even when convergent. In the

problems with a scattering ratio higher than 0.90, the performance can be comparable to traditional

DSA only in the optically thin cases where the cell width is much smaller than the mean-free path.
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5. SUMMARY, CONCLUSIONS, AND FUTURE WORK

5.1 Summarization of Work

The primary objective of this research was to analyze the effects of having two diffusion cells

per transport cell in a DSA method where the transport step was discretized with a lumped linear

discontinuous Galerkin approximation. This work was inspired, though not equivalent to, work

recently publish by Dr. Ryosuke Park at Los Alamos National Laboratory. For our analysis, a

homogeneous, 1-D slab geometry problem with isotropic scattering and a zero source term was

derived and tested. We then performed a Fourier analysis on the infinite medium equivalent of the

problem, determining the spectral radius from the derived reduction matrix for our the proposed

method. The results from both the test problem and the Fourier analysis were tabulated for com-

parison and analysis. These results were organized by scattering ratio and cell width over various

tests. Discussion of these results are in section (4) of this thesis.

5.2 Conclusions

The results of our analysis show that the method is conditionally unstable. For scatter domi-

nated problems with cell widths much larger than the mean-free path, the method becomes non-

convergent. Furthermore, in the pure scattering case, the method was comparable to traditional

DSA only when the cell widths were much smaller than the mean-free path. Thus, this approach

by itself is not a practical alternative to more traditional DSA schemes. Also, this means that the

stability gained in Ryosuke’s approach was not due to having two diffusion cells per transport cell

by itself, and that there must be some other reason for the gained stability.

5.3 Future Work

Given these results, it would be very interesting to derive an exact linear equivalent to Ryosuke’s

method to analyze as well, in order to determine what allows for such an approach to be stable.

As such, there could be ample future work in determining exactly how he has manage to achieve

unconditional stability even when his diffusion discretization is not consistent with his transport
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discretization. Our work has shown that this is not due to having multiple diffusion cells per trans-

port cell, at least not by itself. There must be some other reason for this gained stability and there

could be much to gain by further analysis.
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